USING

• experimental set-up

- sub-shell closure (N=32 gap) for Cr nuclei
- pairing interaction in semi-magic Sn nuclei
- shapes and shape coexistence: ¹³⁶Nd, ¹³⁴Ce
- Pygmy dipole resonance in ⁶⁸Ni
- T=2 mirrors ³⁶Ca and ³⁶S

• future: PreSPEC

 $FRS \rightarrow secondary \ radioactive \ ion \ beams:$

- Fragmentation or fission of primary beams
- High secondary beam energies (100 400 AMeV)
- Fully stripped ions
- Reactions on a secondary target
- Implantation inside a stopper

- Nuclear structure of exotic nuclei studied by secondary fragmentation and relativistic Coulomb excitation
- g-factor measurements
- Isomeric γ- and β-decay studies

Th	e Accelerators:	
•	UNILAC (injector)	- E<15 AMeV
•	SIS 18Tm ²³⁸ U 1 A	GeV
Be	am currents:	
0	²³⁸ U	10 ⁹ pps
•	medium mass nuclei	10 ¹⁰ nns

Fast beam campaign (2003-2005)

- FRS: excellent in-flight A and Z selection energy resolution: ~ 1 GeV
- *EUROBALL*: excellent γ-ray spectrometer intrinsic energy resolution: ~ 2 keV

Experimental set-up

FRagment Separator

γ-ray set-up with higher efficiency

Atomic Background Radiation Bremsstrahlung

Radiative electron capture (REC) capture of target electrons into bound states of the projectile:

 $\sigma \sim Z_p^2 \cdot Z_t$ > Primary Bremsstrahlung (PB) capture of target electrons into continuum states of the projectile:

 $\sigma \sim Z_p^2 \cdot Z_t$ > Secondary Bremsstrahlung (SB) Stopping of high energy electrons in the target: $\sigma \sim Z_p^2 \cdot Z_t^2$

Bremsstrahlung: slowing down of a moving point-charge

EUROBALL Cluster Detectors Miniball: HPGe segmented detectors

HECTOR Large 14.5 x 17 cm BaF₂ Detectors

CATE : ΔE-E telescope event by event beam identification

Coulomb Excitation at Relativistic Energy

- ✓ New Shell structure at N>>Z
- ✓ Relativistic Coulomb excitation of nuclei near ¹⁰⁰Sn
- \checkmark Triaxiality in even-even core nuclei of N=75 isotones
- ✓ E1 Collectivity in neutron rich nuclei ⁶⁸Ni

nucleus	σ (mb)
⁵⁶ Cr	91
¹⁰⁸ Sn	314
¹³⁶ Nd	338 / 2180

H.J. Wollersheim NIM A537, 637(2005)

Relativistic Coulomb Excitation of ^{54,56,58}Cr → ¹⁹⁷Au

Cr56: Z : A/Q ⁵⁷Mn ⁵⁶Cr 26 120 energy loss 25 100 24 800 23 600 22 400 21 20 **|** 200 19^t 2.25 2.3 2.35 time of flight A/Q 2.05 2.1 2.15 2.2

Identification before the secondary target

after secondary target

 γ -efficiency = 2.8%, $\Delta E_{\gamma} = 1.6\%$ (1.3 MeV, d=70 cm)

Relativistic Coulomb Excitation of ^{54,56,58}Cr → ¹⁹⁷Au

	<mark>Ε</mark> _γ [keV]	B(E2) [Wu]
⁵⁴ Cr	835	14.6 (6)
⁵⁶ Cr	1006	8.7 (3.0)
⁵⁸ Cr	880	14.8 (4.2)

Indication for N=32 sub-shell closure

A. Bürger et al., Phys. Lett B622, 29 (2005)

The ¹⁰⁰Sn / ¹³²Sn region

The ¹⁰⁰Sn / ¹³²Sn region

Pairing interaction: Large spin-orbit splitting implies a jj-coupling scheme

Relativistic Coulomb Excitation of ${}^{108}Sn \rightarrow {}^{197}Au$

Relativistic Coulomb Excitation of ¹³⁶Nd → ¹⁹⁷Au

First observation of a second excited 2⁺ state populated in a Coulomb experiment at 100 AMeV using EUROBALL and MINIBALL Ge detectors.

- ➤ collective strength
- shape symmetry
- triaxiality (in N=76) in even-even core nuclei of the odd-odd chiral isotones

T.R. Saito, Phys.Lett B669, 19 (2008)

Pygmy Dipole Resonance

Collective oscillation of neutron skin against the core

Statistical model (Cascade) calculation of γ -rays following statistical equilibration of excited target nuclei (197Au) and of the excited **beam** nuclei (⁶⁸Ni) folded with RF and in the CM system

Excess Yield

O.Wieland et al. PRL 102, 092502 (2009)

O.Wieland et al. PRL 102, 092502 (2009)

RISING

7

Mirror symmetry at the proton drip-line: ³⁶Ca – ³⁶S Deviations from the classical shell model

 $^{32}Ca {}^{34}Ca {}^{36}Ca$ ^{40}Ca ^{0}Ca ^{0}Ca 0

Double fragmentation reaction: Primary: ⁴⁰Ca, 420 A·MeV, 3·10⁸ ions/s, 4 mg/cm² ⁹Be Secondary: ³⁷Ca, 196·A MeV, 2·10³ ions/s, 0.7 mg/cm² ⁹Be

P. Doornenbal et al., Phys. Lett. B647, 237 (2007)

too large to result from Coulomb corrections

Mirror energy differences for T=1,2 nuclei Deviations from the classical shell model MED [keV] SM +1000 ο 0 -100 -200 **USD**^m USD^m - gap Z14< -300 USD^{m} - gap Z14>/N14< USD - HB ο -400 EX T=1 EX T=2-500 18 20 22 24 26 28 30 32 34 36 38 A *H. Herndl et al., Phys. Rev. C 52 (1995) 1078 P. Doornenbal et al., Phys. Lett. B647, 237 (2007).

A. Gade et al. Phys. Rev. C 76, 024317 (2007)

Future: PreSPEC and AGATA

S2'-configuration:10 AGATA Triple Cluster+ 5 double Cluster detectors γ -efficiency = 17.5% $\gamma\gamma$ -efficiency = 2.5%resolutionintrinsic spatial(FWHM)intrinsic spatialresolution

resolution (FWHM)	intrinsic spatial resolution
8.5 keV	5 mm
4 keV	2 mm

beam pipe diameter = 12cm chamber diameter = 46 cm

PreSPEC fast-beam campaign

great perspectives ...

Tracking det. and EDAQ upgrade increase max. rate and throughput 10x SIS/FRS intensities increase up to $\approx 10x$

PreSPEC Fast Beam Campaign convener: W. Korten

AGATA increases γ -sensitivity $\approx 10x$

n Very attractive and competitive spectroscopy themes

Unique combination of beams, set-up and people