Neue experimentelle Methoden zur Bestimmung der 1s Lambverschiebung

Regina Reuschl

IKF, Universität Frankfurt und GSI, Darmstadt 05.02.2008

Kollaboration: D.Attia³, D.Banas⁴, H. F. Beyer¹, E.-O.Le Bigot³, F.Bosch¹, S.Chatterjee¹, J.-Cl.Dousse⁵, E.Förster⁶, A.Gumberidze¹, S.Hagmann^{1,2}, S.Hess^{1,2}, J.Hoszowska⁷, P.Indelicato³, P.Jagodzinski⁴, Chr.Kozhuharov¹, Th.Krings⁸, D.Liesen¹, X.Ma⁹, B.Manil¹⁰, I.Mohos⁸, M.Pajek⁴, D.Protic⁸, J.Rzadkiewicz¹¹, A.Simionovici¹², U.Spillmann^{1,2}, Z.Stachura¹³, Th.Stöhlker^{1,14}, M.Trassinelli^{1,15}, S.Trotsenko^{1,2}, A.Warczak¹³, G.Weber^{1,14}, O.Wehrhan⁶, E.Ziegler⁷

¹GSI, Darmstadt, ²Johann Wolfgang Goethe Universität Frankfurt, ³Lab. Kastler Brossel, Paris, ⁴Swietokrzyska Academy, Kielce, ⁵Universität Fribourg, Schweiz, ⁶Friedrich Schiller Universität, Jena, ⁷ESRF, Grenoble, ⁸Forschungszentrum Jülich, ⁹Lanzhou, China, ¹⁰CIRIL-GANIL, Caen, ¹¹Soltan Institute for Nuclear Studies, Swierk, ¹²ENS, Lyon, ¹³Jagiellonian Universität, Krakau, ¹⁴Ruprecht-Karls-Universität Heidelberg, ¹⁵INS, Paris

Inhalt

- Motivation / atomare Struktur
- Kristallspektrometer
- Experiment
- Zusammenfassung

Struktur von Ein-Elektronen Systemen

1s Lamb-Verschiebung

Selbstenergie

 $\Delta E = \alpha / \pi (\alpha Z)^4 F(\alpha Z) m_e c^2$

niedriger Z-Bereich: αZ << 1 F(αZ):Reihenentwicklung in αZ angemessen

hoher Z-Bereich : $\alpha Z \approx 1$ F(αZ): Reihenentwicklung in αZ nicht angemessen

Struktur von Ein-Elektronen Systemen

Atomare Systeme bei hohem Z

 Starke relativistische Effekte auf die Energieniveaus und Übergangsraten (z.B. Feinstrukturaufspaltung)

 Übergangsenergien im Bereich von 100 keV

Multipolübergänge höherer Ordnung

Röntgenspektroskopie an der GSI

Speichern und Kühlen

Detektor und Spektrometer

Röntgenspektroskopie am ESR

Test der Quantenelektrodynamik (1s-LS)

Die 1s-LS in H-artigem Uran

Wege zu einer Genauigkeit von 1 eV

Kristallspektrometer und µ-Calorimeter

Transmissionskristallspektrometer

Vergleich: Scanning – Streifen-Detektor

Ein Laue-Kristallspektrometer

Prototyp 2D µSTRIP Germanium Detektor

2D μSTRIP planares Detektorsystem für Präzisions-Röntgenspektroskopie Experimente (FOCAL)

Energieauflösung – Timing - 2D Ortsauflösung

vorne: 128 Streifen Breite ~250µm hinten: 48 Streifen Breite ~1167µm äquivalent zu 6144 Pixeln

μ**STRIP** Detektor entwickelt von D. Protic and T. Krings IKF, FZ-Jülich

FOCAL Aufbau

Orts- und Energieauflösung

Kalibration mit ¹⁶⁹Yb (53keV – 49keV)

Zusammenfassung

- 1s LS in H-artigem Uran ist auf einem Niveau von 1% bestimmt
- weiterer Fortschritt auf dem Weg zu einer absoluten Genauigkeit von 1 eV kann durch eine Kombination aus 2D Detektoren und hoch-auflösenden Spektrometern erzielt werden, welche zur Zeit in Experimenten getestet werden

- DSP-Auslese zur genaueren Positionsauslese (kleiner als ein Streifen)
- anderen Verkippungswinkel, damit die Linie besser gefittet werden kann