QCD, Chiral Symmetry and Hadrons in Matter

Stefan Leupold

Institut für Theoretische Physik Justus-Liebig-Universität Gießen Germany

2nd HADES Summer School, Kirchhundem-Rahrbach, 10.-15. September 2006

・ 同 ト ・ ヨ ト ・ ヨ ト

Strong interaction at low and high energies Symmetries of QCD Systematic approaches to QCD Phases of QCD and order parameters In-medium changes of hadrons

I. Strong interaction at low and high energies

< ∃→

Strong interaction at low and high energies Symmetries of QCD Systematic approaches to QCD Phases of QCD and order parameters In-medium changes of hadrons

II. Symmetries of QCD

- 5 Flavor symmetry and multiplets
- 6 Chiral symmetry, spontaneous symmetry breaking
- 7
- Color group, gauge invariance

Strong interaction at low and high energies Symmetries of QCD Systematic approaches to QCD Phases of QCD and order parameters In-medium changes of hadrons

III. Systematic approaches to QCD

10 Lattice QCD

11 Chiral perturbation theory

Strong interaction at low and high energies Symmetries of QCD Systematic approaches to QCD Phases of QCD and order parameters In-medium changes of hadrons

IV. Phases of QCD and order parameters

Phase transitions, crossovers and critical points

14 Behavior of order parameters

- Two-quark condensate
- Weinberg sum rules

In-medium changes of hadrons

V. In-medium changes of hadrons

- What are spectral functions?
- 16 Low-density approximation
 - Resonance-hole loops and Dalitz decays
 - What is "chiral mixing"?
 - **Beyond low densities**
 - Selfconsistent calculations
 - Connections to condensates
- 18 Other approaches and concepts
 - Vector meson dominance
 - Approaches related to chiral symmetry

Strong interaction at low and high energies

- ∢ ⊒ →

Quantum chromodynamics

QCD Lagrangian (here restricted to up and down quarks)

$$\mathcal{L} = -rac{1}{4} m{\textit{F}}^{m{a}}_{\mu
u} m{\textit{F}}^{\mu
u}_{m{a}} + ar{m{q}}_j \left(i\gamma_\mu \partial^\mu - \mathcal{M}_{m{q}}
ight) \,m{q}_j + ar{m{q}}_j \,m{g}\gamma_\mu m{A}^\mu_{m{a}} (\lambda^m{a})_{jk} \,m{q}_k$$

with

- matter (quark) fields $q_j = \begin{pmatrix} u_j \\ d_i \end{pmatrix}$ and gauge (gluon) fields A^{μ}_a
- quark-gluon (and gluon-gluon) coupling constant $g \rightarrow \alpha_s = \frac{g^2}{4\pi}$
- current quark mass (matrix)

$$\mathcal{M}_q(\mu pprox 2\,{
m GeV}) pprox \left(egin{array}{cc} 3 & 0 \ 0 & 6 \end{array}
ight)\,{
m MeV}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Search for single quarks

• What distinguishes a quark from observable hadrons?

ヨトメヨト

Search for single quarks

- What distinguishes a quark from observable hadrons?
- "Quark has color"(?)

イロト イポト イヨト イヨト

Search for single quarks

- What distinguishes a quark from observable hadrons?
- "Quark has color"(?)
- But: How to measure color?

イロト イポト イヨト イヨト

Non-trivial degrees of freedom

- fundamental degrees of freedom: quarks, i.e.
 - very light objects with
 - fractional (electric and baryonic) charge
- \hookrightarrow (so far) not observed as single states in nature
- \rightarrow confinement

3

米間 とくほ とくほう

Count fundamental degrees of freedom

• for latter use: count light degrees of freedom: in total 40

quarks

(particles+antiparticles) \times spin \times flavor \times color

$$= 2 \times 2 \times 2 \times 3 = 24$$

Strong interaction at low energies

hadronic world:

- states with integer electric and baryonic charges
- rather heavy states (as compared to current quark masses)
- comparatively light pseudoscalars (as compared to other hadrons) → pions
- no degenerate (single particle) states with opposite parity (at least not for lightest states pions, rhos, omegas, nucleons, ...)
- for latter use: count light degrees of freedom: in total 3 (as compared to 40!) including strangeness: 8 (as compared to 52!)

Hadron spectrum

Strong interaction at high energies

small strong coupling constant (asymptotic freedom)

- use QCD perturbation theory for quantities insensitive to low energies
- note:

large coupling at low energies ightarrow suggestive: cannot simply read off relevant degrees of freedom from Lagrangian → compatible with

(but no proof of) confinement

Symmetries of QCD

5 Flavor symmetry and multiplets

- 6 Chiral symmetry, spontaneous symmetry breaking
- 7
- Color group, gauge invariance

Quantum chromodynamics

QCD Lagrangian (here restricted to up and down quarks)

$$\mathcal{L} = -rac{1}{4} m{\textit{F}}^{a}_{\mu
u} m{\textit{F}}^{\mu
u}_{a} + ar{m{q}}_{j} \left(i\gamma_{\mu}\partial^{\mu} - \mathcal{M}_{m{q}}
ight) \,m{q}_{j} + ar{m{q}}_{j} \,m{g}\gamma_{\mu} m{\textit{A}}^{\mu}_{a}(\lambda^{a})_{jk} \,m{q}_{k}$$

with

- matter (quark) fields $q_j = \begin{pmatrix} u_j \\ d_i \end{pmatrix}$ and gauge (gluon) fields A_a^{μ}
- quark-gluon (and gluon-gluon) coupling constant $g \rightarrow \alpha_s = \frac{g^2}{4\pi}$
- current quark mass (matrix)

$$\mathcal{M}_q(\mu pprox 2\,{
m GeV}) pprox \left(egin{array}{cc} \mathbf{3} & \mathbf{0} \ \mathbf{0} & \mathbf{6} \end{array}
ight)\,{
m MeV}$$

QCD Lagrangian and symmetries Flavor symmetry and multiplets Color group, gauge invariance Axial anomaly and n'

Importance of symmetries

Which features can we expect from symmetries?

 quantum mechanical example: central potential V(|r|) (e.g. hydrogen atom)

Importance of symmetries

Which features can we expect from symmetries?

- quantum mechanical example: central potential V(|r|) (e.g. hydrogen atom)
- \hookrightarrow rotational invariance

イロト イ押ト イヨト イヨト

Importance of symmetries

Which features can we expect from symmetries?

- quantum mechanical example: central potential V(|r|) (e.g. hydrogen atom)
- \hookrightarrow rotational invariance

Importance of symmetries

Which features can we expect from symmetries?

- quantum mechanical example: central potential V(|r|) (e.g. hydrogen atom)
- \hookrightarrow rotational invariance
- \hookrightarrow conservation of angular momentum
- \hookrightarrow degenerate energy levels

Importance of symmetries

Which features can we expect from symmetries?

- quantum mechanical example: central potential V(|r|) (e.g. hydrogen atom)
- \hookrightarrow rotational invariance
- \hookrightarrow conservation of angular momentum
- \hookrightarrow degenerate energy levels
- Translation to field theory
 - conservation laws:
 - conserved charges
 - selection rules

degeneracy:

states with same mass

< < >> < </p>

Explicit symmetry breaking

- quantum mechanical example: central potential V(|r
 |) (e.g. hydrogen atom)
- → rotational invariance
- → degenerate energy levels
 - switch on small external magnetic field

Explicit symmetry breaking

- quantum mechanical example: central potential V(|r|) (e.g. hydrogen atom)
- → rotational invariance
- → degenerate energy levels
 - switch on small external magnetic field
- → breaks rotational invariance explicitly
- \hookrightarrow energy levels slightly split up
- → approximately degenerate energy levels
- → systematics in splitting pattern

イロト イ押ト イヨト イヨト

Global symmetries of QCD

 $\mathcal{L} = -\frac{1}{4} F^{a}_{\mu\nu} F^{\mu\nu}_{a} + \bar{q}_{jf} \, i\gamma_{\mu} \partial^{\mu} \, q_{jf} + \bar{q}_{jf} \, g\gamma_{\mu} A^{\mu}_{a} (\lambda^{a})_{jk} \, q_{kf} - \bar{q}_{jf} \, (\mathcal{M}_{q})_{fg} \, q_{jg}$

- baryon number conservation: can change phase of all quarks simultaneously
 → U_B(1) → baryons cannot decay into mesons
- approximate symmetry for m_q → 0: chiral symmetry can mix flavors and helicities → SU_L(N_f) × SU_R(N_f) → (approximate) flavor multiplets + parity doublets (?) symmetry very good for N_f = 2, reasonable for N_f = 3
- approximate symmetry for m_q → ∞: center symmetry connected to confinement, complicated

・ロト ・得ト ・モト ・モト

Flavor symmetry

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{q}_f \left(i \gamma_\mu \partial^\mu + g \gamma_\mu A^\mu \right) \, q_f - \bar{q}_f \left(\mathcal{M}_q \right)_{fg} q_g$$

- (indices denote now flavor, not color)
- If all quark masses were the same: $\mathcal{M}_q
 ightarrow m_q \mathbb{1}$
- $\hookrightarrow \bar{q}_f(\ldots) q_f$ does not change under transformations $SU_V(N_f)$:

$$q_f
ightarrow [\exp(i\Theta_a au_a)]_{fg} q_g \;, \qquad ar q_f
ightarrow ar q_g \left[\exp(-i\Theta_a au_a)
ight]_{gf}$$

- \hookrightarrow isospin (flavor) conservation
- → degenerate states (multiplets), i.e.
 states with equal mass and different isospin (flavor)
 - indeed for $N_f = 2$: approximately degenerate states: (n, p), (π^-, π^0, π^+), (K^0, K^+), (K^-, \overline{K}^0), ...
 - quark masses not the same, but difference small (?) (difference = explicit symmetry breaking)

Flavor multiplets

• for $N_f = 3$: systematic splitting pattern

• allows for predictions $\rightsquigarrow \Omega^-$

크 > 크

Small quark mass difference?

- $m_u pprox 3$ MeV, $m_d pprox 6$ MeV $\Rightarrow \Delta m = m_d m_u pprox 3$ MeV
- What is small compared to what?

A D b 4 A b

Small quark mass difference?

- $m_u pprox 3$ MeV, $m_d pprox 6$ MeV $\Rightarrow \Delta m = m_d m_u pprox 3$ MeV
- What is small compared to what?
- $(m_d m_u)/m_{u,d}$ not small, but $(m_u m_d)/M_h$ small
- → isospin multiplets do not emerge because up and down quark masses are similar on an absolute scale, but because both are very small on a hadronic scale
- \hookrightarrow worth to study limit of massless quarks
- \hookrightarrow more symmetries ahead

イロト イ押ト イヨト イヨト

Chiral symmetry

$$\mathcal{L} = -rac{1}{4} \mathcal{F}_{\mu
u} \mathcal{F}^{\mu
u} + ar{q}_f \left(i \gamma_\mu \partial^\mu + g \gamma_\mu \mathcal{A}^\mu
ight) \, q_f - ar{q}_f \left(\mathcal{M}_q
ight)_{fg} q_g$$

• neglect quark mass term (and recall $ar{q} = q^\dagger \gamma_0$)

$$\mathcal{L}_{0} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + q^{\dagger}_{fs} (\gamma_{0} \gamma_{\mu})_{st} \left(i \partial^{\mu} + g A^{\mu} \right) q_{ft}$$

- (indices denote now flavor and spinor)
- γ_5 commutes with combination $\gamma_0 \gamma_\mu$ (but not with γ_0 alone \rightarrow mass term breaks chiral sym.)
- $\hookrightarrow \mathcal{L}_0$ does not change under transformations $SU_A(N_f)$:

$$q_{fs} \rightarrow \left[\exp(i\tilde{\Theta}_{a}\tau_{a}\gamma_{5})\right]_{fgst}q_{gt}, \quad q_{fs}^{\dagger} \rightarrow q_{gt}^{\dagger}\left[\exp(-i\tilde{\Theta}_{a}\tau_{a}\gamma_{5})\right]_{gfts}$$

Chiral transformations — the formal stuff

• take flavor transformations together $SU_V(N_f) \times SU_A(N_f)$

$$q
ightarrow \exp(i\Theta_a au_a) \, \exp(i ilde{\Theta}_a au_a \gamma_5) \, q$$

• introduce left- and right-handed quarks $q = q_L + q_R = \frac{1}{2}(1 - \gamma_5) q + \frac{1}{2}(1 + \gamma_5) q$

$$q_{R,L}
ightarrow \exp(i\Theta_a au_a) \exp(\pm i \tilde{\Theta}_a au_a) q_{R,L}$$

• note: $\gamma_5 q_{L,R} = \pm q_{L,R}$ and $(\gamma_5)^2 = 1$

・ 同 ト ・ ヨ ト ・ ヨ ト

Chiral transformations — the formal stuff

$$q_{R,L}
ightarrow \exp(i\Theta_a au_a) \, \exp(\pm i \tilde{\Theta}_a au_a) \, q_{R,L}$$

• 1. choose
$$\Theta_{Ra} := \Theta_a/2 = \tilde{\Theta}_a/2$$

$$q_{\sf R}
ightarrow \exp(i\Theta_{\sf Ra} au_{\sf a}) \, q_{\sf R} \;, \qquad q_{\sf L}
ightarrow q_{\sf L}$$

• 2. choose
$$\Theta_{La} := \Theta_a/2 = -\tilde{\Theta}_a/2$$

$$q_{R}
ightarrow q_{R} \ , \qquad q_{L}
ightarrow \exp(i\Theta_{La} au_{a}) \ q_{L}$$

- formally: $SU_V(N_f) \times SU_A(N_f) = SU_L(N_f) \times SU_R(N_f)$
- can perform flavor transformations separately for left- and right-handed quarks — without changing the physics (chiral symmetry)

Left- and right-handed states

• chirality: spin points in or against flight direction

- meaningful (Lorentz invariant) concept (only) for massless particles
- otherwise: boost from system slower than particle into system faster than particle
 - \rightarrow characterizes system, not particle

Left- and right-handed flavored quarks

$$\mathcal{L}_{0} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + q^{\dagger} \gamma_{0} \gamma_{\mu} (i\partial^{\mu} + gA^{\mu}) q = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + q^{\dagger}_{L} \gamma_{0} \gamma_{\mu} (i\partial^{\mu} + gA^{\mu}) q_{L} + q^{\dagger}_{R} \gamma_{0} \gamma_{\mu} (i\partial^{\mu} + gA^{\mu}) q_{R} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + u^{\dagger}_{L} \gamma_{0} \gamma_{\mu} (i\partial^{\mu} + gA^{\mu}) u_{L} + u^{\dagger}_{R} \gamma_{0} \gamma_{\mu} (i\partial^{\mu} + gA^{\mu}) u_{R} + d^{\dagger}_{L} \gamma_{0} \gamma_{\mu} (i\partial^{\mu} + gA^{\mu}) d_{L} + d^{\dagger}_{R} \gamma_{0} \gamma_{\mu} (i\partial^{\mu} + gA^{\mu}) d_{R} + \dots$$

- massless QCD contains $2 \times N_f$ identical copies of quarks
- \hookrightarrow consequences:
 - in interactions quarks keep their chirality and their flavor
 - interaction is blind to flavor and chirality (always the same interaction)

Chiral multiplets

- Remember: flavor symmetry, e.g. for $N_f = 2$
- \hookrightarrow conservation of isospin
- → degenerate states (multiplets), i.e.
 states with equal mass and different isospin
 - now: chiral symmetry

イロト イ押ト イヨト イヨト
Chiral multiplets

- Remember: flavor symmetry, e.g. for $N_f = 2$
- \hookrightarrow conservation of isospin
- → degenerate states (multiplets), i.e.
 states with equal mass and different isospin
 - now: chiral symmetry
- \hookrightarrow separate conservation of left- and right-handed isospin
- → degenerate states (multiplets), i.e. states with equal mass and different isospin and different handedness(?)
- \hookrightarrow weak interaction couples to V A; no difference between V and A in massless QCD(?)
- \hookrightarrow degenerate spectra of V and A(?)

< ロ > < 同 > < 回 > < 回 >

Absence of chiral multiplets

- $SU_V(N_f)$ transformations mix flavors
- $SU_A(N_f)$ transformations mix flavors and flip parity (γ_5)
- expect: (approx.) degenerate partners with opposite parity
- but: $N(940) \leftrightarrow N^*(1535), \rho(770) \leftrightarrow a_1(1240), \ldots$
- expect: degenerate spectra of V and A, e.g. in τ decay
- but: ~→ fig.

イロト イ押ト イヨト イヨト

One of the clearest signs of chiral symmetry breaking

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter

Chiral symmetry breaking (χ SB)

- → experimental findings can be explained by spontaneous symmetry breaking
 - definition: Lagrangian has symmetry which ground state (vacuum) does not have
 - in the following: four levels of sophistication:
 - dinner table with salad plates
 - Heisenberg magnet
 - simple scalar field theory (exercises)
 - chiral symmetry breaking (χSB)

Dinner table with salad plates

parity invariance

ъ

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter

Dinner table with salad plates

parity invariance

broken

3

ъ

Dinner table with salad plates

parity invariance

broken

Faessler

э

3

Dinner table with salad plates

"heated" system: hungry guests, end of dinner announced

parity invariance

broken

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter

3

Dinner table with salad plates

"heated" system: hungry guests, end of dinner announced

parity invariance

broken

restoration

A D b 4 A b

Heisenberg magnet

 interaction between microscopic magnetic dipoles (spins) does not prefer any direction

$$\mathcal{H}_{ ext{int}} = g \sum_{i
eq j} ec{s}_i \cdot ec{s}_j$$

- \rightarrow rotational invariance
 - in contrast ground state (unexcited solid state) has preferred direction
- → breaking of rotational invariance

Features of the Heisenberg magnet

 gapless excitation spectrum: spin waves

A D b 4 A b

- → Goldstone bosons
- Why is it gapless?
- study (infinitely) long wavelength limit and vanishing frequency

Features of the Heisenberg magnet

 gapless excitation spectrum: spin waves

- \rightarrow Goldstone bosons
- Why is it gapless?
- study (infinitely) long wavelength limit and vanishing frequency
- \rightarrow spin wave corresponds to (adiabatic) rotation of whole solid state

• does not cost energy

Features of the Heisenberg magnet II

- macroscopic magnetization $\vec{M} = \langle \vec{s}_i \rangle$
- *M* can be measured in the presence of an external magnetic field *B*:

$$\mathcal{H}_{ ext{int}} = g \sum_{i
eq j} ec{s}_i \cdot ec{s}_j + ec{\mathcal{B}} \cdot \sum_i ec{s}_i$$

- \vec{B} breaks rotational invariance explicitly
- presence of *B*: excitation spectrum no longer gapless; however, gap scales with *B*
- if system is heated, \vec{M} vanishes above a critical value
- \rightarrow phase transition, symmetry restoration
- $\rightarrow \vec{M}$ is order parameter

Temperature dependence of order parameter

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter

Is symmetry only hidden?

- spontaneous symmetry breaking is also called "hidden symmetry"
- Is symmetry still there?

Is symmetry only hidden?

- spontaneous symmetry breaking is also called "hidden symmetry"
- Is symmetry still there?
- rotation of solid state: not the same system, but same properties

Symmetry is only hidden

- Is symmetry still there?
- symmetry suggests degenerate states?
- \hookrightarrow study e.g. phonon excitation:

1	1	1	1	1
1	1	1	Ť	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

Symmetry is only hidden

- Is symmetry still there?
- symmetry suggests degenerate states?
- \hookrightarrow study e.g. phonon excitation:
- \rightarrow 1. no symmetry breaking:
 - excitations in x and y direction cost same energy
- \rightarrow 2. symmetry breaking:
 - excitations in x and y direction do not cost the same energy

Symmetry is only hidden

- Is symmetry still there?
- symmetry suggests degenerate states?
- \hookrightarrow study e.g. phonon excitation:
- \rightarrow 1. no symmetry breaking:
 - excitations in x and y direction cost same energy
- \rightarrow 2. symmetry breaking:
 - excitations in x and y direction do not cost the same energy
 - but: excitation in x direction costs same energy as rotation plus excitation in y direction
- → recall: rotation = long-wavelength spin wave

Degenerate states and broken/hidden symmetry

- no symmetry breaking: degeneracy at level of single excitations/particles
- symmetry breaking: degeneracy of excitation and {excitation plus (soft) spin wave}
- → approximate degeneracy in presence of explicit symmetry breaking

イロト イ押ト イヨト イヨト

Translation to QCD: quark condensate

• $\vec{M} := \langle \vec{s}_i \rangle \neq 0$

 \hookrightarrow non-trivial expectation value with respect to ground state

- → vacuum expectation value
- \hookrightarrow for which operator?
- \rightarrow recall explicit symmetry breaking term

$$H_{\rm ex} = \vec{B} \cdot \sum \vec{s}_i$$

 look at term in QCD Lagrangian which breaks chiral symmetry explicitly:

$$\mathcal{L} = \mathcal{L}_0 - m_u \, \bar{u} u - m_d \, \bar{d} d - \dots$$

 \hookrightarrow quark condensate $\langle \bar{q}q \rangle pprox -(240\,{
m MeV})^3 imes {\it N_f}$

Translation to QCD: pions

- gapless excitation spectrum = massless states (Goldstone bosons)
- for finite $\vec{B} \neq 0$ (explicit symmetry breaking):
- \hookrightarrow spin wave excitation no longer exactly gapless
- \hookrightarrow but gap small, scales with \vec{B}
- \rightsquigarrow for finite $m_q \neq 0$ (explicit symmetry breaking):
- \hookrightarrow Goldstone bosons are no longer exactly massless, but light
- \rightarrow pions
- \hookrightarrow Gell-Mann–Oakes–Renner relation (here $N_f = 2$)

$$m_\pi^2\,f_\pi^2=-ar{m}_q\,\langlear{q}q
angle+o(m_q^2)$$

• note: in principle conceivable: $\langle ar{q}q
angle = 0$ and $m_\pi^2 \sim m_q^2$

Translation to QCD: chiral restoration

- order parameter $\langle \vec{M} \rangle$ drops with temperature
- → restoration of rotational invariance above Curie temperature
- \hookrightarrow but not completely in presence of external \vec{B} field
- \rightsquigarrow order parameter $\langle \bar{q}q
 angle$ drops with temperature
- \hookrightarrow chiral symmetry restoration
- → but not completely in presence of finite current quark masses
- \rightarrow might change order of phase transition (\rightsquigarrow later)

Translation to QCD: degenerate states

- {excitation plus spinwave} is degenerate to excitation
- only approximate in presence of external \vec{B}
- → multiplets with different parity:
- → state plus pion is chiral partner to state
- \hookrightarrow e.g. $m_N \approx m_N + m_\pi$ (soft pion)

A D b 4 A b 4

Further remarks:

- in QCD-inspired models χ SB accompanied by generation of large constituent quark masses $M \approx 300 \text{ MeV} \gg m_q$
- center symmetry:
- \hookrightarrow order parameter: Polyakov loop $\langle L \rangle \sim e^{-E_{quark}/T}$, i.e. $\langle L \rangle = 0 \Leftrightarrow$ energy of single quark $E_{quark} \to \infty$ (confinement)
- → symmetry unbroken at low and broken at high temperatures
 - symmetry restoration of chiral symmetry and breaking of center symmetry seems to appear at same temperature

イロト イポト イヨト イヨト

Constituent quark mass on the lattice

P. O. Bowman, U. M. Heller and A. G. Williams, Phys. Rev. D 66, 014505 (2002) [arXiv:hep-lat/0203001]

Temperature dependence of chiral condensate and Polyakov loop (from lattice QCD)

F. Karsch, Lect. Notes Phys. 583, 209 (2002), hep-lat/0106019

Symmetry pattern of QCD

symmetry	$SU_V(2)$	<i>SU</i> _A (2)	center symmetry
vacuum	unbroken	broken	unbroken
high temperature	unbroken	unbroken	broken
multiplets	(<i>n</i> , <i>p</i>),	$(N, \{N, \pi\}), \ldots$	—
order parameter	_	$\langle ar{m{q}}m{q} angle$	$\langle L \rangle$

æ

(日) (日)

Local color symmetry

- so far: global symmetries considered
- so far: color (and gluons) did not play any role

$$\mathcal{L} = -\frac{1}{4} F^{a}_{\mu\nu}(\mathbf{x}) F^{\mu\nu}_{a}(\mathbf{x}) + \bar{q}_{j}(\mathbf{x}) \left(i \gamma_{\mu} [D^{\mu}(\mathbf{x})]_{jk} - \mathcal{M}_{q} \delta_{jk} \right) q_{k}(\mathbf{x})$$

- with $D^{\mu}(\mathbf{x}) = \partial^{\mu}_{\mathbf{x}} igA^{\mu}_{a}(\mathbf{x})\lambda^{a}$, $F^{\mu\nu}(\mathbf{x}) = \frac{i}{g}[D^{\mu}(\mathbf{x}), D^{\nu}(\mathbf{x})]$
- (indices denote color again, not flavor or spinor)
- Lagrangian invariant with respect to local transformations in color space, U(x) := exp(iΘ_a(x)λ_a) ∈ SU_c(3) q_j(x) → [U(x)]_{jk}q_g(x), q_j(x) → q_k(x)[U⁻¹(x)]_{kj},

 $[A^{\mu}(\mathbf{x})]_{jm} := A^{\mu}_{a}(\mathbf{x}) [\lambda^{a}]_{jm} \rightarrow [U(\mathbf{x})]_{jk} \left[A^{\mu}(\mathbf{x}) + \frac{i}{g} \partial^{\mu}_{\mathbf{x}} \right]_{\mu} [U^{-1}(\mathbf{x})]_{lm} \quad \mathbf{T}$

Consequences of local color symmetry

- only objects which are invariant under local (gauge) transformations are observable
- \hookrightarrow color white states
- $\rightarrow\,$ natural explanation for appearance of quark-antiquark and three-quark states
- \hookrightarrow indeed: $\bar{q}_{jfs}q_{jgt} \rightarrow \bar{q}_{jfs}U_{jk}^{-1}U_{kl}q_{lgt} = \bar{q}_{jfs}q_{jgt} \rightsquigarrow$ white

$$\epsilon_{jkl} q_{jfs} q_{kgt} q_{lhu} \rightarrow \ldots = \underbrace{\det U}_{=1} \epsilon_{jkl} q_{jfs} q_{kgt} q_{lhu} \rightsquigarrow \text{ white}$$

- confinement: Why can one not construct a white state from a single quark and infinitely many gluons?
- \hookrightarrow at least natural: such a state should be heavy

・ロト ・ 同ト ・ ヨト・

Consequences of local color symmetry

$$\mathcal{L} = -rac{1}{4} F_{\mu
u} F^{\mu
u} + ar{q} \left(i\gamma_{\mu} D^{\mu} - \mathcal{M}_{q}
ight) q$$

- coupling constant *g* appears in $D^{\mu} = \partial^{\mu} igA^{\mu}$ and in $F^{\mu\nu} = \frac{i}{g}[D^{\mu}, D^{\nu}] (\rightsquigarrow$ gluon-gluon coupling)
- \hookrightarrow gauge invariance holds only if same *g* appears in both expressions
- \hookrightarrow only one universal coupling constant
- \hookrightarrow only few parameters: one coupling, few quark masses
- \rightarrow high predictive power

イロト イポト イヨト イヨト

Note on electric charges

- only one universal coupling constant in QCD
- in principle different in QED: proton charge could be distinct from positron charge (no photon-photon coupling)
- → universal coupling is property of non-abelian gauge theories
- → grand unified theories use non-abelian gauge groups to explain agreement between proton and positron charge

Full chiral group

so far I have cheated!

$$\mathcal{L}_{0} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + q^{\dagger}_{fs} (\gamma_{0} \gamma_{\mu})_{st} (i \partial^{\mu} + g A^{\mu}) q_{ft}$$

• \mathcal{L}_0 not only invariant under $q_{fs} \rightarrow \exp(i\Theta) q_{fs}$,

$$q_{fs}
ightarrow [\exp(i\Theta_a au_a)]_{fg} \, q_{gs}$$
 and $q_{fs}
ightarrow \left[\exp(i ilde{\Theta}_a au_a\gamma_5)
ight]_{fast} q_{gt}$

イロト イ押ト イヨト イヨト

3

Full chiral group

• so far I have cheated!

$$\mathcal{L}_{0} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + q_{fs}^{\dagger} (\gamma_{0} \gamma_{\mu})_{st} (i \partial^{\mu} + g A^{\mu}) q_{ft}$$

• \mathcal{L}_0 not only invariant under $q_{fs} \rightarrow \exp(i\Theta) q_{fs}$,

$$q_{fs}
ightarrow [\exp(i\Theta_a au_a)]_{fg} q_{gs}$$
 and $q_{fs}
ightarrow \left[\exp(i ilde{\Theta}_a au_a \gamma_5)
ight]_{fgst} q_{gt}$

• but also
$$q_{fs}
ightarrow \left[\exp(i \tilde{\Theta}_{\gamma_5}) \right]_{st} q_{ft}$$

- the latter mixes only handedness without mixing flavors
- full chiral group:

$$\hookrightarrow U_V(N_f) \times U_A(N_f) = U_B(1) \times SU_V(N_f) \times SU_A(N_f) \times \frac{U_A(1)}{2}$$

3

Status of axial symmetry

- symmetry with respect to axial transformations might be
 - fully realized
 - → parity partners?
 - → no
 - hidden, i.e. spontaneously broken
 - → flavor singlet Goldstone boson?
 - \hookrightarrow *N*_f = 2: no isoscalar pion (η too heavy)
 - \hookrightarrow *N*_f = 3: no light flavor singlet (η' too heavy)

Status of axial symmetry

- symmetry with respect to axial transformations might be
 - fully realized
 - → parity partners?
 - → no
 - hidden, i.e. spontaneously broken
 - → flavor singlet Goldstone boson?
 - \hookrightarrow *N*_f = 2: no isoscalar pion (η too heavy)
 - \hookrightarrow *N*_f = 3: no light flavor singlet (η' too heavy)
- solution: axial symmetry is a symmetry of chromodynamics
- → but not of quantum chromodynamics
- \hookrightarrow anomaly

< □ > < 同 > < 三 > <
QCD Lagrangian and symmetries Flavor symmetry and multiplets Chiral symmetry, spontaneous symmetry breaking Color group, gauge invariance Axial anomaly and η'

What is an anomaly?

- definition:
 - classical system has symmetry
 - symmetry spoiled by quantization
 - quantum system does not have symmetry any more
- illustrative example from (quantum) mechanics: Suppose we know all solutions of equation of motion

$$\frac{d^2}{dt^2}x(t) = -k_1x(t) - \lambda_1[x(t)]^3$$

QCD Lagrangian and symmetries Flavor symmetry and multiplets Chiral symmetry, spontaneous symmetry breaking Color group, gauge invariance Axial anomaly and η'

Mechanical system

Suppose we know all solutions of equation of motion

$$\frac{d^2}{dt^2}x(t) = -\frac{k_1}{x(t)} - \frac{\lambda_1}{x(t)} [x(t)]^3$$
(1)

consider in addition:

$$\frac{d^2}{dt^2}y(t) = -\frac{k_2}{y(t)} - \frac{\lambda_2}{2}[y(t)]^3$$
(2)

• How to find solution for (2)?

QCD Lagrangian and symmetries Flavor symmetry and multiplets Chiral symmetry, spontaneous symmetry breaking Color group, gauge invariance Axial anomaly and n'

Mechanical system

Suppose we know all solutions of equation of motion

$$\frac{d^2}{dt^2}x(t) = -\frac{k_1}{x(t)} - \frac{\lambda_1}{x(t)} [x(t)]^3$$
(1)

onsider in addition:

$$\frac{d^2}{dt^2}y(t) = -\frac{k_2}{y(t)} - \frac{\lambda_2}{2}[y(t)]^3$$
 (2)

(3)

- How to find solution for (2)?
- rescaling: solve (1) and take $y(t) = \alpha x(\beta t)$

$$\frac{d^2}{dt^2}y(t) = -\beta^2 k_1 y(t) - \frac{\lambda_1 \beta^2}{\alpha^2} [y(t)]^3$$

• choose $\beta^2 = \frac{k_2}{k_1}, \frac{\beta^2}{\alpha^2} = \frac{\lambda_2}{\lambda_1}$

QCD Lagrangian and symmetries Flavor symmetry and multiplets Chiral symmetry, spontaneous symmetry breaking Color group, gauge invariance Axial anomaly and η'

Mechanical system

- present symmetry: scale invariance
- every equation of type

$$\frac{d^2}{dt^2}x(t) = -\frac{kx(t) - \lambda[x(t)]^3}{2}$$

can be rescaled

$$y(t) = \sqrt{\frac{\lambda}{k}} x(t/\sqrt{k})$$

and transformed into

$$\frac{d^2}{dt^2}y(t) = -y(t) - [y(t)]^3$$

3

イロト イポト イヨト イヨト

QCD Lagrangian and symmetries Flavor symmetry and multiplets Chiral symmetry, spontaneous symmetry breaking Color group, gauge invariance Axial anomaly and η'

Quantum mechanical system

present symmetry: scale invariance

$$y(t) = \sqrt{\frac{\lambda}{k}} x(t/\sqrt{k})$$

- introduce momenta: $p = m\dot{x}$, $q = m\dot{y} = (\sqrt{\lambda}/k) p$
- quantum mechanics: uncertainty relation

 $\Delta x \, \Delta p \approx \hbar$

イロト イ押ト イヨト イヨト

QCD Lagrangian and symmetries Flavor symmetry and multiplets Chiral symmetry, spontaneous symmetry breaking Color group, gauge invariance Axial anomaly and η'

Quantum mechanical system

present symmetry: scale invariance

$$y(t) = \sqrt{\frac{\lambda}{k}} x(t/\sqrt{k})$$

- introduce momenta: $p = m\dot{x}$, $q = m\dot{y} = (\sqrt{\lambda}/k) p$
- quantum mechanics: uncertainty relation

$$\Delta x \, \Delta p \approx \hbar$$

• but:

$$\Delta y \Delta q \approx \frac{\lambda}{\sqrt{k}^3} \hbar \neq \hbar$$

- describes different world
- quantization condition breaks scale invariance

QCD Lagrangian and symmetries Flavor symmetry and multiplets Chiral symmetry, spontaneous symmetry breaking Color group, gauge invariance Axial anomaly and η^\prime

Symmetry status of full chiral group

- $U_L(N_f) \times U_R(N_f) = U_B(1) \times SU_V(N_f) \times SU_A(N_f) \times U_A(1)$
- $U_B(1)$ realized, baryon number conservation
- $SU_V(N_f)$ realized, flavor conservation, multiplets
- $SU_A(N_f)$ hidden/spontaneously broken, $N_f^2 - 1$ Goldstone bosons: pions (kaons, η)
- $U_A(1)$ not realized at quantum level, anomaly $\rightsquigarrow \eta'$ heavy

くロト (得) (目) (日)

Systematic approaches to QCD

10 Lattice QCD

11 Chiral perturbation theory

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter

3

< ∃ >

Systematic approaches

- o perturbative QCD:
 - approximate full QCD by Taylor expansion in α_s
 - \hookrightarrow applicable for high energies only
- Iattice QCD:

approximate full continuum QCD by (full!) QCD on a grid

- \hookrightarrow finite grid point distance $a \neq 0$ and finite volume $V \neq \infty$
- chiral perturbation theory: approximate full QCD by effective theory of degrees of freedom relevant at low energies ←→ pions (and nucleons)

イロト イポト イヨト イヨト

QCD perturbation theory

- free quarks and gluons as basic objects
- \hookrightarrow expansion in terms of α_s
- \hookrightarrow i.e. approximate full QCD by Taylor expansion
- \rightsquigarrow applicable for high energies only \rightarrow fig.
 - in contrast: QED applicable in entire (nowadays) accessible energy regime
 - coupling constant much smaller
 - running much weaker
 - coupling grows with energy

Electron-nucleon scattering

æ

э

QCD on a grid

- approximate full continuum QCD by (full!) QCD on a grid, i.e. with finite grid point distance $a \neq 0$ and finite volume $V \neq \infty$
- \hookrightarrow numerically expensive
- \hookrightarrow e.g. calculations for different number of grid points
- \hookrightarrow study scaling behavior (surface versus volume effects)
 - lattice QCD not restricted to small coupling
- → not restricted to high or low energies
- \hookrightarrow but: restricted to static qantities

・ 同 ト ・ ヨ ト ・ ヨ ト

Lattice QCD

calculate multi-dimensional integral

$$\int \mathcal{D}[m{A}_{\mu},m{ar{q}},m{q}]\,\mathcal{O}\,rac{1}{N}\, extsf{exp}\left(-m{S}^{ extsf{E}}_{ extsf{QCD}}
ight)$$

with

$$\mathcal{N} = \int \mathcal{D}[\mathcal{A}_{\mu}, ar{m{q}}, m{q}] \, \exp \left(-m{S}^{ ext{E}}_{ ext{QCD}}
ight)$$

by Monte-Carlo algorithm

イロト イポト イヨト イヨト

Hadron masses from lattice QCD

S. Aoki *et al.* [CP-PACS Collaboration], Phys. Rev. D **67**, 034503 (2003) [arXiv:hep-lat/0206009]

Problems for lattice QCD

- light states: large Compton wave length does not fit on finite grid (oversimplified)
- \rightarrow in practice: put in too heavy current quark masses
- \rightarrow get out pions which are too heavy (χ SB)
- finite chemical potential μ:
 e.g. surplus of baryons over antibaryons
- → nuclear matter
- \hookrightarrow reason: for $\mu \neq 0$ no positively definite weight function for Monte-Carlo algorithm

イロト イポト イヨト イヨト

QCD at low energies

- idea of an effective field theory:
 - use (only) relevant degrees of freedom
 - write down all possible interactions
 - no expansion in powers of coupling constants
 - instead expansion in powers of energy/momenta
- chiral perturbation theory: approximate full QCD by effective theory of interacting Goldstone bosons
 - chiral symmetry reduces free parameters
 - Taylor expansion in terms of energies and masses
 - applicable for low energies where non-Goldstone bosons are not excited
 - nucleons can be included, other states complicated

Effective theory

 consider particle P in complicated potential V₁ but with small energy

- complicated potential V₁ and quadratic potential V₂ are in general completely different but effectively agree for particle P
- note: even if we do not know anything about V₁ we can determine V₂ with a few measurements

Effective field theory

Integrating out degrees of freedom

$$\begin{aligned} \mathcal{L}[\phi,\chi] &= -\frac{1}{2}\chi\,(\Box + M^2)\chi - \frac{1}{2}\phi\,(\Box + m^2)\phi - \frac{1}{2}g\chi\phi^2 = \\ &-\frac{1}{2}\left(\chi + \frac{1}{2}g\phi^2\frac{1}{\Box + M^2}\right)(\Box + M^2)\left(\chi + \frac{1}{2}g\frac{1}{\Box + M^2}\phi^2\right) \\ &-\frac{1}{2}\phi\,(\Box + m^2)\phi + \frac{1}{8}g^2\phi^2\frac{1}{\Box + M^2}\phi^2 \end{aligned}$$

at low energies:

$$\mathcal{L}
ightarrow -rac{1}{2}\phi\left(\Box+m^2
ight)\phi +rac{g^2}{8M^2}\phi^2 \sum_{n=0}^{\infty}\left(rac{-\Box}{M^2}
ight)^n \phi^2$$

∃ → < ∃ → </p>

3

Effective Lagrangians

at very low energies (region I):

$$\mathcal{L}_{ ext{int}}\cong rac{g^2}{8M^2}\phi^4=:\mathcal{L}_{ ext{eff}}^{(1)}$$

at low energies (region II):

$$\mathcal{L}_{ ext{int}}\cong\mathcal{L}_{ ext{eff}}^{(1)}-rac{g^2}{8M^4}\phi^2\Box\phi^2=:\mathcal{L}_{ ext{eff}}^{(2)}$$

- can construct effective Lagrangians
- \hookrightarrow look rather different from \mathcal{L}
- \hookrightarrow but contain same physics
- \hookrightarrow in specific kinematic regions

Effective Lagrangians II

$$egin{aligned} \mathcal{L}_{ ext{eff}}^{(1)} &= rac{g^2}{8M^2} \phi^4 \ \mathcal{L}_{ ext{eff}}^{(2)} &= \mathcal{L}_{ ext{eff}}^{(1)} - rac{g^2}{8M^4} \phi^2 \Box \phi^2 \end{aligned}$$

- if we don't know \mathcal{L} exactly:
- \hookrightarrow write more general $\mathcal{L}_{eff}^{(2)} = c_1 \phi^4 + c_2 \phi^2 \Box \phi^2$
- \hookrightarrow determine c_1 , c_2 by measurement
- \hookrightarrow determine *g*, *M* from *c*₁, *c*₂
- \hookrightarrow i.e. from low energy scattering
- \hookrightarrow cf. electroweak theory and Fermi's theory

Problems

$$\mathcal{L}_{ ext{eff}}^{(1)} = rac{g^2}{8M^2}\phi^4\,, \qquad \mathcal{L}_{ ext{eff}}^{(2)} = \mathcal{L}_{ ext{eff}}^{(1)} - rac{g^2}{8M^4}\phi^2\Box\phi^2$$

if, however, nothing is known about $\ensuremath{\mathcal{L}}$

 $\hookrightarrow \text{ write down most general form for } \mathcal{L}_{\mathrm{eff}}^{(1)} \text{, } \mathcal{L}_{\mathrm{eff}}^{(2)} \text{:}$

$$\mathcal{L}_{\rm eff} = h_0(\phi^2) \left[\partial_\mu f_2(\phi^2) \right] \left[\partial^\mu f_3(\phi^2) \right]$$

 $c^{(1)} = f(a^2)$

with f_i arbitrary functionals \rightarrow less predictive

A hint for importance of symmetries

• most general form for $\mathcal{L}_{eff}^{(1)}$, $\mathcal{L}_{eff}^{(2)}$:

$$\mathcal{L}_{\rm eff}^{(1)} = f_0(\phi^2)$$

$$\mathcal{L}_{\rm eff}^{(2)} = \mathcal{L}_{\rm eff}^{(1)} + f_1(\phi^2) \left[\partial_\mu f_2(\phi^2)\right] \left[\partial^\mu f_3(\phi^2)\right]$$

- why not ϕ^3 ?
- \hookrightarrow original Lagrangian symmetric $\phi \to -\phi$
- \hookrightarrow symmetries help (a lot) to restrict form of \mathcal{L}_{eff}
- \hookrightarrow another example: photon-photon scattering at low energies

イロト イポト イヨト イヨト

Photon-photon interaction at low energies

• for $p^2 \ll m_e^2$:

$$\mathcal{L}_{\text{eff}} = -\frac{1}{4} Z_{\gamma} F_{\mu\nu} F^{\mu\nu} + \mathbf{a} F_{\mu\nu} \Box F^{\mu\nu} + \mathbf{b} (\partial^{\mu} F_{\mu\nu}) (\partial_{\alpha} F^{\alpha\nu}) + \mathbf{c} (F_{\mu\nu} F^{\mu\nu})^{2} + \mathbf{d} F_{\mu\nu} F^{\nu\alpha} F_{\alpha\beta} F^{\beta\mu}$$

- correct up to corrections $o(\partial^6)$, i.e. $o((p^2/m_e^2)^3)$
- note: coefficients pure numbers here, not functionals
- calculation of low-energy coefficients:

(a)
$$Z_{\gamma}$$
-1, a , b from $rac{1}{2}$ $+ o(\alpha^{2})$
(c) c , d from $rac{1}{2}$ fig. $+ o(\alpha^{3})$
(c) $c \in C$ $c \in C$

Photon-photon scattering in QED

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter

Use of effective theories

- if one does not know L_{QED} or is too lazy/busy/... to calculate diagrams
- \hookrightarrow determine coefficients by a few measurements
- \hookrightarrow predictive power at low energies
- \rightarrow two possibilities of application:
- 1. microscopic theory known: often more efficient:
 - calculate only low-energy coefficients in microscopic theory
 - calculate e.g. scattering in effective theory
- 2. microscopic theory unknown:
 - determine low-energy coefficients by a few measurements
 - predictions for other experiments possible

イロト イポト イヨト イヨト

Chiral perturbation theory

• QCD Lagrangian coupled to external currents:

$$\mathcal{L}_{ ext{QCD}} = \mathcal{L}_{0} + ar{q} \left(-s + i \gamma_{5} p + \gamma_{\mu} v^{\mu} + \gamma_{\mu} \gamma_{5} a^{\mu}
ight) q$$

- note: current quark masses incorporated in s
- at low energies only Goldstone bosons Φ
- $\hookrightarrow \mathcal{L}_{eff}$ functional of Φ and of external currents *s*, *p*, *v*_µ, *a*_µ (flavor matrices)
 - recall chiral circle

$$U = \exp(i\Phi/F_{\pi})$$

and introduce $\chi := 2B_0(s + ip)$, $v_{\mu}^{L,R} := v_{\mu} \pm a_{\mu}$ and corresponding covariant derivative ∇_{μ} and field strength $F_{\mu\nu}^{L,R}$

Lowest orders of chiral perturbation theory

- formulate effective Lagrangians
- sizes of external currents treated as χ ~ m_q ~ M²_π = o(∂²), v^{L,R}_μ ~ o(∂)
- e.g. satisfied up to corrections $o(\partial^6)$

Lowest orders of chiral perturbation theory

- formulate effective Lagrangians
- sizes of external currents treated as χ ~ m_q ~ M²_π = o(∂²), v^{L,R}_μ ~ o(∂)
- e.g. satisfied up to corrections $o(\partial^6)$

 $\hookrightarrow \mathcal{L}_{\chi PT} = \mathcal{L}_1 + \mathcal{L}_2$ with

$$\mathcal{L}_{1} = \frac{1}{4} F_{\pi}^{2} \operatorname{tr}(\nabla_{\mu} U^{\dagger} \nabla^{\mu} U + \chi^{\dagger} U + \chi U^{\dagger}) = O(\partial^{2})$$

and already rather lengthy $\mathcal{L}_2 = O(\partial^4)$:

$$\mathcal{L}_{2} = L_{1} [tr(\nabla_{\mu} U^{\dagger} \nabla^{\mu} U)]^{2} + L_{2} tr(\nabla_{\mu} U^{\dagger} \nabla_{\nu} U) tr(\nabla^{\mu} U^{\dagger} \nabla^{\nu} U) + L_{3} tr(\nabla_{\mu} U^{\dagger} \nabla^{\mu} U \nabla_{\nu} U^{\dagger} \nabla^{\nu} U) + L_{4} tr(\nabla_{\mu} U^{\dagger} \nabla^{\mu} U) tr(\chi^{\dagger} U + \chi U^{\dagger}) + L_{5} tr(\nabla_{\mu} U^{\dagger} \nabla^{\mu} U (\chi^{\dagger} U + \chi U^{\dagger})) + L_{6} [tr(\chi^{\dagger} U + \chi U^{\dagger})]^{2} + L_{7} [tr(\chi^{\dagger} U - \chi U^{\dagger})]^{2} + L_{8} tr(\chi^{\dagger} U \chi^{\dagger} U + \chi U^{\dagger} \chi U^{\dagger}) - iL_{9} tr(F_{\mu\nu}^{R} \nabla^{\mu} U \nabla^{\nu} U^{\dagger} + F_{\mu\nu}^{L} \nabla^{\mu} U^{\dagger} \nabla^{\nu} U) + L_{10} tr(U^{\dagger} F_{\mu\nu}^{R} U F^{L\mu\nu})$$

▲口 > ▲圖 > ▲ 三 > ▲ 三 > -

Ţ

Low-energy constants

- "chiral coefficients" to be determined experimentally (or by a model or by lattice QCD):
 - $O(\partial^2)$: only two: F_{π} , B_0
 - $O(\partial^4)$: already ten: L_{1-10}
 - $O(\partial^6)$: ≈ 100
- note: $O(\partial^6)$ irrelevant at low enough energies
- \hookrightarrow predictive at low energies
- → uneconomical at higher energies
- \hookrightarrow breakdown in resonance region

Analyze lowest order Lagrangian (for three flavors)

- free part of $\mathcal{L}_1 = \frac{1}{4} F_{\pi}^2 \operatorname{tr}(\nabla_{\mu} U^{\dagger} \nabla^{\mu} U + \chi^{\dagger} U + \chi U^{\dagger})$:
- \hookrightarrow expand $U = \exp(i\Phi/F_{\pi})$ up to second order in the fields with

$$\Phi = \sqrt{2} \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & \frac{-\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2\eta}{\sqrt{6}} \end{pmatrix}$$

 \hookrightarrow switch off external currents (ignore up-down mass diff.)

$$\chi \to 2B_0 \mathcal{M}_q \approx 2B_0 \begin{pmatrix} m_q & 0 & 0 \\ 0 & m_q & 0 \\ 0 & 0 & m_s \end{pmatrix}$$

Thus:
$$\mathcal{L}_{1} \rightarrow \frac{1}{2} \partial_{\mu} \pi^{0} \partial^{\mu} \pi^{0} + \partial_{\mu} \pi^{+} \partial^{\mu} \pi^{-} + \frac{1}{2} \partial_{\mu} \eta \partial^{\mu} \eta$$

 $+ \partial_{\mu} K^{+} \partial^{\mu} K^{-} + \partial_{\mu} K^{0} \partial^{\mu} \bar{K}^{0}$
 $- B_{0} m_{q} (\pi^{02} + \frac{1}{3} \eta^{2} + 2 \pi^{+} \pi^{-} + K^{+} K^{-} + K^{0} \bar{K}^{0})$
 $- B_{0} m_{s} (K^{+} K^{-} + K^{0} \bar{K}^{0} + \frac{2}{3} \eta^{2})$
 $\hookrightarrow m_{\pi}^{2} = B_{0} 2 m_{q}$
 $m_{\mu}^{2} = B_{0} (m_{\pi} + m_{0})$

$$m_{\overline{K}} = B_0 (m_q + m_s)$$

 $m_{\eta}^2 = B_0 (\frac{2}{3}m_q + \frac{4}{3}m_s)$

i.e.
$$B_0 = -\langle \bar{u}u \rangle / F_{\pi}^2$$

▲口 > ▲圖 > ▲ 三 > ▲ 三 > -

Ţ

$$egin{aligned} m_{\pi}^2 &= B_0 \, 2m_q \ m_K^2 &= B_0 \, (m_q + m_s) \ m_{\eta}^2 &= B_0 \, (rac{2}{3}m_q + rac{4}{3}m_s) \end{aligned}$$

 \hookrightarrow predictions for quark mass ratio and for η mass (without knowledge of B_0):

$$\frac{m_s}{m_q} = 2\frac{m_K^2}{m_\pi^2} - 1 \approx 23$$
$$m_\eta^2 = \frac{4}{3}m_K^2 - \frac{1}{3}m_\pi^2 \implies m_\eta \approx 560 \text{ MeV}$$
$$(\text{Experiment } m_\eta \approx 550 \text{ MeV})$$

Analyze lowest order Lagrangian

• e.g. pion decay and pion-pion interactions contained in

$$\mathcal{L}_{1} = \frac{1}{4} F_{\pi}^{2} \operatorname{tr}(\nabla_{\mu} U^{\dagger} \nabla^{\mu} U + \chi^{\dagger} U + \chi U^{\dagger})$$

- pion decay (without too much details):
- \hookrightarrow expand $U = \exp(i\Phi/F_{\pi})$ up to linear order in the fields
- \hookrightarrow switch off external currents except for left-handed external field (*W* boson) contained in $\nabla_{\nu} \sim \partial_{\nu} v_{\nu}^{L} = \partial_{\nu} v_{\nu} + a_{\nu}$
- \hookrightarrow ignore quark masses: $\chi \to 0$
- $ightarrow \, \mathcal{L}_1 \sim {\it F}_{\pi} \, \pi \left(\partial^{
 u} a_{
 u}
 ight)$
- \hookrightarrow pion decays with strength F_{π}

Analyze lowest order Lagrangian

- pion-pion interactions:
- \hookrightarrow expand $U = \exp(i\Phi/F_{\pi})$ up to fourth order in the fields
- \hookrightarrow switch off external currents and ignore quark masses

$$\rightarrow \mathcal{L}_{1} \sim \frac{1}{F_{\pi}^{2}} [\pi, \partial_{\mu}\pi] [\pi, \partial^{\mu}\pi]$$

- → same strength determines pion decay and (lowest-order) pion-pion interaction
- → "Weinberg-Tomozawa interaction"
- → exists also for interaction of Goldstone bosons with arbitrary hadron
- \hookrightarrow strength still given by pion decay constant

イロト イポト イヨト イヨト
QCD perturbation theory Lattice QCD Chiral perturbation theory Necessity of models

Systematic approaches — features and shortcomings

- lattice QCD can be systematically improved by smaller grid distance, smaller quark masses, ...
- → but: numerically expensive
 - QCD perturbation theory can be systematically improved by calculating next order in α_s
- → but: more and more diagrams
 - chiral perturbation theory can be systematically improved by calculating next order in energies/momenta
- \hookrightarrow but: more and more possible interactions/diagrams

QCD perturbation theory Lattice QCD Chiral perturbation theory Necessity of models

Why we need models

- lattice QCD not applicable for dynamical processes (scattering)
- QCD perturbation theory only applicable above resonance region
- chiral perturbation theory breaks down in resonance region
- \rightarrow need hadronic models
- → symmetries help again to reduce possible interactions, correlate masses, coupling constants, ...
- → but: models unsystematic (no systematic way to improve them)

・ 同 ト ・ ヨ ト ・ ヨ ト

Phases of QCD and order parameters

Phase transitions, crossovers and critical points

14 Behavior of order parameters

- Two-quark condensate
- Weinberg sum rules

Strongly interacting matter

with rising temperature/density

- hadrons overlap
- \hookrightarrow hard to tell which quark belongs to which hadron
 - complementary picture: hadrons interact more and more
- \hookrightarrow movability of single quarks rises
- → quarks (and gluons) become relevant degrees of freedom (d.o.f.)
- \hookrightarrow complete change of properties (3 versus 40 d.o.f.)
- → (phase) transition

reasonable: expect to see precursors of this transition already in hadronic medium

3

イロト イポト イヨト イヨト

Pressure from lattice QCD

F. Karsch, Lect. Notes Phys. 583, 209 (2002), hep-lat/0106019

3

▶ < Ξ >

< 17 ▶

Phase diagram of water

▶ < Ξ >

æ

Sketch of phase diagram

Order of phase transition — mass dependence

F. Karsch, Lect. Notes Phys. 583, 209 (2002), hep-lat/0106019

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter

Two-quark condensate Neinberg sum rules

Temperature dependence of order parameter

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter

Two-quark condensate Weinberg sum rules

Two-quark condensate from lattice QCD

F. Karsch, Lect. Notes Phys. 583, 209 (2002), hep-lat/0106019

Quark condensate in a hadronic medium

Why the lattice results are not enough:

- finite temperatures: pions most abundant (lightest states)
- \hookrightarrow recall: pions too heavy on the lattice
 - low baryonic densities
- → recall: finite chemical potential on the lattice in infant stadium
- \rightsquigarrow need hadronic theories/models (e.g. χ PT)
 - Iow temperatures: pion gas
 - Iow baryonic densities: Fermi gas of nucleons
 - higher temperatures/densities: models!

< ∃⇒

Two-quark condensate Weinberg sum rules

Quark condensate at low temperatures

• in general:

$$\langle \Omega | \, \bar{u}u \, | \Omega \rangle = -\frac{T}{V} \, \frac{d \ln Z}{dm_u} = -\frac{dP}{dm_u}$$

- \hookrightarrow contributions of massive states suppressed by $\exp(-M/T)$

$$rac{\langle \bar{u}u
angle_{ ext{pionic med.}}}{\langle \bar{u}u
angle_{ ext{vac}}} pprox rac{\langle \bar{d}d
angle_{ ext{pionic med.}}}{\langle \bar{d}d
angle_{ ext{vac}}} pprox \mathbf{1} - rac{
ho_{\pi}}{\mathcal{F}_{\pi}^2} + \dots \quad \rightsquigarrow ext{fig.}$$

with (scalar) pion density

$$\rho_{\pi} = 3 \int \frac{d^3k}{(2\pi)^3 2E_k} \frac{1}{e^{E_k/T} - 1} \stackrel{M_{\pi} \to 0}{\longrightarrow} \frac{1}{8} T^2$$

Two-quark condensate Weinberg sum rules

Quark condensate in pion gas (Gerber/Leutwyler 1989)

Two-quark condensate Weinberg sum rules

Quark condensate at low baryon densities

• in general:

$$\langle \Omega | \, \bar{u}u \, | \Omega \rangle = -\frac{T}{V} \, \frac{d \ln Z}{dm_u} = -\frac{dP}{dm_u}$$

• low baryonic densities (at T = 0):

- no mesons at all
- no baryons for low enough chemical potential

• nucleon-nucleon correlations $\sim \rho_N^2$

$$rac{\langle \bar{u}u
angle_{
m nucl. med.}}{\langle \bar{u}u
angle_{
m vac}} pprox rac{\langle ar{d}d
angle_{
m nucl. med.}}{\langle ar{d}d
angle_{
m vac}} pprox 1 - rac{
ho_s \sigma_N}{F_\pi^2 M_\pi^2} pprox 1 - rac{1}{3} rac{
ho_N}{
ho_0}$$

with (scalar) nucleon density

Two-quark condensate Weinberg sum rules

Complete set of states and correlations

• in general:

$$\langle \mathcal{O} \rangle (\mathbf{T}, \mu) := \frac{\operatorname{Tr} \left(\mathcal{O} \mathbf{e}^{-\beta (H-\mu N)} \right)}{\operatorname{Tr} \left(\mathbf{e}^{-\beta (H-\mu N)} \right)}$$

Tr corresponds to summation over all *n*-body states

at low densities: restrict to one-body states (and vacuum)

 $\langle \mathcal{O} \rangle (\mathbf{T}, \mu) \approx \langle \mathbf{0} | \mathcal{O} | \mathbf{0} \rangle + \rho_{\pi} \langle \pi | \mathcal{O} | \pi \rangle + \rho_{N} \langle \mathbf{N} | \mathcal{O} | \mathbf{N} \rangle + \rho_{\bar{N}} \langle \bar{\mathbf{N}} | \mathcal{O} | \bar{\mathbf{N}} \rangle$

- at higher densities: have to consider correlations
- $\hookrightarrow \langle \pi \pi | \mathcal{O} | \pi \pi \rangle$, $\langle \pi N | \mathcal{O} | \pi N \rangle$, ...
- \hookrightarrow in general complicated

イロト イポト イヨト イヨト

Two-quark condensate Weinberg sum rules

Correlations and resonances

- at higher densities: have to consider correlations
- \hookrightarrow in general complicated
 - most important correlations at finite temperature:
- \hookrightarrow formation of resonances (Dashen/Ma/Bernstein, 1969)
- \hookrightarrow consider gas of resonances:

$$\langle \mathcal{O} \rangle (\mathcal{T}, \mu) \approx \langle \mathbf{0} | \mathcal{O} | \mathbf{0} \rangle + \sum_{\mathbf{X}} \rho_{\mathbf{X}} \langle \mathbf{X} | \mathcal{O} | \mathbf{X} \rangle$$

- important note: This is not a good approximation at low temperature and high chemical potential
- \hookrightarrow nucleon-nucleon correlations most important there

・ロト ・回ト ・ヨト ・ヨト

Two-quark condensate Weinberg sum rules

Quark condensate in resonance gas (Gerber/Leutwyler 1989)

Resonance gas — can that be all?

maybe yes; (speculative) explanation:

- change of vacuum structure possibly triggered by excluded volume (percolation)
- medium constituents carry chirally restored phase in their interior
- outside: chirally broken phase
- increasing density ~> percolation
- purely geometrical effect
- covered by "linear-density approximation" (but: density of resonances)

・ 同 ト ・ ヨ ト ・ ヨ ト

Two-quark condensate Weinberg sum rules

What is "wrong" with the two-quark condensate?

- no direct relation to observables (GOR: $F_{\pi}^2 M_{\pi}^2 \sim m_q \langle \bar{q}q \rangle$, but also quark mass is not directly observable (scale dependent))
- chiral restoration $\Rightarrow \langle \bar{q}q \rangle = 0$
- \hookrightarrow but: $\langle \bar{q}q \rangle = 0 \not\Rightarrow$ chiral restoration
- → study also other order parameters

Two-quark condensate Weinberg sum rules

One of the clearest signs of chiral symmetry breaking

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter

Two-quark condensate Weinberg sum rules

Weinberg sum rules

● moments of difference v − a:

$$\int_{0}^{\infty} ds \left[v(s) - a(s) \right] = F_{\pi}^{2}$$
$$\int_{0}^{\infty} ds s \left[v(s) - a(s) \right] = 0$$

- in practice: replace $\infty \rightarrow s_0$
- \hookrightarrow at large s: v(s) and a(s) given by perturbative QCD

 $\rightarrow v - a \approx 0$

イロト イ押ト イヨト イヨト

Two-quark condensate Weinberg sum rules

Generalized Weinberg sum rules

$$\int_{0}^{s_{0}} ds \left[v(s) - a(s)\right] = F_{\pi}^{2}$$

$$\int_{0}^{s_{0}} ds s \left[v(s) - a(s)\right] = 0$$

$$\int_{0}^{s_{0}} ds s^{2} \left[v(s) - a(s)\right] = \langle \mathcal{O}_{\chi SB} \rangle_{\mu = \sqrt{s_{0}}}$$

with four-quark condensate $\langle O_{\chi SB} \rangle$ =

$$-\frac{1}{2}\pi\alpha_{s}\left\langle (\bar{u}\gamma_{\mu}\gamma_{5}\lambda^{a}u-\bar{d}\gamma_{\mu}\gamma_{5}\lambda^{a}d)^{2}-(\bar{u}\gamma_{\mu}\lambda^{a}u-\bar{d}\gamma_{\mu}\lambda^{a}d)^{2}\right\rangle$$

3

Two-quark condensate Weinberg sum rules

 \rightarrow

Weinberg sum rules in practice

• How large must *s*₀ be?

$$\int_{0}^{s_0} ds \left[v(s) - a(s) \right] = F_{\pi}^2$$

Two-quark condensate Weinberg sum rules

Weinberg sum rules in practice

Two-quark condensate Weinberg sum rules

weighted

Weighted Weinberg sum rules

standard

•
$$\int_{0}^{S_{0}} ds [v(s) - a(s)] = F_{\pi}^{2}$$

• $\int_{0}^{S_{0}} ds s [v(s) - a(s)] = 0$
• $\int_{0}^{S_{0}} ds s [v(s) - a(s)] = 0$
• $\int_{0}^{S_{0}} ds s^{2} [v(s) - a(s)] = 0$
= $\langle \mathcal{O}_{\chi SB} \rangle$
• $\int_{0}^{S_{0}} ds s (s - s_{0}) [v(s) - a(s)] = 0$
= $\langle \mathcal{O}_{\chi SB} \rangle$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Two-quark condensate Weinberg sum rules

Weighted Weinberg sum rules II

good convergence

Bordes/Dominguez/Penarrocha/Schilcher,

JHEP 02 (2006) 037, hep-ph/0511293

Stefan Leupold

QCD, Chiral Symmetry and Hadrons in Matter

큰

Two-quark condensate Weinberg sum rules

Other order parameters of chiral symmetry breaking

- *F*²_π and (*O*_{χSB}) connected to observable quantities (at least in vacuum)
- $F_{\pi}^{2}(T,\mu)$ known in linear order in pion or nucleon density

$$egin{aligned} & \mathcal{F}^2_\pi(
ho_\pi(T)) & pprox & \mathcal{F}^2_\pi \left(1-rac{4
ho_\pi}{3\mathcal{F}^2_\pi}
ight) \ & \mathcal{F}^2_\pi(
ho_N(\mu)) & pprox & \mathcal{F}^2_\pi \left(1-0.52rac{
ho_N}{
ho_0}
ight) \end{aligned}$$

Gasser/Leutwyler, 1986

Meißner/Oller/Wirzba, 2002

3

beyond?

• even more complicated for $\langle \mathcal{O}_{\chi SB} \rangle(T, \mu)$ (SL, hep-ph/0604058)

Two-quark condensate Weinberg sum rules

Order parameters, summary

- Expect sizable changes in hadronic medium, especially at finite density
- On the other hand: not every in-medium interaction has to do with the symmetries, but might change the hadronic properties as well!
- How does all this change the properties of hadrons?
- What can be observed?

In-medium changes of hadrons

What are spectral functions?

- 16 Low-density approximation
 - Resonance-hole loops and Dalitz decays
 - What is "chiral mixing"?
 - **Beyond low densities**
 - Selfconsistent calculations
 - Connections to condensates
- 18 Other approaches and concepts
 - Vector meson dominance
 - Approaches related to chiral symmetry

Classical Resonance

 equation of motion for damped harmonic oscillator, externally driven

$$\ddot{\mathbf{x}} + \gamma \dot{\mathbf{x}} + \omega_0^2 \mathbf{x} = \mathbf{e}^{-i\boldsymbol{\omega}t}$$

→ solution = response of system to external excitation

$$x(t)=x_0\,e^{-i\omega t}$$

with ω -dependent coefficient

$$x_0 = \frac{1}{-\omega^2 - i\gamma\omega + \omega_0^2}$$

• note: there is additional contribution dying out with $e^{-\gamma t}$

Response function

split in real and imaginary part (for later use):

$$\operatorname{Re} x_{0} = \frac{\omega_{0}^{2} - \omega^{2}}{(\omega^{2} - \omega_{0}^{2})^{2} + \gamma^{2}\omega^{2}}$$
$$\operatorname{Im} x_{0} = \frac{\gamma\omega}{(\omega^{2} - \omega_{0}^{2})^{2} + \gamma^{2}\omega^{2}}$$

 note: all knowledge about system, i.e. ω₀ and γ, can be deduced from Imx₀ alone

3

-∢ ≣ ▶

What are spectral functions? Low-density approximation Beyond low densities

Other approaches and concepts

Response function

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter

Resonant Scattering

- scatter two particles to form a resonance
- \hookrightarrow i.e. deposit energy *E* (\doteq external excitation)
 - resonance can decay (\doteq friction term $\sim \gamma$)
- \rightarrow translation (de Broglie):

•
$$\omega^2 \to E^2 = (\hbar\omega)^2 = s$$
 (cms)
• $\omega_0^2 \to m_R^2$ resonance mass
• $\gamma \to \Gamma$ resonance width

- important difference: width Γ depends on energy → Γ(s)
- $\hookrightarrow\,$ reason: available phase space for resonance decay energy dependent
 - note: construction of ω-dependent γ also possible for oscillator case ~ retarded damping

イロト イポト イヨト イヨ

Precursor to spectral function

recall

$$x_0 = rac{1}{-\omega^2 - i\gamma\omega + \omega_0^2}, \quad \mathrm{Im} x_0 = rac{\omega\gamma}{(\omega^2 - \omega_0^2)^2 + \omega^2\gamma^2}$$

 \hookrightarrow (not quite the) **SPECTRAL FUNCTION**

$$\mathcal{A}(\mathbf{s}) \approx rac{\sqrt{\mathbf{s}}\,\Gamma}{(\mathbf{s}-m_R^2)^2+\mathbf{s}\Gamma^2} = \mathrm{Im}\,rac{-1}{\mathbf{s}-m_R^2+i\sqrt{\mathbf{s}}\,\Gamma}$$

• field theory: Γ connected to *self energy* diagram:

Definition of spectral function

 → also real part of Π enters definition of SPECTRAL FUNCTION:

$$\mathcal{A}(\mathbf{s}) = \frac{-\mathrm{Im}\Pi(\mathbf{s})}{|\mathbf{s} - m_R^2 - \Pi(\mathbf{s})|^2} = \frac{\sqrt{\mathbf{s}}\,\Gamma}{(\mathbf{s} - m_R^2 - \mathrm{Re}\Pi)^2 + \mathbf{s}\Gamma^2}$$

- note: real part of Π can shift peak position m_R
- response function ($\hat{=}x_0$): Green function or propagator

$$G(s) = \frac{1}{s - m_R^2 - \Pi(s)}$$

• obviously: $\mathcal{A} = -\mathrm{Im} \mathbf{G}$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Unitarity, analyticity and Dispersion Relations

 spectral function tells how single quantum state is distributed over possible energies

 \hookrightarrow normalization condition:

$$\int_{0}^{\infty} \frac{ds}{\pi} \mathcal{A}(s) = 1$$

- as for oscillator case: A completely determines resonance
- \hookrightarrow G can be calculated from \mathcal{A}
 - since *G*^(ret) is analytic function in upper half of complex energy plane

 \hookrightarrow dispersion relation:

$$G(\mathbf{s}) = -\int_{0}^{\infty} \frac{d\mathbf{s}'}{\pi} \frac{\mathcal{A}(\mathbf{s}')}{\mathbf{s}' - \mathbf{s} - i\epsilon}$$
What changes in a medium?

- 1. need spectral and statistical information
 - spectral: distribution of one state over possible energies
 - statistical: how many states are there?

2. appearance of new channels

 \hookrightarrow will be discussed in a moment

How to get the statistical information

- general non-equilibrium situation:
- $\rightarrow\,$ have to determine both informations and their evolution in time (\rightarrow e.g. transport theory)
 - equilibrium:
- \rightarrow maximal entropy requirement fixes statistical distribution
- \hookrightarrow number of states at given four-momentum:

$$\mathcal{A}(E, \vec{p}) \, rac{1}{e^{rac{1}{T}(E-\mu)} \pm 1}$$

with temperature *T* and chemical potential μ (for nuclear matter (*T* = 0): $\pm A(E, \vec{p}) \Theta(\mu - E)$)

 $\hookrightarrow \mathcal{A}$ contains all information (in equilibrium!)

Appearance of new channels in a medium

• vacuum: probe can only decay

 medium: scattering with constituents of medium (e.g. pions of heat bath, nucleons of nuclear matter)

Unified language for vacuum and medium

• Feynman:

incoming particle equivalent to outgoing antiparticle (hole) with negative energy (traveling backwards in time)

 \hookrightarrow scattering is decay into particle(s) and hole(s)

 \hookrightarrow excitation of nucleon-hole and resonance-hole states

・ 同 ト ・ ヨ ト ・ ヨ ト

 \hookrightarrow have to calculate self energies like

What changes in a medium?

- imaginary parts of self energies change width:
 - decays Bose-enhanced or Pauli-blocked
 - new "decay" channels
- real parts shift peak position

 Klingl/Waas/Weise NPA 650 (1999) 299

What changes in a medium?

- vacuum: it does not matter whether probe is moving (Lorentz invariance)
- medium: it DOES matter whether probe is moving with respect to other scatterers
- \hookrightarrow explicit dependence on *E*, \vec{q} , not only on $s = E^2 \vec{q}^2$
- \hookrightarrow independent variables: *E*, $|\vec{q}|$ or $m := \sqrt{s}$, $|\vec{q}|$

イロト イポト イヨト イヨト

What are spectral functions?

Low-density approximation Beyond low densities Other approaches and concepts

Appearance of new structures in a medium

- vacuum decay ~~~
- → outgoing states can have arbitrary momenta
- → structureless
 - medium "decay" in particle-hole

- → outgoing hole = incoming particle restricted in momentum (by temperature or chemical potential)
- → structure in self energy
- → resonance-hole branches

Resonance-hole branches

Appearance of new structures in a medium

- structure in self energy
- → structure in spectral function
- General end of the end of the

3

Resonance-hole loops and Dalitz decays What is "chiral mixing"?

Low-density approximation

• central quantity: (in-medium) spectral function for hadron H

$$egin{array}{rcl} {\cal A}(q) &=& -{
m Im} {\cal D}(q) = -{
m Im} rac{1}{q^2 - m_H^2 - \Pi(q)} \ &=& rac{-{
m Im} \Pi(q)}{[q^2 - m_H^2 - {
m Re} \Pi(q)]^2 + [{
m Im} \Pi(q)]^2} \end{array}$$

- decomposition: $\Pi(q) = \Pi_{\text{vac}}(q) + \Pi_{\text{med}}(q)$
- linear-density ("ρT") approximation for (in-medium) self energy

$$\Pi_{
m med}(\boldsymbol{q}) = \sum_{X}
ho_X \boldsymbol{T}_{XH}(\boldsymbol{q})$$

with medium constituents X (e.g. N, π)

Resonance-hole loops and Dalitz decays What is "chiral mixing"?

Forward scattering amplitude

$$\mathsf{\Pi}_{\mathrm{med}}(q) = \sum_{X} \rho_X \mathsf{T}_{XH}(q)$$

- *T_{XH}*: (vacuum) forward scattering amplitude for *X* + *H* with medium constituents *X* (e.g. *N*, *π*)
- underlying idea: probe (*H*) scatters on single medium constituents
- "trivial" in-medium effect
- only vacuum quantity (scattering amplitude) enters
- imaginary part of T from inelasticities
- → data for backward reactions, if H unstable

くロト くぼト くほと くほと

Resonance-hole loops and Dalitz decays What is "chiral mixing"?

Unstable probe

- everything well under control for low densities?
- in principle yes: need "only" vacuum scattering amplitudes T_{XH}
- in practice no: *H* can be unstable
- → no H beam, no direct access on scattering amplitude
 - sizable model dependences
 - e.g. for ρ meson in cold nuclear matter \rightsquigarrow figs.

イロト イポト イヨト イヨト

Resonance-hole loops and Dalitz decays What is "chiral mixing"?

Klingl/Kaiser/Weise, NPA 624 (1997) 527 (note: log plot!)

Post/Leupold/Mosel, NPA 741 (2004) 81

э

3

Resonance-hole loops and Dalitz decays What is "chiral mixing"?

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter

Resonance-hole loops and Dalitz decays What is "chiral mixing"?

Interest in vector mesons

- Why are we interested in ρ mesons more generally: in vector mesons?
- \hookrightarrow neutral vector mesons couple directly to photons \rightsquigarrow fig.
- \hookrightarrow dilepton decay channel
- \hookrightarrow information from strongly interacting dense matter
- \hookrightarrow in the following: focus on vector mesons
- \hookrightarrow but: a lot of considerations apply also to other hadrons

Resonance-hole loops and Dalitz decays What is "chiral mixing"?

Klingl/Kaiser/Weise, NPA 624 (19997) 527, hep-ph/9704398

æ

▶ < ⊒ >

Resonance-hole loops and Dalitz decays What is "chiral mixing"?

How fancy is the linear-density approximation?

- simple toy model for dilepton production $\sim n_B(q) \mathcal{A}_
 ho(q)/q^2$
 - mediated by ρ meson (vector meson dominance)
 - ρ meson couples to 2π and resonance-hole (RN^{-1})

 $\rightsquigarrow \ \mathcal{A}_{\rho}(\boldsymbol{q}) =$

$$\frac{-\mathrm{Im}\Pi_{2\pi}(q)-\mathrm{Im}\Pi_{RN^{-1}}(q)}{[q^2-m_{\rho}^2-\mathrm{Re}\Pi_{2\pi}(q)-\mathrm{Re}\Pi_{RN^{-1}}(q)]^2+[\mathrm{Im}\Pi_{2\pi}(q)+\mathrm{Im}\Pi_{RN^{-1}}(q)]^2}$$

• recall:
$$\Pi_{RN^{-1}} = \rho_N T_{\rho N \to R \to \rho N}$$

- appearance of density in denominator causes non-elementary effect: resummation
- → spectral function not simply given by "vac."+ {term linear in density}

Resonance-hole loops and Dalitz decays What is "chiral mixing"?

In-medium ρ meson spectral information

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter

Resonance-hole loops and Dalitz decays What is "chiral mixing"?

How fancy is the linear-density approximation?

$$\rightsquigarrow \ \mathcal{A}_{
ho}(oldsymbol{q}) =$$

$$\frac{-\mathrm{Im}\Pi_{2\pi}(q)-\mathrm{Im}\Pi_{RN^{-1}}(q)}{[q^2-m_{\rho}^2-\mathrm{Re}\Pi_{2\pi}(q)-\mathrm{Re}\Pi_{RN^{-1}}(q)]^2+[\mathrm{Im}\Pi_{2\pi}(q)+\mathrm{Im}\Pi_{RN^{-1}}(q)]^2}$$

• corresponding elementary reactions:

$$\frac{-\mathrm{Im}\Pi_{2\pi}(q)-\mathrm{Im}\Pi_{RN^{-1}}(q)}{[q^2-m_{\rho}^2-\mathrm{Re}\Pi_{\mathrm{vac}}(q)]^2+[\mathrm{Im}\Pi_{\mathrm{vac}}(q)]^2}$$

< < >> < </p>

ヨトメヨト

3

Resonance-hole loops and Dalitz decays What is "chiral mixing"?

Interpretation of elementary processes

$$egin{aligned} & -\mathrm{Im}\Pi_{2\pi}(q) - \mathrm{Im}\Pi_{RN^{-1}}(q) \ & [q^2 - m_
ho^2 - \mathrm{Re}\Pi_{\mathrm{vac}}(q)]^2 + [\mathrm{Im}\Pi_{\mathrm{vac}}(q)]^2 \ & = rac{\mathrm{Im}\Pi_{2\pi}(q)}{\mathrm{Im}\Pi_{\mathrm{vac}}(q)}\,\mathcal{A}_
ho^{\mathrm{vac}} + rac{\mathrm{Im}\Pi_{RN^{-1}}(q)}{\mathrm{Im}\Pi_{\mathrm{vac}}(q)}\,\mathcal{A}_
ho^{\mathrm{vac}} \end{aligned}$$

• i.e. branching ratios times spectral information

Resonance-hole loops and Dalitz decays What is "chiral mixing"?

Elementary reactions versus full in-medium spectrum (at $\vec{q} = 0$!)

Resonance-hole loops and Dalitz decays What is "chiral mixing"?

Conclusions from simple toy model

- structures already present in elementary reactions
- "denominator effect": level repulsion and overall depletion
- elementary reactions should be measured
- $\rightarrow \pi N$ to dileptons, not only NN (in latter resonance structure more smeared out, phase space)
 - note: "elementary" reactions are genuine in-medium (π in initial state)

イロト イポト イヨト イヨト

Resonance-hole loops and Dalitz decays What is "chiral mixing"?

What is "chiral mixing"?

- recall τ decay:
 - ρ meson appears in vector current ν
 - a1 meson in axial-vector current a
- χ SB dictates coupling strength of π -*v*-*a*
- $\rightarrow \chi$ SB dictates coupling strength of π - ρ - a_1

 a_1

• chiral mixing:

Resonance-hole loops and Dalitz decays What is "chiral mixing"?

Resonances in v - a

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter

Resonance-hole loops and Dalitz decays What is "chiral mixing"?

Chiral and non-chiral mixing

- - What is the important aspect about chiral mixing?
 - → Fancy effect predicted by chiral symmetry restoration?
 - → No! Effect is standard
 - the important aspect (cf. also kaon potentials): strength of chiral mixing dictated by χSB

Resonance-hole loops and Dalitz decays What is "chiral mixing"?

Linear-density approximation and beyond

- underlying idea: probe (*H*) scatters on single medium constituents
- "trivial" in-medium effect
- \hookrightarrow only vacuum quantity (scattering amplitude) enters
- → already resummation by "denominator effect"
 - works if density is not too large
 - break down depends on probe and medium
 - what comes beyond?
- \hookrightarrow hadronic language: *n*-body scattering amplitudes with n > 2
- \hookrightarrow i.e. probe scatters on correlated *n*-body states
 - becomes uneconomical

イロト イポト イヨト イヨト

Selfconsistent calculations Connections to condensates

Beyond linear-density approximation

- what comes beyond?
- 1. hadronic language: *n*-body scattering amplitudes with n > 2
- \hookrightarrow i.e. probe scatters on correlated *n*-body states
- 1a consider most important correlations: resonances
- 1b resummations: selfconsistent calculations
- 2. connection to in-medium change of condensates
- → additional effects on top or only different language?

Symmetry changes and/or many-body effects?

study hadronic probe in a hadronic medium

- hadronic many-body effects, many-body calculations (spectral functions)
 - \rightarrow fix input from elementary scattering (if possible . . .)
- Phase transitions, changes in symmetries (chiral symmetry, deconfinement, ...)
 - \rightarrow change of underlying vacuum structure
 - Does 1 happen on top of 2?
 - Double counting?
 - Does 1 imply 2?
 - Are there in-medium changes of hadronic properties which cannot be traced back to hadronic interactions?

Selfconsistent calculations Connections to condensates

Beyond low densities: Selfconsistent calculations

but also the other states get medium modified self energies:

self consistency might be important

Selfconsistent calculations Connections to condensates

 \hookrightarrow possible: inclusion (*resummation*) of classes of multi-scattering events:

. . .

3

Selfconsistent calculations Connections to condensates

included and not included diagrams

basic diagram

correction for propagator (included)

Selfconsistent calculations Connections to condensates

correction for vertex (not included) \rightarrow intimate connection to interferences

3

What are spectral functions? Low-density approximation Beyond low densities

Other approaches and concepts

Selfconsistent calculations Connections to condensates

explicit example (M. Post, PhD thesis)

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter

Selfconsistent calculations Connections to condensates

Back reaction on the D_{13}

3
Selfconsistent calculations Connections to condensates

Selfconsistent calculations, summary

- stuctures already there on elementary level
- some reshuffling of strength
- not everything can be resummed
- $\bullet\,$ have to decide what is important \rightarrow model dependence
- check importance of resummations by studying also elementary level
- "elementary" is not superposition of NN or NA reactions
- elementary input required: e.g. for dileptons:
 - (1) $\pi\pi$ (known from inverse reaction)
 - 2 NN (measured/measurable)
 - (important to measure) πN

イロト イポト イヨト イヨト

Selfconsistent calculations Connections to condensates

Dropping mass scenarios

- basic qualitative idea:
- \hookrightarrow recall finding from quark models:
 - χ SB related to generation of constituent quark masses
 - $\hookrightarrow M \approx 300 \,\mathrm{MeV} \gg m_q$
 - \hookrightarrow roughly explains masses of nucleon, vector mesons
 - medium: chiral restoration $\rightsquigarrow M \rightarrow m_q$
- \hookrightarrow precursor: *M* drops \rightsquigarrow hadron masses drop

イロト イポト イヨト イヨト

Selfconsistent calculations Connections to condensates

Quantitative picture

 propose model which links elementary hadronic parameters (bare masses, coupling constants) e.g. with quark condensate (Brown/Rho)

$$\frac{m_{H,\text{med.}}}{m_{H,\text{vac.}}} = \left(\frac{\langle \bar{\boldsymbol{q}} \boldsymbol{q} \rangle_{\text{med.}}}{\langle \bar{\boldsymbol{q}} \boldsymbol{q} \rangle_{\text{vac.}}}\right)^{\alpha}$$

- α might be density/temperature dependent
- includes effects beyond linear-density approximation
- oversimplified?
- → universal law at low densities in conflict with low-density theorem
- should be fused with standard many-body effects(?)

Selfconsistent calculations Connections to condensates

The same unanswered questions:

- Should one fuse dropping mass scenario with standard many-body effects?
- ouble counting?
- different, economic language for hadronic higher-order many-body effects?
- alternative: resummation techniques, self consistency?
- or additional effects on top of hadronic effects?
- \hookrightarrow propose model and check against data

ヨトメヨト

Selfconsistent calculations Connections to condensates

How to observe mass shifts?

- masses of resonances seen in scattering phase shifts
- \hookrightarrow hard to scatter inside a medium (medium has to stay intact)
 - detectors outside of medium
- $\hookrightarrow\,$ stable states change their mass back when leaving the medium

interesting probe: vector mesons

- interact strongly
- \rightarrow sensitive to in-medium changes
- couple directly to dileptons
- \hookrightarrow the latter leave medium without further interaction

observe increasing strength at lower invariant mass

→ but: dropping or broadening?

< D > < </p>

Selfconsistent calculations Connections to condensates

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter

Selfconsistent calculations Connections to condensates

Selfconsistent calculations Connections to condensates

Data quality makes a difference

NA60

dropping mass scenario hadronic model

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter

/ector meson dominance Approaches related to chiral symmetry

Other approaches and concepts

- many models on the market
- \hookrightarrow instead of overview:
- Select some related to vector mesons or to chiral symmetry
- vector meson dominance
- QCD sum rules
- hidden local symmetry
- Chiral quartets

Vector meson dominance Approaches related to chiral symmetry

0

くロト (得) (目) (日)

Vector meson dominance (VMD)

• in general: (vector meson V_{μ} , photon A_{μ})

$$\mathcal{L}_{\text{int}} = g_1 \, \underline{V}_{\mu} \, j_{\pi}^{\mu} + g_2 \, \underline{V}_{\mu} \, j_{N}^{\mu} + g_3 \, \underline{V}_{\mu} \, j_{RN^{-1}}^{\mu} + \dots - \frac{e \, M_V^2}{g} \, \underline{V}^{\mu} A_{\mu} \\ + \tilde{g}_1 A_{\mu} \, j_{\pi}^{\mu} + \tilde{g}_2 A_{\mu} \, j_{N}^{\mu} + \tilde{g}_3 A_{\mu} \, j_{RN^{-1}}^{\mu} + \dots$$

 strict VMD: all hadronic interactions mediated by vector mesons

$$\mathcal{L}_{\mathrm{int}} = -rac{e\,M_V^2}{g}\,oldsymbol{V}^\mu A_\mu + g_1\,oldsymbol{V}_\mu\,j_\pi^\mu + g_2\,oldsymbol{V}_\mu\,j_N^\mu + g_3\,oldsymbol{V}_\mu\,j_{RN^{-1}}^\mu + \dots$$

→ less parameters, more predictive power

3

Vector meson dominance Approaches related to chiral symmetry

Vector meson dominance (VMD)

strict VMD seems to work well for meson decays

$$\mathcal{L}_{\mathrm{int}} = -rac{e\,M_V^2}{g}\,m{V}^\mu A_\mu + g_1\,m{V}_\mu\,j_\pi^\mu + g_2\,m{V}_\mu\,j_N^\mu + g_3\,m{V}_\mu\,j_{RN^{-1}}^\mu + \dots$$

- strict VMD has less parameters, more predictive power
- \hookrightarrow e.g. fix g_3 from decay $R \rightarrow \gamma N$
- \rightsquigarrow prediction for $R \rightarrow \gamma^* N \rightarrow e^+ e^- N$
- → need data on resonance decays into photons and into dileptons

イロト イポト イヨト イヨト

GeV

ц.

vidth

Vector meson dominance Approaches related to chiral symmetry

QCD sum rules

- no prediction for mass shift
- but constraints for hadronic models
- relation to four-, not two-quark condensates

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter

Vector meson dominance Approaches related to chiral symmetry

Hidden local symmetry

- vector mesons treated as gauge bosons of local chiral symmetry
- vector meson masses generated by chiral symmetry breaking (Higgs mechanism)
- → vector mesons become massless at chiral restoration
- → dropping masses
 - but only for vector mesons, not for all hadrons (maybe for nucleon as chiral soliton???)
 - ω meson is not necessary as gauge boson, but in SU(3) member of vector meson nonet
 - note: also here relation to four-, not two-quark condensates

くロト (得) (目) (日)

Vector meson dominance Approaches related to chiral symmetry

Experimental significance for dropping ω mass

Trnka et al (CBELSA/TAPS), PRL 94 (2005) 192303

Vector meson dominance Approaches related to chiral symmetry

Chiral quartets of baryons

- for linear realization of chiral symmetry:
- → sort baryons in chiral multiplets,
 e.g. Δ(1232), N(1520), Δ(1700), N(1720)
- → mass splitting by symmetry breaking
 - Jido/Hatsuda/Kunihiro, PRL 84 (2000) 3252
 - degeneracy at chiral restoration
 - observable?

Vector meson dominance Approaches related to chiral symmetry

3

Chiral quartets

Vector meson dominance Approaches related to chiral symmetry

want to learn about

- symmetry pattern of QCD
- many-body effects
- nature of hadrons

need

- models which incorporate as much as possible input from
 - QCD (chiral symmetry, ...)
 - data on elementary scattering
- decisive experiments which can rule out models

イロト イ押ト イヨト イヨト