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recent reference on the physics of saturation:

10OP Publishing Reports on Progress in Physics
Rep. Prog. Phys. 80 (2017) 032301 (33pp) doi:10.1088/1361-6633/aa5435
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can one see saturation effects in particle production
experiments?



energy dependence of hadron production in central
Pb-Pb (Au-Au) collisions

total number of hadrons
produced

2.76 TeV
N_had = 25800

5.02 TeV
N_had = 32300

data from LHC run1 and run2
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ALICE coll., Phys.Rev.Lett. 116 (2016) no.22, 222302

note: exponent in energy dependence is different for pp and PbPb; not
anticipated but now explained in saturation models



energy dependence of particle production in

Pb-Pb collisions at LHC

QCD saturation at the LHC: comparisons of models to p+p and A+ A data and
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The difference between pp and Pb-Pb is explained as due to the larger scaling
violations in a large nucleus compared to the pp case, arXiv:1112.2445
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energy dependence of transverse energy/particle
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N_{ch} and E_T cannot directly be obtained in a
perturbative approach

look for other observables:
charmonium production in diffractive and ultra-peripheral

collisions



charmonium production in diffractive events at HERA

1 order perturbation theory,
Jones, Martin, Ryskin, Teubner, JHEP 1311 (2013) 085,

including higher orders,
J.Phys. G43 (2016) no.3, 035002, Eur.Phys.J. C76 (2016) no.11, 633

do | L M3 | T [q () IRE 2
(A" T/ — Y s\ . )2 4%
= (= Jfp)| =—r L zg(z,Q )] + ",

Here I, is the electronic width of the J/, and

Q= (Q"+M; )[4, r= (@ +Mj -1;.-)/(”’;2 +Q%).

because of the large mass of the J/psi, the scale Q_bar is large — perturbative approach



2 options, option a not consistent with
measured energy dependence

Eur.Phys.J. C46 (2006) 585-603g

p(P)

p(P’) P P

Figure 1: Elastic ./ /7> production, a) in an approach based on Pomeron (IP) exchange and b) in
a pQCD approach via two gluon exchange. The kinematic variables are indicated in a).

Hera H1 publication, hep-ex/0510016, Eur.Phys.J. C46 (2006) 585-603



Figure 1: Schematic picture of high energy exclusive J/¢ production, v*p — J/¢¥'p. The
factorised form follows since, in the proton rest frame, the formation time 75 ~ 2E. / (Q9+M§ flb)
1s much greater than the cc-proton interaction time 7. In the case of the simple two-gluon
exchange shown here, 7, >~ R,, where R, is the radius of the proton.



correction for higher orders, see Jones et al.
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Hera results from H1 and Zeus

2

, here, Q* = p,
data parametrized as o oc W2
W is photon proton cm energy
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Figure 6: a) Total cross sections for elastic .J/¢ production as a function of W.,, in the range
It| < 1.2 GeV? in electroproduction in three bins of Q2. (Q2) indicates the bin centre value in
the Q? range considered. The solid lines show fits to the H1 data of the form o W2, 4  The
dashed curves show the MRT QCD prediction based on the gluon distribution CTEQ(SM [48]
with the normalisation factors from the fit to the Q? distribution. Results from the ZEUS exper-
iment [16] in a similar kinematic range are also shown. They have been scaled to the given (Q?)
values using the Q? dependence measured by ZEUS. b) The fit parameter J as a function of Q2.
The inner error bars show the statistical error, while the outer error bars show the statistical and
systematic uncertainties added in quadrature.

data well described by 'conventional' pQCD calculations



now to ultra-peripheral collisions



Some remarks on ultra-peripheral collisions in p-Pb and Pb-p

3 possibilities in ALICE: Forward, Semi-forward, and Central

Both muons in muon arm
J/yp rapidity: -4.0<y<-25
y+p CM energies:

21 <W _<45GeV (p+Pb)

550 < Wyp < 1160 GeV (Pb+p)

One muon in muon arm, one in central barrel
J/yp rapidity: -2.5<y<-1.3

y+p CM energies:

45 <W_<82GeV (p+Pb)

300 <W _<550GeV (Pb+p)

Both muons/electrons in central barrel
J/y rapidity: -0.9 <y <0.9

y+p CM energies:

100 <W_ <250 GeV (p+Pb/Pb+p)




From typical hadronic interaction...
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...to ultra-peripheral colisions

2 Pb nuclei collide at 2.76 TeV/nucleon without
breaking apart and only 1 lepton pair with invariant
mass of the J/psi is produced!

data from the ALICE collaboration

18



UPC in ALICE p-Pb

For symmetric systems (Pb+Pb/p+p) and y # 0, one has two
contributions:

high Ey -lowx  or low EY - high x

Not straight forward to separate the two.

= Advantage in p-Pb, photon is almost always emitted by Pb-
nucleus.

= Can study y+p interactions at unprecedented energies at
forward rapidities.




ultra-peripheral collisions -some selected aspects

Ultra-peripheral collisions (UPCs)

Heavy nuclei carry strong electric and magnetic fields
+ Fields are perpendicular -> treat as nearly-real virtual photons
E. ... =vhc/b
¢ Photonuclear interactions
¢ Two-photon interactions
Visible when b>~2R,, so there are no hadronic interactions;
¢ STAR & ALICE also see photon interactions in peripheral nuclear

collisions
Energy AuAu pp RHIC PbPb LHC ppLHC
RHIC
Photon energy 0.6 TeV |~12TeV 500 TeV ~5,000 TeV
(target frame)
CM Energy W, 24 GeV | ~80 GeV 700 GeV ~3000 GeV
Max yy Energy 6 GeV ~100 GeV | 200 GeV ~1400 GeV

*LHC at full energy Vs=14 TeV/5.6 TeV

next 4 slides from Spencer Klein, talk at QM2017, Chicago, 20
see also arXiv:1704.04715



Yy -> Dileptons R
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J/v

VM photoproduction in pQCD

In 2-gluon model, leading order pQCD
FgeM3 wﬂ'a . )2 = 2 2 ) .
48‘2. |:0~' é_)? ):L‘g(m,Q?)] (1 ot ﬂfz ) .
With @* = (@*+Mj,)/4, z = (@ +Mj,)/(W*+ Q7

¢ Vector meson mass provides hard scale
Some caveats

+ pQCD factorization does not strictly hold
Two gluons have different x values (with X’ « x « 1)
« Use generalized (skewed) gluon distributions — smallish correction.
« Can do exactly with Shuvaev transform

+ Photon is not pure ggq dipole
+ Choice of scale n
+ “Absorptive corrections” for pp akin to b>R,+R,

do , , B
E('”"_’ J/ p)L=0-—

Jones, Martin, Ryskin and Teubner (“JMRT"), JHEP 1311, 085 (2013); and others "

22



o(yp-> Jhy p)
Data up to W, ;= 1.5 TeV -5 times the HERA maximum
ALICE sees good pA agreement with HERA data
LHCb 13 TeV-beam data somewhat below 7 TeV data?

¢ LHCb uses bootstraps from HERA range for 2-fold ambiguity

NLO calculation predicts a small down-turn from power law

prediction at energies above ~ 300 GeV
+ 13 TeV data agrees well with NLO calculation e
e <y>=4.37; x=3 10{

2

-E- [ - ALICE tp-F’b} ! ] E ][]':l + - LHChﬂs‘; |3Tc"¢"!| J L_.
= [ ¢ ALICE (Pbp) \ ] = - W LHCh (15= 7 TeV) .
+ | = ﬁ?wer law fit to ALICE data _..-”F”.a = " 4 ALICE ]
2 - ZEUS R o = Lo o
1 L PREg 1 v  ZEUS i
E. x=6*1 0‘3 - .'i.-""‘-- . Fixed target experiments
= e >~ L ——— Power law Nt HI data
© mgf_ ______ o E © «+ss=+ IMRT NLO prediction ¥
N JMRT LO ] - =
——— JMRTNLO 1
E:ggl ﬁ[l-;:;n"z:gzg:; 1 LHCDb preliminary
B -~ STARLIGHT parameterization 10° | <y>=2.12; x=3*1 0-5 7
10? 10° 3 i
Wn,rp (GeV) 107 10°
J. Adams [ALICE], DIS 2016; R. McNulty [LHCb] ICHEP 2016 W, (GeV)
power law exponent delta essentially unchanged down to x = 3*10*{-6} 23

no evidence yet for anomalous W dependence over full x range



ALICE: PRL 113 (2014) 23, 232504

1

Bjorken-x & ALICE data are also correctly

1072 107° 107" 107 described by recent calculations using:
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Figure from J.G. Contreras, EMMI workshop, Krakow, Poland,

Sep. 2017
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ALICE: PRL 113 (2014) 23, 232504
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newest ALICE results, exploring x =3 10°

Run 2: p-Pb @ 8.16 TeV
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Energy dependence of dissociative J/y
photoproduction as a signature of gluon saturation at the LHC

J. Cepila, J.G. Contreras (Prague, Tech. U.),
J. D. Tapia Takaki (Kansas U.). Aug 26, 2016. 6 pp.

Published in Phys.Lett. B766 (2017) 186-191

... developed a model in which the quantum fluctuations of the proton structure are
characterised by hot spots, whose number grows with decreasing Bjorken- x . model
reproduces the F2(x,Q2) data from HERA at the relevant scale, as well as the exclusive and
dissociative J/y photoproduction data from H1 and ALICE. model predicts that for
Wyp=500 GeV , the dissociative J/y cross section reaches a maximum and then decreases
steeply with energy, which is in qualitatively good agreement to a recent observation that the
dissociative J/y background in the exclusive J/y sample measured in photoproduction by
ALICE decreases as energy increases.

signature for gluon saturation at LHC energies?
27


http://inspirehep.net/record/1484177
http://inspirehep.net/record/1484177
http://inspirehep.net/author/profile/Cepila%2C%20J.?recid=1484177&ln=en
http://inspirehep.net/author/profile/Contreras%2C%20J.G.?recid=1484177&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Prague%2C%20Tech.%20U.%22&ln=en
http://inspirehep.net/author/profile/Tapia%20Takaki%2C%20J.%20D.?recid=1484177&ln=en
http://inspirehep.net/search?cc=Institutions&p=institution:%22Kansas%20U.%22&ln=en

Vector meson Vector meson

Figure 1:  Diagrams for exclusive (left) and dissociative (right) vector meson photo-
production. The source of photons is a lead nucleus as in p-Pb collisions at the LHC. For the

case of HERA, the source of photons was either an electron or a positron.
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the model

the color dipole interacts with the nucleus according to the
Golec-Biernat/Wuesthoff 'saturation model

N(z,r,b) = ooN (z,r)T(b)

N(arr) = (1 er G

with the saturation scale given by

Qg (z) = Q% (xo /;if})\,

new approach: the proton profile function T(b) contains regions of 'hot
spots' which are introduced according to:

Nps(z) = poaP (1 + pay/x)
this x dependence introduces an implicit W dependence!

29
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Figure 2: Comparison of the model (solid lines) to data (open bullets) on (left) the structure
function of the proton Fa(z,Q2) at Q2 = 2.7 GeV? as measured by H1 and Zeus [26] and
(right) the |t| distribution of exclusive (blue) and dissociative (red) photoproduction of J /¢
as measured by H1 [11] at (W,p) = 78 GeV.
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Figure 3: Comparison of the model (solid lines) to data on the W, dependence of the cross
section for exclusive (left) and dissociative (right) photoproduction of J/1 as measured by

H1 [11] and ALICE [6] (open and solid bullets, respectively).

observation of this peak would be, in this model, a
consequence of saturation — is this unique?



Shadowing extracted from J/psi production in
UPC Pb-Pb vs pp

Lk = e T e T
1 e ———TT L—_T]
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Results constrain EPS09 shadowing calculations and agree with recent leading

twist (LTA) calculations. Fig. Taken from Vadim Guzey

V. Guzey and M. Zhalov, JHEP 1310, 207 (2013)
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precision measurement of open charm production by LHCb
measurement at forward rapidity provides input on low-x
gluon PDFs

clata Nucl Phys BS?] 2013) 1 PROSA NLO FFNS fit
:‘ ! l TIr 17T ] m
= ] ]: _—o— wTmeray ,E:'-p _> Db +X LHLb 1 . 60 ll¥= 10 GeV?
> 4 ] Vs=TTeV 3 ] ™ @ HERADIS
2 | “Oe, ] HERA DIS + LHCb abs
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S 1
R
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for a recent summary of data and pQCD predictions see:
Guzzi, Geiser, Rizatdinova, 1509.04582 and Beraudo, 1509.04530

additional constraint of gluon PDF in particular at low x (down to 5 10-6)



new analysis by Gauld, Rojo and Slate, arXiv:1705.04217
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Figure 1: Left plot: the small-x gluon PDF in NNPDF3.0 compared with the results when various combi-
nations of LHCb D meson production data are included in the fit. Right plot: the impact of variations of the
input theoretical settings in the N> +N7 +N'3 NNPDF3.0+LHCb fit.

good constraints down to x = 10° by analysis of LHCb pp » D at 5, 7, 13 TeV data
34



outlook

no clear signatures for saturation effects in present LHC data
data consistent with phenomenology established at HERA
down to x ~ 10”° but analysis not model independent
next steps:

psi' and Y production

dissociative charmonium production

forward production of direct photons

open charm

forward jet production....

huge increase in statistics expected for Run3

35



backup slides
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LHC ion program for Run3 and Run4



Main conclusion of the
'2013 European Strategy for Particle Physics’
process

“Europe’s top priority should be the exploitation of the full potential
of the LHC, including the high-luminosity upgrade of the machine
and detectors with a view to collecting ten times more data than in
the initial design, by around 2030. This upgrade programme will
also provide further exciting opportunities for the study of flavour
physics and the quark-gluon plasma.”



LHC roadmap: according to MTP 2016-2020 V1 l Physios

LS2 starting in 2019 => 24 months + 3 months BC 2“”‘””“"" o
LS3 LHC: starting in 2024 => 30 months + 3 months BC . Tea:_CD:"T'SS'O"'"g
. . ecnnical sto
Injectors: in 2025 => 13 months + 3 months BC B i
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approved ALICE program up to and including LHC Run4




ALICE Upgrade Strategy

ALICE

High precision measurements of rare probes at low p; which cannot be selected with
a trigger, require a large sample of events recorded on tape

Target
o Pb-Pb recorded luminosity > 10 nb1 = 8 x 1019 events
o pp (@5.5 Tev) recorded luminosity > 6 pbl®14x10events

Gain a factor 100 in statistics over approved programme

... and significant improvement of vertexing and tracking capabilities

|. Upgrade the ALICE readout systems and online systems to

NEW GEM TPC

o read out all Pb-Pb interactions at a maximum rate of *  Readout Planes

50kHz (i.e. L = 6x102%7 cm1s1), with a minimum bias trigger

o Perform online data reduction based on reconstruction of clusters and tracks
(tracking used only to filter out clusters not associated to reconstructed tracks)

Il. Improve vertexing and tracking at low p;=» NEW ITS



ALICE upgrade: main physics topics for Run3 and Run4
rare probes atlowp T:
® heavy flavor hadrons
® quarkonia
® di-leptons at low and intermediate mass
© light anti-matter and exotic clusters
® jet physics

® event-by-event fluctuations of conserved quantum numbers

© ultra-peripheral collisions , low x physics, photon-photon collisions
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