Linear Polarization Properties of Radiative Electron Capture Revealed for Relativistic Projectiles

Thomas Stöhlker

Gesellschaft für Schwerionenforschung (GSI)/Darmstadt and University of Frankfurt

in collaboration with

Experiment

D. Banas, H.F. Beyer, F. Bosch, A. Gumberidze, S. Hagmann, C. Kozhuharov, R. Reuschl, D. Sierpowski, X. Ma, U. Spillmann, J. Rzadkiewicz, S. Tashenov and the ESR-Team

Atomic Physics Group, GSI-Darmstadt, Germany IMP, Lanzhou, China University of Cracow, Poland University of Frankfurt, Germany

Theory

J. Eichler, S. Fritzsche, A. Ichihara, T. Shirai, A. Surzhykov

Theoretische Physik, HMI-Berlin, Germany JAERI, Japan University of Kassel, Germany

Photoeffect, Radiative Electron Capture, and Polarization

Relativistic Quantum Dynamics

Polarization Studies of Radiative Capture Transitions: Experiment A Diagnostic Tool to Identify Spin-Polarized Ion Beams

Detector Developments

Towards Polarization Studies of Inner Shell Transitions in Heavy Ions

Summary and Outlook

Motivation

Polarization Studies for Hard X-Rays

Relativistic Particle Dynamcis (free-bound and free-free transitions):

Synchrotron Radiation, Inverse Compton scattering *Bremsstrahlung*, and *Recombination* are the main photon processes in plasmas with distinct photon polarization features

- Diagnostic tool to indentify *spin polarized particle beams*
- Diagnostic tool to identify *Thomson scattered photons* from laser produced relativistic electron bunches

Atomic Structure (bound-bound transitions):

Excited states in heavy ions formed in atomic collisions are usually strongly aligned which translates in a *polarization of the emitted photons*

Relativistic Quantum Dynamics

Experiments at the Jet-Target

Experimental REC Studies

Photon Polarization

Radiative Electron Capture

Photoionization

non-relativistic dipole approximation: 100 % polarization for all emission angles

K-REC Photon Polarization

Energy and Charge Dependence

GSĬ

Photon Polarimetry

2D Position Sensitive Ge(i) Detectors

Micro-Strip Germanium Detector Development:

Energy Resolved X-Ray Imager, Timing, Multi-Hit Capability

- polarization studies
- Compton cameras
- x-ray îmager
 e.g. medical applications

- precision spectroscopy
- Doppler tuned spectroscopy
- atomic lifetime studies

Interaction of electro-magnetic radiation with matter

Germanium

- photoelectric effect
- Compton scattering
- pair production

Compton Scattering

Polarization Measurement by Means of Compton scattering

Klein-Nishina equation

$$\frac{d\sigma}{d\Omega} = \frac{1}{2} r_0^2 \left(\frac{\hbar\omega'}{\hbar\omega}\right)^2 \left(\frac{\hbar\omega'}{\hbar\omega} + \frac{\hbar\omega}{\hbar\omega'} - 2\sin^2\theta\cos^2\varphi\right)$$

Pixel Detector -Coincidence Technique

Compton Kinematics

Polarization Experiment $(U^{92+} + e^- \Rightarrow U^{91+} + \hbar\omega)$

Preliminary Results

Experiment: Tachenov et al., PHD Thesis 2005 Exact Relativistic Treatment Eichler et al., PRA, 2001 Surzykov et al., PRA, 2001

Crossover Phenomenon

Ion Beam Spin Polarization

for spin polarized particles, the Stokes parameter P_2 is non-zero =>

polarization plane and scattering plane are not equal

A.Surzhykov, Kassel Uni

Detection of spin polarized ion beams

Energy Resolution Position Resolution (2D/3D)

Timing

at ESRF: systematic studies of the detector responce for the 2D polarimeter (e.g. polarization sensitivity)

50 keV to 500 keV

2D µstrip detector system

Crystal size heigth: 32 mm width: 56 mm thickness: 11 mm

Front: 128 strips pitch ~250µm Back: 48 strips pitch ~1167µm

Strip Detector: Analysis of Compton Events => Use Multihit Sensitivity

60-55-50-................. angular distribu of the Compton scattered 10 0 15 x [mm] photons

믃

210

Compton Imager and Polarimeter for Hard X-Rays @ ESR

Polarization Spectroscopy of Photon-Matter Interaction

2D images of the Compton scattering distribution in germanium as function of the scattering angle

The data were recored at the ESRF using 98% linearly polarized photons with an energy of 210 keV.

What About Inner Shell Transitions with Energies Below 100 keV ?

2p_{3/2} transitions in high-Z ions populated by electron capture

2p_{3/2} Transitions in High-Z Ions

Helium-like Uranium: Parity Violation in Heavy Ions

Summary and Outlook

20

18

16 14

12

ħω

ion beam

KeV

50

- for REC: first polarization studies for hard x-rays
- diagnostic tool for spin polarized ion beams
- using Si(Li) strip detectors, such studies can be extended to innershell transitions
- towards a study of parity violation experiments in atomic systems at high-Z
- further sensitivity enhancement
 via 3D readout
- a lots of applications

