Challenges for Atomic Physics with Highly-Charged Ions and Antiprotons at the GSI Future Facility

FAIR: Facility for Antiproton and Ion Research

Thomas Stöhlker*

GSI-Darmstadt and University of Frankfurt, Germany

Research fields of atomic physics at accelerators The instruments for atomic physics at GSI The future GSI heavy-ion and pbar accelerator *Facilities and experiments of the FLAIR/SPARC community*

*email: t.stoehlker@gsi.de

Atomic Physics at Accelerators

Extreme Static Electromagnetic Fields

Self Energy

Electromagnetic Phenomena under Extreme & Unusual Conditions

High- γ

Collision Dynamics of Relativistic Heavy lons

Collision times in the sub-attosecond regime $(10^{-22} \text{ s} < t < 10^{-18} \text{ s})$

Thomas Stöhlker, GSI

Ahmedabad, NCAN.

GSI-Accelerator Facility

Photon sources

Spectrometers

The ESR Storage Ring

Thomas Stöhlker, GSI

electron

spectrometer

gas jet

NESR

beam

pe

ELECTRON SPECTROSCOPY high-resolution electron spectroscopy complementray to the x-ray channel

RECOIL ION MOMENTUM SPECTROSCOPY impact parameter sensitive studies (e,2e) processes in HCI atom collisions

X-RAY SPECTROSCOPY e.g. precision spectroscropy photon correlation studies polarization phenomena

Challenges for Atomic Physics at the Future GSI Facility

Stored and Cooled Highly-Charged lons Exotic Nuclei High Energies Antiprotons AREAS OF RESEARCH

Fundamental Interactions in

- extreme Static Electromagnetic Fields
- extreme Dynamic Fields
- Fundamental tests: symmetries etc.
- **Nuclear Ground-State Properties**
- **Accelerator Issues**
 - charge changing collisions
 - cooling of relativistic ion beams

SIS100/300

HESR

CR-Complex

NESR

The current GSI Facility

Extreme Velocities – Extreme Dynamic Fields

Thomas Stöhlker, GSI

Ahmedabad, NCAMP-XV, December 2004

Extreme Dynamic Fields

Quantum Electrodynamics

Ahmeo

Quaintgm Eyetation Remins

Ahmed

The Future GSI Heavy-Ion and Antiproton Accelerator Facility for Atomic Physics

Thomas Stöhlker, GSI

At the NESR: 1s Lamb Shift in Hydrogen-Like Uranium

Thomas Stöhlker, GSI

Exploring the Nucleus

Ahmed

Exploring the Nucleus

X-Ray Laser Spectroscopy on Lithium-like Radioactive

Principle of an X-Ray Laser (XRL)

200

0

RIKEN MSU GANIL GSI/SIS

Excitation in the ESR/NESR

GSI/SIS

Upgrade

MSU

Upgrade

The "Cloud Chamber" of Atomic Physics

Dense hydrogen target Polarized hydrogen target ?

X-Ray Spectroscopy

Electron Spectroscopy

Thomas Stöhlker, GSI

Ahmed

The HITRAP facility: highly charged single ions "at rest"!

- g-factor: tests of QED
- Iaser & x-ray spectroscopy
- surface interactions
- hollow-atom spectroscopy
- collisions at low velocities

Post

Decelerator

Thomas Stöhlker, ວວ

HITRAP – Test of QED: g-Factor of the Bound Electron

Thomas Stöhlker, GSI

HITRAP - Fundamental Constants: Mass of the Electron

single hydrogen-like ion in a Penning trap: measurement of the cyclotoron and Lamor frequency PHYSICAL REVIEW LETTERS

7 JANUARY 2002

New Determination of the Electron's Mass

Thomas Beier,¹ Hartmut Häffner,^{1,2} Nikolaus Hermanspahn,² Savely G. Karshenboim,^{3,4} H.-Jürgen Kluge,¹ Wolfgang Quint,¹ Stefan Stahl,² José Verdú,^{1,2} and Günther Werth² ¹Gesellschaft für Schwerionenforschung, 64291 Darmstadt, Germany

³D.I. Mendeleev Institute for Metrology (VNIIM), 198005 St. Petersburg, Russia
 ⁴Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
 (Received 29 August 2001; published 19 December 2001)

A new independent value for the electron's mass in units of the atomic mass unit is presented, $m_e = 0.0005485799092(4)$ u. The value is obtained from our recent measurement of the g factor of the electron in ${}^{12}C^{5+}$ in combination with the most recent quantum electrodynamical (QED) predictions. In the QED corrections, terms of order α^2 were included by a perturbation expansion in $Z\alpha$. Our total precision is three times better than that of the accepted value for the electron's mass.

theoretical value: experimental value:	2.001 041 589 9(9) 2.001 041 596 4(10) {44}
$QED\ correct\ \Rightarrow$	m _e = 0.000548 579 909 2(4) u
van Dyck (1995) CODATA (1998)	m _e = 0.000548 579 911 1(12) u m _e = 0.000548 579 911 0(12) u
\Rightarrow improvement by a factor of 4*	
future: fine-structure constant α	

* from ¹²C⁵⁺ and ¹⁶O⁷⁺ g-factor measurement ,J. Verdú et al., PRL 92, 093002 (2004)

GSI

The Future GSI Heavy-Ion and Antiproton Accelerator Facility for Atomic Physics

GSI

Thomas Stöhlker, GSI

Ultracold & Trapped p

Research Topics with Low-Energy Antiprotons

EXPERIMENTS WITH ANTIPROTONS AT EXTREMELY LOW ENERGIES

fundamental interactions

- CPT (antihydrogen, HFS, magnetic moment)
- gravitation of antimatter
- atomic collision studies
 - ionization
 - energy loss
 - matter-antimatter collisions
- antiprotonic atoms
 - formation
 - strong interaction and surface effects

A. Trzcinska, J. Jastrzebski et al.PRL 87 (2001) 082501

Antiproton Production and Research at the AD and the Future GSI Facility

Expected production rate: 10⁸ p every 4 sec ~ 100 x Antiproton Decelerator (AD) (2-4 · 10⁷ p every 85 sec)

develop "next generation" technology
improve performance of most present experiments
enable experiments that are not feasible at the AD

Present p collaborations at the AD/CERN: ATHENA: CPT ATRAP: CPT ASACUSA: structure and dynamics

GSI will provide the most intense source of antiprotons

Facility for Research with Antiprotons and Ions

energy range: 400 MeV – 1 meV

The Low-Energy Storage Ring LSR

The FLAIR/HITRAP Project at the NESR for Antiprotons and lons

Thomas Stöhlker, GSI

The Electrostatic Storage Ring USR for Antiprotons and Ions at Ultra-Low Energy

- excellent beam quality and large number of stored p
- high luminosity for in-ring experiments

Summary

Atomic physics at accelerators is a rich field of research There are unique opportunities and challenges Storing and cooling is the key to precision

Effects of extreme electromagnetic fields can be investigated Highly-charged ions offer a new access to the determination of fundamental constants

Highly-charged (stable & radioactive) lons and antiprotons are test grounds for symmetries and fundamental interactions

Atomic physics techniques offer model-independent-information on nuclear ground state properties

Atomic Physics and the International FAIR Project

The SPARC-Collaboration: Atomic Physics with Heavy Stable and Radioactive Ions http://www-linux.gsi.de/~sparc

The FLAIR-Collaboration: Atomic Physics with Slow Antiprotons http://www-linux.gsi.de/~flair

