

The DABC Framework Interface
to Readout Hardware

Jörn Adamczewski-Musch, Hans G. Essel, Sergei Linev

 Abstract–The Data Acquisition Backbone Core (DABC) is a
new GSI software framework to run a data acquisition with
distributed event building on high performance Linux clusters.
Experiment specific front-end electronics is to be integrated to
the software by means of hardware interface plug-ins like Device
and Transport classes. DABC offers elaborate mechanisms for
multiprocessing, buffer management, and dataflow throttling.
These are transparently available for all implemented plug-ins.
Device plug-ins can link a DABC node to remote readout
hardware via network connections like Ethernet. Other Device
plug-ins can communicate on the Linux device driver level with
custom boards directly inserted at the node.

Besides delivering the data input, a DABC Device can also
provide control access to the connected hardware. This
functionality can be used for setting up, or monitoring the front-
ends from the application via DABC parameters and commands.

An implementation example is a multi purpose PCI Express
Optical Receiver (PEXOR) board developed at GSI. This board
features an FPGA and 4 optical links and may be used for
various front-ends, depending on the FPGA programming. A
kernel driver and the DABC Device plug-in for this board have
been developed and tested. They are described here with some
performance benchmark results.

As another example, DABC is applied for data taking during
test beam times of the Compressed Baryonic Matter (CBM)
experiment from 2008 to 2010. Here the front-end readout
controller boards (ROC) were integrated to the DABC hardware
interface, both for an UDP based Ethernet protocol, and for
optical connections to a custom PCIe board.

 Index Terms–Data acquisition, Device driver, Object oriented
programming, Software architecture

I. INTRODUCTION
HE Data Acquisition Backbone Core (DABC) is a general
purpose data acquisition (DAQ) software framework

designed for distributed data processing on Linux clusters
with fast switching networks [1],[2]. Unlike other experiment
dedicated DAQ systems [3]-[5], DABC is a framework library
which provides a base for various different DAQ systems.
DABC offers the software infrastructure. The experiment
specific software components to handle read out electronics
and process the data are implemented in software plug-ins.

The development of DABC is furthermore motivated by
future experiments’ requirements for a “triggerless” DAQ.
Here time-stamped data from the frontend hardware have to
be transported over a “builder network” to first level event
selection nodes. Each selection node may need the full
detector information to filter out physics events from the data
stream. Hence DABC is intended to maximize network
bandwidth and processing performance by means of traffic
shaping and thread optimization. The first DABC release was
published under the GPL in 2009 [6]. DABC is based on plain
C++ and supports Ethernet (IP sockets) and InfiniBand
(verbs) networks by default. Moreover, DABC implements
file formats and data connections to the established DAQ
framework MBS [7]. So it is easy to integrate legacy readout
hardware and analysis software.

Manuscript received June 14, 2010, revised April 12, 2011
Jörn Adamczewski-Musch, Hans G. Essel , and Sergei Linev are with

Experiment Electronics Department, GSI Helmholtzzentrum für
Schwerionenforschung, Planckstr 1, 64291 Darmstadt, Germany. The
corresponding author is Jörn Adamczewski-Musch (phone: +49-6159-
711337, fax: +49-6159-712986, e-mail: J.Adamczewski@gsi.de).

Fig. 1. Example of software objects in one DABC node: The Manager is the
configuration and control system instance. The Application plug-in defines the
user-specific set up. Data processing is done in Modules that are connected
with “Input” and “Output” Ports. A Device object is responsible for several
Transports of the same kind and can implement specific hardware I/O. All
objects share memory pools for data Buffers (“Pool”) and can read and export
control parameters (“Params”).

 T

The DABC framework features a runtime environment with
transparent mechanisms for multithreading, memory
management, command and event dispatching, and
configuration and controls. This was recently presented in
detail [8]. Concerning the software architecture, DABC
applies common design patterns [9]. For example, user-
specific parts of the DAQ system are implemented as plug-ins,
i.e. specializations of base classes for dedicated purposes.
These plug-ins are integrated to the framework by means of
the Abstract Factory pattern, with user defined Factory
Methods for initialization [9].

In the following we will describe the integration of custom
readout hardware in DABC. Let’s consider a single node of
the DAQ cluster. A typical situation is shown in Fig.1. The
Manager is the central instance. It registers all objects, defines
the run state with a finite state machine, evaluates the XML
configuration file, and is the gateway to the control system
implementation. The Manager realizes the Singleton design
pattern [9]. This ensures that there is only one Manager
object, and that it is accessible from everywhere in the
framework. The user specific set-up is configured by the
Application plug-in as registered to the Manager when
loading the user application library. It implements the
initialization method, defining which kind of processing
objects are created, and how these are connected.

The DABC concept of data flow consists of Module and
Device software objects which are linked at configurable Port
connections by buffering Transport instances. The Modules
run the actual data processing, either in separate threads, or in
a thread shared with other processing entities. The Devices are
responsible for the Transport connections to or from a
Module, or between Modules.

 Usually any hardware device is implemented in DABC by
a Device class with a corresponding Transport class. The
DABC framework provides these implementations for
standard hardware, e.g. Network Interface Controllers, which
are encapsulated in libraries like OFED verbs [10], or the
Linux sockets. For custom readout hardware, developed for a
specific experiment‘s set-up, these classes must be
implemented by the user. Additionally, specific processing of
data from this hardware is to be put into at least one user
Module. In the following, we will show the recommended
class interfaces for such purpose.

II. HARDWARE INTERFACE CLASSES
In Fig. 2 a simplified Unified Modeling Language (UML)

class diagram illustrates the relations between the key classes
of the hardware interface. Class inheritance is shown by green
solid arrows from subclass to base class; associations between
classes by black dashed arrows with object multiplicities (e.g.
one Device can handle many Transports, “1 to *”).

All base classes of the DABC plug-in interface, such as
Device, DataTransport, and Module, are subclasses of
WorkingProcessor which is assigned to a WorkingThread.
This class represents a single thread of the operating system.
WorkingProcessor actions to run in the thread can be
triggered by an external event (e.g. “new buffer in queue”),
including command execution. This mechanism, however, is

transparent to the user, since the hardware interface classes
just require a couple of functions (class methods) to be
defined in its user implementations. The DABC framework
will take care that these functions are executed at the “right
time” within the preconfigured multithreading environment.
Additionally, any WorkingProcessor instance has service
functions to define and access Parameter containers which
can be set from the DABC configuration system at runtime.
These are to be used for the specific set up of the user
hardware and readout functions. The details of the interface
classes are discussed in the next sections.

Fig. 2. Simplified UML diagram of the DABC hardware interface classes; the
relevant virtual methods are shown in the user classes. The Device base class
can manage several Transport instances. Each of these is a user
implementation of the DataTransport interface which actually fills data from
the hardware into Buffer objects provided by the framework. The Module
connected to the DataTransport will receive the Buffer contents and can
process them. Device, DataTransport, and Module are all subclasses of
WorkingProcessor, hence their actions can be run by independent threads
(WorkingThread class), or they can partially share one thread.

A. The Device Class
The Device class contains generic framework functionality

to manage data transports to or from any hardware device. It
keeps and owns a collection of Transport objects that are
created for such kind of Device. The actual Device
implementation for specific hardware is done in a subclass,
e.g. user::Device (see Fig. 2). This may use existing driver
libraries, or may be based on low level system calls to a Linux
kernel module. The user::Device must provide a factory
method CreateTransport() to define the corresponding
user::Transport implementation. It is called from the
framework when a Module is connected to this Device.
Therefore the Device class also realizes the Abstract Factory
design pattern [9] for the Transport.

B. The DataTransport Class
While the Device object represents the complete hardware

entity, the actual data transfer to a Module must be
implemented in a Transport subclass. Because the abstract
base class Transport is a rather low level interface, DABC
provides the advanced class DataTransport as recommended
base class for all custom Transport implementations. It
defines a simple interface of virtual methods for reading data:

1. unsigned Read_Size() is called before payload data
are read from the device. It must return the size of
the next expected data packet. This size may be read
here from a header in advance of the actual data
stream, or from a dedicated device register. If such is
not possible, the maximum expected data size is to
be returned. From this information the framework
will provide the Buffer to fill.

2. Read_Start(Buffer*) is called at the begin of the data
transfer from the device and may optionally initiate
the transfer (e.g. a DMA to the buffer). The target
buffer to fill is passed as an argument. This function
must not block, since it is meant for asynchronous
transfers: The previously queued Buffers can be
processed during the active DMA of the current
Buffer. If implemented for synchronous transfers,
however, this function does nothing but return an
“OK” value.

3. Read_Complete(Buffer*) is called when the transfer
shall be finished. The target buffer to fill is passed as
an argument. This function must block until the
transfer from the device to the buffer is complete,
since the framework will use this buffer further in
the connected Module right after the function
returns. For synchronous transfers, all functionality
is implemented here. Depending on the return value,
the framework may retry the transfer, or skip the
buffer. This can be used to read out data in a polling
mode, or to handle device errors, respectively.

C. The Module Class
Device and Transport implementations handle the data

transfer from the readout hardware into the framework
buffers. Processing the data within these buffers should be
done in subsequent Module implementations. For a testing
node, at least one “Readout Module” (user::Module in Fig. 2)
should be provided that can connect to the Transport and
check the data received from the hardware. It may also save
the data for further processing, or export data for online
monitoring to a data server. Here the Module could utilize the
supported MBS data formats and socket connections [7]. With
these it is easy to apply existing monitoring tools like Go4
[11] for analysis and visualization.

III. CONFIGURATION AND CONTROLS

A. The Node Manager
 Each node of the DAQ cluster is controlled by the DABC
Manager singleton (see Fig. 1). It registers and owns all
software objects. It defines and operates a finite state machine
for the run states of the node, e.g. “Halted”, “Configured”,
“Running”, “Stopped”. Furthermore, the Manager is the
gateway to the control and configuration system that can
switch the run states, can dispatch external commands, and
can set and monitor parameter values.

B. The Application Plug-in
The actual set up of each node in the DAQ cluster is done by

writing an Application subclass as a plug-in for the Manager.
At least one virtual method CreateAppModules() must be
implemented here to define the Modules, Devices and
Transport connections that should be created at initialization
time. Additionally, several other virtual methods can be
overwritten to modify the framework default behavior, up to
the details of the DAQ state transition functions.

C. Configuration Parameters
The configuration is handled by DABC Parameters that are

registered in the Application constructor and are accessible by
name in the methods of the user implemented classes. The
parameter values can be loaded from a configuration file at
each start of the DABC process. The XML syntax of the
configuration file allows techniques like wildcard expressions
to easily set up similar Modules and Devices on multiple
nodes with one configuration file.

Moreover, values of the registered Parameters can be
controlled and monitored at runtime by means of the control
system associated with the node Manager. Currently DABC
supports a control system protocol based on the Distributed
Information Management (DIM) system [12] and provides a
generic Java GUI for visualization of node states and
parameter values [13]. Interfacing other control frameworks
such as the Experimental Physics and Industrial Control
System (EPICS) [14] is currently under construction.

IV. HARDWARE EXAMPLES AND PERFORMANCE

A. The PEXOR Board
Our first example is a PCIe board for reading data from

front-end hardware via optical links. The PciExpress Optical
Receiver board (PEXOR) was developed at GSI [15]. It
features a Lattice Field Programmable Gate Array (FPGA)
with serial Gigabit transceiver interfaces (SERDES) to
connect PCI Express x1 or x4 (i.e. one or four lanes), and four
2Gbit “small form-factor pluggable” (SFP) optical
transceivers. The optical protocol to read out a chain of GSI
front-end boards has been implemented [16]. The hardware
has previously been tested with drivers and software on Lynx
OS, developed for the DAQ system MBS [7].

1) Linux Driver
 To use this hardware with DABC, a Linux device driver has
been developed. The driver operations for read() and write()
implement Programmed Input/Output (PIO) to the PEXOR
on-board memory. Operation mmap() allocates kernel buffers
for Direct Memory Access (DMA) operations and maps these
to user space addresses. The pexor kernel module manages
these buffers with separate lists for free buffers, for already
filled buffers, and for buffers currently in use by the client
programs. Further functionality is available by ioctl()
operations, such as

• initiating a DMA transfer,
• retrieving and releasing DMA buffers,
• communicating with the front-end boards at the SFP

connections,
• accessing any register in the address spaces of the

board’s PCIe memory, or of the SFP slaves,
respectively.

The interrupt handler is prepared for DMA completion and
data trigger interrupts which may be used with future versions
of the FPGA firmware.

Together with the kernel module, the PEXOR driver
package provides a plain C++ library with higher level
functionality. It features thread safe classes representing
different PEXOR board instances (i.e. hardware versions).
These classes offer methods to work transparently with the
driver from user space. Furthermore, the library defines
wrapper classes for the kernel DMA buffers and their memory
pool, and some auxiliary classes for logging and performance
benchmarks.

2) DABC Integration
The DABC plug-ins for the PEXOR board directly use this

library via a Device class, encapsulating the driver
functionality as a Façade design pattern [9]. The Transport
class implements methods Read_Size() , Read_Start() , and
Read_Complete(), as introduced in section II.B.

For performance tests, data concentrator front-end boards
(EXPLODER) [16] were connected to the PEXOR. The
Device class was implemented with a test mode to write
random data into the front-end memories at initialization time.
This avoids the need of connecting a “real” data source. Then,
for each cycle of the running acquisition, the Transport
initiates the transfers of this data from the SFPs. The data is
collected from all EXPLODER boards connected to one SFP
in a token-ring protocol technique, performed by the on-board
FPGAs. The token transfer can be handled either
asynchronously, Read_Start() requests the data block, and
Read_Complete() receives the filled DMA buffer.
Alternatively, the transfer can be handled synchronously,
Read_Complete() is both requesting the block and receiving
the buffer. If more than one SFP chain is connected, the token
block read is done in a “parallel” mode. At first, token blocks
are requested from all connected SFP chains, and then the
token buffer of each channel is polled for completion and
further transferred via DMA to the host. Since the SFP
channels work independently in the PEXOR FPGA, the token

data is read in parallel into PEXOR memory. However, the
subsequent DMA transfers to the PC host are serialized over
the PCIe bus. This limits the maximum achievable bandwidth.

Because in the current implementation the kernel DMA
buffers of the driver are not yet registered to the DABC
memory pool, the contents of the received buffer are copied to
the DABC target buffer, optionally formatted with headers of
the MBS format [7]. A readout Module is connected to the
Transport and provides these data for online monitoring with
Go4 [11]. Here the data integrity is checked by unpacking and
histograming the submemory contents of the token chain.

3) Performance Measurements
 The above test runs a non triggered read-out in a polling

loop, where every single Read_Complete() gets a full data
buffer. Therefore it shows up the maximum possible data rate
for this plug-in implementation. Fig. 3 illustrates the measured
bandwidth values vs. packet size for different numbers of SFP
chains, each equipped with one EXPLODER board.

The plain DMA bandwidth between PEXOR board and PC
memory was measured with the driver library to be <550
Mbytes/s (for a maximum of 64 kbytes transfer size of each
SFP buffer, PCIe x4 configuration), defining the upper limit
for any DAQ utilizing this hardware.

Fig. 3. PEXOR readout bandwidth vs. full data payload size: DABC parallel
token block request with subsequent DMA for different numbers of connected
SFP chains (1 EXPLODER front-end per chain). Read out of randomly
generated data in polling mode without trigger.

The achieved DABC token block readout speed of <250

Mbytes/s (parallel read out, asynchronous mode, 4 connected
data chains) is limited by the serialization of SFP, DMA, and
memory copy. Since each SFP channel currently has only one
token receive buffer in the PEXOR memory, the DMA
transfer can not start before each token block read is complete;
additionally, after receiving the DMA buffers in the host
program, they are copied to DABC user buffers within the
same thread. The resulting payload bandwidth B to the host
memory is the harmonic mean H of all subsequent bandwidth
components Bi divided by the number n of such components,
as reminded in (1):

⎟
⎠
⎞⎜

⎝
⎛

∑
=

==

−
n

i Bin
HB

0
1

1

 (1)

Here the three subsequent bandwidth components Bi are the

sum of all SFP bandwidths, the DMA bandwidth, and the
memory copy speed from DMA buffer to DABC user buffer.
For a 4-SFP-channels’ total bandwidth of 800 Mbytes/s (with
2 GBit SFPs), a DMA bandwidth of 550 Mbytes/s, and the
measured memcpy speed of 2 Gbytes/s, one can expect a
theoretical readout bandwidth of 280 Mbytes/s for this
implementation, fairly in agreement with the measurements.

Improvements are planned for future PEXOR versions by
double buffering at each SFP channel, which will allow DMA
transfers during token readout. Moreover, integrating the
PEXOR DMA buffers into the DABC memory pool will
decouple DMA receiving and memory copying into separate
DABC threads. This will speed up the overall bandwidth on a
multi processor CPU.

Fig. 4. PEXOR “token block mode” bandwidth comparison vs. packet sizes
for a chain of 2 front-end boards at 1 SFP link: request of a single token using
the driver library; DABC readout with asynchronous, and synchronous token
request mode, respectively.

The asynchronous DABC readout mode turned out to

improve performance by about 5% over the synchronous
mode (see Fig. 4). In comparison with a single token request
of the driver library, the entire DABC framework overhead
reduced the token readout speed by only 3%. For small buffer
sizes, asynchronous DABC readout is even better, since the
data transfer time of about 40 μs is in the order of the Linux
context switching time, which will show up if the system
schedules out the permanently polling process. For large
buffers the DABC bandwidth is mainly affected by the
memcpy between driver DMA buffer and DABC user buffer.
With the harmonic mean estimations as explained above, one
can expect for one SFP channel a maximum readout
bandwidth of 137 Mbytes/s with memory copy (DABC), and
147 Mbytes/s without (single token test). The MBS data

server functionality may also impose a slight penalty in
comparison with the plain test.

B. The CBM Readout Controller (ROC)
Another example of a DABC hardware interface is access

to the readout controller board (ROC) used for detector tests
in the future Compressed Baryonic Matter (CBM) experiment
[17]. Data from ROC can be delivered to PC either via
Ethernet, or via optical fiber connection.

For optical readout a PCIe receiver board (AVNET) is used
which has similar functionality as the PEXOR board. The
main difference to EXPLODER/PEXOR readout is that the
CBM readout controller sends data packets without an explicit
request, as required by EXPLODER. The data received by the
AVNET board is accumulated in a large FIFO and transported
via DMA requests to DABC. The implementation of the
Transport class is based on DataTransport and is very similar
to the PEXOR case. The maximum data rate achieved with the
ROC pattern generator is about 210 Mbytes/s.

Alternatively, a UDP-based custom protocol has been
implemented for communication with ROC via Ethernet.
Because UDP does not guarantee packets delivery, a
retransmission of lost packets is supported by our protocol.
For the implementation of socket-based protocols DABC
provides several base classes which allow the developer to
work with sockets in an “event triggered” mode. These classes
declare virtual methods which are called when a socket has
data for reading, or when the user program can send a new
portion of data via the socket. The ROC UDP Transport
implements such classes and can handle connections with
several ROCs in a single thread. A data rate of about 12
Mbytes/s per ROC was achieved – this corresponds to the
maximum for 100 Mbit Ethernet.

Both optic- and Ethernet-based transports provide similar
interfaces to the higher-level code. So the user can set up
heterogeneous systems with many ROCs, read out by one or
several DABC applications. Such systems were successfully
employed for data taking with the CBM test beam at CERN in
November 2010, and at COSY (FZ Jülich) in December 2010,
respectively [18],[19].

V. CONCLUSIONS
The DABC framework provides simple and generic

interface classes for integrating a large variety of hardware
devices for data I/O. These plug-in points were proven to
work with the CBM test beam hardware, and with a general
purpose PCIe optical receiver board (PEXOR), respectively.
Further development work is going on to add more
functionality to both implementation cases.

ACKNOWLEDGMENT
We thank Jan Hoffman, Nikolaus Kurz, Shizu Minami, and

Wolfgang Ott of GSI Experiment Electronics Department for
help and discussions during development of the PEXOR
Linux device driver and the DABC plug-in.

REFERENCES
[1] J. Adamczewski, H. G. Essel, N. Kurz, and S. Linev, “Data Acquisition

Backbone Core DABC”, IEEE Trans. Nuclear Science vol.55, no.1, Feb.
2008, pp 251-255.

[2] J. Adamczewski, H. G. Essel, N. Kurz, and S. Linev, “Data Acquisition
Backbone Core DABC”, 2008 J. Phys.: Conf. Ser. 119 022002 (8pp).

[3] F. Alessio et al.,“The LHCb Readout System and Real-Time Event
Management”, IEEE Trans. Nuclear Science vol.57, no.2, Apr. 2010, pp
663-668.

[4] G. Bauer et al., “CMS DAQ Event Builder Based on Gigabit Ethernet”,
IEEE Trans. Nuclear Science vol.55, no.1, Feb. 2008, pp 198-202

[5] H. P. Beck et al., “Performance of the Final Event Builder for the
ATLAS experiment“, IEEE Trans. Nuclear Science vol.55, no.1, Feb.
2008, pp 176-181.

[6] J. Adamczewski-Musch, H. G. Essel, N. Kurz, and S. Linev, “Data
Acquisition Backbone Core DABC Release v1.0”, 2010, J. Phys.: Conf.
Ser. , to be published.

[7] H.G. Essel, J. Hoffmann, N. Kurz, and W. Ott, “The general purpose
data acquisition system MBS”, IEEE Trans. Nuclear Science vol.47,
no.2, Apr. 2000, pp 337-339.

[8] J. Adamczewski-Musch, H. G. Essel, N. Kurz, and S. Linev, “Data Flow
Engine in DAQ Backbone DABC”, IEEE Trans. Nuclear Science
vol.57, no.2, Apr. 2010, pp 614-617.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, 14th ed., Reading, MA:
Addison Wesley Longman, 1998

[10] Open Fabrics Alliance (2011, Apr.). OFED overview. [Online].
Available:
http://www.openfabrics.org/jofa/index.php?option=com_content&view=
article&id=3&Itemid=119

[11] J. Adamczewski, M. Al-Turany, D. Bertini, H.G. Essel, and S. Linev,
“Go4 online monitoring” , IEEE Trans. Nuclear Science vol.51, no.3,
Jun. 2004, pp 565-570.

[12] C. Gaspar (2011, Apr.). Distributed Information Management System
DIM. CERN. [Online]. Available: http://dim.web.cern.ch/dim

[13] J. Adamczewski-Musch, H.G. Essel, and S. Linev, “A DIM Based
Communication Protocol to Build Generic Control Clients”, presented at
the 17th IEEE Real-Time Conference, Lisboa 2010, Paper PCM-13

[14] Argonne National Laboratory (2011, Apr.). Experimental Physics and
Industrial Control System. [Online]. Available:
http://www.aps.anl.gov/epics/

[15] J. Hoffmann, N. Kurz, S. Minami, W. Ott, and S. Voltz, “PCI-express
Optical Receiver”, GSI scientific report 2008, p 258.

[16] S. Minami, J. Hoffmann, N. Kurz, and W. Ott, “Design and
Implementation of a Data Transfer Protocol via Optical Fibre“,
presented at the 17th IEEE Real-Time Conference, Lisboa 2010, Paper
PDAQ-31

[17] S. Linev, J. Adamczewski-Musch, and H. G. Essel “Usage of DABC in
software development for CBM DAQ “, CBM progress report 2009, p
56.

[18] J.M. Heuser et al., “Test of prototype modules of the CBM Silicon
Tracking System in a proton beam at COSY”, GSI scientific report 2010,
submitted for publication

[19] S. Linev, J. Adamczewski-Musch, and J. Frühauf, “DABC as data
acquisition framework for CBM”, GSI scientific report 2010, submitted
for publication

http://www.openfabrics.org/jofa/index.php?option=com_content&view=article&id=3&Itemid=119
http://www.openfabrics.org/jofa/index.php?option=com_content&view=article&id=3&Itemid=119
http://dim.web.cern.ch/dim
http://www.aps.anl.gov/epics/

	I. Introduction
	II. Hardware Interface Classes
	A. The Device Class
	B. The DataTransport Class
	C. The Module Class

	III. Configuration and Controls
	A. The Node Manager
	B. The Application Plug-in
	C. Configuration Parameters

	IV. Hardware Examples and Performance
	A. The PEXOR Board
	1) Linux Driver
	2) DABC Integration
	3) Performance Measurements

	B. The CBM Readout Controller (ROC)

	V. Conclusions
	Acknowledgment
	References

