pγ-event rate estimate Primary beam intensity (²³⁸U) 10⁹ particle/s ²⁰⁸Pb target (1g/cm²) 2.9*10²¹ particle/cm² transmission SIS-FRS 0.7 transmission through FRS 0.01 RIB-event rate = $$2.03*10^{28} [s^{-1} cm^{-2}] * \sigma_{fission} [cm^2]$$ $$\sigma_{fission} = 0.026 * 10^{-24} [cm] \text{ for } ^{88}\text{Kr}$$ 527 [s⁻¹] (88 Kr beam intensity) 10^4 [s⁻¹] RIB-event rate max. event rate (MUSIC) ## **Coulomb excitation experiment:** ²⁰⁸Pb Coulex-target (0.4g/cm²) 1.2*10²¹ particle/cm² photopeak efficiency pγ-event rate = $$6.80*10^{47}$$ [s⁻¹ cm⁻⁴] * $\sigma_{fission}$ [cm²] * σ_{coulex} [cm²] $B(E2;0^+ \to 2^+) = 3.33 * \frac{Z^2}{E_2[keV]} * \frac{1}{A^{0.69}}[e^2b^2]$ Raman formula: $$B(E2;0^+ \to 2^+) = 0.254[e^2b^2]$$ for ⁸⁸Kr, E₂=775.[keV] $\sigma_{coulex} = 0.491 * 10^{-24} [cm] \text{ for } ^{88}\text{Kr, R}_{int} = 13.5 [fm]$ py-event rate = $0.009 [s^{-1}] = 0.52 [min^{-1}]$