

The Early Universe

The first few microseconds

Bengt Friman

Bereich Theorie Gesellschaft für Schwerionenforschung (GSI)

April 3, 2006 / Physikzentrum

Outline

- Introduction
- 2 GTR
- Cosmology
 - Cosmological models
 - Inflation

The Expanding Universe

The Expanding Universe

Einstein Year

Papers in 1905

- Photoeffect
- Brownian motion
- Special relativity
- $E = mc^2$

Einstein Year

Papers in 1905

- Photoeffect
- Brownian motion
- Special relativity
- \bullet $E = mc^2$

Special Relativity (1905)

- Unify Mechanics and Electrodynamics
- Equations of motion the same in inertial frames
- The principle of relativity

- Unify Gravity and Relativity
- Equations of motion the same in all frames
- Inspired by Mach's Principle (Rotation relative to distant stars)
- Einstein's equivalence principle
 - ("eliminate" gravitation in local inertial frame, laws of special relativity

Special Relativity (1905)

- Unify Mechanics and Electrodynamics
- Equations of motion the same in inertial frames
- The principle of relativity

- Unify Gravity and Relativity
- Equations of motion the same in all frames
- Inspired by Mach's Principle (Rotation relative to distant stars)
- Einstein's equivalence principle
- ("eliminate" gravitation in local inertial frame, laws of special relativity

Special Relativity (1905)

- Unify Mechanics and Electrodynamics
- Equations of motion the same in inertial frames
- The principle of relativity

- Unify Gravity and Relativity
- Equations of motion the same in all frames
- Inspired by Mach's Principle (Rotation relative to distant stars)
- Einstein's equivalence principle
 ("eliminate" gravitation in local inertial frame, laws of special relativity)

Special Relativity (1905)

- Unify Mechanics and Electrodynamics
- Equations of motion the same in inertial frames
- The principle of relativity

- Unify Gravity and Relativity
- Equations of motion the same in all frames
- Inspired by Mach's Principle (Rotation relative to distant stars)
- Einstein's equivalence principle
 ("eliminate" gravitation in local inertial frame, laws of special relativity)

- Strong gravitational fields
 - Compact stars, black holes
 - GTR ** Newtonian gravity
- Large distances
 - Cosmology
 - Expansion of the Universe
 - Cosmological redshift
- High precision in weak fields
 - Gravitational redshift
 - Deflection of light in gravitational fields
 - Precession of planetary orbits
 - Syncronization of clocks in gravitaional fields (GPS)
- Gravitational waves
 - Slowing down of binary pulsars

- Strong gravitational fields
 - Compact stars, black holes
 - GTR ^{weak fields} Newtonian gravity
- Large distances
 - Cosmology
 - Expansion of the Universe
 - Cosmological redshift
- High precision in weak fields
 - Gravitational redshift
 - Deflection of light in gravitational fields
 - Precession of planetary orbits
 - Syncronization of clocks in gravitational fields (GPS)
- Gravitational waves
 - Slowing down of binary pulsars

- Strong gravitational fields
 - Compact stars, black holes
 - GTR ** Newtonian gravity
- Large distances
 - Cosmology
 - Expansion of the Universe
 - Cosmological redshift
- High precision in weak fields
 - Gravitational redshift
 - Deflection of light in gravitaional fields
 - Precession of planetary orbits
 - Syncronization of clocks in gravitaional fields (GPS)
- Gravitational waves
 - Slowing down of binary pulsars

- Strong gravitational fields
 - Compact stars, black holes
 - GTR ** Newtonian gravity
- Large distances
 - Cosmology
 - Expansion of the Universe
 - Cosmological redshift
- High precision in weak fields
 - Gravitational redshift
 - Deflection of light in gravitaional fields
 - Precession of planetary orbits
 - Syncronization of clocks in gravitaional fields (GPS)
- Gravitational waves
 - Slowing down of binary pulsars

Space-time metrics

flat space-time

Minkowski metric

- $d\tau^2 = dt^2 dx^2 dy^2 dz^2 = \sum_{\mu\nu} \eta_{\mu\nu} dx^{\mu} dx^{\nu}$ $\mu, \nu \in \{0, 1, 2, 3\}$
- $\eta_{\mu\nu} = \eta^{\mu\nu} = \text{diag}(1, -1, -1, -1)$
- $x^{\mu} = (x^0, x^1, x^2, x^3) \equiv (t, x, y, z)$
- $\mathbf{X}_{\mu} = \eta_{\mu\nu} \mathbf{X}^{\nu} \equiv \sum_{\nu} \eta_{\mu\nu} \mathbf{X}^{\nu}$ (Summation convention)
- Scalar product $A_{\mu}B^{\mu}=\eta_{\mu\nu}A^{\mu}B^{\nu}$ Lorentz scalar
- A_{μ} covariant, A^{μ} contravariant vectors

Space-time metrics

curved space-time

GTR: Gravity ←⇒ curvature of space-time

- $d\tau^2 = g_{\mu\nu}(x)dx^{\mu}dx^{\nu}$
- Cannot bring $g_{\mu\nu}(x)$ in Minkowski form by coord. trafo
- ullet $g^{\mu
 u}=g^{
 u\mu},\,g^{\mu
 u}g_{
 u\lambda}=\delta^{\mu}_{\lambda}$
- Equation of motion

$$\frac{d^2x^{\lambda}}{d\tau^2} + \Gamma^{\lambda}_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau} = 0$$

Connection coefficient (Cristoffel symbol)

$$\Gamma^{\lambda}_{\mu
u} = rac{1}{2} g^{\lambda\sigma} \left\{ rac{\partial g_{\mu\sigma}}{\partial x^{
u}} + rac{\partial g_{
u\sigma}}{\partial x^{\mu}} - rac{\partial g_{\mu
u}}{\partial x^{\sigma}}
ight\}$$

Curved space-time Useful relations

Four-velocity

•
$$u^{\mu} = dx^{\mu}/d\tau$$
 $u_{\mu} = dx_{\mu}/d\tau$

Equations of motion valid in an arbitrary frame

$$\frac{du^{\mu}}{d\tau} + \Gamma^{\mu}_{\nu\lambda} u^{\nu} u^{\lambda} = 0$$

$$\frac{du_{\mu}}{d\tau} - \frac{1}{2} \frac{\partial g_{\nu\lambda}}{\partial x^{\mu}} u^{\nu} u^{\lambda} = 0$$

• $\partial g_{\nu\lambda}/\partial x^{\mu}=0 \ \Rightarrow \ u^{\mu}={\rm constant}$

Weak field limit

ullet $g_{00}=1+2\phi$ $\phi=-GM/r$ (Newtonian grav. potential)

Curved space-time Useful relations

Four-velocity

•
$$u^{\mu} = dx^{\mu}/d\tau$$
 $u_{\mu} = dx_{\mu}/d\tau$

Equations of motion valid in an arbitrary frame

$$\frac{du^{\mu}}{d\tau} + \Gamma^{\mu}_{\nu\lambda} u^{\nu} u^{\lambda} = 0$$

$$\frac{du_{\mu}}{d\tau} - \frac{1}{2} \frac{\partial g_{\nu\lambda}}{\partial x^{\mu}} u^{\nu} u^{\lambda} = 0$$

• $\partial g_{\nu\lambda}/\partial x^{\mu} = 0 \Rightarrow u^{\mu} = \text{constant}$

Weak field limit

$$ullet$$
 $g_{00}=1+2\phi$ $\phi=-GM/r$ (Newtonian grav. potential)

Covariant derivatives

- In curved space-time the differential dA^{μ} is not a vector
- $DA^{\mu} = A^{\mu}_{;\nu} dx^{\nu}$ transforms like a vector

$$A^{\mu}_{\;\;;\nu} = rac{\partial A^{\mu}}{\partial x^{
u}} + \Gamma^{\mu}_{\lambda
u} A^{\lambda}$$
 Covariant derivative

$$A_{\mu;
u} = rac{\partial A_{\mu}}{\partial x^{
u}} - \Gamma^{\lambda}_{\mu
u} A_{\lambda}$$

Scalar product

$$\frac{\partial A_{\mu}B^{\mu}}{\partial x^{\nu}} = \frac{\partial A_{\mu}}{\partial x^{\nu}}B^{\mu} + A_{\mu}\frac{\partial B^{\mu}}{\partial x^{\nu}}$$

ullet Metric tensor: $D\!A_\mu = g_{\mu
u}D\!A^
u \,\Rightarrow\, D\!g_{\mu
u} = 0$

Tensors

• Second covariant derivative $A_{\mu;\nu;\lambda}-A_{\mu;\lambda;
u}=R^{\sigma}_{\mu
u\lambda}A_{\sigma}$

$$R^{\sigma}_{\mu\nu\lambda} = \frac{\partial \Gamma^{\sigma}_{\mu\lambda}}{\partial x^{\nu}} - \frac{\partial \Gamma^{\sigma}_{\mu\nu}}{\partial x^{\lambda}} + \Gamma^{\sigma}_{\alpha\nu}\Gamma^{\alpha}_{\mu\lambda} - \Gamma^{\sigma}_{\alpha\lambda}\Gamma^{\alpha}_{\mu\nu}$$

- Riemann tensor vanishes if and only if space-time is flat
- Ricci tensor $R_{\mu
 u} = R^{
 u}_{\mu
 u \lambda}$
- Scalar curvature $R=g^{\mu\nu}R_{\mu\nu}$
- Einstein tensor $G^{\mu\nu}=R^{\mu\nu}-\frac{1}{2}g^{\mu\nu}R$
- Covariant divergence $G^{\mu\nu}_{\;\;;\mu}=0$
- ullet $G^{\mu
 u}$ contains information on the curvature of space-time

Tensors

• Second covariant derivative $A_{\mu;\nu;\lambda}-A_{\mu;\lambda;\nu}=R^{\sigma}_{\mu\nu\lambda}A_{\sigma}$

$$R^{\sigma}_{\mu\nu\lambda} = \frac{\partial \Gamma^{\sigma}_{\mu\lambda}}{\partial x^{\nu}} - \frac{\partial \Gamma^{\sigma}_{\mu\nu}}{\partial x^{\lambda}} + \Gamma^{\sigma}_{\alpha\nu}\Gamma^{\alpha}_{\mu\lambda} - \Gamma^{\sigma}_{\alpha\lambda}\Gamma^{\alpha}_{\mu\nu}$$

- Riemann tensor vanishes if and only if space-time is flat
- Ricci tensor $R_{\mu
 u} = R^{
 u}_{\mu
 u \lambda}$
- Scalar curvature $R=g^{\mu
 u}R_{\mu
 u}$
- Einstein tensor $G^{\mu\nu}=R^{\mu\nu}-\frac{1}{2}g^{\mu\nu}R$
- Covariant divergence $G^{\mu\nu}_{\;\;;\mu}=0$
- ullet $G^{\mu
 u}$ contains information on the curvature of space-time

Tensors

• Second covariant derivative $A_{\mu;\nu;\lambda}-A_{\mu;\lambda;\nu}=R^{\sigma}_{\mu\nu\lambda}A_{\sigma}$

$$R^{\sigma}_{\mu\nu\lambda} = \frac{\partial \Gamma^{\sigma}_{\mu\lambda}}{\partial x^{\nu}} - \frac{\partial \Gamma^{\sigma}_{\mu\nu}}{\partial x^{\lambda}} + \Gamma^{\sigma}_{\alpha\nu}\Gamma^{\alpha}_{\mu\lambda} - \Gamma^{\sigma}_{\alpha\lambda}\Gamma^{\alpha}_{\mu\nu}$$

- Riemann tensor vanishes if and only if space-time is flat
- Ricci tensor $R_{\mu
 u} = R^{
 u}_{\mu
 u \lambda}$
- Scalar curvature $R=g^{\mu
 u}R_{\mu
 u}$
- Einstein tensor $G^{\mu\nu}=R^{\mu\nu}-\frac{1}{2}g^{\mu\nu}R$
- Covariant divergence $G^{\mu\nu}_{;\mu} = 0$
- $G^{\mu\nu}$ contains information on the curvature of space-time

Tensors

• Second covariant derivative $A_{\mu;\nu;\lambda} - A_{\mu;\lambda;\nu} = R^{\sigma}_{\mu\nu\lambda}A_{\sigma}$

$$R^{\sigma}_{\mu\nu\lambda} = \frac{\partial \Gamma^{\sigma}_{\mu\lambda}}{\partial x^{\nu}} - \frac{\partial \Gamma^{\sigma}_{\mu\nu}}{\partial x^{\lambda}} + \Gamma^{\sigma}_{\alpha\nu}\Gamma^{\alpha}_{\mu\lambda} - \Gamma^{\sigma}_{\alpha\lambda}\Gamma^{\alpha}_{\mu\nu}$$

- Riemann tensor vanishes if and only if space-time is flat
- Ricci tensor $R_{\mu
 u} = R^{
 u}_{\mu
 u \lambda}$
- Scalar curvature $R=g^{\mu
 u}R_{\mu
 u}$
- Einstein tensor $G^{\mu\nu}=R^{\mu\nu}-\frac{1}{2}g^{\mu\nu}R$
- Covariant divergence $G^{\mu\nu}_{;\mu} = 0$
- $G^{\mu\nu}$ contains information on the curvature of space-time

Energy-momentum tensor

$$T^{\mu
u}(x) = \int rac{d^3k}{(2\pi)^3} rac{k^\mu k^
u}{k^0} f(\vec{k}, x)$$

- In local restframe for system in local equilibrium $T^{\mu\nu}(x)=\mathrm{diag}(\varepsilon,p,p,p)$ $p=\mathrm{pressure},\ \varepsilon=\mathrm{energy}\ \mathrm{density},\ E=\int T^{00}d^3x$
- In a general frame (Minkowski metric) $T^{\mu\nu} = (\varepsilon + p)u^{\mu}u^{\nu} \eta^{\mu\nu}p$
- Conservation of energy and momentum: $\partial_{\nu}T^{\mu\nu}=0$
- In curved space-time $T^{\mu\nu}_{\;\;;\nu}=0$

Energy-momentum tensor

$$T^{\mu
u}(x) = \int rac{d^3k}{(2\pi)^3} rac{k^\mu k^
u}{k^0} f(\vec{k}, x)$$

- In local restframe for system in local equilibrium $T^{\mu\nu}(x)=\mathrm{diag}(\varepsilon,p,p,p)$ $p=\mathrm{pressure},\ \varepsilon=\mathrm{energy}\ \mathrm{density},\ E=\int T^{00}d^3x$
- In a general frame (Minkowski metric) $T^{\mu\nu} = (\varepsilon + p)u^{\mu}u^{\nu} \eta^{\mu\nu}p$
- Conservation of energy and momentum: $\partial_{\nu}T^{\mu\nu}=0$
- In curved space-time $T^{\mu\nu}_{\;\;;\nu}=0$

Energy-momentum tensor

$$T^{\mu
u}(x) = \int rac{d^3k}{(2\pi)^3} rac{k^\mu k^
u}{k^0} f(\vec{k}, x)$$

- In local restframe for system in local equilibrium $T^{\mu\nu}(x)=\mathrm{diag}(\varepsilon,p,p,p)$ $p=\mathrm{pressure},\ \varepsilon=\mathrm{energy}\ \mathrm{density},\ E=\int T^{00}d^3x$
- In a general frame (Minkowski metric) $T^{\mu\nu} = (\varepsilon + p)u^{\mu}u^{\nu} \eta^{\mu\nu}p$
- Conservation of energy and momentum: $\partial_{\nu}T^{\mu\nu}=0$
- In curved space-time $T^{\mu\nu}_{;\nu}=0$

Energy-momentum tensor

$$T^{\mu
u}(x) = \int rac{d^3k}{(2\pi)^3} rac{k^\mu k^
u}{k^0} f(\vec{k}, x)$$

- In local restframe for system in local equilibrium $T^{\mu\nu}(x)=\mathrm{diag}(\varepsilon,p,p,p)$ $p=\mathrm{pressure},\ \varepsilon=\mathrm{energy}\ \mathrm{density},\ E=\int T^{00}d^3x$
- In a general frame (Minkowski metric) $T^{\mu\nu} = (\varepsilon + p)u^{\mu}u^{\nu} \eta^{\mu\nu}p$
- Conservation of energy and momentum: $\partial_{\nu}T^{\mu\nu}=0$
- In curved space-time $T^{\mu\nu}_{\;\;;\nu}=0$

Energy-momentum tensor

A gas of photons

• In rest frame of gas $(\beta = 1/T)$

$$\varepsilon = 2 \int \frac{d^3k}{(2\pi)^3} |\vec{k}| \frac{1}{e^{\beta |\vec{k}|} - 1} = \frac{\pi^2}{15} T^4$$

$$p = \frac{\pi^2}{45}T^4 = \frac{1}{3}\varepsilon$$

General property of gas of massless particles:

$$p = \varepsilon/3 \Rightarrow T^{\mu}_{\mu} = \varepsilon - 3p = 0$$

• $\varepsilon + 3p > 0$

Energy-momentum tensor II

Massive particles

For T << m</p>

$$\varepsilon = \sum_{spin} \int \frac{d^3k}{(2\pi)^3} k^0 f(\vec{k}) \simeq m \sum_{spin} \int \frac{d^3k}{(2\pi)^3} f(\vec{k}) \simeq m n$$

$$p = \sum_{spin} \int rac{d^3k}{(2\pi)^3} rac{ec{k}^2}{k^0} f(ec{k}) \simeq T \ n << arepsilon$$

- $T^{\mu\nu} \simeq \text{diag}(\varepsilon, 0, 0, 0), \qquad T^{\mu}_{\ \mu} \simeq \varepsilon$
- $\varepsilon + 3p > 0$

Energy-momentum tensor III

Vacuum

Vacuum should be Lorentz invariant

$$\mathcal{T}^{\mu
u} = arepsilon_{ ext{vac}} \, \eta^{\mu
u} = ext{diag}(arepsilon_{ ext{vac}}, -arepsilon_{ ext{vac}}, -arepsilon_{ ext{vac}}, -arepsilon_{ ext{vac}})$$

- $p_{vac} = -\varepsilon_{vac}$
- "Normal" vacuum: $p_{vac} = \varepsilon_{vac} = 0$
- Unstable vacuum: $\varepsilon_{vac} > 0$, $p_{vac} < 0$,

$$\varepsilon_{vac} + p_{vac} = 0$$

• $\varepsilon + 3p < 0$

Motivation

$$\vec{\nabla}^2 \phi(\vec{x}) = 4\pi G \rho(\vec{x}) \qquad \rho(\vec{x}) = mn(\vec{x})$$

- Connect curvature of space with energy momentum content. Ansatz: $G^{\mu\nu} = \kappa T^{\mu\nu}$ $(G^{\mu\nu}_{;\nu} = 0)$
- Determine κ . Newtonian limit: $G^{00} = \vec{\nabla}^2 g^{00} = \kappa \varepsilon \simeq \kappa mn$ $g^{00} \simeq 1 + 2\phi \Rightarrow \kappa = 8\pi G$
- Einstein's field equation: $G^{\mu\nu} = 8\pi G T^{\mu\nu}$
- Alternative form: $R^{\mu\nu}=8\pi G(T^{\mu\nu}-\frac{1}{2}g^{\mu\nu}T)$ $(T=T^{\mu}_{\ \mu})$

Motivation

$$\vec{\nabla}^2 \phi(\vec{x}) = 4\pi G \rho(\vec{x}) \qquad \rho(\vec{x}) = mn(\vec{x})$$

- Connect curvature of space with energy momentum content. Ansatz: $G^{\mu\nu} = \kappa T^{\mu\nu}$ $(G^{\mu\nu}_{:\nu} = 0)$
- Determine κ . Newtonian limit: $G^{00} = \vec{\nabla}^2 g^{00} = \kappa \varepsilon \simeq \kappa mn$ $g^{00} \simeq 1 + 2\phi \Rightarrow \kappa = 8\pi G$
- Einstein's field equation: $G^{\mu\nu} = 8\pi G T^{\mu\nu}$
- Alternative form: $R^{\mu\nu}=8\pi G(T^{\mu\nu}-\frac{1}{2}g^{\mu\nu}T)$ $(T=T^{\mu}_{\ \mu})$

Motivation

$$\vec{\nabla}^2 \phi(\vec{x}) = 4\pi G \rho(\vec{x}) \qquad \rho(\vec{x}) = mn(\vec{x})$$

- Connect curvature of space with energy momentum content. Ansatz: $G^{\mu\nu} = \kappa T^{\mu\nu}$ $(G^{\mu\nu}_{:\nu} = 0)$
- Determine κ . Newtonian limit: $G^{00} = \vec{\nabla}^2 g^{00} = \kappa \varepsilon \simeq \kappa mn$ $g^{00} \simeq 1 + 2\phi \Rightarrow \kappa = 8\pi G$
- Einstein's field equation: $G^{\mu\nu} = 8\pi G T^{\mu\nu}$
- Alternative form: $R^{\mu\nu}=8\pi G(T^{\mu\nu}-\frac{1}{2}g^{\mu\nu}T)$ $(T=T^{\mu}_{\ \mu})$

Motivation

$$\vec{\nabla}^2 \phi(\vec{x}) = 4\pi G \rho(\vec{x}) \qquad \rho(\vec{x}) = mn(\vec{x})$$

- Connect curvature of space with energy momentum content. Ansatz: $G^{\mu\nu} = \kappa T^{\mu\nu}$ $(G^{\mu\nu}_{:\nu} = 0)$
- Determine κ . Newtonian limit: $G^{00} = \vec{\nabla}^2 g^{00} = \kappa \varepsilon \simeq \kappa mn$ $g^{00} \simeq 1 + 2\phi \Rightarrow \kappa = 8\pi G$
- Einstein's field equation: $G^{\mu\nu} = 8\pi G T^{\mu\nu}$
- Alternative form: $R^{\mu\nu}=8\pi G(T^{\mu\nu}-\frac{1}{2}g^{\mu\nu}T)$ $(T=T^{\mu}_{\ \mu})$

Motivation

$$\vec{\nabla}^2 \phi(\vec{x}) = 4\pi G \rho(\vec{x}) \qquad \rho(\vec{x}) = mn(\vec{x})$$

- Connect curvature of space with energy momentum content. Ansatz: $G^{\mu\nu} = \kappa T^{\mu\nu}$ $(G^{\mu\nu}_{:\nu} = 0)$
- Determine κ . Newtonian limit: $G^{00} = \vec{\nabla}^2 g^{00} = \kappa \varepsilon \simeq \kappa mn$ $g^{00} \simeq 1 + 2\phi \Rightarrow \kappa = 8\pi G$
- Einstein's field equation: $G^{\mu\nu} = 8\pi G T^{\mu\nu}$
- Alternative form: $R^{\mu\nu}=8\pi G(T^{\mu\nu}-\frac{1}{2}g^{\mu\nu}T)$ $(T=T^{\mu}_{\ \mu})$

$G^{\mu u}=8\pi G\,T^{\mu u}$

- The field equation determines "everything".
 - Space-time geometry $G^{\mu\nu}$ as function of sources $T^{\mu\nu}$
 - Dynamics of sources in the curved space-time determined by $T^{\mu\nu}_{\;\;;\nu}=$ 0 and equation-of-state
- $G^{\mu\nu}_{;\nu}=0$ automatically satisfied \Leftrightarrow freedom of choice of coordinate system.
- In vacuum $R^{\mu\nu}=0$ ($T^{\mu\nu}$ does not include grav. field)
- Cosmological constant Lambda (vacuum energy)

$$R^{\mu\nu} - \frac{1}{2}g^{\mu\nu}R - g^{\mu\nu}\Lambda = 8\pi G T^{\mu\nu}$$

$$T_{
m vac}^{\mu
u}=rac{\Lambda}{8\pi G}g^{\mu
u}$$

Einstein's field equation II

$G^{\mu u}=8\pi G\,T^{\mu u}$

- The field equation determines "everything".
 - Space-time geometry $G^{\mu\nu}$ as function of sources $T^{\mu\nu}$
 - Dynamics of sources in the curved space-time determined by $T^{\mu\nu}_{\;\;;\nu}=0$ and equation-of-state
- $G^{\mu\nu}_{\;\;;\nu}=0$ automatically satisfied \Leftrightarrow freedom of choice of coordinate system.
- In vacuum $R^{\mu\nu}=0$ ($T^{\mu\nu}$ does not include grav. field)
- Cosmological constant Lambda (vacuum energy)

$$R^{\mu\nu} - \frac{1}{2}g^{\mu\nu}R - g^{\mu\nu}\Lambda = 8\pi G T^{\mu\nu}$$

$$T_{
m vac}^{\mu
u}=rac{\Lambda}{8\pi G}g^{\mu
u}$$

Einstein's field equation II

$G^{\mu u}=8\pi G\,T^{\mu u}$

- The field equation determines "everything".
 - Space-time geometry $G^{\mu\nu}$ as function of sources $T^{\mu\nu}$
 - Dynamics of sources in the curved space-time determined by $T^{\mu\nu}_{\;\;;\nu}=0$ and equation-of-state
- $G^{\mu\nu}_{\;\;;\nu}=0$ automatically satisfied \Leftrightarrow freedom of choice of coordinate system.
- In vacuum $R^{\mu\nu}=0$ ($T^{\mu\nu}$ does not include grav. field)
- Cosmological constant *Lambda* (vacuum energy)

$$R^{\mu\nu} - \frac{1}{2}g^{\mu\nu}R - g^{\mu\nu}\Lambda = 8\pi G T^{\mu\nu}$$

$$T_{vac}^{\mu
u}=rac{\Lambda}{8\pi G}g^{\mu
u}$$

Einstein's field equation II

$G^{\mu u}=8\pi G\,T^{\mu u}$

- The field equation determines "everything".
 - Space-time geometry $G^{\mu\nu}$ as function of sources $T^{\mu\nu}$
 - Dynamics of sources in the curved space-time determined by $T^{\mu\nu}_{\;\;;\nu}=0$ and equation-of-state
- $G^{\mu\nu}_{\;\;;\nu}=0$ automatically satisfied \Leftrightarrow freedom of choice of coordinate system.
- In vacuum $R^{\mu\nu}=0$ ($T^{\mu\nu}$ does not include grav. field)
- Cosmological constant Lambda (vacuum energy)

$$R^{\mu
u}-rac{1}{2}g^{\mu
u}R-g^{\mu
u}\Lambda=8\pi G\,T^{\mu
u}$$

$$T_{
m vac}^{\mu
u}=rac{\Lambda}{8\pi G}g^{\mu
u}$$

Cosmology

Cosmology deals with the evolution of the universe on the largest scales of space and time. Cosmology is one of the most important applications of GTR.

Basic observational facts

- The Universe consist of visible matter (stars in galaxies radiation, dark matter and dark energy (vacuum energy)
- The Universe is expanding
- On large scales the Universe is isotropic and homogeneous (Cosmological principle)

Notation

• all massless particles = radiation

200

Cosmology

Cosmology deals with the evolution of the universe on the largest scales of space and time. Cosmology is one of the most important applications of GTR.

Basic observational facts

- The Universe consist of visible matter (stars in galaxies), radiation, dark matter and dark energy (vacuum energy)
- The Universe is expanding
- On large scales the Universe is isotropic and homogeneous (Cosmological principle)

Notation

- all massless particles = radiation
 - all massive particles = matter

Cosmology

Cosmology deals with the evolution of the universe on the largest scales of space and time. Cosmology is one of the most important applications of GTR.

Basic observational facts

- The Universe consist of visible matter (stars in galaxies), radiation, dark matter and dark energy (vacuum energy)
- The Universe is expanding
- On large scales the Universe is isotropic and homogeneous (Cosmological principle)

Notation

- all massless particles = radiation
- all massive particles = matter

- Most visible matter is in galaxies.
- Average density of visible matter $(\rho \equiv \varepsilon)$

$$ho_{visible}(t_0) \sim 10^{-31} g \, cm^{-3} \sim 1 proton/m^3$$

Cosmic Microwave Background (T_{CMB}(t₀) = 2.726K)

$$ho_{CMB}(t_0) \sim 10^{-34} g \ cm^{-3}$$

CMB one of the strongest pieces of evidence for Big Bang

Approximate fractions

Dark energy .7

Matter .3 (visible matter .04)

Radiation 5×10^{-5}

- Most visible matter is in galaxies.
- Average density of visible matter ($\rho \equiv \varepsilon$)

$$ho_{\textit{visible}}(\textit{t}_0) \sim 10^{-31} \textit{g cm}^{-3} \sim 1 \textit{proton/m}^3$$

Cosmic Microwave Background (T_{CMB}(t₆) = 2.726K)

$$\rho_{CMB}(t_0) \sim 10^{-34} g \, cm^{-3}$$

CMB one of the strongest pieces of evidence for Big Bang

Approximate fractions

Dark energy .7

Matter .3 (visible matter .04

Radiation 5×10^{-5}

- Most visible matter is in galaxies.
- Average density of visible matter ($\rho \equiv \varepsilon$)

$$ho_{\textit{visible}}(t_0) \sim 10^{-31} \textit{g cm}^{-3} \sim 1 \textit{proton/m}^3$$

Cosmic Microwave Background T_{CMB}(t₀) = 2.726K

$$ho_{CMB}(t_0) \sim 10^{-34} g \, cm^{-3}$$

CMB one of the strongest pieces of evidence for Big Bang

Approximate fractions

Radiation
$$5 \times 10^{-5}$$

- Most visible matter is in galaxies.
- Average density of visible matter ($\rho \equiv \varepsilon$)

$$ho_{\textit{visible}}(t_0) \sim 10^{-31} \textit{g cm}^{-3} \sim 1 \textit{proton/m}^3$$

Cosmic Microwave Background T_{CMB}(t₀) = 2.726K

$$ho_{CMB}(t_0) \sim 10^{-34} g \, cm^{-3}$$

CMB one of the strongest pieces of evidence for Big Bang

Approximate fractions

Radiation
$$5 \times 10^{-5}$$

- Most visible matter is in galaxies.
- Average density of visible matter $(\rho \equiv \varepsilon)$

$$ho_{\textit{visible}}(t_0) \sim 10^{-31} \textit{g cm}^{-3} \sim 1 \textit{proton/m}^3$$

Cosmic Microwave Background T_{CMB}(t₀) = 2.726K

$$ho_{CMB}(t_0) \sim 10^{-34} g \, cm^{-3}$$

CMB one of the strongest pieces of evidence for Big Bang

Approximate fractions

Dark energy .7

Matter .3 (visible matter .04)

Radiation 5×10^{-5}

The universe expands

- The spectra from distant stars are redshifted
- If interpreted in terms of Dopplershift

$$\frac{v}{c} = \frac{\Delta \lambda}{\lambda} = Z \quad (\frac{v}{c} << 1)$$

• Empirically $v = H_0 d$ (Hubble's law) Hubble constant $H_0 = 72 \pm 7 \frac{km}{s} \frac{1}{Mpc}$

Hubble

parsec

Hubble's law ⇒ homologous expansion (no distortions)

Friedman-Robertson-Walker metric (FRW)

Simplest homogeneous, isotropic metric (flat space)

$$d\tau^2 = dt^2 - a(t)^2(dx^2 + dy^2 + dz^2)$$

- a(t) scale factor, x, y, z comoving, synchronous coordinates
- At fixed time $ds^2 = a(t)^2(dx^2 + dy^2 + dz^2)$ physical distances given by $X = \int a(t)dx = a(t)x$ etc.
- $g_{\mu\nu} = \text{diag}(1, -a^2, -a^2, -a^2)$

Friedman-Robertson-Walker metric (FRW)

Friedman-Robertson-Walker metric (FRW)

 Simplest homogeneous, isotropic metric (flat space)

$$d\tau^2 = dt^2 - a(t)^2(dx^2 + dy^2 + dz^2)$$

- a(t) scale factor, x, y, z comoving, synchronous coordinates
- At fixed time $ds^2 = a(t)^2(dx^2 + dy^2 + dz^2)$ physical distances given by $X = \int a(t)dx = a(t)x$ etc.
- $g_{\mu\nu} = \text{diag}(1, -a^2, -a^2, -a^2)$

FRW II

More general coordinates

$$d\tau^2 = dt^2 - a(t)^2 (\frac{dr^2}{1 - kr^2} + r^2 d\Omega^2)$$
 $d\Omega^2 = d\theta^2 + \sin^2\theta d\phi^2$

- k = 1 closed, k = 0 flat, k = -1 open universe
- Since our universe almost flat, consider only k = 0
- Consider volume ΔV
- Universe homogeneous ⇒ no heat flow

$$d(\Delta E) = -p d(\Delta V)$$
 (energy conservation)

•
$$\Delta E = \rho \Delta V$$
 $\Delta V_{coord} = \Delta x \Delta y \Delta z$
 $\Delta V = a(t)^3 \Delta V_{coord}$

FRW II

More general coordinates

$$d\tau^2 = dt^2 - a(t)^2 (\frac{dr^2}{1 - k r^2} + r^2 d\Omega^2)$$
 $d\Omega^2 = d\theta^2 + \sin^2 \theta d\phi^2$

- k = 1 closed, k = 0 flat, k = -1 open universe
- Since our universe almost flat, consider only k = 0
- Consider volume ΔV
- Universe homogeneous ⇒ no heat flow

$$d(\Delta E) = -p d(\Delta V)$$
 (energy conservation)

•
$$\Delta E = \rho \Delta V$$
 $\Delta V_{coord} = \Delta x \Delta y \Delta z$
 $\Delta V = a(t)^3 \Delta V_{coord}$

Energy conservation

$$\frac{d}{dt}(\rho a(t)^3) = -\rho \frac{d}{dt}(a(t)^3)$$

• Matter dominated universe $\frac{d}{dt}(\rho a^3) = 0$

$$ho(t) =
ho(t_0) \left(rac{a(t_0)}{a(t)}
ight)^3$$
 isoergic expansion

• Radiation dominated universe $p = \frac{1}{3}\rho$

$$ho(t) =
ho(t_0) \left(rac{ extbf{a}(t_0)}{ extbf{a}(t)}
ight)^4$$
 isentropic expansion

Redshift due to p dV work

Energy conservation

$$\frac{d}{dt}(\rho a(t)^3) = -\rho \frac{d}{dt}(a(t)^3)$$

• Matter dominated universe $\frac{d}{dt}(\rho a^3) = 0$

$$\rho(t) = \rho(t_0) \left(\frac{a(t_0)}{a(t)}\right)^3$$
 isoergic expansion

• Radiation dominated universe $p = \frac{1}{3}\rho$

$$ho(t) =
ho(t_0) \left(rac{a(t_0)}{a(t)}
ight)^4$$
 isentropic expansion

•
$$\rho \sim T^4 \Rightarrow T(t) = T(t_0) \frac{a(t_0)}{a(t)}$$
 Redshift due to $\rho \, dV$ work

Energy conservation

$$\frac{d}{dt}(\rho a(t)^3) = -\rho \frac{d}{dt}(a(t)^3)$$

• Matter dominated universe $\frac{d}{dt}(\rho a^3) = 0$

$$\rho(t) = \rho(t_0) \left(\frac{a(t_0)}{a(t)}\right)^3$$
 isoergic expansion

• Radiation dominated universe $p = \frac{1}{3}\rho$

$$\rho(t) = \rho(t_0) \left(\frac{a(t_0)}{a(t)}\right)^4$$
 isentropic expansion

Redshift due to p dV work

Energy conservation

$$\frac{d}{dt}(\rho a(t)^3) = -\rho \frac{d}{dt}(a(t)^3)$$

• Matter dominated universe $\frac{d}{dt}(\rho a^3) = 0$

$$\rho(t) = \rho(t_0) \left(\frac{a(t_0)}{a(t)}\right)^3$$
 isoergic expansion

• Radiation dominated universe $p = \frac{1}{3}\rho$

$$ho(t) =
ho(t_0) \left(rac{a(t_0)}{a(t)}
ight)^4$$
 isentropic expansion

• $\rho \sim T^4 \Rightarrow T(t) = T(t_0) \frac{a(t_0)}{a(t)}$ Redshift due to $\rho \, dV$ work

Vacuum energy dominated universe

$$\mathcal{T}^{\mu
u}=
ho_{ extsf{vac}}\,oldsymbol{g}^{\mu
u}\,\,\,\,\,\,\,oldsymbol{p}_{ extsf{vac}}=-
ho_{ extsf{vac}}$$

•
$$\frac{d}{dt}(\rho_{vac}a(t)^3) = \rho_{vac}\frac{d}{dt}(a(t)^3) = -p_{vac}\frac{d}{dt}(a(t)^3)$$

- Energy grows proportional to volume p dV work negative, energy conserved
- What drives expansion?

Vacuum energy dominated universe

$$T^{\mu
u} =
ho_{ extsf{vac}} \, g^{\mu
u} \quad p_{ extsf{vac}} = -
ho_{ extsf{vac}}$$

- $\frac{d}{dt}(\rho_{\textit{vac}} a(t)^3) = \rho_{\textit{vac}} \frac{d}{dt}(a(t)^3) = -p_{\textit{vac}} \frac{d}{dt}(a(t)^3)$
- Energy grows proportional to volume p dV work negative, energy conserved
- What drives expansion?

Vacuum energy dominated universe

$$T^{\mu
u}=
ho_{ extsf{vac}}\,g^{\mu
u}\quad p_{ extsf{vac}}=-
ho_{ extsf{vac}}$$

- $\frac{d}{dt}(\rho_{vac}a(t)^3) = \rho_{vac}\frac{d}{dt}(a(t)^3) = -p_{vac}\frac{d}{dt}(a(t)^3)$
- Energy grows proportional to volume p dV work negative, energy conserved
- What drives expansion?

Dynamics of FRW

- $G_{\mu\nu}=8\pi G T_{\mu\nu}$
- Compute $G_{\mu\nu}$ for

$$d\tau^2 = dt^2 - a(t)^2 \left(\frac{dr^2}{1 - kr^2} + r^2 d\Omega^2 \right)$$

• Use orthonormal basis, where $T_{\mu\nu} = \text{diag}(\rho, p, p, p)$

FRW field equations:

$$\frac{3}{a^2}(k+\dot{a}^2)=8\pi\ G\,\rho$$

$$-\frac{1}{a^2}(k+\dot{a}^2+2\,a\,\ddot{a})=8\pi\,G\,p$$

Combining eqn's:

$$(\dot{a})^2 = -k + \frac{8 \pi G}{3} \rho a^2$$

$$\frac{\ddot{a}}{a} = -\frac{8\pi G}{6}(\rho + 3p)$$

Critical density

- Start with k = 0 $\left(\frac{\dot{a}}{a}\right)^2 = \frac{8 \pi G}{3} \rho$
- $H_0^2 = \frac{8 \pi G}{3} \rho_0$
- Present energy density in flat universe = critical density

$$ho_{crit} = rac{3 \, H_0^2}{8 \, \pi \, G} = 1.88 imes 10^{-29} h^2 \, g \, cm^{-3} \ h = H_0/100 rac{km}{s} rac{1}{Mpc}$$

•
$$\Omega_m = \frac{\rho_m(t_0)}{\rho_{crit}}$$
, $\Omega_r = \frac{\rho_r(t_0)}{\rho_{crit}}$, $\Omega_v = \frac{\rho_v(t_0)}{\rho_{crit}}$
 $\Omega = \Omega_m + \Omega_r + \Omega_v = \frac{\rho(t_0)}{\rho_{crit}}$

Energy density

- In a flat universe $\Omega=1$ Our universe: $\Omega_m \simeq 0.3$, $\Omega_r \simeq 5 \times 10^{-5}$, $\Omega_v \simeq 0.7$
- Choose $a(t_0) = 1$, then

$$\rho(a) = \rho_{crit}(\Omega_{v} + \Omega_{m}/a^{3} + \Omega_{r}/a^{4})$$

Dynamical equation:

$$rac{1}{2H_0^2}\dot{a}^2+U_{eff}(a)=0$$
 $U_{eff}(a)=-rac{1}{2}\left(\Omega_Va^2+rac{\Omega_m}{a}+rac{\Omega_r}{a^2}
ight)$

Simple flat universes

Matter dominated universe

- $\Omega_m = 1$, $\Omega_r = \Omega_v = 0$
- $\frac{da}{dt} = H_0 \frac{1}{\sqrt{a}} \Rightarrow a(t) = (\frac{3}{2}H_0 t)^{2/3} \sim t^{2/3}$
- $a(t_0) = 1 \Rightarrow t_0 = \frac{2}{3 H_0} \simeq 9 \times 10^9 years$

Radiation dominated universe

•
$$\Omega_r = 1$$
, $\Omega_m = \Omega_V = 0$

•
$$\frac{da}{dt} = H_0 \frac{1}{a} \Rightarrow a(t) = (2H_0 t)^{1/2} \sim t^{1/2}$$

•
$$a(t_0) = 1 \Rightarrow t_0 = \frac{1}{2H_0} \simeq 7 \times 10^9 years$$

Simple flat universes

Matter dominated universe

- $\Omega_m = 1$, $\Omega_r = \Omega_v = 0$
- $\frac{da}{dt} = H_0 \frac{1}{\sqrt{a}} \Rightarrow a(t) = (\frac{3}{2}H_0 t)^{2/3} \sim t^{2/3}$
- $a(t_0) = 1 \Rightarrow t_0 = \frac{2}{3 H_0} \simeq 9 \times 10^9 years$

Radiation dominated universe

- $\Omega_r = 1$, $\Omega_m = \Omega_v = 0$
- $\frac{da}{dt} = H_0 \frac{1}{a} \Rightarrow a(t) = (2H_0 t)^{1/2} \sim t^{1/2}$
- $a(t_0) = 1 \Rightarrow t_0 = \frac{1}{2H_0} \simeq 7 \times 10^9 years$

Simple flat universes II

Vacuum dominated universe

- $\Omega_v = 1$, $\Omega_m = \Omega_r = 0$
- $\frac{da}{dt} = H_0 \ a \Rightarrow a(t) = a(t_0) \ e^{H_0(t-t_0)} \sim e^{H_0 \ t}$
- Cosmological constant $\Lambda = 8 \pi G \rho_V$
- Positive vacuum energy ⇒ repulsive gravitation ⇒ exponential growth of the universe!

$$\frac{\ddot{a}}{a} = -\frac{8\pi G}{6}(\rho + 3p) > 0$$

 First solutions with an expanding universe by Friedman (1922) and by Lemaitre (1927). Lemaitre suggested that the universe evolved from a singularity. The name big bang coined by Fred Hoyle.

Simple flat universes II

Vacuum dominated universe

- $\Omega_V = 1$, $\Omega_m = \Omega_r = 0$
- $\frac{da}{dt} = H_0 \ a \Rightarrow a(t) = a(t_0) \ e^{H_0(t-t_0)} \sim e^{H_0 \ t}$
- Cosmological constant $\Lambda = 8 \pi G \rho_V$
- Positive vacuum energy ⇒ repulsive gravitation ⇒ exponential growth of the universe!

$$\frac{\ddot{a}}{a} = -\frac{8\pi G}{6}(\rho + 3p) > 0$$

 First solutions with an expanding universe by Friedman (1922) and by Lemaitre (1927). Lemaitre suggested that the universe evolved from a singularity. The name big bang coined by Fred Hoyle.

Solution for $\Omega_r = \Omega_m = \Omega_v = \frac{1}{3}$

Schematic model

- Abundance of a particle species depends only on m_i/T .
- Schematic model:

$$ho_i=0$$
 for $m_i/T>1$ $ho_i=g_i\,rac{\pi^2}{30}\,S_i\,T^4$ for $m_i/T<1$ $S_i=1$ for bosons, $S_i=rac{7}{8}$ for fermions

Particle content of the early universe

Content of the early universe

Photon decoupling

- At $T > 10^3 10^4$ K, $t_{dec} \simeq 10^5$ years atoms are ionized \Rightarrow the universe is opaque to photons
- At smaller T, e, p, n form neutral atoms
 ⇒ the universe is transparent to photons
- From t_{dec} the photons propagate freely, except for gravitation
- Expansion of the universe, or equivalently, the interaction with the gravitational field
 - \Rightarrow Cosmological redshift $\lambda_0 = \lambda_{dec} rac{a(t0)}{a(t_{dec})} \simeq 1000 \lambda_{dec}$
- $T_{CMB} = 2.75 \text{ K } T_{dec} \simeq 1000 T_{CMB} \simeq 3000 \text{ K}$

Phase transitions

Timeline of the very early universe

- The Planck epoch $t \simeq 10^{-43} \text{ sec}$ before this time need quantum gravity - not yet understood!
- Grand unification $t \simeq 10^{-33} \, {\rm sec}$ electromagnetism, weak and strong interaction of the same strength
- Cosmic inflation and reheating
 The temperature at which inflation occurs is not known
- Baryogenesis
 Supposed to explain why there are slightly more baryons than anti-baryons in the universe - not yet fully understood

Phase transitions II

Timeline of the very early universe cont'd

- The electroweak epoch $t \simeq 10^{-12} \, {\rm sec}$ Electromagnetic and weak interactions separate
- Confinement transition $t \simeq 10^{-5}$ sec Quarks and gluons are confined into hadrons
- Nucleosynthesis t ≃ 1 sec
 Light nuclei are formed

Why do we need inflation?

Horizon problem

- CMB uniform to one part in 10⁵
- wmap
- Difficult to understand, unless all parts of the visible universe were in thermal contact at the time of decoupling
- The horizon at decoupling (causally connected)
 ⇔ an angle of 2 degrees today

Monopole problem

- Particle physics theories predict a variety of relics:
 - Magnetic monopoles
 - Domain walls
 - Supersymmetric particles . . .
- Not seen. Needs to be diluted!

Why do we need inflation? II

Flatness problem

Einstein's Equation

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2}$$

$$|\Omega - 1| = \frac{|k|}{(\dot{a})^2}$$

• Standard expansion $a(t) \sim t^{\alpha}$ $\alpha = 1/2, 2/3$

$$|\Omega - 1| \sim t^{2(1-\alpha)} \to \infty$$

• $\Omega = 1$ unstable.

Finetuning problem to achieve $|\Omega - 1| < 1$ today.

Flatness problem

Solution: Inflation

- Need an epoch where $|\Omega 1| = |k|/(\dot{a})^2 \to 0$, i.e., where the finetuning is automatic
- Inflation $\Leftrightarrow \ddot{a} > 0$

$$\Leftrightarrow \frac{d}{dt} \frac{1}{(\dot{a})^2} < 0$$
, i.e. $\Omega \to 1$
 $\Leftrightarrow \rho + 3p < 0$

Standard inflation

- $p = -\rho$, $a(t) \sim e^{Ht}$
- During inflation the horizon remains
 ≃ constant in comoving coordinates
- Typically one needs $H \Delta t > 70$ $\Rightarrow a(t)$ grows by factor $> 10^{30}$ during inflation!

Inflation II

- Inflation solves horizon problem by blowing up the causally connected region by $\sim 10^{30}$
- Monopole problem solved by dilution
- Solves the flatness problem by $\Omega \to 1, \ |\Omega 1| \sim 10^{-60}$

Inflation III

- Inflation solves many problems, but cause of inflation is not understood! Present models: inflation caused by some unspecified scalar field.
- Not very satisfactory, but inflation is also consistent with fluctuations in CMB temperature:
 - Prior to inflation, quantum fluctuations in scalar field on microscopic scale.
 - During inflation scale of fluctuations grow ($\sim 10^{30}$) and freeze out (no causal connection)
 - Fluctuations in ρ ⇒ fluctuations in grav. field, which in turn attract matter.
 - Lumps of matter act as seeds for galaxy formation.
 - Fluctuations in temperature arise because photons from deeper grav. potential are red shifted.

WMAP

Correlation function

$$egin{aligned} C(heta) &= \langle T(ec{n}_1) T(ec{n}_2)
angle & ec{n}_1 \cdot ec{n}_2 = \cos(heta) \ C(heta) &= rac{1}{4 \, \pi} \sum_{\ell} (2\ell+1) C_\ell P_\ell(\cos(heta)) \end{aligned}$$

WMAP II

 Cosmological parameters (Λ-CDM):

$$\Omega = 1.02 \pm 0.02$$
 $\Omega_{v} = 0.73 \pm 0.04$
 $\Omega_{b} = 0.044 \pm 0.004$
 $\Omega_{m} = 0.27 \pm 0.04$
 $Z_{dec} = 1089 \pm 1$
 $D_{m} = 0.71 \pm 0.04$

 $t_0 = 13.7 \pm 0.2) \times 10^9$ years

Summary

- Cosmology is an important application of GTR
- The universe expands, vacuum energy, dark matter play an important role
- Strong phenomenological support for inflation, but cause not understood
- Several phase transitions in early universe
- Explore matter at $T \sim 10^2$ MeV ($\Leftrightarrow 10^{-5}$ sec) in ultra-relativistic heavy-ion collisions

CMB spectrum

parsec

1 arcsecond

$$1pc = 3.09 \times 10^{13} \text{km}$$

= 3.26 light years
Alpha Centauri $\sim 1.2pc$
Galactic center $\sim 1kpc$
Virgo (nearest large cluster) $\sim 20Mpc$

Hubble constant

Copyright SAO 2001

CMB temperature (WMAP)

