X-RAY SPECTROSCOPY ON COOLED HEAVY IONS AT STORAGE RINGS

Thomas Stöhlker

Universität Frankfurt und Gesellschaft für Schwerionenforschung (GSI)/Darmstadt

X-RAY SPECTROSCOPY ON COOLED HEAVY IONS

- Introduction
- Atomic Structure Studies at High-Z
- Current Status of the 1s Lamb Shift Experiments
- Two-Electron Contribution to Ionization Potential for He-Like Uranium
- Relativistic Quantum Dynamics
- Angular Correlation and Polarization Studies
- First Results for Polarization Studies of Radiative Capture Transitions
- Summary and Outlook

Collaboration

- O. Wehrhan
- O. wenrnan

Atomic Physics in Extremly Strong Coulomb Fields

The Structure of One-Electron Systems

Bound-State QED: 1s Lamb Shift

Test of Bound-State QED at High-Z

X-Ray Spectroscopy at the ESR Storage Ring

circumference: 108 m Number of Ions: 10⁸ Frequency: 10⁶ 1/s At the ESR, production of characteristic x-rays by electron capture into the bare ions (electron cooler or jet-target)

The Experimental Challenge

observation anglel, $\theta_{_{\text{lab}}}$ [deg]

velocity and the observation angle θ_{LAB}

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}; \beta = \frac{v}{c}$$

0° Spectroscopy at the Electron Cooler

Test of Quantum Electrodynamics (1s-LS)

The 1s-LS in H-like Uranium

Towards an Accuracy of 1 eV

Transmission Crystal-Spectrometer The Way Towards an Accuracy of 1 eV

FOCAL Spectrometer: $\epsilon \approx 10^{-8} \Rightarrow 3$ Events per Hour

Position Sensitive Ge(i) Detectors

Micro-Strip Germanium: Detector Development

200 Strips

 $\Delta x \approx 200 \ \mu m$ $\Delta E \approx 1.6 \text{ keV}$ **Δ**τ ≈ **50** ns

Commissioning at the beam line

Correlation and 2eQED Studies for He-like Uranium

A. Gumberidze et al., PRL (2004); Poster: B2-20

Relativistic Quantum Dynamics

Experiments at the Jet-Target

Experimental REC studies performed up to now

photon angular distribution studies for REC into the ground and excited states

Open questions !

Angular distributions for few-electron ions close to the threshold (decelerated ions)

Polarization of the emitted photons (no experimental information available)

Interaction of radiation with matter

- photoelectric effect
- Compton scattering
- pair production

Klein-Nishina formula

$$\frac{d\sigma}{d\Omega} = \frac{1}{2} r_0^2 (\frac{\hbar\omega'}{\hbar\omega})^2 (\frac{\hbar\omega'}{\hbar\omega} + \frac{\hbar\omega}{\hbar\omega'} - 2\sin^2\theta_c \cos^2\varphi)$$

angular distribution of scattered photons

Compton Polarimetry: Application of segmented solid state detectors

Compton Kinematics

Polarization Measurement for Radiative Recombination Transitions ($U^{92+} + e^- \Rightarrow U^{91+} + \hbar\omega$)

Polarization Measurement for Radiative Recombination Transitions ($U^{92+} + e^- \Rightarrow U^{91+} + \hbar\omega$)

the plane of polarisation can be measured

Polarization Studies

Detection of spin polarized ion beams

A.Surzhykov et al., Poster: B7-24

Summary

Atomic Structure at High-Z

- 1s LS in H-like uranium confirmed on a level of 1%
- further progress towards an absolute accuracy of 1 eV can be expect from high-resolution spectroscopy techniques

Quantum Dynamics

- segmented solid state detectors, an excellent tool for polarization studies in the hard X-Ray regime
- first polarization studies for hard x-rays
- unique tool for the diagnostic for spin polarized ion beams

Outlook

Challenges and Opportunities

For Atomic Physics at

The Future GSI-Facility

Languchallengesnities

- Heavy Highly Charged Ions
- Relativistic Heavy Ions
- Radioactive Nuclei
- Antiprotons

I. Extreme Static Electromagnetic Fields

II. Extreme Dynamic Fields

III. Ultra-Slow and Trapped Antiprotons

Atomic Physics Experiments at the International Accelerator Facility for Beams of Antiprotons and Ion Research (FAIR)

The SPARC-Collaboration:

Atomic Physics with Heavy Stable and

Radioactive Ions

Postpare 87-23

Stored Particle Atomic Research Collaboration

The FLAIR-Collaboration:

Atomic Physics with Slow Antiprotons

Facility for Low-Energy Anti-Protons and Ion Research