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• AP experiments at the ESR
• the electron cooler
• the internal jet-target

• charge exchange processes
(cross sections and beam lifetimes)

•at the electron cooler
•recombination

•at the jet-target
•electron capture
•ionization

• beam lifetime estimates
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Charge exchange rates and beam lifetimes 
in storage rings

1/τ = λ = λtarget+λcooler+λresidual gas

Like in the jet-target, collisions with residual
Gas atoms or moleculs may lead to beam losses

For the ESR the assumed composition of the residual is

79% H2 20% N2 1%  Ar

f1
×σ×ρ=

τ
=λ

 

the beam lifetime (τ) is  connected to the charge-
exchange cross-section (σ) by the relation  
 

   
λ  denotes the charge exchange rate  
ρ  the effective target thickness (1/cm2)  
f  the revolution frequency of the circulating ion beam 
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At the ESR, production of characteristic
x-rays by electron capture into the bare 
Ions (electron cooler or jet-target)

Lamb-Shift Studies for High-Z Ions: 
X-ray Spectroscopy at the ESR Storage Rings
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•Electron capture into a bound 
ionic state by emission of a photon

•Time-reversed photionization

•Only possible capture/recom-
bination  process for bare ions 
colliding with  electrons

Radiative Recombination/Electron Capture

Electron Pickup Processes of  HCI
in Collisions with Electrons 

(Dynamic Processes)

AZ+ + e- ⇒A(Z-1)+  + ωh
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Dielectron Recombination/Electron Capture

•Resonant (non-radiative) capture of 
an electron into a bound state

•Time-reversed Auger process

•Important charge exchange process
for multi-electron ions
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At low velocities RR populates high n,l states
but no s-levels

electron cooler  dipole magnet
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x-ray/particle          coincidences

Experimental Setup at the Gas-Jet Target

U91+

U92+

particle 
detector dipole

magnet
moveable
detector 
(4O - 15O)

35O 60O 90O 120O

150O

jet target U92+

AP experiments at the Jet-Target

Beam energies: 10 to 400 MeV/u
Charge states: bare to Li-like ions
Photon detection: ε ≈10-3-10-2

Photon energies: 2 keV – 1 MeV

• Photon angular correlation studies  
• 0-deg photon spectroscopy 
• X-X coincidence experiments
• photon polarization experiments
• precision photon spectroscopy



Th. Stöhlker Atomic Processes and Beam Lifetimes
Workshop Rare Isotope Physics at Storage Rings February 2002, Hirschegg

The  Jet-Target

Supersonic jet, operates in ultra high 
vacuum enviroment (10-11 mbar)

Target densities

1012 – 1014 p/cm3

Single collision
conditions

Target profile:

FWHM: 5 mm
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A. Krämer et al., NIM B174, 205 (2001) 
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        60 mm
       30 mm

Target densities

by cooling to LN2 temperatures a density increase
from ≈1010 p/cm3 to ≈1013 p/cm3 has been achieved 
for H2

Future modifications

• Lower temperatures

• Variable/smaller jet-beam diameter (5mm to 1mm)

A. Krämer et al., NIM B174, 205 (2001) 
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 ESR current
 particle detector: charge exchange rate
 target density

time (s)

slow particle detector movement

experiment cycle at the target

beam injection,
cooling, deceleration data accumulation

By fast particle detector movement, the overall efficiency 
has now been improved by up to a factor of two.
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Charge Exchange Processes for Bare Ions

REC: Radiative Electron Capture (time reversed 
photoionization)
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σ
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NRC: Kinematic or Non -Radiative Electron Capture
(three body interaction where momentum and energy is 
shared between the collision partner)
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ZT  : Nuclear charge of the target
ZP  : Nuclear charge of the projectile
V  : Relative velocity between target electron and             

projectile   

Vrel

Vrel

velocity, v

P

(NRC, Non-Radiative Electron Capture)
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REC Cross Sections

For high-Z ions and high energies, REC is the 
most important charge exchange process for 
collisions with low-Z targets

REC populates predominately s-states and in 
particular the 1s ground state (80%)

20 40 60 80 100 120 140 160 180

0

200

400

600

co
un

ts

49 MeV/u

energy (keV)

0

300

600

900

L-
R

EC

K
-R

EC

K-
R

E
C

68 MeV/u

0

300

600

900

Lyβ

Lyβ

Lyα1

Lyα2

M
-R

EC

M
-R

E
C

L-
R

E
C

Lyα1

Lyα2

220 MeV/u
0

200

400
358 MeV/u

REC: dipole approximation
NRC: eikonal approach

30 100 400
1E-22

1E-21

1E-20

1E-19

1E-18

REC

NRC

 beam energy [MeV/u]

 

 c
ro

ss
 s

ec
tio

n 
σ 

[c
m

2 ]



Th. Stöhlker Atomic Processes and Beam Lifetimes
Workshop Rare Isotope Physics at Storage Rings February 2002, Hirschegg

0.01

0.1

1

10

100

1000

1 10 100

 adiabatisity parameter η

cr
os

s 
se

ct
io

n 
pe

r t
ar

ge
t e

le
ct

ro
n 

σ(
ba

rn
)

0.1 1 10
 beam energy [GeV/u] (for Au79+ ions)

0.01

0.1

1

10

100

1000

1 10 100

 adiabatisity parameter η

cr
os

s 
se

ct
io

n 
pe

r t
ar

ge
t e

le
ct

ro
n 

σ(
ba

rn
)

0.1 1 10
 beam energy [GeV/u] (for Au79+ ions)

K

KIN

E
E

=η

Data cover the Z 
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Z=54 to 92
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EK:   
K-shell binding energy

EKIN :
kinetic projectile energy

Total REC cross sections for bare ions

complete relativistic calculations for Au 79+ (Eichler et. al)

dipole approximation

The simple non-relativistic dipole approximation provides an 
accurate tool for cross section preditions (below 1 GeV/u)
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Th. Stöhlker et al., Phys. Rev. A58, 2043 (1998)

Beam life times with  the gasjet target

f1
×σ×ρ=

τ
=λ

 

the beam lifetime (τ) is  connected to the charge-
exchange cross-section (σ) by the relation  
 

   
λ  denotes the charge exchange rate  
ρ  the effective target thickness (1/cm2)  
f  the revolution frequency of the circulating ion beam 
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the beam lifetime (τ) is  connected to the charge-
exchange cross-section (σ) by the relation  
 

   
λ  denotes the charge exchange rate  
ρ  the effective target thickness (1/cm2)  
f  the revolution frequency of the circulating ion beam 
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First test experiment with an H2-target:
bare Pb ions at 25 MeV/u
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Beam lifetimes for ion beams in the NESR 
for a H2 target at 740 MeV/u

500 mA cooler current; T=0.1 eV
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Beam lifetimes for ion beams in the NESR 
for a Xe target at 500 MeV/u

500 mA cooler current; T=0.1 eV

With a Xe target and for heavy projectiles, the beam 
life time is entirely dominated by charge exchange in the target
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Beam life times for few-electron ions in the NESR

for heavy elements, a closed K-shell results in
an increase of beam lifetime by a factor of two

interplay between ionization and capture
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Accuracy of total cross section data

General experimental accuracy: 10 to 30%

Theory
Asymmetric collisions ZP >> ZT and 
bare, H-, He-like ions

REC: rigorous relativistic calculations 
(very accurate)

NRC: very difficult, general agreement with experiment
a factor 2 to 3 (relativistic eikonal approximation)
At low energies empirical scaling laws available.

Ionization: deviations between experiment and theory
typically on the 20% level (PWBA, SCA)

Symmetric collisions ZP ≈ ZT and 
bare, H-, He-like ions

Ionization/Capture: coupled channel calculations 
required (almost not available)
Low-projectile charge states
Almost no data available

Almost no theory available since perturbation theory not 
valid

Energy and ZT scaling unknown


