Recent experimental developments for the Lamb shift investigation in heavy ions

R. Reuschl^{1,2}, D. Banas³, H. F. Beyer¹, S. Chatterjee¹, A. Gumberidze^{1,2}, S. Hess^{1,2}, T. Krings⁴, D. Liesen¹, D. Protic⁴ U. Spillmann^{1,2}, Th. Stöhlker^{1,5}, M. Trassinelli¹, S. Trotsenko^{1,2}, G. Weber¹ and the FOCAL Collaboration

> ¹ GSI – Darmstadt, Germany; ²University of Frankfurt, Germany; ³Swietokrzyska Academy, Kielce, Poland; ⁴Forschungszentrum Jülich, Germany; ⁵ University of Heidelberg, Germany

2D - spectra obtained in the experiment

The spectra shown on the left are 2D images recorded during a commissioning experiment in march 2006. The x-axis consists out of the strips from the rear-side of the detector whereas the y-axis depicts the strips of the front-side. On the right, single strip energy-spectra of the relevant front-side strips are shown.

Different conditions were applied to the energy-spectrum of the individual strips. The influence of the Doppler effect was compensated already during the experiment by tilting the detector.

Only by applying a proper energy- and time-condition we are able to see the desired Ly- α transitions with high spectral resolution. This underlines the necessity of position-sensitive detectors having a good time- and energy-resolution for such high precision measurements. This holds true in particular for the rear-side strips (spectrum on the lower right), which detect all incoming energies.

References: [1] H. F. Beyer et al., Spectrochim. Acta Part B 59, 1535 (2004)

[2] Th. Stöhlker et al., Nucl. Instr. Meth. B 205, 210 (2003)