Experiment 00

series 0000 0000 0

Balmer- and L-shell series of highly charged uranium in the experimental storage ring Summer student program @ GSI - 2007

Thomas Burschil

Johann Wolfgang von Goethe-University, Frankfurt/Main

09/24/2007

Experiment 00

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Overview

Physical basics Radiative emission

Experiment Research at the ESR

series

Balmer series in hydrogen-like uranium L-shell series in helium- and lithium-like urani

Experiment 00

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Overview

Physical basics Radiative emission

Experiment Research at the ESR

series

Balmer series in hydrogen-like uranium L-shell series in helium- and lithium-like uranium

Experiment 00

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Overview

Physical basics Radiative emission

Experiment

Research at the ESR

series

Balmer series in hydrogen-like uranium L-shell series in helium- and lithium-like uranium

Experiment 00

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Radiative processes

transition

recombination

electron capture

- radiative (REC)
 - time reverse photo ionization
- non-radiative (NRC)
- three body interaction where momentum and energy is shareen the collision partner
- bremsstrahlung, etc.

Experiment 00

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

- transition
- recombination
- electron capture
 - radiative (REC)
 - time reverse photo ionization
 - non-radiative (NRC)
 - three body interaction where momentum and energy is shared between the collision partner
- bremsstrahlung, etc.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- transition
- recombination
- electron capture
 - radiative (REC) time reverse photo ionization
 - non-radiative (NRC) three body interaction where momentum and energy is shared between the collision partner
- bremsstrahlung, etc.

Experiment 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- transition
- recombination
- electron capture
 - radiative (REC) time reverse photo ionization
 - non-radiative (NRC) three body interaction where momentum and energy is shared between the collision partner
- bremsstrahlung, etc.

Experiment 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- transition
- recombination
- electron capture
 - radiative (REC) time reverse photo ionization
 - non-radiative (NRC) three body interaction where momentum and energy is shared between the collision partner
- bremsstrahlung, etc.

Transition

- from energy level to energy level
- energy splitting
- so-called series
 - finite state has the same main quantum number
 - Lyman, Balmer,
 Paschen,in
 hydrogen-like ions
 - K-shell, L-shell, M-shell,in other

 $\hbar\omega=E_f-E_i$

For example:

・ロト・日本・日本・日本・日本・日本

Experiment 00

Transition

- from energy level to energy level
- energy splitting
- so-called series
 - finite state has the same main quantum number
 - Lyman, Balmer, Paschen,in hydrogen-like ions
 - K-shell, L-shell,
 M-shell, in other

ions

 $\hbar\omega = E_f - E_i$

For example:

Experiment 00

Transition

- from energy level to energy level
- energy splitting
- so-called series
 - finite state has the same main quantum number
 - Lyman, Balmer, Paschen, ... in hydrogen-like ions
 - K-shell, L-shell, M-shell, ... in other ions

$$\hbar\omega = E_f - E_i$$

For example:

Experiment 00

Transition

- from energy level to energy level
- energy splitting
- so-called series
 - finite state has the same main quantum number
 - Lyman, Balmer, Paschen, . . . in hydrogen-like ions
 - K-shell, L-shell, M-shell, ... in other ions

$$\hbar\omega = E_f - E_i$$

For example:

Experiment 00

Transition

- from energy level to energy level
- energy splitting
- so-called series
 - finite state has the same main quantum number
 - Lyman, Balmer, Paschen, . . . in hydrogen-like ions
 - K-shell, L-shell, M-shell, . . . in other ions

$$\hbar\omega = E_f - E_i$$

For example:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

REC and NRC

- ion captures electron from a target atom
- two possibilities:
 - capture

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

REC and NRC

- ion captures electron from a target atom
- two possibilities:
 - 1. non-radiative electron capture

Experiment 00

REC and NRC

- ion captures electron from a target atom
- two possibilities:
 - 1. radiative electron capture
 - 2. non-radiative electron capture

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Experiment 00

REC and NRC

- ion captures electron from a target atom
- two possibilities:
 - 1. radiative electron capture
 - 2. non-radiative electron capture

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

REC and NRC

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

10 target nuclear charge, Z_r

REC and NRC

ion captures electron from a target atom

- two possibilities:
 - 1. radiative electron capture
 - 2. non-radiative electron capture

velocity, v

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

REC and NRC

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

394 MeV/u

189 MeV/u

132 MeV/u

98 MeV/u

350

REC and NRC

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Experiment •0

Research facility

• UNILAC \rightarrow SIS \rightarrow ESR

- electron cooler radiative recombination experiments
- gas-jet target electron capture experiments

<ロ> (四) (四) (三) (三) (三)

Research facility

• UNILAC \rightarrow SIS \rightarrow ESR

- electron cooler radiative recombination experiments
- gas-jet target electron capture experiments

Research facility

- UNILAC \rightarrow SIS \rightarrow ESR
- electron cooler radiative recombination experiments
- gas-jet target electron capture experiments

(ロ)、(型)、(E)、(E)、 E) のQの

Research facility

- UNILAC \rightarrow SIS \rightarrow ESR
- electron cooler radiative recombination experiments
- gas-jet target electron capture experiments

The Jet-Target

Supersonic jet, operates in ultra high vacuum enviroment (10⁻¹¹ mbar)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A. Krämer et al, NIM B 174. 205 (2001)

<ロ> (四) (四) (三) (三) (三) (三)

Observation places at the gas-jet target

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Observation places at the gas-jet target

Recorded spectra

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

Recorded spectra

Recorded spectra

Recorded spectra

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Calibration

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Calibration

system parameters

 $U^{92+} \rightarrow Ar$ observation angle: 35° beam energy: 88 MeV/u $\Rightarrow \beta = 0.4064, \gamma = 1.0945$ transfer factor between the laboratory and the emitter system: Doppler Shift = 1.3697

$${{\it E}_{{\it labor}}}$$
 sys $= rac{{{\it E}_{{\it emitter}}}$ sys $\gamma \left({1 - eta \cos artheta }
ight)$

Calibration

system parameters

 ${\rm U}^{92+} \rightarrow {\rm Ar}$ observation angle: 35° beam energy: 88 MeV/u $\Rightarrow \beta = 0.4064, \, \gamma = 1.0945$ transfer factor between the laboratory and the emitter system: Doppler Shift = 1.3697

$$E_{labor \ sys} = \frac{E_{emitter \ sys}}{\gamma \left(1 - \beta \cos \vartheta\right)}$$

Calibration

E _{emitter} system	E _{labor} system	channel
34.2 keV	46.9 <i>keV</i>	1784 ± 30
15.0 <i>keV</i>	20.4 <i>keV</i>	733 ± 10

Calibration

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Comparison

Binding energies associated with transitions in a Balmer series

peak	E _{labor} system	E _{emitter} system		
1	20.40 keV \pm 0.44 keV	14.88 keV \pm 0.32 keV		
2	22.65 keV \pm 0.43 keV	16.53 keV \pm 0.32 keV		
3	26.45 keV \pm 0.60 keV	19.30 keV \pm 0.44 keV		
4	28.35 keV \pm 0.43 keV	20.69 keV \pm 0.31 keV		
5	30.27 keV \pm 0.49 keV	22.10 keV \pm 0.36 keV		
6	33.82 keV \pm 0.43 keV	24.69 keV \pm 0.32 keV		
7	$36.17~\textit{keV}~\pm~0.62~\textit{keV}$	26.40 keV \pm 0.45 keV		
8	39.86 keV \pm 0.60 keV	29.09 keV \pm 0.44 keV		
9	41.90 keV \pm 0.47 keV	30.58 keV \pm 0.34 keV		
end	46.90 keV \pm 0.50 keV	34.23 keV \pm 0.36 keV		

▲ロメスピメス団メス団メ 目、 のへ⊙

Comparison

Binding energies associated with transitions in a Balmer series

▲ロメスピメス団メス団メ 目、 のへ⊙

Comparison

Binding energies associated with transitions in a Balmer series

series 0000 0000 0

▲ロメスピメス団メス団メ 目、 のへ⊙

Comparison

Binding energies associated with transitions in a Balmer series

series 0000 0000 0

▲ロメスピメス団メス団メ 目、 のへ⊙

Comparison

Binding energies associated with transitions in a Balmer series

Comparison

Binding energies associated with transitions in a Balmer series

peak	E _{emitter} system	E _{transition}	transition
1	14.88 keV \pm 0.32 keV	15.00 <i>keV</i>	$3s_{1/2} \rightarrow 2p_{3/2}$
2	16.53 keV \pm 0.32 keV	16.68 <i>keV</i>	$3d_{5/2} \rightarrow 2p_{3/2}$
3	19.30 keV \pm 0.44 keV	19.48 <i>keV</i>	$3s_{1/2} \rightarrow 2s_{1/2}$
4	20.69 keV \pm 0.31 keV	20.82 <i>keV</i>	$3p_{3/2} \rightarrow 2s_{1/2}$
5	22.10 keV \pm 0.36 keV	22.32 keV	$4d_{5/2} \rightarrow 2p_{3/2}$
6	24.69 keV \pm 0.32 keV	24.60 <i>keV</i>	$5s_{1/2} \rightarrow 2p_{3/2}$
7	26.40 keV \pm 0.45 keV	26.66 <i>keV</i>	$4p_{3/2} \rightarrow 2s_{1/2}$
8	29.09 keV \pm 0.44 keV	29.37 <i>keV</i>	$5p_{3/2} \rightarrow 2s_{1/2}$
9	30.58 keV \pm 0.34 keV	30.67 <i>keV</i>	$6s_{1/2} \rightarrow 2s_{1/2}$
end	34.23 keV \pm 0.36 keV	34.20 <i>keV</i>	continuum

Experiment 00

series 0000 0000

Results and Conclusion

Spectra with associated transitions to the L-shell

Results and Conclusion Cascade

L-shell series in helium- and lithium-like uranium

• experiment in August 2007

- spectra with the first 4 L-shell lines
- data do not fit with the theoretical values
- more corrections: shielding correction
 - ightarrow every electron in the ion shields one proton

L-shell series in helium- and lithium-like uranium

- experiment in August 2007
- spectra with the first 4 L-shell lines
- data do not fit with the theoretical values
- more corrections: shielding correction
 → every electron in the ion shields one prot

L-shell series in helium- and lithium-like uranium

- experiment in August 2007
- spectra with the first 4 L-shell lines
- data do not fit with the theoretical values
- more corrections: shielding correction
 → every electron in the ion shields one proton

L-shell series in helium- and lithium-like uranium

- experiment in August 2007
- spectra with the first 4 L-shell lines
- data do not fit with the theoretical values
- more corrections: shielding correction

 \rightarrow every electron in the ion shields one proton

L-shell series in helium- and lithium-like uranium

- experiment in August 2007
- spectra with the first 4 L-shell lines
- data do not fit with the theoretical values
- more corrections: shielding correction
 - \rightarrow every electron in the ion shields one proton

L-shell series in helium- and lithium-like uranium

- experiment in August 2007
- spectra with the first 4 L-shell lines
- data do not fit with the theoretical values
- more corrections: shielding correction
 - \rightarrow every electron in the ion shields one proton

$$E_{corr} \propto \left(rac{92}{90}
ight)^2$$

Spectrum of lithium-like uranium

M- and L-shell series

DEG35

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Comparison Shielding correction

Helium-like uranium in [keV]

peak	E _{labor sys}	E _{emitter} sys	E _{shield} corr.	E _{theor} .
11	18.44758	14.63544	14.95887	14.998
12	20.56333	16.31398	16.6745	16.682
13	24.14803	19.15792	19.58129	19.485
14	25.6703	20.36561	20.81567	20.824

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Comparison Shielding correction

Lithium-like uranium in [keV]

peak	E _{labor sys}	E _{emitter} sys	E _{shield} corr.	E _{theor} .
11	17.53268	14.31346	14.95669	14.998
12	19.54938	15.95987	16.67708	16.682
13	23.08047	18.84261	19.68937	19.485
14	24.33888	19.86996	20.76288	20.824

Experiment 00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conclusions

$$E \propto \left(\frac{92}{90}\right)^2$$

- shielding correction is very rough approximation
- a more precise theory is needed

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conclusions

$$E \propto \left(\frac{92}{90}\right)^2$$

- shielding correction is very rough approximation
- a more precise theory is needed

Experiment 00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The end

Experiment 00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The end

Questions?