
Web interface for online ROOT and DAQ applications
Joern Adamczewski-Musch, Sergei Linev, GSI, Darmstadt, Germany

Bertrand Bellenot, CERN, Geneva, Switzerland

19-th IEEE Real-Time Conference, May 26-30, 2014, Nara, Japan

DABC is a general-purpose DAQ framework, developed in GSI since 2007 and
used in different experiments. Because it is used together with many other
components (like slow control systems, other DAQ systems, online analysis),
DABC requires a simple and flexible user interface for monitoring and control.

A specialized web server, based on embeddable Civetweb server, was
implemented in DABC and ROOT. Such server can deliver data directly from
running applications to web browser, where JavaScript with JSRootIO is used
for implementing of interactive web graphics. JSRootIO makes it possible to
display different ROOT objects in interactive web pages. To increase usability
and flexibility of JSRootIO, several important improvements were done. As a
result, any ROOT-based application with minimal efforts can be equipped with
a web server, providing direct access to all registered objects. Alternatively,
with FastCGI application can be easily integrated with standard web servers
like Apache or lighttpd.

Using a flexible plugin mechanism, DABC is able to handle data from other
frameworks and display such data in a web browser. At the moment ROOT,
Go4 (GSI ROOT-based analysis framework), MBS (GSI DAQ system), FESA
(CERN/GSI accelerator control system), EPICS and DIM are supported. For
instance, without modifications any Go4-based analysis now can be
monitored and controlled via web interface. Or status information from many
MBS nodes can be displayed in a web browser.

Using an agent/master approach, DABC offers a way to monitor and control
complex systems. Many DABC agents can gather information from different
sources like DAQ, slow-control system, or online analysis. A web server,
running on a DABC master node, provides transparent access to data from all
these agents. As a result, a unified user interface for distributed
heterogeneous systems can be build.

Abstract JSRootIO project JSRootIO improvements

Conclusion

HTTP access to different kind of online applications is
provided.

With minimal efforts any existing ROOT application can
be equipped with an HTTP server and monitored from
any web browser.

JavaScript code for browsing and display of different
objects kinds is implemented; JSRootIO is used for
ROOT classes.

Any existing Go4 application can use web interface for
monitoring.

Heterogeneous distributed systems could be steered
via web interface using DABC software.

The code is available on:
 ROOTDEV git repository: http://root.cern.ch/git/rootdev.git
 DABC subversion repository: https://subversion.gsi.de/dabc/trunk

mailto: S.Linev@gsi.de

New classes in ROOT

TRootSniffer class offers methods to browse and access (‘sniff’) objects in folders, files, trees and

different ROOT collections. Any object (or object element) can be identified by a path string. If specified,

sniffer can resolve all object members, using ROOT dictionaries.

TBufferJSON converts ROOT objects into JSON (JavaScript Object Notation) format, which can be

parsed with standard JavaScript methods. With such approach I/O code remains completely in the ROOT

application and clients will get ready-to-use JavaScript objects.

TCivetweb implements HTTP protocol in ROOT. Compact embeddable Civetweb server provides

necessary functionality like multithreaded HTTP requests processing, user authentication, secured HTTPS

protocol support.

THttpServer class in ROOT is a gateway between HTTP engine (implemented in TCivetweb) and the

TRootSniffer functionality. THttpServer class takes care about threads safety: any access to ROOT objects is

performed from the main thread only, preventing conflicts with application code. The URL syntax of HTTP

requests is used to code objects name, request name

and to provide additional arguments.

Following HTTP requests are processed by THttpServer:

 root.bin – binary buffer with object data

 root.json – JSON representation

 root.xml – XML representation

 root.png, root.gif, root.jpeg – image

Example: http://localhost:8080/Canvases/c1/root.png

THttpServer in ROOT

• Single command to start http server:

 root [0] new THttpServer(“http:8080”);

• Scans gROOT for existing objects

 user can add own objects

• Objects browser is provided

• JSRootIO graphics for objects display

• Possibilities for live monitoring

• No any changes in the user code

FastCGI support

http::Server in DABC

For monitoring and control of DABC components a web-based interface

has been implemented. The http::Server class of DABC follows the same

approach as THttpServer of ROOT – it provides the gateway between HTTP

protocol and the hierarchical structures created by the workers.

Each worker can publish its internal hierarchy, making it available for other

DABC components. All elements of such global hierarchy can be accessed

via http::Server and HTTP protocol. JavaScript code has been developed

to organize and display hierarchical structures in a “tree view”

representation.

MBS support

MBS is a well-established DAQ system at GSI that has

been used in many experiments for 20 years. A

mbs::Monitor class has been implemented in DABC, which

can acquire and display statistic information from running

MBS node, e.g. event rate, data rate, and file storage rate.

All these values are published and can be observed in the

web browser. With most recent MBS version 6.3 such

worker also can acquire logging information from the MBS

node and execute arbitrary commands on the MBS node.

ROOT and Go4 plugins

The information from TRootSniffer

class can be seamlessly integrated

into the hierarchical DABC structures.

A special DABC plugin makes ROOT

objects accessible via http::Server of

DABC. This opens up the possibility

to integrate ROOT-based applications

into a larger system that is combined

by means of DABC.

Slow-control plugins DABC agents

DABC provides a way to build distributed system,

where information is acquired on different nodes

(agents), but monitoring and control can be performed

via web interface on a central “master” node. Master

node automatically collects hierarchy descriptions from

all agents and provides combined global description to

the clients (web browsers). Communication between

master and agents is done by means of a TCP/IP-

based socket protocol. When a browser sends an HTTP

request to the webserver on the master node, the

request is redirected to the agent, responsible for the

specified element.

An arbitrary number of agents can be connected to the

master. A flexible master/agent communication

protocol allows at any time stopping/braking an agent

and starting it again. Also the master application can

be restarted at any time without the need to restart

agents. This gives flexibility to dynamically

increase/decrease number of agents without

reinitializing the complete system; a failure on a single

node will not cause a system-wide error.

Information from the master can be accessed via:

 http - web browser, wget or curl

 socket - command-line tool, DABC API, Go4 GUI

http://localhost:8080

http://localhost:8080/Files/hsimple.root/hpxpy/root.png?opt=colz

http://localhost:8080/Canvases/c1/fPrimitives/title/root.json
 {

 "_typename" : "JSROOTIO.TPaveText",

 "fUniqueID" : 0,

 "fBits" : 50331657,

 "fLineColor" : 1,

 "fLineStyle" : 1,

 "fLineWidth" : 1,

 "fFillColor" : 0,

 "fFillStyle" : 0,

 "fX1" : -2.190517e+00,

 "fY1" : 8.877228e+02,

 "fX2" : 2.190517e+00,

 "fY2" : 9.526716e+02,

 "fX1NDC" : 2.809483e-01,

 "fY1NDC" : 9.339831e-01,

 "fX2NDC" : 7.190517e-01,

 "fY2NDC" : 9.950000e-01,

 "fBorderSize" : 0,

 "fInit" : 1,

 "fShadowColor" : 1,

 "fCornerRadius" : 0.000000e+00,

 "fOption" : "blNDC",

 "fName" : "title",

 "fTextAngle" : 0.000000e+00,

 "fTextSize" : 0.000000e+00,

 "fTextAlign" : 22,

 "fTextColor" : 1,

 "fTextFont" : 42,

 "fLabel" : "",

 "fLongest" : 27,

 "fMargin" : 5.000000e-02,

 "fLines" : {

 "_typename" : "JSROOTIO.TList",

 "name" : "TList",

 "arr" : [{

 "_typename" : "JSROOTIO.TLatex",

 "fUniqueID" : 0,

 "fBits" : 50331648,

 "fName" : "",

 "fTitle" : "This is the px distribution",

 "fTextAngle" : 0.000000e+00,

 "fTextSize" : 0.000000e+00,

 "fTextAlign" : 0,

 "fTextColor" : 0,

 "fTextFont" : 0,

 "fX" : 0.000000e+00,

 "fY" : 0.000000e+00,

 "fLineColor" : 1,

 "fLineStyle" : 1,

 "fLineWidth" : 2,

 "fLimitFactorSize" : 3,

 "fOriginSize" : 5.186441e-02

 }],

 "opt" : [""]

 }

 }

ROOT session

 * You are welcome to visit our Web site *

 * http://root.cern.ch *

 * *

ROOT 5.34/18 (heads/http-dev@ccfc7cf, Mai 09 2014,

16:18:03 on linuxx8664gcc)

CINT/ROOT C/C++ Interpreter version 5.18.00, July 2, 2010

Type ? for help. Commands must be C++ statements.

Enclose multiple statements between { }.

root [0] new THttpServer("http:8080");
Info in <TCivetweb::Create>: Starting HTTP server on port

8080

root [1] .x $ROOTSYS/tutorials/hsimple.C
hsimple : Real Time = 0.14 seconds Cpu Time = 0.14

seconds

(class TFile*)0x7f643026cd80

root [2] http

ROOT session

 * You are welcome to visit our Web site *

 * http://root.cern.ch *

 * *

ROOT 5.34/18 (heads/http-dev@ccfc7cf, Mai 09 2014, 16:18:03 on

linuxx8664gcc)

CINT/ROOT C/C++ Interpreter version 5.18.00, July 2, 2010

Type ? for help. Commands must be C++ statements.

Enclose multiple statements between { }.

root [0] new THttpServer("fastcgi:9000");
Info in <TFastCgi::Create>: Starting FastCGI server on port

:9000

root [1] .x $ROOTSYS/tutorials/hsimple.C
hsimple : Real Time = 0.14 seconds Cpu Time = 0.15

seconds

(class TFile*)0x10c63d0

root [2]

fastcgi

http://lxwww19.gsi.de/fcgi_proxy_test/

Apache
mod_proxy_fcgi

http

ROOT application

files

canvases

folders

collections

user objects

TRootSniffer

 THttpServer

 TCivetweb

ROOT

 root [0] TFile::Open(„can3.root“);

 root [1] new TBrowser

http://web-docs.gsi.de/~linev/JSRootIO/index_local.htm

Apache
HTML, JavaScript,

ROOT files

http

The main goal of the JSRootIO
project is to display ROOT objects
like histograms or graphs in a
web browser. The core
functionality of the code is
revealed by the name –
JavaScript ROOT Input/Output.
This provides the functionality to
decode data from binary ROOT
files and create JavaScript
objects. Using interactive
JavaScript web graphics, such
objects can be displayed in most
modern web browsers like
Microsoft IE, Mozilla Firefox,
Google Chrome, Opera.
Advantage of JSRootIO approach
– one could use JavaScript and
HTML code together with any web
server like Apache or IIS without
any special requirements to the
server. It is sufficient to put
JSRootIO scripts and ROOT files
on the web server and to provide
a correct HTTP address on the
main HTML page – the web
server is used as simple file
server.

 Similar “look-and-feel” in ROOT and web browsers

FastCGI is a protocol for interfacing

interactive programs with web servers like

Apache, lighttpd, Microsoft ISS and many

others.

The advantages of FastCGI:

• common user account management

• central access configuration

• central firewall configuration

• reuse of web server infrastructure

only ROOT files

should be

copied to the

web server

New features:

• statbox update

• context menu

• tooltip with bin info

• flexible HTML layout

• solid I/O code

HADAQ Event Builder

hadaq::Combiner
• collects raw data

• build HLD events

• store HLD files

• collect statistic

hadaq::Transmitter
• repack HLD events

• deliver to online server

• collects statistic

dabc::Publisher
• collects hierarchies

• version control

• history recording

http::Server

dabc::CommandChannel

Web browser shows objects hierarchy and could display

different items like data rates, log info, commands.

Same kind of information can be received via special

socket-based command channel and displayed in any

other applications – here in Go4 GUI.

MBS monitoring and control

mbs::Monitor
• statistic

• log information

• command channel

mbs::Monitor
• statistic

• log information

• command channel

dabc::Publisher
• collects hierarchies

• version control

• history recording

http

socket

MBS
node1

MBS
node2

Several instances of mbs::Monitor class can

run in parallel. Thus full control and

monitoring of many MBS nodes

simultaneously is possible now via web

interface.

Moreover, same information can be obtained

via special DABC socket channel, using

provided DABC interfaces. Simple

command-line tool is delivered.

web browser

command-line

tools

ROOT session

 * You are welcome to visit our Web site *

 * http://root.cern.ch *

 * *

ROOT 5.34/18 (heads/http-dev@ccfc7cf, Mai 09 2014, 16:18:03 on linuxx8664gcc)

CINT/ROOT C/C++ Interpreter version 5.18.00, July 2, 2010

Type ? for help. Commands must be C++ statements.

Enclose multiple statements between { }.

root [0] new THttpServer("dabc:1237");
Info in <TDabcEngine::Create>: args = 1237

dabc: 0.128422 Start DABC server on port 1237

dabc: 0.128447 Start command channel with id lxg0538:1237

dabc: 0.128482 Set Local addr lxg0538:1237

root [1] .x $ROOTSYS/tutorials/hsimple.C

hsimple : Real Time = 0.15 seconds Cpu Time = 0.15 seconds

(class TFile*)0x1c035e0

root [2]

Go4 is ROOT-based analysis framework. Its concept

consists in the separation of an analysis process

executing the Go4 data processing code, from another

process that optionally provides an asynchronous

graphical user interface (GUI). In addition to the default

Go4 GUI that was implemented as Qt and ROOT

graphics application, an alternative webserver-based

GUI for inspecting analysis objects has been

implemented. Now any existing Go4 analysis without

any modification can be monitored via web browser.

dabc::RootSniffer

dabc::Publisher
• collects hierarchies

• version control

• history recording http

socket

web browser

Go4 GUI

EPICS

IOC

FESA

DIM

web browser

command-line

tools

The EPICS plug-in can read specified IOC records and

publish them in the DABC web server. Obtained

records can be optionally packed into binary buffers

and delivered to an analysis process together with

DAQ data. This significantly simplifies implementation

of analysis code, because DAQ and slow-control data

will come synchronized from a single DABC data

source. Similar approach (reading of preconfigured

list of records) was used in plugin for FESA –

CERN/FAIR accelerator control system.

The name server of DIM system delivers a

complete list of available records therefore

corresponding DABC plugin could provide access to

all such DIM records. Through DABC command

interface one could also access and execute

available DIM commands.

Information from different slow-control systems

can be combined together and provided to the

users via unified interfaces.

Slow-control integration

ezca::Monitor
• IOC reading dabc::Publisher

• collects hierarchies

• version control

• history recording

http

socket

fesa::Monitor
• records reading

dim::Monitor
• DNS scan

• records reading

• commands exec
DAQ

For example, one can build distributed system, which consist from DAQ

and two analysis kinds, all running on different nodes. Information from all

these tasks will be available via the web interface on the master node,

which also can be used for control of the remote tasks.

Sergei Linev

 examples of JavaScript ROOT graphics

