2nd HADES Summerschool 2006

Experimental overview

Romain Holzmann, GSI

- Brief introduction
- A bit of history
- Past & present experiments
- Some conclusions & outlook

Motivation (Hot and Dense Hadronic Matter)

- The dilepton signal contains
 contributions from throughout the collision, ...
- i.e. also direct radiation from the early phase.
- It probes the electromagnetic structure of dense/hot nuclear (or partonic) matter.

 \rightarrow in-medium spectral functions

Various predictions... need to be sorted out!

Motivation (Chiral Symmetry Restoration)

• Substantial depletion of the condensates already in collisions at moderate beam energy.

The experimental challenge ...

	mass [MeV/c ²]	cτ [fm]	dominating decay	e⁺e⁻ branching ratio	a cincile
ρ	768	1.3	ππ	4.4 x 10 ⁻⁵	
ω	782	23.4	$\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\pi^{\scriptscriptstyle 0}$	7.2 x 10 ⁻⁵	
Φ	1019	44.4	K⁺K⁻	3.1 x 10 ^{-₄}	rare probes
			27.		 uncorrelated pairs non-static system

A+A collision in transport theory

1 AGeV Au+Au b = 3 fm

Lepton pairs as probes of nuclear matter: Experiments past, present and future

Experiments at different \sqrt{s} probe different regions of phase diagram

Overview (of HI expts.)

The beginning: anomalously high yields

Compilation of results on dilepton production

(Fermilab, SLAC, ISR, KEK. 1975-1985)

- → "anomalous" excess over Drell-Yan at low mass
- Main motivation for the CERN SPS dilepton expts.

The early HI experiments (the 1990'ies)

- 1. HELIOS/NA34 at the CERN SPS (e^+e^- , $\mu^+\mu^-$, γ)
- 2. CERES/NA45 at the CERN SPS (e^+e^-)
- 3. NA38/NA50 at the CERN SPS $(\mu^+\mu^-)$
- 4. **DLS** at the Bevalac (e^+e^-)

HELIOS at the CERN SPS

The NA34 apparatus in 1989

a) Helios/I in 1989

HELIOS

p + W dimuons

Compared with BUU

Cassing et al., PLB 377 (1996) 5

→ Data agree with cocktail of free meson decays

S + W dimuons

CERES at the CERN SPS

- ϕ symmetry
- dE/dx in silicon drift for background rejection
- 3.8 % mass resolution (TPC upgrade)

CERES data (Pb+Au 158 AGeV)

High-resolution analysis

Large excess yield:

- at low masses
- also between ω and ϕ

CERES: Low-mass dilepton enhancement

- Central A-A collisions exhibit a strong enhancement of low-mass dilepton production as compared
- to p-A reactions (CERES, HELIOS)
- Vacuum properties of vector mesons do not suffice to describe data, needed are:
 - pion annihilation (accounts for part only)
 - in-medium modifications of vector meson properties
 - broadening and/or mass shift of the rho meson

CERES vs. Theory

D. Miskoviec, Quark Matter 2005

The DLS spectrometer at the Bevalac

Electron pairs in the 1-2 AGeV regime

DLS acceptance

 $_S$

DLS: enhanced dilepton yields in A+A

 $_S$

RQMD description of the DLS data

A reminder: the DLS pp data

Data: Wilson et al. PRC 57 (1997) 1865

Theory (folded with the DLS response): C. Ernst et al. PRC 58 (1998) 447

⇒ Fair agreement of total yields

pp: more and better theories...

Romain Holzmann, GSI

Real trouble starts with pd data!

Data: DLS

Theory: Ernst et al. PRC 58 (1998) 447

What's different?

- Fermi momentum
- correlations
- pn collisions

General dilepton excess in DLS data!

→ To be compared to HADES results soon!

Romain Holzmann, GSI

S

In-medium Vector Meson spectroscopy

- 1. NA60 at the CERN SPS (In+In $\rightarrow \mu^+\mu^-$)
- 2. E325 at the KEK PS $(p+Cu \rightarrow e^+e^-)$
- 3. CB/TAPS at ELSA $(\gamma + A \rightarrow \omega \rightarrow \pi^0 \gamma)$
- 4. HADES at GSI (p+A \rightarrow e⁺e⁻)
- 5. CLAS at JLAB $(\gamma + A \rightarrow e^+e^-)$

The NA60 experiment at CERN

- Fixed target dimuon experiment at the CERN SPS
- Apparatus composed of 4 main detectors

Concept of NA60: place a *silicon tracking telescope* in the vertex region to — other measure the muons *before* they suffer multiple scattering in the absorber and *match* them (in both angles and momentum) to muon measured in the spectrometer

Fake matches

 "Fake Matches" are those tracks where a muon track from the Muon Spectrometer is matched to the wrong track from the Vertex Tracker
 "Fake Matches" are those tracks muon trigger and tracking

hadron absorber

- Fake matches of the signal pairs (<10% of CB) can be obtained in two different ways:
 - Overlay MC

Superimpose MC signal dimuons onto real events. Reconstruct and flag fake matches. Choose MC input such as to reproduce the data. Start with hadron decay cocktail + continuum; improve by iteration.

Event mixing

More rigorous, but more complicated.

Example of overlay MC: the ϕ

 σ_{ϕ} = 23 MeV σ_{fake} = 110 MeV

Fakes calculation with Overlay MC and Mixing method agree in absolute level and shape within 5%!

Subtraction of CB and fakes

Net data sample: 360 000 events

Fakes / CB < 10 %

For the first time, ω and ϕ peaks clearly visible in dilepton channel ; even $\eta \rightarrow \mu\mu$ seen

Mass resolution: 23 MeV at the ϕ position

Progress over CERES: statistics: factor >1000 resolution: factor 2-3

Particle ratios from the cocktail fits

 η/ω and ϕ/ω nearly independent of p_T ; 10% variation due to the ω

JAG

enhanced ρ/ω , mostly at low p_T (due to $\pi\pi$ annihilation, see later)

General conclusion:

peripheral bin very well described in terms of known sources
 low M and low p_T acceptance of NA60 under control

Understanding the cocktail for the more **central** data

Need to fix the contributions from the hadron decay cocktail Cocktail parameters from peripheral data? How to fit in the presence of an unknown source? \rightarrow Nearly understood from high p_T data, but not yet used

Goal of the present analysis:

Find excess above cocktail (if it exists) without fits

Isolate possible excess by subtracting cocktail (without ρ) from the data

- η : set upper limit, defined by
 "saturating" the measured yield in the mass region close to 0.2 GeV
 - \rightarrow leads to a lower limit for the excess at very low mass

 ∞ and ϕ : fix yields such as to get, after subtraction, a smooth underlying continuum

difference spectrum robust to mistakes even on the 10% level, since the consequences of such mistakes are highly localized.

M (GeV)

Excess spectra from difference: data - cocktai

No cocktail ρ and no DD subtracted

Clear excess above the cocktail ρ , centered at the nominal ρ pole and rising with centrality

Similar behaviour in the other p_T bins
Systematics

Illustration of sensitivity
to correct subtraction of combinatorial background and fake matches;
to variation of the η yield

Systematic errors of continuum 0.4<M<0.6 and 0.8<M<1GeV 25%

Structure in ρ region completely robust

Output: spectral shape much distorted relative to input, but somehow reminiscent of the spectral function underlying the input; by chance?

By pure chance,

for all p_T and the slope of the p_T spectra of the direct radiation, the NA60 acceptance roughly compensates for the phase-space factors and directly "measures" the <spectral function> Romain Holzmann, GSI

Comparison of data to RW, BR and Vacuum ρ

Predictions for In-In by Rapp et al (2003) for $\langle dN_{ch}/d\eta \rangle = 140$, covering all scenarios

Theoretical yields, folded with acceptance of NA60 and normalized to data in mass interval < 0.9 GeV

Only broadening of ρ (RW) observed, no mass shift (BR)

Romain Holzmann, GSI

New theoretical developments since QM05

Brown and Rho, comments on BR scaling, nucl-th/0509001 Brown and Rho, formal aspects of BR scaling, nucl-th/0509002

Rapp and van Hees, parameter variations for 2π , unpublished Rapp and van Hees, 4π , 6π ... processes , hep-ph/0603084 Rapp and van Hees, 4π , 6π ... processes , hep-ph/0604269

Renk and Ruppert, finite T broadening, Phys. Rev. C71 (2005) Renk and Ruppert, finite T broadening and NA60, hep-ph/0603110 Renk, Ruppert, Müller, BR scaling and QCD Sum Rules, hep-ph/0509134 Renk, Ruppert, Müller, theoretical thoughts on NA60, unpublished

Skokov and Toneev, BR scaling and NA60, Phys. Rev. C73 (2006) Dusling and Zahed, Chiral virial approach and NA60, nucl-th/0604071 Bratkovskaya and Cassing, HSD and NA60, in progress

Chiral Virial Approach Dusling/Zahed

First attempt to describe the centrality dependence of the excess data.

A6

Reasonable description, but increasing overestimate of central p peak

E325 experiment at KEK

12 GeV p + C, Cu \rightarrow $\rho,$ ω \rightarrow e^+e^-

E325

Naruki et al., PRL 96 (2006) 092301

-> Simulations a with mass-shifted ρ (-9%) describe data.

HADES pA proposal submitted to GSI PAC!

Romain Holzmann, GSI

E325

Advantage: large BR into 3-photon channel (8.5%)

Problem: rescattering of π^0

But simulation says that this can be managed...

Conclusion also supported by BUU transport.

Mosel et al., EJP A20 (2004) 499

Measurement done at ELSA tagged photon beam with combined Crystal Barrel/TAPS setup:

The HADES experiment at GSI

HADES

C+C 2 AGeV: e⁺e⁻ mass spectrum

HADES data vs. cocktail

HADES

- Electron pair yield observed in acceptance
- Corrected for reconstruction
 efficiency
- Cocktail yields from TAPS measurement and using m_t scaling

C+C 2 AGeV: Comparison to transport **HADES**

C+C 1 AGeV: HADES data (preliminary) HADES

- Electron pair yield observed in acceptance
- Corrected for reconstruction efficiency
- Substantial yield above the η contribution

Comparison with the DLS results

Generated events processed by the full HADES analysis including:

- detector (in)efficiency
- reconstruction (in)efficiency

HADES

- simplified event generator
 - (only π,η)
 - angular distributions

Summary of observed medium effects

• NA60	ρ broadening
• KEK E325	ρ shift (-9%)
• CB/TAPS	ω shift (-15%)
• CLAS	ρ broadening (t.b.c.)

→ HADES pA proposal submitted to GSI PAC

The future

- 1. PHENIX at RHIC
- 2. ALICE at the LHC

- 1. HADES at SIS and SIS100
- 2. CBM at SIS300
- 3. ???

2nd HADES Summerschool, September 2006

Romain Holzmann, GSI

Electron identification in PHENIX

PHENIX optimized for Electron ID

- track +
- Cherenkov light in **RICH** +
- shower in EMCAL

Pair cuts (to remove hit sharing) Charged particle tracking: DC, PC1, PC2, PC3 and TEC Excellent mass resolution (1%)

Combinatorial background reconstruction PH ENIX

Subtracted spectrum

Signal-to-background ratio

Comparison with cocktail

- Data and cocktail absolutely normalized
- Cocktail from hadronic sources
- Charm from PYTHIA
 Predictions are filtered in
 PHENIX acceptance
- Good agreement in π⁰ Dalitz
 Continuum: hint for enhancement not significant within systematics
- What happens to charm?
 Single e → pt suppression
 angular correlation???
- LARGE SYSTEMATIC ERROR!

Comparison with theory

 calculations for min bias
 QGP thermal radiation included
 R.Rapp, Phys.Lett. B 473 (2000) R.Rapp, Phys.Rev.C 63 (2001) R.Rapp, nucl/th/0204003
 Systematic error too large to distinguish predictions
 Mainly due to S/B

• Need to improve 10x - 100x

 \rightarrow HBD

Why so much background?

- Typically only 1 electron from the pair falls in the acceptance.
 - The magnetic field bends the pair in opposite directions.
 - Some curl up in the magnetic field and never come out.

- The new detector needs:
 - >90% electron ID
 - sit near the collision
 - sit in zero B-field
 - catch e^{+/-} before they get lost

Looking closer...

- Inner coil can cancel
 B-field at r < 60 cm
- Not enough room for traditional optics... mirrors won't work.
- Just put the detector right in the middle of things!
- Has potential, but...
 - must be thin
 - must detect a single UV photon and still be blind to all ionizing particles passing through it!!!

Gas Electron Multiplier (GEM)

- Two copper layers separated by insulating film with regular pitch of holes
- HV creates very strong field such that the avalanche develops inside the holes
- Just add the photocathode
- By the way: no photon feedback onto photocathode

- The original idea by F.Sauli (mid 90s) US Patent 6,011,265
- Traditionally CHARGED PARTICLE detectors (not photons)

2nd HADES Summerschool, September 2006

HADES and CBM at FAIR

Challenges for next generation experiments

Improve characterization

- Double differential (e.g. inv. mass, p_t)
- Centrality dependence

Reduce uncertainties

- Statistical errors
 - Fast detectors and DAQ
 - Develop a trigger (not always easy, excellent detectors needed)
- Systematic errors
 - Control combinatorial background (good background rejection)
 - Control (trivial?) dilepton cocktail
 - Fully understand efficiencies of detectors, track reconstruction, rejection cuts

Open questions

- What precision is really needed to distinguish between scenarios?
- Can one control uncertainties due to missing information about the fireball evolution?

Dielectron reconstruction in CBM

Background rejection performance

- Au+Au 25 AGeV, central collisions
- Signal mixed into UrQMD events

The muon option in CBM

Simulations Au+Au 25 *A*G*e*V:

- © Excellent signal to background ratio in high mass region
- $\ensuremath{{\otimes}}$ Low efficiency for small invariant masses and/or low p_t (enhancement region)

Challenging muon detector (high particle densities)

HADES upgrade: TOFINO replacement by RPC

•TOFINO:

•time-of-flight between 18°-45°

- 4 paddles per sector only
- limited resolution (350 ps)
- insufficient granularity for HI
- \rightarrow Replace by RPCs

Aim for:

- better particle ID
- higher granularity \rightarrow Au+Au system!

Recoil-less omega production in πA

The GSI secondary pion beam line

Two Arm Photon Spectrometer TAPS

Pulse-shape analysis in BaF₂

