β -decay studies near N=28

Zhihuan Li (RIKEN)

Contents

Motivation

- Shell evolution in N~28
- Low lying states of 41Si and 40Si
- Beta decay near N=28

•Experimental method

- Beta decay
- Life time measurement
- Detector setup
- Beam estimation

•Summary

Shell evolution in N~28

- •Appearance /disappearance of magic numbers Formation of new regions of deformation.
- •New neutron magic number 14 and 16 in O isotopes
- •Break down of magic number N=20 in the island of inversion region
- •Disappearance of the neutron shell closure at N=28 in ⁴² Si.
- The experimental E(2₁⁺)and B(E2) values in Ca Si, S isotopic chains

The low lying levels of ⁴¹Si

Low lying levels of ⁴⁰Si

• The inelastic scattering and nucleon removal reaction on a liquid hydrogen target

• To reproduce the experimental result, the reduction of the n-n interaction at Z=14 is needed, but this reduction will cause the overestimating size of N=28 shell gap

C. M. Campbell et al., Phys. Rev. Lett. 97(2006)112501

	³⁶ S	37 S	³⁸ S	³⁹ S	⁴⁰ S	41 S	42 S	⁴³ S	44S
16	Pn Half-life	5 ms	170 ms	11.5 s	8.8 s	1.99 s	1.0 s	40% 0.28 s	18 % 100 ms
	35p	36P	37p	38P	39p	40p	41p	42p	43p
15									
	47.3 s	5.6 s	2.31 s	12 % 640 ms	26% 280 ms	16% 125 ms	30 % 100 ms	50 % 48.5 ms	100 % ? 36.5 ms
	³⁴ Si	³⁵ Si	³⁶ Si	³⁷ Si	³⁸ Si	³⁹ Si	⁴⁰ Si	⁴¹ Si	⁴² Si
14									
	2.27 s	780 ms	< 10 % 450 ms	17 % 90 ms	? ?	? 47.5ms	? 33 ms	? 20 ms	? 12.5 ms
	³³ AI	³⁴ AI	³⁵ AI	³⁶ AI	³⁷ AI	³⁸ AI	³⁹ AI	⁴⁰ AI	⁴¹ AI
13									
	8.5 % 41.7 ms	27 % 42 ms	42 % 38.6 ms	<31 % 90 ms	? 10.7 ms	? 7.6 ms	? 7.6 ms	? ?	??
	20	21	22	23	24	25	26	27	28

• Low lying levels of ⁴⁰Si and ⁴¹Si via the beta decay of ⁴⁰Al and ⁴¹Al

• beta decay of ^{40,41,42} Si and ^{41,42,43}P to test the shell model in wide range in near N=28 region

β - decay spectroscopy

- The β -decay measurement for the nuclei near N=28 below ⁴⁸Ca.
 - The parities of the ground-states of the parent and daughter are different. It will limit the possibility for direct feeding to the ground state.
 - The large *Q*-value window allows a large number of excited states to be populated.
 - Large P_n , β -delayed gamma and neutron measurements are needed.

ν

π

Lifetime measurement

H.Mach et al., Nucl. Phys. A523(1991)197

Experimental setup

BigRIPS+ZeroDegree ⁴⁸Ca beam at 350AMeV with 200pnA

detectors

- PID: event-by-event $B\rho$ - ΔE -TOF
- β-ray

plastic scintillator

• β -delayed γ

Clover Germanium detectors

 $\epsilon_{v} > 5\% @ 1 MeV$

- β -delayed neutron plastic scintillation bars ε_n ~5% @ 1 MeV
- Lifetime by time-delayed $\beta\gamma\gamma(t)$ two 1 inch \times 1 inch LaBr3 counters $\epsilon_{v} \sim 2.6\% @ 1 \text{ MeV}$

Schematic drawing of the experiment setup

Beam estimation

Isotopes of interest	Half- life (ms)	Beam on/off periods (ms)	Rate (pps)	Main contaminants	Days
⁴¹ Al	~5 ?	Continuous mode	5	⁴² Si(60%)	1
⁴⁰ A1	~5 ?	Continuous mode	13	⁴¹ Si(60%)	1/2
⁴² Si	12.5	40/50	125	⁴³ P(33%)	1/2
⁴¹ Si	20	60/80	844	$^{42}P(7\%)$	2/3
⁴⁰ Si	33	100/130	4650	⁴¹ P(12%)	1/3
⁴³ P	36.5	110/140	2740	⁴⁴ S(1%)	1/3
⁴² P	48.5	150/200	12600	⁴³ S(4%)	1/3
⁴¹ P	100	300/400	54600	⁴² S(6%)	1/3
	1				
	5				

The conditions of BigRIPS are optimized with minimal change of target and wedge configurations.

Summary

• The goals of the experiment

Beta decay studies near N=28

- low lying states of ⁴¹Si, ⁴⁰Si
- beta decay of ^{40,41}Al, ^{40, 41,42}Si, ^{41, 42,43}P
- Experimental method
 - beta delayed gamma, neutron measurement
 - lifetimes for long-lived states by $\beta\gamma\gamma(t)$ measurement