First results of $\beta - \gamma$ spectroscopy for neutron-rich nuclei around A=110 at RIBF

Kenta Yoshinaga Tokyo University of Science

23, May, 2011, E(U)RICA WS

Collaborators

- RIKEN Nishina Center
 - S. Nishimura, H. Watanabe, Z. Li, H. Baba, M. Nishimura, T. Isobe, H. Scheit, P. Doornenbal,
 - D. Steppenbeck, H. Sakurai
- Tokyo University of Science
 - T. Sumikama, K. Yoshinaga, Y. Miyashita, T. Nakano, K. Sugimoto, S. Takano, J. Chiba
- Osaka University
 - K. Yamaguchi, A. Odahara, A. Takashima, Y. Ito, K. Tajiri, T. Shimoda, H.J. Ong
- Tokyo Institute of Technology
 - N. Kobayashi, Y. Kawada, Y. Kondo, T. Nakamura
- CNS
 - E. Ideguchi, S. Go, S. Ota, S. Kubono, H. Yamaguchi, T. Hashimoto, S. Hayakawa
- Japan Atomic Energy Agency
 - Y. Wakabayashi
- Kyushu University
 - T. Teranishi
- Technishe Universität München
 - C. Hinke, K. Steiger, R. Kruecken
- Michigan State University
 - G. Lorusso,
- Lawrence Berkeley National Laboratory
 - J.S. Berryman
- INFN
 - O. Wieland, N. Blasi
- Università di Milano
 - A. Bracco, F. Camera
- University of Surrey
 - Zs. Podolyák, P.M. Walker

Contents

× Motivation

× Experiment

- + Beam production
- + Detectors for $\beta \gamma$ spectroscopy
- + 100MHz Time stamp DAQ system
- + Data analysis with Time-Stamp

× Result

- + Shape evolution of neutron-rich even-even Zr isotopes
- + A possible oblate-shape isomer in ¹⁰⁹Nb
- + β -decay half-lives of neutron-rich Kr to Tc isotopes

× Summary

Motivation

Motivation

A drastic shape evolution is predicted in neutron-rich nuclei around A=110. For the Zr isotopes, a deformation may reach a maximum by a deformed shell-closure.

However, the maximization of the deformation has not been observed as a function of neutron numbers.

Nucleosynthesis on r-Process

B.Pfeiffer et al. ZPA 357 (1997)

Nucleosynthesis on R-Process

Purpose : To study the low-lying excited state of such nuclei, and β -decay half-life measurement

 \rightarrow abundance \rightarrow process speed $rightarrow Masses (A, Q_{\beta}, S_n)$ → location of the path $\Rightarrow \beta$ -delayed neutron (P_n) \rightarrow final abundances

- 1. $\beta \gamma$ spectroscopy at RIBF
- 2. Beam production
- 3. Detectors for $\beta \gamma$ spectroscopy
- 4. 100MHz Time stamp DAQ system
- 5. Data analysis with Time-Stamp

Experiment

$\beta - \gamma$ spectroscopy at RIBF

- × Beam time : Dec., 2009. 3 days (T_{1/2} measurement : 8 hours)
 × Primary beam: ²³⁸ U at 345 MeV/A ~ 0.3 pnA on average
- × Objective isotopes : Neutron-rich A = 110 nuclei
 × Experimental method : Decay spectroscopy with stopped beam

Beam production

Detectors for $\beta - \gamma$ spectroscopy

- RI & β -ray detection
 - 9 DSSDs
 - ~ 2000 pixels in total
 - Implant rate ~ 100 cps
 - $T_{1/2}$ measurement : ~ 10cps

LaBr₃

 The implantation of an identified RI is associated with the following β-decay events that are detected in the same DSSD pixel

anti-compton shield (BGO)

Clover with

Compton-suppressed Clover-type Ge detector

100MHz Time stamp DAQ system

Each event build using 100MHz Time stamp

 β -decay half-life

BEAM BigRIPS, ZDS DSSDs(for RI)

Isomeric decay of RI

 $\beta\text{-}\gamma$ spectroscopy of RI

Data analysis with time stamp

Particle identification (PID)

> ΔE-TOF-Bp method using the focal plane detectors in BigRIPS and ZDS

Isomeric decay of RI

- Delayed coincidence (up to 50 µs) between [F11 plastic: Identified RI (time zero)
 - Clover Ge: γ rays

β-decay half-life

- β-γ spectroscopy
- The implantation of an identified RI is associated with the following β-decay events that are detected in the same DSSD pixel
- Position of RI stopped
 - DSSD strip \rightarrow X, Y

9 DSSDs

Plastic

at F11

RI

DSSD layer → Z

Particle Identification

RI	Yield [count]	Purity [%]
106Y	6.8 x 10 ³	0.11
¹⁰⁸ Zr	2.9 x 10 ⁴	0.45
¹⁰⁹ Zr	2.1 x 10 ³	0.03
¹⁰⁹ Nb	2.3 x 10 ⁵	3.02

Total count : 6.3 x 10⁶

Shape evolution of neutron-rich even-even Zr isotopes
 2. Possible oblate-shape isomer in ¹⁰⁹Nb
 B doopy half lives of poutron rich Kr to To isotopes

 β -decay half-lives of neutron-rich Kr to Tc isotopes

Shape evolution of neutron-rich even-even Zr isotopes Possible oblate-shape isomer in ¹⁰⁹Nb

 β . β -decay half-lives of neutron-rich Kr to Tc isotopes

Shape evolution of neutron-rich even-even Zr isotopes

In coincidence with β -decay of ¹⁰⁶Y , - new 3 peaks observed

In coincidence with isomeric-decay of ¹⁰⁸Zr, - new 5 peaks observed

Detail of these results is going to be shown in Dr. Sumikama's talk.

T. Sumikama et. al., PRL 106, 202501 (2011) Shape evolution of neutron-rich even-even Zr isotopes
 2. Possible oblate-shape isomer in ¹⁰⁹Nb

3. β -decay half-lives of neutron-rich Kr to Tc isotopes

Possible oblate-shape isomer in ¹⁰⁹Nb

H. Watanabe et al., PLB 696, 186 (2011)

J. K. Hwang et al., PRC 58, 3252 (1998)

- Shape evolution of neutron-rich even-even Zr isotopes
 2. Possible oblate-shape isomer in ¹⁰⁹Nb
 - 3. β-decay half-lives of neutron-rich Kr to Tc isotopes

β-decay half-lives on r-process path

S. Nishimura et al., PRL 106, 052502 (2011)

Compare with theoretical values

Zr and Nb decay faster than expected by FRDM+QRPA $(T_{1/2}: 1/2 \sim 1/3 \sim)$

S. Nishimura et al., PRL 106, 052502 (2011)

Summary

- First β–γ spectroscopy experiment
 with 345 MeV/A U-beam at RIBF
- × Results
 - + Shape evolution of neutron-rich even-even Zr isotopes
 - + Oblate shape isomer of ¹⁰⁹Nb isotopes
 - + The half-lives of 18 nuclei are newly obtained.
- × In progress
 - + Analysis and study for neutron-rich Sr, Y, Zr, Mo isotopes

Thank you for your attention