Plan of lectures

- 1 15.04.2015 Preliminary Discussion / Introduction
- 2 22.04.2015 Experiments (discovery of the positron, formation of antihydrogen, ...)
- 3 29.04.2015 Experiments (Lamb shift, hyperfine structure, quasimolecules and MO spectra)
- 4 06.05.2015 Theory (from Schrödinger to Dirac equation, solutions with negative energy)
- 5 13.05.2015 Theory (bound-state solutions of Dirac equation, quantum numbers)
- 6 20.05.2015 Theory (matrix elements and their evaluation, radiative decay and absorption)
- 7 27.05.2015 Experiment (photoionization, radiative recombination, ATI, HHG...)
- 8 03.06.2015 Theory (single and multiple scattering, energy loss mechanisms, channeling regime)
- 9 10.06.2015 Experiment (Kamiokande, cancer therapy,)
- 10 17.06.2015 Experiment (Auger decay, dielectronic recombination, double ionization)
- 11 24.06.2015 Theory (interelectronic interactions, extension of Dirac (and Schrödinger) theory for the description of many-electron systems, approximate methods)
- 12 01.07.2015 Theory (atomic-physics tests of the Standard Model, search for a new physics)
- 13 08.07.2015 Experiment (Atomic physics PNC experiments (Cs,...), heavy ion PV research)

Bound-state solutions of Dirac equation

(Spectroscopic notations and wavefunctions)

Plan of lecture

Reminder from the last lecture: Free-particle solution

Dirac's spectroscopic notations

Integrals of motionParity of states

Energy levels of the bound-state Dirac's particle

Structure of Dirac's wavefunction

Radial components of the Dirac's wavefunction

Dirac equation: Free-particle solution

(reminder from the last lecture)

• Dirac equation for the free particle in time-independent form:

$$(-i\hbar c\boldsymbol{a}\cdot\nabla + m_e c^2 \alpha_0)\psi(\boldsymbol{r}) = E\psi(\boldsymbol{r})$$

We have found the plane-wave solutions of this equation:

$$\psi_p(\mathbf{r}) = w(p) \exp(ipz/\hbar)$$

Picture from: www.rpi.edu

Where w(p) were found as a solution of:

$$\begin{bmatrix} m_e c^2 & 0 & pc & 0 \\ 0 & m_e c^2 & 0 & -pc \\ pc & 0 & -m_e c^2 & 0 \\ 0 & -pc & 0 & -m_e c^2 \end{bmatrix} w = Ew$$

Dirac equation: Free-particle solution

(reminder from the last lecture)

• Dirac equation for the free particle in time-independent form:

$$(-i\hbar c\boldsymbol{\alpha}\cdot\nabla+m_ec^2\boldsymbol{\alpha}_0)\psi(\boldsymbol{r})=E\psi(\boldsymbol{r})$$

Positive- and negative-energy solutions have been found:

$$E_{+}(p) = \sqrt{(m_{e}c^{2})^{2} + (pc)^{2}}$$

and

$$E_{-}(p) = -\sqrt{(m_e c^2)^2 + (pc)^2}$$

With the wavefunctions:

$$w_{m_s}^{+} = N \begin{pmatrix} \chi_{sm_s} \\ \frac{cp\sigma_z}{E_+ + m_e c^2} \chi_{sm_s} \end{pmatrix} \text{ and } w_{m_s}^{-} = N \begin{pmatrix} -\frac{cp\sigma_z}{|E_-| + m_e c^2} \chi_{sm_s} \\ \chi_{sm_s} \end{pmatrix}$$

Dirac equation: Free-particle solution

(reminder from the last lecture)

Plan of lecture

Reminder from the last lecture: Free-particle solution

Dirac's spectroscopic notations

Integrals of motionParity of states

- Energy levels of the bound-state Dirac's particle
- Structure of Dirac's wavefunction
- Radial components of the Dirac's wavefunction

Dirac equation for particle in the potential

Stationary Dirac equation reads (let us add potential):

$$\left(-i\hbar c\boldsymbol{a}\cdot\nabla + \boldsymbol{V}(\boldsymbol{r}) + m_e c^2 \alpha_0\right)\psi(\boldsymbol{r}) = E\psi(\boldsymbol{r})$$

• Its solutions depend, of course, on the particular form of V(r)

Schrödinger equation: Quantum numbers (just a reminder)

- *n* = 1, 2, 3... (principal)
- I = 0, ... n-1 (orbital)
- $m_1 = -1, \dots + 1$ (magnetic)
- The energy depends only on the principal quantum number:

$$E_n = -\frac{\varepsilon_0 Z^2}{2n^2}$$

• i.e. in nonrelativistic theory the states are degenerate (I, m)!

$$\psi(\mathbf{r}) = \psi(\mathbf{r}, \theta, \varphi) = R_{nl}(\mathbf{r})Y_{lm_{l}}(\theta, \varphi)$$
Electron is free
Electron is bound to ion
$$3s (n=3, l=0) \quad 3p (n=3, l=1) \quad 3d (n=3, l=2)$$

$$2s (n=2, l=0) \quad 2p (n=2, l=1)$$

Can we use the same set of quantum numbers (n,l,m) for Dirac spectrum?

Plan of lecture

- Reminder from the last lecture: Free-particle solution
- Dirac's spectroscopic notations

Integrals of motionParity of states

- Energy levels of the bound-state Dirac's particle
- Structure of Dirac's wavefunction
- Radial components of the Dirac's wavefunction

Constants of motion (1)

- For the description of the (stable) atom we need to have a set of quantum numbers which do not change as time evolves.
- Let us take some observable (operator which represents some physical quantity) Q and its expectation value in some quantum state:

$$\langle Q \rangle = \left\langle \Psi \middle| \hat{Q} \middle| \Psi \right\rangle$$

• To find the general requirement for $\langle Q \rangle$ being not dependent on time, let us first derive the (matrix form of) Heisenberg equation of motion:

$$\frac{d}{dt}\langle Q\rangle = \frac{d}{dt}\langle \Psi | \hat{Q} | \Psi \rangle = \frac{i}{\hbar} \langle \Psi | [\hat{H}, \hat{Q}] | \Psi \rangle + \langle \Psi | \frac{\partial \hat{Q}}{\partial t} | \Psi \rangle$$

Constants of motion (2)

• To find the general requirement for $\langle Q \rangle$ being not dependent on time, let us first derive the (matrix form of) Heisenberg equation of motion:

$$\frac{d}{dt}\langle Q \rangle = \frac{d}{dt} \langle \Psi | \hat{Q} | \Psi \rangle = \frac{i}{\hbar} \langle \Psi | [\hat{H}, \hat{Q}] | \Psi \rangle + \langle \Psi | \frac{\partial \hat{Q}}{\partial t} | \Psi \rangle$$

• Therefore, if $[\hat{H}, \hat{Q}] = 0$ and \hat{Q} do not depend (directly) on time, we find:

$$\frac{d}{dt}\langle Q\rangle = 0$$

• Expectation value $q = \langle Q \rangle$ does not change with time and provides us a "good quantum number" for the description of quantum system!

Non-relativistic hydrogen Good quantum numbers

Schrödinger Hamiltonian in spherical coordinates:

$$\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 - \frac{Ze^2}{r} = \left(-\frac{\hbar^2}{2m}\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) + \frac{\hat{L}^2}{2mr^2} - \frac{Ze^2}{r}\right)$$

Its eigenfunctions: $\psi(\mathbf{r}) = \psi(r, \theta, \varphi) = R_{nl}(r)Y_{lm_l}(\theta, \varphi)$

• Operators $\hat{H}, \hat{L}_z, \hat{L}^2$ commute with each other: $[\hat{L}^2, \hat{H}] = 0, [\hat{L}_z, \hat{H}] = 0, [\hat{L}^2, \hat{L}_z] = 0$

• And: $\hat{L}^2 \psi(\mathbf{r}) = l(l+1)\hbar^2 \psi(\mathbf{r}), \quad \hat{L}_z \psi(\mathbf{r}) = m_l \hbar \psi(\mathbf{r}), \quad \hat{H} \psi(\mathbf{r}) = E \psi(\mathbf{r})$

(n, l, m) are good quantum numbers. ... but only in the nonrelativistic case!

Relativistic hydrogen "Bad" quantum numbers

Please, prove commutation relations for the Dirac Hamiltonian:

 $[\hat{L}, \hat{H}] = i\hbar c \boldsymbol{\alpha} \times \boldsymbol{p}$

and

 $[\hat{S}, \hat{H}] = -i\hbar c \boldsymbol{\alpha} \times \boldsymbol{p}$

20 October 2010

Relativistic hydrogen

• Dirac equation for the hydrogen-like ions:

$$\left(-i\hbar c\boldsymbol{\alpha}\cdot\nabla-\frac{Ze^2}{r}+m_ec^2\alpha_0\right)\psi(\boldsymbol{r})=E\psi(\boldsymbol{r})$$

• Why I, m_{l} , s, m_{s} are not good quantum numbers?

 The main difference from the non-relativistic picture is the spin of electron!

Spin-orbit interaction!

Spin-orbit interaction (1)

(qualitative and rather rough derivation)

✓ Please, remind yourself discussion from the last lecture concerning magnetic dipole moment

$$\mid \mu \mid = \boldsymbol{I} \cdot \boldsymbol{A} = \frac{q}{T} \pi r^2 = \frac{qv}{2\pi r} \pi r^2 = \frac{q}{2m} L$$

In quantum mechanics, for electron: q=-e

$$\hat{\boldsymbol{\mu}}_{l} = -\mu_{0}\hat{\boldsymbol{L}}/\hbar, \qquad \mu_{0} = \frac{e\hbar}{2m_{e}}$$

Bohr magneton

Spin-orbit interaction (1)

(qualitative and rather rough derivation)

 \checkmark Let us move to the rest frame of electron (we are riding with electron)

Copyright @ Addison Wesley Longman, Inc

In classical electrodynamics:

 $|\mu| = I \cdot A$

 $|\mu| = \boldsymbol{I} \cdot \boldsymbol{A} = \frac{q}{T} \pi r^2 = \frac{qv}{2\pi r} \pi r^2 = \frac{q}{2m} L$

In quantum mechanics, for electron: q=-e

 $\hat{\boldsymbol{\mu}}_l = -\mu_0 \hat{\boldsymbol{L}}/\hbar, \qquad \mu_0 = \frac{e\hbar}{2m_e}$

Bohr magneton

 In the rest frame of electron there is a magnetic filed caused by the relative motion of the nucleus (magnetic field of current loop)!

Spin-orbit interaction (2)

(qualitative and rather rough derivation)

In the rest frame of electron there is a magnetic filed caused by the relative motion of the nucleus (magnetic field of current loop)!

$$\boldsymbol{B} = \frac{\mu_0 Z e \boldsymbol{L}}{4\pi r^3 m} = \boldsymbol{\xi}(r) \, \boldsymbol{L}$$

• Electron has spin (intrinsic moment) and, hence, spin magnetic moment:

1

$$\hat{\boldsymbol{\mu}}_{s} = -g_{s}\mu_{0}\hat{\boldsymbol{S}}/\hbar$$

$$\hat{H}' = -\hat{\boldsymbol{\mu}}_{s} \cdot \boldsymbol{B} = \zeta(r) \,\hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{S}}$$

e spin charge

Spin-orbit term! (A more rigorous derivation requires detailed analysis of Dirac equation.)

Spin-orbit interaction (3)

(qualitative and rather rough derivation)

 Coming back to Dirac equation for the hydrogenlike ions:

$$\left(-i\hbar c\boldsymbol{\alpha}\cdot\nabla-\frac{Ze^{2}}{r}+m_{e}c^{2}\boldsymbol{\alpha}_{0}\right)\boldsymbol{\psi}(\boldsymbol{r})=E\boldsymbol{\psi}(\boldsymbol{r})$$

• Which should include the spin-orbit term: $\hat{H}' = -\hat{\mu}_s \cdot B = \zeta(r) \hat{L} \cdot \hat{S}$

Now it becomes clear why the wavefunction

$$\psi_{nlm_lsm_s}(\mathbf{r}) = R_{nl}(r)Y_{lm_l}(\theta,\varphi)\chi_{sm_s}(\sigma)$$

is not adequate for Dirac's case and, hence, I, m_{l}, s, m_{s} are "bad" quantum numbers.

• The reason is: $\hat{L} \cdot \hat{S}$ does not commute with L_z or S_z .

What to do?

Obviously: we have to build from L and S operator which commutes with LS.

Total angular momentum

• Since like any other angular momentum it satisfies:

$$\hat{J}^2 \Omega_{jm_j} = j(j+1)\hbar^2 \Omega_{jm_j} \qquad \qquad \hat{J}_z \Omega_{jm_j} = m_j \hbar \Omega_{jm_j}$$

Now we can describe the state of relativistic hydrogen atom (ion) by set of quantum numbers: n, j, m_j

... and by parity.

Please, prove that operator $\hat{L} \cdot \hat{S}$ commute with \hat{J}^2 , \hat{J}_z

Plan of lecture

- Reminder from the last lecture: Free-particle solution
- Dirac's spectroscopic notations

Integrals of motion
 Parity of states

- Energy levels of the bound-state Dirac's particle
- Structure of Dirac's wavefunction
- Radial components of the Dirac's wavefunction

Parity operator

- Solutions of the Dirac (as well as Schrödinger) equation may be separated on the basis of their response to spatial coordinate inversion.
- Parity operator:

• For the Schrödinger case the parity operator commutes with Hamiltonian:

$$[\hat{P}, \hat{H}_{S}] = 0$$
 where $\hat{H}_{S} = -\frac{\hbar^{2}}{2m}\nabla^{2} - \frac{Ze^{2}}{r}$ Parity is a good quantum number!

 Hence, solutions of Schrödinger equation are - at the same time – eigenfunctions of permutation operator:

$$\hat{P}\psi_{nlm_l}(\boldsymbol{r}) = \psi_{nlm_l}(-\boldsymbol{r}) = \varepsilon\psi_{nlm_l}(\boldsymbol{r})$$

Parity operator

For the Schrödinger case the parity operator commutes with Hamiltonian:

$$[\hat{P}, \hat{H}_{S}] = 0$$
 where $\hat{H}_{S} = -\frac{\hbar^{2}}{2m}\nabla^{2} - \frac{Ze^{2}}{r}$ Parity is a good quantum number!

Hence, solutions of Schrödinger equation are - at the same time – eigenfunctions of permutation operator:

$$\hat{P}\psi_{nlm_l}(\boldsymbol{r}) = \psi_{nlm_l}(-\boldsymbol{r}) = \mathcal{E}\psi_{nlm_l}(\boldsymbol{r})$$

How to find eigenvalue ε ? $\hat{P}^2 \psi_{nlm}(\mathbf{r}) = \varepsilon \hat{P} \psi_{nlm}(\mathbf{r}) = \varepsilon^2 \psi_{nlm}(\mathbf{r})$

 $\mathcal{E} = \pm 1$ Solutions of Schrödinger equation are either having even or odd parity! Why we usually don't use ε as an additional quantum number?

By employing properties of spherical harmonics we may find: $\hat{P}\psi_{nlm_{l}}(\boldsymbol{r}) = \hat{P}\left[R_{nl}(r)Y_{lm_{l}}(\theta,\varphi)\right] = R_{nl}(r)Y_{lm_{l}}(\pi-\theta,\varphi+\pi) = (-1)^{l}R_{nl}(r)Y_{lm_{l}}(\theta,\varphi) = (-1)^{l}\psi_{nlm_{l}}(\boldsymbol{r})$

Orbital momentum / defines also parity! How it is for Dirac case?

Parity of Dirac states

 Solutions of the Dirac (as well as Schrödinger) equation may be separated on the basis of their response to spatial coordinate inversion.

$$\hat{P}\boldsymbol{r} = \hat{P}\begin{pmatrix} \boldsymbol{r} \\ \boldsymbol{\theta} \\ \boldsymbol{\varphi} \end{pmatrix} \rightarrow \begin{pmatrix} \boldsymbol{r} \\ \boldsymbol{\pi} - \boldsymbol{\theta} \\ \boldsymbol{\varphi} + \boldsymbol{\pi} \end{pmatrix} \xrightarrow{(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{t})} \begin{array}{c} \boldsymbol{\hat{Y}} \mathbf{y} \\ \boldsymbol{\chi} \\ \boldsymbol{\chi} \\ \boldsymbol{\chi} \\ \boldsymbol{\chi} \end{array} \xrightarrow{(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{t})} \begin{array}{c} \hat{P} \Psi(\boldsymbol{r}) = \Psi(-\boldsymbol{r}) \\ \boldsymbol{\chi} \\ \boldsymbol{\varphi} \end{array}$$

• Dirac equation:
$$\hat{H}_D = -i\hbar c \boldsymbol{\alpha} \cdot \nabla - \frac{Ze^2}{r} + m_e c^2 \alpha_0$$

• Does not commute with non-relativistic parity operator: $[\hat{H}_D, \hat{P}] \neq 0$

• But:
$$[\hat{H}_D, \alpha_0 \hat{P}] = 0$$
 where $\alpha_0 = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$

(Dirac's) parity is a good quantum number! ... but what does it mean?

Structure of Dirac wavefunctions

• Stationary Dirac equation for particle in Coulomb field reads:

$$\left(-i\hbar c\boldsymbol{\alpha}\cdot\nabla -\frac{Ze^2}{r}+m_ec^2\alpha_0\right)\psi(\boldsymbol{r})=E\psi(\boldsymbol{r})$$

• The four-spinor
$$\psi(\mathbf{r}) = \begin{pmatrix} \varphi_1(\mathbf{r}) \\ \varphi_2(\mathbf{r}) \\ \varphi_3(\mathbf{r}) \\ \varphi_4(\mathbf{r}) \end{pmatrix}$$
 is more convenient to write as: $\psi(\mathbf{r}) = \begin{pmatrix} g(\mathbf{r}) \\ f(\mathbf{r}) \end{pmatrix}$

• In this case:
$$\alpha_0 \hat{P} \psi(\mathbf{r}) = \alpha_0 \hat{P} \begin{pmatrix} g(\mathbf{r}) \\ f(\mathbf{r}) \end{pmatrix} = \alpha_0 \begin{pmatrix} g(-\mathbf{r}) \\ f(-\mathbf{r}) \end{pmatrix} = \begin{pmatrix} g(-\mathbf{r}) \\ -f(-\mathbf{r}) \end{pmatrix} \Leftrightarrow \text{ large component}$$

• Obviously, since the wavefunction $\psi(r)$ should have definite parity, its large and small components must have an opposite parities!

For the spectroscopic notation one uses parity of the large component.

Structure of Dirac wavefunctions

• We just found:
$$\alpha_0 \hat{P} \psi(\mathbf{r}) = \alpha_0 \hat{P} \begin{pmatrix} g(\mathbf{r}) \\ f(\mathbf{r}) \end{pmatrix} = \alpha_0 \begin{pmatrix} g(-\mathbf{r}) \\ f(-\mathbf{r}) \end{pmatrix} = \begin{pmatrix} g(-\mathbf{r}) \\ -f(-\mathbf{r}) \end{pmatrix} \Leftrightarrow \text{ large component}$$

• We shall remember from the nonrelativistic quantum mechanics that parity is related to the orbital angular momentum *I*:

$$\hat{P}\psi_{nlm_{l}}(\boldsymbol{r}) = \hat{P}\left[R_{nl}(r)Y_{lm_{l}}(\theta,\varphi)\right] = R_{nl}(r)Y_{lm_{l}}(\pi-\theta,\varphi+\pi) = (-1)^{l}\psi_{nlm_{l}}(\boldsymbol{r})$$

• We can attribute to the large and small components their (individual) angular momenta *I*:

Completely confused? OK, now it becomes easier....

Task 5.3

Consider an operator:

$$H_W = f(\mathbf{r})\gamma_5$$
 where $\gamma_5 = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$ and $f(\mathbf{r})$ is some even function.

Prove that matrix element of this operator:

 $\langle \psi_a | H_w | \psi_b \rangle$

is non-vanishing only if the functions ψ_a and ψ_b are opposite-parity functions (for example 2s and $2p_{1/2}$).

Dirac quantum number κ

• To make relativistic notations of the bound-state Dirac's states more convenient a new quantum number κ is introduced (which combines together *j*, *l*(*l*') and parity:)

$$\kappa = -1, +1, -2, +2, -3, +3, \dots$$

$$j = |\kappa| - 1/2$$

$$l = \begin{cases} \kappa & \kappa > 0 \\ -\kappa - 1 & \kappa < 0 \end{cases}, \quad l' = \begin{cases} -\kappa & \kappa < 0 \\ \kappa - 1 & \kappa > 0 \end{cases}$$

Finally: we shall describe Dirac's states by quantum numbers: $n \kappa m_j \Leftrightarrow n \kappa l l' j m_j$

Spectroscopi notations

Shell	п	$n' = n - \kappa $	$\kappa = \pm (j + \frac{1}{2})$	j	l	l'	Notation
K	1	0	-1	1/2	0	1	1s _{1/2}
L	2	1 1	-1 +1	1/2 1/2	0 1	1 0	2s _{1/2} 2p _{1/2}
		0	-2	3/2	1	2	2p _{3/2}
М	3	2 2	-1 +1	1/2 1/2	0 1	1 0	3s _{1/2} 3p _{1/2}
		1 1	-2 + 2	3/2 3/2	1 2	2 1	3p _{3/2} 3d _{3/2}
		0	-3	5/2	2	3	3d _{5/2}

- Finally, we know how to characterize bound states of (relativistic) hydrogen.
- What are the energies of these states?

Plan of lecture

- Reminder from the last lecture: Free-particle solution
- Dirac's spectroscopic notations
 - Integrals of motionParity of states

Energy levels of the bound-state Dirac's particle

- Structure of Dirac's wavefunction
- Radial components of the Dirac's wavefunction

Energy levels of hydrogen ion

Energy levels of hydrogen ion

3P3/2, 3D3/2 3D_{5/2}

3S_{1/2}, 3P_{1/2}

2S1/2, 2P1/2

2P_{3/2}

1S_{1/2}

fine structure

(increased)

Dirac

Splitting of energy levels

Splitting of energy levels with the same principal quantum number n but different total angular momenta j can be see as a results of spin-orbit interaction:

Pictures from: hyperphysics.phy-astr.gsu.edu

Splitting of energy levels

• Can one observe fine-structure splitting of energy levels in experiment? Yes!

• Nowadays a fine-structure spectroscopy of heavy ions plays an important role in studying relativistic, QED and many-electron effects in atomic systems.

Calculate the energies of the Ly- α_1 and Ly- α_2 lines of hydrogen-like uranium. Compare with experimental findings presented on the previous transparency.

Plan of lecture

- Reminder from the last lecture: Free-particle solution
- Dirac's spectroscopic notations
 - Integrals of motionParity of states
- Energy levels of the bound-state Dirac's particle

Structure of Dirac's wavefunction

Radial components of the Dirac's wavefunction

Structure of Dirac wavefunctions

Stationary Dirac equation for particle in Coulomb field reads:

$$\left(-i\hbar c\boldsymbol{\alpha}\cdot\nabla -\frac{Ze^2}{r}+m_ec^2\alpha_0\right)\psi(\boldsymbol{r})=E\psi(\boldsymbol{r})$$

• The four-spinor
$$\psi(\mathbf{r}) = \begin{pmatrix} \varphi_1(\mathbf{r}) \\ \varphi_2(\mathbf{r}) \\ \varphi_3(\mathbf{r}) \\ \varphi_4(\mathbf{r}) \end{pmatrix}$$
 is more convenient to write as: $\psi(\mathbf{r}) = \begin{pmatrix} g(\mathbf{r}) \\ f(\mathbf{r}) \end{pmatrix}$

What are the (large and small) components of wavefunction?

Please, remind yourself our (wrong) guess:

$$\psi_{nlm_lsm_s}(\mathbf{r}) = R_{nl}(r)Y_{lm_l}(\theta,\varphi)\chi_{sm_s}(\sigma)$$

What is wrong here? We already learned that *I* and *s* should be coupled together to form total angular momentum *j*.

Building Dirac spinor

We shall "couple" together angular momentum and spin to obtain total angular momentum:

• Dirac spinors are the eigenfunctions of operators J^2 and J_z :

$$\hat{J}^2 \Omega_{jm_j} = j(j+1)\hbar^2 \Omega_{jm_j} \qquad \qquad \hat{J}_z \Omega_{jm_j} = m_j \hbar \Omega_{jm_j}$$

Structure of Dirac wavefunctions

• Stationary Dirac equation for particle in Coulomb field reads:

$$\left(-i\hbar c\boldsymbol{\alpha}\cdot\nabla -\frac{Ze^2}{r} + m_e c^2 \alpha_0\right)\psi(\boldsymbol{r}) = E\psi(\boldsymbol{r})$$

$$1\left(g_{ee}(r)\Omega_{ee}(\hat{\boldsymbol{r}})\right)$$

- Wavefunctions can be written now as: $\Psi_{nljm_j}(\mathbf{r}) = \frac{1}{r} \begin{pmatrix} g_{nj}(r) \Omega_{ljm_j}(\hat{\mathbf{r}}) \\ i f_{nj}(r) \Omega_{l'jm_j}(\hat{\mathbf{r}}) \end{pmatrix}$
- Where the angular and spin dependence is in Dirac spinors:

$$\Omega_{ljm_j}(\hat{\boldsymbol{r}}) = \sum_{m_lm_s} \left(lm_l \ sm_s \big| jm_j \right) Y_{lm_l}(\theta, \varphi) \, \chi_{sm_s}(\sigma)$$

• And g(r) and f(r) are the large and small radial components of the Dirac wavefunction.

How to find these radial components?

Plan of lecture

- Reminder from the last lecture: Free-particle solution
- Dirac's spectroscopic notations
 - Integrals of motionParity of states
- Energy levels of the bound-state Dirac's particle
- Structure of Dirac's wavefunction

Radial components of the Dirac's wavefunction

Coupled radial equations

• By substituting wavefunction
$$\psi_{nljm_j}(\mathbf{r}) = \frac{1}{r} \begin{pmatrix} g_{n\kappa}(r) \Omega_{ljm_j}(\hat{\mathbf{r}}) \\ i f_{n\kappa}(r) \Omega_{l'jm_j}(\hat{\mathbf{r}}) \end{pmatrix}$$

into Dirac's equation
$$\left(-i\hbar c\boldsymbol{\alpha}\cdot\nabla-\frac{Ze^2}{r}+m_ec^2\alpha_0\right)\psi(\boldsymbol{r})=E\psi(\boldsymbol{r})$$

we obtain the coupled radial equations:

$$\left(\frac{d f_{n\kappa}(r)}{dr} - \frac{\kappa}{r} f_{n\kappa}(r) \right) = -\left(E - V(r) - m_e c^2 \right) g_{n\kappa}(r)$$
$$\left(\frac{d g_{n\kappa}(r)}{dr} + \frac{\kappa}{r} g_{n\kappa}(r) \right) = \left(E - V(r) + m_e c^2 \right) f_{n\kappa}(r)$$

which can be solved and ...

Dirac's radial components

 We finally may derive analytic expressions for the radial components of the Dirac's equation (for point-like nucleus!):

$$\begin{split} f_{n\kappa}\left(r\right) &= N_{n\kappa}\sqrt{1+W_{n\kappa}}r(2qr)^{s-1}\mathrm{e}^{-qr} \\ &\times \left[-n'F(-n'+1,2s+1;2qr) - \left(\kappa - \frac{\alpha Z}{q\lambda_c}\right)F(-n',2s+1;2qr)\right], \\ g_{n\kappa}\left(r\right) &= -N_{n\kappa}\sqrt{1-W_{n\kappa}}r(2qr)^{s-1}e^{-qr} \\ &\times \left[n'F(-n'+1,2s+1;2qr) - \left(\kappa - \frac{\alpha Z}{q\lambda_c}\right)F(-n',2s+1;2qr)\right], \\ \text{where } n' &= n - |\kappa| = 0, 1, 2, \dots \text{ denotes the number of nodes of the radial components}, \lambda_c = \hbar/m_ec \text{ the Compton length of the electron, and} \\ s &= \sqrt{\kappa^2 - (\alpha Z)^2}, \\ q &= \frac{Z}{\sqrt{(\alpha Z)^2 + (n'+s)^2}}. \\ \text{Moreover, the normalization factor} \\ N_{n\kappa} &= \frac{\sqrt{2}q^{5/2}\lambda_c}{\Gamma(2s+1)} \left[\frac{\Gamma(2s+n'+1)}{n'!(\alpha Z)(\alpha Z - \kappa q\lambda_c)}\right]^{1/2} \end{split}$$

 Radial components of the Dirac's equation are implemented in many computer codes so there is usually no need to re-program these relations again.

Dirac's radial components

(Mathematica package)

Please, find zipped .nb files with the Mathematic notebooks at:

http://www.physi.uni-heidelberg.de/Forschung/apix/TAP/lectures

*/misc/home/apis/surz/nathenatica_programs/mDirac/Dirac_bound_lectures.mb *	(password: dirac2012)			
<u>F</u> le Edit Insert Formut <u>C</u> ell <u>G</u> raphics E <u>v</u> aluation <u>P</u> alettes <u>Window</u> <u>H</u> elp				
Dirac bound-state wavefunctions and their energies				
With this procedure you can evaluate the (radial) bound-state wavefunctions of hydrogen-like ions and their energies.	🛠 /misc/home/apix/surz/mathematica programs/mDirac/Dirac_bound_lectures.nb			
Please, note: bound states can be characterized by principal quantum number n, total angular momentum j and parity n. (See Lectrure 4) In practical calculations in place of last two quantum numbers one may use Dirac quantum number *. There is one-to-one correspondence of * and (j, p): = = 1: corresponds to [=12, positive parity, i.e. s., state	Ele Edit Inset Format <u>Cell Graphics Eguluation Ed</u> eletes <u>Window H</u> elp Example 1			
$x = +1$ corresponds to $j=1/2$, negative parity, i.e., $p_{1/2}$ state $x = -2$ corresponds to $j = 3/2$, negative parity, i.e., $p_{3/2}$ state and so on	<pre>tenergy and radial wavefunction of is s_{1/2} state of neutral hydrogen (Z=1) (* quantum numbers*) nl = 1; X1 = -1;</pre>			
rrease, use procedure wwwh runn berow to min conespondence between (n, y and (n, pp) notabons. As usual: any questions contact me surz@physi.uni-heidelberg.de	Z1 = 1; (* let us get first spectroscopic notation*) NN[nl. ×1]			
Input data (precision, physical constants)	(* nov ve calculate energy*) Energy[ml. ×1, Zl]			
FineStructureConstant - SetFrecision[7.297352533000000000000000000000000000000000	<pre>(+ and nov: large and small components of varefunction) Rlarge RadialComponent(r, nl, xl, zl, "u"] Rswall = RadialComponent(r, nl, xl, zl, "S"]</pre>			
Dirac spectroscopic notations Input data: principal quantum number n. Dirac quantum number r	<pre>- (+ finally, let us plot the components+) Plot(Rlarge, Remail), (r, 0, 10)]</pre>			
Output data: spectroscopic notation	1 51/2			
<pre>NK(NN)_x x_]:= (resNN = Switch(y, e.g., "fyys", -3, "dyys", -2, "pyys", -1, "syys", 1, "pyys", 2, "dyys", 3, "fyys"); If(NN = 1, (resNN = "1" resNN); If(NN = 1, (resNN = NN resNN); Beturn(resNN)</pre>	0.5000066565964864279172439053877285370484 1.99999891498159874071233878877478555427 e ^{-1,4000}			
- 12	0.007297445725152844309077334591558654682717 e ^{1.000000000000000000000000000000000000}			
Dirac energy Input data pricipal quantum number n. Dirac quantum number n. nuclear charge Z Output data energy of the bound state in atomic units Energy n. zama . Z] := 1 := 1 := 1 := 1 := 1 := 1 := 1 :=	0.7 0.6 0.3			
	- Graphics -			
	Example 2 Energy and radial wavefunction of $2p_{3/2}$ state of hydrogen-like uranium (Z=92)			
	🛃 Start 🔰 5 🕏 🗉 👔 Votiv As 🔁 Elfocom 🗳 Phothes 🔹 Dr. 200 📓 soc - def 🗙 2 zoneg). EN 🚬 Conso (c) 🔍 * 🗆 🌾 🔊 10			

Dirac's radial components (...behaviour)

for particular case of $1s_{1/2}$ ground state.

- For low-Z regime: Dirac and Schrödinger wavefunctions basically coincides.
- For high-Z regime: small component becomes significant and ...

Relativistic contraction of atomic orbitals

• From the simple model one can "estimate" the electron "velocity" in the ground state:

$$v = (\alpha Z) c_{\chi}$$

Speed of light

• For hydrogen-like Uranium (Z=92): $\alpha Z \approx 0.67$

13 May 2015

radial components

Plan of lectures

- 1 15.04.2015 Preliminary Discussion / Introduction
- 2 22.04.2015 Experiments (discovery of the positron, formation of antihydrogen, ...)
- 3 29.04.2015 Experiments (Lamb shift, hyperfine structure, quasimolecules and MO spectra)
- 4 06.05.2015 Theory (from Schrödinger to Dirac equation, solutions with negative energy)
- 5 13.05.2015 Theory (bound-state solutions of Dirac equation, quantum numbers)
- 6 20.05.2015 Theory (matrix elements and their evaluation, radiative decay and absorption)
- 7 27.05.2015 Experiment (photoionization, radiative recombination, ATI, HHG...)
- 8 03.06.2015 Theory (single and multiple scattering, energy loss mechanisms, channeling regime)
- 9 10.06.2015 Experiment (Kamiokande, cancer therapy,)
- 10 17.06.2015 Experiment (Auger decay, dielectronic recombination, double ionization)
- 11 24.06.2015 Theory (interelectronic interactions, extension of Dirac (and Schrödinger) theory for the description of many-electron systems, approximate methods)
- 12 01.07.2015 Theory (atomic-physics tests of the Standard Model, search for a new physics)
- 13 08.07.2015 Experiment (Atomic physics PNC experiments (Cs,...), heavy ion PV research)