Exclusive production of the n=2 S-states in He-like uranium two-photon transitions

D. Banas^{1,3}, Th. Stöhlker^{1,2}, H. F. Beyer¹, F. Bosch¹, A. Bräuning-Demian¹,
A. Gumberidze^{1,2,6}, S. Hagmann¹, C. Kozhuharov¹, X. Ma^{1,7}, P. H. Mokler¹,
R. Mann¹, Andreas Orsic Muthig^{1,2}, D. Sierpowski⁵, U. Spillmann^{1,2},
Z. Stachura⁴, S. Tachenov^{1,2}, A. Warczak⁵

¹Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany;
²Institute für Kernphysik, University of Frankfurt, Germany;
³Institute of Physics, Świętokrzyska Academy, Kielce, Poland;
⁴Institute of Nuclear Studies, Krakow, Poland;
⁵Institute of Physics, Jagiellonian University, Krakow, Poland;
⁶Tbilisi State University, Georgia;
⁷Institute of Modern Physics, Lanzhou, China;

- Decay of n=2 S states in He-like ions
- Motivation of the experiment
- Experimental scheme and setup
- Why exclusive production of n=2 S-states?
- Results and comparison with theoretical calculation

Decay of He-like uranium

 $2S_{1/2}$ state in the He-like ions can only decay to the ground state by two competitive transitions:

M1: $(2^{3}S_{1} \rightarrow 1^{1}S_{0})$ – relativistic (is strictly forbidden in nonrelativistic case) magnetic dipole transition

2E1: $(2^{1}S_{0} \rightarrow 1^{1}S_{0})$ – transition which, due to the conservation of angular momentum, is only possible by emission of two photons.

Two-photon transition

Energy of emmited photons:

 $E_1 + E_2 = E_0$

Angular distribution function A as a function of the angle θ between two simultaneously emmited photons:

 $A(\theta) \propto 1 + \alpha \cos^2 \theta$

Reference: G. W. F. Drake, Phys. Rev. A 34 (1986)

Angular correlation

The curve indicates expected coincidence signal between two detectors as a function of angle between them

Note:

for $n_1 s \rightarrow 1s$ transitions $\alpha = 1$ but for example for: $n_1 d \rightarrow 1s$ transitions $\alpha = 1/13$

Reference:

J. H. Tung et al., Phys. Rev. A 30 (1984)

Energy distribution

Relativistic effects

Comparison of the theoretical relativistic and nonrelativistic decay rates of 2 ¹S₀ state

Full width at the half maximum of the twophoton energy distribution of 2 ¹S₀ state in function of Z

Reference:

Derevianko and Johnson , Phys. Rev. A 56 (1997) G. W. F. Drake, Phys. Rev. A 34 (1986)

Correlation effects

- 2E1 (2 ${}^{1}S_{0} \rightarrow 1 {}^{1}S_{0}$) 7.26 $\cdot 10^{12} [s^{-1}]$ ■ M1 (2 ${}^{3}S_{1} \rightarrow 1 {}^{1}S_{0}$) - 1.21 $\cdot 10^{14} [s^{-1}]$
- E1 (2 ${}^{3}P_{1} \rightarrow 1 {}^{1}S_{0}$) 2.99 $\cdot 10^{16}$ [s⁻¹] ■ E1M1 (2 ${}^{3}P_{0} \rightarrow 1 {}^{1}S_{0}$) - 5.61 $\cdot 10^{9}$ [s⁻¹]

- For high-Z ions lifetime of the transition is too short for traditionall measurement technics
- 2E1 energy distribution is very sensitive for relativistic effects and allows us to test theoretical calculations

Degree of PNC:

$$P \approx \frac{Z(\alpha Z)^4}{\Delta E} \sqrt{\frac{W_1}{W_0}}$$

He-like uranium is a very interesting system for searching parity-violation because :

- Overlap of the electron wave functions with nuclear charge distribution is large
- Two states of oposite parity but identical total spin are almost degenerate (separated by about 1 eV)

Proposed prospects of the experiments: A. Schäfer *et al.*, Phys. Rev. A 40 (1989) V. V. Karasiev *et al.*, Phys. Lett. A 172 (1992)

Hyperfine quenching

He- like Bismut (Bi⁸¹⁺)

How does it work?

- two nearby levels 0 and 1
- level 0 is metastable (cannot decay to the ground state because strictly forbidden J = 0 → J=0 transition)
- the two levels must have the same parity

Hyperfine quenched transition modifies the 2E1/M1 intensity ratio.

New posibilities of ESR

Experimental setup

- Li-like uranium ions at energy 378 MeV/u were stored in ESR storage ring and cooled in electron cooler
- We measured X-rays emitted in collision of the ions with N₂ gaseous target

View of experimental setup

Selective K-shell Ionization Ionization of K-shell electron without disturbing of L-shell electron

Frankfurt June 2003

Coincidence technique

Coincidence spectra

Comparison with theory

Measured spectrum was corrected for efficiency of the detector and for absorbtion in chamber window

Comparison with theory

Measured spectrum was corrected for efficiency of the detector and for absorbtion in chamber window

M1/L α_2 intensity ratio

Measured intensity ratio for M1 and $Ly\alpha_2$ transition which is isotropic in the emitter frame as function of observation angle

• M1: produced by K-shell ionization in $U^{89+} \rightarrow N_2$ collision

• $Ly\alpha_2$: produced by electron capture in $U^{92+} \rightarrow N_2$ collision

2E1/M1 intensity ratio 2.0 Measured intensity ratios for the 2E1 and M1 1.8 2E1/M1 transitions as function of 1.6 observation angle statistical population 1.4 • 2E1: produced by K-shell Intensity ratio 1.2 ionization in $U^{89+} \rightarrow N_2$ 1.0 collision 0.8 average value - 0.52 ± 0.12 • M1: produced by K-shell 0.6 ionization in $U^{89+} \rightarrow N_2$ collision 0.4 0.2 0.0 30 60 90 120 150 0 Observation angle [deg]

Future

- Symulations of the detectors responce functions
- Measurements for Be-like ions and Clike ions
- Searching for hyperfine quenching effects by measurement of the ions with non-zero spin of the nucleus
- Searching for PNC sensitive transition

Summary

- We showed good level selectivity during K-shell ionization of Li-like uranium
- We measured not distorted M1 and 2E1 transitions from decay of n=2 S-states in He-like uranium
- Theoretically calculated two-photon distribution is in good agreement with measured distribution
- We found that after ionization of K-shell 2Sstates are not statistically populated