Radiative processes studied for bare uranium ions in collisions with H₂

G.Weber ^{a,b} , Th. Stöhlker ^a, A. Gumberidze ^a, R. Reuschl ^a, S. Hess ^a, U. Spillmann ^a, S. Trotsenko ^a, S. Hagmann ^a, M. Nofal ^a, M. Trassinelli ^a, C. Kozhuharov ^a, D. Banas ^c, S. Fritzsche ^d, A. Surzhykov ^e

^a GSI, Planckstr. 1, 64291 Darmstadt, Germany; ^b University of Heidelberg, Grabengasse 1, 69117 Heidelberg, Germany; ^c Akademia Swietokrzyska, ul. Zeromskiego 5, 25-369 Kielce, Poland; ^d University of Kassel, Mönchebergstr. 19, 34109 Kassel, Germany; ^e MPIK, Saupfercheckweg 1, 69117 Heidelberg, Germany

The H₂ gas jet target at ESR:

 provides a background free insight into ion-atom collisions

 an <u>unique tool</u> for studying elementary atomic processes (e.g. photoionization) in reversed kinematics

 long time performance test for the LN₂ cooled supersonic gas jet

Why H₂ target ?

Schematic diagram of the gas jet target at the ESR storage ring, see [1] for details.

Motivation / Experimental set-up

Jet profile monitored with different techniques:

a) down charged ions using a particle detector (outer side of ring) b) photon emission using a photomultiplier c) via recoil detector at 90 degree d) scattered ions using a particle detector (inner side of ring)

Interaction region of gas jet and ion beam detected by a CCD camera system.

The experiment:

 U⁹²⁺ with 96.6 MeV/u used as projectile

 x-ray detectors at several angles (10, 35, 60, 120 and 150 degree)

 utilizing a <u>coincidence</u> technique to distinguish the REC events from x-ray background

Schematic diagram of the set-up used in the present experiment

REC into bound and continuum states

Lyman-α₁ (2p_{3/2} to 1s_{1/2}) can occur as an E1 or M2 transition.

In case $2p_{3/2}$ state is aligned the Ly α_1 decay exhibits an anisotropic emission pattern.

The angular distribution of the Lya1 related to the effect anisotropy parameter β^{eff}_{2} , see [4] for details

Anisotropy of the Ly α 1 decay

Hydrogen vs. Nitrogen target

For H_2 at 100 MeV/u, the population of excited states is still dominated by radiative electron capture (REC, dashed line), while for N₂ it is strongly affected by non-radiative electron capture (NRC, dotted line). As a consequence, probing the alignment due to radiative recombination in the lower energy range is possible with the use of a H₂ target only.

Preliminary Result: Below 150 MeV/u, the alignment observed for H₂ is consistent with the high-energy data recorded for N2.

The E1-M2 interference causes a significant shift of the alignment parameter Beff2 (solid line) [6]. The dashed line refers to a pure E1 decay (no interference f=1).

[2] T. Ludziejewski et al., J. Phys. B 31 2601-2609, 1998 [4] Th. Stöhlker et al., Phys. Rev. Let. 79 3270-3273, 1997 [6] A. Surzhykov et al., Phys. Rev. Let. 88 153001, 2002

By using the density matrix theory β^{eff}_{2}

can be written as a product of two

 $\beta_2^{eff} = \mathcal{A}_2/2 \times f(E1, M2)$

A2 describes the population

• F(E1,M2) reflects the electronic

The factor A₂ for the excited state can

be expressed by the population cross

 $\sigma(\mu_n=3/2) - \sigma(\mu_n=1/2)$

 $\sigma(\mu_n=3/2)+\sigma(\mu_n=1/2)$

sections $\sigma(\mu)$ of different mangetic

factors [5]:

mechanism.

sublevels

 $A_2 =$

structure of the ion.

References: