Spectroscopy of η' Mesic Nuclei with (p,d) Reaction

Kenta Itahashi, Helmut Weick
RIKEN Nishina Center, GSI
Summary

Missing mass spectroscopy by \((p,d)\) reaction to study \(\eta'\) meson bound states

\(\eta\) meson bound states

\((V_0', W_0) = (150, 5)\) MeV

Summary
η' Meson

Pseudo scalar meson (J^{\pi}=0^-)

M = 958 MeV/c^2

Γ = 0.199 MeV

Decay: π^+π^-η (43%), ργ (29%), π^0π^0η (22%)
η’ and other PS mesons

η’ \(M = 958 \text{ MeV/c}^2 \)

η \(M = 548 \text{ MeV/c}^2 \)

K \(M = 498 \text{ MeV/c}^2 \)

π \(M = 140 \text{ MeV/c}^2 \)

RIKEN Nishina Center, Kenta Itahashi
η' and other PS mesons

η'
M = 958 MeV/c²

π
M = 140 MeV/c²

η problem

\(m_{\eta'} < \sqrt{3} m_\pi \)
(Weinberg, 1975)
Large η' mass can be explained

$U_\Lambda(1)$ symmetry breaking term of effective Lagrangian

\[\langle \bar{q} q \rangle \]

6-point vertex

Kobayashi-Maskawa-'t Hooft-type interaction

Kobayashi, Maskawa, PTP44(70)1422
\‘t Hooft, PRD14(76)3432.
Klimt, Lutz, Vogl, Weise, NPA516(90)429.
η’ Meson

RIKEN Nishina Center, Kenta Itahashi
\(\eta' \) in medium
Chiral Condensate in Finite T/\rho

W. Weise, NPA553(93)59.
Chiral Symmetry and Pionic Atoms

Order parameter of Chiral symmetry $\langle qq \rangle$

$|\langle qq \rangle|$

$\sim 30\%$

normal nuclear density

300 MeV

Chiral symmetry fully restored

RIKEN Nishina Center, Kenta Itahashi
η' in-medium

Naive estimation shows 30% reduction of $|m_{\eta'} - m_\eta|$

Q. Mass shift of ~ 140 MeV/c2 can be observed in experiment?

Jido, Nagahiro, Hirenzaki, arxiv 1109.0394
Experimental spectroscopy of η’ mesic nuclei
η’ Mesic Nuclei in \((p,d)\) Reaction

η’ transfer reaction + Missing mass measurement

\[T_p = 2.50 \text{ GeV} \rightarrow q \sim 400 \text{ MeV/c} \]
Theoretical Prediction

η’-nucleus potential:

\[V_{\eta'}(r) = (V_0 + iW_0) \frac{\rho(r)}{\rho_0} \]

- \(\rho \): nucleon density
- \(V_0 \): Real potential depth
- \(W_0 \): Imaginary potential depth

\[^{12}\text{C}(p,d) \text{ at } T_p = 2.50 \text{ GeV} \]

Nagahiro, Hirenzaki, Jido, private communication

RIKEN Nishina Center, Kenta Itahashi
Theoretical Prediction

η'-nucleus potential:

\[V_{\eta'}(r) = (V_0 + iW_0) \frac{\rho(r)}{\rho_0} \]

- \(\rho \): nucleon density
- \(V_0 \): Real potential depth
- \(W_0 \): Imaginary potential depth

\[^{12}\text{C}(p,d) \text{ at } T_p = 2.50 \text{ GeV} \]

Bound states

(0p_{3/2})_n \otimes \pi_{\eta'}
(0p_{3/2})_n \otimes \eta_{\eta'}
(0p_{1/2})_n \otimes s_{\eta'}
(p_{3/2})_n \otimes f_{\eta'}
(p_{3/2})_n \otimes g_{\eta'}
(p_{3/2})_n \otimes d_{\eta'}

Nagahiro, Hirenzaki, Jido, private communication

RIKEN Nishina Center, Kenta Itahashi
Experimental Setup

2.5 GeV proton

$I_p = 10^{10}$/spill
4 g/cm2 12C target

Tracking = 2 x MWDC
PiD = 2 x Scintillator + Aerogel Cerenkov

$T_d = 1.37$~1.66 GeV
$P_d = 2.65$~3.00 GeV/c
$\beta_d = 0.816$~0.848
$\beta_p = 0.962$

Riken Nishina Center, Kenta Itahashi
Experimental Setup

2.5 GeV proton

1_p = 10^{10}/spill
4 g/cm^2 \text{^{12}C} target

FRS is the key for good resolution and bk rejection

Estimated maximum proton rate \sim 60 \text{kHz}
trigger rate = 1 \text{kHz}

RIKEN Nishina Center, Kenta Itahashi
Expected Spectra

\[V_{\eta'}(r) = (V_0 + iW_0) \frac{\rho(r)}{\rho_0} \]

\(\rho \): nucleon density
\(V_0 \): Real potential depth
\(W_0 \): Imaginary potential depth

(\(V_0', W_0 \)=-(100, 20) MeV)

(\(V_0', W_0 \)=-(150, 5) MeV)

in 4.5 days DAQ
Structure-finding Probability

\[V_{\eta'}(r) = (V_0 + iW_0) \frac{\rho(r)}{\rho_0} \]

in 4.5 days DAQ for 95% C.L.
Structure-finding Probability

\[V_{\eta'}(r) = (V_0 + iW_0) \frac{\rho(r)}{\rho_0} \]

Disfavored by CB-ELSA transparency measurement.
(Nanova et al., Hadron2011)

in 4.5 days DAQ for 95 % C.L.

RIKEN Nishina Center, Kenta Itahashi
Presented as Loi to GPAC last week, but with request for 3 day test beam time

We aim at

✓ Measurement of cross section levels of signal + background
✓ Test of new beam optics
✓ Detector system integrity check + overall test
RIKEN Nishina Center, Kenta Itahashi

New Beam Optics

FRS with Unique Background Rejection Capability

Horizontal

TA-S2 0.3 cm/%
TA-S4 5.5 cm/%

Vertical
Particle Identification

Aerogel (n=1.12)

Fine tuning will enable adoption of TOF based hardware trigger

RIKEN Nishina Center, Kenta Itahashi
Chances in 3-Day Beamtime

\[V_{\eta'}(r) = (V_0 + iW_0) \frac{\rho(r)}{\rho_0} \]

\(\rho \): nucleon density
\(V_0 \): Real potential depth
\(W_0 \): Imaginary potential depth

(\(V_0, W_0 \) = -(150, 5) MeV)

We have chances to observe peaks in 1-day.
Summary

• Spectroscopy of in-medium η' is in preparation.

• We set ambitious goals to understand fundamental symmetry of vacuum and QCD.

• Experiment is possible only in GSI.

• 3-day preceding beamtime is requested to figure out crucial parameters for the experiment. We even have chances to observe peaks in the 3 days.
Collaboration

K. Itahashi1, H. Outa,
Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, 351-0198 Saitama, Japan

H. Fujioka2,
Division of Physics and Astronomy, Kyoto University, Kitashirakawa-Oiwakecho, Sakyoku, 606-8502 Kyoto, Japan

H. Geissel, H. Weick3,
GSI - Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany

V. Metag, M. Nanova,
II. Physikalisches Institut, Universität Gießen, D-35392 Gießen, Germany

Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo, 113-0033 Tokyo, Japan

S. Hirenzaki, H. Nagahiro,
Department of Physics, Nara Women’s University, Kita-Uoya Nishi-Machi, 630-8506 Nara, Japan

D. Jido,
Yukawa Institute for Theoretical Physics, Kyoto University, Kitasirakawa-Oiwakecho, Sakyoku, 606-8502 Kyoto, Japan

and K. Suzuki, E. Widmann
Stefan Meyer Institut für subatomare Physik, Boltzmangasse 3, 1090 Vienna, Austria