Nuclear Physics – Present and Future a selection of (my own) highlights

HELMHOLTZ GEMEINSCHAFT

- introductory remarks: physics in the strongly coupled limit
- news on the nucleon
- news on nuclear structure
- news on nuclear astrophysics and neutron stars
- news on hot and dense matter

a new paradigm: strongly coupled systems

strongly coupled systems arise when the scattering cross section becomes very large

the viscosity/entropy density ratio η/s of such matter is then 'universal', i.e. independent of its detailed structure

from purely dimensional considerations

$$\frac{F}{A} = \eta \frac{v}{d} \longrightarrow \eta$$
 has dimensions of kg/(m s)

the entropy density s has dimension $1/m^3$ (k_B = 1)

 $\rightarrow \eta/s$ has dimension kg m² s⁻¹, i.e. the dimension of \hbar

a new paradigm: strongly coupled systems

in strongly coupled systems, η/s is close to $\frac{\eta}{s} = \frac{\hbar}{4\pi}$ (Policastro, Son, Starinets, PRL 87 (2001) 081601)

in weakly coupled systems, η/s is large and diverges for an ideal gas

in the dilute limit,
$$\frac{\eta}{s} \sim \epsilon \tau > 1$$

with ϵ : mean energy/particleand τ : mean time between collisions

strongly coupled systems in nuclear physics and related areas

Black holes, strings, QGP and high-T_c superconductors

Nature 448 Aug. 29 (2007) 1001

Nernst effect in 2-d cuprates high T_c superconductivity

viscosity in the quark-gluon plasma (QGP)

AdS/CFT correspondence

collective vibrations in nuclei and trapped BEC's

K. Heyde, P. Von Neumann-Cosel, A. Richter Rev. Mod. Phys. (in print, 2010)

the AdS/CFT (QCD) correspondence on the baryon mass spectrum

an ultracold interacting Fermi gas as a (nearly) perfect fluid

 $T(^{6}Li) = 200 nK$

n.b.: it is not the superfluid phase which behaves as an ideal fluid!

John E. Thomas, Nucl. Phys. A380 (2009) 665c Physics Today, May 2010

QGP and ultra-cold quantum gases

the QGP as a nearly perfect fluid

Luzum & Romatschke, PRC 78 (2008) 034915

Note: viscosity of QGP is 25 orders of magnitude larger than that of ultra-cold Li it is η/s that counts!

nucleon structure

recent progress from Bates, MAMI, and JLab also Hermes and Compass experiments (spin structure)

focus here on the distribution of charge and magnetization within the nucleon

recent review: Perdrisat, Punjabi, Vanderhaeghen, hep-ph/0612014

electric/magnetic formfactor of the proton

measurements from JLab reconcile Rosenbluth and recoil polarization measurement

electric charge and magnetization are distributed very differently in the proton

the form factor ratio at low Q^2

structure of the neutron

electric formfactor of the neutron now well measured up to $Q^2 = 4 \text{ GeV}^2$

nucleon form factors

nucleon form factors are now experimentally well established

main advances through the recoil polarization technique first suggested by Akhiezer and Regalo

A. I. Akhiezer and M. P. Rekalo, Sov. Phys. Dokl. 13, 572 (1968) [Dokl. Akad. Nauk Ser. Fiz. 180, 1081 (1968)].

- up to $Q^2 = 6 \text{ GeV}^2$ not in pQCD regime A. I. Akhiezer and M. P. Rekalo, Sov. J. Part. Nucl. 4, 277 (1974) [Fiz. Elem. Chast. Atom. Yadra 4, 662 (1973)].

- dipole scaling $G_{Ep} \sim G_{Mp}/\mu_p \sim G_D$ valid only in low Q² regime
- phenomenological models (mainly based on vector dominance) are quite successful in describing the data but:

a detailed understanding based on QCD is still outstanding (LQCD, data at large Q^2)

constituent vs current quarks

the dressing of the current quarks is now well understood

will it depend on the surrounding baryon structure?

the quark mass from unquenched lattice QCD

the QCD strong coupling constant from sum rules and spin structure function data

new data from CLAS@JLab give first evidence for leveling off at low Q²

Deur et al., Phys. Lett. B665 (2008) 349

is QCD in the non-perturbative region a conformal field theory?

exotic mesons?

Fig. NUPECC LRP2010

are the X Y Z states discovered by BABAR, BELLE, and CESR multiquark states, or meson molecules, or ... PANDA territory

nuclear structure progress in theory

ab initio calculation in the coupled cluster approach of the low-lying levels and the proton halo state in ¹⁷F

the separation energy of 105 keV is well reproduced

nuclear charge radius of ⁸He – the most neutron-rich of all particle-stable nuclei

Peter Mueller et al., PRL 99 (2007) 252501 laser spectroscopy of individual atoms laser cooled and stored in a magnetooptical trap (method developed at ATLAS/Argonne, measurements: GANIL)

significant shrinking of charge radius between ⁸He and ⁶He while matter radius is growing cm motion of s-state protons rel to neutrons -> sensitivity to neutron correlations - more spherical as reproduced by *ab initio* calculations*

*: S. Pieper et al and Caurier/Navratil

nuclear structure 3-body forces and the neutron drip line in O isotopes

The drip line at ²⁴O is shifted from ²⁸O due to 3-body forces

T. Otsuka et al., arXiv:0908.2607 [nucl-ex]

(d) Schematic picture of twovalence-neutron interaction induced from 3N force

stability of N=50 shell gap

arXiv:0806.4489 [nucl-ex] Hakala et al., Jyvaskyla

data from JYFLTRAP@IGISOL

precise mass

large number of

gap survives away

from the valley of

stability

nuclear structure at high spin

impressive results from the various highsensitivity gamma-ray spectrometers

how to spin a nucleus and its microscopic mechanisms is now well understood – collective rotation returns at very high spin

superheavy nuclei

neutron stars and equation of state

determine cold matter equation of state by analysis of the mass-radius relation of three recently observed neutron stars

Rossi X-ray Timing Explorer Chandra X-ray Observatory XMM Newton

Oezel, Baym, and Guever, arXiv:1002.3153 [astro-ph.HE]

neutron stars and equation of state

equation of state is softer than that obtained using nucleonic degrees only

quark matter in the core of neutron stars?

see, however, Steiner, Lattimer, and Brown, arXiv:1005.0811 [astro-ph.HE]

outstanding issues

The lifetime of the neutron

new measurements very urgently needed

method of choice; lossless storage of ultracold neutrons (100 neV) in a magnetic and gravitationally enclosed bottle **expected precision: 0.1 s**

Penelope project TU Munich project at LANSCE, LANL

oscillatory structure in in-ring electron capture decays

observation of non-exponential orbital electron capture decays of hydrogen-like ¹⁴⁰Pr and ¹⁴²Pm Ions

Litvinov et al., GSI-ESR, Phys.Lett.B664:162-168,2008

GSI oscillations in EC decays?

new 245 MHz oscillator

Operating at the 124th harmonic. $\Delta f = 1 \text{ MHz}$

- \rightarrow Improving the signal-to noise ratio by 18 db
- \rightarrow Providing the true decay time
- \rightarrow Enabling a reliable computer analysis
- → Providing the frequency shift of the recoiling daughter ion at the decay point
- → Rendering the projection of the recoil (v_e) momentum on the beam axis: $\Delta p \cos \theta$
- → Allowing to observe individual decay times of many (...100) stored parent ions and to get some 50 000 EC decays within a few days

this should provide a solid basis to settle the issue within a few months

hot and dense matter

STAR pp

STAR AuAu

PHENIX AuAu

the QCD phase diagram

S. Borsanyi et al., arXiv:1005.3508 [hep-lat]

hadrons in dense matter and dilepton spectroscopy

hadrons in dense matter and dilepton spectroscopy radial flow from thermal dimuon spectra

search for critical point with the energy scan at RHIC

measure higher moments of the mult. distribution of net protons as function of energy

no indication for anomalies yet

to come: energy scan in 5 – 40 GeV cm energy range

1st observation of an antimatter hypernucleus in Au-Au collisions

mass and life time of antihypertriton

are these exotic nuclei produced at the phase boundary?

STAR coll., Science 328 (2010) 51

quark number scaling in hydrodynamic flow

scaled flow coefficient for mesons and baryons coincide STAR:

PRL<u>92,</u> 052302(04) PRL<u>95,</u> 122301(05) PR**C77,** 54901(08) PR**C81,** 44902(10)

PHENIX:

PRL 98, 162301 (07)

is flow determined in the partonic phase?

nuclear suppression factor R_{AA}

high momentum hadron suppression - quenched jets low momentum photon enhancement – direct radiation from QGP high momentum photons unmodified - control measurement

charmonium production from PHENIX at RHIC

suppression is smallest at mid-rapidity (90 deg. emission) a clear indication for generation of J/psi at the phase boundary

quarkonium as a probe for deconfinement at the LHC

charmonium enhancement as fingerprint of deconfinement at LHC energy

Andronic, pbm, Redlich, Stachel, Phys. Lett. B652 (2007) 659

hot news: J-PARC facility running

1st neutrino event at SuperKamiokande on Feb. 24, 2010

joint project between KEK and JAEA

hot news: first data from LHC pp collisions

November 23, 2009 First proton-proton collisions at √s=900 GeV

ALICE pseudo-rapidity density

(Nov 28)

Eur. J. Phys. C65 (2010) 111

Dec 6, 2009 pp at √s=2.36 TeV Mar 30, 2010 pp at √s=7 TeV

ALICE, the major nuclear physics experiment at LHC

ALICE has very good particle identification

first observation of D⁰, D⁺ and D^{0*} in 7 TeV pp data

first J/psi in ALICE central barrel from 110 million pp collisions at 7 TeV

expect about $500 \text{ J/}\psi \text{ mesons}$ by Sep. 2010 --> p_t and y distributions and production cross section

outlook

new facilities

LHC - running (PbPb in Nov. 2010) J-PARC - running JLab 12 GeV upgrade - under construction RHIC II – underway in stages new ISOL facilities – SPIRAL2, SPES, HIE-Isolde FRIB FAIR Eurisol ... eRHIC, eLIC, LeHC a very rich menu - let's watch out for time lines

summary

- nuclear physics has diversified
- many truly exciting new results
- QCD in the non-perturbative regime and much more
- more interconnections among different subfields (strongly coupled systems, ...)
- .. and to other disciplines

I look forward to an exciting conference