High-accuracy crystal spectroscopy of He-like Uranium

Martino Trassinelli ^{1,2}, Ajay Kumar ¹, <u>Renate Märtin</u> ^{1,3}, Paul Indelicato ⁴, Heinrich Beyer ¹, Carsten Brandau ¹, Harald Bräuning ¹,Sabrina Geyer ^{1,3}, Alexandre Gumberidze ^{1,2}, Pawel Jagodzinski ⁶, Christophor Kozhuharov ¹, Sebastian Hess ^{1,3}, Regina Reuschl ^{1,3}, Sergiy Trotsenko ¹, Günter Weber ^{1,5} and Thomas Stöhlker ^{1,5}

¹ Gesellschaft für Schwerionenforschung, Darmstadt, Germany
² Institute des Nanosciences de Paris, Paris, France
³ IKF, University of Frankfurt, Germany
⁴ Laboratoire Kastler Brossel, Paris, France Institute of Physics
⁵ Department of Physics, University of Heidelberg, Germany
⁶ Swietokrzyska Academy, Kielce, Poland

Table of Contents

- Motivation
- Experiment in August 2007
- Crystal Spectrometer
- Results
- Conclusion and Outlook

Precise measurement of ∆n=0 transition

• Measurement of the $1s2p^{3}P_{2} \rightarrow 1s2s^{3}S_{1}$ transition in He-like Uranium

 $[1s_{1/2}, 2s_{1/2}]^{1}S_{0} = [1s_{1/2}, 2p_{1/2}]^{3}P_{0} = [1s_{1/2}, 2p_{1/2}]^{3}P_{1}$ • Transition energy predicted by theory: ~4510 eV $[1s_{1/2}, 1s_{1/2}]^{1}S_{0} = [1s_{1/2}, 1s_{1/2}]^{1}S_{0} = [1s_{1/2},$

Motivation

- He-like ions are the simplest many-body systems
- QED corrections in strong Coulomb field
- $\Delta n = 0$ transitions are sensitive to QED effects
- candidate for parity violation
- almost no experimental data for He-like high-Z ions
- a),b) Non-Radiative QED c),d) Two-electron Self Energy e),f) Two-electron Vacuum Polarization

Precise measurement of ∆n=0 transition

Differences in theoretical predictions up to ~1eV

Different theories compared to Artemyev calculations:

GSI accelerator facility

ESR storage ring

Experimental Setup - Beamtime August 2007

- observation angle of 90°
- energy in laboratory frame ~4.3 keV

$$E_{Proj} = E_{Lab} \cdot \gamma (1 - \beta \cos \theta_{Lab})$$

 $\gamma = \frac{1}{\sqrt{1-\beta^2}} \begin{array}{c} \mathsf{E}_{\mathsf{proj}}: \text{Photon energy in the emitter frame} \\ \mathsf{E}_{\mathsf{lab}}: \text{ energy in the laboratory frame} \\ \theta_{\mathsf{Lab}}: \text{ observation angle} \\ \beta = \mathsf{v/c} \end{array}$

- Ge Crystal (220), Bragg angle of 46°, in 1st order reflection,
- Li-like U transition energy as a reference (calibration)
- Zn K_α-lines in 2nd order reflection (external reference)

Bragg Crystal Spectrometer

measurement of angles = measurement of energies

Fixed Angle Bragg Crystal Spectrometer

- > Johann-type spectrometer:
 - Rowland circle diameter: 0.8m
 - Cylindrically bent Ge (220) crystal
 - energy resolution defined by the crystal intrinsic resolution
 - efficiency: ~10⁻⁶
 - energy range determined by source dimensions and detector size

Fixed Angle Bragg Crystal Spectrometer

Fixed Angle Bragg Crystal Spectrometer

- > position sensitive CCD x-ray detector
 - Energy range: 1-10 keV
 - Q.E. ~ 90% for 3-4 keV
 - 1024 x 256 pixels (each pixel 26 μ m²)
 - cluster analysis necessary

Geometrical uncertainties

Systematic uncertainty (geometry):

• Observation angle (θ): 90 \pm 0.05°

•
$$\alpha$$
 : 0 ± 1°

Stability test of the spectrometer setup

$1s2p^{3}P_{2} \rightarrow 1s2s^{3}S_{1}$ transition in He-like U

$1s2p^{3}P_{2} \rightarrow 1s2s^{3}S_{1}$ transition in He-like U

Li-like transition energy 4459.37 \pm 0.35 eV

P. Beiersdorfer et al., Phys. Rev. Lett. 71, 3939 (1993)

$$E_{He} = \left(\frac{\gamma_{He}}{\gamma_{Li}} + \gamma_{He}\frac{\Delta x}{\tan\Theta_B D}\right) E_{Li}$$

 Δx : relative distance on the CCD $\theta_{\rm B}$: Bragg-angle 46° D : distance from crystal to CCD

Very preliminary result He-like U transition energy: 4510.00 error <1 eV Analysis is still in progress

$1s2p^{3}P_{2} \rightarrow 1s2s^{3}S_{1}$ transition in He-like U

Experiment compared to theoretical calculations

Experiment: $1s2p^{3}P_{2} \rightarrow 1s2s^{3}S_{1}$ transition energy

GSI

Conclusion and Outlook

 First high accuracy X-ray spectroscopy measurement of the intra-shell transition 1s2p³P₂→1s2s³S₁ in He-like uranium has been successful performed

- expected uncertainty below 1 eV; Analysis is still in progress
- Experiment and theory are of the same order of magnitude

 Proposal for a second beamtime in order to increase the statistics

Acknowledgment

• M. Trassinelli

• A. Kumar

• T. Stöhlker

• Atomic physics group

