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QCD Lagrangian
Confinement

Asymptotic freedom

Quantum chromodynamics

QCD Lagrangian (here restricted to up and down quarks)

L = −1
4

F a
µνFµν

a + q̄j (iγµ∂µ −Mq) qj + q̄j gγµAµ
a(λa)jk qk

with

matter (quark) fields qj =
(

uj
dj

)

and gauge (gluon) fields Aµ
a

quark-gluon (and gluon-gluon) coupling constant g
→ αs = g2

4π

current quark mass (matrix)

Mq(µ ≈ 2 GeV) ≈
(

3 0
0 6

)

MeV
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QCD Lagrangian
Confinement

Asymptotic freedom

Search for single quarks

What distinguishes a quark from observable hadrons?
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QCD Lagrangian
Confinement

Asymptotic freedom

Search for single quarks

What distinguishes a quark from observable hadrons?

“Quark has color”(?)
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QCD Lagrangian
Confinement

Asymptotic freedom

Search for single quarks

What distinguishes a quark from observable hadrons?

“Quark has color”(?)

But: How to measure color?
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QCD Lagrangian
Confinement

Asymptotic freedom

Non-trivial degrees of freedom

fundamental degrees of freedom: quarks, i.e.
very light objects with
fractional (electric and baryonic) charge

→֒ (so far) not observed as single states in nature

→ confinement
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QCD Lagrangian
Confinement

Asymptotic freedom

Count fundamental degrees of freedom

for latter use: count light degrees of freedom: in total 40

quarks

(particles+antiparticles) × spin × flavor × color

= 2 × 2 × 2 × 3 = 24

polarization × color = 2 × 8 = 16

gluons
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QCD Lagrangian
Confinement

Asymptotic freedom

Strong interaction at low energies

hadronic world:
states with integer electric and baryonic charges
rather heavy states (as compared to current quark masses)
comparatively light pseudoscalars (as compared to other
hadrons) → pions
no degenerate (single particle) states with opposite parity
(at least not for lightest states pions, rhos, omegas,
nucleons, ...)

for latter use: count light degrees of freedom:
in total 3 (as compared to 40!)
including strangeness: 8 (as compared to 52!)
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QCD Lagrangian
Confinement

Asymptotic freedom

Hadron spectrum
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QCD Lagrangian
Confinement

Asymptotic freedom

Strong interaction at high energies

small strong coupling constant (asymptotic freedom)

0

0.1

0.2

0.3

1 10 10
2

µ GeV

α s(
µ)

Particle Data Group

• use QCD perturbation theory
for quantities insensitive to low
energies

• note:
large coupling at low energies
→֒ suggestive: cannot simply
read off relevant degrees of
freedom from Lagrangian
→ compatible with

(but no proof of) confinement
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Color group, gauge invariance

Axial anomaly and η
′
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QCD Lagrangian and symmetries
Flavor symmetry and multiplets

Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Quantum chromodynamics

QCD Lagrangian (here restricted to up and down quarks)

L = −1
4

F a
µνFµν

a + q̄j (iγµ∂µ −Mq) qj + q̄j gγµAµ
a(λa)jk qk

with

matter (quark) fields qj =
(

uj
dj

)

and gauge (gluon) fields Aµ
a

quark-gluon (and gluon-gluon) coupling constant g
→ αs = g2

4π

current quark mass (matrix)

Mq(µ ≈ 2 GeV) ≈
(

3 0
0 6

)

MeV
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QCD Lagrangian and symmetries
Flavor symmetry and multiplets

Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Importance of symmetries

Which features can we expect from symmetries?

quantum mechanical example: central potential V (|~r |)
(e.g. hydrogen atom)
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QCD Lagrangian and symmetries
Flavor symmetry and multiplets
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Axial anomaly and η
′

Importance of symmetries

Which features can we expect from symmetries?

quantum mechanical example: central potential V (|~r |)
(e.g. hydrogen atom)

→֒ rotational invariance
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Importance of symmetries

Which features can we expect from symmetries?

quantum mechanical example: central potential V (|~r |)
(e.g. hydrogen atom)

→֒ rotational invariance

→֒ conservation of angular momentum
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Importance of symmetries

Which features can we expect from symmetries?

quantum mechanical example: central potential V (|~r |)
(e.g. hydrogen atom)

→֒ rotational invariance

→֒ conservation of angular momentum

→֒ degenerate energy levels

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter



QCD Lagrangian and symmetries
Flavor symmetry and multiplets

Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Importance of symmetries

Which features can we expect from symmetries?

quantum mechanical example: central potential V (|~r |)
(e.g. hydrogen atom)

→֒ rotational invariance

→֒ conservation of angular momentum

→֒ degenerate energy levels

Translation to field theory

conservation laws: conserved charges

selection rules

states with same massdegeneracy:
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QCD Lagrangian and symmetries
Flavor symmetry and multiplets

Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Explicit symmetry breaking

quantum mechanical example: central potential V (|~r |)
(e.g. hydrogen atom)

→֒ rotational invariance

→֒ conservation of angular momentum

→֒ degenerate energy levels

switch on small external magnetic field
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QCD Lagrangian and symmetries
Flavor symmetry and multiplets

Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Explicit symmetry breaking

quantum mechanical example: central potential V (|~r |)
(e.g. hydrogen atom)

→֒ rotational invariance

→֒ conservation of angular momentum

→֒ degenerate energy levels

switch on small external magnetic field

→֒ breaks rotational invariance explicitly

→֒ energy levels slightly split up

→֒ approximately degenerate energy levels

→֒ systematics in splitting pattern
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QCD Lagrangian and symmetries
Flavor symmetry and multiplets

Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Global symmetries of QCD

L = −1
4

F a
µνFµν

a +q̄j f iγµ∂µ qj f +q̄j f gγµAµ
a(λa)jk qkf−q̄j f (Mq)fg qjg

baryon number conservation:
can change phase of all quarks simultaneously
→ UB(1) baryons cannot decay into mesons

approximate symmetry for mq → 0: chiral symmetry
can mix flavors and helicities → SUL(Nf ) × SUR(Nf )
 (approximate) flavor multiplets + parity doublets (?)
symmetry very good for Nf = 2, reasonable for Nf = 3

approximate symmetry for mq → ∞: center symmetry
connected to confinement, complicated
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QCD Lagrangian and symmetries
Flavor symmetry and multiplets

Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Flavor symmetry

L = −1
4

FµνFµν + q̄f (iγµ∂µ + gγµAµ) qf − q̄f (Mq)fg qg

(indices denote now flavor, not color)
If all quark masses were the same: Mq → mq1

→֒ q̄f (. . .) qf does not change under transformations SUV (Nf ):

qf → [exp(iΘaτa)]fg qg , q̄f → q̄g [exp(−iΘaτa)]gf

→֒ isospin (flavor) conservation
→֒ degenerate states (multiplets), i.e.

states with equal mass and different isospin (flavor)
indeed for Nf = 2: approximately degenerate states:
(n, p), (π−, π0, π+), (K 0, K +), (K−, K̄ 0), ...
quark masses not the same, but difference small (?)
(difference = explicit symmetry breaking)
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QCD Lagrangian and symmetries
Flavor symmetry and multiplets

Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Flavor multiplets

for Nf = 3: systematic splitting pattern
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QCD Lagrangian and symmetries
Flavor symmetry and multiplets

Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Small quark mass difference?

mu ≈ 3 MeV, md ≈ 6 MeV ⇒ ∆m = md − mu ≈ 3 MeV

What is small compared to what?
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QCD Lagrangian and symmetries
Flavor symmetry and multiplets

Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Small quark mass difference?

mu ≈ 3 MeV, md ≈ 6 MeV ⇒ ∆m = md − mu ≈ 3 MeV

What is small compared to what?

(md − mu)/mu,d not small, but (mu − md)/Mh small

→֒ isospin multiplets do not emerge because up and down
quark masses are similar on an absolute scale,
but because both are very small on a hadronic scale

→֒ worth to study limit of massless quarks

→֒ more symmetries ahead
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QCD Lagrangian and symmetries
Flavor symmetry and multiplets

Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Chiral symmetry

L = −1
4

FµνFµν + q̄f (iγµ∂µ + gγµAµ) qf − q̄f (Mq)fg qg

neglect quark mass term (and recall q̄ = q†γ0)

L0 = −1
4

FµνFµν + q†
f s(γ0γµ)st (i∂µ + gAµ) qf t

(indices denote now flavor and spinor)

γ5 commutes with combination γ0γµ

(but not with γ0 alone → mass term breaks chiral sym.)

→֒ L0 does not change under transformations SUA(Nf ):

qf s →
[

exp(iΘ̃aτaγ5)
]

fgst
qgt , q†

f s → q†
gt

[

exp(−iΘ̃aτaγ5)
]

gf ts
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QCD Lagrangian and symmetries
Flavor symmetry and multiplets

Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Chiral transformations — the formal stuff

take flavor transformations together SUV (Nf ) × SUA(Nf )

q → exp(iΘaτa) exp(iΘ̃aτaγ5) q

introduce left- and right-handed quarks
q = qL + qR = 1

2(1 − γ5) q + 1
2(1 + γ5) q

qR,L → exp(iΘaτa) exp(±iΘ̃aτa) qR,L

note: γ5 qL,R = ±qL,R and (γ5)
2 = 1
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QCD Lagrangian and symmetries
Flavor symmetry and multiplets

Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Chiral transformations — the formal stuff

qR,L → exp(iΘaτa) exp(±iΘ̃aτa) qR,L

1. choose ΘRa := Θa/2 = Θ̃a/2

qR → exp(iΘRaτa) qR , qL → qL

2. choose ΘLa := Θa/2 = −Θ̃a/2

qR → qR , qL → exp(iΘLaτa) qL

formally: SUV (Nf ) × SUA(Nf ) = SUL(Nf ) × SUR(Nf )

can perform flavor transformations separately for left- and
right-handed quarks — without changing the physics
(chiral symmetry)
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QCD Lagrangian and symmetries
Flavor symmetry and multiplets

Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Left- and right-handed states

chirality: spin points in or against flight direction

meaningful (Lorentz invariant) concept (only) for massless
particles

otherwise: boost from system slower than particle into
system faster than particle
→ characterizes system, not particle
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QCD Lagrangian and symmetries
Flavor symmetry and multiplets

Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Left- and right-handed flavored quarks

L0 = −1
4

FµνFµν + q† γ0γµ (i∂µ + gAµ) q

= −1
4

FµνFµν + q†
L γ0γµ (i∂µ + gAµ) qL + q†

R γ0γµ (i∂µ + gAµ) qR

= −1
4

FµνFµν + u†
L γ0γµ (i∂µ + gAµ) uL + u†

R γ0γµ (i∂µ + gAµ) uR

+ d†
L γ0γµ (i∂µ + gAµ) dL + d†

R γ0γµ (i∂µ + gAµ) dR + . . .

massless QCD contains 2 × Nf identical copies of quarks

→֒ consequences:

in interactions quarks keep their chirality and their flavor

interaction is blind to flavor and chirality
(always the same interaction)
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QCD Lagrangian and symmetries
Flavor symmetry and multiplets

Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Chiral multiplets

Remember: flavor symmetry, e.g. for Nf = 2

→֒ conservation of isospin

→֒ degenerate states (multiplets), i.e.
states with equal mass and different isospin

now: chiral symmetry

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter



QCD Lagrangian and symmetries
Flavor symmetry and multiplets

Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Chiral multiplets

Remember: flavor symmetry, e.g. for Nf = 2

→֒ conservation of isospin

→֒ degenerate states (multiplets), i.e.
states with equal mass and different isospin

now: chiral symmetry

→֒ separate conservation of left- and right-handed isospin

→֒ degenerate states (multiplets), i.e. states with equal mass
and different isospin and different handedness(?)

→֒ weak interaction couples to V − A; no difference between
V and A in massless QCD(?)

→֒ degenerate spectra of V and A(?)
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QCD Lagrangian and symmetries
Flavor symmetry and multiplets

Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Absence of chiral multiplets

SUV (Nf ) transformations mix flavors

SUA(Nf ) transformations mix flavors and flip parity (γ5)

expect: (approx.) degenerate partners with opposite parity

but: N(940) ↔ N∗(1535), ρ(770) ↔ a1(1240), . . .

expect: degenerate spectra of V and A, e.g. in τ decay

but:  fig.
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QCD Lagrangian and symmetries
Flavor symmetry and multiplets

Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

One of the clearest signs of chiral symmetry breaking
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(n odd)

Eur. Phys. J.
C7 (1999) 571
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QCD Lagrangian and symmetries
Flavor symmetry and multiplets

Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Chiral symmetry breaking (χSB)

→ experimental findings can be explained by spontaneous
symmetry breaking

definition: Lagrangian has symmetry which ground state
(vacuum) does not have
in the following: four levels of sophistication:

dinner table with salad plates
Heisenberg magnet
simple scalar field theory (exercises)
chiral symmetry breaking (χSB)
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Dinner table with salad plates
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parity invariance
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Dinner table with salad plates
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Dinner table with salad plates
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Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Dinner table with salad plates

“heated” system: hungry guests, end of dinner announced
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Dinner table with salad plates

“heated” system: hungry guests, end of dinner announced
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Axial anomaly and η
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Heisenberg magnet

interaction between microscopic magnetic dipoles (spins)
does not prefer any direction

Hint = g
∑

i 6=j

~si · ~sj

→ rotational invariance

in contrast ground state (unexcited
solid state) has preferred direction

→ breaking of rotational invariance
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Axial anomaly and η
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Features of the Heisenberg magnet

gapless excitation spectrum:
spin waves

→ Goldstone bosons

Why is it gapless?

study (infinitely) long wavelength limit and vanishing frequency
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Axial anomaly and η
′

Features of the Heisenberg magnet

gapless excitation spectrum:
spin waves

→ Goldstone bosons

Why is it gapless?

study (infinitely) long wavelength limit and vanishing frequency

→֒ spin wave corresponds to (adiabatic) rotation of whole solid state

does not cost energy
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QCD Lagrangian and symmetries
Flavor symmetry and multiplets

Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Features of the Heisenberg magnet II

macroscopic magnetization ~M = 〈~si〉
~M can be measured in the presence of an external
magnetic field ~B:

Hint = g
∑

i 6=j

~si · ~sj + ~B ·
∑

i

~si

~B breaks rotational invariance explicitly
presence of ~B: excitation spectrum no longer gapless;
however, gap scales with ~B
if system is heated, ~M vanishes above a critical value

→ phase transition, symmetry restoration
→ ~M is order parameter
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Temperature dependence of order parameter
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Is symmetry only hidden?

spontaneous symmetry breaking is also called
“hidden symmetry”

Is symmetry still there?
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Axial anomaly and η
′

Is symmetry only hidden?

spontaneous symmetry breaking is also called
“hidden symmetry”

Is symmetry still there?

rotation of solid state:
not the same system, but same properties
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Symmetry is only hidden

Is symmetry still there?

symmetry suggests degenerate states?

→֒ study e.g. phonon excitation:
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Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
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Symmetry is only hidden

Is symmetry still there?

symmetry suggests degenerate states?

→֒ study e.g. phonon excitation:

→ 1. no symmetry breaking:
excitations in x and y direction cost same energy

→ 2. symmetry breaking:
excitations in x and y direction do not cost the same energy
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Chiral symmetry, spontaneous symmetry breaking
Color group, gauge invariance

Axial anomaly and η
′

Symmetry is only hidden

Is symmetry still there?

symmetry suggests degenerate states?

→֒ study e.g. phonon excitation:

→ 1. no symmetry breaking:
excitations in x and y direction cost same energy

→ 2. symmetry breaking:
excitations in x and y direction do not cost the same energy
but: excitation in x direction costs same energy as
rotation plus excitation in y direction

→֒ recall: rotation = long-wavelength spin wave
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Degenerate states and broken/hidden symmetry

1 no symmetry breaking:
degeneracy at level of single excitations/particles

2 symmetry breaking: degeneracy of
excitation and {excitation plus (soft) spin wave}

→֒ approximate degeneracy in presence of explicit symmetry
breaking
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Translation to QCD: quark condensate

~M := 〈~si〉 6= 0
→֒ non-trivial expectation value with respect to ground state
 vacuum expectation value
→֒ for which operator?
→ recall explicit symmetry breaking term

Hex = ~B ·
∑

~si

 look at term in QCD Lagrangian which breaks chiral
symmetry explicitly:

L = L0 − mu ūu − md d̄d − . . .

→֒ quark condensate 〈q̄q〉 ≈ −(240 MeV)3 × Nf
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Translation to QCD: pions

gapless excitation spectrum ≡ massless states
(Goldstone bosons)
for finite ~B 6= 0 (explicit symmetry breaking):

→֒ spin wave excitation no longer exactly gapless
→֒ but gap small, scales with ~B
 for finite mq 6= 0 (explicit symmetry breaking):
→֒ Goldstone bosons are no longer exactly massless, but light
→ pions
→֒ Gell-Mann–Oakes–Renner relation (here Nf = 2)

m2
π f 2

π = −m̄q 〈q̄q〉 + o(m2
q)

note: in principle conceivable: 〈q̄q〉 = 0 and m2
π ∼ m2

q
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Translation to QCD: chiral restoration

order parameter 〈~M〉 drops with temperature

→֒ restoration of rotational invariance above Curie
temperature

→֒ but not completely in presence of external ~B field

 order parameter 〈q̄q〉 drops with temperature

→֒ chiral symmetry restoration

→֒ but not completely in presence of finite current quark
masses

→ might change order of phase transition ( later)
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Translation to QCD: degenerate states

{excitation plus spinwave} is degenerate to excitation

only approximate in presence of external ~B

 multiplets with different parity:

→֒ state plus pion is chiral partner to state

→֒ e.g. mN ≈ mN + mπ (soft pion)
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Further remarks:

in QCD-inspired models χSB accompanied by generation
of large constituent quark masses M ≈ 300 MeV ≫ mq

center symmetry:

→֒ order parameter: Polyakov loop 〈L〉 ∼ e−Equark/T ,
i.e. 〈L〉 = 0 ⇔ energy of single quark Equark → ∞
(confinement)

→֒ symmetry unbroken at low and broken at high
temperatures

symmetry restoration of chiral symmetry and breaking of
center symmetry seems to appear at same temperature
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Constituent quark mass on the lattice

P. O. Bowman, U. M. Heller and A. G. Williams, Phys. Rev. D
66, 014505 (2002) [arXiv:hep-lat/0203001]
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Temperature dependence of chiral condensate and
Polyakov loop (from lattice QCD)

5.2 5.3 5.4
0

0.1

0.2

0.3

0.4

0.5

0.6

m
q
/T = 0.08

m

5.2 5.3 5.4
0
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m
q
/T = 0.08L

L

F. Karsch, Lect. Notes Phys. 583, 209 (2002), hep-lat/0106019
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Symmetry pattern of QCD

symmetry SUV (2) SUA(2) center symmetry

vacuum unbroken broken unbroken

high temperature unbroken unbroken broken

multiplets (n, p), . . . (N, {N, π}), . . . —

order parameter — 〈q̄q〉 〈L〉
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Local color symmetry

so far: global symmetries considered
so far: color (and gluons) did not play any role

L = −1
4

F a
µν(x)Fµν

a (x) + q̄j(x)
(
iγµ[Dµ(x)]jk −Mqδjk

)
qk (x)

with Dµ(x) = ∂µ
x − igAµ

a(x)λa, Fµν(x) = i
g [Dµ(x), Dν(x)]

(indices denote color again, not flavor or spinor)
Lagrangian invariant with respect to local transformations
in color space, U(x) := exp(iΘa(x)λa) ∈ SUc(3)

qj(x) → [U(x)]jkqg(x) , q̄j(x) → q̄k (x)[U−1(x)]kj ,

[Aµ(x)]jm := Aµ
a(x) [λa]jm → [U(x)]jk

[

Aµ(x) +
i
g

∂µ
x

]

kl
[U−1(x)]lm
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Consequences of local color symmetry

only objects which are invariant under local (gauge)
transformations are observable

→֒ color white states

→ natural explanation for appearance of quark-antiquark and
three-quark states

→֒ indeed: q̄j fsqjgt → q̄j fs U−1
jk Ukl qlgt = q̄j fsqjgt  white

ǫjkl qj fs qkgt qlhu → . . . = detU
︸︷︷︸

=1

ǫjkl qj fs qkgt qlhu  white

confinement: Why can one not construct a white state from
a single quark and infinitely many gluons?

→֒ at least natural: such a state should be heavy
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Consequences of local color symmetry

L = −1
4

FµνFµν + q̄ (iγµDµ −Mq) q

coupling constant g appears in Dµ = ∂µ − igAµ and in
Fµν = i

g [Dµ, Dν ] ( gluon-gluon coupling)

→֒ gauge invariance holds only if same g appears in both
expressions

→֒ {quark type a}-gluon coupling = gluon-gluon coupling =
= {quark type b}-gluon coupling

→֒ only one universal coupling constant

→֒ only few parameters: one coupling, few quark masses

→ high predictive power
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Note on electric charges

only one universal coupling constant in QCD

in principle different in QED: proton charge could be
distinct from positron charge (no photon-photon coupling)

→֒ universal coupling is property of non-abelian gauge
theories

→֒ grand unified theories use non-abelian gauge groups to
explain agreement between proton and positron charge
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Full chiral group

so far I have cheated!

L0 = −1
4

FµνFµν + q†
f s(γ0γµ)st (i∂µ + gAµ) qf t

L0 not only invariant under qf s → exp(iΘ) qf s,

qf s → [exp(iΘaτa)]fg qgs and qf s →
[

exp(iΘ̃aτaγ5)
]

fgst
qgt
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Full chiral group

so far I have cheated!

L0 = −1
4

FµνFµν + q†
f s(γ0γµ)st (i∂µ + gAµ) qf t

L0 not only invariant under qf s → exp(iΘ) qf s,

qf s → [exp(iΘaτa)]fg qgs and qf s →
[

exp(iΘ̃aτaγ5)
]

fgst
qgt

but also qf s →
[

exp(iΘ̃γ5)
]

st
qf t

the latter mixes only handedness without mixing flavors
full chiral group:

→֒ UV (Nf ) × UA(Nf ) = UB(1) × SUV (Nf ) × SUA(Nf ) × UA(1)
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Status of axial symmetry

symmetry with respect to axial transformations might be
fully realized

→֒ parity partners?
→֒ no

hidden, i.e. spontaneously broken
→֒ flavor singlet Goldstone boson?
→֒ Nf = 2: no isoscalar pion (η too heavy)
→֒ Nf = 3: no light flavor singlet (η′ too heavy)
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Status of axial symmetry

symmetry with respect to axial transformations might be
fully realized

→֒ parity partners?
→֒ no

hidden, i.e. spontaneously broken
→֒ flavor singlet Goldstone boson?
→֒ Nf = 2: no isoscalar pion (η too heavy)
→֒ Nf = 3: no light flavor singlet (η′ too heavy)

solution: axial symmetry is a symmetry of chromodynamics

→ but not of quantum chromodynamics

→֒ anomaly
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What is an anomaly?

definition:
classical system has symmetry
symmetry spoiled by quantization
quantum system does not have symmetry any more

illustrative example from (quantum) mechanics:
Suppose we know all solutions of equation of motion

d2

dt2 x(t) = −k1x(t) − λ1[x(t)]3
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Mechanical system

Suppose we know all solutions of equation of motion

d2

dt2 x(t) = −k1x(t) − λ1[x(t)]3 (1)

consider in addition:

d2

dt2 y(t) = −k2y(t) − λ2[y(t)]3 (2)

How to find solution for (2)?
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Mechanical system

Suppose we know all solutions of equation of motion

d2

dt2 x(t) = −k1x(t) − λ1[x(t)]3 (1)

consider in addition:

d2

dt2 y(t) = −k2y(t) − λ2[y(t)]3 (2)

How to find solution for (2)?
rescaling: solve (1) and take y(t) = αx(βt)

d2

dt2 y(t) = −β2k1y(t) − λ1β
2

α2 [y(t)]3 (3)

choose β2 = k2
k1

, β2

α2 = λ2
λ1
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Mechanical system

present symmetry: scale invariance

every equation of type

d2

dt2 x(t) = −kx(t) − λ[x(t)]3

can be rescaled

y(t) =

√

λ

k
x(t/

√
k)

and transformed into

d2

dt2 y(t) = −y(t) − [y(t)]3
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Quantum mechanical system

present symmetry: scale invariance

y(t) =

√

λ

k
x(t/

√
k)

introduce momenta: p = mẋ , q = mẏ = (
√

λ/k) p
quantum mechanics: uncertainty relation

∆x ∆p ≈ ~
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Quantum mechanical system

present symmetry: scale invariance

y(t) =

√

λ

k
x(t/

√
k)

introduce momenta: p = mẋ , q = mẏ = (
√

λ/k) p
quantum mechanics: uncertainty relation

∆x ∆p ≈ ~

but:

∆y ∆q ≈ λ
√

k
3 ~ 6= ~

describes different world
quantization condition breaks scale invariance
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Symmetry status of full chiral group

UL(Nf ) × UR(Nf ) = UB(1) × SUV (Nf ) × SUA(Nf ) × UA(1)

UB(1) realized, baryon number conservation

SUV (Nf ) realized, flavor conservation, multiplets

SUA(Nf ) hidden/spontaneously broken,
N2

f − 1 Goldstone bosons: pions (kaons, η)

UA(1) not realized at quantum level, anomaly η′ heavy
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Systematic approaches to QCD

9 QCD perturbation theory

10 Lattice QCD

11 Chiral perturbation theory

12 Necessity of models
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Systematic approaches

perturbative QCD:
approximate full QCD by Taylor expansion in αs

→֒ applicable for high energies only

lattice QCD:
approximate full continuum QCD by (full!) QCD on a grid
→֒ finite grid point distance a 6= 0 and finite volume V 6= ∞
chiral perturbation theory:
approximate full QCD by effective theory of degrees of
freedom relevant at low energies
→֒ pions (and nucleons)
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QCD perturbation theory

free quarks and gluons as basic objects

→֒ expansion in terms of αs

→֒ i.e. approximate full QCD by Taylor expansion

 applicable for high energies only → fig.
in contrast: QED applicable in entire (nowadays)
accessible energy regime

coupling constant much smaller
running much weaker
coupling grows with energy
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Electron-nucleon scattering
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QCD on a grid

approximate full continuum QCD by (full!) QCD on a grid,
i.e. with finite grid point distance a 6= 0 and finite volume
V 6= ∞

→֒ numerically expensive

→֒ e.g. calculations for different number of grid points

→֒ study scaling behavior (surface versus volume effects)

lattice QCD not restricted to small coupling

 not restricted to high or low energies

→֒ but: restricted to static qantities
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Lattice QCD

calculate multi-dimensional integral
∫

D[Aµ, q̄, q]O 1
N

exp
(
−SE

QCD

)

with

N =

∫

D[Aµ, q̄, q] exp
(
−SE

QCD

)

by Monte-Carlo algorithm

necessary: positive weight function =̂ probability for
throwing a dice
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Hadron masses from lattice QCD
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S. Aoki et al. [CP-PACS Collaboration], Phys. Rev. D 67,
034503 (2003) [arXiv:hep-lat/0206009]
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Problems for lattice QCD

light states: large Compton wave length does not fit on
finite grid (oversimplified)

→ in practice: put in too heavy current quark masses

→ get out pions which are too heavy (χSB)

finite chemical potential µ:
e.g. surplus of baryons over antibaryons

→ nuclear matter

→֒ reason: for µ 6= 0 no positively definite weight function for
Monte-Carlo algorithm
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QCD at low energies

idea of an effective field theory:
use (only) relevant degrees of freedom
write down all possible interactions
no expansion in powers of coupling constants
instead expansion in powers of energy/momenta

chiral perturbation theory: approximate full QCD by
effective theory of interacting Goldstone bosons

chiral symmetry reduces free parameters
Taylor expansion in terms of energies and masses
applicable for low energies where non-Goldstone bosons
are not excited
nucleons can be included, other states complicated
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Effective theory

consider particle P in
complicated potential V1

but with small energy

V
(x

)

x

V1(x)
V2(x)

complicated potential V1 and quadratic potential V2 are in
general completely different but effectively agree for
particle P

note: even if we do not know anything about V1 we can
determine V2 with a few measurements
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Effective field theory

want to describe resonant
scattering →

consider Lagrangian
(M2 ≫ m2)

L[φ, χ] = −1
2
χ (�+ M2)χ − 1

2
φ (�+ m2)φ − 1

2
gχφ2
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Integrating out degrees of freedom

L[φ, χ] = −1
2
χ (�+ M2)χ − 1

2
φ (�+ m2)φ − 1

2
gχφ2 =

−1
2

(

χ +
1
2

gφ2 1
�+ M2

)

(�+ M2)

(

χ +
1
2

g
1

�+ M2 φ2
)

−1
2
φ (�+ m2)φ +

1
8

g2φ2 1
�+ M2 φ2

at low energies:

L → −1
2
φ (�+ m2)φ +

g2

8M2 φ2
∞∑

n=0

(−�
M2

)n

φ2
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Effective Lagrangians

• at very low energies (region I):

Lint
∼= g2

8M2 φ4 =: L(1)
eff

• at low energies (region II):

Lint
∼= L(1)

eff −
g2

8M4 φ2
�φ2 =: L(2)

eff

→֒ can construct effective Lagrangians

→֒ look rather different from L
→֒ but contain same physics

→֒ in specific kinematic regions
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Effective Lagrangians II

L(1)
eff =

g2

8M2 φ4

L(2)
eff = L(1)

eff − g2

8M4 φ2
�φ2

if we don’t know L exactly:

→֒ write more general L(2)
eff = c1φ

4 + c2φ
2�φ2

→֒ determine c1, c2 by measurement

→֒ determine g, M from c1, c2

→֒ i.e. from low energy scattering

→֒ cf. electroweak theory and Fermi’s theory
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Problems

1 finite convergence radius: p2 < M2

→֒ cannot get resonance with low energy expression
2 in our example

L(1)
eff =

g2

8M2 φ4 , L(2)
eff = L(1)

eff − g2

8M4 φ2
�φ2

if, however, nothing is known about L

→֒ write down most general form for L(1)
eff , L(2)

eff :

L(1)
eff = f0(φ

2)

L(2)
eff = L(1)

eff + f1(φ
2)
[

∂µf2(φ
2)
] [

∂µf3(φ
2)
]

with fi arbitrary functionals → less predictive
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A hint for importance of symmetries

most general form for L(1)
eff , L(2)

eff :

L(1)
eff = f0(φ

2)

L(2)
eff = L(1)

eff + f1(φ
2)
[

∂µf2(φ
2)
] [

∂µf3(φ
2)
]

why not φ3?

→֒ original Lagrangian symmetric φ → −φ

→֒ symmetries help (a lot) to restrict form of Leff

→֒ another example: photon-photon scattering at low energies
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Photon-photon interaction at low energies

for p2 ≪ m2
e:

Leff = −1
4

ZγFµνFµν + a Fµν�Fµν + b (∂µFµν)(∂αFαν)

+ c (FµνFµν)2 + d FµνF ναFαβFβµ

correct up to corrections o(∂6), i.e. o((p2/m2
e)3)

note: coefficients pure numbers here, not functionals
calculation of low-energy coefficients:

1 Zγ–1, a, b from � + o(α2)

2 c, d from ⊲ fig. + o(α3)
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Photon-photon scattering in QED
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Use of effective theories

if one does not know LQED or is too lazy/busy/... to
calculate diagrams

→֒ determine coefficients by a few measurements

→֒ predictive power at low energies

→ two possibilities of application:
1. microscopic theory known: often more efficient:

calculate only low-energy coefficients in microscopic theory
calculate e.g. scattering in effective theory

2. microscopic theory unknown:
determine low-energy coefficients by a few measurements
predictions for other experiments possible
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Chiral perturbation theory

QCD Lagrangian coupled to external currents:

LQCD = L0 + q̄ (−s + iγ5p + γµvµ + γµγ5aµ) q

note: current quark masses incorporated in s
at low energies only Goldstone bosons Φ

→֒ Leff functional of Φ
and of external currents s, p, vµ, aµ (flavor matrices)
recall chiral circle

U = exp(iΦ/Fπ)

and introduce χ := 2B0(s + ip), vL,R
µ := vµ ± aµ and

corresponding covariant derivative ∇µ and field strength
F L,R

µν
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Lowest orders of chiral perturbation theory

formulate effective Lagrangians

sizes of external currents treated as
χ ∼ mq ∼ M2

π = o(∂2), vL,R
µ ∼ o(∂)

e.g. satisfied up to corrections o(∂6)
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Lowest orders of chiral perturbation theory

formulate effective Lagrangians

sizes of external currents treated as
χ ∼ mq ∼ M2

π = o(∂2), vL,R
µ ∼ o(∂)

e.g. satisfied up to corrections o(∂6)

→֒ LχPT = L1 + L2 with

L1 =
1
4

Fπ
2 tr(∇µU†∇µU + χ†U + χU†) = O(∂2)

and already rather lengthy L2 = O(∂4):
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QCD perturbation theory
Lattice QCD

Chiral perturbation theory
Necessity of models

L2 = L1[tr(∇µU†∇µU)]2 + L2tr(∇µU†∇νU)tr(∇µU†∇νU)

+ L3tr(∇µU†∇µU∇νU†∇νU)

+ L4tr(∇µU†∇µU)tr(χ†U + χU†)

+ L5tr(∇µU†∇µU (χ†U + χU†))

+ L6[tr(χ
†U + χU†)]2 + L7[tr(χ

†U − χU†)]2

+ L8tr(χ†Uχ†U + χU†χU†)

− iL9tr(F R
µν∇µU∇νU† + F L

µν∇µU†∇νU)

+ L10tr(U†F R
µνUF Lµν)
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QCD perturbation theory
Lattice QCD

Chiral perturbation theory
Necessity of models

Low-energy constants

“chiral coefficients” to be determined experimentally
(or by a model or by lattice QCD):

O(∂2): only two: Fπ, B0

O(∂4): already ten: L1−10

O(∂6): ≈ 100

note: O(∂6) irrelevant at low enough energies

→֒ predictive at low energies

→֒ uneconomical at higher energies

→֒ breakdown in resonance region
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QCD perturbation theory
Lattice QCD

Chiral perturbation theory
Necessity of models

Analyze lowest order Lagrangian (for three flavors)

free part of L1 = 1
4 Fπ

2 tr(∇µU†∇µU + χ†U + χU†):

→֒ expand U = exp(iΦ/Fπ) up to second order in the fields
with

Φ =
√

2







π0
√

2
+ η√

6
π+ K +

π− −π0
√

2
+ η√

6
K 0

K− K̄ 0 − 2η√
6







→֒ switch off external currents (ignore up-down mass diff.)

χ → 2B0Mq ≈ 2B0





mq 0 0
0 mq 0
0 0 ms
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QCD perturbation theory
Lattice QCD

Chiral perturbation theory
Necessity of models

Thus: L1 → 1
2
∂µπ0∂µπ0 + ∂µπ+∂µπ− +

1
2
∂µη ∂µη

+ ∂µK +∂µK− + ∂µK 0∂µK̄ 0

− B0mq (π02 +
1
3

η2 + 2 π+π− + K +K− + K 0K̄ 0)

− B0ms (K +K− + K 0K̄ 0 +
2
3

η2)

→֒ m2
π = B0 2mq

m2
K = B0 (mq + ms)

m2
η = B0 (

2
3

mq +
4
3

ms)

i.e. B0 = −〈ūu〉/Fπ
2
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QCD perturbation theory
Lattice QCD

Chiral perturbation theory
Necessity of models

m2
π = B0 2mq

m2
K = B0 (mq + ms)

m2
η = B0 (

2
3

mq +
4
3

ms)

→֒ predictions for quark mass ratio and for η mass
(without knowledge of B0):

ms

mq
= 2

m2
K

m2
π

− 1 ≈ 23

m2
η =

4
3

m2
K − 1

3
m2

π ⇒ mη ≈ 560 MeV

(Experiment mη ≈ 550 MeV)
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QCD perturbation theory
Lattice QCD

Chiral perturbation theory
Necessity of models

Analyze lowest order Lagrangian

e.g. pion decay and pion-pion interactions contained in

L1 =
1
4

Fπ
2 tr(∇µU†∇µU + χ†U + χU†)

pion decay (without too much details):

→֒ expand U = exp(iΦ/Fπ) up to linear order in the fields

→֒ switch off external currents except for left-handed external
field (W boson) contained in ∇ν ∼ ∂ν − vL

ν = ∂ν − vν + aν

→֒ ignore quark masses: χ → 0

→ L1 ∼ Fπ π (∂νaν)

→֒ pion decays with strength Fπ

→֒ “pion decay constant”
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QCD perturbation theory
Lattice QCD

Chiral perturbation theory
Necessity of models

Analyze lowest order Lagrangian

pion-pion interactions:

→֒ expand U = exp(iΦ/Fπ) up to fourth order in the fields

→֒ switch off external currents and ignore quark masses

→ L1 ∼ 1
Fπ

2 [π, ∂µπ] [π, ∂µπ]

→֒ same strength determines pion decay and (lowest-order)
pion-pion interaction

→֒ “Weinberg-Tomozawa interaction”

→֒ exists also for interaction of Goldstone bosons with
arbitrary hadron

→֒ strength still given by pion decay constant

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter



QCD perturbation theory
Lattice QCD

Chiral perturbation theory
Necessity of models

Systematic approaches — features and shortcomings

lattice QCD can be systematically improved by smaller grid
distance, smaller quark masses, ...

→֒ but: numerically expensive

QCD perturbation theory can be systematically improved
by calculating next order in αs

→֒ but: more and more diagrams

chiral perturbation theory can be systematically improved
by calculating next order in energies/momenta

→֒ but: more and more possible interactions/diagrams
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QCD perturbation theory
Lattice QCD

Chiral perturbation theory
Necessity of models

Why we need models

lattice QCD not applicable for dynamical processes
(scattering)

QCD perturbation theory only applicable above resonance
region

chiral perturbation theory breaks down in resonance region

→ need hadronic models

→֒ symmetries help again to reduce possible interactions,
correlate masses, coupling constants, ...

→֒ but: models unsystematic
(no systematic way to improve them)
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Phase transitions, crossovers and critical points
Behavior of order parameters

Phases of QCD and order parameters

13 Phase transitions, crossovers and critical points

14 Behavior of order parameters
Two-quark condensate
Weinberg sum rules
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Phase transitions, crossovers and critical points
Behavior of order parameters

Strongly interacting matter

with rising temperature/density

hadrons overlap

→֒ hard to tell which quark belongs to which hadron

complementary picture: hadrons interact more and more

→֒ movability of single quarks rises

→ quarks (and gluons) become relevant degrees of freedom
(d.o.f.)

→֒ complete change of properties (3 versus 40 d.o.f.)

→ (phase) transition

reasonable: expect to see precursors of this transition already
in hadronic medium
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Phase transitions, crossovers and critical points
Behavior of order parameters

Pressure from lattice QCD

  0
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  5
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T [MeV] 

p/T4 pSB/T4

3 flavour
2+1 flavour

2 flavour
pure gauge

F. Karsch, Lect. Notes Phys. 583, 209 (2002), hep-lat/0106019
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Phase transitions, crossovers and critical points
Behavior of order parameters

Phase diagram of water

wikipedia
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Phase transitions, crossovers and critical points
Behavior of order parameters

Sketch of phase diagram
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Phase transitions, crossovers and critical points
Behavior of order parameters

Order of phase transition — mass dependence

3-avour phase diagram
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Phase transitions, crossovers and critical points
Behavior of order parameters

Two-quark condensate
Weinberg sum rules

Temperature dependence of order parameter
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Phase transitions, crossovers and critical points
Behavior of order parameters

Two-quark condensate
Weinberg sum rules

Two-quark condensate from lattice QCD
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Phase transitions, crossovers and critical points
Behavior of order parameters

Two-quark condensate
Weinberg sum rules

Quark condensate in a hadronic medium

Why the lattice results are not enough:

finite temperatures: pions most abundant (lightest states)

→֒ recall: pions too heavy on the lattice

low baryonic densities

→֒ recall: finite chemical potential on the lattice in infant
stadium

 need hadronic theories/models (e.g. χPT)

low temperatures: pion gas

low baryonic densities: Fermi gas of nucleons

higher temperatures/densities: models!
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Phase transitions, crossovers and critical points
Behavior of order parameters

Two-quark condensate
Weinberg sum rules

Quark condensate at low temperatures

in general:

〈Ω| ūu |Ω〉 = −T
V

d lnZ
dmu

= − dP
dmu

low temperatures =̂ low pion densities:
→֒ contributions of massive states suppressed by exp(−M/T )

〈ūu〉pionic med.

〈ūu〉vac
≈ 〈d̄d〉pionic med.

〈d̄d〉vac
≈ 1 − ρπ

F 2
π

+ . . .  fig.

with (scalar) pion density

ρπ = 3
∫

d3k
(2π)3 2Ek

1
eEk /T − 1

Mπ→ 0−→ 1
8

T 2
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Phase transitions, crossovers and critical points
Behavior of order parameters

Two-quark condensate
Weinberg sum rules

Quark condensate in pion gas
(Gerber/Leutwyler 1989)
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Phase transitions, crossovers and critical points
Behavior of order parameters

Two-quark condensate
Weinberg sum rules

Quark condensate at low baryon densities

in general:

〈Ω| ūu |Ω〉 = −T
V

d lnZ
dmu

= − dP
dmu

low baryonic densities (at T = 0):
no mesons at all
no baryons for low enough chemical potential
nucleon-nucleon correlations ∼ ρ2

N

〈ūu〉nucl. med.

〈ūu〉vac
≈ 〈d̄d〉nucl. med.

〈d̄d〉vac
≈ 1 − ρsσN

F 2
π M2

π

≈ 1 − 1
3

ρN

ρ0

with (scalar) nucleon density

ρs = 4
∫ d3k

(2π)3
mN

q

~k2+m2
N

Θ(kF − |~k |) ≈ ρN = 4
∫ d3k

(2π)3 Θ(kF − |~k |)
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Phase transitions, crossovers and critical points
Behavior of order parameters

Two-quark condensate
Weinberg sum rules

Complete set of states and correlations

in general:

〈O〉(T , µ) :=
Tr
(
Oe−β (H−µN)

)

Tr
(
e−β (H−µN)

)

Tr corresponds to summation over all n-body states

at low densities: restrict to one-body states (and vacuum)

〈O〉(T , µ) ≈ 〈0|O|0〉+ρπ〈π|O|π〉+ρN〈N|O|N〉+ρN̄〈N̄|O|N̄〉

at higher densities: have to consider correlations

→֒ 〈ππ|O|ππ〉, 〈πN|O|πN〉, . . .

→֒ in general complicated
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Phase transitions, crossovers and critical points
Behavior of order parameters

Two-quark condensate
Weinberg sum rules

Correlations and resonances

at higher densities: have to consider correlations

→֒ in general complicated

most important correlations at finite temperature:

→֒ formation of resonances (Dashen/Ma/Bernstein, 1969)

→֒ consider gas of resonances:

〈O〉(T , µ) ≈ 〈0|O|0〉 +
∑

X

ρX 〈X |O|X 〉

important note: This is not a good approximation at low
temperature and high chemical potential

→֒ nucleon-nucleon correlations most important there
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Phase transitions, crossovers and critical points
Behavior of order parameters

Two-quark condensate
Weinberg sum rules

Quark condensate in resonance gas
(Gerber/Leutwyler 1989)
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Phase transitions, crossovers and critical points
Behavior of order parameters

Two-quark condensate
Weinberg sum rules

Resonance gas — can that be all?

maybe yes; (speculative) explanation:

change of vacuum structure possibly triggered by excluded
volume (percolation)

medium constituents carry chirally restored phase in their
interior

outside: chirally broken phase

increasing density percolation

purely geometrical effect

covered by “linear-density approximation”
(but: density of resonances)
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Phase transitions, crossovers and critical points
Behavior of order parameters

Two-quark condensate
Weinberg sum rules

What is “wrong” with the two-quark condensate?

no direct relation to observables
(GOR: F 2

πM2
π ∼ mq〈q̄q〉, but also quark mass is not directly

observable (scale dependent))

chiral restoration ⇒ 〈q̄q〉 = 0

→֒ but: 〈q̄q〉 = 0 6⇒ chiral restoration

 study also other order parameters
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Behavior of order parameters

Two-quark condensate
Weinberg sum rules

One of the clearest signs of chiral symmetry breaking
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v(
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 −
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(s
)

OPAL

perturbative QCD (massless)
v: τ → ντ +mπ

(m even)

a: τ → ντ +nπ
(n odd)

Eur. Phys. J.
C7 (1999) 571
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Behavior of order parameters

Two-quark condensate
Weinberg sum rules

Weinberg sum rules

moments of difference v − a:

∞∫

0

ds [v(s) − a(s)] = F 2
π

∞∫

0

ds s [v(s) − a(s)] = 0

in practice: replace ∞ → s0

→֒ at large s: v(s) and a(s) given by perturbative QCD

 v − a ≈ 0
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Phase transitions, crossovers and critical points
Behavior of order parameters

Two-quark condensate
Weinberg sum rules

Generalized Weinberg sum rules

s0∫

0

ds [v(s) − a(s)] = F 2
π

s0∫

0

ds s [v(s) − a(s)] = 0

s0∫

0

ds s2 [v(s) − a(s)] = 〈OχSB〉µ=
√

s0

with four-quark condensate 〈OχSB〉 =

−1
2 παs

〈
(ūγµγ5λ

au − d̄γµγ5λ
ad)2 − (ūγµλau − d̄γµλad)2

〉
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Behavior of order parameters

Two-quark condensate
Weinberg sum rules

Weinberg sum rules in practice

How large must s0 be?  

s0∫

0

ds [v(s) − a(s)] = F 2
π
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Two-quark condensate
Weinberg sum rules

Weinberg sum rules in practice

How large must s0 be?  

s0∫

0

ds [v(s) − a(s)] = F 2
π
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Two-quark condensate
Weinberg sum rules

Weighted Weinberg sum rules

standard

s0∫

0

ds [v(s) − a(s)] = F 2
π

s0∫

0

ds s [v(s) − a(s)] = 0

s0∫

0

ds s2 [v(s) − a(s)] =

= 〈OχSB〉

weighted

s0∫

0

ds
(

1 − s
s0

)

[v(s) − a(s)] =

= F 2
π

s0∫

0

ds s (s − s0) [v(s) − a(s)] =

= 〈OχSB〉
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Two-quark condensate
Weinberg sum rules

Weighted Weinberg sum rules II
s0∫

0

ds [v(s) − a(s)] = F 2
π
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ds
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good convergence
Bordes/Dominguez/Penarrocha/Schilcher,

JHEP 02 (2006) 037, hep-ph/0511293
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Behavior of order parameters

Two-quark condensate
Weinberg sum rules

Other order parameters of chiral symmetry breaking

F 2
π and 〈OχSB〉 connected to observable quantities

(at least in vacuum)

F 2
π (T , µ) known in linear order in pion or nucleon density

F 2
π (ρπ(T )) ≈ F 2

π

(

1 − 4ρπ

3F 2
π

)

Gasser/Leutwyler, 1986

F 2
π (ρN(µ)) ≈ F 2

π

(

1 − 0.52
ρN

ρ0

)

Meißner/Oller/Wirzba, 2002

beyond?

even more complicated for 〈OχSB〉(T , µ)
(SL, hep-ph/0604058)
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Behavior of order parameters

Two-quark condensate
Weinberg sum rules

Order parameters, summary

Expect sizable changes in hadronic medium, especially at
finite density

On the other hand: not every in-medium interaction has to
do with the symmetries, but might change the hadronic
properties as well!

How does all this change the properties of hadrons?

What can be observed?
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

In-medium changes of hadrons

15 What are spectral functions?

16 Low-density approximation
Resonance-hole loops and Dalitz decays
What is “chiral mixing”?

17 Beyond low densities
Selfconsistent calculations
Connections to condensates

18 Other approaches and concepts
Vector meson dominance
Approaches related to chiral symmetry
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Classical Resonance

equation of motion for damped harmonic oscillator,
externally driven

ẍ + γẋ + ω2
0x = e−iωt

→ solution = response of system to external excitation

x(t) = x0 e−iωt

with ω-dependent coefficient

x0 =
1

−ω2 − iγω + ω2
0

note: there is additional contribution dying out with e−γt
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Response function

split in real and imaginary part (for later use):

Rex0 =
ω2

0 − ω2

(ω2 − ω2
0)

2 + γ2ω2

Imx0 =
γω

(ω2 − ω2
0)

2 + γ2ω2

note: all knowledge about system, i.e. ω0 and γ, can be
deduced from Imx0 alone
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Response function
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Resonant Scattering

scatter two particles to form a resonance

→֒ i.e. deposit energy E (=̂ external excitation)

resonance can decay (=̂ friction term ∼ γ)
→ translation (de Broglie):

ω2 → E2 = (~ω)2 = s (cms)
ω2

0 → m2
R resonance mass

γ → Γ resonance width

important difference: width Γ depends on energy Γ(s)

→֒ reason: available phase space for resonance decay energy
dependent

note: construction of ω-dependent γ also possible for
oscillator case retarded damping
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Precursor to spectral function

recall

x0 =
1

−ω2 − iγω + ω2
0

, Imx0 =
ωγ

(ω2 − ω2
0)

2 + ω2γ2

→֒ (not quite the) SPECTRAL FUNCTION

A(s) ≈
√

s Γ

(s − m2
R)2 + sΓ2

= Im
−1

s − m2
R + i

√
s Γ

field theory: Γ connected to self energy diagram:

Π(s) = � , Γ = − ImΠ√
s
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Definition of spectral function

→֒ also real part of Π enters definition of

SPECTRAL FUNCTION :

A(s) =
−ImΠ(s)

|s − m2
R − Π(s)|2 =

√
s Γ

(s − m2
R − ReΠ)2 + sΓ2

note: real part of Π can shift peak position mR

response function (=̂x0): Green function or propagator

G(s) =
1

s − m2
R − Π(s)

obviously: A = −ImG

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter



What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Unitarity, analyticity and Dispersion Relations

spectral function tells how single quantum state is
distributed over possible energies

→֒ normalization condition:

∞∫

0

ds
π
A(s) = 1

as for oscillator case: A completely determines resonance
→֒ G can be calculated from A

since G(ret) is analytic function in upper half of complex
energy plane

→֒ dispersion relation: G(s) = −
∞∫

0

ds′

π

A(s′)

s′ − s − iǫ
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

What changes in a medium?

1. need spectral and statistical information

spectral: distribution of one state over possible energies

statistical: how many states are there?

2. appearance of new channels

→֒ will be discussed in a moment
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

How to get the statistical information

general non-equilibrium situation:

→ have to determine both informations and their evolution in
time (→ e.g. transport theory)

equilibrium:

→ maximal entropy requirement fixes statistical distribution

→֒ number of states at given four-momentum:

A(E , ~p)
1

e
1
T (E−µ) ± 1

with temperature T and chemical potential µ
(for nuclear matter (T = 0): ±A(E , ~p)Θ(µ − E))

→֒ A contains all information (in equilibrium!)
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Appearance of new channels in a medium

vacuum: probe can only decay �
medium: scattering with constituents of medium
(e.g. pions of heat bath, nucleons of nuclear matter)� � �
Landau damping

(inelastic)
scattering

resonance
formation
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Unified language for vacuum and medium

Feynman:
incoming particle equivalent to outgoing antiparticle (hole)
with negative energy (traveling backwards in time)

→֒ scattering is decay into particle(s) and hole(s)� �� �
→֒ excitation of nucleon-hole and resonance-hole states
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Cutkosky rules

∣
∣
∣
∣� ∣

∣
∣
∣

2

∼ Im�
→֒ have to calculate self energies like� � �

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter



What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

What changes in a medium?

imaginary parts of self energies change width:
decays Bose-enhanced or Pauli-blocked
new “decay” channels

real parts shift peak position
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

What changes in a medium?

vacuum: it does not matter whether probe is moving
(Lorentz invariance)

medium: it DOES matter whether probe is moving with
respect to other scatterers

→֒ explicit dependence on E , ~q, not only on s = E2 − ~q2

→֒ independent variables: E , |~q| or m :=
√

s, |~q|
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Other approaches and concepts
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Appearance of new structures in a medium

vacuum decay�
→֒ outgoing states can have arbitrary momenta

 structureless

medium “decay” in particle-hole�
→֒ outgoing hole = incoming particle restricted in momentum

(by temperature or chemical potential)

 structure in self energy

 resonance-hole branches
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Resonance-hole branches
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Low-density approximation

Beyond low densities
Other approaches and concepts

Appearance of new structures in a medium

structure in self energy

 structure in spectral
function

→֒ e.g. additional peaks,
bumps, shoulders
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Resonance-hole loops and Dalitz decays
What is “chiral mixing”?

Low-density approximation

central quantity: (in-medium) spectral function for hadron H

A(q) = −ImD(q) = −Im
1

q2 − m2
H − Π(q)

=
−ImΠ(q)

[q2 − m2
H − ReΠ(q)]2 + [ImΠ(q)]2

decomposition: Π(q) = Πvac(q) + Πmed(q)

linear-density (“ρT ”) approximation for (in-medium) self
energy

Πmed(q) =
∑

X

ρX T XH(q)

with medium constituents X (e.g. N, π)
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Resonance-hole loops and Dalitz decays
What is “chiral mixing”?

Forward scattering amplitude

Πmed(q) =
∑

X

ρX T XH(q)

TXH : (vacuum) forward scattering amplitude for X + H with
medium constituents X (e.g. N, π)

underlying idea: probe (H) scatters on single medium
constituents

“trivial” in-medium effect

only vacuum quantity (scattering amplitude) enters

imaginary part of T from inelasticities

 data for backward reactions, if H unstable
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Low-density approximation

Beyond low densities
Other approaches and concepts

Resonance-hole loops and Dalitz decays
What is “chiral mixing”?

Unstable probe

everything well under control for low densities?

in principle yes: need “only” vacuum scattering amplitudes
TXH

in practice no: H can be unstable

 no H beam, no direct access on scattering amplitude

sizable model dependences

e.g. for ρ meson in cold nuclear matter figs.
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Resonance-hole loops and Dalitz decays
What is “chiral mixing”?

0.0 0.2 0.4 0.6 0.8 1.0 1.2
ω  [GeV]

10
-2

10
-1

10
0

10
1

-1
2π

 Im
 Π

(I
=

1)
(ω

2 ;ρ
)/

ω
2

ρ=0
ρ=ρ0/2
ρ=ρ0

(a)

Klingl/Kaiser/Weise,
NPA 624 (1997) 527

(note: log plot!)

0.2 0.4 0.6 0.8 1.0 1.2
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

 

 

Im
 R

s [GeV]

 in-medium
 vacuum

Post/Leupold/Mosel,
NPA 741 (2004) 81

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter



What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Resonance-hole loops and Dalitz decays
What is “chiral mixing”?

Lutz/Wolf/Friman,
NPA 706 (2002) 431
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Resonance-hole loops and Dalitz decays
What is “chiral mixing”?

Interest in vector mesons

Why are we interested in ρ mesons — more generally: in
vector mesons?

→֒ neutral vector mesons couple directly to photons fig.
→֒ dilepton decay channel
→֒ information from strongly interacting dense matter
→֒ in the following: focus on vector mesons
→֒ but: a lot of considerations apply also to other hadrons

�ππ ρ γ
l−

l+ �Nπ N∗ ρ

γ

N

l+

l−
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Resonance-hole loops and Dalitz decays
What is “chiral mixing”?

σ(e+e− → hadrons, I = 1)

σ(e+e− → µ+µ−)
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Resonance-hole loops and Dalitz decays
What is “chiral mixing”?

How fancy is the linear-density approximation?

simple toy model for dilepton production ∼ nB(q)Aρ(q)/q2

mediated by ρ meson (vector meson dominance)
ρ meson couples to 2π and resonance-hole (RN−1)

 Aρ(q) =

−ImΠ2π(q) − ImΠRN−1(q)

[q2 − m2
ρ − ReΠ2π(q) − ReΠRN−1(q)]2 + [ImΠ2π(q) + ImΠRN−1(q)]2

recall: ΠRN−1 = ρNTρN→R→ρN

appearance of density in denominator causes
non-elementary effect: resummation

→֒ spectral function not simply given by
“vac.”+ {term linear in density}
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Resonance-hole loops and Dalitz decays
What is “chiral mixing”?

In-medium ρ meson spectral information

Decomposition
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Resonance-hole loops and Dalitz decays
What is “chiral mixing”?

How fancy is the linear-density approximation?

 Aρ(q) =

−ImΠ2π(q) − ImΠRN−1(q)

[q2 − m2
ρ − ReΠ2π(q) − ReΠRN−1(q)]2 + [ImΠ2π(q) + ImΠRN−1(q)]2

corresponding elementary reactions:

−ImΠ2π(q) − ImΠRN−1(q)

[q2 − m2
ρ − ReΠvac(q)]2 + [ImΠvac(q)]2
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Resonance-hole loops and Dalitz decays
What is “chiral mixing”?

Interpretation of elementary processes

−ImΠ2π(q) − ImΠRN−1(q)

[q2 − m2
ρ − ReΠvac(q)]2 + [ImΠvac(q)]2

=
ImΠ2π(q)

ImΠvac(q)
Avac

ρ +
ImΠRN−1(q)

ImΠvac(q)
Avac

ρ

i.e. branching ratios times spectral information�ππ ρ γ
l−

l+ �Nπ N∗ ρ

γ

N

l+

l−
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Resonance-hole loops and Dalitz decays
What is “chiral mixing”?

Elementary reactions versus full in-medium spectrum
(at ~q = 0!)
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Resonance-hole loops and Dalitz decays
What is “chiral mixing”?

Conclusions from simple toy model

structures already present in elementary reactions

“denominator effect”: level repulsion and overall depletion

elementary reactions should be measured

 πN to dileptons, not only NN
(in latter resonance structure more smeared out, phase
space)

note: “elementary” reactions are genuine in-medium
(π in initial state)
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Resonance-hole loops and Dalitz decays
What is “chiral mixing”?

What is “chiral mixing”?

recall τ decay:
ρ meson appears in vector current v
a1 meson in axial-vector current a

χSB dictates coupling strength of π-v -a

→ χSB dictates coupling strength of π-ρ-a1

chiral mixing:�a1
ρ

γ

π

l+

l−
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What are spectral functions?
Low-density approximation
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Other approaches and concepts

Resonance-hole loops and Dalitz decays
What is “chiral mixing”?

Resonances in v − a
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Resonance-hole loops and Dalitz decays
What is “chiral mixing”?

Chiral and non-chiral mixing

• chiral mixing (s-wave) • similar non-chiral effect (p-wave)

�a1
ρ

γ

π

l+

l−

�ω
ρ

γ

π

l+

l−

What is the important aspect about chiral mixing?

→֒ Fancy effect predicted by chiral symmetry restoration?

→֒ No! Effect is standard

the important aspect (cf. also kaon potentials):
strength of chiral mixing dictated by χSB
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Resonance-hole loops and Dalitz decays
What is “chiral mixing”?

Linear-density approximation and beyond

underlying idea: probe (H) scatters on single medium
constituents
“trivial” in-medium effect

→֒ only vacuum quantity (scattering amplitude) enters
→֒ already resummation by “denominator effect”

works if density is not too large
break down depends on probe and medium
what comes beyond?

→֒ hadronic language:
n-body scattering amplitudes with n > 2

→֒ i.e. probe scatters on correlated n-body states
becomes uneconomical
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Selfconsistent calculations
Connections to condensates

Beyond linear-density approximation

what comes beyond?

1. hadronic language:
n-body scattering amplitudes with n > 2

→֒ i.e. probe scatters on correlated n-body states

1a consider most important correlations: resonances

1b resummations: selfconsistent calculations

2. connection to in-medium change of condensates

→֒ additional effects on top or only different language?
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Selfconsistent calculations
Connections to condensates

Symmetry changes and/or many-body effects?

study hadronic probe in a hadronic medium
1 hadronic many-body effects, many-body calculations

(spectral functions)
→ fix input from elementary scattering (if possible . . . )

2 phase transitions, changes in symmetries
(chiral symmetry, deconfinement, ...)
→ change of underlying vacuum structure

Does 1 happen on top of 2?

Double counting?

Does 1 imply 2?

Are there in-medium changes of hadronic properties which
cannot be traced back to hadronic interactions?
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Selfconsistent calculations
Connections to condensates

Beyond low densities: Selfconsistent calculations

— changes induce changes

so far:� �
but also the other states get medium modified
self energies:� �
self consistency might be important
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Selfconsistent calculations
Connections to condensates

→֒ possible: inclusion (resummation) of classes of
multi-scattering events:

� ...
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Selfconsistent calculations
Connections to condensates

included and not included diagrams

basic diagram �
correction for propagator (included)

� →

∣
∣
∣
∣
∣� ∣

∣
∣
∣
∣

2

+

∣
∣
∣
∣
∣� ∣

∣
∣
∣
∣

2
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Low-density approximation
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Selfconsistent calculations
Connections to condensates

correction for vertex (not included) → intimate connection to
interferences

� →

(� )

·

(�)
∗
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What are spectral functions?
Low-density approximation

Beyond low densities
Other approaches and concepts

Selfconsistent calculations
Connections to condensates

explicit example (M. Post, PhD thesis)
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Selfconsistent calculations
Connections to condensates

Back reaction on the D13
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What are spectral functions?
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Beyond low densities
Other approaches and concepts

Selfconsistent calculations
Connections to condensates

Selfconsistent calculations, summary

stuctures already there on elementary level

some reshuffling of strength

not everything can be resummed

have to decide what is important → model dependence

check importance of resummations by studying also
elementary level

“elementary” is not superposition of NN or NA reactions
elementary input required: e.g. for dileptons:

1 ππ (known from inverse reaction)
2 NN (measured/measurable)
3 πN (important to measure)
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Low-density approximation
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Other approaches and concepts

Selfconsistent calculations
Connections to condensates

Dropping mass scenarios

basic qualitative idea:
→֒ recall finding from quark models:

χSB related to generation of constituent quark masses
→֒ M ≈ 300 MeV ≫ mq

→֒ roughly explains masses of nucleon, vector mesons

medium: chiral restoration M → mq

→֒ precursor: M drops hadron masses drop
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Low-density approximation

Beyond low densities
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Selfconsistent calculations
Connections to condensates

Quantitative picture

propose model which links elementary hadronic
parameters (bare masses, coupling constants) e.g. with
quark condensate (Brown/Rho)

mH,med.

mH,vac.
=

(〈q̄q〉med.

〈q̄q〉vac.

)α

α might be density/temperature dependent

includes effects beyond linear-density approximation

oversimplified?

→֒ universal law at low densities in conflict with low-density
theorem

 should be fused with standard many-body effects(?)
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Selfconsistent calculations
Connections to condensates

The same unanswered questions:

Should one fuse dropping mass scenario with standard
many-body effects?

double counting?

different, economic language for hadronic higher-order
many-body effects?

alternative: resummation techniques, self consistency?

or additional effects on top of hadronic effects?

→֒ propose model and check against data
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Selfconsistent calculations
Connections to condensates

How to observe mass shifts?

masses of resonances seen in scattering phase shifts
→֒ hard to scatter inside a medium (medium has to stay intact)

detectors outside of medium
→֒ stable states change their mass back when leaving the

medium

interesting probe: vector mesons
interact strongly

→ sensitive to in-medium changes
couple directly to dileptons

→֒ the latter leave medium without further interaction
observe increasing strength at lower invariant mass
→ but: dropping or broadening?
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Selfconsistent calculations
Connections to condensates

Data quality makes a difference
NA60

dropping mass scenario
hadronic model
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Vector meson dominance
Approaches related to chiral symmetry

Other approaches and concepts

many models on the market

→֒ instead of overview:

→֒ select some related to vector mesons or to chiral symmetry

1 vector meson dominance
2 QCD sum rules
3 hidden local symmetry
4 chiral quartets
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Vector meson dominance
Approaches related to chiral symmetry

Vector meson dominance (VMD)

in general: (vector meson Vµ, photon Aµ)

Lint = g1Vµ jµπ + g2Vµ jµN + g3Vµ jµRN−1 + . . . − e M2
V

g
V µAµ

+ g̃1Aµ jµπ + g̃2Aµ jµN + g̃3Aµ jµRN−1 + . . .

strict VMD: all hadronic interactions mediated by vector
mesons

Lint = −e M2
V

g
V µAµ + g1Vµ jµπ + g2Vµ jµN + g3Vµ jµRN−1 + . . .

 less parameters, more predictive power
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Vector meson dominance
Approaches related to chiral symmetry

Vector meson dominance (VMD)

strict VMD seems to work well for meson decays

Lint = −e M2
V

g
V µAµ + g1Vµ jµπ + g2Vµ jµN + g3Vµ jµRN−1 + . . .

strict VMD has less parameters, more predictive power

→֒ e.g. fix g3 from decay R → γN

 prediction for R → γ∗N → e+e−N

→֒ need data on resonance decays into photons and into
dileptons
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Vector meson dominance
Approaches related to chiral symmetry

QCD sum rules

no
prediction
for mass
shift

but
constraints
for hadronic
models

relation to
four-, not
two-quark
conden-
sates
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Vector meson dominance
Approaches related to chiral symmetry

Hidden local symmetry

vector mesons treated as gauge bosons of local chiral
symmetry

 vector meson masses generated by chiral symmetry
breaking (Higgs mechanism)

 vector mesons become massless at chiral restoration

 dropping masses

but only for vector mesons, not for all hadrons
(maybe for nucleon as chiral soliton???)

ω meson is not necessary as gauge boson,
but in SU(3) member of vector meson nonet

note: also here relation to four-, not two-quark condensates

Stefan Leupold QCD, Chiral Symmetry and Hadrons in Matter
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Experimental significance for dropping ω mass
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Chiral quartets of baryons

for linear realization of chiral symmetry:

 sort baryons in chiral multiplets,
e.g. ∆(1232), N(1520), ∆(1700), N(1720)

 mass splitting by symmetry breaking

Jido/Hatsuda/Kunihiro, PRL 84 (2000) 3252

degeneracy at chiral restoration

observable?
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Chiral quartets
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Summary

want to learn about

symmetry pattern of QCD

many-body effects

nature of hadrons

need
models which incorporate as much as possible input from

QCD (chiral symmetry, . . . )
data on elementary scattering

decisive experiments which can rule out models
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