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 Abstract–The Data Acquisition Backbone Core (DABC) is a 
new GSI software framework to run a data acquisition with 
distributed event building on high performance Linux clusters. 
Experiment specific front-end electronics is to be integrated to 
the software by means of hardware interface plug-ins like Device 
and Transport classes. DABC offers elaborate mechanisms for 
multiprocessing, buffer management, and dataflow throttling. 
These are transparently available for all implemented plug-ins. 
Device plug-ins can link a DABC node to remote readout 
hardware via network connections like Ethernet. Other Device 
plug-ins can communicate on the Linux device driver level with 
custom boards directly inserted at the node. 

Besides delivering the data input, a DABC Device can also 
provide control access to the connected hardware. This 
functionality can be used for setting up, or monitoring the front-
ends from the application via DABC parameters and commands.  

An implementation example is a multi purpose PCI Express 
Optical Receiver (PEXOR) board developed at GSI. This board 
features an FPGA and 4 optical links and may be used for 
various front-ends, depending on the FPGA programming. A 
kernel driver and the DABC Device plug-in for this board have 
been developed and tested. They are described here with some 
performance benchmark results. 

As another example, DABC is applied for data taking during 
test beam times of the Compressed Baryonic Matter (CBM) 
experiment from 2008 to 2010. Here the front-end readout 
controller boards (ROC) were integrated to the DABC hardware 
interface, both for an UDP based Ethernet protocol, and for 
optical connections to a custom PCIe board.  
 
  Index Terms–Data acquisition, Device driver, Object oriented 
programming, Software architecture 

I. INTRODUCTION 
HE Data Acquisition Backbone Core (DABC) is a general 
purpose data acquisition (DAQ) software framework 

designed for distributed data processing on Linux clusters 
with fast switching networks [1],[2]. Unlike other experiment 
dedicated DAQ systems [3]-[5], DABC is a framework library 
which provides a base for various different DAQ systems. 
DABC offers the software infrastructure. The experiment 
specific software components to handle read out electronics 
and process the data are implemented in software plug-ins. 

The development of DABC is furthermore motivated by 
future experiments’ requirements for a “triggerless” DAQ. 
Here time-stamped data from the frontend hardware have to 
be transported over a “builder network” to first level event 
selection nodes. Each selection node may need the full 
detector information to filter out physics events from the data 
stream. Hence DABC is intended to maximize network 
bandwidth and processing performance by means of traffic 
shaping and thread optimization. The first DABC release was 
published under the GPL in 2009 [6]. DABC is based on plain 
C++ and supports Ethernet (IP sockets) and InfiniBand 
(verbs) networks by default. Moreover, DABC implements 
file formats and data connections to the established DAQ 
framework MBS [7]. So it is easy to integrate legacy readout 
hardware and analysis software. 

 
 

Manuscript received June 14, 2010, revised April 12, 2011  
Jörn Adamczewski-Musch, Hans G. Essel , and Sergei Linev are with 

Experiment Electronics Department, GSI Helmholtzzentrum für 
Schwerionenforschung, Planckstr 1, 64291 Darmstadt, Germany. The 
corresponding author is Jörn Adamczewski-Musch  (phone: +49-6159-
711337, fax: +49-6159-712986, e-mail: J.Adamczewski@gsi.de). 

 

 
 
 
 
 

 
 
Fig. 1.  Example of software objects in one DABC node: The Manager is the 
configuration and control system instance. The Application plug-in defines the 
user-specific set up. Data processing is done in Modules that are connected 
with “Input” and “Output” Ports.  A Device object is responsible for several 
Transports of the same kind and can implement specific hardware I/O. All 
objects share memory pools for data Buffers (“Pool”) and can read and export 
control parameters (“Params”). 
 

 T



 

The DABC framework features a runtime environment with 
transparent mechanisms for multithreading, memory 
management, command and event dispatching, and 
configuration and controls. This was recently presented in 
detail [8]. Concerning the software architecture, DABC 
applies common design patterns [9]. For example, user-
specific parts of the DAQ system are implemented as plug-ins, 
i.e. specializations of base classes for dedicated purposes. 
These plug-ins are integrated to the framework by means of 
the Abstract Factory pattern, with user defined Factory 
Methods for initialization [9].       

In the following we will describe the integration of custom 
readout hardware in DABC. Let’s consider a single node of 
the DAQ cluster. A typical situation is shown in Fig.1. The 
Manager is the central instance. It registers all objects, defines 
the run state with a finite state machine, evaluates the XML 
configuration file, and is the gateway to the control system 
implementation. The Manager realizes the Singleton design 
pattern [9]. This ensures that there is only one Manager 
object, and that it is accessible from everywhere in the 
framework.  The user specific set-up is configured by the 
Application plug-in as registered to the Manager when 
loading the user application library. It implements the 
initialization method, defining which kind of processing 
objects are created, and how these are connected.  

The DABC concept of data flow consists of Module and 
Device software objects which are linked at configurable Port 
connections by buffering Transport instances. The Modules 
run the actual data processing, either in separate threads, or in 
a thread shared with other processing entities. The Devices are 
responsible for the Transport connections to or from a 
Module, or between Modules. 

 Usually any hardware device is implemented in DABC by 
a Device class with a corresponding Transport class. The 
DABC framework provides these implementations for 
standard hardware, e.g. Network Interface Controllers, which 
are encapsulated in libraries like OFED verbs [10], or the 
Linux sockets. For custom readout hardware, developed for a 
specific experiment‘s set-up, these classes must be 
implemented by the user. Additionally, specific processing of 
data from this hardware is to be put into at least one user 
Module. In the following, we will show the recommended 
class interfaces for such purpose.  

II. HARDWARE INTERFACE CLASSES 
In Fig. 2 a simplified Unified Modeling Language (UML) 

class diagram illustrates the relations between the key classes 
of the hardware interface. Class inheritance is shown by green 
solid arrows from subclass to base class; associations between 
classes by black dashed arrows with object multiplicities (e.g. 
one Device can handle many Transports, “1 to *”).   

All base classes of the DABC plug-in interface, such as 
Device, DataTransport, and Module, are subclasses of 
WorkingProcessor  which is assigned to a WorkingThread. 
This class represents a single thread of the operating system. 
WorkingProcessor actions to run in the thread can be 
triggered by an external event (e.g. “new buffer in queue”), 
including command execution. This mechanism, however, is 

transparent to the user, since the hardware interface classes 
just require a couple of functions (class methods) to be 
defined in its user implementations. The DABC framework 
will take care that these functions are executed at the “right 
time” within the preconfigured multithreading environment. 
Additionally, any WorkingProcessor instance has service 
functions to define and access Parameter containers which 
can be set from the DABC configuration system at runtime. 
These are to be used for the specific set up of the user 
hardware and readout functions. The details of the interface 
classes are discussed in the next sections.  
 
 

 
Fig. 2.  Simplified UML diagram of the DABC hardware interface classes; the 
relevant virtual methods are shown in the user classes. The Device  base class 
can manage several Transport instances. Each of these is a user 
implementation of the DataTransport interface which actually fills data from 
the hardware into Buffer objects provided by the framework. The Module 
connected to the DataTransport  will receive the Buffer contents and can 
process them. Device, DataTransport, and Module are all subclasses of 
WorkingProcessor, hence their actions can be run by independent threads 
(WorkingThread class), or they can partially share one thread. 
 
 

A. The Device Class 
The Device class contains generic framework functionality 

to manage data transports to or from any hardware device.  It 
keeps and owns a collection of Transport objects that are 
created for such kind of Device. The actual Device 
implementation for specific hardware is done in a subclass, 
e.g. user::Device (see Fig. 2). This may use existing driver 
libraries, or may be based on low level system calls to a Linux 
kernel module. The user::Device must provide a factory 
method CreateTransport() to define the corresponding 
user::Transport implementation. It is called from the 
framework when a Module is connected to this Device. 
Therefore the Device class also realizes the Abstract Factory 
design pattern [9] for the Transport. 

 



 

B. The DataTransport Class 
While the Device object represents the complete hardware 

entity, the actual data transfer to a Module must be 
implemented in a Transport subclass. Because the abstract 
base class Transport is a rather low level interface, DABC 
provides the advanced class DataTransport as recommended 
base class for all custom Transport implementations. It 
defines a simple interface of virtual methods for reading data:  

1. unsigned Read_Size() is called before payload data 
are read from the device. It must return the size of 
the next expected data packet. This size may be read 
here from a header in advance of the actual data 
stream, or from a dedicated device register. If such is 
not possible, the maximum expected data size is to 
be returned. From this information the framework 
will provide the Buffer to fill. 

2. Read_Start(Buffer*) is called at the begin of the data 
transfer from the device and may optionally initiate 
the transfer (e.g. a DMA to the buffer). The target 
buffer to fill is passed as an argument. This function 
must not block, since it is meant for asynchronous 
transfers: The previously queued Buffers can be 
processed during the active DMA of the current 
Buffer. If implemented for synchronous transfers, 
however, this function does nothing but return an 
“OK” value. 

3. Read_Complete(Buffer*) is called when the transfer 
shall be finished. The target buffer to fill is passed as 
an argument. This function must block until the 
transfer from the device to the buffer is complete, 
since the framework will use this buffer further in 
the connected Module right after the function 
returns. For synchronous transfers, all functionality 
is implemented here. Depending on the return value, 
the framework may retry the transfer, or skip the 
buffer. This can be used to read out data in a polling 
mode, or to handle device errors, respectively. 

C. The Module Class 
Device and Transport implementations handle the data 

transfer from the readout hardware into the framework 
buffers. Processing the data within these buffers should be 
done in subsequent Module implementations. For a testing 
node, at least one “Readout Module” (user::Module in Fig. 2) 
should be provided that can connect to the Transport and 
check the data received from the hardware. It may also save 
the data for further processing, or export data for online 
monitoring to a data server. Here the Module could utilize the 
supported MBS data formats and socket connections [7]. With 
these it is easy to apply existing monitoring tools like Go4 
[11] for analysis and visualization.    

 
 

III. CONFIGURATION AND CONTROLS 

A. The Node Manager 
   Each node of the DAQ cluster is controlled by the DABC 
Manager singleton (see Fig. 1). It registers and owns all 
software objects. It defines and operates a finite state machine 
for the run states of the node, e.g. “Halted”, “Configured”, 
“Running”, “Stopped”. Furthermore, the Manager is the 
gateway to the control and configuration system that can 
switch the run states, can dispatch external commands, and 
can set and monitor parameter values. 

B. The Application Plug-in 
The actual set up of each node in the DAQ cluster is done by 

writing an Application subclass as a plug-in for the Manager. 
At least one virtual method CreateAppModules() must be 
implemented here to define the Modules, Devices and 
Transport connections that should be created at initialization 
time. Additionally, several other virtual methods can be 
overwritten to modify the framework default behavior, up to 
the details of the DAQ state transition functions.  

C. Configuration Parameters 
The configuration is handled by DABC Parameters that are 

registered in the Application constructor and are accessible by 
name in the methods of the user implemented classes. The 
parameter values can be loaded from a configuration file at 
each start of the DABC process. The XML syntax of the 
configuration file allows techniques like wildcard expressions 
to easily set up similar Modules and Devices on multiple 
nodes with one configuration file. 

Moreover, values of the registered Parameters can be 
controlled and monitored at runtime by means of the control 
system associated with the node Manager. Currently DABC 
supports a control system protocol based on the Distributed 
Information Management (DIM) system [12] and provides a 
generic Java GUI for visualization of node states and 
parameter values [13]. Interfacing other control frameworks 
such as the Experimental Physics and Industrial Control 
System (EPICS) [14] is currently under construction. 

IV. HARDWARE EXAMPLES AND PERFORMANCE  

A. The PEXOR Board 
Our first example is a PCIe board for reading data from 

front-end hardware via optical links. The PciExpress Optical 
Receiver board (PEXOR) was developed at GSI [15]. It 
features a Lattice Field Programmable Gate Array (FPGA) 
with serial Gigabit transceiver interfaces (SERDES) to 
connect PCI Express x1 or x4 (i.e. one or four lanes), and four 
2Gbit “small form-factor pluggable” (SFP) optical 
transceivers. The optical protocol to read out a chain of GSI 
front-end boards has been implemented [16]. The hardware 
has previously been tested with drivers and software on Lynx 
OS, developed for the DAQ system MBS [7]. 

 
 



 

1) Linux Driver 
   To use this hardware with DABC, a Linux device driver has 
been developed. The driver operations for read() and write() 
implement Programmed Input/Output (PIO) to the PEXOR 
on-board memory. Operation mmap() allocates kernel buffers 
for Direct Memory Access (DMA) operations and maps these 
to user space addresses. The pexor kernel module manages 
these buffers with separate lists for free buffers, for already 
filled buffers, and for buffers currently in use by the client 
programs. Further functionality is available by ioctl() 
operations, such as  

• initiating a DMA transfer,  
• retrieving and releasing DMA buffers,  
• communicating with the front-end boards at the SFP 

connections,  
• accessing any register in the address spaces of the 

board’s PCIe memory, or of the SFP slaves, 
respectively.  

The interrupt handler is prepared for DMA completion and 
data trigger interrupts which may be used with future versions 
of the FPGA firmware.  

Together with the kernel module, the PEXOR driver 
package provides a plain C++ library with higher level 
functionality. It features thread safe classes representing 
different PEXOR board instances (i.e. hardware versions). 
These classes offer methods to work transparently with the 
driver from user space.  Furthermore, the library defines 
wrapper classes for the kernel DMA buffers and their memory 
pool, and some auxiliary classes for logging and performance 
benchmarks. 

2) DABC Integration 
The DABC plug-ins for the PEXOR board directly use this 

library via a Device class, encapsulating the driver 
functionality as a Façade design pattern [9]. The Transport 
class implements methods Read_Size() , Read_Start() , and 
Read_Complete(), as introduced in section II.B.  

For performance tests, data concentrator front-end boards 
(EXPLODER) [16] were connected to the PEXOR. The 
Device class was implemented with a test mode to write 
random data into the front-end memories at initialization time. 
This avoids the need of connecting a “real” data source. Then, 
for each cycle of the running acquisition, the Transport 
initiates the transfers of this data from the SFPs. The data is 
collected from all  EXPLODER boards connected to one SFP 
in a token-ring protocol technique, performed by the on-board 
FPGAs. The token transfer can be handled either 
asynchronously, Read_Start() requests the data block, and 
Read_Complete() receives the filled DMA buffer. 
Alternatively, the transfer can be handled synchronously, 
Read_Complete() is both requesting the block and receiving 
the buffer. If more than one SFP chain is connected, the token 
block read is done in a “parallel” mode. At first, token blocks 
are requested from all connected SFP chains, and then the 
token buffer of each channel is polled for completion and 
further transferred via DMA to the host. Since the SFP 
channels work independently in the PEXOR FPGA, the token 

data is read in parallel into PEXOR memory. However, the 
subsequent DMA transfers to the PC host are serialized over 
the PCIe bus. This limits the maximum achievable bandwidth. 

Because in the current implementation the kernel DMA 
buffers of the driver are not yet registered to the DABC 
memory pool, the contents of the received buffer are copied to 
the DABC target buffer, optionally formatted with headers of 
the MBS format [7]. A readout Module is connected to the 
Transport and provides these data for online monitoring with 
Go4 [11]. Here the data integrity is checked by unpacking and 
histograming the submemory contents of the token chain. 

3) Performance Measurements 
 The above test runs a non triggered read-out in a polling 

loop, where every single Read_Complete() gets a full data 
buffer. Therefore it shows up the maximum possible data rate 
for this plug-in implementation. Fig. 3 illustrates the measured 
bandwidth values vs. packet size for different numbers of SFP 
chains, each equipped with one EXPLODER board.  

The plain DMA bandwidth between PEXOR board and PC 
memory was measured with the driver library to be <550 
Mbytes/s (for a maximum of 64 kbytes transfer size of each 
SFP buffer, PCIe x4 configuration), defining the upper limit 
for any DAQ utilizing this hardware. 

  

 
 
Fig. 3.  PEXOR readout bandwidth vs. full data payload size: DABC parallel 
token block request with subsequent DMA for different numbers of connected 
SFP chains (1 EXPLODER front-end per chain). Read out of randomly 
generated data in polling mode without trigger.  

 
The achieved DABC token block readout speed of <250 

Mbytes/s (parallel read out, asynchronous mode, 4 connected 
data chains) is limited by the serialization of SFP, DMA, and 
memory copy. Since each SFP channel currently has only one 
token receive buffer in the PEXOR memory, the DMA 
transfer can not start before each token block read is complete; 
additionally, after receiving the DMA buffers in the host 
program, they are copied to DABC user buffers within the 
same thread. The resulting payload bandwidth B to the host 
memory is the harmonic mean H of all subsequent bandwidth 
components Bi divided by the number n of such components, 
as reminded in (1): 
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Here the three subsequent bandwidth components Bi are the 

sum of all SFP bandwidths, the DMA bandwidth, and the 
memory copy speed from DMA buffer to DABC user buffer. 
For a 4-SFP-channels’ total bandwidth of 800 Mbytes/s (with 
2 GBit SFPs), a DMA bandwidth of 550 Mbytes/s, and the 
measured  memcpy speed of 2 Gbytes/s, one can expect a 
theoretical readout bandwidth of 280 Mbytes/s for this 
implementation, fairly in agreement with the measurements.  

Improvements are planned for future PEXOR versions by 
double buffering at each SFP channel, which will allow DMA 
transfers during token readout. Moreover, integrating the 
PEXOR DMA buffers into the DABC memory pool will 
decouple DMA receiving and memory copying into separate 
DABC threads. This will speed up the overall bandwidth on a 
multi processor CPU. 

     

 
Fig. 4. PEXOR “token  block mode” bandwidth comparison vs. packet sizes 
for a chain of 2 front-end boards at 1 SFP link: request of a single token using 
the driver library; DABC readout with asynchronous, and synchronous token 
request mode, respectively.  

 
The asynchronous DABC readout mode turned out to 

improve performance by about 5% over the synchronous 
mode (see Fig. 4). In comparison with a single token request 
of the driver library, the entire DABC framework overhead 
reduced the token readout speed by only 3%. For small buffer 
sizes, asynchronous DABC readout is even better, since the 
data transfer time of  about 40 μs is in the order of the Linux 
context switching time, which will show up if the system 
schedules out the permanently polling process. For large 
buffers the DABC bandwidth is mainly affected by the 
memcpy between driver DMA buffer and DABC user buffer. 
With the harmonic mean estimations as explained above, one 
can expect for one SFP channel a maximum readout 
bandwidth of 137 Mbytes/s with memory copy (DABC), and 
147 Mbytes/s without (single token test). The MBS data 

server functionality may also impose a slight penalty in 
comparison with the plain test. 

 

B. The CBM Readout Controller (ROC) 
Another example of a DABC hardware interface is access 

to the readout controller board (ROC) used for detector tests 
in the future Compressed Baryonic Matter (CBM) experiment 
[17]. Data from ROC can be delivered to PC either via 
Ethernet, or via optical fiber connection.  

For optical readout a PCIe receiver board (AVNET) is used 
which has similar functionality as the PEXOR board. The 
main difference to EXPLODER/PEXOR readout is that the 
CBM readout controller sends data packets without an explicit 
request, as required by EXPLODER. The data received by the 
AVNET board is accumulated in a large FIFO and transported 
via DMA requests to DABC. The implementation of the 
Transport class is based on DataTransport and is very similar 
to the PEXOR case. The maximum data rate achieved with the 
ROC pattern generator is about 210 Mbytes/s. 

Alternatively, a UDP-based custom protocol has been 
implemented for communication with ROC via Ethernet. 
Because UDP does not guarantee packets delivery, a 
retransmission of lost packets is supported by our protocol. 
For the implementation of socket-based protocols DABC 
provides several base classes which allow the developer to 
work with sockets in an “event triggered” mode. These classes 
declare virtual methods which are called when a socket has 
data for reading, or when the user program can send a new 
portion of data via the socket. The ROC UDP Transport 
implements such classes and can handle connections with 
several ROCs in a single thread. A data rate of about 12 
Mbytes/s per ROC was achieved – this corresponds to the 
maximum for 100 Mbit Ethernet.  

Both optic- and Ethernet-based transports provide similar 
interfaces to the higher-level code. So the user can set up 
heterogeneous systems with many ROCs, read out by one or 
several DABC applications. Such systems were successfully 
employed for data taking with the CBM test beam at CERN in 
November 2010, and at COSY (FZ Jülich) in December 2010, 
respectively [18],[19]. 

V. CONCLUSIONS 
The DABC framework provides simple and generic 

interface classes for integrating a large variety of hardware 
devices for data I/O. These plug-in points were proven to 
work with the CBM test beam hardware, and with a general 
purpose PCIe optical receiver board (PEXOR), respectively. 
Further development work is going on to add more 
functionality to both implementation cases.  
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