Identification of an Interference between the E1 and M2 Transition Amplitudes for the Lyman- α_1 Decay in Hydrogen-like Uranium: Multipolmixing (E1/M2) Observed for an Atomic Transition

A. Orsic Muthig^{1,2)}, Th. Stöhlker^{1,2)}, A. Surzhykov³⁾, D. Banas^{2,4)}, F. Bosch²⁾, A. Gumberidze^{1,2)},
S. Fritzsche³⁾, S. Hagmann^{1,2)}, C. Kozhuharov²⁾, X. Ma⁵⁾, P.H. Mokler²⁾, S. Tachenov^{1,2)}
IKF University of Frankfurt (Germany)³⁾, *GSI-Darmstadt (Germany)²*, University Kassel (Germany)³, Swietokrzyska Academy in Kielce (Poland)⁴, IMP-Lanzhou (China)⁵

We report on an interference between the leading E1 decay channel and the weak M2 branch which was identified recently for the case of the Lyman- $lpha_1$ (2p $_{_{3/2}}$ ightarrow1s₁₀) transition in hydrogen-like ions. This interference is found to affect considerably the angular distribution of the emitted photons. Similarly, it also effects the linear polarization of the Lyman- α_1 radiation. For the particular case of the Lyman- α_1 transition in the hydrogen-like uranium following electron capture, the former deviation between the experimental and theoretical findings for the alignment of the excited ion state [1] is removed when the interference correction is taken into account [2]. Also, one may expect similar sizeable corrections for any other atomic transitions in the high-Z regime where beside the leading E1 term, higher multipole contributions are small but allowed.

Th. Stöhlker et al., PRL **79**, 3270 (1997).
A. Surzhykov et al., PRL **88**, 153001 (2002).

