Plastic scintillators for the g-RISING experiments

Nami Saito

Introduction

• Detectors :

- Sci21 (sci21L, sci21R)
- Sci41 (sci41L, sci41R, sci41O(up), sci41U(down))

• Purpose:

- Beam ID : ToF -> beta -> A/Q (online analysis code)
- Position : sci21LR, (sci41LR, sci41UpDown)
- Trigger : sci41R
- Energy : QDC (sci21L, R, sci41L, R, Up, Down)

Specification

Sci21 : FRS standard detector

- 9 scintillators on a S2 Scintillator Ladder (TS3ESA_S)
 BC420 or BC400 typical size 220 x 45 mm, 0.5 5 mm thick http://www-w2k.gsi.de/frs-setup/FRS%20Areas/S2%20(dispersive%20focus).htm
 Movable by remote control (< 1 min)
- PMT : H2431 (high rate, good time resolution)
- HV : remote control in FRS electronics room
 max 2800V, usual operation -1500V-~2000V
- Time resolution : 80ps with a beam (FWHM)
- Position resolution : 6mm with a beam (FWHM)

Specification

Sci41 : RISING scintillator

- Scintillator : fixed in a S4 chamber (No black film on sci!)
 - Round type ϕ 250 mm, ~0.3, 0.5, or 1 mm thickness
 - No remote control to move, replaceable (> 1 h)
- PMT : H2431-50 (good time resolution)
- HV : remote control at FRS electronics room
 - max 3000V, usual operation -2500V-~2800V
- Time resolution : 300ps with a beam (FWHM)
- Position resolution : ~2cm with a beam (FWHM)

Electronics

Simple Scheme for Time and Energy

HV and signals

Example of signal height (RISING fast beam)

Sci21 (3mm)

Energy (in) ~200MeV/u, Energy_deposit_cal=~30MeV/u=~4000MeV

- sc21L: HV=1450V, Signal 5V, signal_CFD_input=2.5V
- sc21R: HV=1630V, Signal 5V, signal_CFD_input=2.5V

Sci41 (0.5mm)

- E_in ~100MeV/u, E deposit cal=~8MeV/u=~**1000MeV**
- sc41L: HV=2500V, Signal At MH Pannel=5V, SigCFDIn=2.5V
- sc41R: HV=2500V, Signal At MH Pannel=4V, SigCFDIn=2.5V
- sc41U: HV=2550V, Signal At MH Pannel=2.5V,SigCFDIn=2.5V
- sc41D: HV=2600V, Signal At MH Pannel=2.5V,SigCFDIn=**2.5V**

RISING fast beam (Minimum Energy loss ~ 110 MeV gave up signal splitting)

Note: E-loss Cal. is needed for each beam including FRS calibration run

g-RISING Energy loss estimation

	Sci21: 3.51mm			Sci41 : 0.5mm			:1mm
Beam	E in	dE	dE	E in	dE	dE	dE
	MeV/u	MeV/u	MeV	MeV/u	MeV/u	MeV	MeV
130Sn	715.6	17.3	2249	582.8	2.6	338	689
94Pd	391.4	25.9	2435	279.6	4.3	404	818
196Po	882.8	31.7	6213	691	4.8	941	1882

Note: E-loss Cal. is needed for each beam including FRS calibration run. U beam gives large E-loss, it is difficult to combine with light ions.

Discussion

- Thickness of 3mm (sci21) and 1mm (sci41) would be suitable for the given cases from a signal height point of view. (A test in a Lab is needed before it is mounted at S4.)
- All beams including primary beam for FRS calibration have to be considered by using simulation of LISE or Mocadi for the required energy loss, time resolutions.
- Trigger signal from sci41? (sci41R only or coincidence?)
- Slit before sci21 and sci41? (Pulse height x4 at 10cm from center)