Spectroscopy of neutron-rich nuclei around ¹¹⁰Zr Toshiyuki Sumikama Tokyo University of Science

CONTENTS

- Introduction: Structural evolution of Zr isotopes
- * Decay spectroscopy for ^{106,108}Zr performed at RIBF
- Decay spectroscopy of neutron-rich nuclei around ¹¹⁰Zr with E(U)RICA
- * Summary

LARGE DEFORMED REGION

Sudden onset of large deformation at N=60

Deformation evolution

Related to deformed shell gap for neutron?

NILSSON DIAGRAM

✤ Zr isotopes (Z=40)

Gap for spherical, prolate and oblate shapes Enhancement of deformation evolution as a function of neutron number

Decay Spectroscopy for ^{106,108}Zr performed at RIBF

T. Sumikama et al., Phys. Rev. Lett. 106, 202501 (2011)

COLLABORATORS

- * Tokyo University of Science
- * RIKEN Nishina Center
- * Osaka University
- * Tokyo Institute of Technology
- * CNS
- * Japan Atomic Energy Agency
- * Kyushu University
- * Technishe Universität München C. Hinke, K. Steiger,
- * TRIUMF
- * NSCL
- * INFN
- * Università di Milano, INFN
- * University of Surrey
- ***** University of York

- T. Sumikama, K. Yoshinaga, Y. Miyashita, T. Nakano, K. Sugimoto, S. Takano, J. Chiba
 - S. Nishimura, H. Watanabe, Z. Li, G. Lorusso, H. Sakurai,H. Baba, M. Nishimura, T. Isobe, H. Scheit,P. Doornenbal, D. Steppenbeck
 - K. Yamaguchi, A. Odahara, A. Takashima, Y. Ito, K. Tajiri, H.J. Ong
 - N. Kobayashi, Y. Kawada, Y. Kondo, E. Ideguchi, S. Go, S. Ota, S. Kubono, H. Yamaguchi, T. Hashimoto, S. Hayakawa
- nergy Agency Y. Wakabayashi
 - T. Teranishi
 - **1. 1CTAIIISII**
 - R. Kruecken
 - J.S. Berryman
 - O. Wieland, N. Blasi
- ano, INFN A. Bracco, F. Camera
 - Zs. Podolyák, P.M. Walker
 - D.G. Jenkins

SECONDARY BEAM PRODUCTION

2011年5月27日金曜日

GAMMA-RAY FROM ¹⁰⁶ZR

- * β-delayed γ-ray from 106 Zr (β decay of 106 Y)
- * Spin assignment Most intense peak 152 keV $2_1^+ \rightarrow 0_1^+$

* Other peaks $324 \text{ keV: } 4_1^+ \longrightarrow 2_1^+$ $607 \text{ keV: } 2_2^+ \longrightarrow 0_1^+$

* Prediction (IBM) $E(4_1^+) = 455 \text{ keV}$ $E(2_2^+) = 618 \text{ keV}$ S. Lalkovski and P. Vanlsacker, PRC 79, 044307 (2009).

ISOMERIC STATE IN ¹⁰⁸ZR
✤ Isomer was discovered. (620±150 ns)

Possible ground-state structure of ¹⁰⁸Zr
 Deformed as lighter Zr isotopes
 Spherical due to possible N=70 subshell gap

SPHERICAL SHAPE AROUND ¹¹⁰ZR

***** Shell gap at $\mathcal{N}=70$

* Spherical shape

Skyrme EDF with a tensor force + a reduced spin-orbit term M. Bender et al., PRC 80, 064302 ('09).

For Neutron

ISOMERIC STATE IN ¹⁰⁸ZR

***** Isomer was discovered. $(620\pm150 \text{ ns})$

Possible structure of ¹⁰⁸Zr
 Deformed as lighter Zr isotopes
 Spherical due to possible N=70 subshell gap

Systematics of even-even nucleus ★ 1/E(21⁺) ★ Maximum @ N=64 for Mo and Zr isotopes

- ***** Maximum @ $\mathcal{N}=64$ for Mo and Zr isotopes
- Band crossing due to rotation alignment of h_{11/2} neutron pair
 Stability @ N=64

Deformed sub-shell closure @ N=64

Systematics of even-even nucleus $* 1/E(2_1^+)$

- ***** Maximum @ $\mathcal{N}=64$ for Mo and Zr isotopes
- ***** Deformed magic number @ $\mathcal{N}=64$

Possible Structure of Isomeric state in ¹⁰⁸Zr

 Long-lived isomer in even-even nucleus (620±150 ns)

1. Tetrahedral shape isomer

Shell effect for spherical should be small.Energy barrier between oblate and tetrahedral shapesN. Schunck et al., PRC 69, 061305(R) ('04).

2. High K-isomer

Two quasineutron states

Known for $\mathcal{N}=62$ isotones; ¹⁰²Zr, ¹⁰⁰Sr Predictions for prolate (Z=40) and oblate (N=66)

F. R. Xu et al., PRC 65, 021303(R) ('02).

No isomer was observed

Decay Spectroscopy around ¹¹⁰Zr with E(U)RICA

Zr, & Mo Isotopes

¹⁰⁸ZR ISOMER

- Previous experiment
 Half-life: 620±150 ns
 - Identified 5 peaks

Passive stopper exp. @ RIBF Identified 9 peaks T. Nakao, Doctor thesis (2010)

✤ Next step

- * Detection of missing γ -ray peaks
- ***** Energy of isomeric state: Level scheme
- Search for isomer in even-even nuclei

Decay Spectroscopy of ¹⁰⁸Zr
 ★ Spectroscopy of ¹⁰⁸Zr isomer with high statistics
 Search for missing γ-ray peaks
 γ-γ coincidence
 ★ Beta decay of ¹⁰⁸Y to ¹⁰⁸Zr

(2+) ↓ 173.7

173.7 0+ ¥ 0

¹⁰⁸7r

✤ Level scheme

Common peaks correspond to low-lying states.

- **Structure from** *E* and $t_{1/2}$
 - * Tetrahedral shape?
 - High-*K* isomer?

Isomer Search In Even-even Nuclei

* $\mathcal{N}=68$: ¹¹⁰Mo with high statistics * $\mathcal{N}=70$: ¹¹⁰Zr and ¹¹²Mo

1. Tetrahedral shape isomer in ¹⁰⁸Zr
a. Tetrahedral shape isomer in ¹¹⁰Zr
b. Ground state of ¹¹⁰Zr is predicted to be tetrahedral shape.
N. Schunk et al., PRC 69, 061305(R) (2004).
Prolate shape may become an isomer??
2. Isomer of ¹⁰⁸Zr is the high *K* isomer

Two quasineutron states around ¹⁰⁸Zr F. R. Xu et al., PRC **65**, 021303(R) (2002).

Ground-State Structure of ¹¹⁰Zr

- Low-lying states
 - **K** Isomer in ¹¹⁰Zr
 - ***** β-decay of 110 Y
 - ✤ No chance using ~ 3 pnA ²³⁸U beam
- ***** Test of predicted transition to spherical shape at $\mathcal{N}=70$

¹⁰⁶ZR & ¹¹²MO

- * β-decay of 106 Y to 106 Zr
- * Confirmation of 2_2^+ state Detection of γ -ray from 2_2^+ to 2_1^+ states

ℜ β-decay of ¹¹²Nb to ¹¹²Mo
ℜ Energy of 2₁+

Beam Time Estimation

USE OF HIGH INTENSITY BEAM

- ✤ High intensity beam
 - from ~ 0.3 pnA to 5 pnA (avg. 3 pnA)
- ✤ Keep Total Yield to ~ 100 cps

* Separation @ BigRIPS

Ζ

DECAY SPECTROSCOPY WITH EURICA

- ***** Improvement of γ -ray counts from previous exp.
 - * γ-ray efficiency: 4 clovers to EURICA x 7
 - High intensity beam
 from ~ 0.3 pnA to 5 pnA (avg. 3 pnA)
 x 10
 - Beam time (8 days)
 x 4
 - 🔆 Total

Previous Exp. New Exp. x 280 Isomer: up to ¹¹⁰Zr Isomer: up to ¹⁰⁸Zr β-γ: up to 108 Zr β-γ: up to 106 Zr

BEAM TIME ESTIMATION

- β-γ & Isomer spectroscopy around ¹¹⁰Zr (N=67 72)
 8 days
- Beam tuning/Circuit & Detector check
 2 days
- Total10 days

Thank you for your attention