PRECISION TESTS OF QED IN STRONG FIELDS: EXPERIMENTS ON HYDROGEN- AND HELIUM-LIKE URANIUM

<u>A. Gumberidze</u>, Th. Stöhlker, D. Banas, K. Beckert, P. Beller, H.F. Beyer, F. Bosch, X. Cai, S. Hagmann, C. Kozhuharov, D. Liesen, F. Nolden, X. Ma, P.H. Mokler, M. Steck, D. Sierpowski, S. Tashenov, A. Warczak, Y. Zou

> Atomic Physics Group, GSI Darmstadt, Germany ESR Group, GSI-Darmstadt, Germany University of Cracow, Poland University of Frankfurt, Germany Kansas State University, Kansas, USA IMP, Lanzhou, China Swiatokrzyska Academy, Kielce, Poland Fudan University, Shanghai, China

PRECISION TESTS OF QED IN STRONG FIELDS: EXPERIMENTS ON HYDROGEN- AND HELIUM-LIKE URANIUM

- Introduction: QED, Lamb shift and the structure of one- and two-electron systems at high-Z
- Experiment at the storage ring ESR at GSI
- Production and storage of high-Z few-electron (or bare) ions
- X-ray spectroscopy at the ESR electron cooler, relativistic doppler effect
- Results in comparison with theoretical predicitions
- Summary
- Outlook (towards ~1 eV precision)
- Crystal spectrometer
- Detector development

Atomic Physics in Extremly Strong Coulomb Fields

year

The Atomic Structure of One-electron System

Bound-State QED: 1s Lamb shift

Production of highly charged heavy ions

GSI-ACCELERATOR FACILITY

Experiments at the ESR

number of lons: 10⁸

COOLED HEAVY-ION BEAMS

COOLED HEAVY-ION BEAMS

Electron cooler Voltage: 5 to 200 kV Current: 10 to 1000 mA 2.5 m interaction zone

COOLED HEAVY-ION BEAMS

ions interact 10⁶ 1/s with the collinear cold electron beam

properties of cold ion beams

momentum width $\Delta p/p$: $10^{-4} - 10^{-5}$ size 2 mm

Experiments at the ESR

number of lons: 10⁸

0° Spectroscopy at the Electron Cooler

Strong dependence on velocity v and on observation angle θ_{IAB}

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}; \beta = \frac{v}{c}$$

Experiments at the ESR

The Ground State Lamb Shift in H-like Uranium

1% sensitivity to the 1s Lamb shift 4% Sensitivity to the self energy 15% Sensitivity to the vacuum polarization Relative Measurement of the Two-electron Contribution to the Ground State Binding Energy in He-like Uranium

Ionization potential in the He-like System energykev Relative measurement All one electron contributions cancel out (e.g. finite nuclear size) Relative Measurement of the Two-electron Contribution to the Ground State Binding Energy in He-like Uranium

- Data subdivided into several groups
- Checked for consistency

ESR (First experiment for the two-contribution U90+):2248(9) eVTheory (Yerokhin et al. 1997):2246 eV

2 photon exchange \sim 14 eV 2eSE \sim 9.7 eV

Super-EBIT (First measurement of the 2e contribution)

(Marrs et al, 1995)

But!! Results limited by counting statistics (Z<83)

As an example; for Bismuth an uncertainty of 14 eV has been achieved for the value of 1876 eV. 2eQED ~ 6.7 eV

Our result agrees well with the most recent theoretical value.

The experimental uncertainty is of the order of two-electron QED contributions.

 <u>Compared to the former studies at Super-EBIT in Livermore, we could</u> substantially improve the statistical accuracy and extend studies to the higher-Z regime.

SUMMARY AND OUTLOOK

Simultaneous measurement at 0 and 180 deg.

High resolution detection devices; spectrometer + PSG, calorimeter

Excellent agreement between experimental results and theory for both cases

'No test can prove a theory but any single test can disprove it.' Karl Popper