Plan of lectures

- 1 15.04.2015 Preliminary Discussion / Introduction
- 2 22.04.2015 Experiments (discovery of the positron, formation of antihydrogen, ...)
- 3 29.04.2015 Experiments (Lamb shift, hyperfine structure, quasimolecules and MO spectra)
- 4 06.05.2015 Theory (from Schrödinger to Dirac equation, solutions with negative energy)
- 5 13.05.2015 Theory (bound-state solutions of Dirac equation, quantum numbers)
- 6 20.05.2015 Theory (matrix elements and their evaluation, radiative decay and absorption)
- 7 27.05.2015 Experiment (photoionization, radiative recombination, ATI, HHG...)
- 8 03.06.2015 Theory (single and multiple scattering, energy loss mechanisms, channeling regime)
- 9 10.06.2015 Experiment (Kamiokande, cancer therapy,)
- 10 17.06.2015 Experiment (Auger decay, dielectronic recombination, double ionization)
- 11 24.06.2015 Theory (interelectronic interactions, extension of Dirac (and Schrödinger) theory for the description of many-electron systems, approximate methods)
- 12 01.07.2015 Theory (atomic-physics tests of the Standard Model, search for a new physics)
- 13 08.07.2015 Experiment (Atomic physics PNC experiments (Cs,...), heavy ion PV research)

From Schrödinger to Dirac equation
(Spin, relativity, general structure of Dirac equation)

Plan of lecture

Solutions of Schrödinger equation: Wavefunctions, energies, quantum numbers

- Particle's spin and relativity: Ideas which brought us to Dirac equation
- Dirac equation and free-particle solutions
- Negative-energy solutions of Dirac equation: Concept of antiparticles

Schrödinger equation for hydrogen atom

- Where Coulomb potential is:

$$
V(\boldsymbol{r})=-\frac{Z e^{2}}{|\boldsymbol{r}|}
$$

- Electron is bound to nucleus by the central force. It depends only on the radial distance between an electron and nucleus!

[^0]	Cartesian coordinates
(x, y, z)	

Schrödinger equation for hydrogen atom

- It is natural to solve Schrödinger equation for central force in spherical coordinates!

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(\boldsymbol{r})+V(\boldsymbol{r}) \psi(\boldsymbol{r})=E \psi(\boldsymbol{r})
$$

+ Potential term: $V(\boldsymbol{r})=-\frac{Z e^{2}}{|\boldsymbol{r}|}=-\frac{Z e^{2}}{r}$

- Laplace operator: $\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}$

We can re-write Laplace operator as:

$$
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)-\frac{1}{r^{2} \hbar^{2}}[\underbrace{\left.-\frac{\hbar^{2}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right)}{}\right]}_{\text {Operator } \hat{\boldsymbol{L}}^{2}(\text { depends only on } \theta \text { and } \phi)}
$$

Problem 4.1 (Angular momentum operator)

Prove that Cartesian components of the angular momentum operator:

$$
\hat{\boldsymbol{L}}=\hat{\boldsymbol{r}} \times \hat{\boldsymbol{p}}=-i \hbar(\boldsymbol{r} \times \nabla)
$$

read as:
$\hat{L}_{x}=i \hbar\left(\sin \varphi \frac{\partial}{\partial \theta}+\cot \theta \cos \varphi \frac{\partial}{\partial \varphi}\right), \quad \hat{L}_{y}=i \hbar\left(-\cos \varphi \frac{\partial}{\partial \theta}+\cot \theta \sin \varphi \frac{\partial}{\partial \varphi}\right)$

$$
\hat{L}_{z}=-i \hbar \frac{\partial}{\partial \varphi}
$$

and find $\quad \hat{\boldsymbol{L}}^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}$

Schrödinger equation for hydrogen atom

- In spherical coordinates Schrödinger equation reads:

$$
(\underbrace{-\frac{\hbar^{2}}{2 m} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right.}_{r \text {-dependence }})+\underbrace{\frac{\hat{\boldsymbol{L}}^{2}}{2 m r^{2}}}_{(\theta, \phi)-\text { dependence }}-\underbrace{\underbrace{2}}_{r-\frac{Z e^{2}}{r}}) \psi(\boldsymbol{r})=E \psi(\boldsymbol{r})
$$

Such a decomposition of Hamiltonian operator gives us a hint to search for similar angle-radial decompositions of a wavefunction!

- Moreover, L^{2} and L_{z} commute with Hamiltonian (and with each other):

$$
\left[\hat{\boldsymbol{L}}^{2}, \hat{H}\right]=0,\left[\hat{L}_{z}, \hat{H}\right]=0
$$

Eigenfunctions of Hamiltonian operators are at the same time eigenfunctions of operators L^{2} and L_{z}.

Problem 4.2 (Commutation relations)

Prove that:

$$
\begin{gathered}
{\left[\hat{\boldsymbol{L}}^{2}, \hat{H}\right]=0,\left[\hat{L}_{z}, \hat{H}\right]=0} \\
\text { and } \\
{\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hbar L_{z},\left[\hat{L}_{y}, \hat{L}_{z}\right]=i \hbar L_{x},\left[\hat{L}_{z}, \hat{L}_{x}\right]=i \hbar L_{y}}
\end{gathered}
$$

$$
\text { Just a reminder: }[\hat{A}, \hat{B}]=\hat{A} \hat{B}-\hat{B} \hat{A}
$$

Schrödinger equation for hydrogen atom

- In spherical coordinates Schrödinger equation reads:

$$
(\underbrace{-\frac{\hbar^{2}}{2 m} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right.}_{r \text {-dependence }})+\underbrace{\frac{\hat{\boldsymbol{L}}^{2}}{2 m r^{2}}}_{r \text {-dependence }}-\underbrace{\frac{Z e^{2}}{r}}_{(\theta, \phi)-\text { dependence }}) \psi(\boldsymbol{r})=E \psi(\boldsymbol{r})
$$

- We may thus look for solutions of the Schrödinger equation which are simultaneously eigenfunctions of the operators $H, L^{2}\left(\right.$ and $\left.L_{z}\right)$:

Spherical harmonics are the eigenfunctions of the operators L^{2} and L_{z}.

Spherical harmonics

 (just a reminder)- Spherical harmonics are the eigenfunctions of the operators L^{2} and L_{z} :

$$
\begin{gathered}
\hat{\boldsymbol{L}}^{2} Y_{l m}(\theta, \varphi)=l(l+1) \hbar^{2} Y_{l m}(\theta, \varphi) \\
\hat{L}_{z} Y_{l m}(\theta, \varphi)=m \hbar Y_{l m}(\theta, \varphi)
\end{gathered}
$$

- Analytic expressions for the spherical harmonics are well known:
$Y_{00}(\theta, \varphi)=\frac{1}{\sqrt{4 \pi}}$
$Y_{10}(\theta, \varphi)=\sqrt{\frac{3}{4 \pi}} \cos \theta, \quad Y_{1 \pm 1}(\theta, \varphi)=\mp \sqrt{\frac{3}{8 \pi}} \sin \theta \mathrm{e}^{ \pm i \varphi}$

See, for example, in Mathematica:

Schrödinger equation: Quantum numbers

- One needs three quantum numbers to define the state of hydrogen (hudrogen-like) atom:
- $\mathrm{n}=1,2,3 \ldots$ (principal)
- $\mathrm{I}=0, \ldots \mathrm{n}-1$ (orbital)
- $m_{1}=-1, \ldots .+1$ (magnetic)
- The energy depends only on the principal quantum number:

$$
E_{n}=-\frac{\varepsilon_{0} Z^{2}}{2 n^{2}}
$$

- i.e. in nonrelativistic theory the states are degenerate (I, m)!

$$
-1 / 8
$$

$\psi(r)=\psi(r, \theta, \varphi)=R_{n l}(r) Y_{l m_{i}}(\theta, \varphi)$
$0^{\frac{\text { 亏ु }}{\text { ®. }}}$

$$
-1 / 18
$$

$2 \mathrm{~s}(\mathrm{n}=2, \mathrm{l}=0$
$2 \mathrm{p}(\mathrm{n}=2, \mathrm{l}=1)$
$1 \mathrm{~s}(\mathrm{n}=1, \mathrm{l}=0)$

Schrödinger equation: Quantum numbers

- One needs three quantum numbers to define the state of hydrogen (hudrogen-like) atom:
- $n=1,2,3 \ldots$ (principal)
- $\mathrm{I}=0, \ldots \mathrm{n}-1$ (orbital)
- $m_{1}=-1, \ldots .+1$ (magnetic)
* Let us consider electron density distribution:

$$
\rho(\boldsymbol{r})=|\psi(\boldsymbol{r})|^{2}=\left|R_{n l}(r)\right|^{2}\left|Y_{l m_{l}}(\theta, \varphi)\right|^{2}
$$

- By fixing r :

$$
\rho(r=\text { const }, \theta, \varphi) \sim\left|Y_{l m_{l}}(\theta, \varphi)\right|^{2}
$$

$$
\psi(r)=\psi(r, \theta, \varphi)=R_{n l}(r) Y_{l m_{l}}(\theta, \varphi)
$$

By choosing / and m we define the shape of electron cloud!
\checkmark Please, remember: states with different I and m (but the same n) have the same energies!

Plan of lecture

- Solutions of Schrödinger equation: Wavefunctions, energies, quantum numbers

Particle's spin and relativity: Ideas which brought us to Dirac equation

- Dirac equation and free-particle solutions
- Negative-energy solutions of Dirac equation: Concept of antiparticles

Breaking of symmetry: „Normal" Zeeman effect

This effect was understood within the Quantum Mechanics.
06 May 2015

Electron magnetic dipole moment

In classical
electrodynamics:

$|\mu|=\boldsymbol{I} \cdot \boldsymbol{A}=\frac{q}{T} \pi r^{2}=\frac{q v}{2 \pi r} \pi r^{2}=\frac{q}{2 m} m r v=\frac{q}{2 m} L$
In quantum mechanics,
for electron: $q=-\mathrm{e}$
$\hat{\boldsymbol{\mu}}_{l}=-\mu_{0} \hat{\boldsymbol{L}} / \hbar, \quad \mu_{0}=\frac{e \hbar}{2 m_{e}}$
Bohr magneton

Electron magnetic dipole moment

From Zeeman effect to concept of spin

Wolfgang Pauli

"How can one avoid despondency if one thinks of the anomalous Zeeman effect?" (1925)

- Pauli introduced the idea of a new quantum degree of freedom (or quantum number) for electron with two possible values.
- Ralph Kronig, George Uhlenbeck and Samuel Goudsmit: every electron carries intrinsic angular momentum called spin.
- Magnetic moment can be associated with spin and is
 "responsible" for the interaction with magnetic field.

Electron spin

Spin magnetic moment

$|\mu|=\boldsymbol{I} \cdot \boldsymbol{A}=\frac{q}{T} \pi r^{2}=\frac{q v}{2 \pi r} \pi r^{2}=\frac{q}{2 m} m r v=\frac{q}{2 m} L$
In quantum mechanics, for electron: $9=-\mathrm{e}$
$\hat{\boldsymbol{\mu}}_{l}=-\mu_{0} \hat{\boldsymbol{L}} / \hbar, \quad \mu_{0}=\frac{e \hbar}{2 m_{e}}$
Bohr magneton

Total magnetic moment

- Total magnetic moment is given finally by:

$$
\hat{\boldsymbol{\mu}}=-\mu_{0}(\hat{\boldsymbol{L}}+g \hat{\boldsymbol{S}}) / \hbar
$$

- And it interacts with external magnetic field as: $H=-\hat{\boldsymbol{\mu}} \cdot \boldsymbol{B}$
* Measurements of the total magnetic momentum is of fundamental importance for analysis of gyromagnetic ratio:

Total magnetic moment

- Total magnetic moment is given finally by:

$$
\hat{\boldsymbol{\mu}}=-\mu_{0}(\hat{\boldsymbol{L}}+g \hat{\boldsymbol{S}}) / \hbar
$$

- And it interacts with external magnetig field as: $H=-\hat{\boldsymbol{\mu}} \cdot \boldsymbol{B}$

But what is actually spin operator \boldsymbol{S} ?
agnethe momentumi is of
undanental mportance for anaysis of gyromagnelf rallo:

Orbital and spin angular momentum operators

Orbital magnetic moment

- We have discussed already the properties of angular momentum operator L :

$$
\begin{aligned}
\hat{\boldsymbol{L}}^{2} Y_{l m}(\theta, \varphi) & =l(l+1) \hbar^{2} Y_{l m}(\theta, \varphi) \\
\hat{L}_{z} Y_{l m}(\theta, \varphi) & =m \hbar Y_{l m}(\theta, \varphi) \\
m & =-l, \ldots+l
\end{aligned}
$$

We shall assume that all angular momentum operators satisfy these commutation relations!

- And its commutation relations:

$$
\begin{aligned}
& {\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hbar L_{z},\left[\hat{L}_{y}, \hat{L}_{z}\right]=i \hbar L_{x},} \\
& {\left[\hat{L}_{z}, \hat{L}_{x}\right]=i \hbar L_{y}}
\end{aligned}
$$

Orbital and spin angular momentum operators

Orbital magnetic moment

Spin magnetic moment

- We have discussed already the properties of angular momentum operator L :
$\hat{\boldsymbol{L}}^{2} Y_{l m}(\theta, \varphi)=l(l+1) \hbar^{2} Y_{l m}(\theta, \varphi)$
$\hat{L}_{z} Y_{l m}(\theta, \varphi)=m \hbar Y_{l m}(\theta, \varphi)$
$m=-l, \ldots .+l$

- We shall expect the following properties of spin angular momentum operator S :

$$
\begin{gathered}
\hat{\boldsymbol{S}}^{2} \chi_{s m_{s}}=s(s+1) \hbar^{2} \chi_{s m_{s}} \\
\hat{S}_{z} \chi_{s m_{s}}=m_{s} \hbar \chi_{s m_{s}} \\
m_{s}=-s, \ldots+s
\end{gathered}
$$

- And its commutation relations:

$$
\begin{aligned}
& {\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hbar \hat{L}_{z},\left[\hat{L}_{y}, \hat{L}_{z}\right]=i \hbar \hat{L}_{x},} \\
& {\left[\hat{L}_{z}, \hat{L}_{x}\right]=i \hbar \hat{L}_{y}}
\end{aligned}
$$

- And its commutation relations:
$\left[\hat{S}_{x}, \hat{S}_{y}\right]=i \hbar \hat{S}_{z},\left[\hat{S}_{y}, \hat{S}_{z}\right]=i \hbar \hat{S}_{x}$, $\left[\hat{S}_{z}, \hat{S}_{x}\right]=i \hbar \hat{S}_{y}$

Spin operator and wavefunctions

- Let us restrict ourselves to the case of electron (two possible spin states).
- Spin-1/2 basis wavefunctions: $\left|s m_{s}\right\rangle=\chi_{s m_{s}}$

$$
\left|s m_{s}>=\right| 1 / 2+1 / 2>=\binom{1}{0}
$$

- Spin-1/2 operators are the 2×2 matrices:

$$
\hat{S}_{x}=\frac{\hbar}{2} \hat{\sigma}_{x}, \hat{S}_{y}=\frac{\hbar}{2} \hat{\sigma}_{y}, \hat{S}_{z}=\frac{\hbar}{2} \hat{\sigma}_{z}
$$

- Where Pauli matrices are:

$$
\hat{\sigma}_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \hat{\sigma}_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \hat{\sigma}_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Spin operator and wavefunctions

- What does it mean that electron is in the state with spin projection $+1 / 2$?
- Let us calculate matrix elements (mean values of spin projections):
$\left\langle s_{x}\right\rangle=\left\langle\chi_{1 / 2}\right| \hat{s}_{x}\left|\chi_{1 / 2}\right\rangle=0,\left\langle s_{y}\right\rangle=\left\langle\chi_{1 / 2}\right| \hat{s}_{y}\left|\chi_{1 / 2}\right\rangle=0,\left\langle s_{z}\right\rangle=\left\langle\chi_{1 / 2}\right| \hat{s}_{z}\left|\chi_{1 / 2}\right\rangle=\frac{\hbar}{2}$
- Can we now say that "electron spin is along z axis"?
- Let us calculate the variance:
$\left.<\chi_{1 / 2} \mid\left(\hat{s}_{x}-<s_{x}\right\rangle\right)^{2}\left|\chi_{1 / 2}\right\rangle=\frac{\hbar^{2}}{4},\left\langle\chi_{1 / 2}\right|\left(\hat{s}_{y}-\left\langle s_{y}\right\rangle\right)^{2}\left|\chi_{1 / 2}\right\rangle=\frac{\hbar^{2}}{4}$

06 May 2015

Problem 4.3

Find the state vector for the electron with spin projection $\pm 1 / 2$ on the x-axis.

Nonrelativistic theory with spin included

- We may include electron spin into consideration:

$\psi_{n l m_{l}}(\boldsymbol{r})=\psi_{n l m_{l}}(r, \theta, \varphi)=R_{n l}(r) Y_{l m_{l}}(\theta, \varphi)$

$$
\psi_{n l m_{l} s m_{s}}(\boldsymbol{r})=\psi_{n l m_{l} s m_{s}}(r, \theta, \varphi, \sigma)=R_{n l}(r) Y_{l m_{l}}(\theta, \varphi) \chi_{s m_{s}}(\sigma)
$$

- These wavefunctions are spinors: $\psi_{n l m_{s} s m_{s}}(\boldsymbol{r}) \Rightarrow\binom{f(\boldsymbol{r})}{g(\boldsymbol{r})}$
- This (rather simple) approach can be used for the case studies where particles are slow enough so that the relativistic effects are negligible.
- We are still missing something.

06 May 2015

Plan of lecture

- Solutions of Schrödinger equation: Wavefunctions, energies, quantum numbers

Particle's spin and relativity: Ideas which brought us to Dirac equation

- Dirac equation and free-particle solutions
- Negative-energy solutions of Dirac equation: Concept of antiparticles

Hydrogen-like ions: Relativistic effects

- We want to study very heavy (Z >> 1) ionic systems!!!
- From the simple model one can "estimate" the electron "velocity" in the ground state:

$$
v=(\alpha Z) c
$$

Speed of light

- For hydrogen $(Z=1): \alpha Z \approx 1 / 137 \approx 0.00729$
- For hydrogen-like Uranium (Z=92): $\alpha Z \approx 0.67$

Electron is moving at velocities very close to the speed of light! The relativistic effects have to be taken into account!

06 May 2015

Plan of lecture

- Solutions of Schrödinger equation: Wavefunctions, energies, quantum numbers
- Particle's spin and relativity: Ideas which brought us to Dirac equation
- Dirac equation and free-particle solutions
- Negative-energy solutions of Dirac equation: Concept of antiparticles

Dirac equation

- A quantum treatment of the electron motion in heavy ions requires the use of the Dirac equation which is the relativistic wave equation for a $1 / 2$-spin particles.

Paul Dirac 1933 Nobel prize

Which looks like Schrödinger equation but
... what is the Dirac Hamiltonian?

Let us consider Dirac Hamiltonian for the simplest case: free particle.

06 May 2015

Dirac equation for free particle

- A quantum treatment of the electron motion in heavy ions requires the use of the Dirac equation which is the relativistic wave equation for a $1 / 2$-spin particles.
- Time-dependent Dirac equation reads:

Paul Dirac 1933 Nobel prize

* Note: Dirac equation is the first-order differential equation (in contrast to Schrödinger one)!
* The important consequence: the Dirac equation is relativistically invariant!

Dirac equation: What is what here?

- 4×4 matrices are built up from Pauli matrices:

$$
\boldsymbol{\alpha}=\left(\begin{array}{cc}
0 & \boldsymbol{\sigma} \\
\boldsymbol{\sigma} & 0
\end{array}\right) \quad \alpha_{0}=\left(\begin{array}{cc}
\boldsymbol{I} & 0 \\
0 & -\boldsymbol{I}
\end{array}\right)
$$

- Wavefunctions in the Dirac equation are four-spinors:

$$
\psi(\boldsymbol{r})=\left(\begin{array}{l}
\varphi_{1}(\boldsymbol{r}) \\
\varphi_{2}(\boldsymbol{r}) \\
\varphi_{3}(\boldsymbol{r}) \\
\varphi_{4}(\boldsymbol{r})
\end{array}\right) \quad \psi^{+}(\boldsymbol{r})=\left(\begin{array}{llll}
\varphi_{1}^{*}(\boldsymbol{r}) & \varphi_{2}^{*}(\boldsymbol{r}) & \varphi_{3}^{*}(\boldsymbol{r}) & \varphi_{4}^{*}(\boldsymbol{r})
\end{array}\right)
$$

Can we find explicit form of Dirac wavefunctions?
06 May 2015

Dirac equation: Free-particle solution

- We may re-write Dirac equation in its time-independent form:

$$
\left(-i \hbar c \boldsymbol{\alpha} \cdot \nabla+m_{e} c^{2} \alpha_{0}\right) \psi(\boldsymbol{r})=E \psi(\boldsymbol{r})
$$

- We will look for plane wave solutions:

$$
\psi_{p}(\boldsymbol{r})=w(p) \exp (i p z / \hbar)
$$

- We obtain the system of equations (here written in matrix form):

$$
\left[\begin{array}{cccc}
m_{e} c^{2} & 0 & p c & 0 \\
0 & m_{e} c^{2} & 0 & -p c \\
p c & 0 & -m_{e} c^{2} & 0 \\
0 & -p c & 0 & -m_{e} c^{2}
\end{array}\right] w=E w
$$

* ... which is standard eigenvalue problem.
\pm Task 4.3

Prove that plane wave solution for the Dirac equation of free particle:

$$
\psi_{p}(\boldsymbol{r})=w(p) \exp (i p z / \hbar)
$$

leads to the system of equations:

$$
\left[\begin{array}{cccc}
m_{e} c^{2} & 0 & p c & 0 \\
0 & m_{e} c^{2} & 0 & -p c \\
p c & 0 & -m_{e} c^{2} & 0 \\
0 & -p c & 0 & -m_{e} c^{2}
\end{array}\right] w=E w
$$

Find solutions of this system of equations.

Plane wave solution of Dirac equation

- We obtain the system of equations (here written in matrix form):

$$
\left[\begin{array}{cccc}
m_{e} c^{2} & 0 & p c & 0 \\
0 & m_{e} c^{2} & 0 & -p c \\
p c & 0 & -m_{e} c^{2} & 0 \\
0 & -p c & 0 & -m_{e} c^{2}
\end{array}\right] w=E w
$$

- Two types of solutions can be obtained by solving this system (finding determinant of the matrix):

$$
E_{+}(p)=\sqrt{\left(m_{e} c^{2}\right)^{2}+(p c)^{2}}
$$

$$
E_{-}(p)=-\sqrt{\left(m_{e} c^{2}\right)^{2}+(p c)^{2}}
$$

Solution with negative energy!

- To each energy corresponds two wavefunctions. For example, positive-energy

$$
w_{-1 / 2}=N\left(\begin{array}{c}
0 \\
1 \\
0 \\
\frac{-c p}{E_{+}+m_{e} c^{2}}
\end{array}\right)
$$

Plane wave solution of Dirac equation

- To each energy corresponds two wavefunctions. For example, positive-energy solutions are:

- By making use the properties of the Pauli matrices and the spin wavefunctions, we finally obtain:

$$
w_{m_{s}}=N\binom{\chi_{s m_{s}}}{\frac{c p \sigma_{z}}{E_{+}+m_{e} c^{2}} \chi_{s m_{s}}}
$$

Free-electron wavefunction (plane wave solution) is written now as bispinor.

06 May 2015

"Problem" of negative energy solutions

- We obtain the system of equations (here written in matrix form):
$\left[\begin{array}{cccc}m_{e} c^{2} & 0 & p c & 0 \\ 0 & m_{e} c^{2} & 0 & -p c \\ p c & 0 & -m_{e} c^{2} & 0 \\ 0 & -p c & 0 & -m_{e} c^{2}\end{array}\right] w=E w$
- Two types of solutions can be obtained by solving this syste determinant of the matrix):

$$
E_{+}(p)=\sqrt{\left(m_{e} c^{2}\right)^{2}+(p c)^{2}}
$$

$$
E(p)=\frac{\sqrt{\left(m_{r} c^{2}\right)^{2}+(p c)^{2}}}{\text { Solution with negative energy! }}
$$

- To each energy corresponds two wavefunctions. For example, positive-energy

$$
w_{-1 / 2}=N\left(\begin{array}{c}
0 \\
1 \\
0 \\
\frac{-c p}{E_{+}+m_{e} c^{2}}
\end{array}\right) \xrightarrow{\substack{\text { Electron spin } \\
\longleftrightarrow}}
$$

Plan of lecture

- Solutions of Schrödinger equation: Wavefunctions, energies, quantum numbers
- Particle's spin and relativity: Ideas which brought us to Dirac equation
- Dirac equation and free-particle solutions
- Negative-energy solutions of Dirac equation: Concept of antiparticles

Energy spectrum of the Dirac particle

- For the free particles we found: $\quad E_{ \pm}(p)= \pm \sqrt{\left(m_{e} c^{2}\right)^{2}+(p c)^{2}}$
- Energy of positive energy particles: $\quad E_{+}(p)>m_{e} c^{2}$
- Energy of negative energy particles: $\quad E_{-}(p)<-m_{e} c^{2}$

Where is the problem here?

Concept of the Dirac sea

- In 1930 Paul Dirac have proposed a theoretical model of the vacuum as an infinite sea of particles possessing negative energy.

- Since all the states in Dirac sea are occupied "our" electron can not go down from the domain of positive energies. (Pauli principle.)

06 May 2015

Particles and antiparticles

- Situation might exist in which all the negative-energy states are occupied except one. This "hole" in the sea of negative-energy electrons would respond to electric fields as though it were a positively-charged particle.

- How to understand the hole?

Antiparticles

- How can one understand "holes" in the Dirac sea?
${ }^{505}$
${ }^{6}$

06 May 2015

Plan of lectures

- 15.04.2015 Preliminary Discussion / Introduction
- 2 22.04.2015 Experiments (discovery of the positron, formation of antihydrogen, ...)
- 3 29.04.2015 Experiments (Lamb shift, hyperfine structure, quasimolecules and MO spectra)
- 4 06.05.2015 Theory (from Schrödinger to Dirac equation, solutions with negative energy)
- 5 13.05.2015 Theory (bound-state solutions of Dirac equation, quantum numbers)
- 6 20.05.2015 Theory (matrix elements and their evaluation, radiative decay and absorption)
- 7 27.05.2015 Experiment (photoionization, radiative recombination, ATI, HHG...)
- 8 03.06.2015 Theory (single and multiple scattering, energy loss mechanisms, channeling regime)
- 9 10.06.2015 Experiment (Kamiokande, cancer therapy,)
- 10 17.06.2015 Experiment (Auger decay, dielectronic recombination, double ionization)
- 11 24.06.2015 Theory (interelectronic interactions, extension of Dirac (and Schrödinger) theory for the description of many-electron systems, approximate methods)
- 12 01.07.2015 Theory (atomic-physics tests of the Standard Model, search for a new physics)
- 13 08.07.2015 Experiment (Atomic physics PNC experiments (Cs,...), heavy ion PV research)

[^0]: \checkmark It is natural to solve Schrödinger equation for central force in spherical coordinates!

