

Example:
$${}^{3}S_{1}$$
 and ${}^{1}S_{0}$
 $\Psi_{S,A}(1,2) = \frac{1}{\sqrt{2}} [\Psi_{100}(r_{1})\Psi_{200}(r_{2}) \pm \Psi_{100}(r_{2})\Psi_{200}(r_{1})] \cdot \chi_{A,S}$
 $H = \frac{p_{1}^{2}}{2m} + \frac{p_{2}^{2}}{2m} - \frac{Ze^{2}}{r_{1}} - \frac{Ze^{2}}{r_{2}} + \frac{e^{2}}{|\vec{r_{1}} - \vec{r_{2}}|}$
Calculate electron-electron-interaction
 $\Delta E_{S,A} = + \iint \Psi_{SA}^{g*}(1,2) \frac{e^{2}}{|\vec{r_{1}} - \vec{r_{2}}|} \Psi^{g}_{SA}(1,2) d^{3}r_{1}d^{3}r_{2}$ + sign, because of the repulsion.
Convention: binding energies are negative
for S=0 ({}^{1}S_{0}) \Delta E_{S} = \Delta E_{COUL} + \Delta E_{Exchange}
for S=1 (${}^{3}S_{1}$) $\Delta E_{A} = \Delta E_{COUL} - \Delta E_{Exchange}$
The energy shift due to the symmetry-energy (exchange interaction)
 $\Delta E({}^{3}S_{1} - {}^{1}S_{0}) \approx 0.8 eV$
(stronger repulsion by symmetric space function)
Compare: fine structure splitting $\approx 10^{4} eV$

LS-coupling (light atoms)	
The spins couple independently of the orbital angular momentum $\vec{S} = \vec{s_1} + \vec{s_2}; \vec{S} = \sum_i \vec{s_i}$ $\vec{L} = \vec{\ell_1} + \vec{\ell_2}; \vec{L} = \sum_i^i \vec{\ell_i}$ $\vec{J} = \vec{L} + \vec{S}$	
$I_{1}=I_{2}=0 \qquad I_{1}=I_{2}=0 \qquad \overrightarrow{S} \stackrel{\uparrow}{\uparrow} \overrightarrow{L} \qquad \overrightarrow{S} \stackrel{\downarrow}{\downarrow} \stackrel{\uparrow}{\downarrow} \overrightarrow{L} \qquad M_{s_{1}}=H_{s_{2}}=-\frac{1}{2} \qquad m_{s_{1}}=m_{s_{2}}=+\frac{1}{2} \qquad m_{s_{1}}=m_{s_{2}}=-\frac{1}{2}$	\vec{L} $\bigwedge_{\vec{S}}$ \vec{J}
$\underbrace{\begin{array}{ccccc} 1^{1}S_{0} & 2^{1}S_{0} \\ \hline \\ L=0, S=0, J=0 \end{array}}^{1^{1}S_{0}} & \begin{array}{ccccc} 2^{3}S_{1} & 2^{3}P_{2} & 2^{3}P_{0} \\ L=0, S=1 & L=1, S=1 \\ J=1 & J=2 & J=0 \end{array}$	2 ³ P ₁ L=1, S=1 J=1

ŀ	Analysi	s of materia	als, chemcal properties		
		Probe beam	detection		
	XPS	photons	X-ray photo electron spectroscopy		
		(X-ray)	(core electrons)		
	UPS	photons (UV)	UV Photo electron spectroscopy		
			(valence electrons)		
	AES	electrons	Auger electron spectroscopy		
	SIMS	ions	secondary ion mass spectroscopy		
chemati	ematic diagram for XPS, AES hv (X-ray) $\int e (5 \text{ keV})$ I E				
		e (Auger electrone (photoelectron)	Electron multiplier		
			Electron energy analyser		

Binding Energy (eV)					
Element	2p _{3/2}	Зр	Δ		
Fe	707	53	65		
Со	778	60	71		
Ni	853	67	78		
Cu	933	75	85		
Zn	1022	89	93		

