Our Field of Research: Atomic Physics

Highly Charged Ions / Strong EM Fields

- Ionization and Particle Production Phenomena
- Radiative Processes

Relativistic Energies: Galactic Cosmic Radiation (GCR)

Structural properties of heavy ions

Extreme Dynamic Fields

Explore relativistic quantum dynamics

- particle production
- non-perturbative regime
- coupling to the radiation field

Electromagnetic Phenomena under Extreme & Unusual Conditions

Heavy Ion Accelerator System

- Every element in arbitrary charge state up to bare uranium are available for experiments
- Energies: from rest up to 1 GeV/u

10000 times increased intensity for rare isotopes

- energies from rest up to 35 GeV/u
- antiprotons

Observe

September 2013

- I. Extreme Dynamic Fields
- II. Extreme Static Fields
- **III.** Fundamental Physics

Our Tools

Why relativistic velocities?

Q+

(300 MeV/u)

92 91 90 89 88 87 86 charge state Q

40

(%)

ield (

U90+

1191+

U92+

slit

foil

Heavy Ion Research Facility in Lanzhou (HIRFL)

Electron Cooling

Ions interact 10⁶ 1/s with a collinear beam of cold electrons

Properties of the cold ions

Momentum spread $\Delta p/p : 10^{-4} - 10^{-5}$ Diameter2 mm

'Cooling': narrowing velocity, size and divergence of the stored ions

Electron cooling: Budker, 1967 Novosibirsk

momentum exchange with 'cold', collinear e- beam. The ions get the sharp velocity of the electrons, small size and divergence

Storage Rings

Laser cooling of C³⁺ beams

momentum dependent (Doppler tuned)
laser deceleration + bunching
(restoring force) => cooling

Demonstration of laser cooling of C³⁺ lons at 122 MeV/u in the ESR for application at SIS 100/300

bunch length reduced by a factor 2 beam diameter reduced by a factor 4 momentum spread reduced by a factor 10

U. Schramm et al.,

Experimental Conditions at the HESR

Targets and spectrometer ... gas jet 3000 l/s LN_-Dewar 10 ^{- 2} mbar 20 bar= ion beam Nozzle Skimmer 1500 l/s 10 4 mbar 10 ⁻⁷ mbar 1500 l/s. . 1500 l/s 10 -⁹ mbar 10 - ⁹ mbar ESR-lon Beam 1500 I/s 10 ⁻⁹ mbar Photomultiplier 10 -8 mbar 1500 l/s 1500 l/s 10 - 7 mbar 10 -6 mbar 1500 l/s - . 0.3 grad

Setup at an gas target for x-ray detection (spectroscopy, angular distributions, polarimetry)

H2, He, N2, Ne, ... Xe gas target

Novel detectors

Micro-strip semiconductor detectors

- ☑ Si(Li) or Ge(i)
- \square energy resolution

☑ timing

- ☑ 2D (3D) position sensitivity
- ☑ multi-hit capability

Micro-Calorimeter

Micro-Calorimeter

Micro-calorimeter detector: large wavelength acceptance, large quantum efficiency, and excellent energy resolution (4 keV@5eV => 35 keV@30 eV).

maXs-200: detector arrays for hard x-rays

First array prototype

1x8 x-ray absorbers

2mm x 0.5mm 200μm thick electroplated Au 80% QE at 100keV

 $\Delta E_{FWHM} < 50 \text{ eV}$

4 electronic channels

modular extension to longer arrays

maXs-200: detector arrays for hard x-rays

to be fixed by stems between absorber and sensor

2D Si(Li) X-ray Detector as a Compton Polarimeter

 32×32 strips \rightarrow 1024 pixels

 $64 \times 64 \text{ mm} \rightarrow 4096 \text{ mm}^2$ active area

readout rate: a few kHz

Energy (1.5 keV FWHM) + Timing (100 ns) + 2D Position (2 mm) + Multihit Capability

Dedicated to efficient and precise polarization studies from 70 keV to a few 100 keV

How to Measure Polarization for Hard X-Rays

Polarization Measurement via Compton scattering Linearly polarized radiation **Klein-Nishina equation** $\hbar\omega'$ $=\frac{1}{2}r_0^2(\frac{\hbar\omega'}{t})^2(\frac{\hbar\omega'}{t}+$ $\hbar\omega$ $d\sigma$ ΔE $2\sin^2\theta_{\rm c}\cos^2\varphi$ $d\Omega$ E $\hbar\omega$ 0 Angle / Energy 330 30 $\hbar\omega' = \frac{\hbar\omega}{1 + \frac{\hbar\omega}{mc^2}(1 - \omega)}$ 300 60 270 90 Ē 120 240 $\hbar\omega = \hbar\omega' + \Delta E$ ΔE : electron recoil energy 210 150 180

Reconstruction of the Compton events

Interaction of radiation and matter

http://imagers.gsfc.nasa.gov/ems/atmosphere.gif

atmospheric interactions reflection refraction scattering absorption

Lecture 1 Dirac Theory

The Theorie of Matter and Anti-Matter

Lecture 4 Interaction of Photons with Matter

Lecture 5 Interaction of Charged Particles with

1.6

Relative Ionisation

0.4

0.2-

0.0

Ó

²⁰Ne

670 MeV/u

Ne-ions

20

Matter

Range 36 cm

fragments

30

35

40

45

25

High-energy carbon beam stopping in water

Univ. Huelva 13.03.08

I. Pshenichnov

Lecture 7 Nuclei and Their Decay Modes

Lecture 8

Cosmic Radiation

Flux: number of particles per unit area per second.

High speed protons and electrons, primary particles, strike Earth's upper atmosphere. Nuclear collisions produce a shower of secondary particles, called muons. It is mainly these muons that are observed on Earth's surface.

Lecture 9 Photon-, x-ray-, gamma-detectors

Inorganic Scintillators

Semi-conductors

micro-calorimeters

ITTE

Lecture 11 Radiation and their Biological Effectiveness

- Radiobiology
- o Acute (deterministic) effects
- o Late (stochastic) effects
- Heavy ions
- Space radiation
- Radiotherapy
- Conventional X-ray therapy
- o Particle therapy

Lecture 13/14 Accelerators

UNILAC

Ion/electron sources, linacs, synchrotrons

Injection system for low charged state heavy ions

Charge separator for higher intensity and high quality beams

U=216,72 m

Scrapers and NEG coating for pressure stabilization

Experiment h

h=2 acceleration cavity for faster ramping

Power grid connection