Plan of lectures

- 1 15.04.2015 Preliminary Discussion / Introduction
- 2 22.04.2015 Experiments (discovery of the positron, formation of antihydrogen, ...)
- 3 29.04.2015 Experiments (Lamb shift, hyperfine structure, quasimolecules and MO spectra)
- 4 06.05.2015 Theory (from Schrödinger to Dirac equation, solutions with negative energy)
- 5 13.05.2015 Theory (bound-state solutions of Dirac equation, quantum numbers)
- 6 20.05.2015 Theory (matrix elements and their evaluation, radiative decay and absorption)
- 7 27.05.2015 Experiment (photoionization, radiative recombination, ATI, HHG...)
- 8 03.06.2015 Theory (single and multiple scattering, energy loss mechanisms, channeling regime)
- 9 10.06.2015 Experiment (Kamiokande, cancer therapy,)
- 10 17.06.2015 Experiment (Auger decay, dielectronic recombination, double ionization)
- 11 24.06.2015 Theory (interelectronic interactions, extension of Dirac (and Schrödinger) theory for the description of many-electron systems, approximate methods)
- 12 01.07.2015 Theory (atomic-physics tests of the Standard Model, search for a new physics)
- 13 08.07.2015 Experiment (Atomic physics PNC experiments (Cs,...), heavy ion PV research)

Bound-state solutions of Dirac equation

(Spectroscopic notations and wavefunctions)

Plan of lecture

- Reminder from the last lecture: Free-particle solution
- Dirac's spectroscopic notations
- Integrals of motion
- Parity of states
- Energy levels of the bound-state Dirac's particle
- Structure of Dirac's wavefunction
- Radial components of the Dirac's wavefunction

Dirac equation: Free-particle solution

(reminder from the last lecture)

- Dirac equation for the free particle in time-independent form:

$$
\left(-i \hbar c \boldsymbol{\alpha} \cdot \nabla+m_{e} c^{2} \alpha_{0}\right) \psi(\boldsymbol{r})=E \psi(\boldsymbol{r})
$$

- We have found the plane-wave solutions of this equation:

$$
\psi_{p}(\boldsymbol{r})=w(p) \exp (i p z / \hbar)
$$

Quantization axis (z axis)

Electron moves along zaxis with momentum p

- Where $w(p)$ were found as a solution of:

$$
\left[\begin{array}{cccc}
m_{e} c^{2} & 0 & p c & 0 \\
0 & m_{e} c^{2} & 0 & -p c \\
p c & 0 & -m_{e} c^{2} & 0 \\
0 & -p c & 0 & -m_{e} c^{2}
\end{array}\right] w=E w
$$

Dirac equation: Free-particle solution

(reminder from the last lecture)

- Dirac equation for the free particle in time-independent form:

$$
\left(-i \hbar c \boldsymbol{\alpha} \cdot \nabla+m_{e} c^{2} \alpha_{0}\right) \psi(\boldsymbol{r})=E \psi(\boldsymbol{r})
$$

- Positive- and negative-energy solutions have been found:

$$
\begin{gathered}
E_{+}(p)=\sqrt{\left(m_{e} c^{2}\right)^{2}+(p c)^{2}} \\
\text { and } \\
E_{-}(p)=-\sqrt{\left(m_{e} c^{2}\right)^{2}+(p c)^{2}}
\end{gathered}
$$

- With the wavefunctions:

$$
w_{m_{s}}^{+}=N\binom{\chi_{s m_{s}}}{\frac{c p \sigma_{z}}{E_{+}+m_{e} c^{2}} \chi_{s m_{s}}} \quad \text { and } \quad w_{m_{s}}^{-}=N\binom{-\frac{c p \sigma_{z}}{\left|E_{-}\right|+m_{e} c^{2}} \chi_{s m_{s}}}{\chi_{s m_{s}}}
$$

Dirac equation: Free-particle solution

- For each eigenvalue E there are two eigenfunctions which correspond to two different spin states of the particle:

$$
w_{m_{s}}^{+}=N\binom{\chi_{s m_{s}}}{\frac{c p \sigma_{z}}{E_{+}+m_{e} c^{2}} \chi_{s m_{s}}}
$$

$$
\begin{aligned}
& \chi_{1 / 2+1 / 2}=\binom{1}{0} \\
& \chi_{1 / 2-1 / 2}=\binom{0}{1}
\end{aligned}
$$

Plan of lecture

- Reminder from the last lecture: Free-particle solution
- Dirac's spectroscopic notations
- Integrals of motion
- Parity of states
- Energy levels of the bound-state Dirac's particle
- Structure of Dirac's wavefunction
- Radial components of the Dirac's wavefunction

Dirac equation for particle in the potential

- Stationary Dirac equation reads (let us add potential):

$$
\left(-i \hbar c \boldsymbol{\alpha} \cdot \nabla+V(\boldsymbol{r})+m_{e} c^{2} \alpha_{0}\right) \psi(\boldsymbol{r})=E \psi(\boldsymbol{r})
$$

- Its solutions depend, of course, on the particular form of $V(\boldsymbol{r})$

```
        Free particle
(discussed before): V(r)=0
```

$\begin{aligned} & \begin{array}{l}\text { Particle in Coulomb } \\ \text { potential: }\end{array}\end{aligned} V(\boldsymbol{r})=-\frac{Z e^{2}}{r}$
$E_{+}(p)>m_{e} c^{2} \longrightarrow \bigcirc \square$
$+m c^{2}$

How to describe (characterize) discrete bound state of Dirac spectrum?
By the way: how did we characterize Schrödinger spectrum?
$E_{-}(p)<-m_{e} c^{2} \bigcirc E_{-}(p)<-m_{e} c^{2} \square \quad$ Negative continuum

13 May 2015

Schrödinger equation: Quantum numbers

- One needs three quantum numbers to define the state of hydrogen (hudrogen-like) atom:
- $n=1,2,3 \ldots$ (principal)
- I = 0, .. n-1 (orbital)
- $m_{l}=-l, \ldots .+l$ (magnetic)
- The energy depends only on the principal quantum number:

$$
E_{n}=-\frac{\varepsilon_{0} Z^{2}}{2 n^{2}}
$$

- i.e. in nonrelativistic theory the states are degenerate (I, m)!

$$
\psi(\boldsymbol{r})=\psi(r, \theta, \varphi)=R_{n l}(r) Y_{l m_{l}}(\theta, \varphi)
$$

Electron is free
Electron is bound to ion

3d ($\mathrm{n}=3, \mathrm{l}=2$)
$2 s(n=2, l=0) \quad 2 p(n=2, l=1)$
$2 p(n=2, l=1)$
$1 \mathrm{~s}(\mathrm{n}=1, \mathrm{l}=0)$

Can we use the same set of quantum numbers ($\mathrm{n}, \mathrm{l}, \mathrm{m}$) for Dirac spectrum?
13 May 2015

Plan of lecture

- Reminder from the last lecture: Free-particle solution
- Dirac's spectroscopic notations
+ Integrals of motion
- Parity of states
- Energy levels of the bound-state Dirac's particle
- Structure of Dirac's wavefunction
- Radial components of the Dirac's wavefunction

Constants of motion (1)

- For the description of the (stable) atom we need to have a set of quantum numbers which do not change as time evolves.
- Let us take some observable (operator which represents some physical quantity) Q and its expectation value in some quantum state:

$$
\langle Q\rangle=\langle\Psi| \hat{Q}|\Psi\rangle
$$

- To find the general requirement for $\langle Q\rangle$ being not dependent on time, let us first derive the (matrix form of) Heisenberg equation of motion:

$$
\frac{d}{d t}\langle Q\rangle=\frac{d}{d t}\langle\Psi| \hat{Q}|\Psi\rangle=\frac{i}{\hbar}\langle\Psi|[\hat{H}, \hat{Q}]|\Psi\rangle+\langle\Psi| \frac{\partial \hat{Q}}{\partial t}|\Psi\rangle
$$

Constants of motion (2)

- To find the general requirement for $\langle Q\rangle$ being not dependent on time, let us first derive the (matrix form of) Heisenberg equation of motion:

$$
\begin{aligned}
\frac{d}{d t}\langle Q\rangle=\frac{d}{d t}\langle\Psi| \hat{Q}|\Psi\rangle & =\frac{i}{\hbar}\langle\Psi|[\hat{H}, \hat{Q}]|\Psi\rangle+\langle\Psi| \frac{\partial \hat{Q}}{\partial t}|\Psi\rangle \\
&
\end{aligned}
$$

- Therefore, if $[\hat{H}, \hat{Q}]=0$ and \hat{Q} do not depend (directly) on time, we find:

$$
\frac{d}{d t}\langle Q\rangle=0
$$

- Expectation value $q=\langle Q\rangle$ does not change with time and provides us a "good quantum number" for the description of quantum system!

Non-relativistic hydrogen

Good quantum numbers

- Schrödinger Hamiltonian in spherical coordinates:

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \nabla^{2}-\frac{Z e^{2}}{r}=\left(-\frac{\hbar^{2}}{2 m} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{\hat{\boldsymbol{L}}^{2}}{2 m r^{2}}-\frac{Z e^{2}}{r}\right)
$$

- Its eigenfunctions: $\psi(\boldsymbol{r})=\psi(r, \theta, \varphi)=R_{n l}(r) Y_{l m_{l}}(\theta, \varphi)$
- Operators $\hat{H}, \hat{L}_{z}, \hat{\boldsymbol{L}}^{2}$ commute with each other: $\left[\hat{\boldsymbol{L}}^{2}, \hat{H}\right]=0,\left[\hat{L}_{z}, \hat{H}\right]=0,\left[\hat{\boldsymbol{L}}^{2}, \hat{L}_{z}\right]=0$
- And: $\quad \hat{\boldsymbol{L}}^{2} \psi(\boldsymbol{r})=l(l+1) \hbar^{2} \psi(\boldsymbol{r}), \quad \hat{L}_{z} \psi(\boldsymbol{r})=m_{l} \hbar \psi(\boldsymbol{r}), \quad \hat{H} \psi(\boldsymbol{r})=E \psi(\boldsymbol{r})$

($\mathrm{n}, \mathrm{I}, \mathrm{m}$) are good quantum numbers.
... but only in the nonrelativistic case!

Relativistic hydrogen

„Bad" quantum numbers

$\hat{H}_{S}=-\frac{\hbar^{2}}{2 m} \nabla^{2}-\frac{Z e^{2}}{r}$ $\hat{H}_{D}=-i \hbar c \boldsymbol{a}$. miltonian!
$\psi_{n l m_{l}}(\boldsymbol{r})=R_{n l}(r) Y_{l m_{l}}(\theta, \varphi)$ Hamiltonian. Instead, ar

$$
[\hat{\boldsymbol{S}}, \hat{H}]=-i \hbar c \boldsymbol{\alpha} \times \boldsymbol{p}
$$

Task 5.1

Please, prove commutation relations for the Dirac Hamiltonian:

$$
\begin{gathered}
{[\hat{\boldsymbol{L}}, \hat{H}]=i \hbar c \boldsymbol{\alpha} \times \boldsymbol{p}} \\
\text { and } \\
{[\hat{\boldsymbol{S}}, \hat{H}]=-i \hbar c \boldsymbol{\alpha} \times \boldsymbol{p}}
\end{gathered}
$$

Relativistic hydrogen

- Dirac equation for the hydrogen-like ions:

$$
\left(-i \hbar c \boldsymbol{\alpha} \cdot \nabla-\frac{Z e^{2}}{r}+m_{e} c^{2} \alpha_{0}\right) \psi(\boldsymbol{r})=E \psi(\boldsymbol{r})
$$

- Why I, m_{l}, s, m_{s} are not good quantum numbers?
- The main difference from the non-relativistic picture is the spin of electron!

Spin-orbit interaction!

Spin-orbit interaction (1)

(qualitative and rather rough derivation)

$|\mu|=\boldsymbol{I} \cdot \boldsymbol{A}=\frac{q}{T} \pi r^{2}=\frac{q v}{2 \pi r} \pi r^{2}=\frac{q}{2 m} L$
In quantum mechanics,
for electron: $q=-e$
$\hat{\boldsymbol{\mu}}_{l}=-\mu_{0} \hat{\boldsymbol{L}} / \hbar, \quad \mu_{0}=\frac{e \hbar}{2 m_{e}}$
Bohr magneton

Spin-orbit interaction (1)

(qualitative and rather rough derivation)

vector area
of the
current loop

$$
|\mu|=\boldsymbol{I} \cdot \boldsymbol{A}=\frac{q}{T} \pi r^{2}=\frac{q v}{2 \pi r} \pi r^{2}=\frac{q}{2 m} L
$$

In quantum mechanics,
for electron: $q=-\mathrm{e}$

$$
\hat{\boldsymbol{\mu}}_{l}=-\mu_{0} \hat{\boldsymbol{L}} / \hbar, \quad \mu_{0}=\frac{e \hbar}{2 m_{e}}
$$

Bohr magneton

Let us move to the rest frame of electron (we are riding with electron)

- In the rest frame of electron there is a magnetic filed caused by the relative motion of the nucleus (magnetic field of current loop)!

$$
B=\frac{\mu_{0} I}{2 r}
$$

where

$$
\begin{aligned}
& I=\frac{Z e}{T}=\frac{Z e v}{2 \pi r} \\
& =\frac{Z e}{2 \pi r^{2} m} m v r
\end{aligned}
$$

Spin-orbit interaction (2)

(qualitative and rather rough derivation)

- In the rest frame of electron there is a magnetic filed caused by the relative motion of the nucleus (magnetic field of current loop)!

$$
\boldsymbol{B}=\frac{\mu_{0} Z e \boldsymbol{L}}{4 \pi r^{3} m}=\xi(r) \boldsymbol{L}
$$

- Electron has spin (intrinsic moment) and, hence, spin magnetic moment:

$$
\hat{\boldsymbol{\mu}}_{s}=-g_{s} \mu_{0} \hat{\boldsymbol{S}} / \hbar
$$

- Which interacts with external field as:

$$
\hat{H}^{\prime}=-\hat{\boldsymbol{\mu}}_{s} \cdot \boldsymbol{B}=\zeta(r) \hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{S}}
$$

Spin-orbit term! (A more rigorous derivation requires detailed analysis of Dirac equation.)

Spin-orbit interaction (3)

(qualitative and rather rough derivation)

- Coming back to Dirac equation for the hydrogenlike ions:

$$
\left(-i \hbar c \boldsymbol{\alpha} \cdot \nabla-\frac{Z e^{2}}{r}+m_{e} c^{2} \alpha_{0}\right) \psi(\boldsymbol{r})=E \psi(\boldsymbol{r})
$$

- Which should include the spin-orbit term: $\hat{H}^{\prime}=-\hat{\boldsymbol{\mu}}_{s} \cdot \boldsymbol{B}=\zeta(r) \hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{S}}$
- Now it becomes clear why the wavefunction

$$
\psi_{n l m_{l} s m_{s}}(\boldsymbol{r})=R_{n l}(r) Y_{l m_{l}}(\theta, \varphi) \chi_{s m_{s}}(\sigma)
$$

is not adequate for Dirac's case and, hence, $I, m_{l,} s, m_{s}$ are "bad" quantum numbers.

- The reason is: $\hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{S}}$ does not commute with L_{z} or S_{z}

What to do?

Obviously: we have to build from L and S operator which commutes with $L S$.

Total angular momentum

- We shall introduce the total angular momentum :

- Operators $\mathcal{J}^{\mathcal{R}}$ and J_{z} commutes with LS and with Dirac Hamiltonian!

$\square \hat{\boldsymbol{J}}$ is a "right" observable for the Dirac equation!
- Since like any other angular momentum it satisfies:

$$
\hat{\boldsymbol{J}}^{2} \Omega_{j m_{j}}=j(j+1) \hbar^{2} \Omega_{j m_{j}} \quad \hat{J}_{z} \Omega_{j m_{j}}=m_{j} \hbar \Omega_{j m_{j}}
$$

Now we can describe the state of relativistic hydrogen atom (ion) by set of quantum numbers: n, j, m_{j}
... and by parity.

- Task 5.2

Please, prove that operator $\hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{S}}$ commute with $\hat{\boldsymbol{J}}^{2}, \hat{\boldsymbol{J}}_{z}$

Plan of lecture

- Reminder from the last lecture: Free-particle solution
- Dirac's spectroscopic notations
- Integrals of motion
- Parity of states
- Energy levels of the bound-state Dirac's particle
- Structure of Dirac's wavefunction
- Radial components of the Dirac's wavefunction

Parity operator

- Solutions of the Dirac (as well as Schrödinger) equation may be separated on the basis of their response to spatial coordinate inversion.
- Parity operator:

$$
\underbrace{\hat{P} \boldsymbol{r}=\hat{P}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \rightarrow\left(\begin{array}{c}
-x \\
-y \\
-z
\end{array}\right)}_{\text {Cartesian coordinates }}
$$

$$
\underbrace{\hat{P} \boldsymbol{r}=\hat{P}\left(\begin{array}{c}
r \\
\theta \\
\varphi
\end{array}\right) \rightarrow\left(\begin{array}{c}
r \\
\pi-\theta \\
\varphi+\pi
\end{array}\right)}_{\text {Spherical coordinates }}
$$

- For the Schrödinger case the parity operator commutes with Hamiltonian:

$$
\left\lfloor\hat{P}, \hat{H}_{S}\right\rfloor=0 \quad \text { where } \quad \hat{H}_{S}=-\frac{\hbar^{2}}{2 m} \nabla^{2}-\frac{Z e^{2}}{r}
$$

- Hence, solutions of Schrödinger equation are - at the same time - eigenfunctions of permutation operator:

$$
\hat{P} \psi_{n l m_{l}}(\boldsymbol{r})=\psi_{n l m_{l}}(-\boldsymbol{r})=\varepsilon \psi_{n l m_{l}}(\boldsymbol{r})
$$

Parity operator

- For the Schrödinger case the parity operator commutes with Hamiltonian:

$$
\left\lfloor\hat{P}, \hat{H}_{S}\right\rfloor=0 \quad \text { where } \quad \hat{H}_{S}=-\frac{\hbar^{2}}{2 m} \nabla^{2}-\frac{Z e^{2}}{r}
$$

Parity is a good quantum number!

- Hence, solutions of Schrödinger equation are - at the same time - eigenfunctions of permutation operator:

$$
\hat{P} \psi_{n l m_{l}}(\boldsymbol{r})=\psi_{n l m_{l}}(-\boldsymbol{r})=\varepsilon \psi_{n l m_{l}}(\boldsymbol{r})
$$

- How to find eigenvalue ε ? $\quad \hat{P}^{2} \psi_{n l m_{l}}(\boldsymbol{r})=\varepsilon \hat{P} \psi_{n l m_{l}}(\boldsymbol{r})=\varepsilon^{2} \psi_{n l m_{l}}(\boldsymbol{r})$

$$
\square \varepsilon= \pm 1 \begin{aligned}
& \text { Solutions of Schrödinger equation are either } \\
& \text { having even or odd parity! Why we usually } \\
& \text { don't use } \varepsilon \text { as an additional quantum number? }
\end{aligned}
$$

- By employing properties of spherical harmonics we may find:

$$
\hat{P} \psi_{n l m_{l}}(\boldsymbol{r})=\hat{P}\left[R_{n l}(r) Y_{l m_{l}}(\theta, \varphi)\right]=R_{n l}(r) Y_{l m_{l}}(\pi-\theta, \varphi+\pi)=(-1)^{l} R_{n l}(r) Y_{l m_{l}}(\theta, \varphi)=(-1)^{l} \psi_{n l m_{l}}(\boldsymbol{r})
$$

Orbital momentum / defines also parity! How it is for Dirac case?
13 May 2015

Parity of Dirac states

- Solutions of the Dirac (as well as Schrödinger) equation may be separated on the basis of their response to spatial coordinate inversion.

$$
\begin{aligned}
& \hat{P} \boldsymbol{r}=\hat{P}\left(\begin{array}{l}
r \\
\theta \\
\varphi
\end{array}\right) \rightarrow\left(\begin{array}{c}
r \\
\pi-\theta \\
\varphi+\pi
\end{array}\right) \\
& \hat{P} \Psi(\boldsymbol{r})=\Psi(-\boldsymbol{r})
\end{aligned}
$$

- Dirac equation: $\hat{H}_{D}=-i \hbar c \boldsymbol{\alpha} \cdot \nabla-\frac{Z e^{2}}{r}+m_{e} c^{2} \alpha_{0}$
- Does not commute with non-relativistic parity operator: $\left[\hat{H}_{D}, \hat{P}\right] \neq 0$
- But: $\left[\hat{H}_{D}, \boldsymbol{\alpha}_{0} \hat{P}\right]=0$ where $\alpha_{0}=\left(\begin{array}{cc}\boldsymbol{I} & 0 \\ \mathbf{0} & -\boldsymbol{I}\end{array}\right)$
(Dirac's) parity is a good quantum number!
... but what does it mean?

Structure of Dirac wavefunctions

- Stationary Dirac equation for particle in Coulomb field reads:

$$
\left(-i \hbar c \boldsymbol{\alpha} \cdot \nabla-\frac{Z e^{2}}{r}+m_{e} c^{2} \alpha_{0}\right) \psi(\boldsymbol{r})=E \psi(\boldsymbol{r})
$$

- The four-spinor $\psi(\boldsymbol{r})=\left(\begin{array}{c}\varphi_{1}(\boldsymbol{r}) \\ \varphi_{2}(\boldsymbol{r}) \\ \varphi_{3}(\boldsymbol{r}) \\ \varphi_{4}(\boldsymbol{r})\end{array}\right)$ is more convenient to write as: $\psi(\boldsymbol{r})=\binom{g(\boldsymbol{r})}{f(\boldsymbol{r})}$
- In this case: $\boldsymbol{\alpha}_{0} \hat{P} \psi(\boldsymbol{r})=\boldsymbol{\alpha}_{0} \hat{P}\binom{g(\boldsymbol{r})}{f(\boldsymbol{r})}=\boldsymbol{\alpha}_{0}\binom{g(-\boldsymbol{r})}{f(-\boldsymbol{r})}=\binom{g(-\boldsymbol{r})}{-f(-\boldsymbol{r})} \Leftarrow$ large component
- Obviously, since the wavefunction $\psi(\boldsymbol{r})$ should have definite parity, its large and small components must have an opposite parities!

For the spectroscopic notation one uses parity of the large component.

Structure of Dirac wavefunctions

- We just found: $\boldsymbol{\alpha}_{0} \hat{P} \psi(\boldsymbol{r})=\boldsymbol{\alpha}_{0} \hat{P}\binom{g(\boldsymbol{r})}{f(\boldsymbol{r})}=\boldsymbol{\alpha}_{0}\binom{g(-\boldsymbol{r})}{f(-\boldsymbol{r})}=\binom{g(-\boldsymbol{r})}{-f(-\boldsymbol{r})} \stackrel{\left.\begin{array}{l}\text { large component } \\ \Leftarrow \text { small component }\end{array}\right)}{ }$
- We shall remember from the nonrelativistic quantum mechanics that parity is related to the orbital angular momentum I :

$$
\hat{P} \psi_{n l m_{l}}(\boldsymbol{r})=\hat{P}\left[R_{n l}(r) Y_{l m_{l}}(\theta, \varphi)\right]=R_{n l}(r) Y_{l m_{l}}(\pi-\theta, \varphi+\pi)=(-1)^{l} \psi_{n l m_{l}}(\boldsymbol{r})
$$

- We can attribute to the large and small components their (individual) angular momenta $/$:

$$
\text { one } \left.j \text { (good quantum number) } \Longleftrightarrow I \text { (and } p=(-1)^{\prime}\right) \text { for large component }
$$

Completely confused? OK, now it becomes easier....

. Task 5.3

Consider an operator:

$$
H_{W}=f(\mathbf{r}) \gamma_{5} \text { where } \gamma_{5}=\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right) \text { and } f(r) \text { is some even function. }
$$

Prove that matrix element of this operator:

$$
\left\langle\boldsymbol{\psi}_{\boldsymbol{a}}\right| \boldsymbol{H}_{\boldsymbol{w}}\left|\boldsymbol{\psi}_{\boldsymbol{b}}\right\rangle
$$

is non-vanishing only if the functions $\boldsymbol{\psi}_{a}$ and $\boldsymbol{\psi}_{b}$ are opposite-parity functions (for example 2 s and $2 \mathrm{p}_{1 / 2}$).

Dirac quantum number к

- To make relativistic notations of the bound-state Dirac's states more convenient a new quantum number κ is introduced (which combines together $j, I(F)$ and parity:)

$$
\begin{aligned}
& \kappa=-1,+1,-2,+2,-3,+3, \ldots \\
& j=|\kappa|-1 / 2 \\
& l=\left\{\begin{array}{cc}
\kappa & \kappa>0 \\
-\kappa-1 & \kappa<0
\end{array}, \quad l^{\prime}=\left\{\begin{array}{cc}
-\kappa & \kappa<0 \\
\kappa-1 & \kappa>0
\end{array}\right.\right.
\end{aligned}
$$

Finally: we shall describe Dirac's states by quantum numbers:

$$
n \kappa m_{j} \Leftrightarrow n \kappa l l^{\prime} j m_{j}
$$

Spectroscopi notations

Shell	n	$n^{\prime}=n-\|\kappa\|$	$\kappa= \pm\left(j+\frac{1}{2}\right)$	j	l	l^{\prime}	Notation
K	1	0	-1	1/2	0	1	$1 \mathrm{~s}_{1 / 2}$
L	2	1	-1	1/2	0	1	$2 \mathrm{~s}_{1 / 2}$
		1	+1	1/2	1	0	$2 \mathrm{p}_{1 / 2}$
		0	-2	3/2	1	2	$2 \mathrm{p}_{3 / 2}$
M	3	2	-1	1/2	0	1	$3 \mathrm{~s}_{1 / 2}$
		2	+1	1/2	1	0	$3 \mathrm{p}_{1 / 2}$
		1	-2	3/2	1	2	$3 \mathrm{p}_{3 / 2}$
		1	+2	$3 / 2$	2	1	$3 \mathrm{~d}_{3 / 2}$
		0	-3	$5 / 2$	2	3	$3 \mathrm{~d}_{5 / 2}$

- Finally, we know how to characterize bound states of (relativistic) hydrogen.
- What are the energies of these states?

Plan of lecture

- Reminder from the last lecture: Free-particle solution
- Dirac's spectroscopic notations
- Integrals of motion
- Parity of states

Energy levels of the bound-state Dirac's particle

- Structure of Dirac's wavefunction
- Radial components of the Dirac's wavefunction

Energy levels of hydrogen ion

$$
E_{n}=-Z^{2} \varepsilon_{0} / 2 n^{2}
$$

$$
E_{n j}=m c^{2} / \sqrt{1+\left(\frac{Z \alpha}{n-|j+1 / 2|+\sqrt{(j+1 / 2)^{2}-(Z \alpha)^{2}}}\right)^{2}}
$$

 Electron is free
 Electron is bound to ion

$3 p(n=3, l=1) \quad 3 d(n=3, l=2)$
$2 s(n=2, I=0) \quad 2 p(n=2, l=1)$
$1 \mathrm{~s}(\mathrm{n}=1, \mathrm{l}=0)$
All state with the same n are degenerated!
$1 s_{1 / 2}(n=1, k=-1)$
All state with the same n and j are degenerated!

13 May 2015

Energy levels of hydrogen ion

$$
E_{n j}=m c^{2} / \sqrt{1+\left(\frac{Z \alpha}{n-|j+1 / 2|+\sqrt{(j+1 / 2)^{2}-(Z \alpha)^{2}}}\right)^{2}}
$$

$$
\approx m c^{2}\left(1-\frac{1}{2} \frac{(\alpha Z)^{2}}{n^{2}}-\frac{1}{2} \frac{(\alpha Z)^{4}}{n^{3}}\left(\frac{1}{j+1 / 2}-\frac{3}{4 n}\right)-\ldots\right)
$$

Rest mass term Nonrelativistic energy First relativistic correction

- Relativistic effects results both in shifting and splitting of energy levels.

13 May 2015

Splitting of energy levels

- Splitting of energy levels with the same principal quantum number \mathbf{n} but different total angular momenta j can be see as a results of spin-orbit interaction:

Spin-orbitinteraction: $\hat{H}^{\prime}=-\hat{\boldsymbol{\mu}}_{s} \cdot \boldsymbol{B}=\zeta(r) \hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{S}}$

Pictures from: hyperphysics.phy-astr.gsu.edu

Splitting of energy levels

- Can one observe fine-structure splitting of energy levels in experiment? Yes!

- Example: Fine-structure splitting in H -like uranium ion.

- Nowadays a fine-structure spectroscopy of heavy ions plays an important role in studying relativistic, QED and many-electron effects in atomic systems.

13 May 2015

Task 5.4

Calculate the energies of the $\mathrm{Ly}-\alpha_{1}$ and $\mathrm{Ly}-\alpha_{2}$ lines of hydrogen-like uranium. Compare with experimental findings presented on the previous transparency.

Plan of lecture

- Reminder from the last lecture: Free-particle solution
- Dirac's spectroscopic notations
- Integrals of motion
- Parity of states
- Energy levels of the bound-state Dirac's particle

Structure of Dirac's wavefunction

- Radial components of the Dirac's wavefunction

Structure of Dirac wavefunctions

- Stationary Dirac equation for particle in Coulomb field reads:

$$
\left(-i \hbar c \boldsymbol{\alpha} \cdot \nabla-\frac{Z e^{2}}{r}+m_{e} c^{2} \alpha_{0}\right) \psi(\boldsymbol{r})=E \psi(\boldsymbol{r})
$$

- The four-spinor $\psi(\boldsymbol{r})=\left(\begin{array}{c}\varphi_{1}(\boldsymbol{r}) \\ \varphi_{2}(\boldsymbol{r}) \\ \varphi_{3}(\boldsymbol{r}) \\ \varphi_{4}(\boldsymbol{r})\end{array}\right)$ is more convenient to write as: $\psi(\boldsymbol{r})=\binom{g(\boldsymbol{r})}{f(\boldsymbol{r})}$

What are the (large and small) components of wavefunction?

- Please, remind yourself our (wrong) guess:

$$
\psi_{n l m_{l} s m_{s}}(\boldsymbol{r})=R_{n l}(r) Y_{l m_{l}}(\theta, \varphi) \chi_{s m_{s}}(\sigma)
$$

What is wrong here? We already learned that I and s should be coupled together to form total angular momentum j.

Building Dirac spinor

- We shall "couple" together angular momentum and spin to obtain total angular momentum:

$$
\left.\begin{array}{c}
Y_{l m_{l}}(\theta, \varphi) \chi_{s m_{s}}(\sigma) \\
\underbrace{\text { Clebsch-Gordan coefficients }}_{l \mid l}(\hat{\boldsymbol{r}})=\sum_{m_{l} m_{s}}\left(l m_{l} s_{s} \operatorname{sm}_{s} \mid j m_{j}\right) Y_{l m_{l}}(\theta, \varphi) \chi_{s m_{s}}(\sigma) \\
\text { (more detailed discuss comes later) }
\end{array}\right)
$$

- Dirac spinors are the eigenfunctions of operators \mathcal{J}^{2} and \boldsymbol{J}_{z} :

$$
\hat{\boldsymbol{J}}^{2} \Omega_{j m_{j}}=j(j+1) \hbar^{2} \Omega_{j m_{j}} \quad \hat{J}_{z} \Omega_{j m_{j}}=m_{j} \hbar \Omega_{j m_{j}}
$$

Structure of Dirac wavefunctions

- Stationary Dirac equation for particle in Coulomb field reads:

$$
\left(-i \hbar c \boldsymbol{\alpha} \cdot \nabla-\frac{Z e^{2}}{r}+m_{e} c^{2} \alpha_{0}\right) \psi(\boldsymbol{r})=E \psi(\boldsymbol{r})
$$

- Wavefunctions can be written now as: $\psi_{n l j m_{j}}(\boldsymbol{r})=\frac{1}{r}\binom{g_{n j}(r) \Omega_{l j m_{j}}(\hat{\boldsymbol{r}})}{i f_{n j}(r) \Omega_{l^{\prime j m_{j}}}}$
- Where the angular and spin dependence is in Dirac spinors:

$$
\Omega_{l j m_{j}}(\hat{\boldsymbol{r}})=\sum_{m_{l} m_{s}}\left(l m_{l} s m_{s} \mid j m_{j}\right) Y_{l m_{l}}(\theta, \varphi) \chi_{s m_{s}}(\sigma)
$$

- And $g(r)$ and $f(r)$ are the large and small radial components of the Dirac wavefunction.

> How to find these radial components?

Plan of lecture

- Reminder from the last lecture: Free-particle solution
- Dirac's spectroscopic notations
- Integrals of motion
- Parity of states
- Energy levels of the bound-state Dirac's particle
- Structure of Dirac's wavefunction
- Radial components of the Dirac's wavefunction

Coupled radial equations

- By substituting wavefunction $\psi_{n l j m_{j}}(\boldsymbol{r})=\frac{1}{r}\binom{g_{n \kappa}(r) \Omega_{l j m_{j}}(\hat{\boldsymbol{r}})}{i f_{n \kappa}(r) \Omega_{l^{\prime} j m_{j}}}$
- into Dirac's equation $\left(-i \hbar c \boldsymbol{\alpha} \cdot \nabla-\frac{Z e^{2}}{r}+m_{e} c^{2} \alpha_{0}\right) \psi(\boldsymbol{r})=E \psi(\boldsymbol{r})$
- we obtain the coupled radial equations:

$$
\begin{aligned}
& \left(\frac{d f_{n \kappa}(r)}{d r}-\frac{\kappa}{r} f_{n \kappa}(r)\right)=-\left(E-V(r)-m_{e} c^{2}\right) g_{n \kappa}(r) \\
& \left(\frac{d g_{n \kappa}(r)}{d r}+\frac{\kappa}{r} g_{n \kappa}(r)\right)=\left(E-V(r)+m_{e} c^{2}\right) f_{n \kappa}(r)
\end{aligned}
$$

- which can be solved and ...

Dirac's radial components

- We finally may derive analytic expressions for the radial components of the Dirac's equation (for point-like nucleus!):

$$
\begin{aligned}
f_{n \kappa}(r)= & N_{n \kappa} \sqrt{1+W_{n \kappa}} r(2 q r)^{s-1} \mathrm{e}^{-q r} \\
& \times\left[-n^{\prime} F\left(-n^{\prime}+1,2 s+1 ; 2 q r\right)-\left(\kappa-\frac{\alpha Z}{q \lambda_{c}}\right) F\left(-n^{\prime}, 2 s+1 ; 2 q r\right)\right], \\
g_{n \kappa}(r)= & -N_{n \kappa} \sqrt{1-W_{n \kappa}} r(2 q r)^{s-1} e^{-q r} \\
& \times\left[n^{\prime} F\left(-n^{\prime}+1,2 s+1 ; 2 q r\right)-\left(\kappa-\frac{\alpha Z}{q \lambda_{c}}\right) F\left(-n^{\prime}, 2 s+1 ; 2 q r\right)\right],
\end{aligned}
$$

where $n^{\prime}=n-|\kappa|=0,1,2, \ldots$ denotes the number of nodes of the radial components, $\lambda_{c}=\hbar / m_{e} c$ the Compton length of the electron, and

$$
\begin{aligned}
& s=\sqrt{\kappa^{2}-(\alpha Z)^{2}} \\
& q=\frac{Z}{\sqrt{(\alpha Z)^{2}+\left(n^{\prime}+s\right)^{2}}}
\end{aligned}
$$

Moreover, the normalization factor

$$
N_{n \kappa}=\frac{\sqrt{2} q^{5 / 2} \lambda_{c}}{\Gamma(2 s+1)}\left[\frac{\Gamma\left(2 s+n^{\prime}+1\right)}{n^{\prime}!(\alpha Z)\left(\alpha Z-\kappa q \lambda_{c}\right)}\right]^{1 / 2}
$$

- Radial components of the Dirac's equation are implemented in many computer codes so there is usually no need to re-program these relations again.

Dirac's radial components

(Mathematica package)

Please, find zipped .nb files with the Mathematic notebooks at:

http://www.physi.uni-heidelberg.de/Forschung/apix/TAP/lectures

13 May 2015

Dirac‘s radial components

(...behaviour)

- Let us consider radial components of the wavefunction $\psi_{n l j m_{j}}(\boldsymbol{r})=\frac{1}{r}\left(\begin{array}{c}g_{n j}(r) \Omega_{l j m_{j}}(\hat{\boldsymbol{r}}) \\ i f_{n j}(r) \Omega_{l^{\prime} m_{j}}\end{array}(\hat{\boldsymbol{r}})\right)$ for particular case of $1 \mathrm{~s}_{1 / 2}$ ground state.

non-relativistic function large component (rel) small component (rel)
- For low-Z regime: Dirac and Schrödinger wavefunctions basically coincides.
- For high-Z regime: small component becomes significant and ...

Relativistic contraction of atomic orbitals

- From the simple model one can "estimate" the electron "velocity" in the ground state:

$$
v=(\alpha Z) c
$$

Speed of light

- For hydrogen-like Uranium (Z=92): $\alpha Z \approx 0.67$
- due to STR: $\mathrm{m}_{\mathrm{el}}=\frac{\mathrm{m}_{\mathrm{el}}^{0}}{\sqrt{1-(v / c)^{2}}}$ (electron becomes heavier)

As the electron's mass increases, the radius of an orbit with constant angular momentum shrinks proportionately.

13 May 2015

Plan of lectures

- 1 15.04.2015 Preliminary Discussion / Introduction
- 2 22.04.2015 Experiments (discovery of the positron, formation of antihydrogen, ...)
- 3 29.04.2015 Experiments (Lamb shift, hyperfine structure, quasimolecules and MO spectra)
- 4 06.05.2015 Theory (from Schrödinger to Dirac equation, solutions with negative energy)
- 5 13.05.2015 Theory (bound-state solutions of Dirac equation, quantum numbers)
- 6 20.05.2015 Theory (matrix elements and their evaluation, radiative decay and absorption)
- 7 27.05.2015 Experiment (photoionization, radiative recombination, ATI, HHG...)
- 8 03.06.2015 Theory (single and multiple scattering, energy loss mechanisms, channeling regime)
- 9 10.06.2015 Experiment (Kamiokande, cancer therapy,)
- 10 17.06.2015 Experiment (Auger decay, dielectronic recombination, double ionization)
- 11 24.06.2015 Theory (interelectronic interactions, extension of Dirac (and Schrödinger) theory for the description of many-electron systems, approximate methods)
- 12 01.07.2015 Theory (atomic-physics tests of the Standard Model, search for a new physics)
- 13 08.07.2015 Experiment (Atomic physics PNC experiments (Cs,...), heavy ion PV research)

