Radiative processes studied in collisions of U^{92+} with a H₂ target

Outline:

Motivation

Why highly charged, high-z ions?

Experiment

- ➢ GSI facility
- Experimental set-up

Results

- > REC
- \succ Ly- α alignment
- Bremsstrahlung

Günter Weber

Why spectroscopy with highly charged, heavy ions?

ESR & internal gas target

Internal Gasjet-Target

Experimental Storage Ring (ESR)

FANTOM, Groningen, 21.05.07

U⁹²⁺ -> H₂ @ 96.6 MeV/u

X-ray Spectra at 150°

Results: REC lines

Lyman- α alignment

Results: Lyman- α alignment

W(
$$\theta$$
) \propto 1+f $\left(\frac{a_{M2}}{a_{E1}}\right) \bullet \beta_A \bullet \left[1 - \frac{3}{2} \sin^2 \theta\right]$

$$f\left(\frac{a_{M2}}{a_{E1}}\right) \propto \left[1 + 2\sqrt{3} \frac{\left< \|M2 \| \right>}{\left< \|E1 \| \right>}\right]$$

Theory for Z=92:
$$f = 1.28$$

Short wavelength limit of e Bremsstrahlung

Günter Weber

Thank you for your attention

... and many thanks to the working group!

Literature:

- REC angular distribution

J. Eichler, Th. Stöhlker 'Radiative Electron Capture in Relativistic Ion-Atom Collisions and the Photoelectric Effect in Hydrogen-like High-Z Systems'. Physics Reports Vol 439 (2007)

- Ly- α alignment

A. Surzhykov et al. 'Lyman- α1 Decay in Hydrogenlike lons: Interference between the *E*1 and *M*2 Transition Amplitudes'. Phys Rev Vol 88 (2002)

- Bremsstrahlung

T. Ludziejewski et al. 'Study of electron bremsstrahlung in strong Coulomb fields at the ESR storage ring'. Hyperfine Interactions Vol 144 (1998)

Atomic Physics in Strong Coulomb Fields

- nuclear effects on the atomic structure
- effects of relativity on the atomic structure
- electron correlation in strong fields
- supercritical fields

- dynamically induced strong field effects
- correlated many body dynamics
- elementary atomic processes at high Z
- photon matter interaction, e.g. photon polarization correlation

