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Abstract. The Compressed Baryonic Matter (CBM) experiment is intended to run at the FAIR 

facility that is currently being built at GSI in Darmstadt, Germany. For testing of future CBM 

detector and readout electronics prototypes, several test beam campaigns have been performed 

at different locations, such as GSI, COSY, and CERN PS. The DAQ software has to treat 

various data inputs: standard VME modules on the MBS system, and different kinds of FPGA 

boards, read via USB, Ethernet, or optical links. The Data Acquisition Backbone Core 

framework (DABC) is able to combine such different data sources with event-builder 

processes running on regular Linux PCs. DABC can also retrieve the instrumental set up data 

from EPICS slow control systems and insert it into the event data stream for later analysis. 

Vice versa, the DIM based DABC control protocol has been integrated to the general CBM 

EPICS IOC by means of an EPICS-DIM interface. Hence the DAQ can be monitored and 

steered with a CSS based operator GUI. The CBM online monitoring analysis is based on the 

GSI Go4 framework which can directly connect to DABC online data via sockets, or process 

stored data from list-mode files. A Go4 sub-framework has been implemented to provide 

possibility of parallel development of analysis code for different sub-detectors groups. This 

allows to divide the Go4 components up into independent software packages that can run either 

standalone, or together at the beam-time in a full set up. 

1.  Introduction 

The Compressed Baryonic Matter (CBM) collaboration is developing one of the major experiments of 

the future Facility for Antiproton and Ion Research (FAIR) [1] in Darmstadt, Germany. CBM will 

investigate high-density nuclear matter as produced by heavy ion collisions at 10-45 AGeV energy 

range [2]. Scientific topics are the in-medium modifications of hadrons in dense matter, the 

deconfinement phase transition at high baryon densities, and exotic states of matter such as 

condensates of strange particles.   

The CBM detector will consist of several types of sensor components, such as: 

• Silicon pixel detector (“micro vertex detector”, MVD) 

• Silicon strip detector (“silicon tracking stations, STS)  

• Ring Imaging Cherenkov (RICH) detector   

• Transition Radiation Detector (TRD)  

• Muon Chamber (MUCH) with Gas Electron Multiplier (GEM) 

• Resistive Plate Chamber (RPC) 

• Electromagnetic calorimeter (ECAL) 
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Each of these sub-detectors can be developed independently by specific working groups, optimizing 

the component performance, and regarding the overall constraints.  

The future CBM data acquisition is planned with a “trigger-less” concept, because in worst case the 

first level trigger decision may need analysis of the full detector information. Since this is not possible 

with a classical frontend-triggered system, the DAQ will sample and transport all time-stamped 

frontend data to a computing farm, the first level event selector (FLES) [3]. This concept requires the 

investigation of special readout hardware and optimization of data transport and networking. 

For these developments a number of CBM detector prototypes have been tested under beam 

irradiation in various facilities, such as GSI, the CERN Proton Synchrotron (PS), or the Cooler 

Synchrotron (COSY) in Jülich, Germany. First prototypes of trigger-less data acquisition hardware 

have also been applied, together with conventional trigger-based readouts. 

Such heterogeneous test beam set-ups with different detector groups sharing the same infrastructure 

require a flexible software organization, both for data taking, and for online monitoring. Especially the 

reusability of existing code is an issue, as same hardware will be used in different test environments 

with similar structures and algorithms. For this purpose, two software frameworks have been applied 

at CBM beam tests since 2008: the Data Acquisition Backbone Core (DABC) for readout and event-

building, and the Go4 analysis system for online monitoring.  

2.  Data Acquisition with DABC 

 

Figure 1. Schematic software object diagram of a DABC node. The user Application is a plug-

in that defines the functional objects of the data acquisition, such as i/o devices, worker 

modules, and transport connections between them. A central Manager provides interfaces to 

configuration and control systems. The DIM protocol is implemented for monitoring and slow 

control. It may serve various GUIs. For beam tests, it was integrated to EPICS CSS GUI via a 

DIM/EPICS interface. 

2.1.   General features 

The Data acquisition Backbone Core (DABC) is a software framework for experiment data acquisition 

and processing [4][5]. It is based on the C++ programming language and is currently running on Linux 

operating systems. By default, it supports Ethernet (IP sockets) and InfiniBand (verbs) networks. To 



 

 

 

 

 

 

integrate legacy data acquisition hardware, DABC also implements data formats and connections of 

the established DAQ framework MBS [6]. User-defined code for experiment specific hardware 

readout and data formats can be added to the framework libraries by means of a plug-in architecture 

[7]. 

Figure 1 shows software objects and their relationship in a typical DABC node. A central Manager 

registers all objects and provides interfaces to the configuration and control systems. A user specific 

Application plug-in defines the Module and Device objects and their data connections. Any external 

i/o with e.g. custom readout hardware, an event building network, the data storage, or an online 

monitoring server is implemented as Transport object with an associated Device. The actual data 

processing is carried out within Module objects. Modules and Transports can run in separate threads, 

or in shared threads of the DABC runtime environment. The configuration of all these functional 

entities is set via Parameter containers, initialized on startup from an XML file. Additionally, 

Command objects may be exchanged between the DABC entities even throughout different host 

nodes, allowing to invoke user defined actions at run time.  

2.2.   Integration to Detector Control system 

The abstract DABC control system interface allows for setting the internal run state of each node, and 

for monitoring - and optionally modifying - any kind of parameter values, e.g. data rates, buffer fill 

levels, or output file names. Current DABC v1.9 distribution delivers the tcp/ip based DIM protocol 

[8] with specific “record” structures as a default implementation. A generic JAVA based GUI client is 

also provided that can connect to such DIM server nodes [9]. Moreover, the GUI of the Go4 analysis 

framework can monitor states and rates of DABC DIM nodes [10]. Figure 1 illustrates the different 

DABC control connections.  

 

 

Figure 2. The CSS/EPICS GUI as used for DABC monitoring and run control at COSY 

2012 beam test (see section 4.2.  ). 

 
Because CBM chose EPICS [11] as common detector control system, it is advantageous to 

integrate DABC controls to this framework. For this purpose a separate DIM-EPICS interface 

application has been developed. Here the DABC records, as exported via DIM, are converted to 

EPICS process variables. The interface application can be run as a component of the main EPICS IOC, 



 

 

 

 

 

 

together with the other detector control system modules of the beam test set up. Like all EPICS 

process variables, the exported DABC parameters can hence be controlled by a regular EPICS GUI.    

For different beam test situations, dedicated DABC GUIs have been developed within the EPICS 

Control System Studio (CSS) environment [12] that offers powerful GUI designer tools. Since other 

beam test detector controls also use CSS system, the DABC GUI has been integrated with other 

subsystems to a combined control window. Figure 2 shows an example of the CSS designed DABC 

GUI used for DAQ control at COSY in January 2012.  

2.3.  Acquisition of EPICS slow control data  

In test beam measurements the setup during data taking is intentionally changed very often, and the 

interpretation of the acquired detector data may depend on the experimental conditions. A direct 

access to such values in the DAQ data stream can be very useful for a conditional analysis depending 

on certain settings. Moreover, it would be possible to perform a fast scan of detector properties with 

the control system and record simultaneously the measured data in the same file. As the CBM test set-

up is managed by EPICS, data readout of EPICS process variables has been developed as a plug-in for 

DABC [13].  

This DABC readout plug-in is based on the existing Easy Channel Access (ezca) extension library. 

It can be configured by an XML file which contains the names of the process variables to be fetched 

from an EPICS IOC. One special process variable defines a “flag” which is polled by DABC with a 

configurable repetition time. Only if this flag variable shows a specific value, e.g. 0, the complete set 

of the defined records is acquired from the IOC. Thus the IOC can decide when EPICS data is 

recorded to the DAQ stream. Alternatively, all process variables may be fetched with a predefined 

time interval to ensure a continuous trending. 

Since the EPICS readout has been implemented, it was applied at all test beams to monitor the 

detector set up. Another use case: EPICS changes some measurement settings automatically by a 

sequencer, and the combined EPICS and detector data is used for analysis of such scans. This is 

planned for STS laser irradiation tests as described in section 4.3.   

3.  Online analysis with Go4  

3.1.  The Go4 framework 

The GSI Object Oriented Online Offline framework (Go4) [10] is a GSI standard tool for online and 

offline analysis, based on C++ and the ROOT framework [14]. Go4 features a plug-in architecture for 

user-defined subclasses, implementing data structures (“event element”), data sources (“event 

source”), and algorithms (“event processor”). Such plug-ins are compiled into a user analysis library 

which is run embedded to the Go4 framework.  

The same user analysis code can run either from the command line in a single-threaded batch 

mode, or controlled by a generic Go4 GUI that offers a multi-threaded, interactive live display with 

full ROOT and Qt graphics (figure 3). Moreover, the same analysis can switch data input between a 

recorded file and an online monitoring data server on the fly, thus direct comparison of online and 

offline data is possible without restarting. As standard GSI data protocol, the “list-mode” file of the 

DAQ system MBS [6] and various MBS online data servers are supported by Go4. Because DABC 

system also provides these data source formats, Go4 can directly connect to DABC produced data. 

The Go4 framework allows splitting subsequent stages of the analysis into “analysis steps”, with 

each step producing intermediate data which is used by the following step (figure 4). So the first 

analysis step would unpack the raw data from DAQ. The second analysis step would map such DAQ 

channels into a detector display and perform a specific analysis. An advanced analysis, like detector 

correlations or a simple beam “tracking”, can be implemented in a third analysis step. Each analysis 

step is defined by an “event processor” class which produces an “event element” structure as resulting 

output. A further offline analysis with ROOT macros could be based on such Go4 output events which 

are optionally stored into ROOT TTrees. 



 

 

 

 

 

 

Because of such features, the CBM collaboration has applied Go4 since 2008 at several detector 

test beam campaigns. Most recently the Go4-based CBM online monitoring software has been newly 

organized to match the ever increasing complexity of such tests. 

 

 

Figure 3. Go4 GUI with live display of accumulated hit maps from different detector 

prototypes at COSY 2012 test beam (see section 4.2.  ). 

 

3.2.   The CBM test beam framework and generic libraries  

The Go4 analysis for a specific test beam should best reuse existing analysis code of the standard 

CBM readout components connected to the DAQ system DABC, like the SysCore readout controller 

(ROC) [15], the Susibo/SPADIC frontend [16], miscellaneeous VME-bus modules read out by an 

MBS crate, or the EPICS process variables readout as described in section 2.3.  These parts are kept as 

Go4 user classes in separate shared libraries which are part of a “CBM test beam framework” that has 

been developed on top of Go4. DABC will pack the data of all these different frontends into a generic 

“MBS event” container structure, so the first Go4 analysis step can read them using standard MBS 

data sources. Besides the reusability of such libraries, they provide also a standalone Go4 analysis 

with all generic monitoring features required for a simple lab set up.  

The actual CBM test beam analysis will usually not modify these libraries, but just use their classes 

which are available by default. Runtime configuration of the library objects for various test situations 

is done via Go4 parameters. These can be set to new values by scripts at analysis initialization, or can 

be saved and recovered with a ROOT file (“Go4 auto save file”).  

To cover the test beam use case of various readout systems for different test detectors, each of the 

Go4 analysis steps needs to be divided up into structurally parallel processing entities and their 

resulting data structures. Hence the CBM test beam framework introduces a “composite event 

processor” class that can register and run a number of regular Go4 “event processors” together within 

each analysis step. Additionally, the resulting data structures of these software processors are 

aggregated as a common “Go4 composite event”, reflecting the hierarchy of the DAQ and detector set 

up. Figure 4 illustrates the structure of a typical implementation.   

 



 

 

 

 

 

 

3.3.  Test-specific implementations  

Although the code of the first analysis step is mostly generic, the further analysis steps are still too 

specific for each test beam to be reusable. Thus the Go4 analysis for each CBM test beam is organized 

in separate source code directories with a class name prefix of the top classes indicating the campaign 

(e.g. “CernOct11”). Depending on the particular set up, the composite event and processor classes of 

each analysis step will define different components. For the first analysis step these are mostly taken 

from the CBM test beam framework libraries, for the other steps the classes are implemented within 

the test beam specific library. 

Within each test beam directory, the source code is also organized in a modular way: each detector 

subgroup can develop and run their individual code as standalone Go4 analysis. The combination of 

several or all subgroup codes can run as advanced or full analysis. Another benefit of such partitioning 

into different source code packages is the clear responsibility of each working group for their code. 

4.  Application examples   

4.1.  CERN PS October 2011 

In October 2011, a two week test of TRD and RICH detectors was done at CERN PS beam line T9 

with 1-10 GeV/c secondary electron and pion beams. Figure 5 shows the data acquisition set up. A 

total of 8 different detector systems is read out via three different frontend systems. Here 

conventionally beam-triggered readout systems, such as MBS [6] and the Susibo/SPADIC [16] , have 

to be combined with free running systems, such as the ROC [15] that continuously acquires time 

stamped messages. This is achieved by inserting special trigger synchronization messages into the 

ROC data stream via LVDS signal cable from a VME-bus FPGA module (VULOM) in the triggered 

MBS crate. These markers are then used by DABC event building application to pack corresponding 

data into the same MBS container. 

Here two DABC event-builders are connected to the frontends via tcp/ip ethernet (MBS crates), 

udp/ip ethernet (ROC), and USB 2.0 cables (Susibo/SPADIC). The two DABC event-builder nodes 

(PC1, PC2) are combining at first half of the frontends each. Another DABC node (PC3) is dedicated 

to fetch the EPICS slow control data in frequent intervals. Finally, one of the event building DABC 

 

Figure 4. Go4 analysis software organization for typical CBM test beams. Subsequent data 

generations are separated by “analysis steps”, each producing a resulting data structure. Each 

analysis step may run together code for independent frontend or detector components. The 

final step may show correlations, or trajectory fits of different components. The event 

structure of the legacy Multi Branch System (MBS) framework is used as generic data 

container interface for all DABC generated inputs. 



 

 

 

 

 

 

nodes (PC1) combines the data of all three DABC processes, writes the data file and serves the online 

monitoring clients. Due to the low beam intensities, the average file acquisition data rates are typically 

about 500 kByte/s. 

Online monitoring and initial offline analysis are implemented with the Go4 based CBM test beam 

framework. In the first analysis step, generic software modules are used, such as for the 

ROC/nXYTER readout, for the SPADIC readout, and for EPICS slow control variables. The 

unpacking of two MBS crates’ data is treated with specific classes. The components of the second 

analysis step are developed by various institutes. It has different processor modules for beam 

monitoring scintillators, a fiber hodoscope, a RICH prototype, and several TRD stations of different 

prototypes. The results of such subdetector analyses are combined in the second analysis step and used 

for particle identification.  

 

 

Figure 5. DAQ set up at CERN/PS test beam for CBM in October 2012. See text for details. 

4.2.  COSY January 2012 

In January 2012, a test of STS and GEM/MUCH detectors was done with a 2 GeV/c proton beam at 

COSY (cooler synchrotron) facility in Jülich, Germany. Figure 6 shows the data acquisition set up 

which is much more homogenous than at CERN. There is only one type of readout system, such as the 

ROC [15], for all three detector types (STS, GEM, fiber hodoscope). Three DABC nodes are 

connected to the ROCs via optical fibres, intermediate data combiner boards (DCB), and PCIe receiver 

boards (AVnet).  These connections use a proprietary CBMnet protocol [17]. All readout is purely 

“trigger-less”, i.e. there is only a time-stamped data stream. Clock synchronization between the 

frontends is inherently done by the optical protocol. For initial reset of the time counters, deterministic 

latency messages are send from a DABC time master (PC3) node to a “clock master”  DCB which 

distributes the synchronization to the other DCBs. The other two DABC nodes (PC1, PC2) read the 

data via optical fibre and forward them via Gbit ethernet sockets to the event-building DABC node 

(PC4) that stores it to local listmode files. Additionally, the DABC event-builder merges the EPICS 

slow control data which is retrieved by another dedicated DABC application on PC3 and is also read 

via ethernet. For performance reasons, the Go4 online monitoring server is running on a separate 

DABC node (PC5) which gets data stream samples from the event building PC4. Because of the 



 

 

 

 

 

 

trigger-less readout mode and high beam intensities, average file acquisition data rates are limited by 

the DABC event-builder host speed. These rates have typically been adjusted to 10 MByte/s (out of 

beam spill) and 50 MByte/s (in beam spill). 

 

Figure 6. DAQ set up at COSY test beam in January 2012. See text for details. 

Again the Go4 based CBM beam time framework is applied for online monitoring. In the first 

analysis step the generic ROC/nXYTER and EPICS monitors are used. Here a simple event selection 

within the message data stream is done: Go4 imposes a window condition of the ROC data message 

time differences with respect to a beam-induced marker message. This marker is derived from the first 

hodoscope detector’s sum signal that has been fed to some of the ROCs and inserted to the data 

stream. The event selection time windows of all ROC streams can be adjusted interactively on Go4 

GUI, regarding the histograms of the message time differences.  

The second analysis step has generic components (event processor and event structure) for the two 

fiber hodoscopes, and special components for the STS, and the GEM prototypes. For the first time a 

third analysis step has been implemented, providing detector correlations and a simple linear fit of the 

single “beam tracks” through the hits of the two hodoscopes, three STS and one GEM planes.  

4.3.  STS laser table project 

An example for the readout of EPICS process variables together with the other DAQ frontends is 

illustrated in figure 7. These measurements are under preparation for summer 2012. A silicon strip 

detector (STS) prototype is locally irradiated by a movable laser, the position of which is steered by an 

EPICS sequencer. The silicon strip signals are continuously sampled and read out by a self triggered 

SysCore2 readout controller (ROC) [15]. The combination of STS signals with a laser position is 

provided by DABC which inserts a special data marker (“system message”) whenever the EPICS 

sequencer indicates begin or end of a laser position. The subsequent Go4 analysis software can 

evaluate such markers and can select all messages belonging to each laser scan point as a separate 

“Event”. Currently these DABC readout mechanisms and the appropriate Go4 analysis have been 

developed and tested by means of ROC data simulators and a dummy EPICS sequencer. So the 

software is mostly ready for the experiments to be performed. 



 

 

 

 

 

 

 

5.  Conclusions   

Data acquisition and online monitoring for current CBM detector and electronics prototype tests have 

been handled with two software frameworks: DABC for DAQ, and Go4 for online analysis. Both 

frameworks proved to be versatile enough to match the requirements of various set-ups. The EPICS 

system has been used to control both detector and DAQ settings in a combined GUI. Moreover, 

DABC can read out EPICS process variables and can insert them into the DAQ data stream. This 

allows analyzing detector signals with respect to the slow control set up. 

The Go4 analysis code for CBM test beams has been organized in a modular way, defining a sub-

framework with CBM specific libraries, and splitting up the user code for different test beams and 

working groups. This turned out to improve the code reusability and maintenance, and has helped a lot 

for the concurrent development of independent analysis parts.  

Because future detector tests will have increasing complexity, online analysis requires advanced 

features to treat detector geometry, hit evaluation, and correlation between different detectors - up to 

track finding and fitting capabilities. The structure of Go4 framework can handle such requirements, 

as has been successfully demonstrated at COSY January 2012 campaign by means of a third analysis 

step. For more complex set ups, it might be useful to integrate here some existing analysis code which 

has been developed for CBM detector simulation and offline analysis with the FairRoot framework 

[18]. However, the intended use-case of the Go4 online analysis is limited to quality monitoring of 

detector and electronics tests. For a more advanced analysis, it is rather planned to develop and run 

FairRoot code independently on the same DABC-acquired data. 

The upcoming next iteration of CBM readout hardware will also mean a remanufacturing of 

existing data acquisition and online analysis software. All common code for the formatting and simple 

“event selection” analysis of CBM specific detector front-ends should be put in a set of CBM-DAQ 

libraries. These should be independent of any other software framework, but are to be used by all 

participating systems, such as the DABC data acquisition, Go4 monitoring analysis, FairRoot physics 

analysis, and the future first level event selection algorithms to be run on the FLES compute farms.  

 

Figure 7. Application of EPICS readout for silicon strip station prototypes (STS) 

irradiated by a movable laser. The laser position is controlled by an EPICS 

sequencer. The strip responses are sampled by nXYTER/SysCore2 Readout 

Controllers (ROC) as trigger-less stream of time-stamped messages. Each laser scan 

point is combined with corresponding messages in Go4 analysis. For 

synchronization DABC inserts time markers into ROC data stream when EPICS 

signals a begin or end of scan point. 
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