# TWO STEP EFFECTS BY DI-ELECTRON PRODUCTION IN P-P AND D-P REACTIONS

# **Gennady Lykasov**

Joint Institute for Nuclear Research, Dubna, 141980, Moscow region, Russia

#### OUTLOOK

- I. Motivation to study the di-electron production in p-p and d-p processes at intermediate energies
- II. Conventional analysis of di-electron production in p-p and d-p reactions
  - III. FSI effect in  $pp \rightarrow e^+e^-X$  process
  - IV. FSI contribution in  $dp \rightarrow e^+e^-X$  reaction
    - V. Di-electron production in  $np \rightarrow e^+e^-X$  process
  - VI. Summary

Conventional analysis of di-electron production in p-p and d-p reactions

Figure 1: Di-electron production in p-p collision

### Dilepton production within the resonance model

$$B B \to R X$$
,  $R \to e^+e^- X$  or  $R \to R' X$ ,  $R' \to e^+e^- X$ 

(E.L.Bratkovskaya, W.Cassing and U.Mosel, Nucl.Phys., A686,568 (2001); L.P.Kaptari and B.Kaempfer, Nucl.Phys., A764,338 (2006))

FSI effect in di-electron production in p-p collision

## **FSI** in $p p \rightarrow e^+e^- pp$

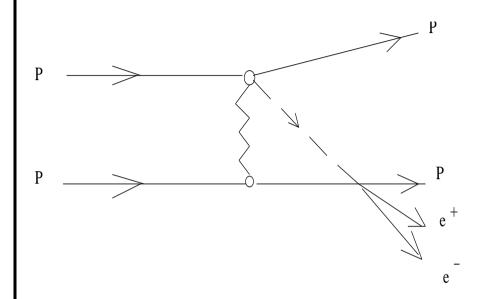



Figure 2: Di-electron production in p-p collision

## **Estimation of FSI in** $p p \rightarrow e^+e^- pp$

$$\frac{dN_{pp}^{FSI}}{dm_{ee}} = \frac{dN_{pp}^{0}}{dm_{ee}} + w_{\pi^{+}} \frac{dN_{\pi^{+}n}}{dm_{ee}} + w_{\pi^{0}} \frac{dN_{\pi^{0}p}}{dm_{ee}}$$

where 
$$w_{\pi^+}=rac{\sigma_{pp o\pi^+np}}{\sigma_{pp}^{tot}}$$
 and  $w_{\pi^0}=rac{\sigma_{pp o\pi^0pp}}{\sigma_{pp}^{tot}}$ 

FSI efect in  $p p \rightarrow e^+e^- pp$  process

#### FSI effect in $p \ p \rightarrow e^+e^- \ pp$

Assuming that  $dN_{\pi^+p}/dm_{ee} \simeq dN_{\pi^0p}/dm_{ee}$  we have

$$\frac{dN_{pp}^{FSI}}{dm_{ee}} \simeq \frac{dN_{pp}^0}{dm_{ee}} (1 + w_{\pi} \alpha_{\pi}(E_p)) ,$$

where 
$$\alpha=rac{dN_{\pi^+p}/dm_{ee}}{dN_{pp}^0/dm_{ee}}$$
 and  $w_\pi=rac{\sigma_{pp o\pi^+np}+\sigma_{pp o\pi^0pp}}{\sigma_{pp}^{tot}}$ 

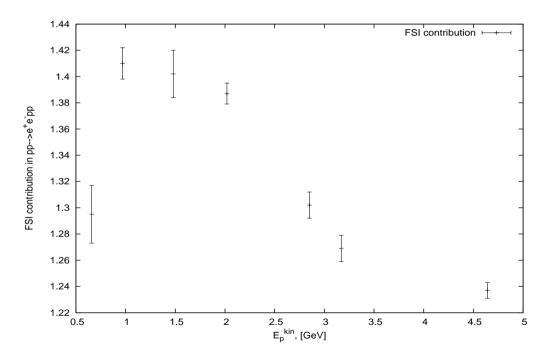



Figure 3: FSI effect for  $pp \to e^+e^-pp$  process as a function of the kinetic energy of proton  $E_p^{kin}$ 

### Reactions $dp \to pX$ and $dp \to e^+e^-pX$

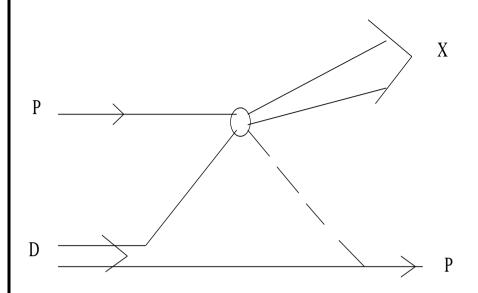



Figure 4: Reaction  $dp \rightarrow pX$ 

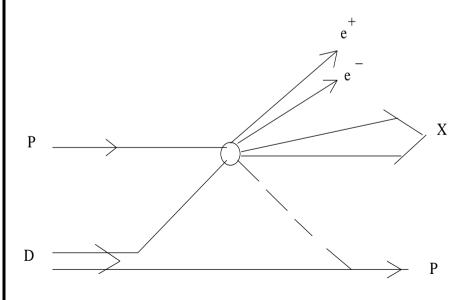



Figure 5: Reaction  $dp \rightarrow pX$ 

Two step effect in di-electron production in d-p collision  $\_$ 

# **FSI** in d $p \rightarrow e^+e^-$ ppn

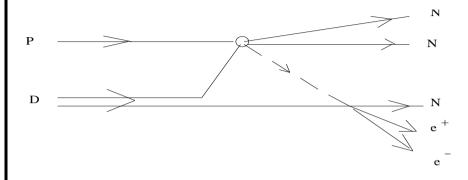



Figure 6: FSI for the di-electron production in d-p collision

# **Estimation of FSI in** d $p \rightarrow e^+e^-$ ppn

$$\frac{dN_{dp}^{FSI}}{dm_{ee}} = \frac{dN_{pp}^{0}}{dm_{ee}} + \frac{dN_{np}^{0}}{dm_{ee}} + \delta^{FSI} ,$$

0

#### **FSI** effect in d $p \rightarrow p$ d

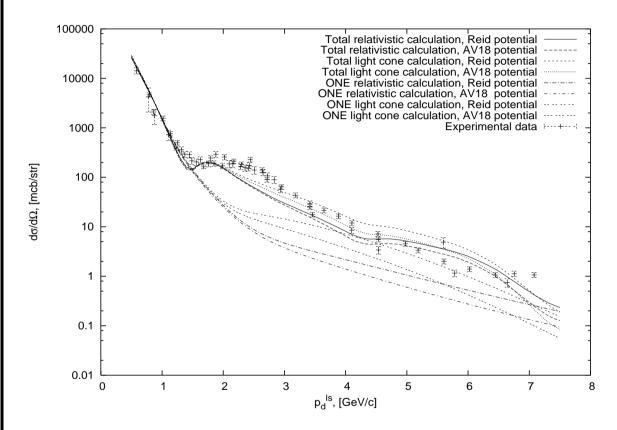



Figure 7: Differential cross section for elastic backward d-p scattering as a function of the initial deuteron momentum  $p_d^{l.s.}$ 

(A.P.Ierusalimov, G.L., M.Viviani, talk at the EFB20 Conference, 9-14 September 2007; M.G.Dolidze, G.L., Z.Phys.A335,95 (1990); ibid. Z.Phys.A336,339 (1990); G.L.EPAN, 24, 140 (1993).)

FSI in  $d p \rightarrow e^+e^- ppn$  process

#### **FSI** effect in d $p \rightarrow e^+e^-$ ppn

where

$$\delta^{FSI} = < r_d^{-2} > (\sigma_{pp \to \pi^+ pn} \frac{dN_{\pi^+ n \to e^+ e^- p}}{dm_{ee}} + \sigma_{pp \to \pi^0 pp} \frac{dN_{\pi^0 n \to e^+ e^- n}}{dm_{ee}} + \sigma_{np \to \pi^- pp} \frac{dN_{\pi^- p \to e^+ e^- n}}{dm_{ee}} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^- p \to e^+ e^- n}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^- p}}{dm} + \sigma_{np \to \pi^0 np} \frac{dN_{\pi^0 p \to e^+ e^-$$

Approximately we have

$$\frac{dN_{dp}^{FSI}}{dm_{ee}} = \frac{dN_{pp}^{0}}{dm_{ee}} + \frac{dN_{np}^{0}}{dm_{ee}} + 4 < r_{d}^{-2} > \sigma_{NN \to \pi NN} \frac{dN_{\pi N}}{dm_{ee}} , \ R_{dp}^{FSI} \simeq 1 + 4 < r_{d}^{-2} > \sigma_{NN \to \pi NN}(E_{p})$$

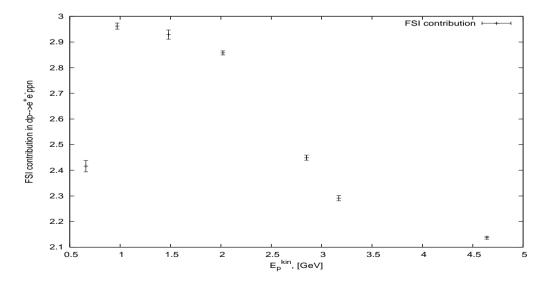



Figure 8: FSI effect for  $dp \to e^+e^-ppn$  process as a function of the kinetic energy of proton  $E_p^{kin}$ 

## **SUMMARY**

- I. The conventional approach describing  $e^+e^-$  production in p-p and d-p collisions is the so called resonance model.
  - II. It does not include the FSI effects.
- III. The inclusion of the FSI contribution can increase  $dN/dm_{ee}$  by factor 1.5 at  $E_p^{kin} \simeq 1.(GeV)$  and  $m_{ee} > 0.2 GeV/c^2$  for  $pp \to e^+e^-X$  process.
- IV. The FSI contribution for  $dp \to e^+e^-NNN$  reaction can increase the  $m_{ee}$ -spectrum by factor 3 at  $E_p^{kin} \simeq 1.(GeV)$  and  $m_{ee} > 0.2 GeV/c^2$ .
- V. To extract the  $m_{ee}$ -spectrum in  $np \to e^+e^-X$  process from  $dp \to e^+e^-X$  reaction at kinetic energies close to 1(GeV) we have to include the FSI effect.
- VI. The FSI contribution falls down when the initial energy increases.