hadron production and the

+  Comments on the QCD phase transition
+ Hadron production and the chemical freeze-out curve
+ hadron yields and the statistical model
+ hadron yields and the phase boundary
+ interpretation:
+ 2-body collisions don't equilibrate
+ the phase transition drives equilibration through
multi-hadron collisions
+ Hagedorn states as possible intermediaries
* Speculation about the phase boundary at large W

+ Open charm and Charmonia
+  Outlook
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T.=173 + 12 MeV

£.=700 +200MeV/fim’
for the (2 + 1) flavor case:
the phase transition to the QGP

and its parameters are quantitative
predictions of QCD.

The order of the transition is not
yet definitively determined.
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The QCD phase boundary — recent results

from lattice QCD
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Hadron yields signal chemical equilibrium

» From AGS energy on, all hadron yields
in central PbPb collisions reflect grand-
canonical equilibration

» Strangeness suppression observed in
elementary collisions is lifted

Peter Braun-Munzinger



Thermal model description of hadron yields

Grand Canonical Ensemble

V ’
In Z; = —2% 2 4p2dpIn(1 + exp(—(E; — )/ T))

Loog? .
NIV TOlmZ, g p?dp Fit at each
T — : —— =
o V op  2r?" exp((E;—p)/T)=1 energy
3 =
ti = pBB; + psS; + prf; provides

for every conserved quantum number there is a chemical potential g values for
but can use conservation laws to constrain: T and L,

e Baryon number: VYowbBi=44+N —=V
T
e Strangeness: VinS, =0 — Ug
E Z-N
2

This leaves only p; and T as free parameter when 47 considered

e Charge: Vzl?léff = — g,
L

for rapidity slice fix volume e.g. by dN_;/dy
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Resonance gas partition function and QCD

the resonance gas partition function contains a sum over all
hadronic states

1 I Ii"-"tfpf :r‘J'
comparison between - Fﬂ:ﬂ"'a'ﬁf'“': . 1
baryonic pressure from . Fi e
LQCD and from hadron o6} o :
resonance gas . | . B .
K. Redlich, - Figst _
hep-ph/0406250 and . A f i ]
refs. there &gk /I'-' ) ]
W~ T S
o ke

0.8 1.0 . 1 jE . 1 j-l-
. TS,
Excellent agreement below T.! Resonance gas approximatés QCD
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Hadro-chemistry at RHIC -- weakly decaying particles

All data in excellent
agreement with
thermal model
predictions

chemical freeze-out
at: T=175 £ 8 MeV

fit uses vacuum
masses

new results from
SQMO04 at Cape
Town consolidate
this picture
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pbm, d. magestro, j. stachel, k. redlich,
Phys. Lett. B518 (2001) 41; see also Xu et al., Nucl.
Phys. A698(2002) 306; Becattini, J. Phys. G28 (2002)

1553; Broniowski et al., nucl-th/0212052.
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particle ratiaos

Hadro-chemistry at SPS
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Data at 40 GeV/u Pb+Pb
central collisions
T =148 MeV,

w,= 400 MeV

analysis from
pbm, Stachel, Redlich,
nucl-th/0304013
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[expenmental freeze-out pomm}

" and phase boundary
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Chemical freeze-out curve — the view as of 2002

P. Braun-Munzinger, J. Stachel,
J. Phys. G. 28 (2002) 1971
chem. freeze-out at constant total
baryon density

J. Cleymans, K. Redlich,
Phys. Rev. Lett. 81(1998)5284
chem. freeze-out at constant
energy/particle

Peter Braun-Munzinger
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Open Issue: the NA49 ,,horn*‘ in K/%t
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excitation functions and thermal model predictions

-I-ﬁ |_ " Iﬁ T T ||||||| T T ||||||| T T IIIIIII T T TTTT
~— — . — B -1
t, 035 - -« U2 %} ® Data ]
& ] B = — thermal model 7
- — = Kl il T
|:|2 [ —] — : =
R I ] L -
o1 f 2 - i
ans — & [Data ] E 7
E —— thermal model H - -
DI_ 1 IIIIIII 1 1 IIIIIII 1 1 IIIIII| 1 1 IIII_ B | | I T
o 3 ':' 1 L1 11111 1 111111 2 1 L1 11111 3 1 L1111
i 1Q Jﬂ 10 10 10
s Ge
n (GEY) s, (GeV)
{ _I T IIIIIII T T IIIIIII T TT IIIIII T T IIIII_
Iﬁ T T IIIIIII T T IIIIIII T T IIIIIII T T TTTT — -
—_ B n = = =
(002 — ® Data ] @ ¥
- — thermal model 1 10 =3 ]
o015 - B ]
B 7] =
i i 0 B =
0ot — — = 3
- i u ® =
i i u EBSS ,MAST,MNALS STAR i
B g % m o
Q005 [— — 10 —
i ] - ——  thermal model 3
[ 1 _I 1 IIIIII 1 1 IIIIIII 1 11 IIIIII 1 11 IIIII_
0 11 1 1 11 1111 1 1 11 1111 1 1 11
10 16° 167 10 10° 107
s, (GeV) Sy (GeV) ECHNISCHE

. I=5= 1L UNIVERSITAT
Peter Braun-Munzinger JARMSTADT




Strangeness equilibration at RHIC energies

« Strangeness fully saturated

« Freeze-out points are very close to phase
boundary

« Deal with multi-strange baryons
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Chemical Equilibration must take place in the

Hadronic Phase

Hadron yields determined by Boltzmann factors with 'free' vacuum
masses.

Particle distribution in QGP phase has no 'memory' of vacuum
hadron masses .

Relative yields are not determined by the strange quark mass but
by individual strange hadron masses (at fixed T and m).

But: the number of strange quarks i1s determined in the QGP
phase! Equilibrium then implies redistribution of strange quarks.
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How is chemical equilibration achieved?

Our Scenario

= Strangeness saturation takes place in the QGP phase.
s Phase transition 1s crossed from above.

» Near T, new dynamics associated with collective excitations will
take place and trigger the transition.

s Propagation and scattering of these collective excitations is
expressed 1n the form of multi-hadron scattering. Near T, multi-

hadron processes will therefore be dominant. Chemical equilibrium 1s
reached via these multi-hadron scattering events.
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Chemical freeze-out takes place at T !

* Two-body collisions are not sufficient to

bring multi-strange baryons into TS 1 L
equilibrium.

@ The density of particles varies rapidly =T * .
with T near the phase transition. 10

@ Multi-particle collisions are strongly
enhanced at high density and lead to chem.
equilibrium very near to T 6

Stat. Model

....

D 1 1 1 1 1 | 1
0.1 0156 0.2

T (GeV)

Lattice QCD calcs.
By F. Karsch et al.
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Evaluation of multi-strange

baryon yield

consider situation at T.,=176 MeV first

e rate of change of density for n;,, Ingoing and r,,; outgoing particles

M|

¥ (ﬂ’iﬂ-: ﬂ’ouf) e ﬁ'(T)nm

with
Mot ﬂfgp;;

¢=1 (f m] (on)'5! (£

e The phase space factor ¢ depends on /s
needs to be weighted by the probability f{s) that multiparticle scattering occurs
at a given value of /s

evaluate numerically in Monte-Carlo using thermal momentum distnbution

e typical reaction: 2+ N — 27 + 3K
assume cross section equal to measured value for o+ 5 — o
relevant /s = 3.25 GeV — 0=64 mb

e compute matrix element and use for rate of 27 + 3K — 0+ N

TECHNISCHE
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Evaluation of multi-strange baryon yield

reaction 27 + 3K — 0+ N leads to
r = 0.00014 fm ™ or r/ng = 1/ = 0.46/fm

= can achieve final density starting from 0 in 2.2 fm/c!

similarly one obtains

for 3r+2K—E2+N 7= =0.71 fm/c
and
for dr+K—-A+N 7y = 0.66 fm/c

Peter Braun-Munzinger



Density dependence of characteristic time

for strange baryon production

@ Near phase transition particle density

185 170 175 180 185 130 TiMeW) varies rapidly with T.
—~ 0T TT T I T I I ITT T[T T IT [T T[T TTTH .
Lok RS A @ For small U, reactions such as
I KKK7tt—QNy,, bring multi-strange
0 E E baryons close to equilibrium.
: @ Equilibration time T o< T
g i T i @ All particles freeze out within a very
: narrow temperature window.
-1 i
0 F —
-5 i
0 -5
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Hagedorn states as intermediaries

Recent work by C. Greiner, H. Stoecker et al.
hep-ph/0412 095, following up on our approach:

« multi-hadron collisions are channeled through
heavy (~ 1-2 GeV) Hagedorn doorway states

= detailed balance 1s applied through-out

= decay of the Hagedorn states leads to rapid
production of (multi-strange) baryons

= nucleon production less problematic

As 1n our approach, multi-particle plasma correlations near T,

lead to complete strangeness saturation. Chemical freeze-out
takes place at the phase boundary.

ECHNISCHE

. /5, UNIVERSITAT
Peter Braun-Munzinger MSTADT



What about pp and e+e- collisions?

Thermal fits describe hadron yields with T ~ 160 MeV
Hadronization may be pre-thermalization process

But: multi-strange baryons can only be reproduced by ad-hoc
strangeness suppression factor implying incomplete equilibration
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pp and e+e- continued

Suppression factor of 2 implies Omega baryons are factor 8 off the
equilibrium value

Suppression 1s not due to canonical thermodynamics (phi problem,
K. Redlich)

Multi-meson fusion not effective since no high density phase

"Temperature' in pp and e+e- reflects hadronization but not phase
transition.

The existence of a medium in AA collisions also leads to the result
that T 1s not universal (at T = 160 MeV as in e+e- and pp) but

varies with i: T=140 MeV at u =400 MeV, e.g.
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Analysis of pp collisions

F. Becattini, 7. Phyz. C69 {199!5] 485; F. Becattini and U, Hainz, Z. Phys. C78 (IQQT] 269

pp data, /s = 27.6 GeY

canonical {volume) suppression ve -y, factor (non-equilibrium), T = 165 MeY
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What about lower beam energies?

e at top SPS energy numbers work out nearly the same as at RHIC
e at 40 A GeV/c pion and kaon densities lower by 1/3 — 7 increases by factor 12

e but: other reactions involving baryons must come into play at high baryon density:
NpKKK — {imor NmaKKK — {ip

II|III|III|III|III|III|III|III
eary universe
quark-gluon
plasma
Deree Had onic Medium
Y wfl  neOSd ;
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Fl
g 150 [~ N
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The QCD phase diagram and chemical freeze-out
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A remark on critical energy density

= Along the Fodor-Katz phase boundary, critical
energy density increases with increasing W
s Atpn=0, €= 0.6 GeV/fm’
» At T=160 MeV and n = 650 MeV,
€. = 2.7 GeV/fm?

calc. within hadron resonance gas model, no
excluded volume correction

s There are 1.46 baryons/fm? and 0.44
mesons/fm? at this point

Phase boundary at L = 650 MeV 1s
very likely at lower T

Peter Braun-Munzinger
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Extra slides
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2-body collisions are not enough

typical densities at T, p, =0.174/fm® (incl. res.) px =0.030/fm® g, = 0.0003 /fm’

e To maintain equilibrium even for b MeV below T need relative rate change

Ta Tk

=75 — 75" =(L.10 — 0.55)/fm = 0.55/fm.

g RE

So, 2 density needs to change by 100 % within 1 fm/c

e Typical reactions with large cross sections of 10 mb and relative velocity of 0.6 give
Q+m— Z+K — Fa/ng = n;{t,0)=0086/fm
T+7— K+ K (6=3mb) — Fro/ng = 0.18/fm

1.e. much too slow to maintain equiibrium even over A T = 5 MeV!

e Even much more difficult: to produce large {7 abundancy
assume hadronization like in pp, factor 8 too few (s, to produce them within 1 fm/c

need reactions that provide 7o /ng=1.0 = not with 2-body reactions

e Consensus in the literature: Koch, Muller, Rafelski, Phys. Rep. 142(1986), C. Greiner,
S. Leupold. J.Phys. G27(2001)L95; P. Huovinen. J. Kapusta. nucl-th/0310051
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Check numerics via detailed balance

o Inrtially manifestly nonequilibrium situation - start with practially zero {2 density

e As equilibrium 1s approached
rates 3K + 271 — 1+ N and 2+ N — 3K + 27 have to become equal

e back and forth reactions scale very differently with pion density
— only at one density can they be equal

o to explicitly check these rates now use pion, kaon, nucleon densities before strong decays,
1.e. without resonance feeding

(for all resonances corresponding rates have to be calculated accordingly)

o find: creation of &2 with ro /ng = 3.4 10~ /fm
and annihilation of £ with rq/ng = 1.4 107 /fm

for equal rates reduce density by 25 %
reduce T by 2-3 MeV or excluded volume a bit larger
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Variation of fireball temperature with time

Values chosen appropriate for RHIC Au + Au collisions
o Assume: [.,=1/6 MeV

density decrease between chemical and thermal freeze-out: 30 %
o Two-pion correlation data: Ryge =0.00 fm, Ry =10 1m, mean ff =05, f,,=1

¢ lsentropic expansion — 74 = 09- 231m, 15 =15 - 13 MeV

(uncertainty due to variation in density profile)

o Near T, rate of decrease in temperature |T/T) =771 = (134 1) % /fm

Peter Braun-Munzinger



What about centrality dependence of

chemical equilibration?

= Apparent chemical temperature depends little
on centrality.

= The importance of multiple collisions should
decrease with decreasing particle density, 1.e.
lower centrality.

= This 1s expressed 1n the data as change in vy, .
= Note: v, = 0.8 reduces €2 yield by factor of 2.

Peter Braun-Munzinger
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Centrality dependence of v,

Cleymans, Kampfer, Steinberg, Wheaton, hep-ph/0212335

Fit g and 5 to m, K, p yields CERN SPS ¥ | RHIC
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Centrality dependence of ¥,
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