
Plan of lectures

• 1 15.04.2015 Preliminary Discussion / Introduction

• 2 22.04.2015 Experiments (discovery of the positron, formation of antihydrogen, ...)

• 3 29.04.2015 Experiments (Lamb shift, hyperfine structure, quasimolecules and MO spectra)

• 4 06.05.2015 Theory (from Schrödinger to Dirac equation, solutions with negative energy)

• 5 13.05.2015 Theory (bound-state solutions of Dirac equation, quantum numbers)

• 6 20.05.2015 Theory (matrix elements and their evaluation, radiative decay and absorption)

• 7 27.05.2015 Experiment (photoionization, radiative recombination, ATI, HHG...)

• 8 03.06.2015 Theory (single and multiple scattering, energy loss mechanisms, channeling regime)

• 9 10.06.2015 Experiment (Kamiokande, cancer therapy, ….)

• 10 17.06.2015 Experiment (Auger decay, dielectronic recombination, double ionization)

• 11 24.06.2015 Theory (interelectronic interactions, extension of Dirac (and Schrödinger) theory for the

description of many-electron systems, approximate methods)

• 12 01.07.2015 Theory (atomic-physics tests of the Standard Model, search for a new physics)

• 13 08.07.2015 Experiment (Atomic physics PNC experiments (Cs,...), heavy ion PV research)
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Bound-state solutions of Dirac equation

(Spectroscopic notations and wavefunctions)



13 May 2015

Plan of lecture

Reminder from the last lecture: Free-particle solution

Dirac’s spectroscopic notations

Integrals of motion

Parity of states

Energy levels of the bound-state Dirac’s particle

Structure of Dirac’s wavefunction

Radial components of the Dirac’s wavefunction



13 May 2015

Dirac equation: Free-particle solution
(reminder from the last lecture)

Dirac equation for the free particle in time-independent form:
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We have found the plane-wave solutions of this equation:
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13 May 2015

Dirac equation: Free-particle solution
(reminder from the last lecture)

Dirac equation for the free particle in time-independent form:
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Positive- and negative-energy solutions have been found:

With the wavefunctions:
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Dirac equation: Free-particle solution
(reminder from the last lecture)

For each eigenvalue E there are two eigenfunctions which correspond to two 

different spin states of the particle: 
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Dirac equation for particle in the potential

Stationary Dirac equation reads (let us add potential):

Its solutions depend, of course, on the particular form of 
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Bound 

(discrete) 

states!

How to describe (characterize) discrete bound state of Dirac spectrum?

By the way: how did we characterize Schrödinger spectrum?
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Schrödinger equation: Quantum numbers
(just a reminder)
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llmnl YrRr rOne needs three quantum numbers 

to define the state of hydrogen 

(hudrogen-like) atom:

n = 1, 2, 3… (principal)

l =  0, … n-1 (orbital)

m l = -l, …. +l (magnetic)

The energy depends only on the 

principal quantum number:

i.e. in nonrelativistic theory the 

states are degenerate (l, m)!
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Can we use the same set of quantum numbers (n,l,m) for Dirac spectrum?
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For the description of the (stable) atom we need to have a set of quantum

numbers which do not change as time evolves.

Let us take some observable (operator which represents some physical

quantity) Q and its expectation value in some quantum state:

To find the general requirement for being not dependent on time, let us first

derive the (matrix form of) Heisenberg equation of motion:
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Constants of motion (1)
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Therefore, if                     and        do not depend (directly) on time, we find:

Expectation value                does not change with time and provides us a “good 

quantum number” for the description of quantum system!

To find the general requirement for being not dependent on time, let us first

derive the (matrix form of) Heisenberg equation of motion:
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Constants of motion (2)
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Non-relativistic hydrogen 
Good quantum numbers

Schrödinger Hamiltonian in spherical coordinates:

Its eigenfunctions:
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Operators                     commute with each other:

And: 
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(n, l, m) are good quantum numbers.  

… but only in the nonrelativistic case! 
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Relativistic hydrogen 
„Bad“ quantum numbers
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In Dirac’s theory, however, neither the components of L nor L2 commute with 

Hamiltonian. Instead, one can show that:

The same is true for the spin operator:
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Task 5.1

Please, prove commutation relations for the Dirac Hamiltonian:

pαL  ciH ]ˆ,ˆ[

and

pαS  ciH ]ˆ,ˆ[
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Relativistic hydrogen 

Dirac equation for the hydrogen-like ions:

Why l, m l, s, ms are not good quantum numbers?

The main difference from the non-relativistic picture is 

the spin of electron!
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Spin-orbit interaction!
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Spin-orbit interaction (1)
(qualitative and rather rough derivation)
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 Please, remind yourself discussion from the last

lecture concerningmagnetic dipole moment
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Spin-orbit interaction (1)
(qualitative and rather rough derivation)
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 Let us move to the rest frame of electron (we are

riding with electron)

In the rest frame of electron there is a

magnetic filed caused by the relative
motion of the nucleus (magnetic field
of current loop)!
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Spin-orbit interaction (2)
(qualitative and rather rough derivation)

In the rest frame of electron there is a

magnetic filed caused by the relative

motion of the nucleus (magnetic field of

current loop)!
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Electron has spin (intrinsic moment) and, hence, spin magnetic moment:

Which interacts with external field as:

/ˆˆ
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Spin-orbit term! (A more rigorous derivation requires 

detailed analysis of Dirac equation.)
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Spin-orbit interaction (3)
(qualitative and rather rough derivation)

Coming back to Dirac equation for the hydrogen-

like ions:

Which should include the spin-orbit term:
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Now it becomes clear why the wavefunction 

is not adequate for Dirac’s case and, hence, l, m l, s, ms are “bad” quantum numbers.

The reason is:                does not commute with Lz or Sz.
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SL ˆˆ 

What to do?

Obviously: we have to build from L and S operator which commutes with LS.
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Total angular momentum

J

L

S

We shall introduce the total angular momentum :

Operators J2 and Jz commutes with LS and with Dirac

Hamiltonian!

Since like any other angular momentum it satisfies:

SLJ



Total angular momentum

Orbital angular momentum Spin

Ĵ is a “right” observable for the Dirac equation!
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Now we can describe the state of relativistic hydrogen atom (ion) by set 

of quantum numbers: n, j, m j

… and by parity.
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Task 5.2

Please, prove that operator           commute withSL ˆˆ  zJJ ˆ,ˆ 2
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Parity operator

Solutions of the Dirac (as well as Schrödinger) equation may be separated on the 

basis of their response to spatial coordinate inversion. 

Parity operator:

For the Schrödinger case the parity operator commutes with Hamiltonian:

Hence, solutions of Schrödinger equation are - at the same time – eigenfunctions 

of permutation operator:
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where

Parity is a good 

quantum number!
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Parity operator

For the Schrödinger case the parity operator commutes with Hamiltonian:

Hence, solutions of Schrödinger equation are - at the same time – eigenfunctions 

of permutation operator:

How to find eigenvalue ?

By employing properties of spherical harmonics we may find:
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Parity is a good 

quantum number!
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Solutions of Schrödinger equation are either 

having even or odd parity! Why we usually 

don’t use  as an additional quantum number?
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Orbital momentum l defines also parity!      How it is for Dirac case?
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Parity of Dirac states

Solutions of the Dirac (as well as Schrödinger) equation may be separated on the 

basis of their response to spatial coordinate inversion. 
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(Dirac’s) parity is a good quantum number!

… but what does it mean?

Dirac equation:

Does not commute with non-relativistic parity operator:

But:                            where
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Structure of Dirac wavefunctions
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Stationary Dirac equation for particle in Coulomb field reads:

The four-spinor                                     is more convenient to write as:

In this case: 

Obviously, since the wavefunction             should have definite parity, its large and 

small components must have an opposite parities!
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For the spectroscopic notation one uses 

parity of the large component.
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Structure of Dirac wavefunctions

We just found:

We shall remember from the nonrelativistic quantum mechanics that parity is 

related to the orbital angular momentum l:

We can attribute to the large and small components their (individual) angular 

momenta l:
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one j (good quantum number)

l (and p=(-1)l) for large component

l’ (and p=(-1)l’) for small component

Completely confused? OK, now it becomes easier....
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Task 5.3
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Dirac quantum number k

To make relativistic notations of the bound-state Dirac’s states more convenient a 

new quantum number k is introduced (which combines together j, l (l’) and parity:)
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Finally: we shall describe Dirac’s states by quantum numbers:
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Spectroscopi notations

Finally, we know how to characterize bound states of (relativistic) hydrogen.

What are the energies of these states?
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Energy levels of hydrogen ion
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All state with the same n 

are degenerated!

All state with the same n and j  

are degenerated!
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Energy levels of hydrogen ion
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Rest mass term Nonrelativistic energy First relativistic correction

1s (nonrel.)

1s1/2 (rel.)

Relativistic effects results both in shifting and splitting 

of energy levels.

2s1/2 (rel.)

2p3/2 (rel.)



13 May 2015

Splitting of energy levels 

Splitting of energy levels with the same principal quantum number n but different 

total angular momenta j can be see as a results of spin-orbit interaction:

SLBμ ˆˆ)(ˆˆ  rH s Spin-orbit interaction:

Electron could have

two spin states: “spin

up” and “spin down”

z

For neutral hydrogen fine structure

splitting is very small but increases
with nuclear charge Z.

1s (nonrel.)

1s1/2 (rel.)

2s1/2 (rel.)

2p3/2 (rel.)

Pictures from: hyperphysics.phy-astr.gsu.edu
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Splitting of energy levels 

Can one observe fine-structure splitting of energy levels in experiment? Yes!

Nowadays a fine-structure spectroscopy of heavy ions plays an important role in 

studying relativistic, QED and many-electron effects in atomic systems.

1s1/2 (n=1, k=-1)

2s1/2(n=2, k=-1) 2p1/2 (n=2, k=1)

2p3/2 (n=2, k=-2)

Ly-1

Ly-2

Example: Fine-structure splitting 

in H-like uranium ion.
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Task 5.4

Calculate the energies of the Ly-1 and Ly-2 lines of hydrogen-like uranium.

Compare with experimental findings presented on the previous transparency.
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Structure of Dirac wavefunctions
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Stationary Dirac equation for particle in Coulomb field reads:

The four-spinor                                     is more convenient to write as:
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What are the (large and small) components of wavefunction?

Please, remind yourself our (wrong) guess: 
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What is wrong here? We already learned that l and s should be coupled together 

to form total angular momentum j.
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Building Dirac spinor

J

L

S

We shall “couple” together angular momentum and spin to 

obtain total angular momentum:

Dirac spinors are the eigenfunctions of operators J2 and Jz:
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Clebsch-Gordan coefficients

(more detailed discuss comes later)
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Stationary Dirac equation for particle in Coulomb field reads:

Wavefunctions can be written now as:

Where the angular and spin dependence is in Dirac spinors: 

And g(r) and f(r) are the large and small radial components of the Dirac wavefunction. 

How to find these radial components?
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Structure of Dirac wavefunctions

)()(0

2
2

rrα  Ecm
r

Ze
ci e 








 




















 )ˆ()(

)ˆ()(1
)(

r

r
r

j

j

j

jmlnj

ljmnj

nljm rfi

rg

r


 
sl

slj

mm

smlmjslljm Yjmsmlm )(),()ˆ( r



13 May 2015

Plan of lecture

Reminder from the last lecture: Free-particle solution

Dirac’s spectroscopic notations

Integrals of motion

Parity of states

Energy levels of the bound-state Dirac’s particle

Structure of Dirac’s wavefunction

Radial components of the Dirac’s wavefunction



13 May 2015

Coupled radial equations

By substituting wavefunction 

into Dirac’s equation

we obtain the coupled radial equations:

which can be solved and ...
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Dirac‘s radial components

We finally may derive analytic expressions for the radial components of the Dirac’s 

equation (for point-like nucleus!):  

Radial components of the Dirac’s equation are implemented in many computer codes 

so there is usually no need to re-program these relations again.  

knf

kng

the so-called hypergeometric function
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Dirac‘s radial components
(Mathematica package)

Please, find zipped .nb files with the Mathematic notebooks at:

(password: dirac2012)

http://www.physi.uni-heidelberg.de/Forschung/apix/TAP/lectures
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Dirac‘s radial components
(...behaviour)

Let us consider radial components of the wavefunction

for particular case of 1s1/2 ground state.

For low-Z regime: Dirac and Schrödinger wavefunctions basically coincides.

For high-Z regime: small component becomes significant and ...
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Relativistic contraction of atomic orbitals

From the simple model one can “estimate” the electron 

“velocity” in the ground state:

For hydrogen-like Uranium (Z=92):
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• due to STR:                         (electron becomes heavier)

• due to simple Bohr’s model: 3s state

Z = 92

As the electron's mass increases, the radius of an orbit

with constant angular momentum shrinks proportionately.
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• 13 08.07.2015 Experiment (Atomic physics PNC experiments (Cs,...), heavy ion PV research)


