Gekühlte Schwerionen – Faszinierende Werkzeuge der Atomphysik

Thomas Stöhlker

IKF, Universität Frankfurt

und

Gesellschaft für Schwerionenforschung (GSI), Darmstadt

Collaboration

Experiment

D. Banas, C. Brandau, H.F. Beyer, C. Brandau, G. Bednarz, F. Bosch,
R.W. Dunford, A. Gumberidze, S. Hagmann, S. Hess,
E. Kanter, O. Klepper, C. Kozhuharov, D. Liesen, P.H. Mokler, R. Reuchl,
D. Sierpowski, X. Ma, A. Müller, A. Orsic Muthig, D. Protic, U. Spillmann,
Z. Stachura, S. Tachenov, S. Trotsenko, A. Warczak and the ESR-Team

Atomic Physics Group, GSI-Darmstadt, Germany Argonne National Laboratory, Argonne, USA IMP, Lanzhou, China University of Giessen, Germany Kansas State University, Kansas, USA University of Cracow, Poland University of Frankfurt, Germany FZ-Jülich, Germany

Theory

G. Baur, J. Eichler, S. Fritzsche, A. Ichihara, D.C Ionescu, R. Olson, T. Shirai, V. Shabaev, A. Surzhykov

FZ-Jülich, Germany Theoretische Physik, HMI-Berlin, Germany JAERI, Japan University of Kassel, Germany University of St. Peteresburg, Germany MPI-K, Heidelberg, Germany

Atomic Physics in Extremly Strong Coulomb Fields

- Atomic Structure Studies at High-Z
 - Current Status of the 1s Lamb Shift Experiments
 - He-like Ions: Two-Electron Contribution to Ionization Potential for He-Like Uranium

Two-Photon Decay

- Few-Electron Ions
- Dynamics: Atomic Collisions at High-Z
 - Radiative Recombination/Electron Capture Studies Angular Correlation and Polarization Studies
- Development of Position Sensitive X-Ray Detectors
- Summary
- Outlook
 - Challenges and Opportunites: Atomic Physics at FAIR

Atomic Physics @ GSI

Storing and Cooling

Detector and Spectrometers

I Atomic Structure Studies at High-Z

- Current Status of the 1s Lamb Shift Experiments
- He-like Ions: Two-Electron Contribution to Ionization Potential for He-Like Uranium
- Few-Electron Ions: Dielectronic Recombination – Spectroscopy Without Photons

The Structure of One-Electron Systems

Bound-State QED: 1s Lamb Shift

X-Ray Spectroscopy at the ESR Storage Ring

Test of Quantum Electrodynamics (1s-LS)

The 1s-LS in H-like Uranium

Towards an Accuracy of 1 eV

Year

The 1s-Lamb-Shift at High-Z

Micro-Strip Germanium Detector Timing, Energy and Position Resolution

200 Strips Δx ≈ 200 μm ΔE ≈ 1.6 keV Δτ ≈ 50 ns

First Test Experiment for Lamb Shift Measurements on Hydrogen-like Heavy Ions with Cryogenic Detectors

A. Bleile et al., NIM A 444, 488 (2000)

P. Egelhof et al., Oct. 2005

Correlation and 2eQED Studies for He-like Uranium

The groundstate of He-like ions

 for the ground-state of high-Z He-like ions a sensitivity to 2eQED has been achieved Two-Electron QED, e.g. 2nd order Self Energy

-9.7 eV [U⁹⁰⁺

all one electron effects such as the nuclear size contribution cancel out almost completely

A. Gumberidze, PhD Thesis 2003, PRL (2004)

Selective Production of the Two-Photon Decay

Isolation of s-states in He-like heavy ions: Two-photon decay

The HITRAP Project @ GSI

Few-Electron Systems: Dielectronic Recombination

Dielectronic Capture (DC)

(time-reverse to autoionization

Radiative Stabilization

(in competition to autoionization)

two observables:

recombined ion 🧹

or photons

(e.g. EBIT, RTE @ Gasjet)

Why Investigate L-shell Ions (Li-like, Be-like,...)?

e.g. Li-like ions (3 e⁻)

K-shel

 $1S_{1/2}$

2p_{3/2} 2p_{1/2}

- simplest atomic systems with "low-energy" intra-shell transitions (Δn = 0)
- large contributions from QED and nuclear size
 - \Rightarrow high sensitivity

•simple to describe theoretically,

- e.g. Li-like
- \Rightarrow 1 "valance" electron with small contributions from e-e-interaction

Few-Electron Ions

Dielectronic Recombination: The Technique

Determination of 2s_{1/2} - 2p_{1/2} Splitting (Scheme)

idea: extrapolation to the series limit

relativisitc description of Rydberg electron (Dirac)
apparaus function (velocity spread of electrons)

Ph⁷⁹⁺

230.650(30)(51) eV

fine structure of peaks (Rydberg – core e-e interact.)

| |89+

280.516(34)(65) eV

<mark>Au⁷⁶⁺</mark> 216.167(29)(67) eV

C. Brandau et al., PRL 91, (2003) 073202

Isotopic Shift of Li-like ¹⁴²Nd⁵⁷⁺ vs. ¹⁵⁰Nd⁵⁷⁺

by Means Dielectronic Recombination (First Preliminary Results of the Aug 2005 Beamtime)

C. Brandau et al.

II Dynamics in Strong Fields

Radiative Recombination/Electron Capture

Experiments at the Jet-Target

II Dynamics: Radiative Recombination

Alignment Studies: Non-statistical population of magnetic sublevels

II Atomic Collisions of Cooled, Heavy Ions

New Directions

- Total Electron Capture Cross Sections
- Photon Angular Distributions

 $\sigma \sim \sum d\Omega |M|^2$ polarization

 $\sim |M|^2$

 $\sim |M|^2$

No summation over polarization states !

• Polarization

Alignment

Photon Polarization

Photoionization

non-relativistic dipole approximation: 100 % polarization for all emission angles

How to Measure Polarization for Hard X-Rays

Polarization Measurement via Compton scattering

Polarization Experiment

Polarization Measurement for Radiative Electron Capture Transitions (U⁹²⁺ + $e^- \Rightarrow U^{91+} + \hbar\omega$)

Spin Polarized Ion Beams

for spin polarized ions, the polarization plane and scattering plane are not equal for spin aligned ion beams

predictions by A.Surzhykov et al., PRL 94, 203202 (2005)

Crossover Phenomena

 $\psi \Rightarrow^{\text{degree of beam}}_{\text{polarization}}$

spipqlatizedeidoirobetærapn>

Photoionization

Polarization Spectroscopy of Photon-Matter Interaction

main photon matter interaction processes with distinct photon polarization features

Synchrotron Radiation, Bremsstrahlung, Recombination, Inverse Compton Scattering

Atomic Structure (bound-bound transitions)

Excited states in heavy ions formed in atomic collisions are usually strongly aligned which translates into a *polarization of the emitted photons*

III Development of Position Sensitive X-Ray Detectors

How accurately can we measure linear polarization ?

2D μSTRIP planar detector systems for future precision experiments and Compton polarimetry

energy resolution – timing - 2D/3D position sensitiviy (100 µm)

Front: 128 strips pitch ~250µm Back: 48 strips pitch ~1167µm Equivalent to 6144 pixel

Polarization Spectroscopy of Photon-Matter Interaction

Compton Imager and Polarimeter for Hard X-Rays

Similar projects based on planar position sensitive germanium and Si(Li) detectors

Compton imager and polarimeter at Naval Research Lab. and LBL

(space missions, Kroeger et al., Burke et al.)

Compton imager

(medical imaging, Valenta et al.)

Compton imager at LLNL

(γ-ray imaging, K. Vetter et al.)

Collimator-Free Compton Camera

• use several interaction points to reconstruct incident angle without use of a collimator

Advantages

- Enhanced efficieny
- Good energy and position resolution
- 3D tomography with a single detector

Summary

Atomic Structure at High-Z

- 1s LS in H-like uranium confirmed on a level of 1%
- further progress towards an absolute accuracy of 1 eV can be expected from high-resolution spectroscopy techniques
- for He-like uranium, a sensitivity on the level of two-electron QED contributions has been achieved
- Dielectronic Recombination has been found to be a precise tool for atomic structure studies
- $\Delta n=0$ resonances are in particular sensitive to nuclear size corrections and may serve as a model independent test of nuclear parameters

Atomic Collisions at High-Z

- elementary atomic processes can uniquely be studied by their time reversal in inverse kinematics
- recombination process reveal structure properties
- basic photon matter interactions can be investigated
- segmented solid state detectors, an excellent tool for polarization studies in the hard x-ray regime
- first polarization studies for radiative recombination studies show that REC is a source of strongly polarized radiation
- using Si(Li) strip detectors, such studies can be extended to inner-shell transitions

Challenges and Opportunities: Atomic Physics at FAIR

- Heavy Highly Charged Ions • Relativistic Heavy Ions Radioactive Nuclei Antiprotons I. Extreme Static Electromagnetic Fields
- **II. Extreme Dynamic Fields**
- **III. Ultra-Slow and Trapped Antiprotons**

The Future International Facility at GSI: Beams of Ions and Antiprotons

100 m

Accelerator Issues: Charge Changing Collisions

relativistic ions

Iuminosity for radioactive ion beams at storage rings

The Facilities for Atomic Physics @ FAIR

From Highly Relativistic Energies to Rest

The New Experimental Storage Ring NESR

The SPARC-Collaboration: Atomic Physics with Heavy Stable and Radioactive Ions

SPARC Stored Particle Atomic Research Collaboration

The FLAIR-Collaboration: Atomic Physics with Slow Antiprotons

FLAIR

Facility for Low-Energy Anti-Protons and Ion Research

Challenges and Opportunities -Atomic Physics at FAIR

MARGINE REALESS REPORTED THE PROPERTY OF THE P