
Journal of Physics: Conference Series

Data acquisition and online monitoring software for CBM test beams
--Manuscript Draft--

Manuscript Number:

Full Title: Data acquisition and online monitoring software for CBM test beams

Article Type: Poster

Corresponding Author: Jörn Adamczewski-Musch
GSI
Darmstadt, GERMANY

Corresponding Author Secondary
Information:

Corresponding Author's Institution: GSI

Corresponding Author's Secondary
Institution:

First Author: Jörn Adamczewski-Musch

First Author Secondary Information:

Order of Authors: Jörn Adamczewski-Musch

Nikolaus Kurz

Sergei Linev

Peter Zumbruch

Order of Authors Secondary Information:

Powered by Editorial Manager® and Preprint Manager® from Aries Systems Corporation

Data acquisition and online monitoring software

for CBM test beams

J Adamczewski-Musch, N Kurz, S Linev and P Zumbruch

GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany

E-mail: j.adamczewski@gsi.de

Abstract. The Compressed Baryonic Matter (CBM) experiment is intended to run at the FAIR

facility that is currently being built at GSI in Darmstadt, Germany. For testing of future CBM

detector and readout electronics prototypes, several test beam campaigns have been performed

at different locations, such as GSI, COSY, and CERN PS. The DAQ software has to treat

various data inputs: standard VME modules on the MBS system, and different kinds of FPGA

boards, read via USB, Ethernet, or optical links. The Data Acquisition Backbone Core

framework (DABC) is able to combine such different data sources with event-builder

processes running on regular Linux PCs. DABC can also retrieve the instrumental set up data

from EPICS slow control systems and insert it into the event data stream for later analysis.

Vice versa, the DIM based DABC control protocol has been integrated to the general CBM

EPICS IOC by means of an EPICS-DIM interface. Hence the DAQ can be monitored and

steered with a CSS based operator GUI. The CBM online monitoring analysis is based on the

GSI Go4 framework which can directly connect to DABC online data via sockets, or process

stored data from list-mode files. A Go4 sub-framework has been implemented to provide

possibility of parallel development of analysis code for different sub-detectors groups. This

allows to divide the Go4 components up into independent software packages that can run either

standalone, or together at the beam-time in a full set up.

1. Introduction

The Compressed Baryonic Matter (CBM) collaboration is developing one of the major experiments of

the future Facility for Antiproton and Ion Research (FAIR) [1] in Darmstadt, Germany. CBM will

investigate high-density nuclear matter as produced by heavy ion collisions at 10-45 AGeV energy

range [2]. Scientific topics are the in-medium modifications of hadrons in dense matter, the

deconfinement phase transition at high baryon densities, and exotic states of matter such as

condensates of strange particles.

The CBM detector will consist of several types of sensor components, such as:

• Silicon pixel detector (“micro vertex detector”, MVD)

• Silicon strip detector (“silicon tracking stations, STS)

• Ring Imaging Cherenkov (RICH) detector

• Transition Radiation Detector (TRD)

• Muon Chamber (MUCH) with Gas Electron Multiplier (GEM)

• Resistive Plate Chamber (RPC)

• Electromagnetic calorimeter (ECAL)

Poster 392

Each of these sub-detectors can be developed independently by specific working groups, optimizing

the component performance, and regarding the overall constraints.

The future CBM data acquisition is planned with a “trigger-less” concept, because in worst case the

first level trigger decision may need analysis of the full detector information. Since this is not possible

with a classical frontend-triggered system, the DAQ will sample and transport all time-stamped

frontend data to a computing farm, the first level event selector (FLES) [3]. This concept requires the

investigation of special readout hardware and optimization of data transport and networking.

For these developments a number of CBM detector prototypes have been tested under beam

irradiation in various facilities, such as GSI, the CERN Proton Synchrotron (PS), or the Cooler

Synchrotron (COSY) in Jülich, Germany. First prototypes of trigger-less data acquisition hardware

have also been applied, together with conventional trigger-based readouts.

Such heterogeneous test beam set-ups with different detector groups sharing the same infrastructure

require a flexible software organization, both for data taking, and for online monitoring. Especially the

reusability of existing code is an issue, as same hardware will be used in different test environments

with similar structures and algorithms. For this purpose, two software frameworks have been applied

at CBM beam tests since 2008: the Data Acquisition Backbone Core (DABC) for readout and event-

building, and the Go4 analysis system for online monitoring.

2. Data Acquisition with DABC

Figure 1. Schematic software object diagram of a DABC node. The user Application is a plug-

in that defines the functional objects of the data acquisition, such as i/o devices, worker

modules, and transport connections between them. A central Manager provides interfaces to

configuration and control systems. The DIM protocol is implemented for monitoring and slow

control. It may serve various GUIs. For beam tests, it was integrated to EPICS CSS GUI via a

DIM/EPICS interface.

2.1. General features

The Data acquisition Backbone Core (DABC) is a software framework for experiment data acquisition

and processing [4][5]. It is based on the C++ programming language and is currently running on Linux

operating systems. By default, it supports Ethernet (IP sockets) and InfiniBand (verbs) networks. To

integrate legacy data acquisition hardware, DABC also implements data formats and connections of

the established DAQ framework MBS [6]. User-defined code for experiment specific hardware

readout and data formats can be added to the framework libraries by means of a plug-in architecture

[7].

Figure 1 shows software objects and their relationship in a typical DABC node. A central Manager

registers all objects and provides interfaces to the configuration and control systems. A user specific

Application plug-in defines the Module and Device objects and their data connections. Any external

i/o with e.g. custom readout hardware, an event building network, the data storage, or an online

monitoring server is implemented as Transport object with an associated Device. The actual data

processing is carried out within Module objects. Modules and Transports can run in separate threads,

or in shared threads of the DABC runtime environment. The configuration of all these functional

entities is set via Parameter containers, initialized on startup from an XML file. Additionally,

Command objects may be exchanged between the DABC entities even throughout different host

nodes, allowing to invoke user defined actions at run time.

2.2. Integration to Detector Control system

The abstract DABC control system interface allows for setting the internal run state of each node, and

for monitoring - and optionally modifying - any kind of parameter values, e.g. data rates, buffer fill

levels, or output file names. Current DABC v1.9 distribution delivers the tcp/ip based DIM protocol

[8] with specific “record” structures as a default implementation. A generic JAVA based GUI client is

also provided that can connect to such DIM server nodes [9]. Moreover, the GUI of the Go4 analysis

framework can monitor states and rates of DABC DIM nodes [10]. Figure 1 illustrates the different

DABC control connections.

Figure 2. The CSS/EPICS GUI as used for DABC monitoring and run control at COSY

2012 beam test (see section 4.2.).

Because CBM chose EPICS [11] as common detector control system, it is advantageous to

integrate DABC controls to this framework. For this purpose a separate DIM-EPICS interface

application has been developed. Here the DABC records, as exported via DIM, are converted to

EPICS process variables. The interface application can be run as a component of the main EPICS IOC,

together with the other detector control system modules of the beam test set up. Like all EPICS

process variables, the exported DABC parameters can hence be controlled by a regular EPICS GUI.

For different beam test situations, dedicated DABC GUIs have been developed within the EPICS

Control System Studio (CSS) environment [12] that offers powerful GUI designer tools. Since other

beam test detector controls also use CSS system, the DABC GUI has been integrated with other

subsystems to a combined control window. Figure 2 shows an example of the CSS designed DABC

GUI used for DAQ control at COSY in January 2012.

2.3. Acquisition of EPICS slow control data

In test beam measurements the setup during data taking is intentionally changed very often, and the

interpretation of the acquired detector data may depend on the experimental conditions. A direct

access to such values in the DAQ data stream can be very useful for a conditional analysis depending

on certain settings. Moreover, it would be possible to perform a fast scan of detector properties with

the control system and record simultaneously the measured data in the same file. As the CBM test set-

up is managed by EPICS, data readout of EPICS process variables has been developed as a plug-in for

DABC [13].

This DABC readout plug-in is based on the existing Easy Channel Access (ezca) extension library.

It can be configured by an XML file which contains the names of the process variables to be fetched

from an EPICS IOC. One special process variable defines a “flag” which is polled by DABC with a

configurable repetition time. Only if this flag variable shows a specific value, e.g. 0, the complete set

of the defined records is acquired from the IOC. Thus the IOC can decide when EPICS data is

recorded to the DAQ stream. Alternatively, all process variables may be fetched with a predefined

time interval to ensure a continuous trending.

Since the EPICS readout has been implemented, it was applied at all test beams to monitor the

detector set up. Another use case: EPICS changes some measurement settings automatically by a

sequencer, and the combined EPICS and detector data is used for analysis of such scans. This is

planned for STS laser irradiation tests as described in section 4.3.

3. Online analysis with Go4

3.1. The Go4 framework

The GSI Object Oriented Online Offline framework (Go4) [10] is a GSI standard tool for online and

offline analysis, based on C++ and the ROOT framework [14]. Go4 features a plug-in architecture for

user-defined subclasses, implementing data structures (“event element”), data sources (“event

source”), and algorithms (“event processor”). Such plug-ins are compiled into a user analysis library

which is run embedded to the Go4 framework.

The same user analysis code can run either from the command line in a single-threaded batch

mode, or controlled by a generic Go4 GUI that offers a multi-threaded, interactive live display with

full ROOT and Qt graphics (figure 3). Moreover, the same analysis can switch data input between a

recorded file and an online monitoring data server on the fly, thus direct comparison of online and

offline data is possible without restarting. As standard GSI data protocol, the “list-mode” file of the

DAQ system MBS [6] and various MBS online data servers are supported by Go4. Because DABC

system also provides these data source formats, Go4 can directly connect to DABC produced data.

The Go4 framework allows splitting subsequent stages of the analysis into “analysis steps”, with

each step producing intermediate data which is used by the following step (figure 4). So the first

analysis step would unpack the raw data from DAQ. The second analysis step would map such DAQ

channels into a detector display and perform a specific analysis. An advanced analysis, like detector

correlations or a simple beam “tracking”, can be implemented in a third analysis step. Each analysis

step is defined by an “event processor” class which produces an “event element” structure as resulting

output. A further offline analysis with ROOT macros could be based on such Go4 output events which

are optionally stored into ROOT TTrees.

Because of such features, the CBM collaboration has applied Go4 since 2008 at several detector

test beam campaigns. Most recently the Go4-based CBM online monitoring software has been newly

organized to match the ever increasing complexity of such tests.

Figure 3. Go4 GUI with live display of accumulated hit maps from different detector

prototypes at COSY 2012 test beam (see section 4.2.).

3.2. The CBM test beam framework and generic libraries

The Go4 analysis for a specific test beam should best reuse existing analysis code of the standard

CBM readout components connected to the DAQ system DABC, like the SysCore readout controller

(ROC) [15], the Susibo/SPADIC frontend [16], miscellaneeous VME-bus modules read out by an

MBS crate, or the EPICS process variables readout as described in section 2.3. These parts are kept as

Go4 user classes in separate shared libraries which are part of a “CBM test beam framework” that has

been developed on top of Go4. DABC will pack the data of all these different frontends into a generic

“MBS event” container structure, so the first Go4 analysis step can read them using standard MBS

data sources. Besides the reusability of such libraries, they provide also a standalone Go4 analysis

with all generic monitoring features required for a simple lab set up.

The actual CBM test beam analysis will usually not modify these libraries, but just use their classes

which are available by default. Runtime configuration of the library objects for various test situations

is done via Go4 parameters. These can be set to new values by scripts at analysis initialization, or can

be saved and recovered with a ROOT file (“Go4 auto save file”).

To cover the test beam use case of various readout systems for different test detectors, each of the

Go4 analysis steps needs to be divided up into structurally parallel processing entities and their

resulting data structures. Hence the CBM test beam framework introduces a “composite event

processor” class that can register and run a number of regular Go4 “event processors” together within

each analysis step. Additionally, the resulting data structures of these software processors are

aggregated as a common “Go4 composite event”, reflecting the hierarchy of the DAQ and detector set

up. Figure 4 illustrates the structure of a typical implementation.

3.3. Test-specific implementations

Although the code of the first analysis step is mostly generic, the further analysis steps are still too

specific for each test beam to be reusable. Thus the Go4 analysis for each CBM test beam is organized

in separate source code directories with a class name prefix of the top classes indicating the campaign

(e.g. “CernOct11”). Depending on the particular set up, the composite event and processor classes of

each analysis step will define different components. For the first analysis step these are mostly taken

from the CBM test beam framework libraries, for the other steps the classes are implemented within

the test beam specific library.

Within each test beam directory, the source code is also organized in a modular way: each detector

subgroup can develop and run their individual code as standalone Go4 analysis. The combination of

several or all subgroup codes can run as advanced or full analysis. Another benefit of such partitioning

into different source code packages is the clear responsibility of each working group for their code.

4. Application examples

4.1. CERN PS October 2011

In October 2011, a two week test of TRD and RICH detectors was done at CERN PS beam line T9

with 1-10 GeV/c secondary electron and pion beams. Figure 5 shows the data acquisition set up. A

total of 8 different detector systems is read out via three different frontend systems. Here

conventionally beam-triggered readout systems, such as MBS [6] and the Susibo/SPADIC [16] , have

to be combined with free running systems, such as the ROC [15] that continuously acquires time

stamped messages. This is achieved by inserting special trigger synchronization messages into the

ROC data stream via LVDS signal cable from a VME-bus FPGA module (VULOM) in the triggered

MBS crate. These markers are then used by DABC event building application to pack corresponding

data into the same MBS container.

Here two DABC event-builders are connected to the frontends via tcp/ip ethernet (MBS crates),

udp/ip ethernet (ROC), and USB 2.0 cables (Susibo/SPADIC). The two DABC event-builder nodes

(PC1, PC2) are combining at first half of the frontends each. Another DABC node (PC3) is dedicated

to fetch the EPICS slow control data in frequent intervals. Finally, one of the event building DABC

Figure 4. Go4 analysis software organization for typical CBM test beams. Subsequent data

generations are separated by “analysis steps”, each producing a resulting data structure. Each

analysis step may run together code for independent frontend or detector components. The

final step may show correlations, or trajectory fits of different components. The event

structure of the legacy Multi Branch System (MBS) framework is used as generic data

container interface for all DABC generated inputs.

nodes (PC1) combines the data of all three DABC processes, writes the data file and serves the online

monitoring clients. Due to the low beam intensities, the average file acquisition data rates are typically

about 500 kByte/s.

Online monitoring and initial offline analysis are implemented with the Go4 based CBM test beam

framework. In the first analysis step, generic software modules are used, such as for the

ROC/nXYTER readout, for the SPADIC readout, and for EPICS slow control variables. The

unpacking of two MBS crates’ data is treated with specific classes. The components of the second

analysis step are developed by various institutes. It has different processor modules for beam

monitoring scintillators, a fiber hodoscope, a RICH prototype, and several TRD stations of different

prototypes. The results of such subdetector analyses are combined in the second analysis step and used

for particle identification.

Figure 5. DAQ set up at CERN/PS test beam for CBM in October 2012. See text for details.

4.2. COSY January 2012

In January 2012, a test of STS and GEM/MUCH detectors was done with a 2 GeV/c proton beam at

COSY (cooler synchrotron) facility in Jülich, Germany. Figure 6 shows the data acquisition set up

which is much more homogenous than at CERN. There is only one type of readout system, such as the

ROC [15], for all three detector types (STS, GEM, fiber hodoscope). Three DABC nodes are

connected to the ROCs via optical fibres, intermediate data combiner boards (DCB), and PCIe receiver

boards (AVnet). These connections use a proprietary CBMnet protocol [17]. All readout is purely

“trigger-less”, i.e. there is only a time-stamped data stream. Clock synchronization between the

frontends is inherently done by the optical protocol. For initial reset of the time counters, deterministic

latency messages are send from a DABC time master (PC3) node to a “clock master” DCB which

distributes the synchronization to the other DCBs. The other two DABC nodes (PC1, PC2) read the

data via optical fibre and forward them via Gbit ethernet sockets to the event-building DABC node

(PC4) that stores it to local listmode files. Additionally, the DABC event-builder merges the EPICS

slow control data which is retrieved by another dedicated DABC application on PC3 and is also read

via ethernet. For performance reasons, the Go4 online monitoring server is running on a separate

DABC node (PC5) which gets data stream samples from the event building PC4. Because of the

trigger-less readout mode and high beam intensities, average file acquisition data rates are limited by

the DABC event-builder host speed. These rates have typically been adjusted to 10 MByte/s (out of

beam spill) and 50 MByte/s (in beam spill).

Figure 6. DAQ set up at COSY test beam in January 2012. See text for details.

Again the Go4 based CBM beam time framework is applied for online monitoring. In the first

analysis step the generic ROC/nXYTER and EPICS monitors are used. Here a simple event selection

within the message data stream is done: Go4 imposes a window condition of the ROC data message

time differences with respect to a beam-induced marker message. This marker is derived from the first

hodoscope detector’s sum signal that has been fed to some of the ROCs and inserted to the data

stream. The event selection time windows of all ROC streams can be adjusted interactively on Go4

GUI, regarding the histograms of the message time differences.

The second analysis step has generic components (event processor and event structure) for the two

fiber hodoscopes, and special components for the STS, and the GEM prototypes. For the first time a

third analysis step has been implemented, providing detector correlations and a simple linear fit of the

single “beam tracks” through the hits of the two hodoscopes, three STS and one GEM planes.

4.3. STS laser table project

An example for the readout of EPICS process variables together with the other DAQ frontends is

illustrated in figure 7. These measurements are under preparation for summer 2012. A silicon strip

detector (STS) prototype is locally irradiated by a movable laser, the position of which is steered by an

EPICS sequencer. The silicon strip signals are continuously sampled and read out by a self triggered

SysCore2 readout controller (ROC) [15]. The combination of STS signals with a laser position is

provided by DABC which inserts a special data marker (“system message”) whenever the EPICS

sequencer indicates begin or end of a laser position. The subsequent Go4 analysis software can

evaluate such markers and can select all messages belonging to each laser scan point as a separate

“Event”. Currently these DABC readout mechanisms and the appropriate Go4 analysis have been

developed and tested by means of ROC data simulators and a dummy EPICS sequencer. So the

software is mostly ready for the experiments to be performed.

5. Conclusions

Data acquisition and online monitoring for current CBM detector and electronics prototype tests have

been handled with two software frameworks: DABC for DAQ, and Go4 for online analysis. Both

frameworks proved to be versatile enough to match the requirements of various set-ups. The EPICS

system has been used to control both detector and DAQ settings in a combined GUI. Moreover,

DABC can read out EPICS process variables and can insert them into the DAQ data stream. This

allows analyzing detector signals with respect to the slow control set up.

The Go4 analysis code for CBM test beams has been organized in a modular way, defining a sub-

framework with CBM specific libraries, and splitting up the user code for different test beams and

working groups. This turned out to improve the code reusability and maintenance, and has helped a lot

for the concurrent development of independent analysis parts.

Because future detector tests will have increasing complexity, online analysis requires advanced

features to treat detector geometry, hit evaluation, and correlation between different detectors - up to

track finding and fitting capabilities. The structure of Go4 framework can handle such requirements,

as has been successfully demonstrated at COSY January 2012 campaign by means of a third analysis

step. For more complex set ups, it might be useful to integrate here some existing analysis code which

has been developed for CBM detector simulation and offline analysis with the FairRoot framework

[18]. However, the intended use-case of the Go4 online analysis is limited to quality monitoring of

detector and electronics tests. For a more advanced analysis, it is rather planned to develop and run

FairRoot code independently on the same DABC-acquired data.

The upcoming next iteration of CBM readout hardware will also mean a remanufacturing of

existing data acquisition and online analysis software. All common code for the formatting and simple

“event selection” analysis of CBM specific detector front-ends should be put in a set of CBM-DAQ

libraries. These should be independent of any other software framework, but are to be used by all

participating systems, such as the DABC data acquisition, Go4 monitoring analysis, FairRoot physics

analysis, and the future first level event selection algorithms to be run on the FLES compute farms.

Figure 7. Application of EPICS readout for silicon strip station prototypes (STS)

irradiated by a movable laser. The laser position is controlled by an EPICS

sequencer. The strip responses are sampled by nXYTER/SysCore2 Readout

Controllers (ROC) as trigger-less stream of time-stamped messages. Each laser scan

point is combined with corresponding messages in Go4 analysis. For

synchronization DABC inserts time markers into ROC data stream when EPICS

signals a begin or end of scan point.

References
[1] The FAIR project home page, http://www.fair-center.de

[2] Friman B, Höhne C, Knoll J, Leupold S, Randrup J, Rapp R and Senger P (eds.) 2011 The

CBM Physics Book, (Lecture Notes in Physics Vol. 814) (Berlin Springer)

[3] De Cuveland J and Lindenstruth V 2011 A First-level Event Selector for the CBM Experiment

at FAIR J. Phys.: Conf. Ser. 331 022006

[4] Adamczewski-Musch J, Essel H G, Kurz N and Linev S 2010 Data Flow Engine in DAQ

Backbone DABC IEEE Trans. Nuclear Science vol.57 no.2 614-617.

[5] Adamczewski-Musch J, Essel H G, Kurz N and Linev S 2010 Data Acquisition Backbone Core

DABC Release v1.0 J. Phys.: Conf. Ser. 219 022007.

[6] Essel H G, Hoffmann J, Kurz N and Ott W 2000 The general purpose data acquisition system

MBS IEEE Trans. Nuclear Science vol.47 no.2 337-339.

[7] Adamczewski-Musch J, Essel H G and Linev S 2011 The DABC framework interface to

readout hardware IEEE Trans. Nuclear Science vol.58 no.4 1728-1732

[8] Gaspar C, Distribution Information Management system DIM, http://dim.web.cern.ch/dim

[9] Essel H G, Adamczewski-Musch J and Linev S, 2010 A DIM Based Communication Protocol

to Build Generic Control Clients, Proc. 17
th
 IEEE-NPSS Realtime Conf. (Lisbon) IEEE

Xplore RTC.2010.5750463

[10] Adamczewski-Musch J, Essel H G and Linev S 2011 Online Object Monitoring With Go4.V4.4

IEEE Trans. Nuclear Science vol.58, no.4 1477-1481

[11] The Experimental Physics and Industrial Control System, http://www.aps.anl.gov/epics/

[12] The Control System Studio, http://cs-studio.sourceforge.net

[13] Adamczewski-Musch J, Kolb B W and Linev S 2010 DABC data acquisition input for slow

control variables GSI scientific report 2010 45.

[14] The ROOT System, http://root.cern.ch

[15] Abel N, Manz S and Kebschull U 2009 Design and Implementation of an Universal Read Out

Controller GSI scientific report 2009 323

[16] Armbruster T, Fischer P and Peric I 2010 CBM TRD Readout with the SPADIC Amplifier /

Digitizer Chip GSI scientific report 2010 32

[17] Lemke F, Slogsnat D, Burkhardt N and Bruening U 2009 A Unified Interconnection Network

with Precise Time Synchronization for the CBM DAQ-System, Proc.16
th
 IEEE-NPSS

Realtime Conf. (Beijing) IEEE Xplore RTC.2009.5321841

[18] Bertini D, Al-Turany M, Koenig I and Uhlig F 2008 The FAIR simulation and analysis

framework J. Phys.: Conf. Ser. 119 032011

