Plan of lectures

- 1 15.04.2015 Preliminary Discussion / Introduction
- 2 22.04.2015 Experiments (discovery of the positron, formation of antihydrogen, ...)
- 3 29.04.2015 Experiments (Lamb shift, hyperfine structure, quasimolecules and MO spectra)
- 4 06.05.2015 Theory (from Schrödinger to Dirac equation, solutions with negative energy)
- 5 13.05.2015 Theory (bound-state solutions of Dirac equation, quantum numbers)
- 6 20.05.2015 Theory (bound-state Dirac wavefunctions, QED corrections)
- 7 27.05.2015 Experiment (photoionization, radiative recombination, ATI, HHG...)
- 8 03.06.2015 Theory (description of the light-matter interaction)
- 9 10.06.2015 Experiment (Kamiokande, cancer therapy,)
- 10 17.06.2015 Theory (interaction of charged particles with matter)
- 11 24.06.2015 Experiment (Auger decay, dielectronic recombination, double ionization)
- 12 01.06.2015 Theory (interelectronic interactions, extension of Dirac (and Schrödinger) theory for the description of many-electron systems, approximate methods)
- 13 08.07.2015 Theory (many-electron atoms)

• 14 15.07.2015 Experiment (Atomic physics PNC experiments (Cs,...), heavy ion PV research)

Exotic atoms

What are exotic atoms

- Atoms which--instead of electrons--have another negatively charged particle
- Lifetime of the particle is sufficient to have a bound system (lifetime >> fs)
- Requirements for accelerators for the production of the particle

Possible ingredients ...

•	Electron	Lepton	$\tau = infinite$	$m = 0.51 \text{ Mev/c}^2$
•	Muon (µ⁻)	Lepton	τ = 2.19 μs	m = 106 Mev/c ²
	Pion (π⁻)	Meson (anti-u, d)	τ = 26 ns	m = 119 Mev/c ²
	Kaon (K ⁻)	Meson (anti-u, s)	τ = 12 ns	m = 494 Mev/c ²
	Antiproton (Barion (2 anti-u, anti-d)	τ = "infinite"	m = 931 Mev/c ²
	Sigma (Σ⁻)	Barion (2 u, s)	τ = 0.08 ns	m = 1189 Mev/c ²

Exotic atoms history

Nal (scintillator) Nal (scintillator) prop. counter Ge(Li) (solid state det.) Ge(Li) (solid state det.)

FACILITIES

1974	pions, muons	Paul-Scherrer-Institut PSI, TRIUMF, LAMPF
1983 	antiprotons kaons	Low-Energy-Antiproton-Ring LEAR, AD, (FAIR) KEK, DA Φ NE

Characteristics (1)

 $\begin{aligned} & \mathsf{Z} = \mathsf{atomic number}, \\ & \mathsf{m} = \mathsf{reduced mass}, \\ & \mathsf{h} = \mathsf{Planck constant}, \\ & \mathsf{c} = \mathsf{light velocity}, \\ & \alpha = \mathsf{fine structure constant}. \end{aligned}$

Small radius

- Sensibility to the Quantum Electrodynamics effects like vacuum polarization
- . Influence of the nuclear finite size

Characteristics (2)

Increasing of the atomic level energies • Emitted photons in the X-rays range (1-100 keV)

Z = atomic number, m =reduced mass, h = Planck constant, c = light velocity, α = fine structure constant.

Visible light

Hydrogenlike pionic nitrogen

X-rays

Characteristics (3)

- Electromagnetic interaction -> bound system
- **Strong interaction!!** (except muonic atoms)

Attraction or repulsion

Reaction with the nucleus

-> shift of the energy transition ϵ

- -> ground state instable
- lifetime of the atom not infinite
- lifetime measurement from the width of the transition line width Γ

Characteristics (3)

- Electromagnetic interaction -> bound system
- Strong interaction!! (except muonic atoms)

Attraction or repulsion

Reaction with the nucleus

-> shift of the energy transition ϵ

- -> ground state instable
- lifetime of the atom not infinite
- lifetime measurement from the width of the transition line width $\pmb{\Gamma}$

What for?

Three ingredients: exotic particle, nucleus, interaction

- Study of the particle
 - mass of the exotic particle (pion, kaon, antiproton, sigma)

• Study of the nucleus

- exotic particle as nuclear probe (muon, pion, antiproton)
- nuclear dimension (muon, pion, antiproton)
- proton and neutron distribution (pion, antiproton)
- Study of the interaction
 - QED effects (Vacuum Polarization, self energy)
 - Test of Klein-Gordon (spin 0) and Proca (spin 1) relativistic equations (pion, kaon, sigma)
 - Strong interaction at (very) low energy (pion, kaon, antiproton, sigma)

- Proton beam :E_{kin}=590 Mev/c, I=1.9 mA
- Graphite target
- . 10⁸ pions/sec, E_{kin} =110 Mev/c

Exotic atoms production

 $\Gamma_{\rm Auger} \propto \Delta E^{1/2}$

Dominates for large n

- Deceleration and stop particle in target E_{kin}~10 eV
- Capture at radii of outmost electrons

$$n_{i} = n_{el} \sqrt{rac{m_{part}}{m_{el}}}$$
 $n_{
m pion}$ ~17 $n_{
m antiproton}$ ~43

Highly excited state!

• De-excitation by competing Auger and Xray emission

$$\Gamma_{\text{X-ray}} \propto \Delta E^3$$

Dominates for small n

Low Z + dilute targets => no electrons remaining!!

Exotic atoms production

$$\Gamma_{\rm Auger} \propto \Delta E^{1/2}$$

Dominates for large n

- Deceleration and stop particle in target E_{kin}~10 eV
- Capture at radii of outmost electrons

$$n_{i} = n_{el} \sqrt{rac{m_{part}}{m_{el}}}$$
 $n_{
m pion}$ ~17 $n_{
m antiproton}$ ~43

Highly excited state!

• De-excitation by competing Auger and Xray emission

$$\Gamma_{
m X-ray} \propto \Delta E^3$$

Dominates for small n

Low Z + dilute targets => no electrons remaining!!

Pionic atoms

Pionic atoms production

 Pions produced at the Paul Scherrer Institut (Villigen, Suisse) (10⁸ pions/sec, E_{kin}=110 Mev/c)

Cyclotron trap
Maximal magnetic field: B= 3.5 T

• Gaseous or liquid target: T: from 14 K to room temperature, effective pressure: from ~0 to 40 bars

 1-5% of the incoming pions are stopped into the target

Pionic atoms production

 Pions produced at the Paul Scherrer Institut (Villigen, Suisse) (10⁸ pions/sec, E_{kin}=110 Mev/c)

- Cyclotron trap
 Maximal magnetic field: B= 3.5 T
- Gaseous or liquid target: T: from 14 K to room temperature, effective pressure: from ~0 to 40 bars
- 1-5% of the incoming pions are stopped into the target
- . Production and trapping of the muons

 $\pi^- \rightarrow \mu^- + \nu$

. Formation of muonic (and pionic) atoms

(Anti)-Cyclotron trap

X-ray emission from the pionic atoms

Johann-type Bragg spectrometer

D.Gotta et al.Nucl. Phys. A 660, 283 (1999)

Spherically curved crystals

Radius of curvature 2985.4 mm

Produced by Zeiss

Large area focal plane detector

2 × 3 CCD 22 array with frame buffer (Marconi technology)

pixel size $40 \ \mu m \times 40 \ \mu m$ 600×600 pixels per chip frame transfer $\approx 10 \ ms$ data processing 2.4 s operates at $-100^{\circ}C$

 $\Delta E \approx 150 \text{ eV}$ @ 4 keV Efficiency $\approx 90\%$

Johann-type Bragg spectrometer setup

Detection (2)

Δx measurement -> $\Delta \Theta$ measurement -> measure of ΔE

- Spectrometer resolution = 0.4 eV
- ■E measurement precision < 0.005 eV

Pionic hydrogen measurements

Strong interaction effect in 1s state

- Pion-proton attraction-> shift in the 1s energy
- Pion absorption from the nucleus
 -> 1s level instable and characterized by a broadening

Pionic hydrogen measurements

Strong interaction effect in 1s state

- Pion-proton attraction-> shift in the 1s energy
- Pion absorption from the nucleus
 -> 1s level instable and characterized by a broadening

Shift => proton pion elastic scattering

$$\frac{\mathcal{E}_{1s}}{E_{1s}} = -4 \frac{1}{r_B} a^h_{\pi^- p \to \pi^- p} \left(1 + \delta_{\varepsilon}\right)$$

Width => proton pion reaction

$$\frac{\Gamma_{1s}}{E_{1s}} = 8 \frac{Q_0}{r_B} \left(1 + \frac{1}{P}\right) \left(a_{\pi^- p \to \pi^0 n}^h \left(1 + \delta_{\Gamma}\right)\right)^2$$

Deser's formulas

 $\delta_{\epsilon}, \delta_{\Gamma}$ =e.m. corretions P=Panofsky ratio, r_B Bohr radius, Q₀=kinematic factor

3p-1s width in pionic hydrogen

21-Feb-03 10:27:24

Pionic Hydrogen fundamental level width

. Γ_{1s} not measurable directly

Ν

- Broadening due to the pionic atoms kinetic energy
- Broadening due to the spectrometer resolution

$$\Gamma_{\exp} = \Gamma_{\text{Spectrometer}} \otimes \Gamma_{\text{Doppler}} \otimes \Gamma_{1s}$$

8000 Zinc 7000 K alpha 1 an 2 6000 5000 4000 3000 20 eV 2000 1000 800 6**5**0 750 500 550 600 700 850 900 channel

Problem: it necessary to know the response function of the spectrometer

Solution: X-ray transitions from H- and He-like ions (natural width << meV)

Strong interaction shift and width: preliminary results

$$\epsilon_{1S}$$
 = +7.120 ± 0.017 eV [1]
Previous experiment ϵ_{1S} = +7.108 ± 0.047 eV [2]

 $\Gamma_{1S} = 800 \pm 30 \text{ meV} [1]$ Previous experiment Γ_{1S} =865± 69 meV [2]

[2] H.C.Schroder et al., EUR. Phys. J. C 21, 473 (2001)

Measurement of the charged pion mass

Present precision: 2.5 ppm (average between 2 measurements: Lenz 1998 and solution B of Jeckelmann 1994 [1])

[1] Particle Data Book, Phys. Lett. B 592, 1+ (2004)

Measurement of the charged pion mass

Present precision: 2.5 ppm (average between 2 measurements: Lenz 1998 and solution B of Jeckelmann 1994 [1])

[1] Particle Data Book, Phys. Lett. B 592, 1+ (2004)

Measurement of the charged pion mass

Present precision: 2.5 ppm (average between 2 measurements: Lenz 1998 and solution B of Jeckelmann 1994 [1])

(nitrogen) and muonic oxygen transitions as calibration line

[1] Particle Data Book, Phys. Lett. B 592, 1+ (2004)

New measurement of the pion mass

• Measurement of the relative energy between 5-4 transitions in pionic nitrogen and muonic oxygen

• Muon mass accuracy = 0.05 ppm

-> pion mass measured with a precision of 1.7 ppm

$$\frac{m_{\pi}}{m_{\mu}} = F(\Delta E, \alpha, m_O, m_N) + \mathcal{O}\left[\left(\frac{m_{\pi}}{m_N}\right)^3\right] + \mathcal{O}\left[\left(\frac{m_{\mu}}{m_O}\right)^3\right]$$

Determination of F -> Theoretical predictions!!

Transition energy calculations for pionic atoms

- Klein-Gordon equation -> for spin-0 particles
- QED corrections: self-energy, vacuum polarization, ...
- Recoil correction
- Shift due to the hyperfine structure (HFS)

	5g-4f	5f-4d
Coulomb	4054.1180	4054.7189
Self Energy	-0.0001	-0.0003
Vac. Pol. (Uehling)	1.2485	2.9470
Vac. Pol. Wichman-Kroll	-0.0007	-0.0010
Vac. Pol. Two-loop Uehling	0.0008	0.0038
Vac. Pol. Källén-Sabry	0.0116	0.0225
Relativistic Recoil	0.0028	0.0028
HFS Shift	-0.0008	-0.0022
Total	4055.380	4057.691

Pion mass results (1)

- Total acquisition time: 350 hours
- Precision of the peak distance measurement: ~ 0.11 pixels -> 6 meV ->
 1.5 ppm in the pion mass value (statistic error)
- Systematic errors....

Pion mass results (2)

	Correction		Errors		Errors
	µO-piN	error +	error -	error +	error -
	ar cs e c	arcsec	arcsec	ppm	ppm
Bending correction	0.214	0.004	0.004	0.015	0.015
Penetration depth correction	-0.004	0.001	0.001	0.004	0.004
Strong interaction 45 µeV	-0.003	0.003	0.003	0.011	0.011
1 K electron <0.16%		0.000	0.050	0.000	0.184
Curvature correction		0.040	0.040	0.147	0.147
Off-line CCD height reduction		0.061	0.061	0.225	0.225
Fit region		0.004	0.004	0.015	0.015
Model for the line fit		0.070	0.070	0.258	0.258
Detector-Crystal distance		0.153	0.153	0.564	0.564
Orientation detector + tubes ≤ 0.14°		0.000	0.008	0.000	0.030
Height CCD (out of plane) ≤ 20 mm		0.000	0.009	0.000	0.032
Target shape		0.027	0.027	0.099	0.099
CCD alignment ("gap")		0.090	0.090	0.332	0.332
Pixel distance		0.033	0.033	0.122	0.122
πN, μO energies		0.093	0.093	0.343	0.343
Temperature renormalisation of Det-Cry dist.	-0.003	0.005	0.005	0.018	0.018
Corr: sum /Errors: quadratic sum	0.207	0.209	0.215	0.769	0.792

Error on the pion mass : $[(0.8)^2_{(systematic)} + (1.5)^2_{(statistic)}]^{1/2} = 1.7 \text{ ppm}$

Pion mass results (3)

Pion mass results (3)

Test of the Klein-Gordon equation

- Pionic atoms spectroscopy

 > QED test for spin-0
 particles
- Fine structure of the 5-4 transition in pionic nitrogen
- Previous test: pionic titanium, precision = 2%

• Theoretical value (QED + strong interaction): $\Delta E = 2.321 \text{ eV}$

• New measurement: (relative error = 0.6%)

$$\Delta E = 2.300 + 0.014_{-0.007} eV$$

 Limitation: prediction of the contribution due to a remaining electron in the Kshell

Other exotic atoms

Kaonic Nitrogen at DAΦNE DAΦNE (LN Frascati)

electron – positron collider with collision energy tuned to the Φ resonance at 1.02 GeV c.m.

 Φ production cross section ~ 3000nb (corrected for radiative losses) Integrated luminosity ~ 2 pb⁻¹ per day ~ 3 × 10⁶ K⁻ per day

Kaonic hydrogen

Negative kaons stopped in $H_2 \rightarrow$ initial atomic capture \rightarrow \rightarrow electromagnetic cascade \rightarrow X-ray transitions

n

4 3

2

DEAR Experimental Set-up

Energy measurement of kaonic K lines with an array of 16 CCD X-ray detectors

- pixel size 22.5x22.5 µm
- total area per chip 7.24 cm²
- depletion depth ~30 µm
- read-out time per CCD 2 min.
- energy resolution ~140 eV @ 5.9keV

volume: 1150 cm³ cryogenic H₂ gas side: 75 µm Kapton entrance: 125 µm Kapton grid structure: glass fiber reinforced epoxy

Kaonic hydrogen results from DEAR

Antiprotonic atoms at LEAR

- EM and strong interaction
- Nucleon-antiproton interaction (Z=1,2,..)
 -> nucleon-nucleon interaction
- Nuclear probe (high Z)
- Recoil and QED corrections
- Soon available in high quantities at FAIR

Obtained at LEAR (Gotta 1999)

Muonic hydrogen (-2.5 keV)

Lamb shift:	-1.9 eV
Self energy	0.4%
Vacuum Polarization	97.9%
Nuclear size	1.6%

Muonic nitrogen (-136 keV)

Lamb shift:	199 eV
Self energy	0.7%
Vacuum Polarization	42.8%
Nuclear size	56.5%

H-like silicon (-2.6 keV)

Lamb shift:	0.48 e\
Self energy	93.6%
Vacuum Polarization	5.9%
Nuclear size	0.5%

H-like uranium (-132 keV)

Lamb shift:	462 eV
Self energy	54.3%
Vacuum Polarization	13.8%
Nuclear size	30.4%

Complementary systems!!

Distance between pixels and CCDs position

on the detector Measurement on September 2003...

... after 8 months of analysis...

Distance between pixels and CCDs position

• Distance between pixels = $39.9775 \pm 0.0006 \ \mu m$

->0.1 ppm

• Error on the CCDs position : 0.05 mrad (orientation)

0.02 pixels (displacement) ->0.3 ppm

M. T., et al., Review of Scientific Instruments 77, 043107 (2006).

X-Ray Spectroscopy Experiments Based on Micro-Calorimeters

Daniel Hengstler Christian Pies Andreas Fleischmann Loredana Gastaldo Christian Enss Kirchhoff-Institut für Physik (KIP), Universität Heidelberg

> Karl-Heinz Blumenhagen Tobias Gassner Renate Märtin Günter Weber Thomas Stöhlker GSI IOQ, Friedrich-Schiller-Universität Jena Helmholtz-Institut Jena

Robert Lötzsch Ingo Uschmann Eckhart Förster IOQ, Friedrich-Schiller-Universität Jena

collaboration HI Jena

And the

Structure of a Microcalorimeter

- Thermistor (S. Kraft-Bermuth)
- Transition Edge Sensor (TES)
 Metallic Magnetic (A. Fleischmann)

=> small volume at low temperatures

maxs: micro-calorimeter arrays for

hi-res x-ray spectroscopy

maXs-20 Prototyp Spectrum

 ΔE_{FWHM} = 1.6 eV @ 6 keV

World record together with TES-sensors of NASA-GSFC!

maXs microcalorimeter

pixels up to 64 energy resolution..... 1.6 eV @ 6 keV working temp. 20 mK In collaboration with Prof. C. Enss from KIP in Heidelberg

CRYRING

T. Gassner et al., GSI Scientific Report 2014 (2015)