Summary of single and double electron capture cross sections for ion-atom collisions at low and intermediate energy

Anna Simon

Institute of Physics, Jagiellonian University, Cracow

Abstract: As the low energy ion facilities are being constructed there is an urgent need for electron capture cross sections data to be collected. In this report current experimental data, empirical predictions and theoretical models of electron capture cross sections will be presented. Experimental data from various articles will be given in The Appendix.

1. Motivation

One of the most important processes that occurs in collisions between highly charged ions (HCI) and atoms or molecules at low velocity is the electron capture or charge transfer. Information on electron capture cross sections of various multiply charged ions in the collisions with different targets at low and intermediate energy is needed for the construction of low energy ions facilities such as HITRAP at GSI, Darmstadt and a differentially pumped gas cell that is being constructed at the Institute of Physics, Jagiellonian University, Cracow.

Charge exchange between ions and atoms or molecules determines the ion beam lifetime in ion storage rings and ion beam lines. Knowledge on the cross sections for those processes is necessary to predict suitable vacuum conditions in the beam line, in order to minimize the charge loss and, consequently, lengthen the ion beam lifetime.

Calculations of target gas density, which are necessary for avoiding multiple collisions in the target volume, also require information about capture cross sections.

In this report current experimental data as well as empirical approximations of electron capture cross sections will be presented.

2. Experimental data results for single and double electron capture cross sections

Most of the experiments concerning electron capture processes were performed in the seventies and the early eighties. Those experiments focused on ion - H and ion - H₂ interactions, there are only few papers regarding other target atoms, such as He [1] and only recently experiments with Ar or Xe targets were performed [2]. A large amount of data involves single electron capture processes [3-8] but there are also some papers giving double electron capture cross sections values [1, 2, 9-11]. Triple electron capture for Xe^{q+}+Xe $20 \le q \le 32$ is given in [12].

Data from all the papers mentioned above is presented in the Appendix with a short description of experiment parameters (i.e. ions charges, species and energies, target used). There is a variety of ion species given, from hydrogen up to zinc, with different charge states – from highly charged to bare ions for light elements (Z \leq 8) but only singly and doubly ionized heavy elements. For the energies presented here (0,01 keV to 15 MeV) the cross sections range 10⁻¹⁶-10⁻¹⁴ cm². A strong energy dependence can be observed for low energy ions, for example in [3] cross sections for the lowest energies are about two orders of magnitude higher than for the fastest ions concerned in that paper.

In the low energy regime electron capture processes are strongly state selective. This case is presented in [12] where strong ion energy dependence is visible for final electron state. This is especially visible for C^{4+} electron capture to 3p state in comparison to capture into 3s or 3d states.

Charge dependence for single electron capture cross sections in low energy regime is also visible [4, 5, 9, and 11].

3. Theoretical calculations and empirical predictions of electron capture cross sections

Electron capture processes for low energy ion-atom collisions are still not very well understood, especially multiple electron capture processes. But there are many

empirical predictions as well as theoretical calculations regarding this problem given by different authors. Some of the models are presented in this section.

One of the first empirical formula was given by Salzborn and Müller [13]. They investigated electron capture cross sections for Ne, Ar, Kr and Xe ions collisions with rare gas atoms and molecular gases (H₂, O₂, N₂, CH₄, CO₂) in the energy range from few keV to 100 keV. Following Olson and Salop they assumed that electron capture cross sections in low energy regime do not depend significantly on the projectile energy and for ion charges q>4 do not depend on ion species and should depend only on the initial ion charge state. They used a simple function of initial charge state and ionisation potential:

$$\sigma_{i,i-k} = A_k i^{\alpha_k} I^{\beta_k}$$

where k is the number of electrons captured and A_k , α_k and β_k are the fitting parameters, which strongly depend on the number of electrons captured. (Table1).

Buizboill	while i formula mung paran	lictors.	
k	A_k	α_k	β_k
1	$1,43\pm0,76\cdot10^{-12}$	1,17±0,09	-2,76±0,19
2	$1,08\pm0,95\cdot10^{-12}$	0,71±0,14	-2,80±0,32
3	5,50±5,8·10 ⁻¹⁴	2,10±0,24	-2,89±0,39
4	3,57±8,9·10 ⁻¹⁶	4,20±0,79	-3,03±0,86

 Table 1

 Salzborn-Muller formula fitting parameters.

Another empirical formula was given by Schlachter at al. in [14]. They used reduced values of cross section and projectile energy per nucleon given by the following equations:

$$\overline{\sigma} = \frac{\sigma Z_2^{1,8}}{q^{0,5}}$$
$$\overline{E} = \frac{E}{Z_2^{1,25} q^{0,7}}$$

where q is the projectile initial charge state, Z_2 is the target atomic number, with σ in cm² and energy in keV/u.

Fitting function is given in [14] and the best fitting to the data they present is:

$$\overline{\sigma} = \frac{1,1 \cdot 10^{-8}}{\overline{E}^{4,8}} \left[1 - \exp\left(-0,037 \cdot \overline{E}^{2,2}\right) \right] \cdot \left[1 - \exp\left(-2,24 \cdot 10^{-5} \cdot \overline{E}^{2,6}\right) \right]$$

This estimation of cross section works only if some strictly specified conditions are fulfilled: $10 \le \overline{E}$ and $q \ge 3$, which mean that this formula does not work well for single and double electron capture nor for collisions in low energy regime.

The simplest model describing electron capture processes in low energy ion –atom collisions is Classical Over-Barrier Model (CBM) which was widely described by many authors, for example [16].

Here the cross section can be expressed as $\sigma=0.5\pi R_{c}^{2}$, where R_{c} is the internuclear distance given by [15]:

$$R_C = \frac{2.72\left(2\sqrt{q}+1\right)}{I_P}$$

where I_P is the projectile ionisation potential and q is the ion initial charge state.

4. Summary

In this paper a summary of cross sections for electron capture processes was presented and a brief description of empirical and theoretical calculations was given. Experimental cross sections for various species of ions and atoms are presented in the Appendix.

5. References

- 1. H. D. Betz et al., Phys. Rev. A 3 (1971) 197
- 2. N. Selberg, Phys. Rev. A 56 (1997) 4626
- 3. T. V. Goffe, M. B. Shah and H. B. Gilbody, J. Phys. B 12 (1979) 3763
- 4. R. A. Phaneuf et al., Phys. Rev. A 26 (1982) 1892
- 5. D. H. Crandall et al., Phys. Rev A 19 (1979) 504
- 6. R. W. McCullough et al., J. Phys. B 12 (1979) 4159
- 7. K. H Berkner, et al., J. Phys. B 11 (1978) 875
- 8. R. A. Phaneuf, Phys. Rev. A 28 (1983) 1310
- 9. Cuneyt Can, Phys. Rev. A 31 (1985) 72

- 10. W. L. Nutt et al., J. Phys. B 11 (1978) L181
- 11. K. H. Berkner et al., Phys. Rev A 23 (1981) 2891
- 12. G. Lubinski, et al. J. Phys. B 33 (2000) 5275
- 13. E. Salzborn, A. Müller, Phys. Lett. A62 (1977) 391
- 14. A. S. Schlachter et al., Phys. Rev. A 27 (1983) 3372
- 15. R. Mann, Z. Phys. D 3 (1986) 85
- 16. C. Verzani, Single and double electron capture cross sections at very low energies, KSU 2003

APPENDIX: Summary of single and double electron capture cross sections for ion-atom collisions at low and medium energy

T. V. Goffe, M. B. Shah and H. B. Gilbody, J. Phys. B 12 (1979) 3763:

Single electron capture $\sigma_{q,q-1}$ and loss $\sigma_{q,q+1}$ cross sections by boron ions ranging from singly ionized to bare ions. Measurements carried out for energy range 100-2500 keV for H and H₂ targets.

Energy (keV)	(10 ⁻¹	⁵⁴ cm ²)	(10^{-16})	cm ²)	(10^{-16} cm)	:m²)	$(10^{-16})^{\sigma_{21}}$	cm ²)	σ_1 (10 ⁻¹⁶	cm ²)	(10^{-16})	cm ²)	(10^{-16})	cm ²)
	н	H ₂	н	H ₂	н	H ₂	н	H ₂	н	H ₂	н	H ₂	н	H ₂
110							11-0	10-7	6.7	6-1	0.57	0.60		
							2.0	1.6	1.0	0.7	0.16	0.16		
185			30.3	18.3	22.5	14-0	11.2	10-6	6.2	5-5	0.78	0-60		
			5.4	2.7	8.0	4-5	1.8	1-4	0.7	0-6	0.13	0.12		
300			25.8	20.2	17.1	12-5	8.9	8-7	4.1	4-1	0.88	0-81		
			3.9	2.6	2.9	1.5	1.2	0.9	0.4	0-4	0.14	0.12		
500			15.7	14.3	9.9	9-5	4.5	5-5	2.2	2.7	0.96	1-18	0.19	0.19
			2.5	1.5	1.2	0-9	0.5	0-5	0.3	±0-2	±0.13	±0-16	±0.03	±0-04
750	10-0	10.0	8.5	10-4	4.3	6-5	2.0	3-8	0.93	1.27	0.92	1.12	0.24	0.24
	±1.9	±2-4	±1.0	±1-0	±0.3	±0-7	±0.2	±0-3	±0.12	±0-09	±0.15	±0-16	±0.03	±0-03
1000	7.1	7.9	4.2	6.3	2.1	3-8	0.90	1.72	0.29	0.60	0.72	1.23	0.23	0-31
	±1.2	±1.0	±0.5	±0.6	±0.2	±0-3	±0.10	±0-10	±0.05	±0-06	±0.11	±0-18	±0.03	±0-04
1250	3-6	5-5	1.90	4.0	1.02	2.22	0.43	0.96	0.16	0.29	0.73	0.90	0.24	0-33
	±0-4	±0-5	±0-30	±0.5	±0.10	±0-15	±0.08	±0-08	±0.02	±0-04	±0.11	±0-12	±0.03	±0-04
1600	1.63	3.23	0.99	2.24	0.41	1.17	0.50	0-48	0.08	0.16	0.53	0.92	0.23	0-39
	± 0.50	±0.30	±0-15	±0.24	±0-06	±0.07	±0.04	±0-05	±0.02	±0.02	±0.09	±0-11	±0.03	±0.04
2100	0.60	1-43	0.35	0.98	0.154	0.46	0.073	0.173			0.52	0.87	0.21	0.37
	±0.09	±0.13	±0.07	± 0.10	±0.02	±0.04	±0.014	±0.025			±0.10	±0.11	±0.03	±0-04
2500	0.35	0-84	0.20	0.71	0.075	0.26							0.20	0.36
	±0.06	±0.08	±0.05	± 0.10	±0.011	±0.02							±0.03	±0.04

Single electron capture and loss cross sections by carbon ions ranging from singly ionized to bare ions. Energy range: 100-2500 keV for H and H_2 targets.

Energy (keV)		σ_{65} 10^{-16} cm ²)	(10	σ_{54} -16 cm ²)	(10	σ_{43} - ¹⁶ cm ²)	(10	σ32 ¹⁶ cm ²)	(10	σ ₂₁ -16 cm ²)	(10	σ10 −14 cm²)	(10	σ ₁₂ - ¹⁶ cm ²)	(10	σ_{23} -17 cm ²)	(10	σ34) ⁻¹⁸ cm ²)
	н	H ₂	н	H_2	н	Hz	н	H ₂	н	H ₂	н	H ₂	н	H ₂	н	H ₂	н	H ₂
100									6.6	9.7	7-3	7.8	0-64	0.74				
130					27-0	19-0			±0.6	±0-6	±0-8	±0-8	±0-10	±0.10				
120					±4.0	±3-0												
148					74.0	13.0	22-0	14-0										
							±2-0	±1.0										
171					27-0	18.0	~	11.0										
					±4-0	±2.0												
185					-				\$-2	8.0	5-3	5-9	1.05	0-96				
									±0-7	±0.7	±0.5	±0-6	±0.18	±0-09				
220											-00		-010	20,05	0.85	0.75		
															±0-18	±0-09		
240							17-0	16-0										
							±2-0	±1.0										
285			33-0	24.0	26-0	17.0			7.0	7-1	3.7	4.2	1-14	1-05	1-49	0.94		
			±7.0	±4-0	±3-0	±2-0			±0.7	±0-5	±0-4	±0.5	±0-18	±0.09	±0-18	±0.18		
375							16-0	14-0	6-1	6-5	2.9	3.6	1.23	1-14	2-4	1.50	1-84	0.47
507							±2-0	±1-0	±0.7	±0-6	±0.4	±0-4	±0-18	±0.09	±0-4	±0.18	±0-35	±0.09
507			22-0	19.0	17-0	14.0	11-0	10-0	4.0	4-7	1.8	2.2	1-14	1.23	3-3	2.0	3-4	1-14
707			±4:0	±4.0	±2-0	±2.0	±1-0	±1.0	±0-4	±0-3	±0.2	±0-2	± 0.18	±0.18	±0-4	±0-3	±0-4	±0.18
/0/			15-0	15.0	10-5	10-0	5-8	7.3	2.0	2.8	0.90	1-2	1-14	1-40	3-5	3.0	6-0	3-3
860			±3-0 11-5	±2.0 13.0	±1-3 7-0	±1.0	±0-4	±0.5	±0.2	±0-2	±0.07	±0-1	±0.15	±0-18	±0-4	± 0.3	±0-8	±0.4
800			±2.0	±2.0	±0-8	8.6	3.5	5-0	1.2	2-0	0.68	1-1	1.05	1.50	3-6	3.9		
100			6.0	8.7	3-6	±0.8 5.6	±0-3 1-8	±0·4 3·3	±0·1 0·61	±0-2 1-3	±0.07 0.37	±0-1	±0.09	±0.18	±0-5	±0.4		
			±0.7	±0-7	±0.4	±0.6	±0.2	±0-3	±0-06	±0.1	±0-04	0-62 ±0-07	0-94	1-44	3.7	4-7	8-8	8.5
380	4.7	7.4	2.9	5-4	1.8	3.6	0.85	1.9	0.28	0.76	0-21	0.39	± 0-09 0-86	±0-18	±0.5	±0-5	±0.9	±0-9
	±0-9	±1.0	±0.2	±0-3	±0.2	±0-4	±0.09	±0.2	±0-03	±0.08	±0.03	±0.05	±0.09	1-36 ±0-18			8.8	9-6
750	2.5	5-1	1.7	3.5	0.86	2.0	0.41	1-0	0.18	0.41	0-11	0.19	±0-09 0-76	1.24	3.6	5-5	±0.9 7.8	±0-9 12-3
	±0-4	±0.8	±0.2	±0-3	±0.1	±0-2	± 0.06	±0-1	±0-02	± 0.05	±0-02	±0.03	±0.10	±0.15	±0.5	5-5 ±0-4	±0.9	±0-9
100	1.4	3.3	0.76	1.8	0.50	1.2	0.27	0-71	0.098	0.24	-0.05	20.03	70.10	20.13	3.3	5-4	8-8	14-0
	±0-2	±0.3	±0-1	±0-1	±0.08	±0-1	±0.04	±0.06	±0.015						±0.5	±0-4	±1.8	±0-9
500	0.75	2.0	0.40	1.0											200	204	× 1.0	70.9
	±0-1	±0.2	±0.06	±0-1														

G. Lubinski, et al. J. Phys. B 33 (2000) 5275: State selective electron capture cross section for molecular hydrogen target are presented, for He-like C^{4+} , N^{5+} and O^{6+} ions at the energy range 5-4000 eV/u.

$E \;({\rm eV}\;{\rm amu}^{-1})$	$3s (10^{-16} \text{ cm}^2)$	$3p~(10^{-16}~{ m cm}^2)$	3d (10 ⁻¹⁶ cm ²
5	8.4 ± 1.1	35.1 ± 1.9	1.8 ± 0.8
10	10.7 ± 1.1	37.8 ± 2.0	1.9 ± 0.8
15	12.5 ± 1.4	41.6 ± 2.2	2.3 ± 1.0
25	11.7 ± 1.1	32.0 ± 1.7	1.9 ± 0.7
48	13.7 ± 1.1	30.1 ± 1.6	2.0 ± 0.7
70	16.0 ± 1.1	24.4 ± 1.3	2.1 ± 0.7
100	14.3 ± 1.0	19.6 ± 1.1	1.5 ± 0.5
200	20.5 ± 1.2	21.0 ± 1.1	1.9 ± 0.5
300	19.3 ± 1.2	16.7 ± 0.9	3.4 ± 0.5
400	18.7 ± 1.1	13.3 ± 0.8	3.9 ± 0.5
600	20.7 ± 1.2	9.7 ± 0.7	5.1 ± 0.6
830	16.5 ± 1.0	7.5 ± 0.5	4.9 ± 0.5
1167	15.9 ± 1.4	7.1 ± 0.6	4.7 ± 0.6
	-	-	
$E (eV amu^{-1})$	$3s(10^{-16}\ cm^2)$	$3p(10^{-16} \text{ cm}^2)$	3d (10 ⁻¹⁶ cm
7	2.0 ± 0.2	0.4 ± 0.2	0.4 ± 0.2
10	2.4 ± 0.2	0.5 ± 0.2	0.4 ± 0.2
16	1.7 ± 0.1	0.6 ± 0.1	0.4 ± 0.1
21	1.2 ± 0.1	0.6 ± 0.1	0.3 ± 0.1
26	1.3 ± 0.1	0.8 ± 0.1	0.2 ± 0.1
38	1.6 ± 0.1	0.9 ± 0.1	0.4 ± 0.1
56	1.7 ± 0.1	1.0 ± 0.1	0.4 ± 0.1
84	1.6 ± 0.1	1.3 ± 0.1	0.5 ± 0.1
101	1.0 ± 0.1	1.1 ± 0.1	0.4 ± 0.1
156	0.8 ± 0.1	1.1 ± 0.1	0.6 ± 0.1
216	0.4 ± 0.1	0.5 ± 0.1	0.6 ± 0.1
307	0.4 ± 0.1	0.5 ± 0.1	0.9 ± 0.1
400	0.4 ± 0.1	0.9 ± 0.1	1.2 ± 0.1
	0.5 ± 0.2	1.4 ± 0.2	2.0 ± 0.2
600			2.8 ± 0.3
600 700	0.7 ± 0.2	2.1 ± 0.3	2.0 ± 0.3
		2.1 ± 0.3 3.0 ± 0.2	2.8 ± 0.3 3.4 ± 0.2
700	0.7 ± 0.2		
700 929	0.7 ± 0.2 0.8 ± 0.2	3.0 ± 0.2	3.4 ± 0.2
700 929 1000	0.7 ± 0.2 0.8 ± 0.2 0.7 ± 0.1	3.0 ± 0.2 3.3 ± 0.2	3.4 ± 0.2 3.1 ± 0.2

O⁶⁺:

$E (eV amu^{-1})$	$4 s (10^{-16} \ cm^2)$	$4p(10^{-16}~{\rm cm}^2)$	$4d(10^{-16}~{\rm cm}^2)$	$4f(10^{-16}cm^2)$
7	2.4 ± 1.3	17.9 ± 2.5	0.4 ± 0.4	0.2 ± 0.2
15	2.5 ± 1.2	21.7 ± 2.8	0.6 ± 0.4	0.2 ± 0.2
20	3.7 ± 1.1	25.2 ± 2.5	0.7 ± 0.3	0.3 ± 0.1
32	4.0 ± 1.7	32.4 ± 2.4	0.8 ± 0.5	0.4 ± 0.3
50	5.6 ± 1.6	31.8 ± 2.6	1.0 ± 0.5	1.1 ± 0.6
70	8.7 ± 2.7	31.7 ± 2.4	1.3 ± 0.5	2.4 ± 1.1
100	9.8 ± 1.7	27.8 ± 2.3	1.5 ± 0.5	3.9 ± 1.4
150	11.7 ± 2.1	21.6 ± 2.0	2.2 ± 0.5	4.0 ± 2.0
250	13.9 ± 1.9	15.0 ± 2.1	2.8 ± 0.4	5.9 ± 1.1
350	12.3 ± 2.2	13.9 ± 1.8	3.1 ± 0.7	6.7 ± 1.5
560	14.3 ± 2.1	10.7 ± 1.8	3.1 ± 0.6	5.8 ± 1.3
750	12.3 ± 1.6	9.2 ± 1.7	3.2 ± 0.6	8.0 ± 1.6
980	9.4 ± 1.7	7.9 ± 1.7	3.0 ± 0.5	7.9 ± 1.6
1313	10.0 ± 2.1	8.4 ± 1.8	4.2 ± 0.6	6.5 ± 1.1

R. A. Phaneuf, et al., Phys. Rev. A 26 (1982) 1892: Total electron capture cross section for O^{+q} , $2 \le q \le 6$ interactions with atomic and molecular hydrogen in the energy range 0,01-10 keV/u. -

Ion	Energy (eV/amu)	Velocity (10 ⁷ cm/s)	$\sigma_{q,q-1}(\mathbf{H})$	Standard deviation (10 ⁻¹⁶ cm ²	Absolute uncertainty	$\sigma_{q,q-1}(\mathbf{H}_2)$	Standard deviation (10 ⁻¹⁶ cm ²)	Absolute uncertainty
D ²⁺	188	1.90	4.1	0.3	0.8	1.2	0.3	0.6
	375	2.69	2.5	0.2	0.5	1.8	0.1	0.3
	656	3.56	1.9	0.1	0.3	2.2	0.2	0.5
	1255	4.92	2.2	0.1	0.4	2.9	0.1	0.4
	1885	6.04	2.0	0.1	0.3	3.1	0.1	0.5
	2520	6.98	2.3	0.1	0.4	3.8	0.1	0.6
	3275	7.95	3.3	0.3	0.7	3.9	0.1	0.6
) ³⁺	42	0.90	29.8	5.6	11.6			
	61	1.08				23.7	1.3	5.2
	73	1.19	34.6	6.0	12.7			
	193	1.93	31.7	4.2	10.0	20.9	2.2	5.6
	281	2.33	23.2	0.7	3.4	9.4	0.4	1.5
	363	2.65				7.7	3.2	5.7
	563	3.30	25.3	3.6	8.0	8.3	0.2	1.2
	983	4.35	26.7	0.6	3.8	8.6	0.3	1.3
	1890	6.03	23.7	0.4	3.3	9.6	0.4	1.5
	2830	7.39	22.6	0.5	3.2	9.9	0.3	1.5
	3770	8.53	21.8	0.5	3.1	11.3	0.5	1.8
	4915	9.74	22.4	1.3	4.0	11.7	0.6	2.0
)⁴+	56	1.04	25.3	5.0	10.2			
	81	1.25				41.0	3.5	10.1
	98	1.37	33.9	3.8	9.9			
	128	1.57	39.6	3.5	10.5	38.0	3.1	9.2
	215	2.04	30.5	3.2	8.6			
	257	2.23	26.6	3.7	8.6	39.6	6.4	13.5
	323	2.49				35.1	3.6	9.3
	375	2.69	23.3	0.9	3.6	25.5	0.4	3.5
	484	3.05	26.2	0.0	2.0	35.8	3.3	9.1
	750	3.80	26.3	0.8	3.9	27.0	0.8	4.0
	1310	5.03	28.3	1.2	4.5	32.2	0.7	4.6
	2515	6.97	26.9	1.4	4.6	29.8	0.9	4.4
	3775	8.53	24.4	1.0	3.9	28.4	0.7	4.1
	5050	9.87	24.5	0.3	3.4	26.2	0.7	3.8
-	6575	11.26	23.3	0.7	3.4	25.5	0.3	3.5
05+	69	1.16	64.1	3.3	15.2			
	100	1.39	71.8	6.8	19.6	18.5	3.9	7.6
	122	1.53	64.0	5.0	16.4			
	160	1.76	55.8	5.8	15.7	22.4	4.6	9.0
	219	2.06	57.7	4.5	14.8			
	269	2.28	37.7	3.4	10.1			
	320	2.48	32.5	2.8	8.6	18.8	5.5	10.1
	403	2.79				19.5	2.6	5.9
	605	3.41				23.1	4.1	8.4
	938	4.25	35.8	0.8	5.1	16.8	0.4	2.4
	1630	5.61	33.8	0.4	4.6	19.6	0.4	2.8
	3135	7.78	34.5	4.5	10.1	22.0	0.8	3.4
	4720	9.54	33.6	1.1	5.0	22.7	0.5	3.2
	6310	11.04	34.5	1.7	5.8	23.2	0.4	3.2
	8205	12.58	33.5	1.3	5.2	25.7	1.2	4.2

O6+	83	1.27	25.0	2.5	7.0			
	120	1.52	27.0	2.4	7.2	52.4	2.9	11.6
	145	1.67				55.1	4.0	12.9
	169	1.81				50.4	7.0	15.6
	192	1.92	36.5	2.9	9.4	51.2	5.2	13.5
	264	2.26	36.7	2.3	9.0	49.1	1.6	10.2
	323	2.50	42.1	2.0	9.9			
	383	2.72	36.5	4.1	10.6			
	484	3.05				51.8	4.5	12.9
	726	3.74				47.9	2.8	10.7
	1125	4.66	31.1	1.5	5.2	41.4	1.4	6.3
	1975	6.17	37.0	0.8	5.2	39.8	0.5	5.5
	3760	8.52	37.9	2.0	6.5	38.6	1.0	5.6
	5675	10.46	39.7	2.6	7.5	37.0	1.2	5.5
	7540	12.06	40.2	1.1	5.9	37.2	0.4	5.1
	9860	13.80	41.8	0.5	5.7	37.7	0.9	5.4

Total electron capture cross section for C^{+q} , $3 \le q \le 6$ interactions with atomic and molecular hydrogen in the energy range 0,01-10 keV/u:

Ion	Energy (eV/amu)	Velocity (10 ⁷ cm/s)	$\sigma_{q,q-1}(\mathbf{H})$	Standard deviation (10 ⁻¹⁶ cm	Absolute uncertainty 2)	$\sigma_{q,q-1}(\mathbf{H}_2)$	Standard deviation (10 ⁻¹⁶ cm ²)	Absolute uncertainty
C3+	11	0.46	14.7	2.0	4.7	8.0	2.1	3.9
	20	0.62	10.0	1.2	3.1	9.4	0.7	2.2
	36	0.84	8.5	1.2	2.7			
	39	0.87				13.1	1.5	3.7
	43	0.91	7.5	0.7	2.0			
	57	1.04				11.6	1.1	3.0
	70	1.16	6.8	0.9	2.1	10.2	1.0	2.7
	112	1.47	6.2	1.6	3.0	9.0	1.2	2.7
	161	1.76				5.6	1.6	2.9
C4+	15	0.54	13.7	3.2	6.3			
	27	0.72	17.0	2.9	6.3	53.2	4.9	13.5
	50	0.98	22.8	2.3	6.3	55.6	4.5	13.5
	57	1.05	20.9	1.6	5.4			
	75	1.20				44.5	1.7	9.4
	93	1.34	23.2	1.0	5.4	43.6	0.5	8.8
	150	1.70	25.0	1.1	5.5	37.3	2.8	8.8
	214	2.03	21.2	1.3	5.2	35.6	0.9	7.3
	387	2.73	32.7	1.9	7.9	39.1	2.3	8.7
C ⁵⁺	71	1.17	24.9	3.7	8.4			
	94	1.35				20.4	0.9	4.4
	115	1.49	24.4	2.1	6.5	21.6	2.7	6.3
	186	1.90	20.3	2.4	6.1	14.5	1.7	4.1
	268	2.27	22.1	1.7	5.7	8.5	0.5	1.9
	2490	6.93	27.2	0.8	4.0	17.9	0.5	2.6
	4280	9.09	31.2	1.3	4.9	23.5	0.8	3.6
	8750	12.99	36.4	1.0	5.3	28.8	0.4	4.0
C ⁶⁺	142	1.66	7.0	3.8	5.6	34.1	4.3	10.0
	160	1.74	11.8	2.6	5.1	38.4	4.4	10.7
	221	2.06	17.8	3.2	6.3			
	319	2.47	30.7	3.2	8.7	48.0	5.7	13.6

Cuneyt Can, Phys. Rev. A 31 (1985) 72:

Single electron capture cross sections for Ne^{+q} $2 \le q \le 7$ from atomic and molecular hydrogen target in the energy range 50-3000 qeV. Cross sections $\sigma_{q,q-1}$ are given in 10^{-15} cm²

E (eV/q)	$\sigma_{2,1}^{(Ne)}(\mathrm{H})$	$\sigma_{3,2}^{(Ne)}(H)$	$\sigma_{4,3}^{(Ne)}(H)$	$\sigma_{5,4}^{(Ne)}(H)$	$\sigma_{6,5}^{(\mathrm{Ne})}(\mathrm{H})$	$\sigma_{7,6}^{(\rm Ne)}({ m H})$
400	0.045±0.007	1.37±0.12	1.77±0.16	2.70±0.31	1.32±0.36	
600	0.033±0.005	1.55 ± 0.12	1.42 ± 0.14	3.19±0.36	1.27±0.71	
800	0.038±0.017	1.16±0.38	1.29±0.43	2.56±0.65	1.33 ± 0.54	3.15±1.1
1000	0.035 ± 0.006	1.27±0.15	$1.49 {\pm} 0.18$	2.00±0.22	1.98 ± 0.36	
E (eV/q)	$\sigma_{2,1}^{(\mathrm{Ne})}(\mathrm{H}_2)$	$\sigma_{3,2}^{(Ne)}(\mathrm{H}_2)$	$\sigma_{4,3}^{(\rm Ne)}({ m H_2})$	$\sigma_{5,4}^{(\rm Ne)}({ m H_2})$	$\sigma_{6,5}^{(Ne)}(H_2)$	$\sigma_{7,6}^{(\rm Ne)}({ m H}_2)$
200	0.081±0.004	2.33±0.03	3.66±0.07	3.93±0.15	4.49±0.45	
400	0.114±0.005	2.45±0.04	3.21±0.07	3.67±0.16	3.76±0.40	1.86±0.42
600	0.128±0.005	2.64 ± 0.04	3.20±0.07	3.60±0.16	3.70±0.42	
800	0.121±0.005	2.50 ± 0.04	2.87±0.06	3.20±0.013	3.42±0.26	4.04±0.40
1000	0.117±0.005	2.48 ± 0.03	2.98 ± 0.06	2.74 ± 0.12	4.95±0.43	

Double electron capture cross sections for Ne^{+q} from molecular hydrogen target in the energy range 50-3000 qeV. Cross sections $\sigma_{q,q-2}$ are given in 10^{-15} cm²

E (eV/q)	$\sigma^{(\mathrm{Ne})}_{4,2}(\mathrm{H}_2)$	$\sigma_{5,3}^{(Ne)}(H_2)$
200	0.084±0.007	0.17±0.03
400	0.069 ± 0.007	0.21±0.04
600	0.097±0.01	
800	0.082 ± 0.08	0.15±0.04
1000	0.069 ± 0.07	

Single electron capture cross sections for Ar^{+q} $2 \le q \le 10$ from atomic and molecular hydrogen target in the energy range 50-3000 qeV. Cross sections $\sigma_{q,q-1}$ are given in 10^{-15} cm²

E (eV/q)	$\sigma_{2,1}^{(Ar)}(H)$	$\sigma_{3,2}^{(Ar)}(H)$	$\sigma^{(\mathrm{Ar})}_{4,3}(\mathrm{H})$	$\sigma_{5,4}^{(A_f)}(\mathbf{H})$	$\sigma_{6,5}^{(Ar)}(H)$	$\sigma_{7,6}^{(Ar)}(\mathbf{H})$	$\sigma_{8,7}^{(Ar)}(H)$	$\sigma_{9,8}^{(Ar)}(H)$	$\sigma^{(\mathrm{A} t)}_{10,9}(\mathrm{H})$
200	0.029±0.014	1.77±0.24	1.92±0.33	2.61±0.40	3.74±0.67	3.83±0.78	2.95±0.68	3.30±1.0	4.48±1.76
520	0.034±0.012	1.48 ± 0.14	1.62 ± 0.20	2.24±0.29	2.90±0.39	2.70 ± 0.41	2.51±0.45	3.63 ± 0.72	1.09 ± 0.48
800	0.044±0.014	1.53±0.16	1.37±0.19	2.37±0.34	2.87±0.48	2.00 ± 0.42	2.48±0.49	2.29 ± 0.56	3.21±1.19
1250	0.052 ± 0.015	$1.48 {\pm} 0.26$	1.60 ± 0.25	$1.84{\pm}0.29$	2.66±0.43	3.11±0.53	2.52 ± 0.52	4.67±0.97	2.28 ± 1.14
E (eV/q)	$\sigma_{2,1}^{(Ar)}(H_2)$	$\sigma_{3,2}^{(Ar)}(\mathbf{H}_2)$	$\sigma_{4,3}^{(\mathrm{Ar})}(\mathrm{H}_2)$	$\sigma^{\rm (Ar)}_{5,4}({\rm H_2})$	$\sigma^{\rm (Ar)}_{6,5}({\rm H_2})$	$\sigma_{7,6}^{(\mathrm{Ar})}(\mathrm{H_2})$	$\sigma_{8,7}^{(\mathrm{Ar})}(\mathrm{H}_2)$	$\sigma_{9,8}^{(\mathrm{Ar})}(\mathrm{H}_2)$	$\sigma_{10,9}^{(Ar)}(H_2)$
50	0.110±0.006	2.24±0.05	2.93±0.11	2.43±0.12	4.27±0.22	4.10±0.27			
100	0.166±0.009	2.41±0.06	2.86 ± 0.11	3.01 ± 0.15	5.20±0.27	5.50±0.34			
200	0.242 ± 0.007	1.83±0.03	2.87±0.07	2.77±0.11	5.05±0.19	6.17±0.26	4.54±0.25	7.24±0.50	5.40±0.74
520	0.279±0.007	1.62 ± 0.03	2.88 ± 0.07	2.62 ± 0.11	4.20±0.18	5.23 ± 0.25	4.89±0.29	6.53±0.49	3.76±0.62
800	0.244±0.007	1.53±0.03	2.78 ± 0.08	2.82 ± 0.12	5.12 ± 0.20	5.12±0.25	4.59±0.28	4.87±0.41	6.04±0.81
1250	0.266±0.008	1.53±0.03	3.14±0.10	2.92 ± 0.14	4.29±0.21	5.56±0.29	5.25±0.32	7.53±0.55	7.59±0.91
2000	0.282 ± 0.008	1.30 ± 0.03	3.01 ± 0.08	2.61 ± 0.12	4.39±0.20	5.57±0.27	4.81±0.28	5.63±0.46	5.97±0.73
3000	0.258 ± 0.007	1.26 ± 0.03	2.92±0.09	2.71 ± 0.13	4.19 ± 0.21	$4.94 {\pm} 0.26$	$4.74 {\pm} 0.32$	$5.56 {\pm} 0.49$	$4.89 {\pm} 0.72$

Double electron capture cross sections for Ar^{+q} from molecular hydrogen target in the energy range 50-3000 qeV. Cross sections $\sigma_{q,q-2}$ are given in 10^{-15} cm²

E (eV/q)	$\sigma_{4,2}^{(\mathrm{Ar})}(\mathrm{H}_2)$	$\sigma_{5,3}^{(\mathrm{Ar})}(\mathrm{H}_2)$	$\sigma_{6,4}^{(\mathrm{Ar})}(\mathrm{H}_2)$	$\sigma_{7,5}^{(Ar)}(\mathbf{H}_2)$
100	0.59±0.04			
200	0.74±0.03		0.18 ± 0.02	0.17±0.02
520	0.62 ± 0.03	0.71 ± 0.05	0.41 ± 0.05	0.26±0.03
800	0.62 ± 0.03	0.79 ± 0.05	0.36 ± 0.04	0.22 ± 0.03
1250	0.55 ± 0.03			0.22±0.03
2000	0.59 ± 0.03	0.55 ± 0.04	0.29 ± 0.04	0.12±0.02
3000	0.56 ± 0.03		0.31 ± 0.04	0.17±0.03

H. D. Betz, et al., Phys.Rev. A 3 (1971) 197 Cross sections for charge exchange processes of Br^{q^+} and I^{q^+} ions collisions with H₂ and He at the energy 6-15 MeV. σ the values are given in 10⁻¹⁶ cm²/molecule and relative errors $\delta\sigma/\sigma$ are in percent:

														11
			ŝ	50	88 88								30 3	12
10+			13.35 < 0.2	0.038	8.18 0.022								12.2 0.282	0.258
+ 6	16.6 3 0.250 70	0.025 60	10.35 3 < 0.01	0.06 20	6.11 4 0.037 60	0.111 25			17.7 3 0.910 40	0.034 50	13.0 3 0.500 35	0.199 25	9.39 3 0.163 50	0.386 8
	e 6	40	5 ³	20	3	æ	3 75	10	30 3	15	35 3	12	4 75	2
+ ø	13.0 0.310	0.040	7.68	0.106	4.45<	0.166	4.19	0.009	13.4 0.640	0.168	10.6 0.272	0.336	7.41	0.452
+2	9.30 3 0.740 20	0.124 10	5.163.0.15450	0.173 15	3.14 3 0.03820	0.228 6 0.019 10	2.74 3 0.01640	0.162 8 0.010 15	10.4 3 0.81125	0,294 9	7.71 3 0.511 25	0.471 9 0.124 9	5,59 3 0,240 25	0.545 6
6 + 7 + 8 +	9.97 3 0.684 20	0.23010	5.53 3 0.104 50	0.32010	2.74 3	0.429 5 0.037 7	2.66 4 0.00760	0.286 7 0.021 15	10.5 3 0.418 30	0.587 8 0.078 10	7.35 3 0.18540	0.744 7 0.194 8	4.02 3 0.044 50	0.837 6 0.278 7
	50 G	9	50 4	5 10	Ŧ	6 9	4	9 B	460	5	30 3	4 6 5	4	9 9 8
+ 5	7.12 0.392	0.442	3.38	0.56	1,39	0.555	1.22	0.45 0.075	9.33 0.273	0.211	6.28 0.117	0.847 0.349 0.092	3.21	0.906 0.437 0.152
	35 3	0	4	6 10	4	4 0	ŝ	5 20 20	₽ 99	6 8 10 10	4 60	5 6 10	4	9 6
+ +	5.14	0.832	1.97	0.854	0.738	0.819 0.195	0.640	$\begin{array}{c} 0.740 \\ 0.130 \\ 0.027 \\ 0.004 \end{array}$	6.76 0.057	1.27 0.321 0.110	4.46 0.027	1.34 0.463 0.18	2.26	1.24 0.483 0.275
	15	3 5	'n	50 F					4	6 7	4	400		
+ n	2.18 0.033	$1.25 \\ 0.313$	0.898	1.25					3.46	$1.50 \\ 0.732 \\ 0.239$	1,98	1.63 0.717 0.328		
	4	4							ŝ	40.01-				
truget $\frac{q}{n}$ 2+ 3+ 4+ 5+	1.08	1.98 0.445 0.160							1.12	2.60 0.983 0.492 0.153				
b n	1 1	1 8 F	1 1	H 01	-1-2-	5	-1-2-	-064	-1-2-	H 01 07 47	-1 -2	3 2 1	11	3 5 1
Target	He		He		Не		$\rm H_2$		He		Не		Не	
Energy (MeV)	9		10		14		14		9		10		15	
lon	Br		Br		Br		Br		1		I		н	

D. H. Crandall, et al., Phys. Rev A 19 (1979) 504

Single electron capture cross sections for He- and Li-like B, C, N, O ions on molecular and atomic hydrogen target for the energy range 4-25 qkeV

Table Inclusion	0	0,	0 1
	v	$\sigma_{q,q-1}(\mathbf{H})$	$\sigma_{q,q-1}(\mathbf{H}_2)$
Ion	(10 ⁸ cm/sec)	(10-16 cm ²)	(10 ⁻¹⁶ cm ²)
B ^{2*}	. 0.43	11.8(2.0)	20.4(0.8)
	0.47	14.2(1.2)	20,3(0,6)
	0.66	18.5(1.2)	17.8(0.4)
	0,73	15,8(1,4)	17,9(0,6)
	0.75	17.4(1.6)	18.4(0.8)
B_{3+}	0,52	3.3(0.6)	5.4(0.8)
	0.57	4.3(0.5)	6.4(0.2)
	0.73	9.3(0.7)	5.0(0.2)
	0.81	8.7(1.1)	8,3(0.3)
	0,92	10.6(0.8)	8.5(0.6)
C3+	0.73	16.3(1.8)	6.4(0.3)
N ³⁺	0.51	20.8(1.2)	6.4(0.5)
	0.58	19.3(0.8)	6.8(0.4)
	0.72	17.7(0.8)	6.8(0.2)
	0.86	18.7(0.8)	7.9(0.3)
	0.99	15.8(1.2)	9.4(0.4)
B4+	0.60	30,9(2,8)	22.1(1.0)
-	0.66	26.5(1.6)	22.7(0.6)
	0,94	25.1(2.4)	23.0(0.8)
	1.06	27.2(1.0)	23.3(0.6)
C4+	0.48	28,8(1,4)	26.6(0.6)
	0.58	27.5(2.0)	24.8(1.2)
	0,66	32.7(1.8)	25,9(0,8)
	0,73	29.3(2.6)	23.6(0.8)
	0.84	28,5(2,6)	23,2(1.2)
	0,99	28,2(2,6)	22,4(0,8)
	1,06	27,3(2,2)	21.7(1.0)
N 4+	0.44	29.2(1.0)	34.0(0.8)
	0.55	30,5(1,0)	33.8(0.6)
	0.59	26.0(4.8)	29,6(1.4)
	0.64	29,2(0,6)	30.8(0.4)
	0.73	29,5(1,0)	31.4(1.2)
	0.84	26,2(0.8)	27.0(0.4)
	0,99	24,4(0.8)	25.2(0.4)
	1,16	25.0(1.2)	28,1(1,2)
B^{5*}	1.05	22,6(4,0)	22,8(3,4)
C^{5*}	0.82	29,2(9,2)	20,0(1.4)
N 5+	0,51	20.3(2.8)	13.0(0.6)
	0,62	25.4(0.6)	18,3(0,3)
	0.67	24.6(1.4)	17,9(1,4)
	0.72	26,7(1,2)	19,7(0,6)
	0,82	27,2(1.4)	22.5(0.4)
	0,94	29.6(1.0)	21.7(0.8)
	1,11	33.1(2.2)	23.2(0.6)
	1,29	30.0(2.6)	26,3(1,0)
O ⁵⁺	0.56	27,8(3,6)	18,4(0,6)
	0.61	32.7(2.2)	22,0(1,4)
	0.73	34.8(2.0)	22,4(1,0)
	0.87	30,4(2,2)	22,1(0.8)
	0,98	32.4(1.0)	22,8(0,6)
O ⁶⁺	0.61	31.0(5.4)	35,9(2.8)
-	0.67	37.7(6.8)	34,6(4.2)
	0.73	32,0(7,8)	33.9(1.8)
	0.95	37.6(3.8)	34.7(2.8)
	1.08	36.7(2.4)	34.3(1.4)
F ⁶⁺	0.73	35.5(2.2)	38.8(1.0)
	V.10	00.00(0.00)	000012001
Ar ⁸⁺	0.70	42.8(8.4)	34.9(1.6)

R. W. McCullough, et al., J. Phys. B 12 (1979) 4159 Cross sections for one-electron capture by Ba^{2+} , Ti^{2+} , Mg^{2+} , Cd^{2+} , Zn^{2+} , Kr^{2+} and B^{2+} in both H and H₂ have been determined in the energy range 0.8-40 keV.

-	I	3a ²⁺		Π^{2+}	M	lg ²⁺	0	2d ²⁺	2	$2n^{2+}$		Kr ²⁺		B^{2+}
Energy (keV)	н	H_2	н	H_2	н	H ₂	Н		н	H ₂	Н	H_2	н	H ₂
0.8						_			4.3	8.7	_			
0.9		_			-				± 0.5	± 0.6			_	_
1.0			_						5.2	9.0	0.07	2.13	_	
									±0.5	±0-6	±0-06	±0.05		
1.3									6-4 ±0-5	9.9 ±0.5		_		_
		0.05						4.95	7.6	10.9	0.14	2.54		
1.5		±0.002		_		_	_	±0.2	±0.6	±0.6	±0.08	±0.05		_
		0.07							-00	200	20 00	2.0 00		
1.8		± 0.004									_			
2.0		0.11			0.025	0.057	20.1	4-4	7.8	10.2	0.24	2.87		
2.0		± 0.01			±0.005	±0.003	± 1.4	± 0.1	± 0.4	± 0.4	± 0.06	±0.08		
2.3		0.15							_	_			_	
		± 0.01												
2.5		0.27					20.0	4.2	8.6	9.8				_
		± 0.01		0.22	0.064	0.069	±1.2	±0.2	±0.6	±0.6	0.25	2.16	1.0	22.4
3.0	_	0-42	_	0.32	0.064	0.068	20.8	4.2	10-5	10.1	0.35	3.15	1.0	22.6
		±0.02		± 0.03	±0.007	±0.005	± 0.7	±0·1	± 0.4	±0·3	±0.05	± 0.08	±0·3	±1.0
4.0		0.74		0.38	0.1	0.076	19.5	3.9	10.7	9.3	0-4	3.23	2.3	22.6
		±0.02		±0.02	±0.01	±0.003	±1·2	±0.1	± 0.4	±0·3	±0.06	± 0.08	±0.5	±0.5
5.0		0.96		0-42	0.15	0.083	19-0	3.5	13-3	9.0	0.5	3-25	4.5	22.7
		±0.04		±0.02	± 0.01	± 0.002	±0.9	±0.1	± 0.7	±0.3	±0.06	± 0.04	±0.7	±0·3
6.0		1.06		0.52	0.23	0.091	17.3	3.25	13-7	8.6	0.6	3.32	5.6	21.7
		±0.03	0.14	± 0.04	±0.02	±0.005	± 0.6	±0.1	±0.7	±0·2	±0.07	± 0.08	±0.9	±0.6
7-0		1.16	0.14	0.53	0.34	0.11	18.8	3.3	13.9	7.9	0.7	3.42	6.6	21.9
		±0.03	±0.03	±0.03	±0.02	±0.003	± 0.8	±0.1	±0.8	±0.2	±0.07	±0.04	±0.7	±0.6
8.0		1.19	0.19	0.53	0.4	0-11	16.7	3.0	15-6	8.3	0.8	3-51	8.2	21.6
		± 0.04	±0.04	±0.03	±0.03	±:0-01	± 1.0	± 0.1	± 0.6	± 0.2	±0.07	±0.03	± 0.7	±0.9
9.0		1.26	0.29	0.66	0.55	0-12	17-6	2.9	15-6	7.6	0.9	3.53	10.0	21.2
		±0.03	±0.05	±0.03	±0.03	±0.01	±0.9	±0·1	±1.0	±0.4	±0.07	±0.03	± 0.7	±0.7
10.0	_	1.22	0.36	0.75	0.71	0.14	16.5	2.8	17.5	7.6	0.95	3.52	11.7	20-6
		±0.07	±0.05	±0.05	± 0.05	±0.01	± 0.6	± 0.04	±0.7	±0.2	± 0.07	±0.06	± 0.7	± 0.5
11.0			0.43	0.93					_					
		1 22	±0.08	±0.09		0.17	16.0	2.7	16.0	7.0		2 (7	10.5	.
12.0		1-32	0-58	1.02	1.1	0.17	16-8	2.7	16-8	7.2	1.1	3.67	13.5	20.4
		± 0.04	± 0.08	±0.06	± 0.06	± 0.01	±0.6	± 0.1	±0.9	± 0.2	± 0.08	±0.05	±0.7	±0.6
13.0		-	0.69 ±0.09	0-97 ±0-06		14 THE-			_		_		_	
	0.07	1.36	0.96	1.1	1.3	0.18	16.2	2.6	17.7	7.0	1-2	3.74	15-1	19-3
14.0	±0.02	±0.04	±0.1	±0.1	±0.1	±0-01	±0.6	±0.03	±0.9	±0-3	± 0.08	±0.07	±0.9	±0.9
	10 02	2004	0.98	1.21	1.7	0.21	10.0	10.02	10 7	20.0	70.00	20.07	10 /	109
16-0			±0.09	±0.04	±0.07	±0.01								
	0.18	1.46					17.4	2.6	18.4	6.4	1.4	3.84	16-1	18.7
17.5	±0-02	±0.03					±0.6	±0.03	± 1.5	±0.2	± 0.08	±0.06	±0.6	±0.5
10.0			1.24	1.32	2.1	0.25								
18.0		_	±0-08	± 0.03	± 0.1	±0.01	—					—		
20.0	0.32	1.53	1.47	1.35	2.3	0.28	16.3	2.3	19-1	6.6	1.54	4.06	16.2	18.4
20.0	±0.02	±0.02	±0.1	±0.03	± 0.1	±0.01	± 0.8	±0·1	±1.0	± 0.1	± 1.09	±0.09	± 0.8	±0.7
22.5	0.4	1.54	1.74	1-43	2.5	0.32	15.8	2.2	18.5	6.1	1.64	3.99	16.7	18.1
22.3	±0.03	±0.07	± 0.1	±0.02	± 0.1	±0.02	± 0.9	± 0.1	± 1.6	± 0.2	± 0.09	± 0.06	± 0.8	±0-8
25-0	0.47	1.57	2.06	1.57	2.8	0.36	16-9	2.4	16.0	5.9	1.8	4.11	16-6	17.7
25 0	± 0.04	± 0.04	±0.2	± 0.03	± 0.1	±0.01	± 0.9	± 0.1	± 0.6	± 0.1	±0.09	±0·1	±0.7	±0.5
27.5		_	_	_	3.1	0.39							_	_
					± 0.2	±0.01								
30.0	0.64	1.66	2.3	1.73	3.4	0.4	16.6	2-2	16-3	6.1	$2 \cdot 1$	4-61	15.7	17.1
	±0.05	±0.06	± 0.1	±0.03	± 0.1	±0.01	±0.7	± 0.1	± 1.1	± 0.1	± 0.1	± 0.2	± 0.6	± 0.4
35-0	0.73	1.66	2.7	1.81	3.9	0-47	17.2	2.2	16.0	6.1	2.5	5.1	14-8	16-8
	± 0.04	±0.05	±0.2	±0.07	±0.2	±0.02	± 1.1	± 0.1	± 0.7	± 0.1	± 0.1	± 0.07	±0.7	± 0.6
40.0			3.02	1.9	4.3	0.51			_		_		_	
			± 0.2	± 0.06	±0.2	± 0.01								

W. L. Nutt, et al., J. Phys. B 11 (1978) L181 Cross sections for electron capture by C^{2+} and Ti^{2+} ions in H and H₂ have been determined within the energy range 0.5-14 keV

	С	2 +	Ti ²⁺					
Energy (keV)	$\sigma_{21}(H)$ (10 ⁻¹⁷ cm ²)	$\sigma_{21}(H_2)$ (10 ⁻¹⁷ cm ²)	$\sigma_{21}(H) \ (10^{-17} \text{ cm}^2)$	$\sigma_{21}(H_2)$ (10^{-17} cm^2)	$\sigma_{20}(H_2)$ (10 ⁻¹⁷ cm ²)			
0.5	11.0 ± 2.4	33.2 ± 2.1						
0.7	16.3 ± 3.9	45.4 ± 4.3	_	_				
1.0	21.4 ± 5.2	52.2 ± 5.2			_			
1.5	24.1 ± 4.9	54.7 ± 5.0		_	_			
2.0	37.0 ± 5.5	67.2 ± 5.0	_	_				
3.0	44.1 ± 6.4	72.3 ± 6.5	_	3.2 ± 0.3	2.7 ± 0.4			
4.0	$40-9 \pm 4-5$	70.6 ± 2.6		3.8 ± 0.2	3.2 ± 0.5			
5.0	44.1 ± 6.9	76.1 ± 5.6	_	4.2 ± 0.2	3.0 ± 0.4			
6.0	45.8 ± 6.6	79-7 ± 8.0	_	5.2 ± 0.4	3.3 ± 0.6			
7.0	42.3 ± 6.3	73-6 ± 7-9	1.4 ± 0.3	5.3 ± 0.3	3.5 ± 0.7			
8.0			1.9 ± 0.4	5.3 ± 0.3	3.9 ± 0.7			
8.5	44.1 ± 6.5	83.3 ± 5.5	_	_	_			
9.0		_	2.9 ± 0.5	6.6 ± 0.3	3.5 ± 0.7			
10.0	42·3 ± 7·9	90·0 ± 7·0	$3-6 \pm 0.5$	7.5 ± 0.5	3.5 ± 0.6			
11.0			4.3 ± 0.8	9-3 ± 0.9	3.1 ± 0.7			
12.0	43-5 ± 7-9	90-7 ± 6.5	5.8 ± 0.8	10.2 ± 0.6	2.2 ± 0.5			
13.0	_	_	6.9 ± 0.9	$9-7 \pm 0.6$	2.7 ± 0.5			
14-0	47·0 ± 8·9	92.1 ± 6.1	9.6 ± 1.1	11.0 ± 1.0	2.2 ± 0.9			

K. H. Berkner, et al., Phys. Rev A 23 (1981) 2891

Single and double electron capture cross sections for Fe^{q+} +H₂. 3≤q≤25. All the values are given in 10^{-16} cm²/molecule

Energy		Charge		
(MeV)	keV/amu	state	σ _{α, α} - 1	0 a, a- 2
190±9	3400	25	0.00039	
		24	0.00036	
		23	0.00030^{h}	
		22	0.00028^{b}	
		21	0.00025ª	
		20	0.00023ª	
65.0 ± 1.9	1160	22	0.0430	0.000 39 ^a
		20	0.0315	0.00014^{b}
		18	0.0250	0.00025^{2}
		16	0.0142	0.00006^{d}
		14	0.0108	
		13		
		12	0.0064	
		11		
60.0 ± 1.8	1070	21	0.051	0.005*
		20	0.045	
16.5 ± 0.7	294	16	5.6*	
		15		
		14	4.4	
		13		
		12	2.8	
		11		
		10	1.3	
15.8 ± 0.5	282	6	1.21	
$^{\prime}$ 15.4 ± 0.5	275	14	5.70	0.30°
		12	3.3	0.16°
6.16 ± 0.29	110	8	0.65	
5.77 ± 0.28	103	13	43.6	
		11	31.6	
		6	18.9	
		L .	11.3	
^a ±1.0% uncertainty. ^b ±1.5% uncertainty.	inty.			
+20%	inty.			
^a ±30% uncertainty.	inty.			

K. H. Berkner, et al., J. Phys. B 11 (1978) 875

Experimental single-electron-capture cross sections $\sigma_{q,q-1} \operatorname{Fe}^{q+} + H_2$ collisions. All cross sections have an absolute uncertainty of 10% except for the one marked \dagger , for which the uncertainty is 15%. Cross sections (10⁻¹⁷ cm²/molecule)

_		Cross sections $(10^{-17} \text{ cm}^2/\text{molecule})$					
Energy (MeV amu ⁻¹)	Incident charge state q	$\sigma_{q,q-1}$	σ_{i}				
1.10	11+		330				
	12+	0.064	355				
	13+		385				
	14+	0.109	435				
	16+	0.142	510				
	18+	0-250	630				
	20+	0.315	740				
	22+	0.430	950				
0.277	9+	11-9	485				
0.262	12+	32.8					
	14+	57.0					

R. A. Phaneuf, Phys. Rev. A 28 (1983) 1310

Single electron capture cross sections of $Fe^{q^+} 3 \le q \le 14$ on the H and H₂ target in the energy range 10-95 eV/u

q	Energy eV/amu	Velocity 10 ⁶ cm/s	$\sigma_{q,q-1}(\mathbf{H})$	Random ^a uncertainty (10 ⁻¹⁶ cm ²)	Total ^b uncertainty	$\sigma_{q,q-1}(\mathbf{H}_2)$	Random ^a uncertainty (10 ⁻¹⁶ cm ²)	Total ^b uncertainty
3	10.4	4.48	44	±3	±11			
3	20.4	6.27	44	3	11	28	±5	±10
4	13.8	5.16	25	2	6			
4	27.2	7.24	17	4	9	18	4	8
5	17.3	5.78	48	3	10			
5	34.0	8.10	48	3	10	52	5	13
6	20.8	6.33	57	4	13			
6	40.8	8.87	58	7	16	52	5	12
7	24.2	6.83	70	9	20			
7	47.6	9.58	81	4	16	56	6	14
8	27.7	7.31	90	14	28			
8	54.4	10.24	77	8	19	62	5	13
9	61.2	10.87	108	6	20	83	8	19
10	68.0	11.45	117	8	23	80	11	22
11	74.8	12.01	119	11	26	92	14	28
12	81.6	12.55	68	11	22	56	20	36
13	88.4	13.06	112	15	31	105	17	32
14	95.2	13.55	128	23	44			

N. Selberg, Phys. Rev. A 56 (1997) 4626

Absolute charge-exchange cross sections for the interaction between slow Xe^{q+} .15<q<43 projectiles and neutral He, Ar, and Xe for ion energy 3,8 qkeV.

TABLE I. Partial cross sections $\sigma'_{q,q-p}$ for the processes Xe^{q+} + He \rightarrow He ^{$(q-p)+$} + He ^{$r+$} + $(r-p)e^{-}$ in units of 10 ⁻¹⁵ cm ² . In the	q	$\sigma^1_{q,q-1}$	$\sigma_{q,q-1}^2$	$\sigma_{q,q-2}^2$
cases where only single-electron-capture cross sections $(\sigma_{q,q-1}^1)$	30	11.1±1.4		
are given, the results are obtained by means of the double-collision		12.6±1.6	3.4±0.5	1.2 ± 0.2
method (cf. Sec. III B). The collision energy was 3.8q keV.	32	9.6±1.2	2.8±0.5	0.9±0.2
	33	14.4±1.3	4.1±0.5	1.0 ± 0.2
	34	13.6±1.0		
	35	13.5±1.3	3.7±0.4	1.0 ± 0.1
	36	13.6±1.5	3.2±0.4	1.4 ± 0.2
	37	14.2±2.0	3.2±0.5	1.4 ± 0.3
	38	11.8±1.4	5.9±0.9	1.6±0.3
	39	17.6±3.1		
	40	14.4±2.0	3.2±0.6	2.1±0.5
	41	17.0±4.9		
	42	16.4±3.4	4.6±1.4	2.2±0.8

		TABLE II. 5	ame as raoie i, o	at with fit as a a		
q	$\sigma^1_{q,q-1}$	$\sigma_{q,q-1}^2$	$\sigma^3_{q,q-1}$	$\sigma_{q,q-1}^4$	$\sigma_{q,q-1}^5$	$\sigma^6_{q,q-1}$
24	11.3±1.3					
25	10.9 ± 0.9	5.3±0.5	3.5±0.4	1.2 ± 0.1		
26	13.4±1.8	7.0±1.0	3.7±0.5	1.0 ± 0.2		
27	13.7±1.6	6.6±0.9	4.1±0.4	1.1 ± 0.2	0.4±0.09	
28	13.9±1.3	6.6±0.7	5.4±0.6	2.0±0.3	1.0 ± 0.2	
29	5.9±0.4	3.3±0.3	2.3±0.2	0.8±0.1	0.5±0.06	0.3±0.05
30	15.2±1.4	6.1±0.7	3.7±0.5	1.7±0.3	1.0 ± 0.2	
31	15.3±1.1	5.9±0.5	3.7±0.3	1.7±0.2	0.9±0.1	
32	12.3±1.9	4.5±0.8	2.5±0.4	1.3 ± 0.2		
34	21.6±5.5					
35	18.9±2.1	5.7±1.0	4.8±0.8	1.3 ± 0.4		
36	22.0±4.3					
37	18.6±2.3	5.4±0.9	3.1±0.6	1.2 ± 0.2		
39	14.0 ± 4.4					
40	16.7±2.6	5.4±1.2	1.6±0.5	0.7±0.3		
41	22.6±3.1	7.6±1.7	4.9±1.2	2.4±0.7	1.2 ± 0.4	
42	24.0±4.5					
43	18.6±2.8	5.7±1.0	2.1±0.4	0.8±0.2		
q	$\sigma_{q,q-2}^2$	$\sigma^{3}_{q,q-2}$	$\sigma_{q,q-2}^4$	$\sigma_{q,q-2}^5$	$\sigma^6_{q,q-2}$	$\sigma_{q,q-2}^7$
25	0.4±0.07	0.8±0.1	1.0 ± 0.1	1.0 ± 0.12		
26	0.4±0.09	1.4±0.2	1.6±0.2			
27	0.2±0.06	0.6±0.1	0.8±0.2	1.4±0.2	1.2 ± 0.2	0.7±0.1
28	0.9±0.2	1.2 ± 0.2	1.1±0.2	1.4±0.2		
29	0.5±0.06	0.8±0.09	0.4±0.05			
30	1.6±0.3	1.9±0.3	1.8±0.3	1.9 ± 0.3		
31	1.4±0.2	2.3±0.2	1.4 ± 0.2	1.3 ± 0.2		
32	1.6±0.3	2.3±0.4	1.1±0.2	1.2 ± 0.2	1.0 ± 0.2	
35	2.6±0.6	2.9±0.6	2.7±0.6	1.5±0.4		
37	2.3±0.5	2.2±0.4	1.6±0.4	1.2 ± 0.3		
40	2.0±0.6	3.4±0.8	2.6±0.7			
41	1.8±0.6	6.0±1.4	2.8±0.8			
43	0.6±0.2	1.9±0.4	2.1±0.4			

TABLE II. Same as Table I, but with Ar as a target.

		1.1.522 11	. Same as raole	i, out with Ae as	a target.	
q	$\sigma^1_{q,q-1}$	$\sigma^2_{q,q-1}$	$\sigma^3_{q,q-1}$	$\sigma_{q.q-1}^4$	$\sigma_{q,q-1}^5$	$\sigma^6_{q,q-1}$
14	9.9±0.4					
15	12.1±0.6	7.2±0.4	3.3±0.2	1.4±0.9		
19	11.9±1.8					
20	14.9 ± 0.7	8.3±0.4	4.6±0.2	2.7±0.2	1.2±0.09	0.2±0.05
24	17.4±1.3					
25	17.5±1.0	8.2±0.5	4.5±0.3	2.6±0.2	1.6±0.2	0.5±0.08
27	25.8±3.2					
28	17.6±0.9	9.4±0.5	5.0±0.3	2.7±0.2	1.6 ± 0.1	0.9±0.08
29	23.1±2.1					
30	20.9±1.2	10.7±0.7	4.7±0.4	2.8±0.2	1.4 ± 0.1	0.6±0.08
31	19.3±2.1	9.1±1.1	4.5±0.6	2.2±0.3		
32	24.4±1.4	11.1±0.9	4.7±0.4	3.2±0.3	1.2±0.2	
34	21.9±3.5					
35	21.3±3.2	8.4±1.4	3.5±0.6	1.6 ± 0.4	1.2 ± 0.3	0.7±0.2
36	25.3±4.5	10.0 ± 1.8	4.8±0.9	2.0±0.4	1.2 ± 0.3	
37	28.8±4.2	12.2 ± 2.0	4.8±0.9	1.6 ± 0.4		
q	$\sigma_{q,q-2}^2$	$\sigma^{3}_{q,q-2}$	$\sigma_{q,q-2}^4$	$\sigma_{q,q-2}^{5}$	$\sigma^6_{q,q-2}$	$\sigma_{q,q-2}^7$
15	0.2±0.03	0.4 ± 0.04	0.8±0.06	1.3 ± 0.08	1.0 ± 0.07	
20	0.8±0.1	1.8±0.2	1.8±0.2	1.8±0.2	1.5±0.2	
25	1.3±0.2	1.7±0.2	2.0±0.2	2.0±0.2	1.4±0.2	1.0 ± 0.1
28	0.8±0.08	1.3±0.1	1.5±0.1	1.2±0.09	1.2±0.09	0.7±0.07
30	2.0±0.2	2.8±0.2	2.7±0.2	2.0±0.2	1.6±0.2	0.9±0.09
31	3.1±0.4	3.6±0.4	2.5±0.3	2.4±0.3	2.0±0.3	1.6±0.2
32	4.6±0.4	5.0±0.5	4.8±0.4	3.6±0.4	3.0±0.3	2.0±0.2
35	5.3±0.9	6.3±1.1	4.4±0.8	3.5±0.6	1.6±0.4	
36	5.1±1.0	4.5±0.8	3.9±0.7	2.4±0.5		
37	6.2±1.1	6.2±1.1	5.1±0.9	2.8±0.6	1.9 ± 0.4	
q	$\sigma_{q,q-2}^{\mathrm{S}}$	$\sigma_{g.g-2}^9$	$\sigma_{q,q-3}^3$	$\sigma_{q,q-3}^4$	$\sigma_{q,q-3}^5$	$\sigma^6_{q,q-3}$
20			0.5±0.09	0.8±0.1	1.1 ± 0.1	
28	0.5±0.06	0.5±0.05	0.1±0.03	0.2±0.03	0.3±0.04	0.5±0.05
30	0.7±0.08	0.4±0.06	0.3±0.06	0.4±0.07	0.5±0.07	1.0 ± 0.1
31	0.6±0.02					
32	1.4±0.2	0.6±0.1	0.4±0.09	0.4±0.09	0.8±0.1	0.7±0.1

TABLE III. Same as Table I, but with Xe as a target.