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Phase Transitions in Quantum Chromodynamics QCD
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• Early universe at zero density and high temperature

• neutron star matter at small temperature and high density

• first order phase transition at high density (not deconfinement)!

• probed by heavy-ion collisions at GSI, Darmstadt (FAIR!)
– p.2



Astronomical Data on Neutron Stars
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Nuclear Equation as Input in Astrophysics

• supernovae simulations: T = 1–50 MeV, n = 10−10–2n0

• proto-neutron star: T = 1–50 MeV, n = 10−3–10n0

• global properties of neutron stars: T = 0, n = 10−3–10n0

• neutron star mergers: T = 0–100 MeV, n = 10−10–10n0
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Supernova Explosions

• stars with a mass of more than 8
solar masses end in a (core
collapse) supernova (type II)

• Supernova of AD 1054 was visible
for three weeks during daytime
(crab nebula)!

• supernovae are several thousand
times brighter than a whole galaxy!

• last supernova explosion for the last
400 years in our local group:
SN1987A

• most prominent candidate in the uni-
verse for producing the heavy ele-
ments (r-process)

Animation of a supernova explosion (Chandra, NASA)
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Neutron Stars

Movie (seven still images in 11/2000–04/2001)

• produced in core collapse
supernova explosions

• compact, massive objects:
radius ≈ 10 km, mass
1− 2M¯

• extreme densities, several
times nuclear density:
nÀ n0 = 3 · 1014 g/cm3

• in the middle of the crab
nebula: a pulsar, a rotating
neutron star!
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The Sounds of Pulsars

• PSR B0329+54: typical pulsar with a period of 0.7145519 s (1.4
pulses per second)

• PSR B0833-45 (Vela pulsar): in Vela supernova remnant, period
of 89 ms (11 pulses per second)

• PSR B0531+21 (crab pulsar): youngest known pulsar, in crab
nebula (M1), period: 33 ms (30 pulses per second)

• PSR J0437-4715: recently discovered pulsar, period of 5.7 ms
(174 pulses per second)

• PSR B1937+21: second fastest known pulsar with a period of
1.56 ms (642 pulses per second)

(Jodrell Bank Observatory, University of Manchester) – p.7



Masses of Pulsars (Thorsett and Chakrabarty (1999))

• more than 1600 pulsars
known

• best determined mass:
M = (1.4411± 0.00035)M¯

(Hulse-Taylor pulsar)

• extremely rapid rotations:
up to 716 Hz (1.397 ms)
(PSR J1748-2446ad)
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Massive Neutron Stars in Pulsar–White Dwarfs Systems?

(Nice, Splaver, Stairs (2003))

• four pulsars with a white dwarf
companion

• measure masses by changes in
the pulsar signal

• shaded area: from theoretical
limits for white–dwarf
companion

• massive pulsar J0751+1807:
M = 1.6− 2.8M¯ (2σ!)

• Nice et al. (2005):
M = 2.1± 0.2M¯ (1σ) and
M = 1.6− 2.5M¯ (2σ)!!!
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Massive Compact Objects In X-ray Binaries? (Clark et al. 2002)

• Vela X-1: X-ray pulsar,
M = 1.88± 0.13M¯ (Quaintrell et
al. 2003)

• Cygnus X-2: X-ray burster,
M = 1.78± 0.23M¯ (Orosz and
Kuulkers 1999),
or M = 1.44± 0.06M¯ (Titarchuk
and Shaposhnikov 2002)?

• U1700-37: High Mass X-ray Binary
(HMXB), M = 2.44 ± 0.27M¯ with
M(2σ) > 2M¯ ! (Clark et al. 2002),
could be a black hole!
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Constraints on the Mass–Radius Relation

(Lattimer and Prakash (2004))

• spin rate from PSR B1937+21 of 641 Hz: R < 15.5 km for M = 1.4M¯

• observed giant glitch from Vela pulsar: moment of inertia changes by 1.4%

• Schwarzschild limit (GR): R > 2GM = Rs

• causality limit for EoS: R > 3GM
– p.11



How To Measure Masses AND Radii of Compact Stars

• mass from binary systems (pulsar with a companion star)

• radius and mass from thermal emission, for a blackbody:

F∞ =
L∞

4πd2
= σSBT 4

eff,∞

(

R∞

d

)2

with Teff,∞ = Teff/(1 + z) and R∞ = R/(1 + z)

• redshift:

1 + z =

(

1−
2GM

R

)−1/2

• need to know distance and effective temperature to get R∞

• radius measured depends on true mass and radius of the star

• additional constraint from redshift measurement from e.g.
redshifted spectral lines fixes mass and radius uniquely
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Pulsar Parallax Measurement via VLBA (Brisken et al. (2002))

• Very Long Baseline Array
(VLBA) of 10 radio
antennas

• parallax measurements
with an accuracy of 2% for
the distance!

• distances determined for
more than 10 pulsars
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Pulsar Distribution in our Galaxy

• distance estimate by dispersion measure (DM)

• dispersion due to conducting interstellar medium

• works for known electron number density distribution
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Neutron Stars in Globular Cluster (Rutledge et al. (2002))

• X-ray observations with the
Chandra satellite of
globular cluster (NGC5139)

• spectra fitted with H
atmosphere

• most sources show a hot
spot from accretion
(extremely small radii)

• quiescent neutron stars
found (qNSs): thermal
emission from whole
surface measurable

• allows to constrain the EoS:
R∞ = 14.3± 2.5 km
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Central Compact Objects (CCOs) in Supernova Remnants

(Pavlov, Sanwal, Teter (2003))

• CCOs: point–like sources in the center of supernova remnants

• only observed in x–rays, radio–quiet, no pulsations seen

• temperatures of 0.2–0.5 keV and sizes of only 0.3–3 km!?!
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Isolated Neutron Star RX J1856 (Drake et al. (2002))

• closest known neutron star

• perfect black–body spectrum, no spectral lines!

• for black-body emission: T = 60 eV and R∞ = 4− 8 km!
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A Quark Star? (NASA press release 2002)

NASA news release 02-082:
“Cosmic X-rays reveal evidence for new form of matter”

— a quark star?
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Parallax Measurement from Hubble

(Lattimer and Walter (2002))

• corrected parallax
measurement with
Hubble:
D = 117± 12 pc

• Hubble measures only
T = 49 eV in the
optical band!

• refined modelling of the
atmosphere needed
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Modelling the Atmosphere of Neutron Stars (Burwitz et al. (2003))

• H atmospheres ruled out, they over-predict the optical flux!

• heavy element atmospheres ruled out, as there are no spectral lines!

• all classic neutron star atmosphere models fail!

• alternatives: two-component blackbody model (left plot)

• or condensed matter surface for low T < 86 eV and high B > 1013 G (right
plot) — grey body with a suppression of a factor 7!
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RXJ 1856: Neutron Star or Quark Star? (Trümper et al. (2003))
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• two-component blackbody: small soft temperature, so as not to spoil the x-ray
band

• this implies a rather LARGE radius so that the optical flux is right!

• conservative lower limit: R∞ = 16.5 km (d/117 pc)

• excludes quark stars and even neutron stars with a quark core!
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Spectra from Geminga (Caraveo et al. (2004))

• three component fit to spectra of the Geminga pulsar:

• power law tail at high energies (from magnetosphere)

• hot black-body with a size of only R = 40± 10 m (from polar caps)

• cool black-body with a size of R = 8.6± 1 km (from pulsar surface?)
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Phase Resolved Spectra from Geminga (Caraveo et al. (2004))

← radius of T = 43 eV emitting area
(cool black–body)

← radius of T = 170 eV hot spot
(hot black–body)

← power law flux at 1 keV

• power law tail at high energies (from magnetosphere)

• hot black-body with a size of only R = 60 m (from polar caps)

• cool black-body with a size of R = 10 km (from hot continent)

• varies with time, not from entire surface!
– p.23



Supernova remnant 3C58 from 1181 AD (Slane et al. 2004)

CHANDRA press release 04-13:
“Going to Extremes: Pulsar Gives Insight on Ultra Dense Matter and Magnetic

Fields” — rapid cooling due to unexpected conditions in the neutron star!
– p.24



Cooling of Supernova Remnants (Kaplan et al. (2004))
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• newest data from four neutron stars suggest fast cooling (direct URCA)

• standard cooling curves are too high!

• large nuclear asymmetry energy generates fast cooling!

• strange particles (exotic matter) generate fast cooling!
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Cooling processes with neutrinos

modified URCA process (slow):
N + p + e− → N + n + νe N + n→ N + p + e− + ν̄e

direct URCA process (fast):
p + e− → n + νe n→ p + e− + ν̄e

can only proceed for pp
F + pe

F ≥ pn
F ! Charge neutrality implies:

np = ne ↪→ pp
F = pe

F ↪→ 2pp
F = pn

F ↪→ np/n ≥ 1/9

nucleon URCA only possible for a large fraction of protons!
hyperon URCA process:

Λ→ p + e− + ν̄e , Σ−
→ n + e− + ν̄e , . . .

happens immediately when hyperons are present!
only suppressed by hyperon pairing gaps!
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Basic cooling of neutron stars (Page and Reddy (2006))

• slow standard cooling via
the modified URCA
process versus fast
neutrino cooling
(emissivities of
εν = 10n×T 6

9
erg cm−3 s−1)

• normal neutron matter: N,
superfluid neutron matter:
SF

• fast cooling due to ’exotic’
processes as nucleon di-
rect URCA or kaon con-
densation
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Cooling with hyperon gaps (Schaab, JSB, Balberg 1998)

• slow cooling for low mass neutron stars

• fast cooling for heavier ones due to direct nucleon URCA!

• hyperons are present in the core for M ≥ 1.35M¯

• hyperon cooling suppressed by pairing gaps (same curve for M = 1.6M¯)
– p.28



Cooling with hyperon gaps II (Page, Lattimer, Prakash, Steiner 2000)
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• fast cooling for M ≥ 1.3M¯ stars via direct nucleon URCA

• even faster cooling for heavier stars via hyperon direct URCA

• hyperon cooling not suppressed by pairing gaps!

• tiny density range of unpaired Λ hyperons present as Σ hyperons appear later!
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X-Ray burster

• binary systems of a neutron star with an ordinary star

• accreting material on the neutron star ignites nuclear burning

• explosion on the surface of the neutron star: x-ray burst

• red shifted spectral lines measured!
(z = 0.35→M/M¯ = 1.5 (R/10 km)) (Cottam, Paerels, Mendez (2002))
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Probes Using X–Ray Bursts

(Strohmayer (2004))

• X-ray bursts from accreting neutron stars originating from the surface

• measure profile of emitted spectral lines

• spectral profile is modified from space-time warpage

• → gives a model independent mass and radius!
– p.31



Bounds on Compactness for LMXB neutron stars

(Nath, Strohmayer, Swank, 2002)

• thermonuclear bursts from Low-Mass X-ray Binary (LMXB) 4U 1636-53 and
4U1728-34

• oscillations due to neutron star rotation

• burst hot spot spreads over entire neutron star surface!

• amplitude decreases with increasing compactness

• results: M/R < 0.163 (upper limit only due to unknown geometry) – p.32



Discovery of the Neutron Star Spin Frequency in EXO 0748-676

(Villarreal and Strohmayer, 2004)

• Low-Mass X-ray Binary (previously
found red-shifted spectral lines!)

• detected 45 Hz oscillation in 38
thermonuclear bursts

• fit to line profile: width depends on
surface rotational velocity
vrot ∝ νspinR

• determines radius for known spin
frequency!

• constraint: 9.5 < R < 15 km, with
Z = 0.35 (Cottam et al.) 1.5M¯ <

M < 2.3M¯

animation of a superburst

– p.33



Future Probes Using Gravitational Waves

(Thorne (1997))

• sources of gravitational waves: nonspherical rotating neutron stars, colliding
neutron stars and black-holes

• gravitational wave detectors are running now (LIGO,GEO600,VIRGO,TAMA)

• future: LISA, satellite detector! – p.34



Gravitational wave signal from strange quark matter?
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• binary neutron star mergers with a quark core: signal clearly
seen in different Fourier spectrum!
(Oechslin, Uryū, Pogosyan, Thielemann 2004)

• binary strange quark star collision: higher frequencies
possible before ’touch-down’ compared to normal neutron
stars
(Limousin, Gondek-Rosinska, Gourgoulhon 2005)

• collapse of neutron star to quark matter: sensitive to EoS
(Lin, Cheng, Chu, Suen 2006)
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Future: Square Kilometer Array (SKA)

• receiving surface of 1 million square kilometers

• 1 billion dollar international project

• potential to discover:

¨ 10,000 to 20,000 new pulsars

¨ more than 1,000 millisecond pulsars

¨ at least 100 compact relativistic binaries!

• probing the equation of state at extreme limits!

• cosmic gravitational wave detector by using
pulsars as clocks!

• design and location not fixed yet (maybe in South
Africa!)

movie – p.36



Modelling the Neutron Star
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Structure of Neutron Stars — the Crust (Dany Page)

• n ≤ 104 g/cm3:

atmosphere

(atoms)

• n = 104 − 4 · 1011 g/cm3:

outer crust or envelope

(free e−, lattice of nuclei)

• n = 4 · 1011 − 1014 g/cm3:

Inner crust

(lattice of nuclei with free

neutrons and e−)
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Structure of a Neutron Star — the Core (Fridolin Weber)
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Neutron Star Matter for a Free Gas

(Ambartsumyan and Saakyan, 1960)

Hadron p,n Σ− Λ others
appears at: ¿ n0 4n0 8n0 > 20n0

but the corresponding equation of state results in a
maximum mass of only

Mmax ≈ 0.7M¯ < 1.44M¯

(Oppenheimer and Volkoff, 1939)

=⇒ effects from strong interactions are essential to
describe neutron stars!
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Empirical Nucleon-Nucleon Interaction

Ansatz for the energy per particle:

ε/n = mN + Ekin
0

+
A

2
· u +

B

σ + 1
uσ + S0 · u ·

(

nn − np

n

)2

where u = n/n0. The parameters A, B, σ are fixed by nuclear matter
properties n0, E/A, and the compression modulus K, the asymmetry
term by the asymmetry energy S0 at n0.
The pressure is determined by the thermodynamic relation

P = n2
d

dn

( ε

n

)

EoS used as input in transport model calculations.
(Note: the equation of state can become acausal for σ > 2.)
Check: are low compressibilities ruled out by neutron star mass
measurements? – p.41



Empirical Nucleon-Nucleon Interaction: Masses
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(Irina Sagert, 2006)

• maximum mass M ≥ 2M¯ for K0 > 200 MeV (S0 = 30 MeV)!

• slight dependence on S0, up to ∆M = ±0.2M¯ for low K0 values

• EoS causal up to M = 2.4M¯ (K0 = 300 MeV)

• even ’soft’ equations of state can give high neutron star masses!
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At which density do new particles appear? (Page and Reddy (2006))
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• hyperons appear, when its in-medium energy equals its chemical potential:
µ(Y ) = ω(Y ) = mY + UY (n)

• thin lines: no potential, thick lines: with mean-field potential
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Composition of Neutron Star Matter
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• attractive potential for Σs and Ξs

• Σ− appear shortly before Λs around n = 2n0

• Λs present in matter at n = 2.5n0, Ξ− before n = 3n0
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Composition of Neutron Star Matter
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• Λs are present close to n = 2n0

• repulsive potential for Σs: Σ hyperons do not appear at all!

• population is highly sensitive to the in-medium potential!
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Impact of hyperons on the maximum mass of neutron stars

(Glendenning and Moszkowski 1991)

• neutron star with nucleons

and leptons only:

M ≈ 2.3M¯

• substantial decrease of the

maximum mass due to

hyperons!

• maximum mass for “giant

hypernuclei”: M ≈ 1.7M¯

• noninteracting hyperons

result in a too low mass:

M < 1.4M¯ !

– p.46



The EoS using Relativistic Mean–Field Models

-100

-50

 0

 50

 100

 150

 200

 0  1  2  3  4  5

P
ot

en
tia

lti
ef

e 
de

r 
N

uk
le

on
en

 [M
eV

]

Teilchenzahldichte [ρ]

Schroedinger equivalentes Potential

ρc

gm1

bmw85 tm1
gl78

KAOS

bodz0

djm-c

bm-a

(Mirjam Wietoska, 2006)

• sensitive to flow measurement: non-relativistic Schrödinger equivalent
potential (SEV)

• compare effective model using K = 200 MeV with:
standard nonlinear σ model (gl78, bmw85, gm1), with added nonlinear vector
selfinteractions (bodz0) fitted to nuclei (tm1) or to many-body approaches
(djm-c, bm-a) – p.47



Relativistic Mean–Field Model: Masses
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• maximum masses with nucleons and leptons only:
all above 1.44M¯!

• ultrasoft non-relativistic potentials compatible with pulsar data!

• but with hyperons: too soft! (in particular for sets bodz0 and
bm-a) – p.48



Phase Transitions in Quantum Chromodynamics QCD
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• Early universe at zero density and high temperature

• neutron star matter at small temperature and high density

• first order phase transition at high density (not deconfinement)!

• probed by heavy-ion collisions at GSI, Darmstadt (FAIR!)
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Mass-radius and maximum density of pure quark stars
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• green curves: MIT bag model

• blue curves: perturbative QCD
calculations
(Fraga, JSB, Pisarski 2001)

• case 2: Mmax = 1.05 M¯, Rmax = 5.8 km, nmax = 15 n0

• case 3: Mmax = 2.14 M¯, Rmax = 12 km, nmax = 5.1 n0
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Phases in Quark Matter (Rüster et al. (2005))
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• first order phase transition based on symmetry arguments!

• phases of color superconducting quark matter in β equilibrium:

• normal (unpaired) quark matter (NQ)

• two-flavor color superconducting phase (2SC), gapless 2SC phase

• color-flavor locked phase (CFL), gapless CFL phase, metallic CFL phase

• (Alford, Rajagopal, Wilczek, Reddy, Buballa, Blaschke, Shovkovy, Drago, Rüster, Rischke,

Aguilera, Banik, Bandyopadhyay, Pagliara, . . . ) – p.51



Heavy Quark Stars? (Rüster and Rischke (2004))
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• quark star with color–superconducting quarks

• uses NJL model for pairing quarks

• increased interactions gives more massive quark stars
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Matching the two phases: two possible scenarios

  µmin µχ
strong   µχ

weak
0

0.2

0.4

0.6

P
re

ss
ur

e 
p/

p fr
ee

massless
quarks

massive
baryons/quarks

• Weak: phase transition is weakly first order or a crossover→ pressure in
massive phase rises strongly

• Strong: transition is strongly first order→ pressure rises slowly with µ
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A Model For Cold And Dense QCD

massless
quarks

hadrons  /  

massive quarks

µ
min µ χ µ

Two possibilities for a first-order chiral phase transition:

• A weakly first-order chiral transition (or no true phase
transition),
=⇒ one type of compact star (neutron star)

• A strongly first-order chiral transition
=⇒ two types of compact stars:
a new stable solution with smaller masses and radii
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Quark star twins? (Fraga, JSB, Pisarski (2001))
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• Weak transition: ordinary neutron star with quark core (hybrid star)

• Strong transition: third class of compact stars possible with maximum masses
M ∼ 1 M¯ and radii R ∼ 6 km

• Quark phase dominates (n ∼ 15 n0 at the center), small hadronic mantle
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Third Family of Compact Stars (Gerlach 1968)

(Glendenning, Kettner 2000; Schertler, Greiner, JSB, Thoma 2000)
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• third solution to the TOV equations besides white dwarfs and neutron stars,
solution is stable!

• generates stars more compact than neutron stars!

• possible for any first order phase transition!
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Density profile of quark star twins (Papasotiriou 2006)
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Signals for a Third Family/Phase Transition?

• mass-radius relation: rising twins (Schertler et al.,
2000)

• spontaneous spin-up of pulsars (Glendenning, Pei,
Weber, 1997)

• delayed collapse of a proto-neutron star to a black
hole (Thorsson, Prakash, Lattimer, 1994)

• bimodal distribution of pulsar kick velocities (Bombaci
and Popov, 2004)

• collapse of a neutron star to the third family?
(gravitational waves, γ-rays, neutrinos)

• secondary shock wave in supernova explosions?

• gravitational waves from colliding neutron stars?
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Difference between quark stars, hybrid stars, etc?

• hybrid stars: neutron stars mixed with quark matter in
the core

• quark star twins: special hybrid stars with a pure
quark matter core

• strange stars or selfbound stars: consists of stable
quark matter only, purely hypothetical!!!
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Hypothetical Selfbound Star versus Ordinary Neutron Star

(Hartle, Sawyer, Scalapino (1975!))

selfbound stars:
• vanishing pressure at a finite

energy density

• mass-radius relation starts at the
origin (ignoring a possible crust)

• arbitrarily small masses and radii
possible

neutron stars:
• bound by gravity, finite pressure for

all energy density

• mass-radius relation starts at large
radii

• minimum neutron star mass:
M ∼ 0.1M¯ with R ∼ 200 km
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Summary

• equation of state (EoS) determines the maximum
mass and its radius

• in-medium potentials of hadrons determine the
population

• cooling is sensitive to the population

• new hadronic degrees of freedoms normally soften
the EoS!

• but quark matter can also stiffen the EoS!

• strong chiral phase transition leads to a third family of
compact stars

• sensitive to mass-radius relation, cooling, neutrinos,
gravitational waves!
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