Plan of lectures

1 15.04.2015 Preliminary Discussion / Introduction

2 22.04.2015 Experiments (discovery of the positron, formation of antihydrogen, ...)

3 29.04.2015 Experiments (Lamb shift, hyperfine structure, quasimolecules and MO spectra)
4 06.05.2015 Theory (from Schrodinger to Dirac equation, solutions with negative energy)

5 13.05.2015 Theory (bound-state solutions of Dirac equation, quantum numbers)

6 20.05.2015 Theory (matrix elements and their evaluation, radiative decay and absorption)
7  27.05.2015 Experiment (photoionization, radiative recombination, ATI, HHG...)

8 03.06.2015 Theory (single and multiple scattering, energy loss mechanisms, channeling regime)
9 10.06.2015 Experiment (Kamiokande, cancer therapy, ....)

10 17.06.2015 Experiment (Auger decay, dielectronic recombination, double ionization)
11 24.06.2015 Theory (interelectronic interactions, extension of Dirac (and Schrédinger) theory for the
description of many-electron systems, approximate methods)

12 01.07.2015 Theory (atomic-physics tests of the Standard Model, search for a new physics)
13 08.07.2015 Experiment (Atomic physics PNC experiments (Cs,...), heawy ion PV research)



Bound-state solutions of Dirac equation

(Spectroscopic notations and wavefunctions)
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Plan of lecture

[ ¢ Reminder from the last lecture: Free-particle solution ]

+ Dirac’s spectroscopic notations

+ Integrals of motion
+ Parity of states

+ Energy levels of the bound-state Dirac’s particle
+ Structure of Dirac’s wavefunction

+ Radial components of the Dirac’s wavefunction
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Dirac equation: Free-particle solution

(reminder from the last lecture)

® Dirac equation for the free particle in time-independent form:

(— 17iCa -V + meczao)w(r) =Ew/(r)

/ Momentum ofelectrom
¢+ We havefound the plane-wave solutions of this equation: Quantization axis
(z axis)
Wp (r) — W( p) exp(lpz /h) Electron moves along z-

Cxis with momentum p /

¢ Where w(p) were found as a solution of:

[ m,c? 0 pC 0 |
0 m.c? 0 —pc
pC 0 -mc® O

0 — pc 0 —m.C

e

2

Picture from: www.rpi.edu
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Dirac equation: Free-particle solution

(reminder from the last lecture)

® Dirac equation for the free particle in time-independent form:

(— 17Ca -V + meczao)w(r) = Ew(r)

# Positive- and negative-energy solutions have been found: +me
Forbidden area
for free particle
E, (p) =/(m.c?)* +(pc)? N I
and
E_(p) =—/(m.c?)? +(pc)®
4+ \With the wavefunctions:
S 7 [ cpo, p \
+ - 2 Asmg
w' =N| cpo, and W~ =N| |E_|+m,C
S E > Zsms mg
\ ++meC ) \ IsmS )
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Dirac equation: Free-particle solution

(reminder from the last lecture)

® For each eigenvalue E there are two eigenfunctions which correspond to two
different spin states of the particle: n

1
X2 12 ZL j
(X, 0

mg Z > Zsm <: O
X2 a2 =

+ e 1
N— I
—
1 0
Electron spin Electron spin 1
— O C—
O_’ W = N Cp O—> Wy, = N 0
Momentum of electron 2 Momentum of electron —C
E, +m.cC P :
0 E +m.cC
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Dirac equation for particle in the potential

® Stationary Dirac equation reads (let us add potential):
(—ifca -V +V (r) +m.c’a, )y (r) = Ew(r)

® Its solutions depend, of course, on the particular form of V (r)

Free particle Particlein Coulomb V(r)=— Ze
(discussedbefore): V(r)=0 potential: T
2 2
E+ ( p) > meC . E+ ( p) > meC . Positive continuum
+mc?2 +me2

Bound
(discrete)
. ctatacl

How to describe (characterize) discrete bound state of Dirac spectrum?

By the way: how did we characterize Schrédinger spectrum?

Negative continuum

E_(p) <—m,c* ® E_(p) < —m,c? )

13 May 2015



Schrodinger equation: Quantum numbers

® One needs three quantum numbers

to define the state of hydrogen
(hudrogen-like) atom:

1, 2, 3... (principal)
0,...n- 1 (orbital)
-l, .... #l (magnetic)

® n
® |
® m,
® The energy depends only on the
principal quantum number:

. :_5022
" 2n*

® i.e.in nonrelativistic theory the
states are degenerate (I, m)!

(just a reminder)

W(r) = W(r’ 61 (0) - Rnl (r)YImI (9’ gp)

[
L

Electron is free

Energy (au)

3s (n=3, |=0) 3p (n=3, 1=1) 3d (n=3, 1=2)

-1/18 | —— E— —

2s (n=2, 1=0) 2p (n=2, 1=1)

-1/8 | =—— —_—

1s (n=1, 1=0)

-1/2 | —

[ Can we use the same set of quantum numbers (n,I,m) for Dirac spectrum? ]
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+ Radial components of the Dirac’s wavefunction



Constants of motion (1)

® For the description of the (stable) atom we need to have a set of quantum
numbers which do not change as time evolves.

® Let us take some observable (operator which represents some physical
guantity) Q and its expectation value in some quantum state:

(Q)=(¥Q¥)

® To find the general requirement for <Q> being not dependent on time, let us first
derive the (matrix form of) Heisenberg equation of motion:

la

Q

4
)

0= vt vl e+
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Constants of motion (2)

® To find the general requirement for <Q> being not dependent on time, let us first
derive the (matrix form of) Heisenberg equation of motion:

‘P>+<‘P

N

d Q

d o/ ia
E<Q>—E<‘PQ

4
)

® Therefore, if [I:I ,Q]: 0 and (j do not depend (directly) on time, we find:

‘P> :é<‘1"[H o]

4+ Expectation value (= <Q> does not change with time and provides us a “good
quantum number” for the description of quantum system!

13 May 2015



Non-relativistic hydrogen

Good quantum numbers

+ Schrodinger Hamiltonian in spherical coordinates:
5 Ze? 10,0 2 Ze?
H=——V?-—=| - | = |+ —— -

2m r 2mr< or or) 2mr r

+ lIts eigenfunctions: w(r) = w(r, (9, (0) - Rm (r)erm (‘9; (0)

+ Operators |:|, |:Z, |:2 commute with each other: [|:2,|:|]=0, [|:Z,|:|]=O,[|:2,|:Z]=O

o and: Dy =10+Dn%(r), Ly(r)=map(r), Hy(r)=Ep(r)

1 2

(n, I, m) are good quantum numbers.
... but only in the nonrelativistic case!
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Relativistic hydrogen

,2Bad" quantum numbers

13 May 2015



| Task 5.1

Please, prove commutation relations for the Dirac Hamiltonian:
[L,H]=ikcax p
and

[S,H]=—incax p

20 October 2010



Relativistic hydrogen

+ Dirac equation for the hydrogen-like ions:

$

P

. Ze’ .
—1hca-V———+m.C°«, |w(r)=Ew(r)
r

¢ Whyl, m,s, mgare not good quantum numbers?

¢ The main difference from the non-relativistic picture is

the spin of electron!

Spin-orbit interaction!

13 May 2015



Spin-orbit interaction (1)

(qualitative and rather rough derivation)

v’ Please, remind yourself discussion from the last
lecture concerning magnetic dipole moment

A
& In classical

electrodynamics:

A= =y
A o luE1-A
- 2 ya

‘I\ —e

current
vector area

of the

"ﬁ current loop
\'
(=A== N e 9
T 2nr 2m
In quantum|{mechanics,
for electron -e
. ~ en
=~ L1, Ho =
2m

Bohr magneton

13 May 2015



Spin-orbit interaction (1)

(qualitative and rather rough derivation)

riding with electron)

/fﬂ\
@mg with 1=

[\/ Let us move to the rest frame of electron (we are }

@]

the electron

+ In the rest frame of electron there is a
magnetic filed caused by the relative
motion of the nucleus (magnetic field
of currentloop)!

B — ILlOI

2r

where
| Ze Zev
IR T 2

M| Eleclr‘ic gﬁgﬂigﬁ fti::,'d B Ze
current loop current — > mvr
272r°m
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Spin-orbit interaction (2)

(qualitative and rather rough derivation)

B _ by ek

/—]—\ ¢+ In the rest frame of electron there is a RN~

Riding with o magnetic filed caused by the relative RS £\
motion of the nucleus (magnetic field of e —

current loop)! TN B

the electron

: ) ‘._Magneti]: field B
[ Electric produced by
current loop current

B - CoCRE) |
Arr m

+ Electron has spin (intrinsic moment) and, hence, spin magnetic moment:

i‘s — _gsﬂoé I h

spin
+ Which interacts with external field as:

H'=—p,-B=¢(r)L-S

Spin-orbit term! (A more rigorous derivation requires
detailed analysis of Dirac equation.)

13 May 2015



Spin-orbit interaction (3)

(qualitative and rather rough derivation)

+ Coming back to Dirac equation for the hydrogen-

like ions: 762
(— inca-v -2+ meczaoj w(r)=Ew(r)
r

+ Which should include the spin-orbit term: H' = _ﬁs B =Z(r) | . é

/. Now it becomes clear why the wavefunction \

W imsm, (1) = Ry ()Y, (0,90) 24 (0)

is not adequate for Dirac’s case and, hence, |, m|, s, m are “bad” quantum numbers.

» Thereason is: |: é does not commute with L, or S,.

What to do?
\\Obviously: we have to build from L and S operator which commutes with Ly

13 May 2015



Total angular momentum

® We shall introduce the total angular momentum :

=

J=L+3S
Total angular momentum —— / \ J
Orbital angular momentum Spin

® Operators J2 and J, commutes with LS and with Dirac
Hamiltonian!

[E> j is a “right” observable for the Dirac equation! 1

® Since like any other angular momentum it satisfies:

- o .
30, = j(j+)n’Q,, 3,0, =m0,

Now we can describe the state of relativistic hydrogen atom (ion) by set
of quantum numbers: n, |, m;

... and by parity.
13 May 2015



| Task 5.2

o)

Please, prove that operator L-S commute with J2, J,

20 October 2010
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+ Reminder from the last lecture: Free-particle solution

+ Dirac’s spectroscopic notations
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+ Parity of states

+ Energy levels of the bound-state Dirac’s particle

+ Structure of Dirac’s wavefunction

+ Radial components of the Dirac’s wavefunction



Parity operator

® Solutions of the Dirac (as well as Schrédinger) equation may be separated on the
basis of their response to spatial coordinate inversion.

® Parity operator:

W\ (—x ry (r
F,Sr — IS y | — y Pr=P| 0 |—>| 7-0
 Z —7 Q) \@+7
\— _/ \— J
YT YT
Cartesian coordinates Spherical coordinates

® Forthe Schrodinger case the parity operator commutes with Hamiltonian:

uantum number!

“:A),HSJ:O where |:|s SELLEN v A [anrityisagood }

® Hence, solutions of Schrdodinger equation are - at the same time — eigenfunctions
of permutation operator:

ISWmmI (r) =¥ him, (_r) =&Y him, (r)

13 May 2015




Parity operator

® Forthe Schrdodinger case the parity operator commutes with Hamiltonian:

2
{IS,HSJZO where |:|s :—h—VZ—— [anrityisagood }

2m r uantum number!

® Hence, solutions of Schrdodinger equation are - at the same time — eigenfunctions
of permutation operator:

ISWnIm, (r) = l//nlm| (_r) = anlm, (r)
® How to find eigenvalue ? FSZ’//nIm, (N=¢ P W i (r) = gzl//nlm| (r)

Solutions of Schrédinger equation are either
E = il having even or odd parity! Why we usually

don’t use ¢ as an additional quantum number?

® By employing properties of spherical harmonics we may find:

F3 Wnlm, (r) = I:A)I:Rnl (r)YImI (0’ ¢)]: RnI (r)YImI (7[ -0, ¢+ ﬂ-) = (_1)I RnI (r)YImI (8’ (0) = (_1)I l//nlm| (r)

Orbital momentum | defines also parity! How it is for Dirac case?

13 May 2015



Parity of Dirac states

® Solutions of the Dirac (as well as Schrédinger) equation may be separated on the
basis of their response to spatial coordinate inversion.

o PW(r) =¥ (-r)
Pr=P| 0 |>|7-0
®) k(0+7r
. D . . Ze’ )
Irac equation:  H _ = —l1A#Ca-V ———+ M C ¢,

r

® Does not commute with non-relativistic parity operator: [HD, F3]¢ 0

® But: [|:|D=0 where ¢ :[I 0 j

O -1

(Dirac’s) parity is a good quantum number!
... but what does it mean?

13 May 2015



Structure of Dirac wavefunctions
® Stationary Dirac equation for particle in Coulomb field reads:

. Ze? ,
—1hca-V———+m.C°«, |w(r)=Ew(r)

r
(i (r))
: @, (r) | . : - _ g(r)
® The four-spinor r) = IS more convenient to write as: 1//(r) :( j
D= b f(r)
\§04(I’)/
| : +(9(r) g(-n\ _( 9(-1) Ye=i t
® Inthis case: a, Py(r)= aOP( ; (r)j = a (f(—r) —| f(=r) == s%%?l%%?n%%?wi%t

® Obviously, since the wavefunction ¥ (r) should have definite parity, its large and
small components must have an opposite parities!

For the spectroscopic notation one uses
parity of the large component.

13 May 2015



Structure of Dirac wavefunctions

' 5 5( 9(r) g(-r) g(-r) =i i
T Py a°P( f (r)j o (f (—r)j ] (— f (—r)j = small component

® We shall remember from the nonrelativistic quantum mechanics that parity is
related to the orbital angular momentum |I:

P W oim, (1) = IS[RnI (r)Yim, (0, (0)]: Roy (MY, (7 =0, 0+ 7) = (-1) Wi, (1)

® We can attribute to the large and small components their (individual) angular
momenta I:

- | (and p=(-1)") for large component

onej (good quantum number)
=3\ I’ (and p=(-1)") for small component

Completely confused? OK, now it becomes easier....

13 May 2015



# Task 5.3

Consider an operator:

o |
Hw = f (r) V5 where ¥ = (I Oj and f(r) is some even function.

Prove that matrix element of this operator:

(YalHyw|Yp)

IS non-vanishing only if the functions ¥, and vy, are opposite-parity functions (for
example 2s and 2p,,).

13 May 2015



Dirac qguantum number

® To make relativistic notations of the bound-state Dirac’s states more convenient a
new quantum number x is introduced (which combines together j, | (I’) and parity:)

sz‘—l/Z

K k>0

\\ —x-1 k<0

/ k=-1+1-2+2,-3,+3,...

II

(

-k k<0

x-1 x>0

~

/

Finally: we shall describe Dirac’s states by quantum numbers:

nkm, <nxll” jm,

13 May 2015



Spectroscopi notations

Shell n n'=n—|K| K==(j+ %) J I I’ Notation

K 1 -1 1/2 0 1 1812

L 2 -1 1/2 0 1 2s1/2
+1 1/2 1 0 2p12
=2 32 | 2 2pap

M 3 -1 1/2 0 1 3s1/2
+1 172 1 0 3piy2
-2 312 1 2 3pas2
+2 32 2 1 3dasn
-3 512 2 3 3ds 2

® Finally, we know how to characterize bound states of (relativistic) hydrogen.

® What are the energies of these states?

13 May 2015



Plan of lecture

+ Reminder from the last lecture: Free-particle solution
+ Dirac’s spectroscopic notations

+ Integrals of motion
+ Parity of states

[.. Energy levels of the bound-state Dirac’s particle ]
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+ Radial components of the Dirac’s wavefunction
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Energy levels of hydrogen ion

E.=—2Z%g,/2n?

n
»

Electron is free

Energy (au)

3s (n=3, I=0) 3p (n=3, I=1) 3d (n=3, 1=2)
2s (n=2, 1=0) 2p (n=2, 1=1)
1s (n=1, 1=0)

All state with the samen
are degenerated!

13 May 2015

Energy (au)

[

Lo

1+
n—| j+1/2]++/(j+1/2)? - (Zax)?

Electron is free

3dap

2p32 (N=2, x=-2)

2s12(N=2, k=-1) 2py2(n=2, x=1)

1sy5 (=1, k=-1)

All state with the same n and |
are degenerated!



Energy levels of hydrogen ion

2
o iy
Enj =mc? 1+ - ) e /3Py 3Dy
n—| j+1/2|+\(j+1/2)° - (Zar) e
3512, 3P
| _______":2 2Py,
2 1(aZ)’ 1(aZ)’ 1 3 —
~mcil1-= e — _ — — | T 25,72, 2Pyp
n\ 2 n j+1/2 4n
Rest mass term Nonrelativistic energy First relativistic correction >
® Relativistic effects results both in shifting and splitting &
of energy levels.
O 5 L & [k & [ # O
s (nonrel.)]
i g . rel.
1000_ | -s00 )
% 22000 - n=1
& . { -1000
5]
£ 30001 : 15,
-1500} .
-40001 Boh Dir
L 1syy (rel.) IeSelrs finea:tructure
(VAN (N IS G TN NS N (A PR N T Y SR AN S v
000720 40 0 80 %% 20 40 60 80 (creused)
Nuclear charge Z Nuclear charge Z
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Splitting of energy levels

® Splitting of energy levels with the same principal quantum number n but different
total angular momenta j can be see as aresults of spin-orbit interaction:

2F3rz
T z BL T
Electron could have Y A tﬁ? _____
1 two spin states: “spin ~uB
— | up” and “spin down” 2Pz ?B TL l;
Fiding with o 10.2 eV
the electron 121.6 nm A, Splitting
Tasx 105 ev
-\_\_\_\_‘_\—\_
15 ¥

Spin-orbitinteraction: H' = - -B=7,(r) L-S

Pictures from: hyperphysics.phy-astr.gsu.edu

0

rel.)
-500

-1000

» For neutral hydrogen fine structure
splitting is very small but increases
with nuclear charge Z.

-1500

T
|

L | L | L | 1 I 1
—20000 20 40 60 80
Nuclear charge Z
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Splitting of energy levels

® Can one observe fine-structure splitting of energy levels in experiment? Yes!

T T Standard Xray detector at 90" ] » Example: Fine-structure splitting
15000 - P s in H-like uranium ion.
I K-REC 1
12500 |- : || -
I : |
g 00 LRec] |1y, | ||‘ | 2pa2(n=2, K: 2)
3 - | ’ 1 2s1/5(N=2, k=-1) k=1)
© 7500 | || ‘| - —
5000 |‘| E H . || ‘| 4
I‘ T
2500 II |Ih,|| |\ H “ : Lj‘.: B || || _
ot Ut U )
100 125 150 175
energy [ keV ]

75
@

® Nowadays a fine-structure spectroscopy of heavy ions plays an important role in
studying relativistic, QED and many-electron effects in atomic systems.
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# Task 5.4

Calculate the energies of the Ly-a; and Ly-a, lines of hydrogen-like uranium.
Compare with experimental findings presented on the previous transparency.

13 May 2015
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Structure of Dirac wavefunctions
® Stationary Dirac equation for particle in Coulomb field reads:

. Ze? ,
—1hca-V———+m.C°«, |w(r)=Ew(r)

r
(i (1)
® The four-spinor y (r) = 21 is more convenient to write as: i (r) :(g(r)j
@5(r) f(r)
ALY,

What are the (large and small) components of wavefunction?

# Please, remind yourself our (wrong) guess:

W imsm, (1) = Ry ()Y, (0,90) 24 (0)

What is wrong here? We already learned that | and s should be coupled together
to form total angular momentum j.

13 May 2015



Building Dirac spinor
S
J=LC+S

+ We shall “couple” together angular momentum and spin to
obtain total angular momentum:

Yim (60,0) X4, (0)

g

Qyy (F) = X (Im,_sm,|jm; }Y,,, (6,9) 24, (0)

Clebsch-Gordan coefficients
(more detailed discuss comes later)

#+ Dirac spinors are the eigenfunctions of operators J2 and J,:

. o .
3?0, = j(j+Dr’Q,, 3,0, =m0,

13 May 2015



Structure of Dirac wavefunctions

® Stationary Dirac equation for particle in Coulomb field reads:

. Ze? ,
—IhCa-V—T—I— m.Cca, |w(r)=Ew(r)

1( 9y(r) Q|jmj (r)

® Wavefunctions can be written now as: l//mjmj (r) = — i fnj (r) Q|’jmj (f)

® Wherethe angular and spin dependence is in Dirac spinors:

Qyy (F) = X (Im, sm,|jm; )Y,., (6, 0) 2,0 (0)

mymg

® And g(r) and f(r) are the large and small radial components of the Dirac wavefunction.

[* How to find these radial components’?]

13 May 2015
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[# Radial components of the Dirac’s wavefunction]
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Coupled radial equations
gnx(r) Qljm (r) j

® By substituting wavefunction N =
Voum, (1) 2 r£| £ (1) 2 ()

2

® into Dirac’s equation (— 17iCa -V — + meczaoj w(r)=Ew(r)

r

® we obtain the coupled radial equations:

/d fnzc(r) K _ . . 2
) an(r>j— (E -V (r)-m.c?)g,. (1)
(d9,.(1) gnK(r)j (E-V(r)+mc?)f, (r)

® which can be solved and ...

13 May 2015



Dirac’s radial components

® We finally may derive analytic expressions for the radial components of the Dirac’s
equation (for point-like nucleus!):

Fox () = N x-"mr(EQ’r}s_le—qr

Z
x| =n"F(—n"+ 1,25 +1; 2gr) — (k' — czm )F(—HJ.EJ‘—I— 1; 2qr}:|.
Ghe

gn,( (.“) = _A'l!ifc \-";1 - w;mc rl zqr)s—le—qr

A
x J?’F(—n"—i—l.zs‘—l—l:qu}—(K—O: )F{—;?".Es—l—l:lqr)}.

Ghe

where n’ =n — |k| = 0. 1, 2, ... denotes the number of nodes of{the radial components, ). = /i /m,c the Compton
length of the electron, and

s=+k2—(aZ)?,
Z
q= = - . :
Vi(@Z)? + (n' +5)? the so-called hypergeometric function

Moreover, the normalization factor

V2. [ T@s+n'+1) 17
F2s+ 1) | n'NaZ)(aZ —kghc)

AT —
ik —

® Radial components of the Dirac’s equation are implemented in many computer codes
so there is usually no need to re-program these relations again.
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Dirac’s radial components

(Mathematica package)

j Please, find zipped .nb files with the Mathematic notebooks at:

http://www.physi.uni-heidelberg.de/Forschung/apix/TAP/lectures

password: dirac2012)

Fle Edt Inst Format Cel Graphics Evalustion Palettes Window Help

With this procedure you can evaluate the (radial) bound-state wavefunctions of hydrogen-like ions and their energies 4 /miscfhome/apix/surz/mathematica programs/mDirac/Dirac_bound_lectures.nb

Fle Edt Inset Format Cell Graphics Evaluation Palsttes Windew Help

Please, note: bound states can be characterized by principal quantum number n, total angular momentum j and parity p. (See Lectiure 4.)

In practical calculations in place of last two quantum numbers one may use Dirac quantum number «. There is one-to-one correspondence of xand (j, p): (]
Example 1
«=-1 corresponds to j=1/2, positive parity, l.e. s, state . . _
1 corresponds to j=1/2. negative parity, i.e. py State Energy and radial wavefunction of 1.5, state of neutral hydrogen (Z=1)
2 corresponds to j = 3/2. negative parity, i.e. py; state q
. and so on, (#-- gquantun nmunbers ——+)
Please, use procedure NIN[....J from below to find correspondence between (n, «) and (n, j, p) notations.
As usual: any questions contact me surz@physi.uni-heidelberg.de
(»-- let us get first spectroscopic notation --r)
M[nl, x1]
— N (n-- mow we calculate energy --n}
Ilnput data (precision, physical constants) Enecgy[nl. x1, 2]
$MinPrecision - 40; .
5 _ —— D, 1 (4-- and nov: large and small components of wavefmction --4)
4 - FineStructureConstant; : . Rlarge - RadialComponent(r, nl, x1, Zl, 'L']
Rsmall - RadialGomponent[r, nl, x1. 21, "5']
- - - (#-- finally, let us plot the conponents --#)
Dirac spectroscopic notations Plot[ (Rlarge. Rsmall}. {r, 0, 10}]
Input data: princ n. Dirac x
Output data: spectrescopic notation
[ o ]
N[O, x ] im
¢
cesN - Svitch[x, -4, ‘fi" darats -2, Mpaats <1, Msyats 1 tpats 2, Mt 3 '] | 0 791724390 0484 ]
TE[nMN - 1, {reshN - *1' reshN}]
TE[xNN¢ 1, {xesN - nNN reshN) ] ; . .
Sk [EEE—— — Py —————— ]
b3
| o oomsmassasiscossmsorssasn m— Py ——————————— ]
Dirac energy
Input data: princi . Dirac x. nuclear charge 2 o
Output data: energy of the bound state in atomic units -8
0s
Fnerqy[n_, kappa_, 2] := 1/  Sqrefls 2/ (n- Rbs[kappa] + Sqrt[kappa*2 - (Z» FineStructureanstant) s
1/ FineStructureConstant*2; -
0.3
[« -
0.
@ et z s & & )
- Oxophics - ]
Example 2
Energy and radial wavefunction of 2p;;, state of hydrogen-like uranium (Z2=92) B
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Dirac’s radial components

(...behaviour)

® Let id dial ts of th f ti % (r) 1 gnj (r) Qljmj (f)
et us consider radlal components o e waverunction . =—. .
nljm, T (1), (F)

for particular case of 1s,,, ground state.

0.8
0.6 e
A
=
2
e 0.4}
=
S
E 0.2
g non-relativistic function
0 large component (rel)
small component (rel)
'O ) | I | I | I | ) | I 1 l |
0 2 4 6 8 0 0.05 0.1 0.15 0 0.05 0.1
r(au) r(au) r(au)

» For low-Z regime: Dirac and Schrodinger wavefunctions basically coincides.

» For high-Z regime: small component becomes significant and ...
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Relativistic contraction of atomic orbitals

® From the simple model one can “estimate” the electron
“velocity” in the ground state:

V:(aZ)C\ Q

Speed of light

® For hydrogen-like Uranium (Z=92): al ~0.67

0

mel
*dueto STR: M,;=—==— (electron becomes heavier)
2
) | | J1-(v/c) .
3 7 3s state 1, gye to simple Bohr’s model: f, * ——
) 7=902 ] Zm,

radial components
[u—

Y | @

As the electron's mass increases, the radius of an orbit
with constant angular momentum shrinks proportionately.

“9 | 0.2 | 0.4

13 May 2015



Plan of lectures

1 15.04.2015 Preliminary Discussion / Introduction

2 22.04.2015 Experiments (discovery of the positron, formation of antihydrogen, ...)

3 29.04.2015 Experiments (Lamb shift, hyperfine structure, quasimolecules and MO spectra)
4 06.05.2015 Theory (from Schrodinger to Dirac equation, solutions with negative energy)

5 13.05.2015 Theory (bound-state solutions of Dirac equation, quantum numbers)

6 20.05.2015 Theory (matrix elements and their evaluation, radiative decay and absorption)
7  27.05.2015 Experiment (photoionization, radiative recombination, ATI, HHG...)

8 03.06.2015 Theory (single and multiple scattering, energy loss mechanisms, channeling regime)
9 10.06.2015 Experiment (Kamiokande, cancer therapy, ....)

10 17.06.2015 Experiment (Auger decay, dielectronic recombination, double ionization)
11 24.06.2015 Theory (interelectronic interactions, extension of Dirac (and Schrédinger) theory for the
description of many-electron systems, approximate methods)

12 01.07.2015 Theory (atomic-physics tests of the Standard Model, search for a new physics)
13 08.07.2015 Experiment (Atomic physics PNC experiments (Cs,...), heawy ion PV research)



