FAIR Facility for Antiproton and Ion Research

GSÅ

FutureDAQ for CBM: On-line Event Selection

About FAIR About CBM About FutureDAQ About Demonstrator

CHEP06, Mumbai

FAIR Facility for Antiproton and Ion Research

FAIR in 2014

CHEP06, Mumbai

Hans G. Essel, GSI / FAIR, CBM collaboration www.gsi.de

- Nuclear Structure Physics and Nuclear Astrophysics with RIBs
- Hadron Physics with Anti-Proton Beams

Physics of Nuclear Matter with Relativistic Nuclear Collisions

Plasma Physics with

highly Bunched Beams

- Atomic Physics and Applied Science with highly charged ions and low energy Anti-Protons
- + Accelerator Physics

U+U 23 AGeV

CHEP06, Mumbai

Hans G. Essel, GSI / FAIR, CBM collaboration www.gsi.de

CBM physics topics and observables

enhanced strangeness production ? multi guark states? measure: K, Λ , Σ , Ξ , Ω

4. Critical endpoint of deconfinement phase transition

event-by-event fluctuations measure: π , K

- High data rates
- Short latency (µsec)
- Complex (displaced vertices)
- Most of the data needed

- 1. A conventional LVL1 trigger would imply full displaced vertex reconstruction within fixed (short) latency.
- 2. Strongly varying complex event filter decisions needed on almost full event data

No common trigger! Self triggered channels with time stamps! Event filters

- 10 MHz interaction rate expected
- 1 ns time stamps (in all data channels, ~10 ps jitter) required
- **1 TByte/s** primary data rate (Panda < 100 GByte/s) expected
- **GByte/s** maximum archive rate (Panda < 100 MByte/s) required
- Event definition (time correlation: multiplicity over time histograms) required
- Event filter to 20 KHz (1 GByte/s archive with compression) required
- On-line track & (displaced) vertex reconstruction required
- Data flow driven, no problem with latency expected
- Less complex communication, but high data rate to sort

FutureDRQ

European project 2004 (FP6 \rightarrow I3HP \rightarrow JRA1)

FP6: 6th Framework Program on research, technological development and demonstration I3HP: Integrated Infrastructure Initiative in Hadron Physics JRA: Joint Research Activity

Participants from

- GSI (Spokesperson: Walter F.J. Müller)
- Kirchhoff Institute for Physics, Univ. Heidelberg
- University of Mannheim
- Technical University Munich
- University of Silesia, Katowice
- Krakow University
- Warsaw University
- Giessen University
- RMKI Budapest
- INFN Turino

Studying AA-collisions from 1 - 45 AGeV

CBM Detector: 8 - 45 AGeV

The CBM detectors

At 10⁷ interactions per second!

At 10⁷ interactions per second!

- Radiation hard Silicon (pixel/strip) tracker in a magnetic dipole field
- Electron detectors: RICH & TRD & ECAL pion suppression up to 10⁵
- Hadron identification: RICH, RPC
- > Measurement of photons, π^0 , η and muons electromagn. calorimeter ECAL

Multiplicities:	160	р
	400	π-
	400	π+
	44	K+
	13	Κ
	800	γ
	1817	total at 10 MHz

CHEP06, Mumbai

DAQ hierarchy

TNet: Clock/time distribution

Challenge of time distribution:

- TNet must generate GHz time clock with ~10 ps jitter
- must provide global state transitions with clock cycle precise latency
- Hierarchical splitting into 1000 CNet channels

Consequences for serial FEE links and CNet switches:

- bit clock cycle precise transmission of time messages
- low jitter clock recover required
- FEE link and CNet will likely use custom SERDES (i.e. OASE)

CNet: Data concentrator

BNet: Building network

Has to sort parallel data to sequential event data Two mechanisms, both with traffic shaping

- switch by time intervals
 - all raw data goes through BNet
 - + event definition is done behind BNet in PNet compute resources
- switch by event intervals
 - event definition done in BNet by multiplicity histogramming
 - some bandwidth required for histogramming
 - + suppression of incoherent background and peripheral events
 - + potentially significant reduction of BNet traffic

Functionality of *data dispatcher* and *event dispatcher* implemented on one *active buffer* board using bi-directional links.

Simulations with mesh like topology

BNet: Factorization of 1000x1000 switch

Simulation of BNet with SystemC

Modules:

- event generator
- data dispatcher (sender)
- histogram collector
- tag generator
- BNet controller (schedule)
- event dispatcher (receiver)
- transmitter (data rate, latency)
- switches (buffer capacity, max. # of package queue, 4K)

Running with 10 switches and 100 end nodes. Simulation takes 1.5 *10⁵ times longer than simulated time. Various statistics (traffic, network load, etc.)

BNet: SystemC simulations 100x100

CHEP06, Mumbai

Hans G. Essel, GSI / FAIR, CBM collaboration www.gsi.de

PNet: Structure of a sub-farm

- A sub-farm is a collection of compute resources connected with a PNet
- Compute resources are
 - programmable logic (FPGA)
 - processors
- Likely choice for the processors are high performance SoC components
 - CPUs, MEM, high speed interconnect on one chip
 - optimized for low W/GFlop and high packing density
 - see QCDOC, Blue Gene, STI cell,
- PNet uses 'build-in' serial links connected through switches
- PCIe-AS is a candidate for a commonly used serial interconnect
- A plausible scenario for the low level compute farm
 - O(100) sub-farms with O(100) compute resources each
 - one sub-farm on O(10) boards in one crate
- Consequences
 - only chip-2-chip and board-2-board links in PNet
 - thus only short distance (<1m) communication

PNet: First & second level computing

Event selection level 1 (FPGA): 1% Event selection level 2 (CPU): 10%

64-128 sub-Farms, each with 32 FPGA and 32 CPU

1 GByte/s

Five different networks with very different characteristics

CNet (custom)

- Capture hit clusters, communicate geographically neighboring channels
- Distribute time stamps and clock (from TNet) to FEE
- Low latency bi-directional optical links (OASE)
- Eventually communicate detector control & status messages
- connects custom components (FEE ASICS, FPGAs)
- TNet (custom)
 - generates GHz time clock with ~10 ps jitter
 - provides global state transitions with clock cycle precise latency
- BNet (standard technology, i.e. Ethernet or Infiniband)
 - switch by time intervals: event definition is done behind BNet in PNet compute resources
 - switch by event intervals: event definition done in BNet by multiplicity histogramming
- PNet (custom)
 - short distance, most efficient of already 'build-in' links (i.e. PCIe-AS)
 - connects standardized components (FPGA, SoCs)
- HNet
 - general purpose, to archive

DAQ Demonstrator

Prototype for DC and DD

Data Collector Board (DC)

Data Dispatcher (DD)

- bi-directional (optical) link
 - data, trigger, Rol, control, clock
- FPGA
 - logic for data (/protocol) processing
 - processor for control
 - external memory (DDR)
 - Ethernet as main control interface
 - external memory
 - for data storage
 - •
 - PC interface (PCIexpress)
 - Interface to Bnet

V4FX Testboard for DC and DD (Joachim Gläss, Univ. Mannheim)

- PPC with external DRAM and Ethernet (Linux): Software for control
- Test and classification of MGTs
 - optical, copper, backplane, ...
- Test of OASE
- PCIexpress interface to PC
- Develop and test RAM controllers
 - DD prototype for demonstrator Develop and test algorithms (shrinked down)

DC prototype for demonstrator

MGTs P (miniGBIC) Virtex4 mezzanines A ER 0 . 0 **PClexpress**

4 x OASF on mezzanine

2 x RAM on mezzanine

Probe on mezzanine

- Final FE, DC, DD boards (to do)
- FPGA codes (to do)
- Link management (to do)
- Data formats (to do)
- Interfaces (to do)
- Framework
 - xDaq (CMS) under investigation
- Controls
 - EPICS (+ xDaq) under investigation
- InfiniBand cluster with 4 double opteron PCs installed
 - MPI and uDAPL tested (msg, RDMA) (900KB/s with 20KB buffers)
- In production end of 2007 (hopefully)