
User Manual

Programmer Manual

J.Adamczewski-Musch, S.Linev, H.G.Essel
GSI Darmstadt,
Experiment Electronics Department

Produced: August 17, 2009, Revisions:

Document Date Editor Revision Comment
DABC-man 2009-03-10 Hans G.Essel 1.0.1 First release

ii

Contents

I User Manual 1

1 DABC User Manual: Overview 3

1.1 Outline of this manual . 3

1.2 Release Notes . 3

1.2.1 Version 1.0.01 (10. March 2009) . 3

1.2.2 Version 1.0.00 (26. February 2009) . 4

2 DABC User Manual: Introduction 5

2.1 About DABC . 5

2.2 Introduction . 5

2.2.1 Modules . 5

2.2.1.1 Synchronous module . 6

2.2.1.2 Asynchronous module . 6

2.2.2 Commands . 6

2.2.3 Parameters . 7

2.2.4 Manager . 7

2.2.5 Memory and buffers . 7

2.2.6 Ports . 7

2.2.7 Transport . 8

2.2.8 Device . 8

2.2.9 Application . 8

2.3 Controls and configuration . 8

2.3.1 Finite state machine . 8

2.3.2 Commands . 10

2.3.3 Configuration and monitoring . 10

2.4 Package and library organisation . 10

2.4.1 Core system . 10

2.4.2 Control and configuration system . 10

iii

iv CONTENTS

2.4.3 Plug-in packages . 10

2.4.3.1 Bnet package . 11

2.4.3.2 Transport packages . 11

2.4.4 Application packages . 12

2.4.5 Distribution contents . 12

3 DABC User Manual: Setup 13

3.1 Installing DABC . 13

3.2 Set-up the DABC environment . 14

3.3 DABC setup file . 15

3.3.1 Setup file example . 15

3.3.2 Basic syntax . 15

3.3.3 Context . 15

3.3.4 Run arguments . 16

3.3.5 Variables . 16

3.3.6 Default values . 17

3.4 Installation of additional plug-ins . 18

3.4.1 Add plug-in packages to $DABCSYS . 18

3.4.2 Plug-in packages in user directory . 19

4 DABC User Manual: GUI 21

4.1 GUI Guide lines . 21

4.2 GUI Panels . 21

4.2.1 Main DABC GUI buttons . 22

4.2.2 DABC control panel . 23

4.2.2.1 DABC controller buttons . 24

4.2.3 Action in progress . 25

4.2.4 MBS control panel . 25

4.2.5 Combined DABC and MBS control panel . 25

4.2.6 Command panel . 25

4.2.7 Parameter table . 26

4.2.7.1 Parameter selection . 27

4.2.8 Monitoring panels . 27

4.2.8.1 States . 27

4.2.8.2 Rate meters . 28

4.2.8.3 Histograms . 29

CONTENTS v

4.2.8.4 Information . 29

4.2.8.5 Logging window . 29

4.3 GUI save/restore setups . 30

5 DABC User Manual: MBS GUI 31

5.1 MBS event building . 31

5.1.1 MBS setup . 31

5.1.2 MBS control panel . 31

5.1.2.1 MBS controller buttons . 32

5.1.3 MBS command panel . 33

5.2 MBS DIM parameters . 34

5.2.1 MBS states . 34

5.2.2 MBS rates . 35

5.2.3 MBS histograms . 35

5.2.4 MBS infos . 35

5.2.5 MBS tasks . 35

5.2.6 MBS text . 35

5.2.7 MBS numbers . 36

5.3 Working directories . 36

5.3.1 MBS configuration of DIM . 36

6 DABC User Manual: DABC Application MBS 39

6.1 MBS event building with DABC . 39

6.1.1 MBS setup . 39

6.1.2 DABC setup . 39

6.1.3 Combined DABC and MBS control panel . 41

6.1.3.1 Combined DABC and MBS controller buttons 41

6.2 MBS and DABC with Bnet . 42

7 DABC User Manual: DABC Application Bnet 45

7.1 DABC eventbuilder network (BNET) . 45

7.2 DABC eventbuilder network (BNET) with MBS . 46

8 DABC User Manual: DABC Application ROC 47

8.1 DABC as MBS data server . 47

8.2 ROC event building . 48

vi CONTENTS

II Programmer Manual 49

9 DABC Programmer Manual: Overview 51

9.1 Introduction . 51

9.2 Role and functionality of the objects . 51

9.2.1 Modules . 51

9.2.1.1 Class dabc::ModuleSync . 51

9.2.1.2 Class dabc::ModuleAsync . 52

9.2.2 Commands . 52

9.2.3 Parameters . 52

9.2.4 Manager . 52

9.2.5 Memory and buffers . 52

9.2.6 Ports . 53

9.2.7 Transport . 53

9.2.8 Device . 53

9.2.9 Application . 53

9.3 Controls and configuration . 53

9.3.1 Finite state machine . 53

9.3.2 Commands . 55

9.3.3 Parameters for configuration and monitoring . 55

9.4 Package and library organisation . 55

9.4.1 Core system . 55

9.4.2 Control and configuration system . 55

9.4.3 Plugin packages . 56

9.4.3.1 Bnet package . 56

9.4.3.2 Transport packages . 56

9.4.4 Application packages . 57

9.4.5 Distribution contents . 57

9.5 Main Classes . 57

9.5.1 Core system . 57

9.5.2 BNET classes . 60

10 DABC Programmer Manual: Manager 63

10.1 Introduction . 63

10.2 Framework interface . 63

10.2.1 General object management . 63

CONTENTS vii

10.2.2 Factory methods . 64

10.2.3 Module manipulation . 64

10.2.4 Thread management . 65

10.2.5 Command submission . 65

10.2.6 Memory pool management . 65

10.2.7 Miscellaneous methods . 66

10.3 Control system plug-in . 66

10.3.1 Factory . 66

10.3.2 Manager . 66

10.3.2.1 Virtual methods . 66

10.3.2.2 Baseclass methods . 68

10.3.3 Default implementation for DIM . 68

10.3.3.1 dimc::Manager . 69

10.3.3.2 dimc::Registry . 69

10.3.3.3 dimc::Server . 70

10.3.3.4 dimc::ServiceEntry . 70

10.3.3.5 dimc::ParameterInfo . 70

11 DABC Programmer Manual: Services 71

11.1 Memory management . 71

11.1.1 Zero-copy approach . 71

11.1.2 Memory pool . 72

11.1.3 Buffer . 72

11.1.4 Pointer . 73

11.1.5 Buffer guard . 74

11.1.6 Allocation . 74

11.2 Threads organization . 75

11.2.1 Working loop . 75

11.2.2 Sockets handling . 75

11.2.3 Mutex usage . 75

11.3 Command execution . 76

11.3.1 Command class . 76

11.3.2 Command receiver . 77

11.3.3 Command client . 78

12 DABC Programmer Manual: Plugins 81

viii CONTENTS

12.1 Introduction . 81

12.2 Modules . 81

12.2.1 Pool handles . 81

12.2.2 Ports . 82

12.2.3 Parameters and configurations . 82

12.2.4 Commands processing . 82

12.2.5 ModuleSync . 83

12.2.6 ModuleAsync . 84

12.2.7 Special modules . 86

12.3 Device and transport . 86

12.3.1 Transport . 86

12.3.2 Device . 86

12.3.3 Local transport . 87

12.3.4 Network transport . 87

12.3.5 Data transport . 88

12.3.6 Input/output objects . 89

12.4 The DABC application . 89

12.5 Factories . 90

13 DABC Programmer Manual: Setup 91

13.1 Parameter class . 91

13.2 Use parameter for control . 91

13.3 Example of parameters usage . 92

13.4 Configuration parameters . 92

13.5 Usage of commands for configuration . 93

14 DABC Programmer Manual: Example MBS 95

14.1 Overview . 95

14.2 Event iterators . 95

14.3 File I/O . 96

14.4 Socket classes . 97

14.5 Server transport . 98

14.6 Client transport . 98

14.7 Event generator . 99

14.8 MBS event building . 101

14.9 MBS upgrade for DABC . 102

CONTENTS ix

14.9.1 Increased buffer size support . 102

14.9.2 Variable sized buffers . 102

14.9.3 New LMD file format . 102

14.9.4 MBS data structures . 103

14.9.4.1 Connect to MBS transport . 103

14.9.4.2 Buffer header . 103

14.9.4.3 File header . 103

14.9.4.4 Data element structures . 104

14.9.4.5 Some fixed numbers . 104

14.9.5 MBS update for DIM control . 105

14.9.5.1 New or modified files . 105

14.9.5.2 f_stccomm . 105

14.9.5.3 MBS launcher . 105

14.9.5.4 MBS DIM commands and parameters . 105

14.9.5.5 DIM control modes . 106

14.9.5.6 Single node mode . 106

14.9.5.7 Multi node mode . 106

14.9.5.8 MBS controlled by DIM . 108

14.10 List of icons . 108

15 DABC Programmer Manual: Example Bnet 113

15.1 Overview . 113

15.2 Controller application . 113

15.3 Worker application . 114

15.4 Combiner module . 115

15.5 Network topology . 115

15.6 Event builder module . 116

15.7 Filter module . 116

15.8 BNET test application . 116

15.9 BNET for MBS application . 117

16 DABC Programmer Manual: Example ROC 119

16.1 Overview . 119

16.2 Device and transport . 119

16.3 Combiner module . 121

16.4 Calibration module . 121

x CONTENTS

16.5 Readout application . 121

16.6 Factory . 122

16.7 Source and compilation . 122

16.8 Running the ROC application . 122

17 DABC Programmer Manual: Example PCI 125

17.1 Overview . 125

17.2 PCI Device and Transport . 125

17.2.1 pci::BoardDevice . 125

17.2.2 pci::Transport . 126

17.3 Active Buffer Board implementation . 127

17.3.1 abb::Device . 127

17.3.2 abb::ReadoutModule . 128

17.3.3 abb::WriterModule . 128

17.3.4 abb::Factory . 128

17.4 Simple read and write tests . 128

17.4.1 DMA Read from the board . 129

17.4.2 DMA Write to the board . 130

17.4.3 Simultaneous DMA Read and Write . 130

17.5 Active Buffer Board with Bnet application . 131

18 DABC Programmer Manual: GUI 133

18.1 GUI Guide lines . 133

18.2 DIM Usage . 133

18.2.1 DABC DIM naming conventions . 133

18.2.2 DABC DIM records . 134

18.2.2.1 Record ID=0: Plain . 134

18.2.2.2 Record ID=1: Generic self describing . 135

18.2.2.3 Record ID=2: State . 135

18.2.2.4 Record ID=3: Rate . 135

18.2.2.5 Record ID=4: Histogram . 135

18.2.2.6 Record ID=10: Info . 135

18.2.2.7 Record ID=9: Command descriptor . 135

18.2.2.8 Commands . 136

18.2.2.9 Setting parameters . 136

18.2.3 Application servers . 136

CONTENTS xi

18.2.4 DABC GUI usage of DIM . 136

18.3 GUI global layout . 137

18.3.1 Prompter panels . 137

18.3.2 Graphics panels . 137

18.4 GUI Panels . 137

18.4.1 DABC launch panel . 137

18.4.2 MBS launch panel . 137

18.4.3 Combined DABC and MBS launch panel . 137

18.4.4 Parameter table . 138

18.4.5 Parameter selection panel . 138

18.4.6 Command panel . 138

18.4.7 Monitoring panels . 138

18.4.7.1 xMeter . 138

18.4.7.2 xRate . 138

18.4.7.3 xState . 138

18.4.7.4 xHisto . 138

18.4.7.5 xInfo . 139

18.4.8 Logging window . 139

18.5 GUI save/restore setups . 139

18.5.1 Record attributes . 139

18.5.2 Parameter filter . 139

18.5.3 Windows layout . 140

18.5.4 DABC launch panel values . 140

18.5.5 MBS launch panel values . 140

18.6 DIM update mechanism . 141

18.6.1 xDimBrowser . 141

18.6.2 Getting parameters and commands . 141

18.6.2.1 xPanelParameter . 141

18.6.2.2 xPanelCommand . 142

18.6.3 Startup sequence . 142

18.6.4 Update sequence . 142

18.7 Application specific GUI plug-in . 143

18.7.1 Java Interfaces to be implemented by application . 143

18.7.1.1 Interface xiUserPanel . 143

18.7.1.2 Interface xiUserCommand . 143

18.7.1.3 Interface xiUserInfoHandler . 143

18.7.2 Java Interfaces provided by GUI . 144

18.7.2.1 Interface xiDesktop . 144

18.7.2.2 Interface xiDimBrowser . 144

18.7.2.3 Interface xiDimCommand . 144

18.7.2.4 Interface xiDimParameter . 144

18.7.2.5 Interface xiParser . 145

18.7.3 Other interfaces . 146

18.7.3.1 Interface xiPanelItem . 146

18.7.4 Example . 146

18.7.5 Store/restore layout . 149

References 151

Index 153

Part I

User Manual

1

Chapter 1

DABC User Manual: Overview

[user/user-overview.tex]

1.1 Outline of this manual

This DABC User Manual contains all information that is necessary to install and use the DABC frame-
work.

Chapter 2, page 5 should be useful to understand the most commonly used terms of DABC.

Chapter 3, page 13 describes how to install the DABC packages on any linux machine, and how to set up
the working environment. Additionally, some typical use cases and their configuration files are shown.
The following chapters then give more detailed explanations how to operate in different modes with the
DABC Java GUI:

Chapter 4, page 21 covers the general functionality of the GUI which is common for most applications.
Especially, this is mostly sufficient to control a DAQ cluster purely with one or several DABC nodes.

Chapter 5, page 31 describes the DABC GUI in a mode to control a pure MBSdata acquisition system
without a native DABC node.

The application use case for a mixed DAQ cluster, both with DABC and MBS nodes, is treated in Chapter
6, page 39.

Chapter 7, page 45 describes the use case of a DABC builder network (BNET), both with and without
using MBS .

Finally, Chapter 8, page 47 describes the use case of ROC front-ends.

However, the scope of the DABC User Manual does not contain detailed descriptions of the DABC
framework architecture, the software mechanisms, and the example programs. These subjects are treated
thouroughly in the DABC Programmer Manual.

1.2 Release Notes

1.2.1 Version 1.0.01 (10. March 2009)

1. Add IP multicast support in SocketTransport.
2. Add IB multicast support in verbs::Transport.

3

4 DABC User Manual: Overview

3. Possibility to add user-defined parameters directly in xml file - in Context/User section.
4. If Context/Run/copycfg = true, config file will be copied to working directory of specified node,

useful for cluster without common file system.
5. Implement all-to-all and multicast tests in net-test application.
6. Bugfix several minor errors in Verbs plugin.
7. Bugfix: suppress output of scripts running from ssh (caused problems with GUI).
8. Bugfix: GUI: Register DIM service after full instantiation of parameter object.
9. Bugfix: GUI: Histogram drawer had uninitialized field.

1.2.2 Version 1.0.00 (26. February 2009)

These are the features of the first official release:

1. A Data Acquisition framework in C++ language for linux platforms with modular components for
dataflow on multiple nodes.

2. Runtime environment with basic services for: threads, event handling, memory management, com-
mand execution, configuration, logging, error handling

3. Plug-in mechanism for user defined DAQ applications
4. Plug-in mechanism for a control system. Features a finite state machine logic and parameters

for monitoring and configuration. The default implementation is based on the DIM protocol
(http://dim.web.cern.ch/dim)

5. Java GUI to operate the standard DIM control system of DABC/MBS. Fully generic evaluating
DABC process variables, but extendable by user written components.

6. Contains a sub-framework to set-up distributed event builder networks (BNET)
7. Supports TCP/IP and InfiniBand/verbs networks for data transport
8. Supports formats and readout of GSI’s standard DAQ system MBS (Multi Branch System). May

also write data into MBS listmode format, and may emulate MBS socket data servers. Addition-
ally, MBS systems can be controlled by the DABC GUI.

Chapter 2

DABC User Manual: Introduction

[user/user-introduction.tex]

2.1 About DABC

The Data Acquisition Backbone Core DABC is a Data Acquisition (DAQ) framework with modular com-
ponents for dataflow on multiple nodes. It provides a C++ runtime environment with all basic services,
such as: threads and event handling, memory management, command execution, configuration, logging
and error handling. User written DAQ applications can be run within this environment by means of a
plug-in mechanism.

DABC contains a sub-framework with additional interfaces to set-up distributed event builder networks.
As transport layers for such networks, tcp/ip and InfiniBand/verbs are supported.

DABC supports by default the data formats and readout connections of GSI’s standard DAQ system MBS
(Multi Branch System). It may also write data files with the MBS *.lmd format, and it may emulate
MBS data server sockets, such as stream or transport servers.

The DABC control system features a finite state machine logic and parameters for monitoring and con-
figuration. The current implementation is based on the DIM protocol [3], other implementations could
replace this one. A generic Java GUI is provided to operate this standard DIM control system. This GUI
may also control MBS systems which support the DIM communication. It is extendable by user written
components.

2.2 Introduction

The the following sections we give a short introduction to the main components and terms of DABC.
Figure 2.1 should be helpful.

2.2.1 Modules

All processing code runs in module objects. There are two general types of modules: synchronous and
asynchronus. A synchronous module may block for longer time waiting for data and must therefore run
in its own computing thread. Asynchronous modules must never block. Therefore several of them may
run as a chain in one single thread.

5

6 DABC User Manual: Introduction

DABC Module

port

port

DABC Module

port

port

process process

Device

Transport

Device

Transport

Network

Object manager

locally (by reference)

Central data manager
Memory pools BufferqueueBufferqueue

Threads

Figure 2.1: Components and data flow.

2.2.1.1 Synchronous module

Each synchronous module is executed by a dedicated working thread. The thread executes a method
MainLoop() with arbitrary code, which may block the thread. In blocking calls of the framework (re-
source or port wait), optionally command callbacks may be executed implicitly. A timeout may be set
for all blocking calls; this can optionally throw an exception when the time is up. On timeout with ex-
ception, either the MainLoop() is left and the exception is then handled in the framework thread; or the
MainLoop() itself catches and handles the exception. On state machine commands (e.g. Halt or Sus-
pend, see Programmer Manual section 9.3.1), the blocking calls are also left by exception, thus putting
the mainloop thread into a stopped state.

2.2.1.2 Asynchronous module

Several asynchronous modules may be run by a shared working thread. The thread processes an event
queue and executes appropriate callback functions of the module that is the receiver of the event. Events
are fired for data input or output, command execution, and if a requested resource (e.g. memory buffer)
is available. The callback functions must never block the working thread. Instead, the callback must
return if further processing requires to wait for a requested resource. Therefore each callback function
must check the available resources explicitly whenever it is entered.

2.2.2 Commands

A module may register Command objects and may define command actions by overwriting a virtual
command callback method ExecuteCommand.

2.2. Introduction 7

2.2.3 Parameters

A module may register Parameter objects. Parameters are accessible by name; their values can be
monitored and optionally changed by the controls system. Initial parameter values can be set from XML
configuration files.

2.2.4 Manager

The modules are organized and controlled by one manager object which is persistent independent of the
application’s state.

The manager is an object manager that owns and keeps all registered basic objects into a folder structure.

Moreover, the manager defines the interface to the control system. This covers registering, sending, and
receiving of commands; registering, updating, unregistering of parameters; error logging and global error
handling.

The manager receives and dispatches commands to the destination modules where they are queued and
eventually executed by the modules threads (see Programmer Manual section 9.2.1). The manager has
an independent manager thread, used for manager commands execution, parameters timeout processing
and so on.

2.2.5 Memory and buffers

Data in memory is referred by Buffer objects. Allocated memory areas are kept in MemoryPool objects.
In general case a buffer contains a list of references to scattered memory fragments from memory pool.
Typically a buffer references exactly one segment. Buffers may have an empty list of references. In
addition, buffers can be supplied with a custom headers.

The buffers are provided by one or several memory pools which preallocate reasonable memory from the
operating system. A memory pool may keep several sets, each set for a different configurable memory
size.

A new buffer may be requested from a memory pool by size. Depending on the module type and mode,
this request may either block until an appropriate buffer is available, or it may return an error value if it
can not be fulfilled. The delivered buffer has at least the requested size, but may be larger. A buffer as
delivered by the memory pool is contiguous.

Several buffers may refer to the same fragment of memory. Therefore, the memory as owned by the
memory pool has a reference counter which is incremented for each buffer that refers to any of the
contained fragments. When a consumer frees a buffer object, the reference counters of the referred
memory blocks are decremented. If a reference counter becomes zero, the memory is marked as "free"
in the memory pool.

2.2.6 Ports

Buffers are entering and leaving a module through Port objects. Each port has a buffer queue of config-
urable length. A module may have several input, output, or bidirectional ports. The ports are owned by
the module.

8 DABC User Manual: Introduction

2.2.7 Transport

Outside the modules the ports are connected to Transport objects. On each node, a transport may either
transfer buffers between the ports of different modules (local data transport without copy), or it may
connect the module port to a data source or sink (e. g. file i/o, network connection, hardware readout).

In the latter case, it is also possible to connect ports of two modules on different nodes by means of a
transport instance of the same kind on each node (e. g. InfiniBand verbs transport connecting a sender
module on node A with a receiver module on node B via a verbs device connection).

2.2.8 Device

A transport belongs to a Device object of a corresponding type that manages it. Such a device may have
one or several transports. The threads that run the transport functionality are created by the device. If the
Transport implementation shall be able to block (e. g. on socket receive), there can be only one transport
for this thread.

A device object usually represents an I/O component (e. g. network card). There may be several device
objects of the same type in an application scope. The device objects are owned by the manager singleton;
transport objects are owned and managed by their corresponding device.

A device is persistent independent of the connection state of the transport. In contrast, a transport is
created during connect() or open() and deleted during disconnect() or close(), respectively.

A device may register parameters and define commands. This is the same functionality as available for
modules.

2.2.9 Application

The Application is a singleton object that represents the running application of the DAQ node (i. e. one
per system process). It provides the main configuration parameters and defines the runtime actions for
the different control system states (see Programmer Manual section 9.3.1). In contrast to the Manager
implementation that defines a framework control system (e.g. DIM, EPICS), the Application defines the
experiment specific behaviour of the DAQ.

2.3 Controls and configuration

2.3.1 Finite state machine

The running state of the DAQ system is ruled by a Finite State Machine [6] on each node of the cluster.
The manager provides an interface to switch the application state by the external control system. This
may be done by calling state change methods of the manager, or by submitting state change commands
to the manager (from GUI).

Some of the application states may be propagated to the active components (modules, device objects),
e.g. the Running or Ready state which correspond to the activity of the thread. Other states like Halted
or Failure do not match a component state; e.g. in Halted state, all modules are deleted and thus do not
have an internal state. The granularity of the control system state machine is not finer than the node
application.

There are 5 generic states to treat all set-ups:

2.3. Controls and configuration 9

DoConfigure DoEnable DoStart

DoStop

DoHaltDoHalt

DoHalt
F X

H C E R

DoError

Figure 2.2: The finite state machine as defined by the manager.

Halted : The application is not configured and not running. There are no modules, transports, and
devices existing.

Configured : The application is mostly configured, but not running. Modules and devices are created.
Local port connections are done. Remote transport connections may be not all fully connected,
since some connections require active negotiations between different nodes. Thus, the final con-
necting is done between Configured and Ready.

Ready : The application is fully configured, but not running (modules are stopped).
Running : The application is fully configured and running.
Failure : This state is reached when there is an error in a state transition function. Note that a run error

during the Running state would not lead to Failure, but rather to stop the run in a usual way (to
Ready).

The state transitions between the 5 generic states correspond to commands of the control system for each
node application:

DoConfigure : between Halted and Configured. The application plug-in creates application specific
devices, modules and memory pools. Application typically establishes all local port connections.

DoEnable : between Configured and Ready. The application plug-in may establish the necessary con-
nections between remote ports. The framework checks if all required connections are ready.

DoStart : between Ready and Running. The framework automatically starts all modules, transport and
device actions.

DoStop : between Running and Ready. The framework automaticall stops all modules, transport and
device actions, i.e. the code is suspended to wait at the next appropriate waiting point (e.g. begin
of MainLoop(), wait for a requested resource). Note: queued buffers are not flushed or discarded
on Stop !

DoHalt : switches states Ready , Running , Configured, or Failure to Halted. The framework automati-
cally deletes all registered objects (transport, device, module) in the correct order.

10 DABC User Manual: Introduction

2.3.2 Commands

The control system may send (user defined) commands to any component (module , device, application).
Execution of these commands is independent of the state machine transitions.

2.3.3 Configuration and monitoring

The configuration is done using parameter objects. On application startup time, the configuration system
may set the parameters from a configuration file (e.g. XML configuration files). During the application
lifetime, the control system may change values of the parameters by command. However, since the set
up is changed on DoConfigure time only, it may be forbidden to change true configuration parameters
except when the application is Halted.

Otherwise, there would be the possibility of a mismatch between the monitored parameter values and the
really running set up. However, the control system may change local parameter objects by command in
any state to modify minor system properties independent of the configuration set up (e.g. switching on
debug output, change details of processing parameters).

The current parameters may be stored back to the XML file.

Apart from the configuration, the control system may use local parameter objects for monitoring the
components. When monitored parameters change, the control system is updated by interface methods
of the manager and may refresh the GUI representation. Programmer Manual Chapter 13, page 91 will
explain the usage of parameters for configuration in detail.

2.4 Package and library organisation

The complete system consists of several packages.

2.4.1 Core system

The Core system package defines all base classes and interfaces and implements basic functionalities for
object organization, memory management, thread control, and event communication.

2.4.2 Control and configuration system

Depends on the Core system. Defines functionality of state machine, command transport, parameter
monitoring and modification. Implements the connection of configuration parameters with a database
(i.e. a file in the trivial case). Interface to the Core system is implemented by subclass of Manager.

Note that default implementations of state machine and a configuration file parser are already provided
by the Core system.

2.4.3 Plug-in packages

Plug-in packages may provide special implementations of the core interface classes:
Device, Transport, Module, or Application. Usually, these classes are made available to the system
by means of a corresponding Factory that is automatically registered in the Manager when loading the
plug-in library.

2.4. Package and library organisation 11

DABC Base

User

Plug-ins

User Application

DIM

DIM Ctrl

X
M

L
 C

o
n

fig

Java GUI

BNET

User GUI

verbs
PCI

sockets

C
o

n
tro

ls

MBS

U
ser C

o
n

fig
u

ratio
n

Figure 2.3: Schematic view of the distributed DABC components (coloured) and user specific extensions (white)

When installed centrally, the Plugin packages are kept in subfolders of the $DABCSYS/plugins
directory. Alternatively, the Plugin packages may be installed in a user directory and linked against the
Core system installation.

2.4.3.1 Bnet package

This package depends on the Core system and implements modules to cover a generic event builder
network. It defines interfaces (virtual methods) of the special Bnet modules to implement user specific
code in subclasses. The Bnet package provides a factory to create specific Bnet modules by class name. It
also provides application classes to define generic functionalities for worker nodes and controller nodes.
These may be used as base classes in further Application packages.

2.4.3.2 Transport packages

Depend on the Core system, and may depend on external libraries or hardware drivers. Implement
Device and Transport classes for specific data transfer mechanism, e.g. verbs or tcp/ip socket. May
also implement Device and Transport classes for special data input or output. Each transport package
provides a factory to create a specific device by class name.

However, the most common transport implementations are put directly to the Core system, e.g. local
memory, or socket transport; the corresponding factory is part of the Core system then.

12 DABC User Manual: Introduction

2.4.4 Application packages

They depend on the Core system, and may depend on several transport packages, on the Bnet package,
or other plugin packages. They may also depend on other application packages. Application packages
provide the actual implementation of the core interface class Application that defines the set-up and
behaviour of the DAQ application in different execution states. This may be a subclass of specific existing
application. Additionally, they may provide experiment specific Module classes.

When installed centrally, the Application packages are kept in subfolders of the $DABCSYS/applications
directory. Alternatively, an Application package may be installed in a user directory and linked against
the Core system installation and the required Plugin packages.

2.4.5 Distribution contents

The DABC distribution contains the following packages:

Core system : This is plain C++ code and independent of any external framework.
Bnet plugin : Depends on the core system only.
Transport plugins : Network transport for tcp/ip sockets and InfiniBand verbs. Additionally, transports

for GSI Multi Branch System MBS connections (socket, filesystem) is provided. Optionally, exam-
ple transport packages may be installed that illustrate the readout of a PCIe board, or data taking
via UDP from an external readout controller (ROC) board.

Control and configuration system : The general implementation is depending on the DIM framework
only. DIM is used as main transport layer for commands and parameter monitoring. On top of
DIM, a generic record format for parameters is defined. Each registered command exports a self
describing command descriptor parameter as DIM service. Configuration parameters are set from
XML setup files and are available as DIM services.

GUI A generic controls GUI using the DIM record and command descriptors is implemented with Java.
It may be extendable with user defined components.

Application packages : some example applications, such as:
◦ Simple MBS event building
◦ Bnet with switched MBS event building
◦ Bnet with random generated events

Chapter 3

DABC User Manual: Setup

[user/user-setup.tex]

3.1 Installing DABC

When working at the GSI linux cluster, the DABC framework is already installed and will be maintained
by people of the gsi EE department. Here DABC needs just to be activated from any GSI shell by typing
. dabclogin (dot space). In this case, please skip this installation section and proceed with following
section 3.2, page 14 describing the set-up of the user environment.

However, if working on a separate DAQ cluster outside GSI, it is mandatory to install the DABC software
from scratch. Hence the DABC distribution is available for download at http://dabc.gsi.de. It is provided
as a compressed tarball of sources dabc_vn.m.ss.tar.gz where n m and ss are version numbers.
The following steps describe the recommended installation procedure:

1. Unpack this DABC distribution at an appropriate installation directory, e. g. :
cd /opt/dabc;
tar zxvf dabc_v1.0.00.tar.gz

This will extract the archive into a subdirectory which is labelled with the current version number
like /opt/dabc/dabc_v1.0.00. This becomes the future DABC system directory.

2. Prepare the DABC environment login script: A template for this script can be found at
scripts/dabclogin.sh
• Edit the DABCSYS environment according to your local installation directory. This is done in

the following lines:
export DABCSYS=/opt/dabc/dabc_1_0.00

• Specify correct location of your JAVA installation. This is done in the lines (shown here an
example, make sure to get the path where the include directory is located):
export JAVA_HOME=/usr/lib/jvm

• Copy the script to a location in your global $PATH for later login, e. g. /usr/bin. Alterna-
tively, you may set an alias to the full pathname of dabclogin.sh in your shell profile.

3. Execute the just modified login script in your shell to set the environment:
. dabclogin.sh

This will set the environment for the compilation.
4. Change to the DABC installation directory and start the build:

cd $DABCSYS
make

This will compile the DABC framework and install a suitable version of DIM in a subdirectory of
$DABCSYS/dim.

13

http://dabc.gsi.de

14 DABC User Manual: Setup

After succesful compilation, the DABC framework installation is complete and can be used from any
shell after invoking . dabclogin.sh The next sections 3.2, page 14 and 3.3, page 15 will describe
further steps to set-up the DABC working environment for each user.

3.2 Set-up the DABC environment

Once the general DABC framework is installed on a system, still each user must "activate" the environ-
ment and do further preparations to work with it.

1. Execute the DABC login script in a linux shell to set the environment. At GSI linux installation,
this is done by
. dabclogin

For the user installation as described in above section 3.1, page 13, by default the script is named
. dabclogin.sh

The login script will already enable the DABC framework for compilation of user written compo-
nents. Additionally, the general executable dabc_run now provides the DABC runtime environ-
ment and may be started directly for simple "batch mode" applications on a single node.
However, further preparations are necessary if DABC shall be used with DIM control system and
GUI.

2. Open a dedicated shell on the machine that shall provide the DIM name server, e. g.
ssh nsnode.cluster.domain
export DIM_DNS_NODE=nsnode.cluster.domain
. dabclogin.sh
dimDns &
dimDid &

to launch the DIM name server. This is done once at the beginning of the DAQ setup; usually
the DIM name server needs not to be shut down when DABC applications terminate. The DID is
useful for inspecting DIM services.

3. Set the DIM name server environment variable in any DABC working shell (e. g. the shell that
will start the dabc gui later):
. dabclogin.sh
export DIM_DNS_NODE=nsnode.cluster.domain

4. Now the DABC GUI can be started in such prepared shell by typing dabc, (or mbs for a plain
MBS gui, resp.). See below in gui section.

To operate a DABC application one should create a dedicated working directory to keep all relevant files:

• Setup files for DABC (XML).
• Log files (text).

The following section 3.3, page 15 gives a general description of the setup file syntax.

The GUI may run on a machine with no access to the DABC working directory, e. g. a windows PC.
Therefore the GUI setup files may use a different working directory, containing:

• Data files for startup panels (XML).
• Configuration files for GUI (XML).

These configuration files for the GUI are described in more detail in Chapter 4, page 21.

Of course both setups, for the DABC application and the GUI, can be put into one working directory if
the GUI has access to it.

3.3. DABC setup file 15

3.3 DABC setup file

The setup file is an XML file in a DABC-specific format, which contains values for some or all configu-
ration parameters of the system.

3.3.1 Setup file example

Let’s consider this simple but functional configuration file:

<?xml version="1.0"?>
<dabc version="1">
<Context host="localhost" name="Generator">
<Run>

<lib value="libDabcMbs.so"/>
<func value="InitMbsGenerator"/>

</Run>
<Module name="Generator">

<Port name="Output">
<OutputQueueSize value="5"/>
<MbsServerPort value="6000"/>

</Port>
</Module>

</Context>
</dabc>

This is an example XML file for an MBS generator, which produces MBS events and provides them to
an MBS transport server. This use case is described further in section 8.1, page 47.

Other examples of DABC setup files can be found in the sections 6.1, page 39, 7.1, page 45, and 7.2,
page 46 of this manual.

3.3.2 Basic syntax

A DABC configuration file should always contain <dabc> as root node. Inside the <dabc> node one or
several <Context> nodes should exists. Each <Context> node represents the application context which
runs as independent executable. Optionally the <dabc> node can have <Variables> and <Defaults>
nodes, which are described further in the following sections 3.3.5, page 16 and 3.3.6, page 17.

3.3.3 Context

A <Context> node can have two optional attributes:

"host" host name, where executable should run, default is "localhost"
"name" application (manager), default is the host name.

Inside a <Context> node configuration parameters for modules, devices, memory pools are contained. In
the example file one sees several parameters for the output port of the generator module.

16 DABC User Manual: Setup

3.3.4 Run arguments

Usually a <Context> node has a <Run> subnode, where the user may define different parameters, relevant
for running the DABC executable:

lib name of a library which should be loaded. Several libraries can be specified.
func name of a function which should be called to create modules. This is an alternative to instantiating

a subclass of dabc::Application (compare section 12.4, page 89)
runfunc function name to run some sequence of operations (start, stop, reconfigure) over application.

Useful for batch mode
port ssh port number of remote host
user account name to be used for ssh (login without password should be possible)
init init script, which should be called before dabc application starts
test test script, which is called when test sequence is run by run.sh script
timeout ssh timeout
debugger argument to run with a debugger. Value should be like "gdb -x run.txt –args", where file

run.txt should contain commands "r bt q".
workdir directory where DABC executable should start
debuglevel level of debug output on console, default 1
logfile filename for log output, default none
loglevel level of log output to file, default 2
DIM_DNS_NODE node name of DIM dns server, used by DIM controls implementation
DIM_DNS_PORT port number of DIM dns server, used by DIM controls implementation
cpuinfo instantiate dabc::CpuInfoModule to show CPU and memory usage information. Value must

be >= 0. If 0, only two parameters are created, if 15 - several ratemeters will be created.
parslevel level of pars visibility for control system, default 1

3.3.5 Variables

In the root node <dabc> one can insert a <Variables> node which may contain definitions of one or
several variables. Once defined, such variables can be used in any place of the configuration file to set
parameter values. In this case the syntax to set a parameter is:

<ParameterName value="${VariableName}"/>

It is allowed to define a variable as a combination of text with another variable, but neither arithmetic nor
string operations are supported.

Using variables, one can modify the example in the following way:

<?xml version="1.0"?>
<dabc version="1">
<Variables>
<myname value="Generator"/>
<myport value="6010"/>

</Variables>
<Context name="Mgr${myname}">
<Run>
<lib value="libDabcMbs.so"/>
<func value="InitMbsGenerator"/>

</Run>
<Module name="${myname}">

3.3. DABC setup file 17

<SubeventSize value="32"/>
<Port name="Output">

<OutputQueueSize value="5"/>
<MbsServerPort value="${myport}"/>

</Port>
</Module>

</Context>
</dabc>

Here context name and module name are set via myname variable, and mbs server socket port is set via
myport variable.

There are several variables which are predefined by the configuration system:

• DABCSYS - top directory of DABC installation
• DABCUSERDIR - user-specified directory
• DABCWORKDIR - current working directory
• DABCNUMNODES - number of <Context> nodes in configuration files
• DABCNODEID - sequence number of current <Context> node in configuration file

Any shell environment variable is also available as variable in the configuration file to set parameter
values.

3.3.6 Default values

There are situations when one needs to set the same value to several similar parameters, for instance the
same queue length for all output ports in the module. One possible way is to use syntax as described
above. The disadvantage of such approach is that one must expand the XML file to set each queue length
explicitely from the appropriate variable; so in case of a big number of ports the file will be very long
and confusing to the user.

Another possibility to set several parameters at once consists in wildcard rules using "*" or "?" symbols.
These can be defined in a <Defaults> node:

<?xml version="1.0"?>
<dabc version="1">
<Variables>
<myname value="Generator"/>
<myport value="6010"/>

</Variables>

<Context name="Mgr${myname}">
<Run>

<lib value="libDabcMbs.so"/>
<func value="InitMbsGenerator"/>

</Run>
<Module name="${myname}">

<SubeventSize value="32"/>
<Port name="Output">

<MbsServerPort value="${myport}"/>
</Port>

</Module>
</Context>
<Defaults>
<Module name="*">

18 DABC User Manual: Setup

<Port name="Output*">
<OutputQueueSize value="5"/>

</Port>
</Module>

</Defaults>
</dabc>

In this example for all ports which names begin with the string "Output", and which belong to any
module, the output queue length will be 5. A wildcard rule of this form will be applied for all contexts
of the configuration file, i. e. by such rule we set the output queue length for all modules on all nodes.
This allows to configure a big multi-node cluster with a compact XML file.

Another possibility to set default value for some parameters - create parameter with the same name in
parent object. Here word create is crutial - one should use CreateParInt() method in module constructor -
it is not enough just put additional tag in xml file. For instance, one can create parameter "MbsServerPort"
in generator module and than MBS server transport, created for output port, will use that value for as
default server port number.

3.4 Installation of additional plug-ins

Apart from the DABC base package, there may be additional plug-in packages for specific use cases.
Generally, these plug-in packages may consist of a plugins part and an applications part. The plugins
part offers a library containing new components (like Devices, Transports, or Modules). The appli-
cations part mostly contains the XML setup files to use these new components in the DABC runtime
environment; however, it may contain an additonal library defining the DABC Application class.

As an example, we may consider a plug-in package for reading out data from specific PCIe hardware like
the Active Buffer Board ABB [4]. This package is separately available for download at http://dabc.gsi.de
and described in detail in chapter 17, page 125 of the DABC programmer’s manual.

There are principally two different ways to install such separate plug-in packages: Either within the
general DABCSYS directory as part of the central DABC installation, as described in following section
3.4.1, page 18. Or at an independent location in a user directory, as described in section 3.4.2, page 19.

3.4.1 Add plug-in packages to $DABCSYS

This is the recommended way to install a plug-in package if this package should be provided for all users
of the DABC installation. A typical scenario would be that an experimental group owns dedicated DAQ
machines with system manager priviliges. In this case, the plugin-package may be installed under the
same account as the central DABC installation (probably, but not necessarily even the root account). The
new plug-in package should be directly installed in the $DABCSYS directory then, with the following
steps:

1. Download the plug-in package tarball, e. g. abb1.tar.gz
2. Call the dabclogin.sh script of the DABC installation (see section user-env)
3. Copy the downloaded tarball to the $DABCSYS directory and unpack it there:

cp abb1.tar.gz $DABCSYS
cd $DABCSYS
tar zxvf abb1.tar.gz
This will extract the new components into the appropriate plugins and applications folders
below $DABCSYS.

http://dabc.gsi.de

3.4. Installation of additional plug-ins 19

4. Build the new components with the top Makefile of $DABCSYS:
make

5. To work with the new components, the configuration script(s) of the applications part should be
copied to the personal workspace of each user (see section 3.3, page 15). For the ABB example,
this is found at
$DABCSYS/applications/bnet-test/SetupBnetIB-ABB.xml

3.4.2 Plug-in packages in user directory

This is the case when DABC is installed centrally at the fileserver of an institute, and several experimental
groups shall use different plug-ins. It is also the recommended way if several users want to modify the
source code of a plug-in library independently without affecting the general installation.

The new plug-in package should be installed in a user directory then, with the following steps:

1. Download the plug-in package tarball, e. g. abb1.tar.gz
2. Create a directory to contain your additional DABC plugin packages:

mkdir $HOME/mydabcpackages
3. Call the dabclogin.sh script of the DABC installation (see section user-env)
4. Copy the downloaded tarball to the $DABCSYS directory and unpack it there:

cp abb1.tar.gz $HOME/mydabcpackages
cd $HOME/mydabcpackages
tar zxvf abb1.tar.gz
This will extract the new components into the appropriate plugins and applications folders
below the working directory.

5. To build the plugins part, change to the appropriate package plugin directory and invoke the local
Makefile, e. g. for the ABB example:
cd $HOME/mydabcpackages/plugins/abb
make
This will create the corresponding plug-in library in a subfolder denoted by the computer architec-
ture, e. g. :
$HOME/mydabcpackages/plugins/abb/x86_64/lib/libDabcAbb.so

6. For some plug-ins, there may be also small test executables with different Makefiles in subfolder
test. These can be optionally build and executed independent of the DABC runtime environ-
ment.

7. The DABC working directory for the new plug-in will be located in subfolder
applications/plugin-name
For the ABB example, the application will set up a builder network with optional Active Buffer
Board readouts, so this is at
$HOME/mydabcpackages/applications/bnet-test
As in this example, there may be an additional library to be build containing the actual Application
class. This is done by invoking the Makefile within the directory:
cd $HOME/mydabcpackages/applications/bnet-test
make
Here the application library is produced directly on top of the working directory:
$HOME/mydabcpackages/applications/bnet-test/libBnetTest.so

8. The actual locations of the newly build libraries (plugins, and optionally applications part) has to be
edited in the <lib> tag of the corresponding DABC setup-file (here: SetupBnetIB-ABB.xml).
The default set-up examples in the plug-in packages assume that the library is located at $DABCSYS/lib,
as it is in the alternative installation case as described in section 3.4.1, page 18.

20 DABC User Manual: Setup

Chapter 4

DABC User Manual: GUI

[user/user-gui.tex]

4.1 GUI Guide lines

The current DABC GUI is written in Java using the DIM software as communication layer. The standard
part of the GUI described here may be extended by application specific parts. How to add such extensions
is described in the programmer’s manual. Typically they are started as prompter panels via buttons in the
main GUI menu.

The standard part builds a set of panels (windows) according the parameters the DIM servers offer. Only
services from one single DIM name server (node name specified as shell variable DIM_DNS_NODE)
defining a name space can be processed. See 5.3.1, page 36 for preparations.

The GUI needs no file access to the DABC working directory. However, user must have ssh (or rsh)
access to the DABC (or MBS) master node. Currently the GUI must run under the same account as
the DABC. In monitoring mode (no commands) the GUI may run under different account. Master node
must have remote access to all worker nodes. The user’s ssh settings must enable remote access without
prompts.

The layout of the GUI can be adjusted to individual needs. It is strongly recommended to save these
settings to see the same layout after a restart of the GUI. The GUI can be restarted any time. DABC and
MBS systems continue without GUI.

4.2 GUI Panels

Figure 4.1: Main toolbar buttons.

Fig. 4.1, page 21 shows the main menu of DABC (minimal view). The GUI as it comes up is divided

21

22 DABC User Manual: GUI

in three major parts: one sees on top a toolbar with icon buttons. Most of these open other windows.
The dark line at the bottom shows a list of active DIM servers. The other windows are placed in the
white middle pane. The functions of the buttons and the invoked panels is described in the next sections.
Depending on the application some buttons may be not seen, additional ones may show up. If one does
not work with MBS plug-ins the control panels for MBS are of cause not useful.
Fig. 4.2, page 22 shows a more typical view of a running DABC. In general, all panels (including the

Figure 4.2: More typical full screen view.

GUI itself) can be closed and reopened any time.

4.2.1 Main DABC GUI buttons

Quit GUI. Will prompt (RET will quit). The DABC will continue to run. The GUI may be started

4.2. GUI Panels 23

anywhere again. In case you saved the layout (recommended, see 4.3, page 30) and you start the GUI
from the same directory it will look pretty much the same as you left it.

Test, shell script

Save settings: window layout, record attributes, command arguments, parameter selection filters.
Details see 4.3, page 30. Note that the content of the control panels must be saved by similar buttons in
these panels.

Open DABC MBS control panel, see 6.1.3, page 41.

Open DABC control panel, see 4.2.2, page 23.

Open MBS control panel, see 5.1.2, page 31.

Refresh. All parameters and commands are removed. Rebuild DIM service list from DIM name
server. Parameters and Commands are sorted alphabetically by name. All panels are updated. In normal
operation there is no need to refresh manually.

Open command panel (4.2.6, page 25).

Open parameter table (4.2.7, page 26).

Open parameter selection panel (4.2.7.1, page 27).

Open rate meter panel (4.2.8, page 27).

Open histogram panel (4.2.8, page 27).

Open state panel (4.2.8, page 27).

Open info panel (4.2.8, page 27).

Open log panel (4.2.8, page 27).

Eventually one might see additional icons from application panels (this one is only an example).

The three control panels (DABC, MBS, combined DABC and MBS) are used depending on the ap-
plication to be controlled. Eventually an application provides additional specific control panels.

4.2.2 DABC control panel

The standard DABC control panel is shown in 4.3, page 24. As mentioned already some applications may
provide their own control panels like the MBS applications (see section 5.1.2, page 31). But most of the
buttons are very common. From left to right they startup a system, configure it, start data taking, pause
data taking, stop tasks, shut down. At the very left we see a save button, at the right a shell execution
button. Values are read from file DabcControl.xml (default, may be saved/restored to/from other
file, see 4.3, page 30).

<?xml version="1.0" encoding="utf-8"?>
<DabcLaunch>
<DabcMaster prompt="DABC Master" value="node.xxx.de" />
<DabcName prompt="DABC Name" value="Controller:41" />
<DabcUserPath prompt="DABC user path" value="myWorkDir" />
<DabcSystemPath prompt="DABC system path" value="/dabc" />

24 DABC User Manual: GUI

Figure 4.3: DABC controller panel.

<DabcSetup prompt="DABC setup file" value="SetupDabc.xml" />
<DabcScript prompt="DABC Script" value="ps" />
<DabcServers prompt="%Number of needed DIM servers%" value="5" />
</DabcLaunch>

DabcMaster: Node where the master controller shall be started. Can be one of the worker nodes.
DabcName: A unique name inside DABC of the system.
DabcUserPath: User working directory. The GUI does not need to have access to the filesystem.
DabcSystemPath: Path where the DABC is installed.
DabcSetup: Setup file name.
DabcScript: Command to be executed in an ssh at the master node.
DabcServers: Number of workers and controllers. This information is minimum for the GUI to know

when all DABC nodes are up. The GUI waits until this number of DIM servers is up and running.
Note that this number must be consistent with the DABC setup file used.

The name server name is translated from shell environment variable DIM_DNS_NODE, the user name
from shell environment variable USER. Password can be chosen when the first remote shell script is
executed (which itself is protected by user password). All following commands then need this password.

4.2.2.1 DABC controller buttons

Save panel settings to the file Control file. If you choose a name different from the default you must
set a shell variable to it to get the values from that file (see 4.3, page 30).

Startup all tasks. Executes a DABC script dabcstartup.sc via ssh on the master node under
user name. Then it waits until the number of DIM servers expected are announced. A progress panel
pops up during that time (see 4.2.3, page 25). When the servers are up the main GUI Update is triggered
building all panels from scratch according the parameters offered by the servers.

Configure. Executes state transition command Configure on master node and waits for the transition.
All plug-in components are created. Then execute Enable. Waits until all workers go into Ready state.
Now the DABC is ready to run. Triggers the main GUI Update.

Start acquisition. Executes Start command. All components go into running state Running.

4.2. GUI Panels 25

Pause acquisition. Executes Stop command. All components go into standby state Ready.

Halt acquisition. Executes Halt command. This closes all plug-ins. States go into Halted. Next
must be shut down or configure.

Exit all processes by EXIT commands. After 2 seconds trigger the main GUI Update.

Shut down all processes on all nodes by script. This is the hard shut down.

ssh shell script execution on master node.

4.2.3 Action in progress

Figure 4.4: Launching progress.

When starting up, configure or shut down the GUI has to wait until the front-ends have completed the
action. During that time a progress window similar to the one shown in Fig. 4.4, page 25 pops up. Please
wait until the popup disappears.

4.2.4 MBS control panel

To control and monitor a stand-alone MBS system a dedicated control panel is provided by the MBS
application. This panel is described in the MBS section 5.1.2, page 31.

4.2.5 Combined DABC and MBS control panel

To control and monitor MBS front-ends with DABC event builders a dedicated control panel is provided
by the MBS application. This panel is described in the MBS section 6.1.3, page 41.

4.2.6 Command panel

The control system of DABC and/or the application specific plug-ins can define commands. These
commands are encoded as DIM services including a full description of arguments. Therefore the GUI
can build up at runtime a command tree and provide the proper forms for each command. Commands
are executed in all components of DABC.

The DABC naming convention for commands and parameters defines four main name fields separated
by slashes:

1. DIM server name space (example: DABC)
2. Node (example: lxg0523)
3. Application (example: Controller:41)
4. Name (example: doEnable)

26 DABC User Manual: GUI

Figure 4.5: Command panel.

Example: DABC/lxg0523/Controller:41/doEnable. Fig. 4.5, page 26 shows on the left side the com-
mand tree. The tree is built from name, application, nodes. Double click (or RETURN) on a treenode
executes the command on all treenodes below. A click on a command opens at the right side the ar-
gument panel. Entering argument values and RETURN executes the command. In the example shown
in the figure double click on doEnable would execute that command on three nodes. Double click on
Eventbuilder would execute only on two nodes.

4.2.7 Parameter table

DABC parameters are DIM services as the commands. The naming convention is the same. The server
providing parameters can be make them (no)visible and (un)changable. DABC defines some special
parameter types having a data structure and a specific interpretation like a rate parameter having a value,
limits, a color, and a graphic presentation. A rate parameter is assumed to be changed and updated
regularly. The GUI displayes these special parameters in dedicated panels. Parameters are used in all
components of DABC. The central place for all parameters in the GUI is the parameter table as shwon

Figure 4.6: Parameter table.

in Fig. 4.6, page 26. The parameter table holds all parameters which are marked by the provider to be
visible. The parameter values can be changed in the Set value column if no minus sign is there in which
case the provider does not grant modification. The buttons in the Show column indicate if the parameter
is shown in some graphics panel. It can be removed from or added to this panel by the buttons. The
table can be ordered by columns (click on column header). The column width can be adjusted and is
saved/restored by main save button (see 4.3, page 30).

4.2. GUI Panels 27

Figure 4.7: Parameter selection panel and selected parameter list.

4.2.7.1 Parameter selection

To get a more selective view on the parameters one can specify filters in the panel shown at the left side of
Fig. 4.7, page 27. Text substrings for each of the four name fields can be specified as well as a selection
of record types. Values can be saved (see 4.3, page 30). With the check boxes the filter function for each
of these can (de)activated. The parameter list at the right window in Fig. 4.7, page 27 shows only the
parameters matching all filters.

If the data field is white the parameter can be changed. This cannot be done in place because the param-
eter might be updated in the mean time. Instead press RETURN in the field. A prompter will pop up to
enter the value.

4.2.8 Monitoring panels

As already mentioned the DABC provides definitions of special purpose DIM parameters. These Records
can be recognized by the GUI and are handled in appropriate way. Currently there are

◦ States
◦ Rates
◦ Histograms
◦ Infos

4.2.8.1 States

States are records having a number for severity (0 to 4), a color, and a brief state description (see Fig.
4.8, page 28). Of cause the states of the DABC state machine are shown as states. Application plug-ins
may use this kind of records also for other information.

28 DABC User Manual: GUI

Figure 4.8: States.

Figure 4.9: Rates.

4.2.8.2 Rate meters

All rate meters are displayed in the meter panel, Fig.4.9, page 28. Meters can be removed in the parameter
table (See Fig. 4.6, page 26) with the Show buttons like the other graphical parameters. Saving the setup,
the visibility will be preserved.

Figure 4.10: Steering menus.

4.2. GUI Panels 29

On the left side in Fig. 4.10, page 28 the Settings menu is shown. It affects all items in the panel. One
can Zoom (toggle between large and normal view), change the number of columns, change the display
mode, toggle Autoscale, and set limits (applied to all meters).

Besides that each individual item can be adjusted by right mouse button. The context menu is shown on
the right. All changes done individually are changing the defaults! The global changes can be overwritten
by these defaults. All settings are saved with the setup and restored on GUI startup (see 4.3, page 30).

4.2.8.3 Histograms

Histogram panels are handled in pretty much the same way as the rate meters. All histograms are

Figure 4.11: Histograms.

displayed in the histogram panel, Fig.4.11, page 29. Histograms can have arbitrary size set in Layout
menu.

4.2.8.4 Information

Figure 4.12: Info.

Information records mainly display one line of text with a color (see Fig. 4.12, page 29).

4.2.8.5 Logging window

Fig. 4.13, page 30 show the logging window.

30 DABC User Manual: GUI

Figure 4.13: Logging.

4.3 GUI save/restore setups

There are several setups which can be stored in XML files and are retrieved when the xGUI is started
again. The file names can be specified by shell variables.

DABC_CONTROL_DABC : Values of DABC control panel. Saved by button in panel.
Default DabcControl.xml. Filename in panel itself.

DABC_CONTROL_MBS : Values of MBS control panel. Saved by button in panel.
Default MbsControl.xml. Filename in panel itself.

DABC_RECORD_ATTRIBUTES : Attributes of records. Saved by main save button.
Default Records.xml.

DABC_PARAMETER_FILTER : Values of parameter filter panel. Saved by main save button.
Default Selection.xml.

DABC_GUI_LAYOUT : Layout of frames. Saved by main save button.
Default Layout.xml.

Chapter 5

DABC User Manual: MBS GUI

[user/user-gui-mbs.tex]

5.1 MBS event building

5.1.1 MBS setup

Any MBS system can be controlled by the DABC GUI. It can run in two operation modes: with MBS
event builder or DABC event builder (see 6.1, page 39). The first case means a standard MBS system.

To control a standard MBS nothing has to be done by the user on the MBS side. The node running the
GUI must get granted rsh access at least to the MBS node where the prompter shall run. Note, however
that in the user’s MBS startup file (typically startup.scom) the m_daq_rate task must be started
as last task (this is probably the case already). This task calculates the rates. The GUI waits for this task
after execution of the startup file. Because MBS has no states there is no other way to know when the
startup has finished. Of cause, the MBS itself must have been built with the DIM option (since version
v5.1). Central log file is written as usual. Optionally one can provide a text file with specifications which
parameters shall be published by DIM (see 5.3.1, page 36).

For the standard MBS control one needs no DABC installation. The GUI jar file is sufficient. DIM must
be installed. See installation guide on the download page.

5.1.2 MBS control panel

Fig. 5.1, page 32 shows the panel to be used to control a standard MBS. The values are restored from file
MbsControl.xml (default, may be saved to other file, see 4.3, page 30). The file MbsControl.xml
can be created easily in the GUI itself by filling the input fields of the control panel and save.

<?xml version="1.0" encoding="utf-8"?>
<MbsLaunch>
<MbsMaster prompt="MBS Master" value="node-xx" />
<MbsUserPath prompt="MBS User path" value="myMbsDir" />
<MbsSystemPath prompt="MBS system path" value="/mbs/v51" />
<MbsStartup prompt="MBS startup" value="startup.scom"/>
<MbsShutdown prompt="MBS shutdown" value="shutdown.scom"/>
<MbsCommand prompt="Script command" value="whatever command" />
<MbsServers prompt="%Number of needed DIM servers%" value="3" />

31

32 DABC User Manual: MBS GUI

Figure 5.1: MBS controller.

</MbsLaunch>

MbsMaster : Lynx node where the MBS prompter is started.
MbsUserPath : MBS user working directory. The GUI need not to have access to that filesystem.
MbsSystemPath : Path on Lynx where the MBS is installed. GUI needs no access to this path.
MbsStartup : The user specific MBS startup command procedure, typically startup.scom, located

on user path.
MbsShutdown : The user specific MBS shutdown command procedure, typically shutdown.scom,

located on user path.
MbsCommand : With RET an MBS command in executed (on current node). The shell script button

executes this string as rsh command on master node.
MbsServers : Number of nodes plus prompter. This information is minimum for the GUI to know when

all MBS nodes are up. The GUI waits until this number of DIM servers is up and running.

That file can be created from within the GUI in the MBS controller panel. Enter all values necessary, and
store them.

5.1.2.1 MBS controller buttons

Save panel settings, see 4.3, page 30.

Execute script prmstartup.sc at master node. Starts prompter, dispatchers and message loggers
and waits until they are up. Trigger the main Update. A progress panel pops up during that time (see
4.2.3, page 25).

Execute script dimstartup.sc at master node. Starts dispatcher and message logger for single
node MBS. Trigger the main Update.

Configure. Execute user’s MBS startup procedure in prompter (dispatcher). Wait for all m_daq_rate
tasks are running. Trigger the main Update.

Start acquisition. Execute Start acquisition. Wait for all acquisition states go into Running.

Pause acquisition. Execute Stop acquisition. Wait for all acquisition states go into Stopped.

5.1. MBS event building 33

Halt acquisition. Execute user’s MBS shutdown procedure in prompter. Prompter, dispatcher and
message loggers should still be running.

Shut down all. Execute script prmshutdown.sc at master node. After 2 seconds trigger the main
Update.

Show acquisition. Output in log panel.

Shell script executes command on master node.

5.1.3 MBS command panel

Figure 5.2: Command panel.

Fig. 5.2, page 33 shows on the left side the command tree. Double click (or RETURN) on a command
executes the command. The top tree level is the executing MBS task, below that are the commands, and
the master node (prompter node) is the only node below each command. However, command is sent to
the prompter node, but executed on the current node which is displayed in the info panel (see Fig. 5.4,
page 34). Click on a command opens at the right side the argument panel. Entering argument values and
RETURN executes the command.

Only the MBS commands of the running tasks are shown. Fig. 5.3, page 34 shows that only dispatcher
and prompter are up and therefore only their commands are seen. Fig. 5.4, page 34 shows in addition
the commands of util and transport after configuration.

34 DABC User Manual: MBS GUI

Figure 5.3: Info and command panel.

Figure 5.4: Info and command panel.

5.2 MBS DIM parameters

5.2.1 MBS states

Acquisition/State Running | Stopped
BuildingMode/State Delayed | Immediate
EventBuilding/State Working | Suspended
FileOpen/State File open | File closed
RunMode/State DABC connected | MBS to DABC | Transport client | MBS standalone
SpillOn/State Spill ON | Spill OFF

5.2. MBS DIM parameters 35

TriggerMode/State Master | Slave

5.2.2 MBS rates

MSG/DataRateKb KByte/s
MSG/DataTrendKb KBytes/s as trend
MSG/EventRate Events/s
MSG/EventTrend Events/s as trend
MSG/EvSizeRateB Event size sample in bytes
MSG/EvSizeTrendB Event size sample in bytes
MSG/StreamRateKb Stream server Kbyte/s
MSG/StreamTrendKb Stream server Kbyte/s as trend
MSG/FileFilled File filled in percent
MSG/StreamsFull Number of full streams in percent
MSG/TriggerRate Trigger/s of readout tasks
MSG/TriggernnRate (nn=01...15) Trigger/s type nn of readout tasks

5.2.3 MBS histograms

Shown in histo window.

MSG/TrigCountHis Histogram with 16 channels for counts of trigger types (0 = total) as seen by the
readout task.

MSG/TrigRateHis Histogram with 16 channels for count rates of trigger types (0 = total) as seen by
the readout task.

5.2.4 MBS infos

Shown in info window.

MSG/eFile Name of file.
MSG/ePerform Events, MBytes, Events/s and MBytes/s.
MSG/eSetup Name of setup file loaded.
PRM/Current Current command execution node (master node only).
PRM/NodeList List of nodes (master node only).

5.2.5 MBS tasks

Task list is shown in info window (name slightly different):

Dispatch Msg_Log Read_Meb Collector Transport Event_Serv Util Read_Cam Esone_Serv Stream_Serv
Histogram Prompt Rate SMI Sender Receiver Asynch_Receiver Rising Time_Order Vme_Serv

5.2.6 MBS text

MSG/GuiNode Node where GUI runs
MSG/Date Date as written in file header
MSG/Run Run ID as written in file header
MSG/Experiment Experiment as written in file header
MSG/User Lynx user name as written in file header

36 DABC User Manual: MBS GUI

MSG/Platform CPU platform

5.2.7 MBS numbers

MSG/BufferSize
MSG/Buffers collected so far.
MSG/Events collected so far.
MSG/FileMbytes written in file.
MSG/FlushTime
MSG/MBytes collected so far.
MSG/StreamKeep
MSG/StreamMbytes
MSG/StreamScale
MSG/StreamSync
MSG/UserVal_nn (nn=00...15) These values can be set in the user readout function.
MSG/TriggernnCount (nn=01...15) Trigger counts type nn of readout tasks.

5.3 Working directories

5.3.1 MBS configuration of DIM

Optional text file dimsetup in the MBS working directory specifies which rate meters, histograms or
states shall appear in the GUI. Upper limits of the rate meters can be specified. This file can be copied
from $MBSROOT/set/dimsetup. Only the parameters which are in this file are optional.

Note, that a file name of an open lmd file is only displayed when either FileOpen or FileFilled is selected
for this node.

This file controls the rate meter and state appearance.
File name must be dimsetup and in the MBS working directory.
The value numbers are the maximum values for rate meters
Colons only if value is specified!
Node names must be uppercase, * wildcards all

##========= All nodes:
##---- Rates:

* EventRate : 10000.
#* EventTrend : 10000.

* DataRateKb : 16000.
#* DataTrendKb : 16000.
#* StreamRateKb : 16000.
#* StreamTrendKb : 16000.
#* EvSizeRateB : 128.
#* EvSizeTrendB : 128.
++ File filling status in percent, typically only on one node (transport)
#* FileFilled : 100.
#* StreamsFull : 100.
#* TriggerRate : 10000.
++ Trigger rates for the individual triggers: 01...15
#* Trigger01Rate : 10000.

##---- States:

5.3. Working directories 37

++ Delayed or immediate event building:

* BuildingMode
++ Current eventbuilding running or suspended:

* EventBuilding
++ Shows spill signal:
#* SpillOn
++ Shows if file is open, typically only on one node (transport)
#* FileOpen
++ Show trigger master
#* TriggerMode

##---- User integers from daqst, 00...15
can be set by f_ut_set_daqst_user(index,value);
#* UserVal_00
#* TriggerCount
++ Trigger counts for the individual triggers: 01...15
#* Trigger01Count

##---- Histograms
#* TrigCountHis
#* TrigRateHis

##======== Node XXX (uppercase)
#XXX EventRate : 10000.
#XXX DataRateKb : 16000.
#XXX FileOpen
#XXX FileFilled : 100.
#XXX SpillOn
#XXX EventTrend : 10000.
#XXX DataTrendKb : 16000.
#XXX TriggerMode

38 DABC User Manual: MBS GUI

Chapter 6

DABC User Manual: DABC Application
MBS

[user/user-app-mbs.tex]

6.1 MBS event building with DABC

In this case one DABC node reads data from several MBS nodes via Transport socket connections, and combines
them into one MBS output event.

To run MBS front-ends with DABC nodes as event builders some modifications of the MBS setup files must be
done. For the DABC side setup files must be provided.

6.1.1 MBS setup

When we want to use DABC nodes as event builders, we need a different setup on the MBS side. We assume that
we have more than one MBS node. Such a multi-node system is controlled by an MBS prompter running on one
node.

• The setup has to be changed such that all nodes run as if they are stand alone (this is done typically by setting
COL_MODE to 0 in the usf setup file). That means that each node must run the Readout - Collector - Transport
- Daq_rate chain. The DABC event builders connect to the transports.

• The MBS buffer size should be set to the stream size and the number of buffers per stream must be set to one.

6.1.2 DABC setup

On the DABC user working directory we need configuration files.

Summary of parameters:

MbsFileName File name for list mode data file (LMD). Overwritten by command.
MbsFileSizeLimit File closes when size is reached, and new file opens.
BufferSize Should match MBS buffer size.
MbsServerKind Transport | Stream.
MbsServerPort Port number transport (6000).
MbsServerName MBS node of transport.
NumInputs Number of MBS channels for one combiner.
DoFile Provide output file.
DoServer Provide server.

39

40 DABC User Manual: DABC Application MBS

These parameters are used to configure an optional event generator:

NumSubevents
FirstProcId
SubeventSize
Go4Random

The following example configuration file $DABCSYS/applications/mbs/Combiner.xml shows how to
configure one combiner module reading from two MBS transport servers. A simple setup looks like this:

<?xml version="1.0"?>
<dabc version="1">
<Context host="localhost" name="MbsEb">
<Run>
<lib value="libDabcMbs.so"/>
<func value="StartMbsCombiner"/>

</Run>
<Module name="Combiner">

<NumInputs value="2"/>
<DoFile value="false"/>
<DoServer value="true"/>
<BufferSize value="16384"/>
<Port name="Input0">

<MbsServerKind value="Transport"/>
<MbsServerName value="X86-xx"/>
<MbsServerPort value="6000"/>

</Port>
<Port name="Input1">

<MbsServerKind value="Transport"/>
<MbsServerName value="X86-yy"/>
<MbsServerPort value="6000"/>

</Port>
<Port name="FileOutput">

<OutputQueueSize value="5"/>
<MbsFileName value="combiner.lmd"/>
<MbsFileSizeLimit value="128"/>

</Port>
<Port name="ServerOutput">

<MbsServerKind value="Stream"/>
</Port>

</Module>
</Context>

</dabc>

We have one node (Context) with a simple run function StartMbsCombiner() that uses a single Module to do the
event combination from two input Ports. The node names and other parameters of the external MBS connec-
tions are specified in the MbsServerName properties of these ports. Of course the MBS setup must match these
definitions.

There are two output Ports in parallel here: A FileOutput that writes into a *.lmd file as specified in the property
MbsFileName; and a ServerOutput that offers a standard MBS stream server for a monitoring program. A full
description is in Programmer Manual section 14.8, page 101.

Now we can use the combined controller panel to startup MBS and DABC.

6.1. MBS event building with DABC 41

Figure 6.1: Combined DABC and MBS controller.

6.1.3 Combined DABC and MBS control panel

This panel shown in Fig. 6.1, page 41 is simply a superposition of the single ones. Here the Context name of the
DABC node and the DABC setup file name must be specified. Number of DABC servers is one.

6.1.3.1 Combined DABC and MBS controller buttons

Save panel settings, see 4.3, page 30.

Execute script dabcstartup.sc at DABC master node. Starts DIM servers. Execute script prmstartup.sc
at MBS master node. Starts prompter, dispatchers and message loggers. Waits for all components (Sum of DIM
servers) are running. A progress panel pops up during that time (see 4.2.3, page 25). If all components are up
trigger the main Update.

Configure. Execute user’s MBS startup procedure in prompter. Waits for all MBS Daq_rate tasks are run-
ning. Executes state transition command Configure on DABC master node and wait for the transition. All plug-in
components are created. Then execute Enable. If all components are up trigger the main Update.

Start MBS acquisition, wait for all acquisition states Running, then execute DABC Start command. All
components go into running state Running.

Pause acquisition. Execute MBS stop acquisition, wait for all acquisition states Stopped. Execute DABC
Stop command. All components go into standby state Ready.

Halt acquisition. Executes DABC Halt command. This closes all plug-ins. States go into Halted. Execute

42 DABC User Manual: DABC Application MBS

user’s MBS shutdown procedure in prompter. Prompter, dispatcher and message loggers should still be running.
Next must be shut down or configure. After two seconds trigger the main Update.

Shut down all. Execute EXIT command on all DABC nodes. Execute script prmshutdown.sc at MBS
master node. After two seconds trigger the main Update.

MBS Show acquisition. Output in log panel.

Shell script for MBS master node.

Shell script for DABC master node.

6.2 MBS and DABC with Bnet

The following example configuration file $DABCSYS/applications/bnet-mbs/SetupBnetMbs.xml
shows how to configure two DABC nodes reading from two MBS transport servers and two event builder nodes.
Another node is used as controller.

The example setup file shows two techniques: first the use of XML variables which are set at the beginning, and
can then be referenced, second the specification of default values for parameters of contexts or modules.

<?xml version="1.0"?>
<dabc version="1">
<!-- Enter the values for specific setup -->
<Variables>

<ctrl value="lxg0523"/>
<mbs1 value="r3g-100"/>
<mbs2 value="r3g-101"/>
<read1 value="lx1001"/>
<read2 value="lx1002"/>
<eb1 value="lx1003"/>
<eb2 value="lx1004"/>
<bufsize value="65536"/>
<custport value="6000"/>

</Variables>
<Context host="${ctrl}" name="Controller">
<Run>
<lib value="${DABCSYS}/lib/libDabcBnet.so"/>
<runfunc value="RunTestBnet"/>

</Run>
<Application class="bnet::Cluster">

<NetDevice value="dabc::SocketDevice"/>
<CtrlBuffer value="2048"/>
<TransportBuffer value="${bufsize}"/>
<NumEventsCombine value="1"/>

</Application>
</Context>
<Context host="${read1}" name="Read1">
<Application class="bnet::MbsWorker">

<NumReadouts value="1"/>
<Input0Cfg value="${mbs1}"/>

</Application>
</Context>
<Context host="${read2}" name="Read2">
<Application class="bnet::MbsWorker">

<NumReadouts value="1"/>

6.2. MBS and DABC with Bnet 43

<Input0Cfg value="${mbs2}"/>
</Application>

</Context>
<Context host="${eb1}" name="Build1"/>
<Context host="${eb2}" name="Build2"/>
<Defaults>

<Context name="*">
<Run>

<logfile value="${Context}.log"/>
<loglevel value="1"/>
<cpuinfo value="1"/>

</Run>
<Module name="*">

<Ratemeter name="Data*" lower="0" upper="20"/>
<Ratemeter name="Event*" lower="0" upper="20000"/>

</Module>
</Context>
<Context name="Read*">

<Run>
<lib value="libDabcBnet.so"/>
<lib value="libDabcMbs.so"/>
<lib value="libBnetMbs.so"/>

</Run>
<Application class="bnet::MbsWorker">

<IsSender value="true"/>
<ReadoutBuffer value="${bufsize}"/>

</Application>
<Module name="Combiner">

<Port name="Input*">
<MbsServerPort value="${custport}"/>
<InputQueueLength value="20"/>

</Port>
</Module>

</Context>
<Context name="Build*">

<Run>
<lib value="libDabcBnet.so"/>
<lib value="libDabcMbs.so"/>
<lib value="libBnetMbs.so"/>

</Run>
<Application class="bnet::MbsWorker">

<IsReceiver value="true"/>
<IsFilter value="false"/>
<EventBuffer value="${bufsize}"/>

</Application>
</Context>

</Defaults>
</dabc>

With the same setup of the two MBS nodes as before we can run this example. In the DABC control panel we only
have to change the number of DABC servers (5), and the name of the setup file.

44 DABC User Manual: DABC Application MBS

Chapter 7

DABC User Manual: DABC Application
Bnet

[user/user-app-bnet.tex]

7.1 DABC eventbuilder network (BNET)

The full functionality of DABC is shown in the case that the DAQ uses an event building network (BNET),
transferring the partial data from n readout nodes to m event building nodes, such that each event builder can work
on the full detector data. This scenario is discussed in detail in chapter 15, page 113 of the DABC programmer’s
manual. Appropriate configuration files can be found at
$DABCSYS/applications/bnet-test directory. An example setup file SetupBnet.xml may look like
this:

<?xml version="1.0"?>
<dabc version="1">
<Context host="localhost" name="Controller:41">
<Run>

<runfunc value="RunTestBnet"/>
</Run>
<Application class="bnet::Cluster">

<NetDevice value="dabc::SocketDevice"/>
</Application>

</Context>
<Context host="lxi009" name="Worker1:42"/>
<Context host="lxi010" name="Worker2:42"/>
<Context host="lxi011" name="Worker3:42"/>
<Context host="lxi012" name="Worker4:42"/>
<Defaults>
<Context name="*">
<Run>
<logfile value="test${DABCNODEID}.log"/>
<loglevel value="1"/>
<lib value="libDabcBnet.so"/>

</Run>
</Context>
<Context name="*Worker*">

<Run>
<lib value="${DABCSYS}/applications/bnet-test/libBnetTest.so"/>

45

46 DABC User Manual: DABC Application Bnet

</Run>
<Application class="bnet::TestWorker">
<IsGenerator value="true"/>
<IsSender value="true"/>
<IsReceiver value="true"/>
<NumReadouts value="4"/>

</Application>
</Context>

</Defaults>
</dabc>

The setup of such BNET contains several <Context> nodes. Generally, the BNET has two types of nodes:

• One "Controller" node that has a master controller functionality, implemented in the <Application> of class
"bnet::Cluster". The controller node must be specified at the DABC GUI setup to receive the direct cluster
control commands, e. g. state machine transitions commands. In the DABC BNET framework, the controller
also keeps a general parameter <NetDevice> for the data connection device of the entire DAQ cluster; this can
be "dabc::SocketDevice" for tcp/ip, or "verbs::Device" for an InfiniBand cluster.

• Several "Worker" nodes of an experiment specific <Application>. They may be configured for different jobs
in the BNET; this example provides an Application class "bnet::TestWorker" with some boolean parameters to
define the functionality.

Note the usage of wildcards "*" in the <Context> names to define properties that should be valid for all nodes
matching the pattern, e. g. the libraries to load, or the common application setup for all worker nodes. Here
there are 4 workers which all produce random event data (enabled in <IsGenerator>), and all send their data to
all others (enabled in <IsSender>). In parallel, they all receive data from the other workers to build the complete
event (enabled in <IsReceiver>).

Such BNET setup is best started by means of the DABC GUI. The name of the controller <Context> node and
the setup file name must be specified in the control panel of the GUI (see section 4.2.2, page 23). Then all nodes

can be started just by the "Launch" button . The configuration and run control of the nodes is done by the state
machine buttons of the control panel.

7.2 DABC eventbuilder network (BNET) with MBS

A more realistic example of a BNET uses data which is read from n external MBS nodes, each connected to one
DABC readout node, and transferred to m DABC eventbuilder nodes. Example file
$DABCSYS/applications/bnet-mbs/SetupBnetMbs.xml shows the configuration for an MBS event
building with 2 DABC readout nodes, connected with 2 MBS nodes each (simulated by DABC generator modules
here), and 2 DABC event builder nodes. A detailled description of this setup is given in section 15.9, page 117
of the DABC programmer manual. The usage of such configuration is similar to the BNET example as described
above in section 7.1, page 45: The list of <Context> nodes (or the corresponding <Variables>, resp.) must be
edited for the actual node names. Additionally the names of the MBS nodes for readout should be specified. Then
the BNET setup may be launched and controlled by the DABC GUI.

Chapter 8

DABC User Manual: Application ROC

[user/user-app-roc.tex]

8.1 DABC as MBS data server

The use case here is that a single DABC node should provide data in the MBS event format on a server socket to be
used by external analysis and monitoring programs like Go4 [1]. The event data can be simulated by a generator
module. A practical case is to read data from any front-ends and format it like MBS events. This method is used
by the ROC readout.

For the random event generator, such set-up looks like this:

<?xml version="1.0"?>
<dabc version="1">
<Context host="lxi009" name="Server">
<Run>

<lib value="libDabcMbs.so"/>
<func value="InitMbsGenerator"/>

</Run>
<Module name="Generator">

<NumSubevents value="3"/>
<FirstProcId value="77"/>
<SubeventSize value="128"/>
<Go4Random value="false"/>
<BufferSize value="16384"/>
<Port name="Output">

<OutputQueueSize value="5"/>
<MbsServerKind value="Stream"/>
<MbsServerPort value="6006"/>

</Port>
</Module>

</Context>
</dabc>

There is only one Context node, specified by the nodename, with one simple C function InitMbsGenerator() to
run, and with one Module that produces the event data as specified in its parameters. The data server is specified
by parameters of the Output Port: The tag MbsServerKind can be Stream or Transport to emulate either variant
of the standard MBS server sockets. A complete description of this example can be found in Programmer Manual
section 14.7, page 99. The setup files for standard MBS use cases can be found in directory

$DABCSYS/applications/mbs

47

48 DABC User Manual: DABC Application ROC

8.2 ROC event building

A more practical use case is to prepare data as MBS events that was read by DABC from external front-end
hardware. This is shown with the setup-file for the readout controller ROC example (see the full description of this
example in Programmer Manual chapter 16.1, page 119):

<?xml version="1.0"?>
<dabc version="1">
<Context name="Readout">
<Run>
<lib value="libDabcMbs.so"/>
<lib value="libDabcKnut.so"/>
<logfile value="Readout.log"/>

</Run>
<Application class="roc::Readout">
<DoCalibr value="0"/>
<NumRocs value="3"/>
<RocIp0 value="cbmtest01"/>
<RocIp1 value="cbmtest02"/>
<RocIp2 value="cbmtest04"/>
<BufferSize value="65536"/>
<NumBuffers value="100"/>
<TransportWindow value="30"/>
<RawFile value="run090.lmd"/>
<MbsServerKind value="Stream"/>
<MbsFileSizeLimit value="110"/>

</Application>
</Context>
</dabc>

Here the parameters are defined for the <Application> instance "roc::Readout" that controls the readout of 3 ROC
nodes via UDP, and combines the data into one MBS event by means of some internal Modules. Hence there is no
simple run function as before, the DABC runtime environment will call appropriate methods of the Application to
configure and run the set-up. Note that in this case the MBS data is not only provided to a stream server as defined
in <MbsServerKind>, but is also written to a *.lmd (list mode data) file which can be specified in application
parameter <RawFile>.

Both single node examples above do not require to be launched from the DABC GUI (although this is possible and
may be useful to monitor the data rates and actual parameters). They can be started directly from a shell by calling
the standard dabc_run executable with the configuration file name as argument: dabc_run Readout.xml.
This executable will load the specified libraries, create the application, configure it, and switch the system in the
Running state.

Part II

Programmer Manual

49

Chapter 9

DABC Programmer Manual: Overview

[programmer/prog-overview.tex]

9.1 Introduction

The DABC Programmer Manual describes the aspects of the Data Acquisition Backbone Core framework that
are necessary for programming user extensions. To begin with, this overview chapter explains the software objects
and their collaboration, the intended mechanisms for controls and configuration, the dependencies of packages and
libraries, and gives a short reference of the most important classes.

The following chapters contain full explanations of the DABC interface and service classes, describe the set-up
with parameters, and give a reference of the Java GUI plug-in possibilities.

Finally, some implementation examples are treated in detail to illustrate these issues: the adaption of the GSI
legacy DAQ system MBS within DABC; the application of a distributed event builder network (Bnet); the data
import via UDP from a readout controller board (ROC); and the use of a PCI express board (ABB).

9.2 Role and functionality of the objects

9.2.1 Modules

All processing code runs in module objects. There are two general types of modules:
the dabc::ModuleSync and the dabc::ModuleAsync.

9.2.1.1 Class dabc::ModuleSync

Each synchronous module is executed by a dedicated working thread. The thread executes a method MainLoop()
with arbitrary code, which may block the thread. In blocking calls of the framework (resource or port wait),
optionally command callbacks may be executed implicitly ("non strictly blocking mode"). In the "strictly blocking
mode", the blocking calls do nothing but wait. A timeout may be set for all blocking calls; this can optionally throw
an exception when the time is up. On timeout with exception, either the MainLoop() is left and the exception is then
handled in the framework thread; or the MainLoop() itself catches and handles the exception. On state machine
commands (e.g. Halt or Suspend, see section 9.3.1), the blocking calls are also left by exception, thus putting the
mainloop thread into a stopped state.

51

52 DABC Programmer Manual: Overview

9.2.1.2 Class dabc::ModuleAsync

Several asynchronous modules may be run by a shared working thread. The thread processes an event queue
and executes appropriate callback functions of the module that is the receiver of the event. Events are fired for
data input or output, command execution, and if a requested resource (e.g. memory buffer) is available. The
callback functions must never block the working thread. Instead, the callback must return if further processing
requires to wait for a requested resource. Thus each callback function must check the available resources explicitly
whenever it is entered.

9.2.2 Commands

A module may register dabc::Command objects in the constructor and may define command actions by overwriting
a virtual command callback method ExecuteCommand.

9.2.3 Parameters

A module may register dabc::Parameter objects. Parameters are accessible by name; their values can be monitored
and optionally changed by the controls system. Initial parameter values can be set from xml configuration files.

9.2.4 Manager

The modules are organized and controlled by one manager object of class dabc::Manager; this singleton instance
is persistent independent of the application’s state. One can always access the manager via dabc::mgr() function.

The manager is an object manager that owns and keeps all registered basic objects into a folder structure.

Moreover, the manager defines the interface to the control system. This covers registering, sending, and receiving
of commands; registering, updating, unregistering of parameters; error logging and global error handling. The
virtual interface methods must be implemented in subclass of dabc::Manager that knows the specific controls
framework.

The manager receives and dispatches commands to the destination modules where they are queued and eventually
executed by the modules threads (see section 9.2.1). The manager has an independent manager thread, used for
manager commands execution, parameters timeout processing and so on.

9.2.5 Memory and buffers

Data in memory is referred by dabc::Buffer objects. Allocated memory areas are kept in
dabc::MemoryPool objects.

In general case dabc::Buffer contains a list of references to scattered memory fragments from memory pool.
Typically a buffer references exactly one segment. Buffer may have an empty list of references. In addition, the
buffer can be supplied with a custom header.

The auxiliary class dabc::Pointer offers methods to transparently treat the scattered fragments from the user point
of view (concept of "virtual contiguous buffer"). Moreover, the user may also get direct access to each of the
fragments.

The buffers are provided by one or several memory pools which preallocate reasonable memory from the operating
system. A memory pool may keep several sets, each set for a different configurable memory size. A modules
communicates with a memory pool via a dabc::PoolHandle object.

A new buffer may be requested from a memory pool by size. Depending on the module type and mode, this request
may either block until an appropriate buffer is available, or it may return an error value if it can not be fulfilled.
The delivered buffer has at least the requested size, but may be larger. A buffer as delivered by the memory pool is
contiguos.

9.3. Controls and configuration 53

Several buffers may refer to the same fragment of memory. Therefore, the memory as owned by the memory pool
has a reference counter which is incremented for each buffer that refers to any of the contained fragments. When
a user frees a buffer object, the reference counters of the referred memory blocks are decremented. If a reference
counter becomes zero, the memory is marked as "free" in the memory pool.

9.2.6 Ports

Buffers are entering and leaving a module through dabc::Port objects. Each port has a buffer queue of configurable
length. A module may have several input, output, or bidirectional ports. The ports are owned by the module.

Depending on the module type, there are different possibilities to work with the ports in the processing functions of
the module. These are described in section 12.2.5 for dabc::ModuleSync and section 12.2.6 for dabc::ModuleAsync
respectively.

9.2.7 Transport

Outside the modules the ports are connected to dabc::Transport objects. On each node, a transport may either
transfer buffers between the ports of different modules (local data transport), or it may connect the module port to
a data source or sink (e. g. file i/o, network connection, hardware readout).

In the latter case, it is also possible to connect ports of two modules on different nodes by means of a transport
instance of the same kind on each node (e. g. InfiniBand verbs transport connecting a sender module on node A
with a receiver module on node B via a verbs device connection).

9.2.8 Device

A transport belongs to a dabc::Device object of a corresponding type that manages it. Such a device may have
one or several transports. The threads that run the transport functionality are created by the device. If the
dabc::Transport implementation shall be able to block (e. g. on socket receive), there can be only one trans-
port for this thread.

A dabc::Device instance usually represents an I/O component (e. g. network card); there may be more than one
dabc::Device instances of the same type in an application scope. The device objects are owned by the manager
singleton; transport objects are owned and managed by their corresponding device.

A device is persistent independent of the connection state of the transport. In contrast, a transport is created during
connect() or open() and deleted during disconnect() or close(), respectively.

A device may register parameters and define commands. This is the same functionality as available for modules.

9.2.9 Application

The dabc::Application is a singleton object that represents the running application of the DAQ node (i. e. one per
system process). It provides the main configuration parameters and defines the runtime actions in the different con-
trol system states (see section 9.3.1). In contrast to the dabc::Manager implementation that defines a framework
control system (e.g. DIM, EPICS), the subclass of dabc::Application defines the experiment specific behaviour of
the DAQ.

9.3 Controls and configuration

9.3.1 Finite state machine

The running state of the DAQ system is ruled by a Finite State Machine [6] on each node of the cluster. The
manager provides an interface to switch the application state by the external control system. This may be done by

54 DABC Programmer Manual: Overview

calling state change methods of the manager, or by submitting state change commands to the manager.

The finite state machine itself is not necessarily part of the manager, but may be provided by an external control
system. In this case, the manager defines the states, but does not check if a state transition is allowed. However,
the DABC core system offers a native state machine to be used in the controls implementation; it can be activated
in the constructor of the dabc::Manager subclass by method InitSM().

Some of the application states may be propagated to the active components (modules, device objects), e.g. the
Running or Ready state which correspond to the activity of the thread. Other states like Halted or Failure do not
match a component state; e.g. in Halted state, all modules are deleted and thus do not have an internal state. The
granularity of the control system state machine is not finer than the node application.

DoConfigure DoEnable DoStart

DoStop

DoHaltDoHalt

DoHalt
F X

H C E R

DoError

Figure 9.1: The finite state machine as defined by the manager.

There are 5 generic states to treat all set-ups:

Halted : The application is not configured and not running. There are no modules, transports, and devices existing.
Configured : The application is mostly configured, but not running. Modules and devices are created. Local port

connections are done. Remote transport connections may be not all fully connected, since some connections
require active negotiations between different nodes. Thus, the final connecting is done between Configured
and Ready.

Ready : The application is fully configured, but not running (modules are stopped).
Running : The application is fully configured and running.
Failure : This state is reached when there is an error in a state transition function. Note that a run error during the

Running state would not lead to Failure, but rather to stop the run in a usual way (to Ready).

The state transitions between the 5 generic states correspond to commands of the control system for each node
application:

DoConfigure : between Halted and Configured. The application plug-in creates application specific devices,
modules and memory pools. Application typically establishes all local port connections.

DoEnable : between Configured and Ready. The application plug-in may establish the necessary connections
between remote ports. The framework checks if all required connections are ready.

DoStart : between Ready and Running. The framework automatically starts all modules, transport and device
actions.

DoStop : between Running and Ready. The framework automaticall stops all modules, transport and device

9.4. Package and library organisation 55

actions, i.e. the code is suspended to wait at the next appropriate waiting point (e.g. begin of MainLoop(),
wait for a requested resource). Note: queued buffers are not flushed or discarded on Stop !

DoHalt : switches states Ready , Running , Configured, or Failure to Halted. The framework automatically deletes
all registered objects (transport, device, module) in the correct order. However, the user may explicitly
specify on creation time that an object shall be persistent (e.g. a device may be kept until the end of the
process once it had been created).

9.3.2 Commands

The control system may send (user defined) commands to each component (module , device, application). Execu-
tion of these commands is independent of the state machine transitions.

9.3.3 Parameters for configuration and monitoring

The Configuration is done using parameter objects. The manager provides an interface to register parameters to
the configuration/control system.

On application startup time, the configuration system may set the parameters from a configuration file (e.g. XML
configuration files). During the application lifetime, the control system may change values of the parameters by
command. However, since the set up is changed on DoConfigure time only, it may be forbidden to change true
configuration parameters except when the application is Halted. Otherwise, there would be the possibility of a
mismatch between the monitored parameter values and the really running set up. However, the control system may
change local parameter objects by command in any state to modify minor system properties independent of the
configuration set up (e.g. switching on debug output, change details of processing parameters).

The current parameters may be stored back to the XML file.

Apart from the configuration, the control system may use local parameter objects for Monitoring the components.
When monitoring parameters change, the control system is updated by interface methods of the manager and may
refresh the GUI representation. Chapter 13 will explain the usage of parameters for configuration in detail.

9.4 Package and library organisation

The complete system consists of different packages. Each package is represented by a subproject of the source
code with own namespace. There may be one or more shared libraries for each package. Main packages are as
follows:

9.4.1 Core system

The Core system package uses namespace dabc::. It defines all base classes and interfaces, and implements basic
functionalities for object organization, memory management, thread control, and event communication. Section
9.5.1 gives a brief overview of the Core system classes.

9.4.2 Control and configuration system

Depends on the Core system. Defines functionality of state machine, command transport, parameter monitoring
and modification. Implements the connection of configuration parameters with a database (i.e. a file in the trivial
case). Interface to the Core system is implemented by subclass of dabc::Manager.

Note that default implementations of state machine and a configuration file parser are already provided by the Core
system.

56 DABC Programmer Manual: Overview

DABC Base

User

Plug-ins

User Application

DIM

DIM Ctrl

X
M

L
 C

o
n

fig
Java GUI

BNET

User GUI

verbs
PCI

sockets

C
o

n
tro

ls

MBS

U
ser C

o
n

fig
u

ratio
n

Figure 9.2: Schematic view of the distributed DABC components (coloured) and user specific extensions (white)

9.4.3 Plugin packages

Plugin packages may provide special implementations of the core interface classes:
dabc::Device, dabc::Transport, dabc::Module, or dabc::Application. Usually, these classes are made available
to the system by means of a corresponding dabc::Factory that is automatically registered in the dabc::Manager
when loading the plugin library.

When installed centrally, the Plugin packages are kept in subfolders of the $DABCSYS/plugins directory.
Alternatively, the Plugin packages may be installed in a user directory and linked against the Core system instal-
lation.

9.4.3.1 Bnet package

This package uses namespace bnet::. It depends on the Core system and implements modules to cover a generic
event builder network. It defines interfaces (virtual methods) of the special Bnet modules to implement user
specific code in subclasses. The Bnet package provides a factory to create specific Bnet modules by class name. It
also provides application classes to define generic functionalities for worker nodes (bnet::WorkerApplication) and
controller nodes (bnet::ClusterApplication). These may be used as base classes in further Application packages.
Section 9.5.2 gives a brief overview of the Bnet package classes; chapter 15 describes an example using the Bnet
plugins.

9.4.3.2 Transport packages

Depend on the Core system, and may depend on external libraries or hardware drivers. Implement dabc::Device
and dabc::Transport classes for specific data transfer mechanism, e.g. verbs or tcp/ip socket. May also implement
dabc::Device and dabc::Transport classes for special data input or output. Each transport package provides a

9.5. Main Classes 57

factory to create a specific device by class name.

However, the most common transport implementations are put directly to the Core system, e.g. local memory, or
socket transport; the corresponding factory is part of the Core system then.

9.4.4 Application packages

They depend on the Core system, and may depend on several transport packages, on the Bnet package, or other
plugin packages. They may also depend on other application packages. Application packages provide the actual
implementation of the core interface class dabc::Application that defines the set-up and behaviour of the DAQ
application in different execution states. This may be a subclass of specific existing application (e.g. subclass of
bnet::WorkerApplication). Additionally, they may provide experiment specific dabc::Module classes.

When installed centrally, the Application packages are kept in subfolders of the
$DABCSYS/applications directory. Alternatively, an Application package may be installed in a user direc-
tory and linked against the Core system installation and the required Plugin packages.

9.4.5 Distribution contents

The DABC distribution contains the following packages:

Core system : This is plain C++ code and independent of any external framework.
Bnet plugin : Depends on the core system only.
Transport plugins : Network transport for tcp/ip sockets and InfiniBand verbs. Additionally, transports for GSI

Multi Branch System MBS connections (socket, filesystem) is provided. Optionally, example transport
packages may be installed that illustrate the readout of a PCIe board, or data taking via UDP from an
external readout controller (ROC) board.

Control and configuration system : The general implementation is depending on the DIM framework only. DIM
is used as main transport layer for commands and parameter monitoring. On top of DIM, a generic record
format for parameters is defined. Each registered command exports a self describing command descriptor
parameter as DIM service. Configuration parameters are set from XML setup files and are available as DIM
services.

GUI A generic controls GUI using the DIM record and command descriptors is implemented with Java. It may
be extendable with user defined components.

Application packages : some example applications, such as:
◦ Simple MBS event building
◦ Bnet with switched MBS event building
◦ Bnet with random generated events

9.5 Main Classes

9.5.1 Core system

The most important classes of the DABC core system are described in the following.

dabc::Basic : The base class for all objects to be kept in DABC collections (e. g. dabc::Folder).

dabc::Command : Represents a command object. A command is identified by its name which it keeps as text
string. Additionally, a command object may contain any number of arguments (integer, double, text). These
can be set and requested at the command by their names. The available arguments of a special command
may be exported to the control system as dabc::CommandDefinition objects. A command is sent from a
dabc::CommandClient object to a dabc::CommandReceiver object that executes it in its scope. The result
of the command execution may be returned as a reply event to the command client. The manager is the
standard command client that distributes the commands to the command receivers (i.e. module , manager,
or device). See chapter 11.3 for more details on the command mechanisms.

58 DABC Programmer Manual: Overview

dabc::Device

verbs::Device

dabc::SocketDevice

abb::Device

pci::BoardDevice

pci::Transport

dabc::DataIOTransport

dabc::DataInput

dabc::NetworkTransport

dabc::SocketTransport

dabc::Transport

verbs::Transport

dabc::DataTransport

bnet::SenderModule

dabc::WorkingThreaddabc::WorkingProcessor

dabc::Module

dabc::ModuleSync

verbs::Processor

dabc::SocketProcessor

dabc::ModuleAsync

dabc::SocketThread

verbs::Thread

mbs::LmdInput

mbs::CombinerModule

1*

1

*

association

inheritance

1

1

Figure 9.3: Simplified UML diagram of the most important DABC classes for active components. Framework
base classes are coloured in green. Some implementation examples are shown with other corresponding colours:
sockets, verbs, Bnet, PCI, and MBS . See text for details.

dabc::Parameter : Parameter object that may be monitored or changed from control system. Any
dabc::WorkingProcessor implementation may register its own parameters. Parameter can be used for con-
figuration of object at creation time (via configuration file), monitoring of object properties in GUI or ma-
nipulating of object properties at runtime, changing parameter values via controlling interface. Currently
supported parameter types are:

• dabc::IntParameter - simple integer value
• dabc::DoubleParameter - simple double value
• dabc::StrParameter - simple string value
• dabc::StateParameter - contains state record, e. g. current state of the finite state machine and associated

colour for gui representation
• dabc::InfoParameter - contains info record, e. g. system message and associated properties for gui

representation
• dabc::RateParameter - contains data rate record and associated properties for GUI representation. May

be updated in predefined time intervals.
• dabc::HistogramParameter - contains histogram record and associated properties for GUI representa-

tion.

dabc::WorkingThread : An object of this class represents a system thread. The working thread may execute one
or several jobs; each job is defined by an instance of dabc::WorkingProcessor. The working thread waits
on an event queue (by means of pthread condition) until an event for any associated working processor is

9.5. Main Classes 59

received; then the corresponding event action is executed by calling ProcessEvent() of the corresponding
working processor.

dabc::WorkingProcessor : Represents a runnable job. Each working processor is assigned to one working thread
instance; this thread can serve several working processors in parallel. In a special mode a processor can
also run its explicit main loop. dabc::WorkingProcessor is a subclass of dabc::CommandReceiver, i.e. a
working processor may receive and execute commands in its scope.

dabc::Module : A processing unit for one "step" of the dataflow. Is subclass of dabc::WorkingProcessor, i. e. the
module may be run by an own dedicated thread, or a working thread may execute several modules that are
assigned to it. A module has ports as connectors for the incoming and outgoing data flow.

dabc::ModuleSync : Is subclass of dabc::Module; defines interface for a synchronous module that is allowed
to block. User must implement virtual method MainLoop() that uses a dedicated working thread to run.
Method TakeBuffer() provides blocking access to a memory pool. Blocking methods dabc::ModuleSync::Send()
and dabc::ModuleSync::Receive() are used from the MainLoop() code to send (or receive) buffers over (or
from) a ports.

dabc::ModuleAsync : Subclass of dabc::Module; defines interface for an asynchronous module that must never
block the execution. Several dabc::ModuleAsync objects may be assigned to one working thread. User
must either re-implement virtual method ProcessUserEvent() wich is called whenever any event for this
module (i.e. this working processor) is processed by the working thread. Or the user may implement
callbacks for special events (e.g. ProcessInputEvent(), ProcessOutputEvent(), ProcessPoolEvent(),..) that
are invoked when the corresponding event is processed by the working thread. The events are dispatched
to these callbacks by the ProcessUserEvent() default implementation then. There are no blocking function
available in dabc::ModuleAsync; but the user must avoid any polling loops, waiting for resources - event
processing function must be returned as soon as possible.

dabc::Port : A connection interface between module and transport. From inside the module scope, only the
ports are visible to send or receive buffers by reference. Data connections between modules (i.e. transports
between the ports of the modules) are set up by the application using methods of dabc::Manager which
specify the full module/port names. For ports on different nodes, commands to establish a connection may
be send remotely (via controls layer, e.g. DIM) and handled by the manager of each node.

dabc::Transport : A producing or consuming entity for buffers, which it delivers to (or receives from, resp.) a
Module via the Port interface. As an example, dabc::NetworkTransport implements the transport between
modules on different nodes.

dabc::Device : Device class used for creation and configuration of transport objects. Is a subclass of
dabc::WorkingProcessor. The dabc::Transport and dabc::Device base classes have various implementa-
tions:

• dabc::LocalTransport and dabc::LocalDevice for memory transport within same process
• dabc::SocketTransport and dabc::SocketDevice for tcp/ip sockets
• verbs::Transport and verbs::Device for InfiniBand verbs connection
• pci::Transport and pci::BoardDevice for DMA I/O from PCI or PCIe boards

dabc::Manager : Is manager of everything in DABC. There is the only instance of manager in the process scope,
availible via dabc::mgr() or dabc::Manager::Instance() functions. It combines different roles:

1. It is a manager of all dabc::Basic objects in the process scope. Objects (e. g. modules, devices,
parameters) are kept in a folder structure and can be identified by full path name.

2. It defines the interface to the controls system (state machine, remote command communication, pa-
rameter export); this is to be implemented in a subclass. The manager handles the command and
parameter flow locally and remotely: commands submitted to the local manager are directed to the
command receiver where they shall be executed. If any parameter is changed, this is recognized by
the manager and optionally forwarded to the associated controls system. Current implementations of
manager are:
• dabc::Manager provides base manager functionality, can only be used for single-node application

without any controlling possibilities.
• dabc::StandaloneManager provides simple socket controls connection between several node in

multi-node cluster, cannot be used with GUI.

60 DABC Programmer Manual: Overview

• dimc::Manager Provides DIM [3] as transport layer for controlling commands. Additionally, pa-
rameters may be registered and updated automatically as DIM services. There is a general purpose
Java GUI for this implementation.

3. It provides interfaces for user specific plug-ins that define the actual set-up:
several dabc::Factory objects to create objects, and one dabc::Application object to define the state
machine transition actions.

dabc::Factory : Factory plug-in for creation of applications, modules, devices, transports and threads.

dabc::Application : Defines user actions on transitions of the finite state machine of the manager. Good place for
export of application-wide configuration parameters. May define additional commands.

9.5.2 BNET classes

The classes of the Bnet package, providing functionalities of the event builder network.

dabc::Application

bnet::SenderModule

dabc::ModuleSync dabc::ModuleAsync

bnet::MbsWorkerApplication

bnet::MbsGeneratorModule

association

inheritance

bnet::ClusterApplication

bnet::WorkerApplication

bnet::ReceiverModule

bnet::GeneratorModule

bnet::FormatterModule

bnet::BuilderModule

bnet::FilterModulebnet::MbsFormatterModule

bnet::MbsBuilderModule

bnet::MbsFilterModule

*

1

Figure 9.4: Simplified UML diagram of the Bnet classes: green - DABC base classes; dark green - Bnet interface
classes; magenta - Bnet implementation classes; yellow - MBS implementation example. See text for details.

bnet::ClusterApplication : Subclass of dabc::Application to run on the cluster controller node of the builder
network.

1. It implements the master state machine of the Bnet. The controlling GUI usually sends state machine
commmands to the controller node only; the Bnet cluster application works as a command fan-out
and state observer of all worker nodes.

9.5. Main Classes 61

2. It controls the traffic scheduling of the data packets between the worker nodes by means of a data flow
controller (class bnet::GlobalDFCModule). This controller module communicates with the Bnet
sender modules on each worker to let them send their packets synchronized with all other workers.

3. It may handle failures on the worker nodes automatically, e. g. by reconfiguring the data scheduling
paths between the workers.

bnet::WorkerApplication : Subclass of dabc::Application to run on the worker nodes of the builder network.

1. Implements the local state machine callbacks for each worker with respect to the Bnet functionality.
2. It registers parameters to configure the node in the Bnet, and methods to set and check these parame-

ters.
3. Defines factory methods CreateReadout(), CreateCombiner(), CreateBuilder(), CreateFilter(), Cre-

ateStorage() to be implemented in user specific subclass. These methods are used in the worker state
machine of the Bnet framework.

bnet::GeneratorModule : Subclass of dabc::ModuleSync. Framework class to fill a buffer from the assigned
memory pool with generated (i.e. simulated) data.

1. Method GeneratePacket(buffer) is to be implemented in application defined subclass (e. g.
bnet::MbsGeneratorModule) and is called frequently in module’s MainLoop().

2. Each filled buffer is forwarded to the single output port of the module.

bnet::CombinerModule : Subclass of dabc::ModuleSync. Framework prototype class to format inputs from
several readouts to one data frame (e.g. combine an event from subevent readouts on that node).

1. It provides memory pools handles and one input port for each readout connection
(either bnet::GeneratorModule or connection to a readout transport).

2. Creates output port for combined subevents.
3. The formatting functionality is to be implemented in method MainLoop() of user defined subclass

(e.g. bnet::MbsCombinerModule).

bnet::SenderModule : Subclass of dabc::ModuleAsync. Responsible for sending the subevents data frames to
the receiver nodes, according to the network traffic schedule as set by the Bnet cluster plugin.

1. It has one input port that gets the event packets (or time sorted frames) from the preceding Bnet
combiner module. The input data frames are buffered in the Bnet sender module and analyzed which
frame is to be sent to what receiver node. This can be done in a non-synchronized "round-robin"
fashion, or time-synchronized after a global traffic schedule as evaluated by the Bnet cluster plugin.

2. Each receiver node is represented by one output port of the Bnet sender module that is connected via
a network transport (tcp socket, InfiniBand verbs) to an input port of the corresponding Bnet receiver
node.

bnet::ReceiverModule : Subclass of dabc::ModuleAsync. Receives the data frames from the Bnet sender mod-
ules and sorts together packets, belonging to the same events (or time frames, resp.).

1. It has one input port for each sender node in the Bnet. The data frames are buffered in the Bnet
receiver module until the corresponding frames of all senders have been received; then received frames
are send sequentially to the output port.

2. It has exactly one output port. This is connected to the bnet::BuilderModule implementation that
performs the actual event building task.

bnet::BuilderModule : Subclass of dabc::ModuleSync. Framework prototype class to select and build a physics
event from the data frames of all Bnet senders as received by the receiver module.

1. It has one input port connected to the Bnet receiver module. The data frame buffers of all Bnet senders
are transferred serially over this port and are then kept as an internal std::vector in the Bnet builder
module.

2. Method DoBuildEvent() is to be implemented in user defined subclass
(e. g. bnet::MbsBuilderModule) and is called in module’s MainLoop() when a set of corresponding
buffers is complete.

3. It provides one output port that may connect to a Bnet filter module, or a user defined output or storage
module, resp.

4. The user has to implement the sending of the tagged events to the output port explicitly in his subclass.

62 DABC Programmer Manual: Overview

bnet::FilterModule : Subclass of dabc::ModuleSync. Framework prototype class to filter out the incoming
physics events according to the experiment’s "trigger conditions".

1. Has one input port to get buffers with already tagged physics events from the preceding Bnet builder
module.

2. Has one output port to connect a user defined output or storage module, resp.
3. Method TestBuffer(buffer) is to be implemented in user defined subclass (e. g. bnet::MbsFilterModule)

and is called in module’s MainLoop() for each incoming buffer. Method should return true if the event
is "good" for further processing.

4. Forwards "good" buffers to the output port and discards others.

Chapter 10

DABC Programmer Manual: Manager

[programmer/prog-manager.tex]

10.1 Introduction

The dabc::Manager is the central singleton object of the DABC framework. It combines a number of different
roles, such as:

◦ objects manager;
◦ memory pools manager;
◦ threads manager;
◦ commands dispatcher;
◦ run control state manager;
◦ plug-in manager for factories and application;
◦ implementation of control and configuration system

Although these functionalities internally could as well be treated in separate classes, dabc::Manager class defines
the common application programmer’s interface to access most of these features. Since the manager is a singleton,
these methods are available everywhere in the user code by means of the static handle dabc::mgr()->.

The following section 10.2 describes such interface methods to be used by the programmer of the Module, Trans-
port, Device, and Application classes. In contrast to this, section 10.3 gives a guide how to re-implement the
Manager class itself for a different control and configuration system. This should be seldomly necessary for the
common DAQ designer, but is added here as a reference and as useful insight into the DABC mechanisms.

10.2 Framework interface

10.2.1 General object management

All objects are organized in a folder structure and can be accessed by the full path name. However, for most
purposes it is recommended to rather use higher level Manager methods to cause some action(e. g. StartModule())
than to work directly with the primitive objects.

Module* FindModule(const char* name) : Access to a Module by name. Returns 0 if module does not exist.

Port* FindPort(const char* name) : Access to a Port by name. Returns 0 if port does not exist.

Device* FindDevice(const char* name) : Access to a Device by name. Returns 0 if device does not exist.

Device* FindLocalDevice() : Shortcut to get the "local device" that is responsible for basic transport mechanisms
like transport of buffers through the local memory.

63

64 DABC Programmer Manual: Manager

Factory* FindFactory(const char* name) : Access to a Factory by name. Returns 0 if factory does not exist.

WorkingThread* FindThread(const char* name, const char* required_class = 0) : Access to a WorkingThread
by name. The required_class string may be specified to check if the working thread implementation matches
the client intentions. Returns 0 if thread object does not exist, or if it does not fullfill required_class.

Application* GetApp() : Access to the unique Application Object of this node.

10.2.2 Factory methods

Since all DABC objects are provided by dabc::Factory plug-ins, the application programmer needs to invoke
corresponding factory methods to instantiate them. However, the factories themselves should not be accessed by
the user code (although the Manager offers a getter method, see section 10.2.1). Instead, creation and registration
of the key objects, like Module or Device, is done transparently by the Manager within specific creation methods.
These will scan over all existing factories whether the corresponding factory method can provide an object of the
requested class name. In this case the object is created, kept in the object manager, and may be addressed by its
full name later.

bool CreateModule(const char* classname, const char* modulename, const char* thrdname = 0) : Instantiate
a Module of class classname with the object name modulename. Optionally, the name of the working
thread thrdname may be specified that shall run this module. If a thread of this name is already exisiting, it
will be also applied for the new module; otherwise, a new thread of the name will be created. If thrdname
is not defined, DABC will use module name for it. Returns true or false depending on the instantiation
success.

bool CreateDevice(const char* classname, const char* devname) : Instantiate a Device of class classname with
the object name devname. Returns true or false depending on the instantiation success.

bool CreateTransport(const char* portname, const char* transportkind, const char* thrdname = 0) : Instanti-
ate a Transport of the specified kind transportkind (e. g. "mbs::ServerTransport") and connect it to the port
of full name portname (e. g. "Readout/Input1"). Kind can specify device name, which than create appro-
priate transport instance. Optionally the name of the working thread thrdname may be specified that shall
run this transport. If a thread of this name is already exisiting, it will be also applied for the new transport;
otherwise, a new thread of the name will be created. If thrdname is not defined, DABC will use a new
thread automatically with an internal name. Returns true or false depending on the instantiation success.

bool CreateApplication(const char* classname = 0, const char* appthrd = 0) : Instantiate the Application of class
classname. Optionally the name appthrd of the main application thread may be specified. Used in the main()
function of the DABC runtime executable on inititialization time.

10.2.3 Module manipulation

void StartModule(const char* modulename) : Enables the module of name modulename for processing. De-
pending on the Module type (synchronous or asynchronous, see section 9.2.1), this will start execution of
the MainLoop(), or activate processing of the queued events belonging to this module, resp.

void StopModule(const char* modulename) : Disables processing for the module of name modulename.

bool StartAllModules(int appid = 0) : Enables processing for all modules with apllication identifier number ap-
pid. The optional identifier may be set in the Module definition to select different kinds of modules here.
By default, this method will start all exisiting modules on this node. Returns true of false depending on
success.

bool StopAllModules(int appid = 0) : Disables processing for all modules with application identifier number ap-
pid. The optional identifier may be set in the Module definition to select different kinds of modules here.
By default, this method will stop all exisiting modules on this node. Returns true of false depending on
success.

bool DeleteModule(const char* modulename) : Deletes the module of name modulename. Returns true of false
depending on the deletion success.

10.2. Framework interface 65

bool IsModuleRunning(const char* modulename) : Method returns true if module of name modulename is run-
ning, i. e. its processing is enabled. If module does not exist or is not active, false is returned.

bool IsAnyModuleRunning() : Method returns false if no exisiting module is running anymore. Otherwise returns
true.

bool ConnectPorts(const char* port1name, const char* port2name, const char* devname=0) :
Connects module Port of full name port1name with another module Port of full name port2name. A full
port name consists of the module name and a local port name, separated by forward slash, e. g. "Read-
out3/Output", "CombinerModule/Input2". Optionally the Device name for the connection may be defined
with argument devname. By default, the ports are connected with a FIFO-like transport of queued Buffer
references in local memory, as managed by dabc::LocalDevice.

10.2.4 Thread management

bool MakeThreadForModule(Module* m, const char* thrdname = 0) :
Creates a thread for module m and assigns module to this thread. If thread name thrdname is not specified,
module name is used. Returns true of false depending on success.

bool MakeThreadFor(WorkingProcessor* proc, const char* thrdname = 0, unsigned startmode = 0) : Creates
thread for processor proc and assigns processor to this thread. If thread name thrdname is not specified, a
default name is used. Value of startmode specifies initial run state of the thread (currently, thread is started
if startmode > 0).

10.2.5 Command submission

bool Submit(Command* cmd) : This method generally submits a command cmd for execution. The command is
put in the queue of its command receiver working thread and is then asynchronously executed there. The
Manager will either forward the command to its receiver, if such is specified as command parameter; or the
Manager working thread itself will execute the command. Thus method does not block and returns true if it
accepts the command for execution, otherwise false. Manager commands queue can also be used to submit
command not only direct for manager, but also for any other object on local or remote node. For that one
from several following functions SetCmdReceiver should be used.

Command* SetCmdReceiver(Command* cmd, const char* itemname) :

Command* SetCmdReceiver(Command* cmd, Basic* rcv) :

Command* SetCmdReceiver(Command* cmd, const char* nodename, const char* itemname) :

Command* SetCmdReceiver(Command* cmd, int nodeid, const char* itemname) : Set receiver attribute of com-
mand cmd. The itemname is item name of the local node like "Module1". One can also specify nodename
or nodeid of the node, to which command should be submitted. Returns pointer on the command itself. One
can use SetCmdReceiver to submit command like:

dabc::mgr()->Submit(dabc::SetCmdReceiver(cmd, "Module1"));
dabc::mgr()->Submit(dabc::SetCmdReceiver(cmd, "Node1", "Module1"));
dabc::mgr()->Submit(cli.Assign(dabc::SetCmdReceiver(cmd, 0, "Module1")));

10.2.6 Memory pool management

bool CreateMemoryPool (
const char* poolname, unsigned buffersize, unsigned numbuffers,
unsigned numincrement, unsigned headersize, unsigned numsegments) : Instantiates a dabc::MemoryPool
of name poolname, with numbuffers buffers of size buffersize. If a pool of this name already exists, it will
be extended. The numincrement value specifies with how many buffers at once the memory pool can op-
tionally be extended on the fly. Optional arguments headersize and numsegments may define the buffer
header size, and the partition of the buffer segments, resp. The MemoryPool mechanisms are discussed in
detail in section 11.1. Method returns true or false depending on success.

66 DABC Programmer Manual: Manager

MemoryPool* FindPool(const char* name) : Access to memory pool by name name. Returns 0 if not found.

bool DeletePool(const char* name) : Delete memory pool of name name. Returns true or false depending on
success.

10.2.7 Miscellaneous methods

bool CleanupManager(int appid = 0) : Safely deletes all modules, memory pools and devices with specified
application id appid. The default id 0 effects on all user components. In the end all unused threads are also
destroyed.

virtual void DestroyObject(Basic* obj) : Deletes the referenced object obj in manager thread. Useful as safe
replacement for call "delete this".

void Print() : Displays list of running threads and modules on stdout.

10.3 Control system plug-in

For the common DABC usage, the provided standard control and configuration system, featuring DIM protocol
[3], XML setup files, and a generic Java GUI, will probably be sufficient. However, if e. g. an experiment control
system is already existing and the data acquisition shall be handled with the same means, it might be necessary to
adjust DABC to another controls and configuration framework. Moreover, future developments may replace the
current standard control system by a more powerful, or a more convenient one.

Because of this, the connection between the DABC core system and the control system implementation was
designed with a clear plug-in interface. Again the dabc::Manager class plays here a key role.

This section covers all methods and mechanisms for the control system plug-in. As an example, part 10.3.3
describes in detail the standard implementation as delivered with the DABC distribution .

10.3.1 Factory

A new control system plug-in is added into DABC by means of a dabc::Factory subclass that defines the method
bool CreateManagerInstance(const char* kind, dabc::Configuration* cfg). This method should create the appro-
priate dabc::Manager instance and return true if the name kind, as specified by the runtime environment, matches
the implementation. The default DABC runtime executable will also pass a configuration object cfg read from an
XML file which may be passed to the constructor of the Manager.

As it’s mandatory for other DABC factories, the dabc::Factory for the manager must be instantiated as global
object in the code that implements it. This assures that the factory exists in the system on loading the corresponding
library.

10.3.2 Manager

Besides its role as a central singleton to access framework functionalities, the dabc::Manager is also the interface
base class for the control and configuration system that is applied with DABC .

10.3.2.1 Virtual methods

The dabc::Manager defines several virtual methods concerning the finite state machine, the registration and sub-
scription of parameters, the command communication in-between nodes, and the management of a DAQ cluster,
resp. These methods have to be implemented for differrent kinds of control systems in an appropriate subclass and
are described as follows:

10.3. Control system plug-in 67

Manager(const char* managername, bool usecurrentprocess, Configuration* cfg) : The constructor of the sub-
class. The recommended parameters are passed from the manager factory (see section 10.3.1) to the base-
class constructor, such as the object name of the manager; optionally a flag indicating to use either the main
process or another thread for manager command execution; and an optional configuration object cfg.

1. The constructor should initialize the control system implementation.
2. If the default state machine module of the DABC core is used, the constructor should invoke method

InitSMmodule(). Otherwise, the constructor must initialize an external state machine of the control
system, following the state and transition names defined as static constants in dabc/Manager.h.

3. The constructor must call method init() to initialize the base functionalities and parameters. This
should be done after the control system is ready for handling parameters and commands, and after the
optional InitSMmodule() call.

˜ Manager() : The destructor of the subclass. It should cleanup and remove the control system implementation. It
must call method destroy() at the end.

bool InvokeStateTransition(const char* state_transition_name, Command* cmd) : This should initiate the state
transition for the given state_transition_name. This must be an asynchronous function that does not block
the calling thread, possibliy the main manager thread if the state transition is triggered by a command from
a remote "master" state machine node. Thus the actual state transition should be performed in a dedicated
state-machine thread, calling the synchronous method DoStateTransition(const char*) of the base class (see
section 10.3.2.2).

Synchronization of the state with the invoking client is done by the passed command object reference cmd.
This should be used as handle in the static call dabc::Command::Reply(cmd,true) when the state transition
is completed, or dabc::Command::Reply(cmd,false) when the transition has been failed, resp.

Note that base class dabc::Manager already implements this method for the DABC default state machine
module which is activated in the manager constructor with InitSMmodule(). It needs a re-implementation
only if an external state machine shall be used.

void ParameterEvent(dabc::Parameter* par, int event) : Is invoked by the framework when any Parameter is
created (argument value event = parCreated = 0), changed (event = parModi f ied = 1), or destroyed
(event = parDestroy = 2), resp. Pointer par should be used to access parameter name and value for ex-
port to the control system.

void CommandRegistration(dabc::Module* m, dabc::CommandDefinition* def, bool reg) : Is invoked by the
framework when any module exports (argument reg true), or unexports (argument reg false) a command
definition object to, or from the control system, resp. This allows to invoke such commands via the controls
connection from a remote node. The command definition object def contains a description of possible com-
mand parameters; pointer m should be used to access the owning module and get its name. This information
may be used to represent the command within the controls implementation.

bool Subscribe(dabc::Parameter* par, int remnode, const char* remname) : This method shall link the value of
a local parameter par to a remote parameter of name remname that exists on node number remnode of the
DAQ cluster. Control system implementation may use a publisher-subscriber mechanism here to update the
local subscription whenever the remote parameter changes its value.

The actual update handler must call method InvokeChange(const char* val) of the local dabc::Parameter*
par then. The new value val is passed to the parameter which will change itself appropriately. This decouples
the parameter change from the invoking control system callback in a thread-safe manner.

bool Unsubscribe(dabc::Parameter* par) : The subscription of a local parameter par to a remote paramter by a
formerly called Subscribe() is removed from the control system.

bool IsMainManager() : Should return true if this node is the single master controller node of the DAQ cluster.
This node will define the master state machine that rules the states of all other nodes. Otherwise (returns
false) this node is a simple worker node. The node properties should be taken from the configuration.

bool HasClusterInfo() : Returns true if this node has complete information of the DAQ cluster.

int NumNodes() : Returns the number of all DAQ nodes in the cluster. This may be taken from a configuration
database, e. g. an XML file, but may also test the real number of running nodes each time it’s called.

68 DABC Programmer Manual: Manager

int NodeId() const : Returns the unique id number of this node in the DAQ cluster. This should be taken from the
cluster configuration.

bool IsNodeActive(int num) : Returns true if DAQ cluster node of id number num is currently active, otherwise
false. This may allow to check on runtime if some of the configured nodes are not available and should be
excluded from the DAQ setup.

const char* GetNodeName(int num) : For each DAQ cluster node of id number num, this method must define a
unique name representation. The name should represent the node in a human readable way, e. g. by means
of URL and a functional node description ("daq01.gsi.de-readout"). It should match the description in the
cluster configuration. Note: This name must match the local name of the manager object on each node.

bool SendOverCommandChannel(const char* managername, const char* cmddata) :
This method sends a dabc::Command as a streamed text representation cmddata to a remote DAQ cluster
node of name managername. The managername argument must match one of the names defined in GetN-
odeName(int num). The implementation should use transport mechanisms of the control system to transfer
the command string to the remote site (e. g. native control commands that wrap cmddata). The receiver of
such commands on the target node should call base class method RecvOverCommandChannel(const char*
cmddata) to forward the command representation to the core system, which will reconstruct and execute the
dabc::Command object.

bool CanSendCmdToManager(const char* mgrname) : Returns true if it is possible to send a remote command
to the manager on DAQ cluster node of name mgrname, otherwise false. The node name argument must
match one of the names defined in GetNodeName(int num). This method may implement to forbid the
sending of commands on some nodes.

int ExecuteCommand(dabc::Command* cmd) : This method executes synchronously any DABC command that
is submitted to this manager itself. It will run in the scope of the manager thread (depending on constructor
argument usecurrentprocess, this is either the main process thread, or a dedicated manager thread).
It may be re-implemented to add new commands required for the controls implementation. The DABC mech-
anism of methods SubmitCommand() and ExecuteCommand() may allow to decouple control system call-
backs from their execution thread.

10.3.2.2 Baseclass methods

In addition to the virtual methods to be implemented in the manager subclass, there is a number of dabc::Manager
base class methods that should be called from the control system to perform actions of the framework:

bool DoStateTransition(const char* state_transition_cmd) : Performs the state machine transition of name state_transition_cmd.
This method is synchronous and returns no sooner than the transition actions are completed (true) or
an error is detected (false). Note that the real transition actions are still user defined in methods of the
dabc::Application implementation.

bool IsStateTransitionAllowed(const char* state_transition_cmd, bool errout) : Checks if state transition of name
state_transition_cmd is allowed for the default state machine implementation (which should be reproduced
exactly by any external SM implementation) and returns true or false, resp. Argument errout may specify if
error messages shall be printed to stdout.

void RecvOverCommandChannel(const char* cmddata) : Receives a DABC command as text stream cmddata
from a remote node. Usually this function should be called in a receiving callback of the control system
communication layer, passing the received command representation to the core system. Here the command
object is unstreamed again, forwarded to its receiver and executed.
This is the pendant to virtual method SendOverCommandChannel() which should implement the sending
of a streamed command from the core to a remote manager by transport mechanisms of the control system.

10.3.3 Default implementation for DIM

The DABC default controls and configuration system is based on the DIM library [3] and is marked by namespace
dimc:: (for "DIM Control"). The main classes are described in the following:

10.3. Control system plug-in 69

10.3.3.1 dimc::Manager

Implements the control system interface of dabc::Manager as described above.

1. It uses the default state machine module of the DABC core system. This is activated in the constructor
by calling InitSMmodule(). Thus virtual method InvokeStateTransition() is not re-implemented here.

2. It exports a dedicated dabc::StatusParameter that is synchronized with the value of the core state machine
in ParameterEvent(). This parameter is required to display the state of the node on the generic Java GUI.

3. It applies the generic dabc::Configuration for setting up the node properties. The standard executable
dabc_run will create this object from parsing an XML file.

4. The other interface functionalities use one component of class dimc::Registry.

10.3.3.2 dimc::Registry

The main component of the dimc::Manager that offers service methods really implementing the manager interface.
It registers all parameters, commands, and subscriptions; and it defines the allowed access methods for the DIM
server itself.

1. The DIM server is instantiated in the constructor as dimc:Server singleton. Methods StartDIMServer() and
StopDIMServer() actually initiate and terminate the service.

2. Naming of nodes and services: Method GetNodeName(int num) of dimc::Manager uses CreateDIMPre-
fix(num) of dimc::Registry. This evaluates the unique name for node number num from the dabc::Configuration
object: It consists of a global prefix ("DABC"), the configuration NodeName(), and the ContextName()
property of the node id, all separated by forward slashes ("/").
The node name is also taken as prefix for the helper methods BuildDIMName() (ReduceDIMName(), resp.)
that transform local DABC parameter and command names into unique DIM names (and back, resp.).
Moreover, methods CreateFullParameterName() (ParseFullParameterName(), resp.) define how the local
parameter name itself is composed (decomposed, resp.) from the names of its parent module and its internal
variable name. They utilize corresponding static methods of class dimc::nameParser in a thread-safe way.

3. Parameter export: dimc::Manager::ParameterEvent() uses methods RegisterParameter() (and Unregister-
Parameter(), resp.) to declare (undeclare, resp.) a corresponding DIM service. Here the dimc::Registry
keeps auxiliary objects of class dimc::ServiceEntry that link the DimService with the dabc::Parameter
(see section 10.3.3.4). On parameter change, method ParameterUpdated() will initiate an update of the
corresponding DIM service.

4. Control system commands: Method DefineDIMCommand(const char* name) creates and registers sim-
ple (char array) DimCommand objects that may be executed on this node. The dimc::Registry constructor
defines commands for all state machine transitions, such as Configure, Enable, Halt, Start, Stop. Addi-
tionally, there are DIM commands for shutting down the node, setting a parameter value, and wrapping
a DABC command as string representation ("ManagerCommand" for SendOverCommandChannel(), see
section 10.3.2), resp.
Moreover, a DABC module may register a dabc::Command as new control system command on the
fly. In this case dimc::Manager method CommandRegistration() will use RegisterModuleCommand() of
dimc::Registry. This will both define a DimCommand, and publish a corresponding command descriptor as
DIM service to announce the command structure to the generic Java GUI. Method UnRegisterModuleCom-
mand() may remove command and descriptor service again.
When the DIM server receives a remote command, method HandleDIMCommand() checks if this com-
mand is registered; then OnDIMCommand() will transform the DimCommand into a dabc::Command and
Submit() this to the Manager. The actual command execution will thus happen in re-implemented method
ExecuteCommand() of dimc::Manager. Thus the command action runs independent of the DIM command-
handler thread.

5. Parameter subscription: Method Subscribe() (Unsubscribe(), resp.) of dimc::Manager are forwarded to
SubscribeParameter() (UnsubscribeParameter() , resp.) of dimc::Registry. These implement it by means of
the DimService update mechanism. Subscriptions are kept as vector of dimc::DimParameterInfo objects
(see section 10.3.3.5).

6. Remote command execution: Method SendOverCommandChannel() of dimc::Manager is forwarded to
SendDimCommand() of dimc::Registry. The streamed dabc::Command is wrapped as text argument into
the DIM ManagerCommand and send to the destination by node name via DimClient::sendCommand().

70 DABC Programmer Manual: Manager

10.3.3.3 dimc::Server

Subclass of DIM class DimServer, implementing command handler, error handler, and exit handlers for client and
server exit events.

1. Because most DIM server actions are invoked by static methods of DimServer, it is reasonable to have only
one instance of dimc::Server; thus this class is designed as singleton pattern. Access and initial creation is
provided by method Instance(). A safe cleanup is granted by Delete() (ctors and dtors are private and cannot
be invoked directly).

2. The dimc::Registry is set as "owner" of dimc::Server by means of a back pointer. All handler methods
of the DimServer are implemented as forward calls to corresponding methods of the dimc::Registry and
treated there, such as:
◦ commandHandler() to HandleDIMCommand()
◦ errorHandler() to OnErrorDIMServer()
◦ clientExitHandler() to OnExitDIMClient()
◦ exitHandler() to OnExitDIMServer()

10.3.3.4 dimc::ServiceEntry

This is a container to keep the DimService together with the corresponding dabc::Parameter object and some extra
properties. The dimc::ServiceEntry objects are managed by the dimc::Registry and applied for the RegisterPa-
rameter() method.

1. For std::string parameters an internal char* array is used as buffer which is actually exported as DIM
service.

2. Method UpdateBuffer() updates the DIM service; it optionally may copy the parameter contents to the buffer
before.

3. Method SetValue() sets the dabc::Parameter to a new value, as defined by a string expression.

10.3.3.5 dimc::ParameterInfo

A subclass of DIM class DimStampedInfo which subscribes to be informed if a remote DIM service changes
its value. The dimc::ParameterInfo objects are managed by the dimc::Registry and applied for the Subscribe()
method.

1. The dimc::ParameterInfo has a reference to a local dabc::Parameter object that shall be updated if the
subscribed service changes.

2. Depending on the subscribing dabc::Parameter type (integer, double, string,...), the constructor will instan-
tiate an appropriate DimStampedInfo type.

3. Method infoHandler() of DimStampedInfo is implemented to update the parameter to the new value by
means of an InvokeChange() call.

Chapter 11

DABC Programmer Manual: Services

[programmer/prog-services.tex]

11.1 Memory management

Memory Pool

Block 1

S
ubblocks

Block n
S

ubblocks

Segment 1

Buffer 1

Segment 2

Segment 3

Segment 1

Buffer 2

Segment 1

Buffer 3

Pointer 1

virtualcontiguous
m

em
ory

MakeReference()

PoolHandle TakeBuffer()

Figure 11.1: Schema of DABC MemoryPool with blocks and subblocks, Buffers with segments, and Pointer
object. A PoolHandle is used to access the pool from within a Module. See text for details.

11.1.1 Zero-copy approach

The DABC framework is based on a dataflow concept: Data buffers are flowing through many components like
Modules, Transports, and Devices. If it was required to copy the data content in each step of such transfer chain,

71

72 DABC Programmer Manual: Services

this would reduce performance drastically. Therefore DABC has a central memory management that provides
global memory Buffers from a Memory Pool. All components use just references to this memory; these can be
passed further without copying the content. This technique is called zero-copy approach and is fully supported
by DABC .

11.1.2 Memory pool

The memory in dabc::MemoryPool is organized in big blocks of contiguous virtual memory. Each block is divided
into memory pieces of the same size, the subblocks; the size of each subblock is defined as a power of 2 (e. g. 4096
bytes). The MemoryPool can have several memory blocks with different subblock sizes.

Usually a MemoryPool has a fixed structure: the memory is allocated once and will not change during the com-
plete run. This is the preferrable mode of operation, because any memory allocation may lead to an undefined
execution time, or could even cause an error, if the system has too few resources. Nevertheless, one can configure
a MemoryPool to be extendable: the MemoryPool will allocate new blocks, if it has no more memory available to
provide a requested Buffer.

Each subblock of the MemoryPool has a 32-bit reference counter which counts how many references to this mem-
ory region are in use by the Buffers. This is necessary for book-keeping of available memory, since several Buffer
objects can refer to the same subblock.

The user can request a new Buffer from the MemoryPool with method TakeBuffer(). This method returns a
dabc::Buffer instance with an internal reference to a formerly unused subblock of the appropriate size. The refer-
ence counter of this subblock is incremented then. To release a Buffer, one should call static method
dabc::Buffer::Release(). This will delete the Buffer object and decrement again the subblock reference counter.

11.1.3 Buffer

In the general case, dabc::Buffer contains a list of segments (gather list). Each segment (represented by class
dabc::MemSegment) refers to a different part of a subblock in the MemoryPool (compare section 11.1.2). The
dabc::MemSegment contains a unique buffer id, the pointer to the segment begin, and the size of the segment.

Usually, a dabc::Buffer contains just one segment, which fully covers a complete subblock of the MemoryPool
(for instance, when a new Buffer is requested with method MemoryPool::TakeBuffer()). Methods NumSegments()
and Segment(unsigned) provide access to the list of segments. One can also directly access the pointer, and the size
of each segment, via methodsGetDataLocation(unsigned), and GetDataSize(unsigned), respectively. For instance,
filling a complete Buffer with zeros will look like this:

#include "dabc/Buffer.h"

void UserModule::ProcessOutputEvent(dabc::Port* port)
{

dabc::Buffer* buf = Pool()->TakeBuffer(2048);
memset(buf->GetDataLocation(), 0, buf->GetDataSize());
port->Send(buf);

}

It is also possible to create a Buffer object that reference the same memory of another Buffer, by means of
method Buffer::MakeReference(). This will deliver the pointer to a new dabc::Buffer instance with the same list
of segments as the original instance. It will also increment the reference counter for all used subblocks in the
MemoryPool.

This method should be used e. g. to send the same data over several Ports: one just makes as many reference
Buffers as required and sends them to all destinations independently, without copying the data. For instance, a
simplified version of dabc::Module::SendToAllOutputs() will look like:

void dabc::Module::SendToAllOutputs(dabc::Buffer* buf)

11.1. Memory management 73

{
for(unsigned n=0;n<NumOutputs();n++)

Output(n)->Send(buf->MakeReference());
dabc::Buffer::Release(buf);

}

The dabc::Buffer object has a 32-bit type identifier which can be set with method SetTypeId(), and can be retrieved
with GetTypeId(). Its purpose is to identify the type of the buffer content. The value of this identifier is application
specific - for instance, the MBS plugin defines its own type, which is then used by the transports to distinguish if
the buffer contains an MBS event format.

Each dabc::Buffer can be supplied with an additional header. This is piece of memory which is allocated and
managed by the pool separately from the main payload memory and in generally should be smaller than the
payload memory. The idea of the buffer header is to add user-specific information to an already existing Buffer,
without changing the contained payload data, and even without touching the Buffer identifier. The header size can
be set by SetHeaderSize() method; the pointer to the header can be obtained by GetHeader() method. The main
difference between header memory and payload memory concerns the behaviour when the Buffer is send via a
"zero copy" network transport implementation, like InfiniBand verbs: in contrast to the payload data, which will
be transferred directly from the Buffer memory by DMA, the header contents will be explicitely copied first.

11.1.4 Pointer

Class dabc::Pointer provides a virtual contiguous access to segmented data which is referenced by a dabc::Buffer
object. Using dabc::Pointer, one should not care how many segments are referenced by the Buffer, and how big
they are. One can use following methods:

Pointer() or reset() initialize or reset the pointer as a reference of a dabc::Buffer, of another dabc::Pointer, or just
of a simple memory region

ptr() or operator() the current memory pointer
rawsize() size of contiguous system memory from current pointer position
fullsize() size of full memory from current pointer position
shift() shift pointer
copyfrom() set pointed memory content from a dabc::Pointer, or just from a memory region
copyto() copy pointed memory content into specified memory region

Example of pointer usage:

#include "dabc/Buffer.h"
#include "dabc/Pointer.h"

void UserModule::ProcessOutputEvent(dabc::Port* port)
{

if (!Input(0)->CanRecv()) return;
dabc::Buffer* buf = Input(0)->Recv();
dabc::Pointer ptr(buf);
uint32_t v = 0;
while (ptr.fullsize()>0) {

ptr.copyfrom(&v, sizeof(v));
ptr.shift(sizeof(v));
v++;

}
Output(0)->Send(buf);

}

74 DABC Programmer Manual: Services

11.1.5 Buffer guard

Class dabc::BufferGuard is the equivalent of a LockGuard for threads (see section 11.2.3), preventing memory
leaks due to unreleased Buffers. It should be used to automatically release a Buffer whenever the function scope
is left, both by returning regularly, and by throwing an exception. One should explicitly take out the Buffer from
the guard with BufferGuard::Take() to avoid such automatic release in a normal situation. A typical usage of
dabc::BufferGuard is shown here:

...
dabc::BufferGuard buf = pool->TakeBuffer(2048);
...
port->Send(buf.Take());
...

Class dabc::ModuleSync provides several methods to work directly with dabc::BufferGuard - this allows to
correctly release a Buffer in case of any exception, which otherwise may not be handled correctly by the user.

11.1.6 Allocation

There are several methods how a MemoryPool can be created:

• Automatically, when the user tries to access it via a PoolHandle the first time
• using dabc::Manager::CreateMemoryPool() method
• using dabc::CmdCreatePool command

Automatic creation is useful for simple applications with a few modules. In this case the parameters specified by
the PoolHandle (size and number of buffers) are used.

But in many situations it is good to create a memory pool explicitly, setting all its parameters directly, or from a
configuration file. Typically, the memory pool is created by the user’s Application class in method CreateApp-
Modules(), called by state change command DoConfigure. In simple case:

bool UserApplication::CreateAppModules()
{

...
dabc::mgr()->CreateMemoryPool("WorkPool", 8192, 100);
...

}

One can call CreateMemoryPool() method several times to create memory blocks for different buffer sizes. As
alternative, one can create and configure a command object dabc::CmdCreateMemoryPool where all possible
settings can be done via following static methods:

AddMem() add configuration for specified buffer size
AddRef() add configuration for number of references and header sizes
AddCfg() set generic configuration like cleanup timeout or size limit

For instance, one can do the following:

bool UserApplication::CreateAppModules()
{

...
dabc::Command* cmd = new dabc::CmdCreateMemoryPool("WorkPool");
dabc::CmdCreateMemoryPool::AddMem(cmd, 8192, 100); // 8K bufs
dabc::CmdCreateMemoryPool::AddMem(cmd, 2048, 500); // 2K bus
dabc::CmdCreateMemoryPool::AddRef(cmd, 2048, 64); // refs with 64 B headers

11.2. Threads organization 75

dabc::CmdCreateMemoryPool::AddCfg(cmd, true); // set fixed layout
dabc::mgr()->Execute(cmd);
...

}

All parameters, configured for the command, can be set up in the configuration file. In this case one should just
call dabc::mgr()->CreateMemoryPool("WorkPool").

11.2 Threads organization

Class dabc::WorkingThread organizes a working loop and performs execution of runnable jobs, represented by
dabc::WorkingProcessor class.

11.2.1 Working loop

The implementation of dabc::WorkingThread is based on the pthreads library.

The main task of dabc::WorkingThread is to wait for events (using pthread_cond_wait() function), and then exe-
cute the event callback in the corresponding WorkingProcessor. This functionality is implemented in dabc::WorkingThread::MainLoop().

Usually events are produced by calling dabc::WorkingProcessor::FireEvent() method; this method can be invoked
from any thread. All events are queued and a pthread condition is fired in this case. The thread, waiting for this
condition, is woken up, and the next event from the queue will be delivered to the WorkingProcessor by calling
virtual method dabc::WorkingProcessor::ProcessEvent(). Here any user-specific code can be implemented.

Another task of dabc::WorkingThread consists in timeout handling. Some WorkingProcessors may require to
be invoked not only by events, but also after specified time intervals.

Method dabc::WorkingProcessor::ActivateTimeout() requests the thread to execute
dabc::WorkingProcessor::ProcessTimeout() after the specified time interval. This virtual method may also be
implemented by the user.

11.2.2 Sockets handling

The POSIX sockets library provides the handling of all socket operations in an event-like manner, using the select()
function. Such approach was used in dabc::SocketThread and dabc::SocketProcessor classes to handle several
sockets in parallel from a single thread.

With each dabc::SocketProcessor a socket descriptor is associated which can deliver events like: "can read next
portion of data from socket", "sending over socket will not block", "socket is broken", and so on. The main loop
of dabc::SocketThread is modified such, that, instead of waiting for the pthread condition, the thread waits for the
next event from the sockets.

Handling these events allows to send and receive of data via sockets in a non-blocking manner, i. e. one can run
several socket operations in parallel with one thread.

At the same time, dabc::SocketThread class allows to run normal jobs, implemented with base class dabc::WorkingProcessor.
So within a SocketThread one can mix socket processors (like some Transports) with normal processors (like
modules).

A similar approach was used to support the InfiniBand verbs API in DABC.

11.2.3 Mutex usage

All methods of dabc::WorkingThread and dabc::WorkingProcessor are thread safe (except for those started with
underscore "_" symbol). So user code could avoid mutexes completely. But if data is shared between Proces-
sors which run in different threads, one should use mutexes though. Here it is recommended to work with a

76 DABC Programmer Manual: Services

dabc::LockGuard. This class takes care that the mutex will be unlocked automatically whenever the current func-
tion scope is left.

For instance, if one has global static variable associated with a mutex, one should implement a thread-safe setter
method like this:

#include "dabc/threads.h"

int GlobalVariable = 0;
dabc::Mutex GlobalMutex;

void SetGlobalVariable(int newvalue)
{

dabc::LockGuard guard(GlobalMutex);
GlobalVariable = newvalue;

}

11.3 Command execution

The idea of command execution is to invoke user-specific code from any part of the system. There are several
reasons to prefer a command interface over direct calls of class methods:

• The execution of a command is performed not in the context of the calling thread, but in the thread to which the
command receiver object is assigned. This allows to avoid unnecessary mutex locking.

• The execution of a command can be performed synchronous or asynchronous to the calling thread, so one can
easily specify a timeout for the command execution.

• A command can be submitted to any object in the system, including objects on remote nodes.
• The code that invokes the command execution does not strongly depend on the code that executes the command:

the invoking client library must know a command base class and some common parameter names, but not the
implementation of the execution itself. This allows to decouple the required libraries on different nodes.

• A command object can contain an arbitrary number of argument values, and can also be used to return any
number of result values.

11.3.1 Command class

Class dabc::Command is a container for argument and result values. The name of the command is the main
identifier for the command action which is executed in the CommandReceiver object.

There are a number of methods to set/get command parameters:

Type Getter Setter
string GetStr() SetStr()
int GetInt() SetInt()
unsigned int GetUInt() SetUInt()
bool GetBool() SetBool()
double GetDouble() SetDoble()

In all setter methods the first argument is the name of a command parameter, and the second is the new parameter
value of the corresponding type. In all getter methods, the first argument is again the parameter name, and the
second is an optional default parameter value. This default value is returned if a parameter of that name is not
contained in the Command. To instantiate a command, one should do:

...
dabc::Command* cmd = new dabc::Command("UserCommand");
cmd->SetInt("UserArg", 5);
...

11.3. Command execution 77

Usually, the name of a Command defines the action which will be performed. There are several subclasses of
dabc::Command (for instance, in file dabc/Manager.h), but these subclasses are only used to set the command
name and command-specific parameters. There is no sense to define some extra methods in the subclass, since
dabc::Command is designed as a mere container for parameters.

With method ConvertToString() one can convert a Command and all contained parameters in a plain string. Method
ReadFromString() is used to reconstruct the Command object from a string. This feature is useful to transfer a
Command over a network connection, or store it to a file.

11.3.2 Command receiver

Class dabc::CommandReceiver provides the interface for all classes which should execute a Command. The main
place for user code is virtual method ExecuteCommand() which gets a Command object as argument. A typical
implementation of this method looks like:

int UserModule::ExecuteCommand(dabc::Command* cmd)
{

if (cmd->IsName("UserCommand")) {
int v = cmd->GetInt("UserArg", 0);
DOUT1(("Execute UserCommand with argument = %d", v));
return dabc::cmd_true;

} else
if (cmd->IsName("UserGetCommand")) {

DOUT1(("Execute UserGetCommand without arguments"));
cmd->SetInt("UserRes", fCounter);
return dabc::cmd_true;

}

return dabc::ModuleAsync::ExecuteCommand(cmd);
}

Method ExecuteCommand should analyse the command name and perform command-specific actions. It should
return dabc::cmd_true if the command has been executed succesfully, or dabc::cmd_false otherwise.

The default implementation of dabc::CommandReceiver methods performs the command execution in the calling
thread. However, most command actions may access resources which are also used by another working thread as-
signed to the CommandReceiver object. In this case all command execution code had to protect these resources by
mutex locks (see section 11.2.3), which would decrease performance. Because of this, class dabc::WorkingProcessor
inherits from dabc::CommandReceiver, and implements several virtual methods (like IsExecutionThread(), Sub-
mit()) which are necessary to deliver and execute a command in the thread context of the assigned WorkingTh-
read. The user must not reimplement these methods again in the derived classes. In the DABC subclasses of
dabc::WorkingProcessor, like dabc::Module, dabc::Application, the custom commands will be executed in the
appropriate thread context.

With method Execute() of class dabc::CommandReceiver one can execute a command directly in the receiving
object. Here one can specify a dabc::Command object as argument, or just a command name, if the command
has no arguments. Method Execute() will block until the command is executed - this is called the synchronous
mode of command execution. Optionally, one can set a timeout - how long the calling thread will wait until the
command is executed.

Method Execute() can only check if a command is executed succesfully or not, as it has a boolean return value.
There are advanced methods ExecuteInt(), and ExecuteStr(), which return the result of a command execution as
integer, or string value, resp. They will deliver the final value of the command parameter which is specified by
name in the second function argument. For example, the result of command "UserGetCommand" execution from
the previous example one can obtain like this:

...

78 DABC Programmer Manual: Services

dabc::Module* m = dabc::mgr()->FindModule("Module1");
int res = m->ExecuteInt("UserGetCommand", "UserRes");
...

There is an other way to execute a command - submit the Command with Submit() method (see also section 10.2.5)
In this case the command will be executed asynchronous to the calling thread, therefore one cannot get any direct
information about the result of command execution from the return value of Submit().

11.3.3 Command client

To really work with asynchronous command execution, one should be able to analyse the result of such commands
though. This can be done with class dabc::CommandClient. Before submitted for execution, commands should
be assigned to a dabc::CommandClient object. In this case, the CommandClient will get a callback from the
Command when execution is done, and can react on this callback. One can assign more than one Command to a
CommandClient.

A first use case for the CommandClient: if one needs to execute many commands at once. Using Execute()
method, all commands can be executed sequentially only. By means of the CommandClient, however, one can
submit many commands first, and then wait for all of them to be executed. If the associated CommandReceivers
run with different threads, the commands will be executed in parallel. For instance:

...
dabc::CommandClient cli;
for (unsigned n=0; n<10; n++) {

dabc::Module* m = dabc::mgr()->FindModule(FORMAT(("Module%u",n)));
dabc::Command* cmd = new dabc::Command("UserCommand");
cli.Assign(cmd);
m->Submit(cmd);

}
bool res = cli.WaitCommands();
...

This example submits 10 commands into 10 different modules, and waits at one place until all commands are
executed.

Another use case for the CommandClient: it keeps the Command object after execution and can analyse the
contained result values. For instance, all 10 commands from previous example may return several values each. If
one instantiates the CommandClient with true as constructor argument, at the end a list of all commands will be
available via ReplyedCmds() method:

...
dabc::CommandClient cli(true);
...
bool res = cli.WaitCommands();
DOUT1(("One has %u commands in replyed queue", cli.ReplyedCmds().Size()));
...

One more use case of the command client interface is the dabc::CommandsSet. This class inherits from dabc::CommandClientBase,
the abstract base class for all commands clients. It useful if execution of a "master" command should cause the
execution of several other commands. For instance, when execution of a command in one module should be
distributed to two other modules, one should do:

int UserModule::ExecuteCommand(dabc::Command* cmd)
{

if (cmd->IsName("MasterCommand")) {

11.3. Command execution 79

dabc::CommandsSet* set = new dabc::CommandsSet(cmd);

dabc::Module* m1 = dabc::mgr()->FindModule("Module1");
m1->Submit(set->Assign(new dabc::Command("UserCommand1"));

dabc::Module* m2 = dabc::mgr()->FindModule("Module2");
m2->Submit(set->Assign(new dabc::Command("UserCommand2"));

dabc::CommandsSet::Completed(set, 10.);

return dabc::cmd_postponed;
}

return dabc::ModuleAsync::ExecuteCommand(cmd);
}

Here one creates a CommandsSet for a "master" command and submits two "slave" commands via the command
client argument to two other modules. Method dabc::CommandsSet::Completed() is used to inform the framework
that all commands are submitted and should be ready within 10 seconds. Return argument dabc::cmd_postponed
indicates that the master command may not be ready when ExecuteCommand() is returned. Therefore dabc::CommandsSet
will take care about the correct reply of the master command, either when all slaves are ready, or when the master
command timeout has expired.

80 DABC Programmer Manual: Services

Chapter 12

DABC Programmer Manual: Plugins

[programmer/prog-plugin.tex]

12.1 Introduction

A multi purpose DAQ system like DABC requires to develop user specific code and adopt this into the general
framework. A common object oriented technique to realize such extensibility consists in the definition of base
classes as interfaces for dedicated purposes. The programmer may implement subclasses for these interfaces as
Plug-Ins with the extended functionality that matches the data format, hardware, or other boundary conditions of
the data-taking experiment. Moreover, the DABC core itself applies such powerful plug-in mechanism to provide
generic services in a flexible and maintainable manner.

This chapter gives a brief description of all interface classes for the data acquisition processing itself. This covers
the processing Modules, the Transport and Device objects that move data between the DAQ components, and the
Application that is responsible for the node set-up and run control. A Factory pattern is used to introduce new
classes to the framework and let them be available by name at runtime.

12.2 Modules

DABC provides dabc::Module class, which plays role of data processing entity in framework. In this class
necessary components like pool handles, ports, parameters, timers are organised. Class dabc::Module has two
subclasses - dabc::ModuleSync and dabc::ModuleAsync, which provides two different paradigms of data pro-
cessing: within explicit main loop, and via event processing, respectively. Before we discuss these two kinds of
modules, let’s consider components which can be used with both types of the module.

12.2.1 Pool handles

Class dabc::PoolHandle should be used in any module to communicate with dabc::MemoryPool. By creating a
pool handle with method CreatePoolHandle(), the module declares that it wants to use buffers from the memory
pool as specified by name. More than one pool handles can be used in one module. A pool handle can be accessed
with method dabc::Module::FindPool() via name, or with method dabc::Module::Pool() via handle number (started
from 0).

If a pool of the given name does not exist, it will be created automatically at the time of the first request. Buffer
size and the number of buffers, which are specified in the CreatePoolHandle() call, play a role in this case only.

81

82 DABC Programmer Manual: Plugins

12.2.2 Ports

Class dabc::Port is the only legal way to transport buffers from/to the module. Class dabc::Module provides
following methods for working with ports:

kind Create Count Access Search
input CreateInput(name, ...) NumInputs() Input(unsigned) InputNumber()
output CreateOutput(name, ...) NumOutputs() Output(unsigned) OutputNumber()
inp/out CreateIOPort(name, ...) NumIOPorts() IOPort(unsigned) IOPortNumber()

A port usually should be created in the module constructor. As first argument in the creation methods a unique port
name should be specified. As second argument, the pool handle should be specified; this defines the memory pool
where necessary memory can be fetched for the transports associated with the port. The length of input or (and)
output queue defines how many buffers can be kept in corresponding queue. One also can specify the size of user
header, which is expected to be transported over the port - it is important for further transport configurations.

Any kind of port can be found by name with FindPort() method. But this is not the fastest way to work with
ports, because string search is not very efficient. One better should use in code methods like NumInputs() and
Input(unsigned) (for input ports), where the port id number (i. e. the sequence number of port creation) is used.

Class dabc::Port provides methods Send() and Recv() to send or receive buffers. While these are non-blocking
methods, one should use CanSend() and CanRecv() methods before one can call transfer operations.

12.2.3 Parameters and configurations

Parameters are used in module for configuration, controlling and monitoring. More information about parameters
handling see in chapter 13.

12.2.4 Commands processing

There is the possibility in DABC to execute user-defined commands in a module context. Virtual method Ex-
ecuteCommand() is called every time when a command is submitted to the module. The command is always
executed in the module thread, disregarding from which thread the command was submitted. Therefore it is not
necessary to protect command execution code against module function code by means of thread locks.

Most actions in DABC are performed with help of commands.

Here is an example how command execution can look like:

int UserModule::ExecuteCommand(dabc::Command* cmd)
{

if (cmd->IsName("UserPrint")) {
DOUT1(("Printout from UserModule"));
return dabc::cmd_true;

}
return dabc::ModuleSync::ExecuteCommand(cmd);

}

This is invoked somewhere in the code of another component:

...
dabc::Module* m = dabc::mgr()->FindModule("MyModule");
dabc::Command* cmd = new dabc::Command("UserPrint");
m->Execute(cmd);
// again, but in short form
m->Execute("UserPrint");
...

12.2. Modules 83

After command execution has finished, method Execute() returns true or false, depending on the success. The
dabc::Command object is deleted automatically after execution.

In the module constructor, one can register a command for the control system by means of a corresponding
dabc::CommandDefinition object. In this case the command and its arguments are known remotely and can
be invoked from a controls GUI:

UserModule::UserModule(const char* name) : dabc::ModuleSync(name)
{

...
dabc::CommandDefinition* def = NewCmdDef("UserPrint");
def->AddArgument("Level", dabc::argInt, false); // optional argument
def->Register(true);

}

12.2.5 ModuleSync

Data processing functionality in a most intuitive way can be implemented by subclassing the
dabc::ModuleSync base class, which defines the interface for a synchronous module that is allowed to block its
dedicated execution thread.

This class provides a number of methods which will block until the expected action can be performed.

Method Description
Recv() Receive buffer from specified input port
Send() Send buffers over output port
RecvFromAny() Receive buffer from any of specified port
WaitInput() Waits until required number of buffers is queued in input port
TakeBuffer() Get buffer of specified size from memory pool
WaitConnect() Waits until port is connected

In all these methods a timeout value as last argument can be specified. Method SetTmoutExcept() defines if a
dabc::TimeoutException exception is thrown when the timeout is expired. By default, these blocking methods
just return false in case of timeout.

Data processing should be implemented in MainLoop() method. It usually contains a while() loop where Module-
Working() method is used to check if execution of module code shall be continued. This method will also execute
the queued commands, if synchronous command execution was specified before by method SetSyncCommands().
By default, a command can be executed in any place of the code.

Let’s consider a simple example of a module which has one input and two output ports, and delivers buffers from
input to one or another output sequentially. Implementation of such class will look like:

#include "dabc/ModuleSync.h"

class RepeaterSync : public dabc::ModuleSync {
public:

RepeaterSync(const char* name) : dabc::ModuleSync(name)
{

CreatePoolHandle("Pool", 2048, 1);
CreateInput("Input", Pool(), 5);
CreateOutput("Output0", Pool(), 5);
CreateOutput("Output1", Pool(), 5);

}

virtual void MainLoop()
{

unsigned cnt(0);

84 DABC Programmer Manual: Plugins

while (ModuleWorking()) {
dabc::Buffer* buf = Recv(Input());
if (cnt++ % 2 == 0) Send(Output(0), buf);

else Send(Output(1), buf);
}

};

In constructor one sees creation of pool handle and input and output ports. Method MainLoop() has a simple
while() loop, that receives a buffer from the input and then sends it alternatingly to the first or the second
output.

12.2.6 ModuleAsync

In contrast to data processing in dabc::ModuleSync main loop, class dabc::ModuleAsync provides a number of
callbacks routines which are executed only if dedicated DABC events occur. For instance, when any input port
gets new buffer, virtual method ProcessInputEvent() will be called. User should reimplement this method to react
on the event.

One should use dabc::ModuleAsync for situations, when simple main loop approach is not possible - for instance,
one cannot decide on which input next data is exepected. Also the main advantage of such approach is that the
thread is not blocked and several dabc::ModuleAsync modules can run within same working thread. At the same
time, using such programming technique may require additional bookkeeping, as it is not allowed to block the
callback routine while waiting for some resource to be available.

Class dabc::ModuleSync provides number of methods for handling different events:

Method Description
ProcessInputEvent() new buffer in input queue, it can be read with port->Recv()
ProcessOutputEvent() new space in output queue is available, one can use port->Send()
ProcessConnectEvent() port is connected to transport
ProcessDisconnectEvent() port was disconnected from transport
ProcessPoolEvent() requested buffer can be read with handle->TakeRequestedBuffer()
ProcessTimerEvent() timer has fired an event

By reimplementing some of these methods one can react on corresponding events.

Actually, all events are dispatched to the methods mentioned above by method ProcessUserEvent(). This method
is called by the working thread whenever any event for this module shall be processed. However, this virtual
method may also directly be re-implemented in the user subclass if one wants to treat all events centrally. As
arguments one gets the pointer to the relevant component (port, timer, ...) and a number describing the event type
(dabc::evntInput, dabc::evntOutput, ...)

Class dabc::ModuleAsync has no methods which can block. Nevertheless the user should avoid any kind of polling
loops, waiting for some other resource (buffer, output queue and so on) - the callbacks should return as soon as
possible. In such situation, processing must be continued in another callback that is invoked when the required
resource is available. This might require an own bookkeeping of such situations (kind of state transition logic).

Let’s consider as an example the same repeater module, but implemented as asynchronous module:

#include "dabc/ModuleAsync.h"
#include "dabc/Port.h"

class RepeaterAsync : public dabc::ModuleAsync {
unsigned fCnt;

public:
RepeaterAsync(const char* name) : dabc::ModuleAsync(name)
{

CreatePoolHandle("Pool", 2048, 1);
CreateInput("Input", Pool(), 5);

12.2. Modules 85

CreateOutput("Output0", Pool(), 5);
CreateOutput("Output1", Pool(), 5);
fCnt = 0;

}

virtual void ProcessInputEvent(dabc::Port* port)
{

while (Input()->CanRecv() && Output(fCnt % 2)->CanSend()) {
dabc::Buffer* buf = Input()->Recv();
Output(fCnt++ % 2)->Send(buf);

}
}

virtual void ProcessOutputEvent(dabc::Port* port)
{

while (Input()->CanRecv() && Output(fCnt % 2)->CanSend()) {
dabc::Buffer* buf = Input()->Recv();
Output(fCnt++ % 2)->Send(buf);

}
}

};

The constructor of this module has absolutely the same components as in previous example. One should add
fCnt member to count direction for output of next buffer. Value of fCnt in some sense defines current state of the
module. Instead of the MainLoop() one can see two virtual methods for input and output event processing. In
each methods one sees same code, with while loop inside. In the loop one checks that input and current output are
ready and retransmit buffer. When any port (input or output) has no more possibility to transmit data, method will
be returned.

One needs a while() loop here because not every input event and not every output events leads to buffer transports.
If input queue is empty (CanRecv() returns false), or output queue is full (CanSend() returns false), one cannot
transfer a buffer from input to output; thus the callback must be returned. But when the event processing routine
is called the next time, one should tranfer several buffers at once. Since methods Send() and Recv() cannot block,
such while() loop will not block either. But in any case one should avoid such wrong code:

virtual void ProcessInputEvent(dabc::Port* port)
{

// this kind of waiting is WRONG!!!
while(!Output(fCnt % 2)->CanSend()) usleep(10);

dabc::Buffer* buf = Input()->Recv();
Output(fCnt++ % 2)->Send(buf);

}

Here the while() loop can wait for an infinite time until the output port will accept a new buffer, and during this
time the complete thread will be blocked.

As both processing methods are the same in the example, one can implement central ProcessUserEvent() method
instead:

virtual void ProcessUserEvent(dabc::ModuleItem*, uint16_t)
{

while (Input()->CanRecv() && Output(fCnt % 2)->CanSend()) {
dabc::Buffer* buf = Input()->Recv();
Output(fCnt++ % 2)->Send(buf);

86 DABC Programmer Manual: Plugins

}
}

To introduce time-dependent actions in dabc::ModuleAsync, one should use timers. Timer objects can be cre-
ated with method CreateTimer(). It delivers a timer event with specified intervals, which can be processed in
ProcessTimerEvent() method.

One can modify the previous example to display the number of transported buffers every 5 seconds.

RepeaterAsync(const char* name) : dabc::ModuleAsync(name)
{

...
CreateTimer("Timer1", 5.);

}

virtual void ProcessUserEvent(dabc::ModuleItem* item, uint16_t evnt)
{

...
if (evnt == dabc::evntTimeout) DOUT1(("Buffers count = %d", fCnt));

}

12.2.7 Special modules

For special set ups (e.g. Bnet), the framework provides dabc::Module subclasses with generic functionality (e.g.
bnet::BuilderModule, bnet::FilterModule). In this case, the user specific parts like data formats are implemented
by subclassing these special module classes.

1. Instead of implementing MainLoop() (or ProcessUserEvent(), resp.) other virtual methods (e.g. DoBuildE-
vent(), TestBuffer()) may be implemented that are implicitly called by the superclass MainLoop() (or by the
appropriate event callbacks, resp.).

2. The special base classes may provide additional methods to be used for data processing.

12.3 Device and transport

All data transport functionality is implemented by subclassing dabc::Device and dabc::Transport base classes.

12.3.1 Transport

Actual transport of Buffers from/to a Port is done by a dabc::Transport implementation. During connection time
each module port gets the pointer to a transport object which provides a number of methods for buffer transfer.
As the Transport object typically runs in another thread than the module, the transmission of a buffer does not
happen immediately when calling dabc::Port::Send() or dabc::Port::Recv() methods, but the buffer is at first kept
in a queue which must be provided by the Transport implementation.

12.3.2 Device

Class dabc::Device usually (but not always) represents some physical device (like a network or a PCIe card) and
has the role of a management unit for the Transports which belong to that device. The Device is always the owner
of its Transport objects, i. e. it creates, keeps, and deletes them.

A Device is typically created in the user application by:

...

12.3. Device and transport 87

dabc::mgr()->CreateDevice("roc::Device", "ROC");
...

Later one can find this device with dabc::Manager::FindDevice() method.

Each dabc::Device implementation should define the virtual method CreateTransport() such, that an appropriate
Transport instance is created and connected to the specified Port. This factory method is invoked by the framework
when the device is connected to a module port. This is usually specified in the user application by calls of
dabc::mgr()->CreateTransport(), or dabc::mgr()->ConnectPorts(), resp.

Similar to the Module functionality, the Device class may export configuration Parameters. It may also define
Commands which are handled by extending the virtual method ExecuteCommand() with a device specific imple-
mentation.

12.3.3 Local transport

dabc::LocalTransport implements the connection between two "local" ports, i. e. the ports are on the same node
with a common memory address space. It organizes a queue which is shared between both connected ports, and
performs the movement of dabc::Buffer pointer through this queue. If corresponding modules run in the same
thread, LocalTransport works without any mutex locking.

To manage the LocalTransport, the dabc::Manager always has instance of dabc::LocalDevice class. It can be
accessed via dabc::mgr()->FindLocalDevice() call.

To connect two local ports, one should call:

...
dabc::mgr()->ConnectPorts("Module1/Output", "Module2/Input");
...

12.3.4 Network transport

This is a kind of Transport which is used to connect Ports on different nodes. Abstract base class dabc::NetworkTransport
introduces such kind of functionality: this transport is locally connected to one port only, and all buffer transfer is
done via network connections with the remote node.

For the moment DABC has two implementations of network transports: for socket and InfiniBand verbs. To use
NetworkTransport on the nodes, one should follow a two step strategy. At the first step, on all nodes the necessary
Devices and modules should be created:

...
dabc::mgr()->CreateDevice(dabc::typeSocketDevice, "UserDev");
dabc::mgr()->CreateModule("UserModule", "MyModule");
...

Then during the second step, on the "master" node (where dabc::mgr()->IsMainManager() is true, see section
10.3.2, page 66) one should call:

...
dabc::mgr()->ConnectPorts("Node0$MyModule/Input",

"Node1$MyModule/Output", "UserDev");
...

Such call starts an elaborated sequence: at first a server socket will be opened by Device "UserDev" on node
"Node0"; then Device "UserDev" on "Node1" will try to connect to that server socket; finally, on both nodes
appropriate NetworkTransports will be created, using these negotiated sockets, and connected to the ports "My-
Module/Input", and "MyModule/Output", resp.

88 DABC Programmer Manual: Plugins

Exactly for this kind of actions the DABC state machine has two transition commands "DoConfigure" and "DoEn-
able" - first command used to create necessary components and second to connect them together. Accordingly, class
dabc::Application has two methods CreateAppModules() and ConnectAppModules() (see 12.4).

12.3.5 Data transport

In general, to implement a user-specific transport one should subclass from dabc::Transport. But this requires a
deeper knowledge about the DABC mechanisms: how threads are working, how one should organize input/output
queues, how the transport should request data from a memory pool, and which initialization commands are used
by the framework. To simplify transport development and provide all basic services class dabc::DataTransport
was introduced.

For a data input the user should implement the following virtual methods :

Read_Size() : Should return the required buffer size to read next portion of data from the data source. For
instance, many file formats have a header before each portion of data, describing the payload size that follows.
This method then should be used to read such header. Method can also return following values:
dabc::di_EndOfStream - end of stream, normal close of the input
dabc::di_Repeat - nothing to read now, call again as soon as possible
dabc::di_RepeatTimeout - nothing to read now, try again after timeout
dabc::di_Error - error, close transport

Read_Timeout() : Defines timeout (in seconds) for operation like Read_Size()
Read_Start() : Starts reading of buffer. Should return:

dabc::di_Ok - normal case, call of Read_Complete() will follow
dabc::di_Error - error, skip buffer, starts again from Read_Size()
dabc::di_CallBack - asynchronous readout, user should call Read_CallBack()
If di_CallBack returned, processing of this transport is suspended until user calls Read_CallBack() method,
providing the result of reading: di_Ok or di_Error. This mode is only possible if the device driver has its
own thread (or DMA engine, resp.) that can perform the readout and then can call DABC methods. The
big advantage of such mode: the data transport thread is not blocked by waiting for a result from the device,
therefore several DataTransports can share the same thread.

Read_Complete() : Finish reading of the buffer. Can return:
dabc::di_Ok - normal, buffer will be delivered to port
dabc::di_Error - error, close transport
dabc::di_EndOfStream - end of stream, normal close of the transport
dabc::di_SkipBuffer - normal, but buffer will not be delivered to the port
dabc::di_Repeat - not ready, call again as soon as possible
dabc::di_RepeatTimeout - not ready, call again after timeout
In the simple case, actual reading of data is directly performed in this method. Otherwise one may wait here
until another thread or a DMA transfer, initiated before by Read_Start(), has filled the buffer. In this case one
should be carefull and not block thread forever - it is better to return with dabc::di_Repeat, so the thread can
continue its event loop and handle other workers.

For data output, the user should just implement virtual method WriteBuffer() .

In some cases user may redefine ProcessPoolChanged() which is called when memory pool changes its layout -
new buffers were allocated or released. It may be required for DMA operations, where each buffer from a memory
pool should be initialised once before it can be used for data transport.

It is not always necessary to create a user-specific Device for a user written DataTransport, since the standard
LocalDevice can be used if it is only required as owner for the transport objects. In this case, the factory method
CreateTransport() should be provided already in the user Factory (see section 12.5).

However, some user implementations of DataTransport may require services of a corresponding Device though.
In this case, the user should implement a Device that provides the factory method CreateTransport() (see section
12.3.2). This can instantiate the DataTransport with a back reference to the responsible Device.

12.4. The DABC application 89

12.3.6 Input/output objects

Besides the Transports, DABC provides an interface for implementing a simple input/output by means of base
classes dabc::DataInput and dabc::DataOutput. The interface is similar to that of dabc::DataTransport, but these
classes are not depending on any other components (threads, devices, etc.), and therefore can be applied without
the DABC data flow engine. The only feature which is not supported by dabc::DataInput is the CallBack mode.

In addition, methods dabc::DataInput::Read_Init() and dabc::DataOutput::Write_Init() can be implemented to get
configuration parameters from the port object to which the i/o object is assigned to.

A typical use case of input/output objects is the file I/O. For instance, "*.lmd" file handling is implemented
using these classes.

To instantiate such classes, user should inplement factories methods CreateDataInput() and CreateDataOutput()
(see 12.5).

12.4 The DABC Application

The specific application controlling code is defined in the dabc::Application.

On startup time, the dabc::Application is instantiated by means of a factory method CreateApplication(). As
argument the factories get the application class name, provided from the configuration file. Thus, to use his/her
application implementation, the user must provide a dabc::Factory that defines such method.

The manager has exactly one application object - the name of this object is always "App". The application singleton
can be accessed from everywhere via dabc::mgr()->GetApp() call.

The application may register parameters that define the application’s configuration. These parameters can be set at
runtime from the configuration file or by controls system.

The application class implements the user-specific actions during the state machine transitions. The application
has virtual method DoStateTransition() which is called from the state machine during state change. As argument,
name of state transition command is delivered. There are the following state machine commands:

dabc::Manager::stcmdDoConfigure - creates all necessary application components: devices, modules, memory
pools

dabc::Manager::stcmdDoEnable - connects local and (or) remote nodes together (if necessary)
dabc::Manager::stcmdDoStart - starts execution of user modules
dabc::Manager::stcmdDoStop - stop execution of user modules
dabc::Manager::stcmdDoHalt - destroy all components, created during configure
dabc::Manager::stcmdDoError - react on error, which happened during other commands

Class dabc::Application already has default implementation for DoStateTransition() method, where some virtual
methods are called:

CreateAppModules() - creates all necessary application components
ConnectAppModules() - activity to connect with remote nodes or
IsAppModulesConnected() - check if connection is already performed
BeforeAppModulesStarted() - optional activity before modules are started
AfterAppModulesStopped() - optional activity after modules are stopped
BeforeAppModulesDestroyed() - optional call before modules are destroyed

Actually, for a single-node application it is enough to implement CreateAppModules(), since all other methods
have meaningfull implementation for that case. In simplest case one can just implememnt C-function, which is
called instead CreateAppModules() method of application (name of with function should be specified in configu-
ration file in "Run/func" node).

For special DAQ topologies (e.g. Bnet), the framework offers implementations of the dabc::Application containing
the generic functionality (e. g. bnet::WorkerApplication, bnet::ClusterApplication). In this case, the user specific
parts are implemented by subclassing and implementing additional virtual methods (e. g. CreateReadout()).

90 DABC Programmer Manual: Plugins

12.5 Factories

The creation of the application specific objects is done by dabc::Factory subclasses.

The user must define a dabc::Factory subclass to add own classes to the system. The user factory should already
be instantiated as global stack object in its class implementation code - this will create the factory immediately
after the user library has been loaded. On creation time, a factory is registered automatically to the dabc::Manager
instance.

The user factory may implement such methods:

CreateModule() : Instantiate a dabc::Module of specified class.
CreateDevice() : Instantiate a dabc::Device of specified class.
CreateThread() : Instantiate a dabc::WorkingThread of specified class.
CreateApplication() : Instantiate a dabc::Application of specified class.
CreateTransport() : Instantiate a dabc::Transport of specified class. This method is used when transport does not

requires specific device functionality (like dabc::DataTransport). Typically transport objects created by the
dabc::Device methods.

CreateDataInput() : Instantiate a dabc::DataInput of specified type. Initialisation of object will be done by
Read_Init() call.

CreateDataOutput() : Instantiate a dabc::DataOutput of specified type. Initialisation of object will be done by
Write_Init() call.

Since all factories are registered and kept in the global DABC manager, all methods mentioned here have equiva-
lent methods in class dabc::Manager. The manager simply iterates over all factories and executes the appropriate
factory method until an object of the requested class is created. For instance, to create a module, one should do:

...
dabc::mgr()->CreateModule("mbs::GeneratorModule", "Generator");
...

Invocation of these methods in manager is implemented via corresponding commands (for instance, CmdCre-
ateModule for module creation). These command classes should be used directly, if one wants to deliver extra
configuration parameters to the object’s constructor (most factories methods gets this command as optional argu-
ment). For instance:

...
dabc::Command* cmd = new dabc::CmdCreateModule("mbs::GeneratorModule",

"Generator");
cmd->SetInt("NumSubevents", 5);
cmd->SetInt("SubeventSize", 64);
dabc::mgr()->Execute(cmd);
...

The DABC framework provides several factories for predefined implementations (e. g. bnet::SenderModule,
verbs::Device)

Chapter 13

DABC Programmer Manual: Setup

[programmer/prog-setup.tex]

13.1 Parameter class

Configuration and status information of objects can be represented by the Parameter class. Any object derived from
WorkingProcessor class (e. g. Application, Device, Module, and Port) can have a list of parameters assigned to
it.

There are a number of WorkingProcessor methods to create parameter objects of different kinds and access their
values. These are shown in the following table:

Type Class Create Getter Setter
string StrParameter CreateParStr() GetParStr() SetParStr ()
double DoubleParameter CreateParDouble() GetParDouble() SetParDouble()
int IntParameter CreateParInt() GetParInt() SetParInt()
bool StrParameter CreateParBool() GetParBool() SetParBool()

The CreatePar...() methods will internally create a new Parameter of the specified name if it does not exist before.
For any type of parameter the GetParStr() and SetParStr() methods can be used which will deliver the parameter
value as text string expression.

As one can see, to represent a boolean value a string parameter is used. If text of string is "true" (in lower case),
the boolean value is recognized as true, otherwise as false.

It is recommended to use these WorkingProcessor methods to create parameters and access their values; but one
can also use FindPar() method to find any parameter object and use its methods directly.

13.2 Use parameter for control

One advantage of the DABC parameter objects is that parameter values can be observed and changed by a control
system.

When a parameter value is changed in the program by a SetPar... method, the control system is informed and
represents such change in an appropriate GUI element. On the other hand, if the user modifies a parameter value in
the GUI, the value of the parameter object will be changed and the corresponding parent object (Module, Device)
gets a callback via virtual method ParameterChanged(). By implementing a suitable reaction in this call, one could
reconfigure or adjust the running program on the fly.

A parameter object may be "fixed" via Parameter::SetFixed() method. This disables possibility to change the
parameter value, both from the program and the control/configuration system side. Only when the "fixed" flag is
reset to false, the parameter can be modified again.

91

92 DABC Programmer Manual: Setup

Not all parameters objects should be visible to the control system. Each parameter has a visibility flag which is
assigned to the parameter instance when it is created. Only when Parameter::IsVisible() returns true, parameter
will be known (visible) to the control system. Even if parameter is seen from control system, it only can be changed
from control system when flag Parameter::IsChangable() returns true.

Default flags values for newly created parameters can be set in WorkingProcessor::SetParDflts() function. For
visibility user should specify level, which is compared with global visibility level for parameters (aka debug level).
This global level can be changed by WorkingProcessor::SetGlobalParsVisibility() static function or in configura-
tion file (value "Context/Run/parslevel"). Normally module parameters has visibility level 1, module items (port,
pool handle) parameters - 3, configuration parameters - 5. Thus, to see all parameters in control system, one should
set "parslevel = 5".

13.3 Example of parameters usage

Let’s consider an example of a module which uses parameters:

class UserModule : public dabc::ModuleAsync {
public:

UserModule(const char* name, dabc::Command* cmd = 0) :
dabc::ModuleAsync(name, cmd)

{
CreateParBool("Output", true);
CreateParInt("Counter", 0);
CreateTimer("Timer", 1.0, false);

}

virtual void ProcessTimerEvent(dabc::Timer*)
{

SetParInt("Counter", GetParInt("Counter")+1);
if (GetParBool("Output"))

DOUT1(("Counter = %d", GetParInt("Counter")));
}

};

In the module constructor two parameters are created - boolean and integer, and a timer with 1 s period. When the
module is started, the value of integer parameter "Counter" will be changed every second. If boolean parameter
"Output" is set to true, the counter value will be displayed on debug output.

Using a control system, the value of the boolean parameter can be changed. To detect and react on such change,
one should implement following method:

virtual void ParameterChanged(dabc::Parameter* par)
{

if (par->IsName("Output"))
DOUT1(("Output flag changed to %s", DBOOL(GetParBool("Output")));

}

For performance reasons one should avoid to use parameter getter/setter methods (like GetParBool() or SetParInt())
inside a loop being executed many times. The main purpose of a parameter object is to provide a connection to the
control and configuration system. In other situations simple class members should be used.

13.4 Configuration parameters

Another use case of parameters consists in the object configuration. When one creates an object, like a module or
a device, it is often necessary to deliver one or several configuration values to the constructor, e. g. the required

13.5. Usage of commands for configuration 93

number of input ports, or a server socket port number.

For such situation configuration parameter are defined. These parameters should be created and set in the object
constructor with following methods only:

GetCfgStr string
GetCfgDouble double
GetCfgInt integer
GetCfgBool boolean

All these methods have following arguments: the parameter name, a default value [optional], and a pointer to a
Command object [optional]. Let’s add one configuration parameter to our module constructor:

UserModule(const char* name, dabc::Command* cmd = 0) :
dabc::ModuleAsync(name, cmd)

{
CreateParBool("Output", true);
CreateParInt("Counter", 0);
double period = GetCfgDouble("Period", 1.0, cmd);
CreateTimer("Timer", period, false);

}

Here the period of the timer is set via configuration parameter "Period". How will its value be defined? First of all,
it will be checked if a parameter of that name exists in command cmd. If not, the appropriate entry will be searched
in the DABC setup file, as discussed in Section 3.3, page 15 of the DABC user manual. If the configuration file
also does not contain such parameter, the specified default value 1.0 will be used.

13.5 Usage of commands for configuration

Let’s consider the possibility to configure a module by means of the Command class. Here the use case is that an
object (like a module) should be created with fixed parameters, ignoring the values specified in the configuration
file.

In our example one can modify InitMbsGenerator() function in the following way:

extern "C" void InitMbsGenerator()
{
dabc::Command* cmd = new dabc::CmdCreateModule("mbs::GeneratorModule",

"Generator");
cmd->SetInt("SubeventSize", 128);
if (!dabc::mgr()->Execute(cmd)) {

EOUT(("Cannot create generator module"));
exit(1);

}

...
}

Here one adds an additional parameter of name "SubeventSize" to the CmdCreateModule object, which will set the
MBS subevent size to 128. The generator module constructor will get the parameter value via method GetCfgInt(),
as described in section 13.4. Since the parameters of the passed cmd object will override all other settings here,
the value of the corresponding <SubeventSize> entry in the configuration file has no effect.

94 DABC Programmer Manual: Setup

Chapter 14

DABC Programmer Manual: Example
MBS

[programmer/prog-exa-mbs.tex]

14.1 Overview

MBS (Multi Branch System) is the standard DAQ system of GSI. Support of MBS in DABC includes several
components:

• type definitions for different MBS structures
• iterator classes for reading/creating MBS event/subevent data
• support of new .lmd file format
• mbs::ClientTransport for connecting to MBS servers
• mbs::ServerTransport to "emulate" running MBS servers
• mbs::CombinerModule for performing local mbs events building
• mbs::GeneratorModule for generating random mbs events

This plugin is part of the standard DABC distribution. All sources can be found in the $DABCSYS/plugin/mbs
directory. All these sources are compiled into library libDabcMbs.so which is located in $DABCSYS/lib.

14.2 Event iterators

The MBS system has native event and subevent formats. To access such event data, several structures are intro-
duced in mbs/LmdTypeDefs.h and mbs/MbsTypeDefs.h. In the first file, structure mbs::Header is defined
which is just a container for arbitrary raw data. Such container is used to store data to, or to read data from .lmd
files, resp. In file mbs/MbsTypeDefs.h the following structures are defined:

• mbs::EventHeader - MBS event header of 10-1 type
• mbs::SubeventHeader - MBS subevent header of 10-1 type

DABC operates with buffers of type mbt_MbsEvents that contain several subsequent MBS events; there is no
buffer header in front here. To iterate over all events in such buffer and to access them, class mbs::ReadIterator is
provided (as defined in mbs/Iterator.h). This is done in the following way:

#include "mbs/Iterator.h"

void Print(dabc::Buffer* buf)
{

mbs::ReadIterator iter(buf);

95

96 DABC Programmer Manual: Example MBS

while (iter.NextEvent()) {
DOUT1(("Event %u size %u",

iter.evnt()->EventNumber(),
iter.evnt()->FullSize()));

while (iter.NextSubEvent()) {
DOUT1(("Subevent crate %u procid %u size %u",

iter.subevnt()->iSubcrate,
iter.subevnt()->iProcId,
iter.subevnt()->FullSize()));

}
}

}

Another class mbs::WriteIterator fills MBS events into dabc::Buffer. This is illustrated by the following code:

#include "mbs/Iterator.h"

void Fill(dabc::Buffer* buf)
{

mbs::WriteIterator iter(buf);
unsigned evntid = 0;
while (iter.NewEvent(evntid++)) {

for (unsigned subcnt = 0; subcnt < 3; subcnt++) {
if (!iter.NewSubevent(28, 0, subcnt)) return;
// fill raw data iter.rawdata() here
memset(iter.rawdata(), 0, 28);
iter.FinishSubEvent(28);

}
if (!iter.FinishEvent()) return;

}
}

Method NewEvent() will put new event header at the current iterator position in the buffer. In a similar way, method
NewSubevent() will put a subevent header with the specified arguments there. Access to the data pointer after the
last event or subevent header is done by iter.rawdata() method. Finally, FinishSubevent() and FinishEvent() will
complete the subevent, or event definition, resp.

14.3 File I/O

MBS uses the .lmd ("List Mode Data") file format. Class mbs::LmdFile provides a C++ interface for reading
and writing such files.

To use mbs::LmdFile as input or output transport of the module, classes mbs::LmdInput and mbs::LmdOutput
were developed, resp.

In general, to provide user-specific input/output capability over a port, one should implement the complete dabc::Transport
interface, which includes event handling, queue organization, and a complex initialization sequence. All this is nec-
essary for cases like socket or InfiniBand transports, but too complicated for simple cases as file I/O. Therefore, a
special kind of transport dabc::DataIOTransport was developed, which handles most of such complex tasks and
reduces the implementation effort to the relatively simple dabc::DataInput and dabc::DataOutput interfaces.

Class mbs::LmdOutput inherits dabc::DataOutput and allows to save MBS events, contained in dabc::Buffer
objects, into an *.lmd file. In addition to mbs::LmdFile functionality, it allows to create multiple files when a file
size limit is exceeded. The class has following parameters:

• MbsFileName - name of lmd file (including .lmd extension)

14.4. Socket classes 97

• MbsFileSizeLimit - size limit (in Mb) of single file, 0 - no limit

Class mbs::LmdInput inherits dabc::DataInput and allows to read MBS events from .lmd file(s) and to provide
them over input ports into a module. It has following parameters:

• MbsFileName - name of lmd file (multicast symbols ’*’ and ’?’ are supported)
• BufferSize - buffer size to read data

CreateDataInput() and CreateDataOutput() methods were implemented in mbs::Factory class such, that a user can
instantiate these classes via the DABC plugin mechanism.

Here is an example how the output file for a generator module can be configured:

...
dabc::mgr()->CreateModule("mbs::GeneratorModule", "Generator");
dabc::Command* cmd =

new dabc::CmdCreateTransport("Generator/Output", mbs::typeLmdOutput);
cmd->SetStr(mbs::xmlFileName, "output.lmd");
cmd->SetInt(mbs::xmlSizeLimit, 100);
dabc::mgr()->Execute(cmd);
...

At first the module is created; then the type of output transport and its parameters are set via command.

Another example shows how several input files can be configured for a combiner module:

...
dabc::Command* cmd =

new dabc::CmdCreateModule("mbs::CombinerModule", "Combiner");
cmd->SetInt(dabc::xmlNumInputs, 3);
dabc::mgr()->Execute(cmd);

for (unisgned n=0;n++;n<3) {
cmd = new dabc::CmdCreateTransport(

FORMAT(("Combiner/Input%u",n)), mbs::typeLmdInput);
cmd->SetStr(mbs::xmlFileName, FORMAT(("input%u_*.lmd",n)));
dabc::mgr()->Execute(cmd);

}
...

In this example one creates a module with 3 inputs and connects each input port with an *.lmd file transport.

14.4 Socket classes

All communication with the MBS nodes is performed via tcp sockets. The DABC base package libDabcBase.so
implements a number of classes for general socket handling. The main idea of these classes is to handle socket
operations (creation, connection, sending, receiving, and error handling) by means of event processing callbacks.

Class dabc::SocketThread organises the event loop that handles such event signals produced by a socket. Each
system socket is assigned to an instance of dabc::SocketProcessor. The actual socket event processing is then done
in virtual methods of class dabc::SocketProcessor which has several subclasses for different kinds of sockets:

• - dabc::SocketServerProcessor - server socket for connection
• - dabc::SocketClientProcessor - client socket for connection
• - dabc::SocketIOProcessor - send/recv handling

One can use a dabc::SocketThread together with other kind of processors like module classes, but not vice-versa:
one cannot use socket processors inside other thread types. Therefore, it is possible to run module with all socket

98 DABC Programmer Manual: Example MBS

transports in one single thread, if the socket thread for such module is created in advance (see MBS generator
example in section 14.7).

14.5 Server transport

Class mbs::ServerTransport provides the functionalities of an MBS transport server or and MBS stream server in
DABC . This is also a good example of the dabc::SocketProcessor classes.

mbs::ServerTransport is based on the generic class dabc::Transport and uses internally two kinds of sockets: one
socket for the connection handling, and another "I/O" socket for sending data.

The server transport has following parameters:

Name Type Dflt Description
MbsServerKind str Transport kind of mbs server: "Transport" or "Stream"
MbsServerPort int 6000 server port number for socket connection

These parameters can be set in the XML configuration file like this:

...
<Module name="Generator">
<Port name="Output">
<MbsServerKind value="Transport"/>
<MbsServerPort value="16020"/>

</Port>
</Module>

...

To create such transport and connect it to the module’s output port, the following code should be executed:

...
dabc::mgr()->CreateTransport("Generator/Output",

mbs::typeServerTransport, "GeneratorThrd");
...

Another possibility to specify these parameters consists in the command dabc::CmdCreateTransport which may
wrap such values:

...
dabc::Command* cmd = new dabc::CmdCreateTransport("Generator/Output",

mbs::typeServerTransport, "MbsTransThrd");
cmd->SetStr(mbs::xmlServerKind, mbs::ServerKindToStr(mbs::StreamServer));
cmd->SetInt(mbs::xmlServerPort, mbs::DefaultServerPort(mbs::StreamServer) + 5);
dabc::mgr()->Execute(cmd);
...

14.6 Client transport

Class mbs::ClientTransport allows to connect DABC with MBS. At the moment the MBS transport and stream
servers are supported.

Client transport has following parameters:

Name Type Dflt Description
MbsServerKind str Transport kind of mbs server: "Transport" or "Stream"
MbsServerName str localhost host name where mbs server runs
MbsServerPort int 6000 server port number for socket connection

14.7. Event generator 99

To create client connection, the following piece of code should be used:

...
dabc::Command* cmd = new dabc::CmdCreateTransport("Combiner/Input0",

mbs::typeClientTransport, "MbsTransThrd");
cmd->SetStr(mbs::xmlServerKind, mbs::ServerKindToStr(mbs::StreamServer));
cmd->SetStr(mbs::xmlServerName, "lxi010.gsi.de");
cmd->SetInt(mbs::xmlServerPort, mbs::DefaultServerPort(mbs::StreamServer) + 5);
dabc::mgr()->Execute(cmd);
...

14.7 Event generator

Class mbs::GeneratorModule is an example of a simple module which just fills buffers with random MBS events,
and provides them to the output port. Schematically the implementation of this module looks like this:

#include "dabc/ModuleAsync.h"

class GeneratorModule : public dabc::ModuleAsync {
protected:

dabc::PoolHandle* fPool;
dabc::BufferSize_t fBufferSize;

public:
GeneratorModule(const char* name, dabc::Command* cmd = 0) :

dabc::ModuleAsync(name, cmd)
{

...
fBufferSize = GetCfgInt(dabc::xmlBufferSize, 16384, cmd);
fPool = CreatePoolHandle("Pool", fBufferSize, 10);
CreateOutput("Output", fPool, 5);

}

virtual void ProcessOutputEvent(dabc::Port* port)
{

dabc::Buffer* buf = fPool->TakeBuffer(fBufferSize);
FillRandomBuffer(buf);
port->Send(buf);

}
};

In the module constructor a pool handle is created, declaring a required memory pool with 10 buffers of defined
size fBufferSize. The buffer size is taken from a configuration parameter with name dabc::xmlBufferSize (this
string constant is predefined as "BufferSize"). When the output port is created, this pool handle and a default
queue size is specified.

The only virtual method implemented for generator module is ProcessOutputEvent(). This function is called every
time when a free buffer slot appears in the port output queue. Thus, when the module starts processing, this call
will be immediately executed N times (size of output queue, here 5), because there are N empty entries in the
queue. The only action here is to take a new buffer from the memory pool, fill it with random events and send it to
output port.

The actual mbs::GeneratorModule is part of the libDabcMbs.so library and has following parameters:

100 DABC Programmer Manual: Example MBS

Name Type Dflt Description
NumSubevents int 2 number of subevents in generated event
FirstProcId int 0 value of procid field of first subevent
SubeventSize int 32 size of rawdata in subevent
Go4Random bool true is raw data filled with random value
BufferSize int 16384 server port number for socket connection

Function InitMbsGenerator() can be used to instantiates the generator module. It also demonstrates how a thread
of type dabc::SocketThread can be created and used by both a module and a transport object.

extern "C" void InitMbsGenerator()
{
dabc::mgr()->CreateThread("GenerThrd", dabc::typeSocketThread);
dabc::mgr()->CreateModule("mbs::GeneratorModule", "Generator", "GenerThrd");
dabc::mgr()->CreateTransport("Generator/Output", mbs::typeServerTransport, "GenerThrd");

}

To run the generator module with all default parameters, this simple XML file is sufficient:

<?xml version="1.0"?>
<dabc version="1">
<Context host="lxi009" name="Server">
<Run>
<lib value="libDabcMbs.so"/>
<func value="InitMbsGenerator"/>

</Run>
</Context>

</dabc>

Besides one may specify all module and transport parameters explicitely here:

<?xml version="1.0"?>
<dabc version="1">
<Context host="lxi009" name="Server">
<Run>
<lib value="libDabcMbs.so"/>
<func value="InitMbsGenerator"/>

</Run>
<Module name="Generator">

<NumSubevents value="3"/>
<FirstProcId value="77"/>
<SubeventSize value="128"/>
<Go4Random value="false"/>
<BufferSize value="16384"/>
<Port name="Output">

<OutputQueueSize value="5"/>
<MbsServerKind value="Stream"/>
<MbsServerPort value="6006"/>

</Port>
</Module>

</Context>
</dabc>

Example file $DABCSYS/applications/mbs/GeneratorTest.xml demonstrates the usage of a gener-
ator module.

14.8. MBS event building 101

14.8 MBS event building

Class mbs::CombinerModule allows to combine events from several running MBS systems. It has following
parameters:

Name Type Dflt Description
BufferSize int 16384 buffer size of output data
NumInputs int 2 number of mbs data sources
DoFile bool false create LMD file store for combined events
DoServer bool false create MBS server to provide data further

The module implements two optional output ports: for file storage (port name "FileOutput"), and for providing
data further over an MBS server (port name "ServerOutput").

Function StartMbsCombiner() initializes the combiner module and starts data taking. The following example
configuration file $DABCSYS/applications/mbs/Combiner.xml shows how to configure a combiner
module reading from three MBS transport servers:

<?xml version="1.0"?>
<dabc version="1">
<Context host="localhost" name="Worker">
<Run>

<lib value="libDabcMbs.so"/>
<func value="StartMbsCombiner"/>
<logfile value="combiner.log"/>

</Run>
<Module name="Combiner">

<NumInputs value="3"/>
<DoFile value="false"/>
<DoServer value="true"/>
<BufferSize value="16384"/>
<Port name="Input0">

<InputQueueSize value="5"/>
<MbsServerKind value="Transport"/>
<MbsServerName value="lxi009"/>
<MbsServerPort value="6000"/>

</Port>
<Port name="Input1">

<InputQueueSize value="5"/>
<MbsServerKind value="Transport"/>
<MbsServerName value="lxi010"/>
<MbsServerPort value="6000"/>

</Port>
<Port name="Input2">

<InputQueueSize value="5"/>
<MbsServerKind value="Transport"/>
<MbsServerName value="lxi011"/>
<MbsServerPort value="6000"/>

</Port>
<Port name="FileOutput">

<OutputQueueSize value="5"/>
<MbsFileName value="combiner.lmd"/>
<MbsFileSizeLimit value="128"/>

</Port>
<Port name="ServerOutput">

<OutputQueueSize value="5"/>
<MbsServerKind value="Stream"/>

102 DABC Programmer Manual: Example MBS

</Port>
</Module>

</Context>
</dabc>

14.9 MBS upgrade for DABC

This section is rather for the MBS programmer than for application programmers. To have minimal changes, we
use standard collector and transport. Two changes:

14.9.1 Increased buffer size support

This is done in a completely compatible way. For the following see data structures 14.9.4.3, page 103 and 14.9.4.2,
page 103. The only problem is the 16 bit i_used field in the old buffer header s_bufhe structure (new iUsed)
keeping the number of 16 bit data words (behind buffer header). The other 16 bits are used for event spanning.
With a new rule we store this number in 32 bit field l_free[2], now iUsedWords. Only if old l_dlen, now
iMaxWords is less equal MAX__DLEN defined as (32K-sizeof(bufhe))/2 this number is also stored in
i_used (iUsed) as before. Modifications have to be made in all MBS modules accessing i_used. Modules
outside MBS can be modified on demand to support large buffers. Current buffers still can be handled without
change.
When MBS writes large buffer files only the used part of the file header is written. Number of 16 bit words behind
buffer header structure is stored in filhe_used. Event API f_evt is updated to handle large buffers on input.
Note: by setup the number of buffers per stream can be set to one. This suppresses event spanning. Large buffers
can be used by standard MBS.

14.9.2 Variable sized buffers

As a second step variable sized buffers are implemented. They get a new type 100. The allocated buffers are
still fixed length as before. However, the MBS transport would send only the used part of the buffers to clients.
Processing these buffers a module must first read the header, then get the used size from iUsedWords (old
l_free[2]) and read the rest. Modules outside MBS must be modified to process such buffers. In MBS, after
stream buffers are created, buffer types are set to 100 by a new command enable dabc in transport. This command
also sets the transport synchronous mode. In this mode transport processes streams only if a client is connected.

14.9.3 New LMD file format

With DABC as event builder for MBS there is no need to write files in MBS. This gives more freedom to design a
new file format. This format will be written by DABC and read by fLmd functions (get event). The format is quite
simpler than the old one, because it has no buffer structure causing so much complications by event spanning. The
data elements itself, mainly the events, remain unchanged.

A file has a file header as before, but with a fixed size part and a variable part (size iUsedWords).

Behind the header follow data elements with sMbsHeader headers (length, type, subtype) allowing to identify
and process or skip them. Elements must be sized in 4 byte units. Besides event data, time stamps may be inserted
from the original MBS formatted buffers to preserve this time information. Writing/reading such a file is very
straight forward. The file header contains the number of data elements (iElements) and the maximum size of
elements (iMaxWords). This information is collected throughout the file writing and written on close into the file
header. The file header is an sMbsFileHeader structure.

The file size is no longer restricted to 2GB. Optionally an element index is written at the end of the file. This allows
for random access of elements in the file through this index table. The table itself has 32-bit values for the element
offsets (in 32-bit). It can therefore address offsets up to 16GB in the file. If larger files are needed, the table can be
created with 64-bit values giving unlimited addressing.

14.9. MBS upgrade for DABC 103

Note: this file format needs the rewind file function because the file header must be rewritten to store iMaxWords,
iElements, and optionally the offset of the index table. This function is currently not implemented in the RFIO
package, but will be done.

14.9.4 MBS data structures

All structures are defined independent on endianess. When bytes must be swapped, always 4 bytes are swapped.
Fields 8 bytes long must be handled separately. Smaller items must be accessed by mask&shift. This makes code
independent of endian.

14.9.4.1 Connect to MBS transport

Structure used to talk between client and transport server. Client connects to server (MBS) and reads this structure
first. Structure maps the sMbsTransportInfo info buffer.

typedef struct{
uint32_t iEndian; // byte order. Set to 1 by sender
uint32_t iMaxBytes; // maximum buffer size
uint32_t iBuffers; // buffers per stream (should be 1 for DABC mode)
uint32_t iStreams; // number of streams (=0 for DABC mode)

} sMbsTransportInfo;

14.9.4.2 Buffer header

Buffer header, maps s_bufhe, some fields used in different way. The main difference is the usage of iUsedWords
for the data length.

typedef struct{
uint32_t iMaxWords; // compatible with s_bufhe (total buffer size - header)
uint32_t iType; // compatible with s_bufhe, low=type (=100), high=subtype
uint32_t iUsed; // not used for iMaxWords>MAX__DLEN (16360), low 16bits only
uint32_t iBuffer; // compatible with s_bufhe
uint32_t iElements; // compatible with s_bufhe
uint32_t iTemp; // Used volatile
uint32_t iTimeSpecSec; // compatible with s_bufhe (2*32bit) (struct timespec)
uint32_t iTimeSpecNanoSec; // compatible with s_bufhe (2*32bit) (struct timespec)
uint32_t iEndian; // compatible with s_bufhe free[0]
uint32_t iWrittenEndian; // LMD__ENDIAN_BIG, LMD__ENDIAN_LITTLE, LMD__ENDIAN_UNKNOWN
uint32_t iUsedWords; // total words without header, free[2]
uint32_t iFree3; // free[3]

} sMbsBufferHeader;

14.9.4.3 File header

File header, maps s_bufhe, some fields used in different way.

typedef struct{
uint32_t iMaxWords; // Size of largest element in file
uint32_t iType; // compatible with s_bufhe, low=type (=100), high=subtype
lmdoff_t iTableOffset; // optional offset to element index table in file
uint32_t iElements; // Number of elements in file
uint32_t iOffsetSize; // Offset size, 4 or 8 [bytes]
uint32_t iTimeSpecSec; // compatible with s_bufhe (2*32bit) (struct timespec)

104 DABC Programmer Manual: Example MBS

uint32_t iTimeSpecNanoSec; // compatible with s_bufhe (2*32bit) (struct timespec)
uint32_t iEndian; // compatible with s_bufhe free[0]
uint32_t iWrittenEndian; // LMD__ENDIAN_BIG, LMD__ENDIAN_LITTLE, LMD__ENDIAN_UNKNOWN
uint32_t iUsedWords; // total words following header, free[2]
uint32_t iFree3; // free[3]

} sMbsFileHeader;

14.9.4.4 Data element structures

• Time stamp
typedef struct{

uint32_t iMaxWords;
uint32_t iType;
uint32_t iTimeSpecSec;
uint32_t iTimeSpecNanoSec;

} sMbsTimeStamp;
• Common data item header
typedef struct{

uint32_t iWords; // following data words
uint32_t iType; // compatible with s_ve10_1, low=type (=10), high=subtype

} sMbsHeader;
• MBS event header (type 10,1)
typedef struct{

uint32_t iWords; // data words + 4
uint32_t iType; // compatible with s_ve10_1, low=type (=10), high=subtype
uint32_t iTrigger;
uint32_t iEventNumber;

} sMbsEventHeader;
• MBS subevent header
typedef struct{

uint32_t iWords; // data words + 2
uint32_t iType; // compatible with s_ves10_1, low=type (=10), high=subtype
uint32_t iSubeventID; // 2 low bytes=procid, next byte=subcrate, high byte control

} sMbsSubeventHeader;

14.9.4.5 Some fixed numbers

#define LMD__TYPE_FILE_HEADER_101_1 0x00010065
#define LMD__TYPE_EVENT_HEADER_10_1 0x0001000a
#define LMD__TYPE_FILE_INDEX_101_2 0x00020065
#define LMD__TYPE_BUFFER_HEADER_10_1 0x0001000a
#define LMD__TYPE_BUFFER_HEADER_100_1 0x00010064
#define LMD__TYPE_TIME_STAMP_11_1 0x0001000b
#define LMD__INDEX 1
#define LMD__OVERWRITE 1
#define LMD__LARGE_FILE 1
#define LMD__BUFFER 1
#define LMD__NO_INDEX 0
#define LMD__NO_OVERWRITE 0
#define LMD__NO_LARGE_FILE 0
#define LMD__NO_BUFFER 0
#define LMD__NO_VERBOSE 0
#define LMD__VERBOSE 1
#define LMD__ENDIAN_BIG 2
#define LMD__ENDIAN_LITTLE 1

14.9. MBS upgrade for DABC 105

#define LMD__ENDIAN_UNKNOWN 0

14.9.5 MBS update for DIM control

14.9.5.1 New or modified files

New files:

f_dim_server.c, f_dim_server.h : all DIM functions.
dimstartup.sc, dimshutdown.sc : for single node
prmstartup.sc, prmshutdown.sc, dimremote_exe.sc : for multi node, propagate DIM_DNS_NODE
m_launch.c : fork programs to appear without path in ps output.
m_cmd2xml.c : Generate xml command description file from output of show command

Modified:

alias.com : add launch alias
m_prompt.c
m_dispatch.c
m_msg_log.c
f_ifa.c, f_ifa.h
f_mg_msg_output.c
f_mg_msg_thread.c : in /mbs/v51 has argument which is not specified in call!
f_pr_reset.c : kill processes in defined order.
f_stccomm.c : Socket created in stc_createserver will be shut down and closed by stc_close.
m_wait_for.c : Dont wait for zombies.
remote_exe.sc : use m_launch to run program.
Makefile : modules using DIM must include DIM path, all programs must link DIM library.

14.9.5.2 f_stccomm

On the server side stc_createserver fills structure s_tcpcomm with socket number
(s_tcpcomm.sock_rw). stc_acceptclient returnes socket number of connection. This socket must be
closed by stc_discclient(socket). stc_close shuts down and closes socket s_tcpcomm.socket,
not s_tcpcomm.sock_rw.

Therefore a server side stc_close did not close the server socket. This has been changed in that s_tcpcomm.socket
is now equal s_tcpcomm.sock_rw. When a server called stc_close no more accept is possible as opposed
to the current behavior.

On the client side a stc_connectserver returns the socket as well as setting
s_tcpcomm.socket. Therefore in this case stc_close was always shutting down and closing the socket,
whereas stc_discclient(socket) closes the socket.

14.9.5.3 MBS launcher

launch <program> [<program path>] [. <program args>]

If no program path is given, MBSROOT bin directory is assumed. Note that in the launched program environment
PWD is the path from where m_launch was called, whereas the current path is the one of the program. Therefore
program must chdir(getenv("PWD")) to work on the expected directory.

14.9.5.4 MBS DIM commands and parameters

The parameters and commands follow the DABC naming conventions. The DIM command MbsCommand is
generic. The argument string is any MBS command. All .scom files are provided as DIM commands. New

106 DABC Programmer Manual: Example MBS

program cmd2xml generates an xml file with the DABC formatted description of all MBS commands.

14.9.5.5 DIM control modes

MBS can be controlled through DIM in two modes: single and multimode. In single mode the dispatcher is a DIM
command server, the message logger a DIM parameter server for messages and status information (selected from
DAQ status). In multinode mode the prompter is the DIM command server and the message loggers are status
servers. The master message logger also is the DIM message server.

The table 14.1, page 106 shows an overview of the different operation modes.

Mode Interactive DIM GUI Remote GUI
Single Dispatcher:TTY DIM command -

Logger: TTY,file DIM status+message, file -
Multi Dispatcher:TCP TCP TCP

Prompter:TTY DIM command TCP
MasterLogger:TTY+file file file
Msg server DIM status+message Msg server
TCP inputs TCP inputs TCP inputs
SlaveLogger:TCP TCP,DIM status TCP

Table 14.1: MBS operation modes.

14.9.5.6 Single node mode

There are two new scripts to start and shutdown a single node MBS:
dimstartup.sc and dimshutdown.sc.
These are called by rsh from the GUI node. Arguments are the path of MBSROOT and the user working path.
For starting the DIM server also the DIM name server node is passed.

dimstartup.sc $MBSROOT $PWD $DIM_DNS_NODE

launches m_dispatch -dim after waiting for all 60xx sockets closed.

dimshutdown.sc $MBSROOT $PWD

calls m_remote reset -l. When dispatcher is started with -dim, message logger is started with argv[1] = dim
(otherwise task). Then the DIM commands are defined and dispatcher goes into pause() loop (needed with non
threaded DIM version for keep alive signals).

When message logger is started with argv[1] = dim, it creates the DIM parameters and starts a thread to update
these every second. One DIM parameter is used for the messages and updated when a message arrives. Messages
from local tasks are received in a thread (f_mg_msg_thread) and either sent to master message logger (when
this one is slave) or processed by f_mg_msg_output. This function updates the DIM message parameter when
in DIM mode, sends message to connected remote message client or prints it if not, and writes log file.

14.9.5.7 Multi node mode

In multi node mode the MBS nodes are controlled through one master node where a prompter is running. The
prompter can be started (and stopped) interactively or from a remote node by script. There are two new scripts to
start and shutdown a multi node MBS from a remote node (GUI):

14.9. MBS upgrade for DABC 107

prmstartup.sc and prmshutdown.sc.
These are called by rsh from the GUI node. Arguments are the path of MBSROOT and the user working path.
For starting the DIM server also the DIM name server node is passed.

prmstartup.sc $MBSROOT $PWD $DIM_DNS_NODE $REMOTE_NODE

launches m_prompt -dim -r <remotenode> after waiting for all 60xx sockets closed.

prmshutdown.sc $MBSROOT $PWD

calls m_remote reset -l task=m_prompt. With m_wait_for -task m_prompt it waits for prompter
to be stopped, then calls m_remote reset (all nodes from node_list.txt). For the message logger modes
see table 14.2, page 107. When prompter is started with -dim it starts the master message logger with argv[1] =
masterdim (otherwise = master). When prompter is started with the -r <remote argument>, the remote node name
is passed as argv[2] to the message logger.

All dispatchers are started in the MBS prompter by f_ifa_init(NodeList,DimNameServer) function. It
calls per node from NodeList f_ifa_remotewhich starts the dispatcher in function f_ifa_rsh_proc_start
by script dimremote_exe.sc (DIM mode) or remote_exe.sc (normal mode). When prompter is started
with -dim then the DIM command server is started. Otherwise it starts TCP server on port 6006 (if started with the
-r <remotenode> option) waiting for connection of GUI client and reading commands, or reading commands from
terminal.

dimremote_exe.sc $MBSROOT $PWD $DIM_DNS_NODE $PROMPTER_NODE

launches m_dispatch -dim -<prompternode>. The dispatchers start their message logger with the same
argument (prompter node) and optional argv[2] = slavedim. On the prompter node, however, the message logger
should already run (started by prompter).

Because started with argv[2] = -<prompternode> the dispatchers then start a TCP server waiting on port 6004
for connection of prompter. When prompter connects, dispatcher sends process id. Then waits for commands.
Command completion is sent back. Prompter may terminate, start again and connect.

The master logger starts a server in a thread waiting on port 6005 for connections of message logger slaves. For
each slave a new thread is started waiting for messages of the slave. These threads are protected by mutex. Only
one thread can write into logfile. However, slaves do not write logfile. If prompter was started from remote, master
message logger starts server on port 6007 waiting for remote message client to connect. If remote node is specified,

argv TCP Slave DIM remote
none 0 0 - -
task 0 0 - -
master 1 0 - pth_server→pth_links
dim 0 0 msg,status,pth_dim_serv
masterdim 1 0 msg,status,pth_dim_serv pth_server→pth_links
masternode 1 1 - connect masternode
masterdim any 1 0 msg,status,pth_dim_serv pth_server→pth_links
masternode slavedim 1 1 status,pth_dim_serv connect masternode
master remotenode 1 0 msg,status,pth_dim_serv pth_rem_serv,pth_server →pth_links

Table 14.2: MBS Message logger modes.

pth_rem_serv thread waits for connection of a message client. After connection global l_tcp_chan_rem
is set and f_mg_msg_output send messages to that socket. As TCP master the pth_server thread waits
for connections of message slaves. After connection starts pth_links thread to read messages and process in
f_mg_msg_output (mutex locked). As TCP slave connect to <masternode>, set global l_tcp_chan. In
DIM mode create services and start pth_dim_serv to update every second. In all cases f_mg_msg_thread
is called where in slave mode messages are sent to the master, otherwise processed by f_mg_msg_output.

108 DABC Programmer Manual: Example MBS

14.9.5.8 MBS controlled by DIM

Graphics on Eigene Dateien/experiments/mbs

message queue,
to 2000

command queue, to pid

TCP 6008
Remote status client

Remote DIM client

DIM update
thread

DIM callback
Input loop

Status server
thread

Main loop

Command
thread

Message
thread

DIM
Main loop

Dispatcher

Logger
Task

TTY

DIM
Main loop

Figure 14.1: Single node MBS controlled by DIM.

14.10 List of icons

browser Browser.

comicon Command.

conndsp Connect single MBS

connprm Connect MBS prompter

control Test, shell script

controlmbs DABC shell script

controldabc MBS shell script

dabcconfig Configure

dabcicon DABC launcher

dabcmbsicon DABC MBS launcher

dabcstart Start acquisition

14.10. List of icons 109

message queue,
to 2000

command queue, to pid

TCP 6007 Message server
thread

Main loop

Command
thread

Message
thread

Dispatcher

Master Logger
Task

message queue,
to 2000

command queue, to pid

Message client
threads

Main loop

Command
thread

Message
thread

Dispatcher

Logger

Task

Prompter

TCP 6004

TCP 6004

TC
P

60
05

Command
loop

Command
loop

Command
loop

TCP 6006

Figure 14.2: Multi node MBS controlled by TCP.

dabcstop Hold acquisition

disconn Shut down all

exitall Exit all

fileclose Close

filesave Save

histowin Histogram panel

info Show acquisition

infowin Info panel

logwin Log panel

mbsconfig Configure

mbsicon MBS launcher

mbsstart Start acquisition

mbsstop Stop acquisition

meterwin Rate meter panel

paramwin Parameter table

110 DABC Programmer Manual: Example MBS

message queue,
to 2000

command queue, to pid

DIM callback

Main loop

Command
thread

Message
thread

Dispatcher

Master Logger

Task

message queue,
to 2000

command queue, to pid

Message client
threads

Main loop

Command
thread

Message
thread

Dispatcher

Logger

Task

Prompter

TCP 6004

TCP 6004

TC
P

60
05

Command
thread

Command
thread

DIM
Main loop

Remote DIM client

DIM update
thread

DIM
Main loop

DIM update
thread

DIM
Main loop

Figure 14.3: Multi node MBS controlled by DIM.

rshmbx MBS remote shell script

savewin Save settings

statewin State panel

usergraphics Graphics panel

usericon Parameter selection panel

usericonblue User panel

usericonred User panel

usericongreen User panel

usericonyellow User panel

user Windows

windowclose Windows close

windowblue Graphics window

windowred Graphics window

14.10. List of icons 111

windowgreen Graphics window

112 DABC Programmer Manual: Example MBS

Chapter 15

DABC Programmer Manual: Example
Bnet

[programmer/prog-exa-bnet.tex]

15.1 Overview

Complex experiments feature a lot of front-end systems running in parallel. These take data and mark them with
trigger information, or just with time stamps. To completely analyze such data, all portions belonging to the same
event (or time stamp), must be combined in one processing unit. Such task is usually called "event building".

To support event building functionality in DABC, a special sub-framework called BNET ("Building NETwork")
was introduced. Its main purpose is to simplify the experiment-specific implementation of such event building,
distributed over several network nodes.

A typical event building network contains several readout nodes, each connected to several data sources. A
readout node reads data from its data sources and combines together data parts which logically belong together;
this is called subevent building. In case of a triggered system it combines together data with the same trigger
number; in case of time-stamped data it combines together data which belongs to the same time interval. Because
there are several readout nodes, building a complete event requires to bring together all data of the same trigger
number (or time interval, resp.) into the same builder node. Typically the system has not only a single builder
node, but several of them; so full connectivity between all readouts and all builder nodes is necessary. Once
all corresponding subevents have been delivered to the same builder node, the complete event may be build and
eventually stored on disk or tape.

For such use case, the BNET framework defines a programming interface to implement the functional units
(i. e. applications and modules), and it already provides several important components. BNET also defines
the topology of these functional units which can be customized up to a definite level.

15.2 Controller application

The event building task is usually distributed over several nodes which must be controlled and synchronized.
Therefore in BNET all nodes are classified by their functionality in two kinds: controller node and worker nodes.
Workers perform all data transport, and run the (sub-)event building code. The controller configures and steers all
workers.

The controller node is implemented as bnet::ClusterApplication class. Via the control system interface the cluster
controller distributes commands from the operator GUI to all workers. It observes the state of all workers, and may
reconfigure them automatically if errors are detected.

113

114 DABC Programmer Manual: Example Bnet

The functionality of bnet::ClusterApplication is based on state-machine logic of DABC . All actions are performed
during the execution of a state changing command, implemented in virtual method DoStateTransition(). A state
transition on the cluster controller node means that the appropriate state transition is performed on all worker nodes.
Technically speaking: a state machine command which is executed on the cluster controller is only completed if
the state transition commands on all workers are successfully completed. This is implemented by means of class
dabc::CommandsSet (see method StartClusterSMCommand() for details).

Class bnet::ClusterApplication has following configuration parameters:

Name Type Dflt Description
NetDevice str dabc::SocketDevice device class for network connections
NumEventsCombine int 1 number of events (time frames) combined together
TransportBuffer int 8192 size of buffer used for data transport cluster wide

Class bnet::ClusterApplication is fully functional and can be used as is for a real cluster set-up.

15.3 Worker application

The basic functionality of a worker is implemented in bnet::WorkerApplication class. Its main purpose is to
instantiate, configure, connect, and run all working modules, triggered by commands from the cluster controller.

Main functionality of bnet::WorkerApplication is implemented in virtual method CreateAppModules() which is
called during transition from Halted to Configured state. In this method all local modules are instantiated and
configured. Some of these modules depend on the actual experiment, therefore class bnet::WorkerApplication
provides a number of virtual methods to create experiment-specific components:

• CreateCombiner() - create a module combining several data sources to produce a subevent
• CreateBuilder() - create a module which combines N subevents to a complete event
• CreateFilter() - optional filter module to filter out events
• CreateReadout() - creates a readout transport connected to a data source
• CreateStorage() - creates a storage transport to store data on disk/tape

The user must define his/her own application class which inherits from bnet::WorkerApplication, implementing
these virtual methods.

Class bnet::WorkerApplication has the following "public" configuration parameters:

Name Type Dflt Description
IsGenerator bool false use generators instead of data sources
IsSender bool false is sender module is created (readout functionality)
IsReceiver bool false is receiver module is created (event builder functionality)
IsFilter bool false is filter module is created (event builder should be true)
NumReadouts int 1 number of data inputs
Inpit0Cfg str string parameter to configure input 0 - user specific
Inpit1Cfg str string parameter to configure input 1 and so on - user specific
StoragePar str string parameter to configure storage - user specific
ReadoutBuffer int 2048 buffer size, used for readout
ReadoutPoolSize int 4MB size of memory pool for readout
TransportPoolSize int 16MB size of memory pool for data transport
EventBuffer int 32768 buffer size, used for event building
EventPoolSize int 4MB size of memory pool for event building

There are also number of "private" parameters which are not seen by control system and cannot be configured via
XML file:

15.4. Combiner module 115

Name Type Dflt Description
CfgNodeID int node id (starts from 1 for workers)
CfgNumNodes int number of nodes in configuration
CfgSendMask str string in form of "xxox" defines which nodes are sender "x" or not "o"
CfgRecvMask str string in form of "xxox" defines which nodes are sender "x" or not "o"
CfgClusterMgr str name of cluster controller node
CfgNetDevice str name of configured network device, same as cluster param NetDevice
CfgEventsCombine int number of events combined together, same as cluster param NumEventsCombine
CfgReadoutPool str name of memory pool, used for readout ("ReadoutPool" or "TransportPool")
CfgConnected bool true when local configuration of application completed

These parameters are set during initialization phase. Some of them like CfgEventsCombine should be used by
modules for it’s configuration.

If required, the user subclass of bnet::WorkerApplication may define additional configuration parameters.

15.4 Combiner module

The combiner module merges together several data sources and produces subevent packets. Here a "subevent"
means that data from all sources which belong to the same event (or time frame, resp.) are put into the same
dabc::Buffer object. This buffer object should have a header with a unique identifier of type bnet::EventId;
this is a 64-bit unsigned integer.

...
dabc::Buffer* buf = fPool->TakeBuffer(bufsize);
buf->SetHeaderSize(sizeof(bnet::EventId));

((bnet::EventId) buf()->GetHeader()) = evid++;
...

The subevent identifier number should be subsequently increasing without a gap. When no data for the current
identifier is available, an empty buffer with no data and correct header must be delivered to the output.

Class bnet::CombinerModule provides the prototype of a combiner module. It uses the following single parameter:

Name Type Dflt Description
NumReadouts int 1 number of data inputs

Actually, parameter NumReadouts may not be defined in the configuration of the module itself. Since class
bnet::WorkerApplication already has a parameter of such name, its value will be directly used for the module
configuration.

When implementing an experiment-specific combiner class, one should either derive it from bnet::CombinerModule
class, or start "from scratch" by subclassing dabc::ModuleSync or dabc::ModuleAsync. One may add more
experiment-specific parameters to the module.

15.5 Network topology

The connection topology of the event building network is defined by parameters IsSender and IsReceiver of
bnet::WorkerApplication. These parameters configure the roles of each worker node:

• collector of data from data source(s) and sender to event builder
• receiever of data from collectors and builder of complete events
• both functions at the same application

It is required that at least one of both parameters has a true value. During configuration, the cluster controller
establishes the connections between the workers such, that each sender module is connected with all receiver

116 DABC Programmer Manual: Example Bnet

modules. This guarantees that each receiever node gets data from all sources, necessary to perform the full event
building.

The two classes bnet::SenderModule, and bnet::ReceiverModule, implement the functionality of data sender, and
data receiver, respectively. These classes are instantiated by bnet::WorkerApplication and should not be modified
by the user.

The subevents buffers, as produced by the combiner module, are delivered to the sender module. Based on the
event identifier, the buffer is send to that specific receiver where the event with such id will be build. For now
a simple round-robin schedule is used by BNET, but in next DABC versions one or several other data transfer
schedules will be implemented. One idea of the BNET framework is that such improvements are possible without
changing the user application code.

15.6 Event builder module

The task of the receiver module is to collect all buffers of the same event identifier and deliver them at once to the
event builder module.

To define an experiment-specific builder module, one can either derive it from bnet::BuilderModule class, or
implement it "from scratch" by subclassing dabc::ModuleSync or dabc::ModuleAsync. The event builder module
has one input and one output. Over the input port it gets N buffers with subevents for the same event identifier.
Over the output port it should deliver one buffer with build events.

When the user inherits his/her builder module from bnet::BuilderModule, it is enough to implement the virtual
DoBuildEvent() method, which gets as argument a list of N buffers with subevents. The format of the output buffer
is completely user-defined. It is allowed to fill several events into the same output buffer if necessary.

15.7 Filter module

This is an optional component of BNET if build events shall be filtered before they are stored. To implement such
filter, one can derive it from bnet::FilterModule and reimplement virtual method TestBuffer(). As an alternative,
filtering can be implemented directly in the event builder module.

15.8 BNET test application

This application may test different asspects of a BNET without the necessity to have real data sources. The
complete source code and configuration examples can be found in $DABCSYS/applications/bnet-test
directory.

The example contains following classes:

• bnet::TestGeneratorModule
• bnet::TestCombinerModule
• bnet::TestBuilderModule
• bnet::TestFilterModule
• bnet::TestWorkerApplication
• bnet::TestFactory

There are several examples of configuration files. For instance, the configuration of 4 worker nodes with sender
and receiver functionality each is shown in SetupBnet.xml:

<?xml version="1.0"?>
<dabc version="1">
<Context host="lxi008" name="Controller:41">
<Run>

15.9. BNET for MBS application 117

<runfunc value="RunTestBnet"/>
</Run>
<Application class="bnet::Cluster">

<NetDevice value="dabc::SocketDevice"/>
</Application>

</Context>
<Context host="lxi009" name="Worker1:42"/>
<Context host="lxi010" name="Worker2:42"/>
<Context host="lxi011" name="Worker3:42"/>
<Context host="lxi012" name="Worker4:42"/>
<Defaults>
<Context name="*">
<Run>
<logfile value="test${DABCNODEID}.log"/>
<loglevel value="1"/>
<lib value="libDabcBnet.so"/>

</Run>
</Context>
<Context name="Worker*">

<Run>
<lib value="${DABCSYS}/applications/bnet-test/libBnetTest.so"/>

</Run>
<Application class="bnet::TestWorker">
<IsGenerator value="true"/>
<IsSender value="true"/>
<IsReceiver value="true"/>
<NumReadouts value="4"/>

</Application>
</Context>

</Defaults>
</dabc>

Here one can see cluster controller apllication in the beginning, configured to use dabc::SocketDevice for work-
ers connections. And there are four workers with the same configurations parameters which can be found in
<Defaults> section. In section <Context name="Worker*"> one sees, that IsGenerator, IsSender and IsReceiver
parameters are all set to true. This defines the so-called "all-to-all" topology, i. e. each node communicates with all
other nodes including itself. Parameter NumReadouts=4 means that there are 4 inputs on each combiner, resulting
in 16 data sources for the complete system.

To run this example, one should specify correct host names for all contexts and start it with run.sh SetupBnet.xml
command.

This can be used as template for developing a user-specific application. One can change functionality of combiner
and builder modules, and provide a real readout instead of the generator module.

15.9 BNET for MBS application

This is a ready-ro-use implementation of distributed event building for MBS. The source code can be found in
$DABCSYS/plugins/bnet-mbs directory. It contains following classes:

• bnet::MbsCombinerModule
• bnet::MbsBuilderModule
• bnet::MbsWorkerApplication
• bnet::MbsFactory

Class bnet::MbsCombinerModule combines together events with the same event identifier from all inputs. In the
cluster application parameter NumEventsCombine defines how many events should be bundled together in one

118 DABC Programmer Manual: Example Bnet

buffer. It is crucial that transport buffer size is big enough for such number of subevents. During initialisation,
cluster parameter NumEventsCombine is copied to each worker parameter CfgEventsCombine, which is finally
used in bnet::MbsCombinerModule:

bnet::MbsCombinerModule::MbsCombinerModule(...
...
fCfgEventsCombine = GetCfgInt(CfgEventsCombine, 1, cmd);
...

For the moment bnet::MbsCombinerModule skips an event, if it is not present on all local data inputs.

Class bnet::MbsBuilderModule builds MBS events from the buffers as delivered by the receiver module. It also
takes application parameter CfgEventsCombine to tell how many real MBS events are contained in the input
buffers.

Application class bnet::MbsWorkerApplication implements several methods to correctly instantiate combiner and
builder modules. It also implements virtual method CreateReadout(), where the input transport for the combiner
module is created. In case of MBS there are three possibilities:

1. when IsGenerator=true module mbs::GeneratorModule connected as data input
2. when the appropriate readout parameter (like Input0Cfg for the first input) is a filename with ".lmd" suffix,

the specified file will be used as data input
3. otherwise, the value of readout parameter (like Input0Cfg) will be used as MBS server name for connecting

of mbs::ClientTransport to the appropriate data input

In virtual method CreateStorage() an output .lmd file will be created, if parameter StoragePar value is not empty.

Example file $DABCSYS/applications/bnet-mbs/SetupBnetMbs.xml shows the configuration for
an MBS event building with 2 readout nodes, connected with 2 generators each and 2 event builder nodes. This
configuration file can be customised via <Variables> definitions in the beginning:

<?xml version="1.0"?>
<dabc version="1">
<Variables>

<node0 value="lxi008"/>
<node1 value="lxi009"/>
<node2 value="lxi010"/>
<node3 value="lxi011"/>
<node4 value="lxi012"/>
<custport value="16015"/>

</Variables>
...

</dabc>

Here node0 specifies the node where the cluster controller will run, node1 and node3 are used as readout nodes,
node2 and node4 as builder nodes. On all four worker nodes one MBS generator application will be started. To
run the application, just type run.sh SetupBnetMbs.xml.

Chapter 16

DABC Programmer Manual: Example
ROC

[programmer/prog-exa-roc.tex]

16.1 Overview

The CBM ReadOut Controller (ROC) is an FPGA-based board to configure and read out the nXYTER chip [5], and
to transport the acquired data over Ethernet to a PC. The software package ROClib provides the basic functionality
to work with such ROC.

To support the usage of ROC in DABC , the following classes were implemented:

• roc::Device device class, wrapper for the SysCoreController class of ROClib
• roc::Transport corresponding transport, with access to the functionality of SysCoreBoard class of ROClib
• roc::CombinerModule module to combine data from several ROCs into a single output port
• roc::CalibrationModule module to calibrate the time scale in ROC data
• roc::ReadoutApplication application to perform readout from ROC boards
• roc::Factory factory class to organize these plugins

16.2 Device and transport

The ROC device class roc::Device inherits from two classes: dabc::Device and SysCoreControl, where SysCore-
Control provides simultaneous access to several ROC boards. Usually the instance of a device class corresponds
to one physical device or board, but here the device object is rather used as central collection of SysCoreBoard
objects, and as thread provider.

Each instance of roc::Transport has a pointer to a SysCoreBoard object which handles data taking from a specific
ROC. The implementation of roc::Transport is based on the dabc::DataTransport class (see section 12.3.5) which
runs as WorkingProcessor with an asynchronous event handling mechanism, so it does not require an explicit
thread. This feature allows to process several instances of such transports in the same thread. In the ROC case, all
roc::Transport instances use the thread of roc::Device.

Let’s have a look how roc::Transport is working. When the connected module starts, method StartTransport() is
called, which will invoke SysCoreBoard::startDaq() to start data taking. After that, the buffer filling loop consists
in subsequent calls of Read_Size(), Read_Start() and Read_Complete() functions, implementing the interface of
dabc::DataTransport (see section 12.3.5).

Method Read_Size() defines the size of the next buffer, required for data reading. In case of roc::Transport this
size is fixed and is taken from a configuration parameter:

119

120 DABC Programmer Manual: Example ROC

unsigned roc::Transport::Read_Size()
{

return fBufferSize;
}

When the system has delivered a buffer of the requested size, function Read_Start() is called to start reading of that
buffer from the data source:

unsigned roc::Transport::Read_Start(dabc::Buffer* buf)
{

int req = fxBoard->requestData(fReqNumMsgs);
if (req==2) return dabc::DataInput::di_CallBack;
if (req==1) return dabc::DataInput::di_Ok;
return dabc::DataInput::di_Error;

}

The SysCoreBoard (accessed by pointer fxBoard) keeps internally own buffers of the received UDP messages.
The call SysCoreBoard::requestData() informs by return value either that the required number of messages is
already received, or that the caller should wait (i. e. poll this method here until it returns that all data is ready).
However, waiting would mean that the working thread is blocked and could not run the other transport instances.
Therefore, another approach is used: the ROClib will call back the virtual method SysCoreControl::DataCallBack()
when the required amount of data is there. This method is implemented for roc::Transport to complete filling the
current dabc::Buffer.

If data already exists in the internal buffers of SysCoreBoard, the value dabc::DataInput::di_Ok is returned; then
the DataTransport framework will immediately call Read_Complete() which finally fills the DABC buffer:

unsigned roc::Transport::Read_Complete(dabc::Buffer* buf)
{

unsigned fullsz = buf->GetDataSize();
if (!fxBoard->fillData((char*) buf->GetDataLocation(), fullsz))

return dabc::DataInput::di_SkipBuffer;
if (fullsz==0)

return dabc::DataInput::di_SkipBuffer;
buf->SetTypeId(roc::rbt_RawRocData);
buf->SetDataSize(fullsz);
return dabc::DataInput::di_Ok;

}

The return value dabc::DataInput::di_CallBack of function Read_Start() indicates that processing of this trans-
port should be suspended, because the requested amount of data is not ready yet. When all this data has been
received by the ROClib, it will invoke method SysCoreControl::DataCallBack() which is reimplemented in sub-
class roc::Device, simply forwarding to the following method of roc::Transport:

void roc::Transport::CompleteBufferReading()
{

unsigned res = Read_Complete(fCurrentBuf);
Read_CallBack(res);

}

As the required amount of data is ready now, one only retrieves it to the current buffer with the same Read_Complete()
method, and reactivates the processing of this transport instance by calling Read_CallBack().

16.3. Combiner module 121

16.3 Combiner module

Class roc::CombinerModule combines data from several ROC boards in one MBS event. It also performs sorting
of data according the timestamp, resolves the "last epoch" bits, and fixes several coding errors (class SysCoreSorter
is used for this).

The module has following configuration parameters:

• NumRocs - number of ROC boards, connected to combiner [default 1]
• BufferSize - size of buffer, used to read data from ROCs [default 16384]
• NumOutputs - number of outputs [default 2]

As output MBS events are provided. Each MBS event contains ROC messages between two sync markers. For
each ROC a separate MBS subevent is allocated; field iSubcrate of the subevent header contains the ROC id.

16.4 Calibration module

Class roc::CalibrationModule performs the calibration of the time scale for all ROCs and merges all messages
into a single data stream. As output, an MBS event with a single subevent is produced.

The module has following configuration parameters:

• NumRocs - number of ROC boards, which should be provided in MBS event [default 2]
• BufferSize - size of buffer, used to produce output data [default 16384]
• NumOutputs - number of outputs [default 2]

16.5 Readout application

The main aim of roc::ReadoutApplication class is to configure and run the application which combines the data
readouts from several ROCs. It can store the data into a .lmd file, and it may provide MBS stream or transport
servers for online monitoring, e. g. with a remote Go4 analysis. It has following configuration parameters:

• NumRocs - number of ROC boards
• RocIp0, RocIp1, RocIp2, ... - addresses (IP or nodname) of ROC boards
• DoCalibr - defines calibration mode (see further)
• BufferSize - size of buffer
• NumBuffers - number of buffers
• MbsServerKind - kind of MBS server ("None", "Stream", "Transport")
• RawFile - name of .lmd file to store "raw" combined data (after CombinerModule)
• CalibrFile - name of .lmd file to store "calibrated" data (after CalibrationModule)
• MbsFileSizeLimit - maximum size of each file, in Mb. If the written data would exceed this size, a new output

file is automatically created with a sequence number appended to the file name.

Three calibration modes are supported:

• DoCalibr=0 - Only the CombinerModule is instantiated, which produces a kind of ROC "raw" data
• DoCalibr=1 - Both CombinerModule and CalibrationModule are instantiated
• DoCalibr=2 - Only the CalibrationModule is instantiated. This is used to convert "raw" data read from .lmd

files into the "calibrated" format.

In all modes output in form of raw or (and) calibrated data can be stored in .lmd file(s), defined by RawFile and
CalibdFile parameters respectively. The last mode is a special case, since RawFile does not specify the output, but
the input file for the calibration module.

122 DABC Programmer Manual: Example ROC

16.6 Factory

Factory class roc::Factory implements several methods to create the ROC-specific application, device and mod-
ules, as described in section 12.5.

16.7 Source and compilation

The source code of all classes can be found in $DABCSYS/plugins/roc directory. Compiled library libDabcKnut.so
is in directory $DABCSYS/lib . If one needs to modify some code in this library, one should copy the sources
to a user directory and call "make" in this directory. In this case the library is build into a subdirectory, named like
$ARCH/lib, where $ARCH is the current CPU architecture (for instance, "i686").

16.8 Running the ROC application

To run the readout application, an approprite XML configuration file is required. There are two examples of
configuration files in $DABCSYS/applications/roc.

File Readout.xml configures the readout from 3 ROCs:

<?xml version="1.0"?>
<dabc version="1">
<Context name="Readout">
<Run>
<lib value="libDabcMbs.so"/>
<lib value="libDabcKnut.so"/>
<logfile value="Readout.log"/>

</Run>
<Application class="roc::Readout">
<DoCalibr value="0"/>
<NumRocs value="3"/>
<RocIp0 value="cbmtest01"/>
<RocIp1 value="cbmtest02"/>
<RocIp2 value="cbmtest04"/>
<BufferSize value="65536"/>
<NumBuffers value="100"/>
<TransportWindow value="30"/>
<RawFile value="run090.lmd"/>
<MbsServerKind value="Stream"/>
<MbsFileSizeLimit value="110"/>

</Application>
</Context>
</dabc>

Because this is a single-node application, it can be started directly from a shell by calling the standard dabc_run
executable with the configuration file name as argument: dabc_run Readout.xml. This executable will load
the specified libraries, create the application, configure it, and switch the system in the Running state.

File Calibr.xml shows the special case of a configuration to convert "raw" data into "calibrated" data without
running any real DAQ:

<?xml version="1.0"?>
<dabc version="1">
<Context name="Calibr">

16.8. Running the ROC application 123

<Run>
<lib value="libDabcMbs.so"/>
<lib value="libDabcKnut.so"/>
<logfile value="Calibr.log"/>

</Run>
<Application class="roc::Readout">
<DoCalibr value="2"/>
<NumRocs value="3"/>
<BufferSize value="65536"/>
<NumBuffers value="100"/>
<RawFile value="/d/cbm06/cbmdata/SEP08/raw/run028/run028*.lmd"/>
<MbsServerKind value="Stream"/>
<CalibrFile value="testcal.lmd"/>
<MbsFileSizeLimit value="110"/>

</Application>
</Context>

</dabc>

Here the "raw" data is read from the files matching the name wildcard pattern as defined in the <RawFile> tag.
Note that this example will read subsequently all data of run "028" which possibly was saved into several files
with subsequent numbers appended to their names, due to the <MbsFileSizeLimit> mechanism as described
above. The "calibrated" data is written as usual to the output file as specified in the <CalibrFile> tag.

124 DABC Programmer Manual: Example ROC

Chapter 17

DABC Programmer Manual: Example
PCI

[programmer/prog-exa-pci.tex]

17.1 Overview

Reading data streams from a PCI board into the PC is a common use case for data acquisiton systems. In
DABC one can implement access to such boards by means of special Device and Transport classes that com-
municate with the appropriate linux device driver. The Device represents the board and may do the hardware
set-up at Configure time, using dedicated dabc::Parameters. The Transport may fill its data buffers via board
DMA, and pass the Buffers to the connected readout Module.

This example treats the Active Buffer Board (ABB) [4] , a PCI express (PCIe) board with a Virtex 4 FPGA and
optical connectors to receive data from the experiment frontend hardware. It is developed for the CBM experiment
[2] by the Institut f. Technische Informatik at Mannheim University. The board developers deliver a kernel module
as linux device driver, and the mprace:: C++ library to work with the board from user space.

Since this driver software may also be applied for other PCIe boards, the corresponding DABC classes pci::Device
and pci::Transport are rather generic, using namespace pci::. The special properties of the ABB board are then
implemented in a pci::BoardDevice subclass and in further classes with namespace abb::.

Besides some simple test executables that read from and write to the ABB on a single machine, there is an example
of a bnet::WorkerApplication that applies the ABB classes for the readout module.

17.2 PCI Device and Transport

17.2.1 pci::BoardDevice

Subclass of dabc::Device. Adapter to the the mprace::Board functionality, i.e. the generic PCIe.

1. It implements the Transport factory method CreateTransport(). This will create a pci::Transport and
assign a dedicated working thread for each transport. The DABC framework will use this method to
establish the data connection of a Port with the PCI device.

2. It defines a plug-in point for an abstract board component: The device functionalities may require driver
implementations that are more board specific. Because of this, the mprace:: library provides base class
Board with some virtual methods to work on the driver. This is applied here as handle to the actual Board
implementation (e. g. a mprace:ABB) that must be instantiated in the constructor of the subclass. Note
that all functionalites require a real Board implementation, thus it is not possible to instantiate a mere
pci::BoardDevice without subclassing it!

125

126 DABC Programmer Manual: Example PCI

3. It adds Device specific commands CommandSetPCIReadRegion and CommandSetPCIWriteRegion that
define the regions in the PCI address space for reading or writing data, resp. Method ExecuteCommand(Command*)
is extended to handle such commands.

4. It manages the scatter-gather mapping of userspace dabc::Buffer objects for the DMA engine. These are
taken from a regular DABC memory pool and are each mapped to a mprace::DMABuffer representation.
The DMA mapping is done in method MapDMABuffer() which gets the reference to the dabc::MemoryPool*
that is used for the pci::Transport. This is required at Device initialization time; the mapping must be re-
freshed on the fly if the memory pool changes though.
Method GetDMABuffer(dabc::Buffer*) will deliver for each dabc::Buffer* of the mapped memory pool the
corresponding mprace::DMABuffer* object to be used in the underlying mprace:: library. These are asso-
ciated by the dabc::Buffer id number which defines the index in the std::vector keeping the mprace::DMABuffer*
handles.
Method DoDeviceCleanup() is implemented for a proper cleanup of the mapped DMA buffers when the
Device is removed by the framework.

5. Reading data from the board: Method ReadPCI(dabc::Buffer*) implements reading one buffer from PCI,
using the BAR, the PCI start address, and the read size, as specified before. These read parameters may
be either set by method SetReadBuffer(unsigned int bar, unsigned int address, unsigned int length), or by
submitting the corresponding command CommandSetPCIReadRegion to the pci::Device
If DMA mode (defined in the constructor) is not enabled , this will just use PIO to fill the specified
dabc::Buffer from the PCI address range. If DMA mode is enabled, it will perform DMA into the user space
dabc::Buffer*; this must be taken from a memory pool that was mapped before by means of MapDMABuffer().
This is a synchronous call that will initiate the DMA transfer and block until it is complete.
For asynchronous DMA (double buffering of dabc::DataTransport) following virtual methods are provided:
Method ReadPCIStart(dabc::Buffer*) may start the asynchronous filling of one mapped Buffer from the
configured PCI board addresses. It should not wait for the completion of the data transfer, but return immea-
diately without blocking after triggering the DMA. In contrast to this, ReadPCIComplete(dabc::Buffer*)
must wait until the DMA transfer into the specified Buffer is completely finished. So the pci::Transport
will initiate DMA by ReadPCIStart() and check for DMA completion by ReadPCIComplete(). A subclass
of pci::BoardDevice may re-implement these methods with board specific functionalities.

6. Writing data to the board: Method WritePCI(dabc::Buffer*) implements writing data from a DABC buffer
to the PCI address space, using the BAR, the PCI start address, and the write size, as specified before.
These write parameters may be either set by method SetWriteBuffer(unsigned int bar, unsigned int address,
unsigned int length), or by submitting the corresponding command CommandSetPCIWriteRegion to the
pci::Device. If DMA mode (defined in the constructor) is not enabled , this will just use PIO to transfer the
specified dabc::Buffer to the PCI addresses.
If DMA mode is enabled, it will perform DMA from the user space dabc::Buffer*; this must be taken from
a memory pool that was mapped before by means of MapDMABuffer(). This call will initiate the DMA
transfer and block until it is complete. Currently there is no asynchronous implementation for data output
to PCI, since this is a rare use case for a DAQ system.

17.2.2 pci::Transport

This class handles the connection between the Port of a module and the PCI device. It is created in CreateTrans-
port() of pci::BoardDevice when the user application calls the corresponding Manager method with the names of
the port and the device instances, e. g.
dabc::mgr()->CreateTransport("ReadoutModule/Input", "AbbDevice3");

It extends the base class dabc::DataTransport which already provides generic Buffer queues with a data back-
pressure mechanism, both for input and output direction. Because this class is also a WorkingProcessor, each
pci::Transport object has a dedicated thread that runs the IO actions. The following virtual methods of dabc::DataTransport
were implemented:

unsigned Read_Size() : Returns the size in byte of the next buffer that is to be read from board. Uses the current
readout length as set for the pci::BoardDevice with SetReadBuffer(), or CommandSetPCIReadRegion,
resp.

unsigned Read_Start(dabc::Buffer* buf) : This initiates the reading into buffer buf and returns without waiting

17.3. Active Buffer Board implementation 127

for completion. The functionality is forwarded to ReadPCIStart() of pci::BoardDevice. When Read_Start()
returns, the transport thread can already push the previously filled DMA buffer to the connected Port, which
may wake up the waiting thread of its Module for further processing. Thus base class dabc::DataTransport
implicitly provides a double-buffering mechanism here.

unsigned Read_Complete(dabc::Buffer* buf) : Will wait until filling the buffer buf from a DMA read operation
is completed. The DMA either must have been started asynchronously by a previous Read_Start() call; or
it must be started synchronously here. This method is used by the base class for synchronization between
transport thread and DMA engine of the PCI board. The functionality is forwarded to ReadPCIComplete()
of pci::BoardDevice.

bool WriteBuffer(dabc::Buffer* buf) : Write content of buf to the PCI region as set for the BoardDevice with
SetWriteBuffer(), or CommandSetPCIWriteRegion, resp. This is a pure synchronous method, i. e. it
will start the DMA transfer and return no sooner than it’s completed. The functionality is forwarded to
WritePCI() of pci::BoardDevice.

void ProcessPoolChanged(dabc::MemoryPool* pool) : Is called by the framework whenever the memory pool
associated with the transport instance changes, e. g. at transport connection time, pool expansion, etc. It
calls MapDMABuffers() of pci::BoardDevice to rebuild the scatter-gather mappings for each buffer of the
pool.

17.3 Active Buffer Board implementation

17.3.1 abb::Device

This subclass of pci::BoardDevice adds some functionality that is rather specific to the ABB hardware and the
test environment.

1. The constructor instantiates the mprace::Board component for the ABB functionalities. Additionally, a
DMA engine component mprace::DMAEngineWG is applied for all DMA specific actions.

2. It implements the actual asynchronous DMA by overriding methods ReadPCIStart() and ReadPCICom-
plete(). The base class pci::BoardDevice can provide synchronous DMA only, because the generic mprace::Board
interface does not cover asynchronous features. These are handled by the DMAEngineWG component.

3. The constructor uses several configuration parameters:
unsigned int devicenum = GetCfgInt(ABB_PAR_BOARDNUM, 0, cmd);
unsigned int bar = GetCfgInt(ABB_PAR_BAR, 1, cmd);
unsigned int addr = GetCfgInt(ABB_PAR_ADDRESS, (0x8000 >> 2), cmd);
unsigned int size = GetCfgInt(ABB_PAR_LENGTH, 8192, cmd);

The parameter names are handled by string definitions in abb/Factory.h:
#define ABB_PAR_BOARDNUM "ABB_BoardNumber"
#define ABB_PAR_BAR "ABB_ReadoutBAR"
#define ABB_PAR_ADDRESS "ABB_ReadoutAddress"
#define ABB_PAR_LENGTH "ABB_ReadoutLength"

The GetCfgInt() will look for a parameter of the specified name already existing in the system, e. g. if the
Application object has defined such. If not, a dabc::Parameter of that name will be created and exported to
the control system. If the configuration file specifies a value for this parameter, it will be set; otherwise, the
default value (second argument of GetCfgInt()) is set.
If the constructor gets a command object cmd as argument containing a parameter of the specified name,
this command’s parameter value will override all other values for this parameter defined elsewhere in the
system. The user may pass such a cmd to the abb::Device either as third argument of the manager factory
method CreateDevice(); or by means of a dabc::CmdCreateDevice object which is invoked by Execute()
of the manager. This is useful if the device is to be tested without any configuration or control system, as
shown in the examples of section 17.4.

4. It provides pseudo event data for the Bnet test example in the received DMA buffers: Method ReadPCI() is
extended to copy an event header of the Bnet format (i.e. incrementing event count and unique id) into each

128 DABC Programmer Manual: Example PCI

output buffer after the base class ReadPCI() is complete. This workaround is necessary since the ABB data
itself does not contain any information in the test setup. Additionally, method DoDeviceCleanup() will reset
the event counters at the end of each DAQ run.

17.3.2 abb::ReadoutModule

Subclass of dabc::ModuleAsync; generic implementation of a readout module to use the BoardDevice.

1. It creates the memory pool which is used for DMA buffers in the pci::BoardDevice; this pool is propagated
to the device via the pci::Transport when module is connected, since device will use the pool associated
with the connection port.

2. Module runs either in standalone mode (one input port, no output) for testing; or in regular mode (one input
port, one output port)

3. ProcessUserEvent() defines the module action for any DABC events, e. g. input port has new buffer. In
standalone mode, the received buffer is just released. In regular mode, buffer is send to the output port.

4. It has a dabc::Ratemeter object which is updated for each packet arriving in ProcessUserEvent(). The aver-
age data throughput rate is then printed out to the terminal on stopping the module in AfterModuleStop().
Alternatively, by means of method CreateRateParameter() it also defines a rate parameter "DMAReadout"
that is linked to the input port "Input" and may export the current data rate to the control system.

17.3.3 abb::WriterModule

Subclass of dabc::ModuleSync; generic implementation of a writer module to use the BoardDevice.

1. Creates the memory pool which is used for DMA buffers in the pci::BoardDevice; this pool is propagated
to the device via the pci::Transport when module is connected, since device will use the pool associated
with the connection port.

2. Module runs either in standalone mode (one output port, no input) for testing; or in regular mode (one input
port, one output port)

3. MainLoop() defines the module action. In standalone mode, a new buffer is taken from the memory pool
and send to the output port. In regular mode, the send buffer is taken from the input port.

4. It has a dabc::Ratemeter object which is updated for each packet arriving in MainLoop(). The average
data throughput rate is then printed out to the terminal on stopping the module in AfterModuleStop().
Alternatively, by means of method CreateRateParameter() it also defines a rate parameter "DMAWriter"
that is linked to the input port "Output" and may export the current data rate to the control system.

17.3.4 abb::Factory

A subclass of dabc::Factory to plug in the ABB classes:

1. Implements CreateDevice() for the abb::Device. The third argument of this factory method is a dabc::Command
that may contain optional setup parameters of the device.

2. Implements CreateModule() for the abb::ReadoutModule and the abb::WriterModule. Third argument of
this factory method is a dabc::Command, containing optional setup parameters of the module.

3. The factory is created automatically as static (singleton) instance on loading the libDabcAbb.so.

17.4 Simple read and write tests

The functionality of the ABB can be tested with several simple executables which are provided in the test
subfolder of the abb plugin package.

17.4. Simple read and write tests 129

17.4.1 DMA Read from the board

The example code abb_test_read.cxx shows in a simple main() function how to utilize the abb:: classes for
a plain readout with DMA.

1. It applies the dabc::StandaloneManager as most simple Manager implementation.
int nodeid=0; // this node id
int numnodes=1; // number of nodes in cluster
...
dabc::StandaloneManager manager(0, nodeid, numnodes);

2. The abb::Device is created by means of a command CmdCreateDevice which is passed to the manager. The
command wraps also some initial parameters for the device which are then evaluated in method CreateDe-
vice() of abb::Factory:
#define READADDRESS (0x8000 >> 2)
#define READSIZE 16*1024
...
std::string devname="ABB";
dabc::Command* dcom =

new dabc::CmdCreateDevice("abb::Device", devname.c_str());
// arguments: (class name, device name)
// set additional parameters for abb device here:
dcom->SetInt(ABB_PAR_BOARDNUM, BOARD_NUM);
dcom->SetInt(ABB_PAR_BAR, 1);
dcom->SetInt(ABB_PAR_ADDRESS, READADDRESS);
dcom->SetInt(ABB_PAR_LENGTH, readsize);
res=manager.Execute(dcom);
DOUT1(("CreateDevice = %s", DBOOL(res)));
Here the parameter names (e. g. ABB_PAR_ADDRESS) use the string definitions as set in abb/Factory.h.
The parameter values are defined locally (e. g. READADDRESS); however, the DMA transfer size readsize
may be set by the executables’s first command line parameter. Boolean variable res contains the result of
the command execution (true or false) which is printed as debut output to the terminal with the DOUT1()
macro.

3. It creates a abb::ReadoutModule by means of a command CmdCreateModule which is passed to the man-
ager. The command wraps also some initial parameters for the module which are then evaluated in method
CreateModule() of abb::Factory:
cmd = new dabc::CmdCreateModule("abb::ReadoutModule",

"ABB_Readout",
"ReadoutThread");

// arguments: (class name, module name, thread name)
cmd->SetInt(ABB_COMPAR_BUFSIZE, readsize);
cmd->SetInt(ABB_COMPAR_STALONE,1);
cmd->SetInt(ABB_COMPAR_QLENGTH, 10);
cmd->SetStr(ABB_COMPAR_POOL,"ABB-standalone-pool");
res=manager.Execute(cmd);
DOUT1(("Create ABB readout module = %s", DBOOL(res)));
Again the parameter names (e. g. ABB_COMPAR_QLENGTH) use common string definitions as set in
abb/Factory.h, such as: the size of the memory pool buffers ABB_COMPAR_BUFSIZE which is set to
the required DMA transfer sizereadsize; the standalone run mode of the module ABB_COMPAR_STALONE;
the port queue length ABB_COMPAR_QLENGTH; the name of the module’s memory pool ABB_COMPAR_POOL,
which also.

4. The transport connection between the input port of the readout module and the abb::Device is established
by a direct method call of the manager:
res = manager.CreateTransport("ABB_Readout/Input", devname.c_str());
DOUT1(("Connected module to ABB device = %s", DBOOL(res)));
The manager will find the ABB device instance by the string devname and use its factory method Create-
Transport() to instantiate a pci::Transport that will be connected to the port of name "ABB_Readout/Input".

5. The readout module processing is started by name with a manager method:

130 DABC Programmer Manual: Example PCI

manager.StartModule("ABB_Readout");
DOUT1(("Started readout module...."));
Then the main process waits for 5 seconds while the DABC threads and the board DMA performs the data
transfer. The module is stopped again then.
sleep(5);
manager.StopModule("ABB_Readout");
DOUT1(("Stopped readout module."));
After the module has stopped, its internal dabc::Ratemeter will print some average data rate values to the
terminal. Finally, all objects are destroyed and the manager is cleaning up the process before the program
ends:
manager.CleanupManager();

17.4.2 DMA Write to the board

The example code abb_test_write.cxx shows in a simple main() function how to utilize the abb:: classes
to write data from the PC to the ABB with DMA . The code is very similar to the read example as described in the
above section 17.4.1:

1. It applies the dabc::StandaloneManager as most simple Manager implementation.
2. The abb::Device is created by means of a command CmdCreateDevice which is passed to the manager. The

command contains the initial parameters for the device. The DMA transfer size readsize may be set by
the executables’s first command line parameter (see section 17.4.1 for code example).

3. It creates a abb::WriterModule by means of a command CmdCreateModule which is passed to the man-
ager. The command contains the initial parameters for the module which are then evaluated in method
CreateModule() of abb::Factory:
cmd = new dabc::CmdCreateModule("abb::WriterModule",

"ABB_Sender",
"WriterThread");

cmd->SetInt(ABB_COMPAR_BUFSIZE, readsize);
cmd->SetInt(ABB_COMPAR_STALONE,1);
cmd->SetInt(ABB_COMPAR_QLENGTH, 10);
cmd->SetStr(ABB_COMPAR_POOL,"ABB-standalone-pool");
cmd->SetStr(ABB_PAR_DEVICE,devname.c_str());
res = manager.Execute(cmd);
DOUT1(("Create ABB writer module = %s", DBOOL(res)));
Again the parameter names are expressd by common string definitions as set in abb/Factory.h.

4. The transport connection between the output port of the writer module and the abb::Device is established
by a direct method call of the manager:
res = manager.CreateTransport("ABB_Sender/Output", devname.c_str());
DOUT1(("Connected module to ABB device = %s", DBOOL(res)));

5. The writer module’s processing is started with a manager method:
manager.StartModule("ABB_Sender").
The main process waits 5 seconds while the DABC threads and the board DMA perform the data transfer.
The module is stopped again then. After the module has stopped, its internal dabc::Ratemeter will print
some average data rate values to the terminal. Finally, the manager is cleaning up all objects and the program
terminates.

17.4.3 Simultaneous DMA Read and Write

The example code abb_test.cxx shows in a simple main() function how to utilize the abb:: classes to write
data from the PC to the ABB in one DMA channel, and simultaneously read data back from the board with another
DMA . channel.

It applies the abb::Device both with a abb::WriterModule and a abb::ReadoutModule that run in different threads.
So the code is a merger of the above examples 17.4.1 and 17.4.2:

17.5. Active Buffer Board with Bnet application 131

1. It applies the dabc::StandaloneManager as most simple Manager implementation.
2. The abb::Device is created by means of a command CmdCreateDevice which is passed to the manager.

The command contains the initial parameters for the device. The DMA transfer size readsize (same for
both directions) may be set by the executables’s first command line parameter (see section 17.4.1 for code
example).

3. It creates a abb::ReadoutModule by means of a command CmdCreateModule which is passed to the man-
ager (see section 17.4.1 for code example).

4. It creates a abb::WriterModule by means of a command CmdCreateModule which is passed to the manager
(see section 17.4.2 for code example).

5. The transport connections of the abb::Device both with the input port of the reader module, and the output
port of the writer module are established by invoking method CreateTransport() of the manager (see sections
17.4.1 and 17.4.2 for comments on the code)

6. Both modules are started with manager.StartModule(""). The main process sleeps for 60 seconds
during the DMA transfer, then it stops both modules again. After the modules have stopped, their internal
dabc::Ratemeter instances will print some average data rate values to the terminal. Finally the manager is
cleaned up and the program ends.

17.5 Active Buffer Board with Bnet application

The DAQ builder network (Bnet) example as described in section 15.8 may optionally utilize the ABB as input for
the Readout module. This is provided in class bnet::TestWorkerApplication which implements the bnet::WorkerApplication:
The Bnet factory method

bool bnet::TestWorkerApplication::CreateReadout(const char* portname,
int portnumber)

will instantiate an abb::Device if the configuration parameter for the portnumber p ("InputpCfg", as delivered by
ReadoutPar(p)) is set to "ABB". This abb::Device is connected directly to the input port of the standard Bnet
combiner module, as specified by the portname argument of the method:

if(ReadoutPar(portnumber) == "ABB") {
const char* abbdevname = "ABBDevice";
fABBActive = dabc::mgr()->CreateDevice("abb::Device", abbdevname);
res = dabc::mgr()->CreateTransport(portname, abbdevname);
if (!res) EOUT(("Cannot create ABB transport"));

}

Note that the abb::ReadoutModule is not used here; this is applied for the simple examples only, see section 17.4).

Any other value of ReadoutPar(p)) will apply the TestGeneratorModule of the standard Bnet example.

The parameters for the ABB can be set in the XML configuration file, using the names as defined in abb/Factory.h.
This may look as follows:

...
<Context host="node01" name="Worker2:42">
<Run>
<lib value="${DABCSYS}/lib/libpcidriver.so"/>
<lib value="${DABCSYS}/lib/libmprace.so"/>
<lib value="${DABCSYS}/lib/libDabcAbb.so"/>
<lib value="libBnetTest.so"/>

</Run>
<Application class="bnet::TestWorker">
<NumReadouts value="1"/>
<Input0Cfg value="ABB"/>

132 DABC Programmer Manual: Example PCI

</Application>
<Devices>

<Device name="ABBDevice">
<ABB_BoardNumber value="0"/>
<ABB_ReadoutBAR value="1"/>
<ABB_ReadoutAddress value="8192"/>
<ABB_ReadoutLength value="16384"/>

</Device>
</Devices>
</Context>
...

Note that the ABB plugin library libDabcAbb.so must be loaded to instantiate the abb::Factory and apply its
classes on the node.

Chapter 18

DABC Programmer Manual: GUI

[programmer/prog-gui.tex]

18.1 GUI Guide lines

The DABC GUI is written in Java. In the following we refer to it as a whole as xGUI. It uses the DIM Java package
to register the DIM services provided by the DABC DIM servers. It is generic in that it builds most of the panels
from the services available. Thus it can control and monitor any system running DIM servers conforming to rules
described in the following. According the description above it does the following:

• Get list of commands and parameters and create objects for each.
• Put parameters in a table.
• Put commands in a command tree.
• Create graphics panels for rate meters, states, histograms, and infos.

18.2 DIM Usage

DIM is a light weight communication protocoll based on publish/subscribe mechanism. Servers publish named
services (commands or parameters) to a DIM name server. Clients can subscribe such services by name. They
then get the values of the services subscribed from the server providing it. Whenever a server updates a service, all
subscribed clients get the new value. Clients can also execute commands on the server side.

DIM provides the possibility to specify parameters and command arguments as primitives (I or L,X,C,F,D) or
structures. The structures are described in a format string which can be retrieved by the clients (for parameters and
commands) and servers (for commands):

T:s;T:s;T:s ...

Thus a client can generically access parameter structures, but without semantical interpretation. In addition to the
data and format string one longword called quality is sent.

18.2.1 DABC DIM naming conventions

When the number and kind of services of DIM servers often change it would be very convenient if a generic GUI
would show all available services without further programming. It would be also very nice if standard graphical
elements would be used to display certain parameters like rate meters. If we have many services it would be
convenient to have a naming convention which allows to build tree structures on the GUI.

Naming conventions for generic xGUI (line breaks for better reading):

133

134 DABC Programmer Manual: GUI

/servernamespace
/nodename[:nodeID]
/[[applicationnamespace::]applicationname:]applicationID
/[TYPE.module.]name

Example:
/DABC/lx05/Control/RunState

We recommend to forbid spaces in any name fields. Dots should not be used except in names (last field). The
generic xGUI can handle only services from one server name space (defined by DIM_DNS_NODE). For DABC
and MBS this servernamespace is set to DABC.

18.2.2 DABC DIM records

For generic GUIs we need something similar to the EPICS records. This means to define structures which can be
identified. How shall they be indentified? One possibility would be to prefix a type to the parameter name, i.e.
rate:DataRate. Another to use the quality longword. This longword can be set by the server. One could mask
the bytes of this longword for different information:

mode (MSB)| visibility | type | status (LSB)
mode: not used
visibility: Bit wise (can be ORed)
HIDDEN = all zero
VISIBLE = 1 appears in parameter table
MONITOR = 2 in table, graphics shown automatically

if type is STATE, RATE or HISTOGRAM
CHANGABLE = 4 in table, can be modified
IMPORTANT = 8 in table also if GUI has a "minimal" view.

type: (exclusive)
PLAIN = 0
GENERIC = 1
STATE = 2
RATE = 3
HISTOGRAM = 4
MODULE = 5
PORT = 6
DEVICE = 7
QUEUE = 8
COMMANDDESC= 9
INFO = 10

status: (exclusive)
NOTSPEC = 0
SUCCESS = 1
INFORMATION = 2
WARNING = 3
ERROR = 4
FATAL = 5

Then we could provide at the client side objects for handling and visualization of such records.

18.2.2.1 Record ID=0: Plain

Scalar data item of atomic type

18.2. DIM Usage 135

18.2.2.2 Record ID=1: Generic self describing

For these one would need one structure per number of arguments. Therefore the generic type would be rather
realized by a more flexible text format, like XML. This means the DIM service has a string as argument which
must be parsed to get the values.

XML schema char, similar to command descriptor.
Format: C

18.2.2.3 Record ID=2: State

severity int, 0=Success, 1=warning, 2=error, 3=fatal)
color char, (Red, Green, Blue, Cyan, Magenta, Yellow)
state char, name of state
Format: L:1;C:16;C:16

18.2.2.4 Record ID=3: Rate

value float
displaymode int, (arc, bar, statistics, trend)
lower limit float
upper limit float
lower alarm float
upper alarm float
color char, (Red, Green, Blue, Cyan, Magenta, Yellow)
alarm color char, (Red, Green, Blue, Cyan, Magenta, Yellow)
units char
Format: F:1;L:1;F:1;F:1;F:1;F:1;C:16;C:16;C

18.2.2.5 Record ID=4: Histogram

Structure must be allocated including the data field witch may be integer or double.

channels int
lower limit float
upper limit float
axis lettering char
content lettering char
color char, (White, Red, Green, Blue, Cyan, Magenta, Yellow)
first data channel int
Format: L:1;F:1;F:1;C:32;C:32;C:16;I(or D)

18.2.2.6 Record ID=10: Info

verbose int, (0=Plain text, 1=Node:text)
color char, (Red, Green, Blue, Cyan, Magenta, Yellow)
text char, line of text
Format: L:1;C:16;C:128

18.2.2.7 Record ID=9: Command descriptor

This is an invisible parameter describing a command argument list. The service name must be correlated with the
command name, e.g. by trailing underscore.

description char, XMl string describing arguments

136 DABC Programmer Manual: GUI

Format: C

The descriptor string could be XML specifying the argument name, type, required and description. Question if
default value should be given here for optional arguments. Example:

<?xml version="1.0" encoding="utf-8"?>
<command name="com1" scope="public" content="default">
<argument name="arg1" type="F" value="1.0" required="req"/>
<argument name="arg2" type="I" value="2" required="opt"/>
<argument name="arg3" type="C" value="def3" required="req"/>
<argument name="arg4" type="boolean" value="" required="opt"/>
</command>

The command definition can be used by the xGUI to build input panels for commands. The scope can be used
to classify commands, content should be set to default if argument values are default, values if argument values
have been changed.

18.2.2.8 Commands

Commands have one string argument only. This leaves the arguments to semantic definitions in string format. To
implement a minimal security, the first 14 characters of the argument string should be an encrypted password (13
characters by crypt plus space). The arguments are passed as string. A command structure could look like:

password char[14]
argument char, string
Format: C

The argument string has the same XML as the command description. Thus, the same parser can be used to
encode/decode the description (parameter) and the command. An alternate format is the MBS style format
argument=value where boolean arguments are given by -argument if argument is true.

18.2.2.9 Setting parameters

If a parameter should be changable from the xGUI, there must be a command for that. A fixed command SetPa-
rameter must be defined on the server for that. Argument is a string of form name=value. In the parameter table
of the xGUI one field can be provided to enter a new value and the command SetParameter is used to set the new
value.

18.2.3 Application servers

Any application which can implement DIM services can be controlled by the generic xGUI if it follows the protocol
described above. The first application was DABC, the second one MBS.

18.2.4 DABC GUI usage of DIM

The service names follow a structured syntax as described above. The name fields are used to build trees (for com-
mands). Using the DIM quality longword (delivered by the server together with each update) simple aggregated
data services (records) are defined. Currently the records
STATE, RATE, HISTOGRAM, COMMANDDESC and INFO.
are used. When the xGUI receives the first update of a service (immediately after subscribing) it can determine
the record type and handle the record in an appropriate way. The COMMANDDESC record is an XML string
describing a command. The name of a descriptor record must be the name of the command it describes followed
by an underscore.

18.3. GUI global layout 137

18.3 GUI global layout

The top window of the xGUI is a JFrame. Inside that is a JPanel which contains on top a JToolBar (all the
main buttons), in the middle a JDesktopPane (main viewing area), and at the bottom a JTextArea (One line text
for server list). All other windows are inside (added to) the desktop as JInternalFrames. Typically such a frame
contains again a JPanel. Inside that panel various different layouts can be used like JSplitPane, or a Jtree in a
JScrollPane. In fact, xInternalFrame, a subclass of JInternalFrame is used. It can contain exactly one panel,
has a mechanism to store and restore its size and position, and implenents the callback functions for resizing and
closing.

Inside the internal frames two types of panels are often used: prompter panels and graphics panels.

18.3.1 Prompter panels

Prompter panels can be implemented subclassing class xPanelPrompt. Example: DABC launch panel. The layout
is in rows. A row can be a prompter line (JLabel label and JTextField input field), a text button JButton, or a
JLabel label and JCheckBox. At the bottom there is a JToolBar where buttons with icons can be placed. The
prompter class must implement the ActionListener, ie. provide the actionPerformed function which is the central
call back function for all elements.

18.3.2 Graphics panels

Graphics panels are provided by class xPanelGraphics. The layout is as a matrix with columns and rows. All
items to be added must be JPanels and implement xiPanelItem (see below). The items are added line by line. The
number of items per line (columns) is a parameter. All items must have the same size. Currently no menu bar is
supported.

18.4 GUI Panels

Brief description of panels implemented in the xGUI.

18.4.1 DABC launch panel

xPanelDabc extending xPanelPrompt.
Form to enter all information needed to startup DABC tasks and buttons to execute standard commands. The values
of the form (internally stored in xFormDabc extending of xForm) can be saved to an XML file and are restored
from it. File name is either DabcLaunch.xml or translation of DABC_LAUNCH_DABC, respectively.

18.4.2 MBS launch panel

xPanelMbs extending xPanelPrompt.
Form to enter all information needed to startup MBS tasks and buttons to execute standard commands. The values
of the form (internally stored in xFormMbs extending of xForm) can be saved to an XML file and are restored
from it. File name is either MbsLaunch.xml or translation of DABC_LAUNCH_MBS, respectively.

18.4.3 Combined DABC and MBS launch panel

xPanelDabcMbs extending xPanelPrompt.
It is a combination of both, DABC and MBS launch panel.

138 DABC Programmer Manual: GUI

18.4.4 Parameter table

xPanelParameter extending JPanel.
Is rebuilt from scratch by xDesktop whenever the DIM service list has been updated.
The panel gets the list of parameters (xDimParameter) from the DIM browser (xDimBrowser). It builds a table
from all visible parameters. It creates a list of command descriptors (xXmlParser).

18.4.5 Parameter selection panel

xPanelSelect extending xPanelPrompt.
This form can be used to specify various filters on parameter attributes. Parameters matching the filters are shown
in a separate frame. Values are updated on DIM update and can be modified interactively.

18.4.6 Command panel

xPanelCommand extending JPanel.
Is rebuilt from scratch by xDesktop whenever the DIM service list has been updated.
This panel is split into a right and a left part. On the left, there is the command tree, on the right the argument
prompter panel for the currently selected command. The panel gets the list of commands (xDimCommand) from
the DIM browser (xDimBrowser). The list of command descriptors (xXmlParser) is copied in xDesktop from
xPanelParameter to xPanelCommand and the xXmlParser objects are added to the xDimCommand objects they
belong to.

18.4.7 Monitoring panels

These panels are very similar to xPanelGraphics but have additional functionality. TODO: In the future, xPanel-
Graphics should be extended to provide all that functionality, or at least serves as base class.

xPanelMeter: JPanel, for rate meters (xMeter)
xPanelState: JPanel, for states (xState)
xPanelInfo: JPanel, for infos (xInfo)
xPanelHisto: JPanel, for histograms (xHisto)

The monitoring panels contain special graphics objects:

18.4.7.1 xMeter

Displays a changing value between limits as rate meter, bar, histogram or trend. With the right mouse a context
menu is popped up where one can switch between these modes. One also can change the limits, autoscale mode
(limits are adjusted dynamically), and the color.

18.4.7.2 xRate

Displays a changing value between limits as bar. Very compact with full name.

18.4.7.3 xState

Displays a severity as colored box together with a brief text line.

18.4.7.4 xHisto

Displays a histogram.

18.5. GUI save/restore setups 139

18.4.7.5 xInfo

Displays a colored text line.

18.4.8 Logging window

xPanelLogger extending JPanel.
Central window to write messages.

18.5 GUI save/restore setups

There are several setups which can be stored in XML files and are retrieved when the xGUI is started again.

DABC_CONTROL_DABC : Values of DABC control panel. Saved by button in panel.
Default DabcControl.xml. Filename in panel itself.

DABC_CONTROL_MBS : Values of MBS control panel. Saved by button in panel.
Default MbsControl.xml. Filename in panel itself.

DABC_RECORD_ATTRIBUTES : Attributes of records. Saved by main save button.
Default Records.xml.

DABC_PARAMETER_FILTER : Values of parameter filter panel. Saved by main save button.
Default Selection.xml.

DABC_GUI_LAYOUT : Layout of frames. Saved by main save button.
Default Layout.xml.

18.5.1 Record attributes

File Records.xml

<?xml version="1.0" encoding="utf-8"?>
<Record>
<Meter name="DABC/X86-7/MSG/DataRateKb"

visible="true"
mode="0"
auto="false"
log="false"
low="00000000.0"
up="00016000.0"
color="Red"/>

</Record>

18.5.2 Parameter filter

File Selection.xml

<?xml version="1.0" encoding="utf-8"?>
<Selection>
<Full contains="Date" filter="false" />
<Node contains="X86-7" filter="false" />
<Application contains="MSG" filter="false" />
<Name contains="*" filter="false" />
<Records Only="true" Rates="true" States="false" Infos="false" />
</Selection>

140 DABC Programmer Manual: GUI

18.5.3 Windows layout

File Layout.xml

<?xml version="1.0" encoding="utf-8"?>
<Layout>
<WindowLayout>
<Main shape="357,53,857,953" columns="0" show="true"/>
<Command shape="0,230,650,200" columns="0" show="false"/>
<Parameter shape="20,259,578,386" columns="0" show="false"/>
<Logger shape="0,650,680,150" columns="0" show="false"/>
<Meter shape="463,13,413,236" columns="4" show="false"/>
<State shape="85,504,313,206" columns="2" show="false"/>
<Info shape="521,482,613,217" columns="1" show="false"/>
<Histogram shape="124,508,613,206" columns="3" show="false"/>
<DabcLauncher shape="0,0,100,100" columns="0" show="false"/>
<MbsLauncher shape="50,14,404,272" columns="0" show="false"/>
<DabcMbsLauncher shape="0,0,430,424" columns="0" show="false"/>
<ParameterSelect shape="300,0,271,326" columns="0" show="true"/>
<ParameterList shape="13,364,810,426" columns="1" show="true"/>
</WindowLayout>
<TableLayout>
<Parameter width="74,74,74,74,74,74,74,74" />
</TableLayout>
</Layout>

18.5.4 DABC launch panel values

File DabcLaunch.xml

<?xml version="1.0" encoding="utf-8"?>
<DabcLaunch>
<DabcMaster prompt="DABC Master" value="node.xxxx.de" />
<DabcName prompt="DABC Name" value="Controller:41" />
<DabcUserPath prompt="DABC user path" value="myWorkDir" />
<DabcSystemPath prompt="DABC system path" value="/dabc" />
<DabcSetup prompt="DABC setup file" value="SetupDabc.xml" />
<DabcScript prompt="DABC Script" value="ps" />
<DabcServers prompt="%Number of needed DIM servers%" value="5" />
</DabcLaunch>

18.5.5 MBS launch panel values

File MbsLaunch.xml

<?xml version="1.0" encoding="utf-8"?>
<MbsLaunch>
<MbsMaster prompt="MBS Master" value="node-xx" />
<MbsUserPath prompt="MBS User path" value="myMbsDir" />
<MbsSystemPath prompt="MBS system path" value="/mbs/v51" />
<MbsScript prompt="MBS Script" value="script/remote_exe.sc" />
<MbsCommand prompt="Script command" value="whatever command" />
<MbsServers prompt="%Number of needed DIM servers%" value="3" />
</MbsLaunch>

18.6. DIM update mechanism 141

18.6 DIM update mechanism

To get informed when a DIM parameter has been updated a DIM client has to register to it. In a Java DIM client this
is done by instantiating a subclass of DimInfo. In xGUI this is xDimParameter implementing callback function
infoHandler. After registration the callback function is called once immediately. In infoHandler one can use getter
functions to get the quality, the format string, and the value(s).

18.6.1 xDimBrowser

The central object handling the available lists of DIM parameters and commands is the xDimBrowser. It provides
the functions:

xDimBrowser(...) : Constructor. Arguments: references to the graphics panels xPanelMeter, xPanelState, xPan-
elInfo and xPanelHisto. There are protected functions to get then the references to these panels.

protected initServices(String wildcard) : Get list of available services from DIM name server
DIM_DNS_NODE. Create vectors of alphabetically ordered parameters (xDimParameter) and commands
(xDimCommand) and their interfaces, respectively. The references of the graphics panels are passed to the
parameter objects.

addInfoHandler(xiDimParameter p, xiUserInfoHandler ih) : Interface function to add an additional info handler
to a parameter. The infoHandler function of this handler is called at the end of the infoHandler function of
xDimParameter.

removeInfoHandler(xiDimParameter p, xiUserInfoHandler ih) : Interface function to remove an info handler added
before.

protected Vector<xDimParameter> getParameterList() :
protected Vector<xDimCommand> getCommandList() :
Vector<xiDimParameter> getParameters() : From outside one gets only references to the interfaces.
Vector<xiDimCommand> getCommands() : From outside one gets only references to the interfaces.
protected releaseServices(boolean cleanup) : Removes all external handlers of the parameters. Sets all parameters

to inactive. This means that in the infoHandlers no more graphical activity is performed. If cleanup is true
all parameters release their service and are set to inactive. Then the parameter vector is cleared. Then the
command vector is cleared. Note that the objects themselfes are removed only by next garbage collection.

protected enableServices() : All parameters are set to active.
:

18.6.2 Getting parameters and commands

Once the parameter and command objects have been created by the browser, it is up to the xPanelParameter and
xPanelCommand object, respectively, to manage them. These two objects are created new each time an update
occurs.

18.6.2.1 xPanelParameter

Extends JPanel. It has references to the browser and all graphics panels. It owns the parameter table (JTable). In
the constructor the following steps are performed:

1. Get reference to list of parameters (from browser).
2. Set in all parameters the table index to -1 (infoHandlers will no longer update table fields).
3. Scan through all parameters and check if any quality is still -1 which would mean that the type is undefined.

That is repeated two times with 2 seconds delay to give the DIM servers the chance to update all parameters.
If still any quality is -1 this is an error.

4. Restore record attributes of meters and histograms from XML file.
5. cleanup graphics panels.
6. Create new table.
7. Add parameters to table by calling function xDimParameter.addRow. This function also creates graphi-

cal presentations of the parameters (e.g. xMeter) and add them to the appropriate graphics panels (e.g.

142 DABC Programmer Manual: GUI

xPanelMeter) if needed.
8. Builds list of command descriptors (xXmlParser).
9. Add table to its panel.

10. updateAll graphics panels.

18.6.2.2 xPanelCommand

Extends JPanel. It has references to the browser. It owns the command tree (JTree). In the constructor the
following steps are performed:

1. Get reference to list of commands (from browser).
2. Create from that list a command tree to be shown on left side in window.
3. Create arguments panel for the right side. When a command is selected and an XML descriptor is available,

the arguments are shown as prompter panel.
4. Call back functions for command execution.

Function setCommandDescriptors is called from xDesktop to build the command descriptor list.
Function setUserCommand is called from xDesktop to specify a xiUserCommand object which provides a function
getArgumentStyleXml which is used to determine how the command string has to be formatted (either like the
command XML description or like the MBS style).

18.6.3 Startup sequence

The build up sequence during the GUI start is done in the xDesktop. Sequence on startup:

1. Create application panels and graphics panels.
2. Create browser xDimBrowser and call its initServices.
3. Create prompter panels.
4. Create xPanelParameter.
5. Call browser enableServices function. Now all parameters (DIM clients) should already operate.
6. Create xPanelCommand and call its setCommandDescriptors. The descriptors are provided as parameters.

The descriptor list is generated by xPanelParameter.
7. Call init and setDimServices of all application panels. Pass xiUserCommand object from first application

panel object to xPanelCommand.
8. Create the internal frames to display all panels which shall be visible.

18.6.4 Update sequence

The update sequence is either triggered by a menu button interactively, or invoked in callback functions of prompter
panels after changes of the DIM services. The update is done in actionPerformed of xDesktop, command Update.
Sequence on update:

1. Call releaseDimServices of all application and prompter panels.
2. Call xDimBrowser.releaseServices which deactivates all parameters and removes all application handlers.
3. Discard the parameter and command panel and call Java garbage collector. At this point no more references

to parameters or commands should exist and all objects can be removed.
4. Call xDimBrowser.initServices.
5. Create xPanelParameter.
6. Create xPanelCommand.
7. Call setDimServices of all application panels. Pass xiUserCommand object from first application panel

object to xPanelCommand.
8. Call xDimBrowser.enableServices.
9. Call xPanelCommand.setCommandDescriptors.

10. Update the internal frames of parameters and commands.

18.7. Application specific GUI plug-in 143

18.7 Application specific GUI plug-in

Besides the generic part of the xGUI it might be useful to have application specific panels as well, integrated in the
generic xGUI. This is done by implementing subclasses of xPanelPrompt. The class name (only one) can be passed
as argument to the java command starting the xGUI or by setting variable DABC_APPLICATION_PANELS being
a comma separated list of class names. Variable is ignored if class name is given as argument. The classes must
implement some interfaces:

xiUserPanel : needed by xGUI.
xiUserInfoHandler : needed to register to DIM services. This could be a separate class.
xiUserCommand : optional to specify command formats.

One can connect call back functions to parameters, get a list of available commands, create his own panels for dis-
play using the graphical primitives like rate meters. Optional xiUserCommand provides a function to be called in
the xGUI (xPanelCommand) when a command shall be executed. This function steers if the command arguments
have to be encoded in XML style or argument list style.

There is for convenience another subclass of xInternalFrame and JInternalFrame for easy formatting from one
to four panels (JPanel or xPanelGraphics) inside, xInternalCompound.

Examples of such application panel can be found on directory application.

18.7.1 Java Interfaces to be implemented by application

18.7.1.1 Interface xiUserPanel

◦ abstract void init(xiDesktop d, ActionListener a)
Called by xGUI after instantiation. The desktop can be used to add frames (see below).

◦ String getHeader();
Must return a header/name text after instantiation.

◦ String getToolTip();
Must return a tooltip text after instantiation.

◦ ImageIcon getIcon();
Must return an icon after instantiation.

◦ xLayout checkLayout();
Must return the panel layout after initialization.

◦ xiUserCommand getUserCommand();
Must return an object implementing xiUserCommand, or null. See below.

◦ void setDimServices(xiDimBrowser b);
Called by xGUI whenever the DIM services had been changed. The browser provides the command and param-
eter list (see below). One can select and store references to commands or parameters. A xiUserInfoHandler
object can be registered for each selected parameter. Then the infoHandler method of this object is called for
each parameter update.

◦ void releaseDimServices();
All local references to commands or parameters must be cleared!

18.7.1.2 Interface xiUserCommand

◦ boolean getArgumentStyleXml(String scope, String command);
Return true if command shall be composed as XML string, false if MBS style string. Scope is specified in the
XML command descriptor, command is the full command name.

18.7.1.3 Interface xiUserInfoHandler

◦ void infoHandler(xiDimParameter p, int handlerID)
An object implementing this interface can be added to each parameter as call back handler. This is done by the
browser function setInfoHandler, see below. Function infoHandler is then called in the callback of the parameter.

144 DABC Programmer Manual: GUI

◦ String getName()
Called by xDimParameter to get a uniquie name of this handler. Must return a name of the handler to distinguish
from other handlers.

18.7.2 Java Interfaces provided by GUI

18.7.2.1 Interface xiDesktop

◦ void addFrame(JInternalFrame f)
Adds a frame to desktop if a frame with same title does not exist.

◦ void addFrame(JInternalFrame frame, boolean manage)
Adds a frame to desktop if a frame with same title does not exist.

◦ boolean findFrame(String title)
Checks if a frame exists on the desktop.

◦ void removeFrame(String title)
Remove (dispose) a frame from the desktop and list of managed frames.

◦ void setFrameSelected(String title, boolean select)
Switch a frames selection state (setSelected).

◦ void toFront(String title)
Set frames to front.

18.7.2.2 Interface xiDimBrowser

◦ Vector<xiDimParameter> getParameters()
Typically called in setDimServices to get list of available parameters. Only selected parameters may be regis-
tered to.

◦ Vector<xiDimCommand> getCommands()
Typically called in setDimServices to get list of available commands.

◦ void setInfoHandler(xiDimParameter p, xiUserInfoHandler h)
Typically called in application function setDimServices to register a call back handler (mostly this) to a
parameter.

◦ void removeInfoHandler(xiDimParameter p, xiUserInfoHandler h)
Typically called in application function releaseDimServices to remove a call back handler of a parameter.

◦ void sleep(int s)

18.7.2.3 Interface xiDimCommand

◦ void exec(String command)
◦ xiParser getParserInfo()

18.7.2.4 Interface xiDimParameter

◦ double getDoubleValue()
◦ float getFloatValue()
◦ int getIntValue()
◦ long getLongValue()
◦ String getValue()
◦ xRecordMeter getMeter()
◦ xRecordState getState()
◦ xRecordInfo getInfo()
◦ xiParser getParserInfo()
◦ boolean parameterActive()
◦ boolean setParameter(String value)

Builds and executes a DIM command SetParameter name=vale where name is the name part of the full DIM
name string.

18.7. Application specific GUI plug-in 145

18.7.2.5 Interface xiParser

◦ String getDns()
◦ String getNode()
◦ String getNodeName()
◦ String getNodeID()
◦ String getApplicationFull()
◦ String getApplication()
◦ String getApplicationName()
◦ String getApplicationID()
◦ String getName()
◦ String getNameSpace()
◦ String[] getItems()
◦ String getFull()
◦ String getFull(boolean build)
◦ String getCommand()
◦ String getCommand(boolean build)
◦ int getType()
◦ int getState()
◦ int getVisibility()
◦ int getMode()
◦ int getQuality()
◦ int getNofTypes()
◦ int[] getTypeSizes()
◦ String[] getTypeList()
◦ String getFormat()
◦ boolean isNotSpecified()
◦ boolean isSuccess()
◦ boolean isInformation()
◦ boolean isWarning()
◦ boolean isError()
◦ boolean isFatal()
◦ boolean isAtomic()
◦ boolean isGeneric()
◦ boolean isState()
◦ boolean isInfo()
◦ boolean isRate()
◦ boolean isHistogram()
◦ boolean isCommandDescriptor()
◦ boolean isHidden()
◦ boolean isVisible()
◦ boolean isMonitor()
◦ boolean isChangable()
◦ boolean isImportant()
◦ boolean isLogging()
◦ boolean isArray()
◦ boolean isFloat()
◦ boolean isDouble()
◦ boolean isInt()
◦ boolean isLong()
◦ boolean isChar()
◦ boolean isStruct()

146 DABC Programmer Manual: GUI

18.7.3 Other interfaces

18.7.3.1 Interface xiPanelItem

Interface to be implemented for objects to be placed onto xPanelGraphics. The elementary graphics objects of
xGUI all have implemented this interface. Example xMeter, xState, xHisto.

◦ Dimension getDimension()
◦ int getID()
◦ String getName()
◦ JPanel getPanel()
◦ Point getPosition()
◦ void setActionListener(ActionListener a)
◦ void setID(int id)

Set internal ID.
◦ void setSizeXY()

Sets the preferred size of item to internal vale.
◦ void setSizeXY(Dimension d)

Sets the preferred size of item to specified dimension.

Example:

public void setActionListener(ActionListener a){action=a;}
public JPanel getPanel() {return this;}
public String getName(){return sHead;}
public void setID(int i){iID=i;}
public int getID(){return iID;}
public Point getPosition(){return new Point(getX(),getY());};
public Dimension getDimension(){return new Dimension(ix,iy);};
public void setSizeXY(){setPreferredSize(new Dimension(ix,iy));}
public void setSizeXY(Dimension dd){setPreferredSize(dd);}

18.7.4 Example

Example of a minimalistic application panel. Full running code in MiniPanel. That is how the class must look

Figure 18.1: Mini panel.

like:

public class MiniPanel extends xPanelPrompt
implements xiUserPanel,

ActionListener

The constructor must not have arguments! Icon, name and tooltip have to be passed by getter function to the caller
(the GUI desktop). Layout is mandatory. Declarations have been masked out in the code snippets. There are some

18.7. Application specific GUI plug-in 147

icons one could use for the prompter panels:

usericonblue usericonred usericongreen usericonyellow

public MiniPanel(){
super("MyPanel");
menuIcon=xSet.getIcon("icons/usericongreen.png");
name=new String("MyPanel");
tooltip=new String("Launch my panel");
layout = xSet.getLayout(name);
if(layout == null)
layout=xSet.createLayout(name,new Point(100,200), new Dimension(100,75),1,true);

}

The simple functions to be implemented for the interface xiUserPanel (we do not provide a command formatting
function) are:

public String getToolTip(){return tooltip;}
public String getHeader(){return name;}
public ImageIcon getIcon(){return menuIcon;}
public xLayout checkLayout(){return layout;}
public xiUserCommand getUserCommand(){return null;}

The init is called once after constructor. Here we have to setup all panels. We have in the main panel three lines:
one text prompt, a text button, and a check box. At the bottom we have one icon button which would open the
display frame. There are some icons one could use for that:

windowblue windowred windowgreen

public void init(xiDesktop desktop, ActionListener al){
desk=desktop; // save
prompt=addPrompt("My Command: ","Defaultvalue","prompt",20,this);
addTextButton("This is a test button","button","Tool tip, whatever it does",this);
check=addCheckBox("Data server on/off","check",this);
graphIcon = xSet.getIcon("icons/windowgreen.png");
addButton("Display","Display info",graphIcon,this);
state = new xState("ServerState", xState.XSIZE,xState.YSIZE);
stapan=new xPanelGraphics(new Dimension(160,50),1); // one column of states
metpan=new xPanelGraphics(new Dimension(410,14),1); // one columns of meters
franame=new String("MyGraphics");
fralayout = xSet.getLayout(franame);
if(fralayout == null)
fralayout=xSet.createLayout(franame,new Point(400,400), new Dimension(100,75),1,true);
frame=new xInternalCompound(franame,graphIcon,0,fralayout,xSet.blueD());
}

Here we have the callback function for the interactive elements, the text prompt, the button, the checker, and the
icon:

private void print(String s){
System.out.println(s);
}
public void actionPerformed(ActionEvent e) {
String cmd=e.getActionCommand();
if ("prompt".equals(cmd)) {
print(cmd+":"+prompt.getText()+" "+check.isSelected());

148 DABC Programmer Manual: GUI

} else if ("button".equals(cmd)) {
print(cmd+":"+prompt.getText()+" "+check.isSelected());

} else if ("check".equals(cmd)) {
print("Data server "+check.isSelected());
if(check.isSelected()){
if(param != null)param.setParameter("0");
state.redraw(0,"Green","Active",true);

} else {
if(param != null)param.setParameter("1");
state.redraw(0,"Gray","Dead",true);

}} else if ("Display".equals(cmd)) {
if(!desk.findFrame(franame)){
frame=new xInternalCompound(franame,graphIcon,0,fralayout,xSet.blueD());
frame.rebuild(stapan, metpan);
desk.addFrame(frame);

}}
}

Figure 18.2: Ministates.

With the checker we toggle the xState state ServerState in screen shot). The xiDimParameter param to be toggled
we will find in the next. To get access to DIM parameters we must implement setDimServices. We suggest that
there is a parameter *Setup_File* which has a string value. The myInfoHandler class is described next.

public void setDimServices(xiDimBrowser browser){
Vector<xiDimParameter> vipar=browser.getParameters();
for(int i=0;i<vipar.size();i++){
xiParser p=vipar.get(i).getParserInfo();
String pname=new String(p.getNode()+":"+p.getName());
if(p.isRate()){

xMeter meter=new xMeter(xMeter.ARC,
pname,0.0,10.0,xMeter.XSIZE,xMeter.YSIZE,xSet.blueL());

meter.setLettering(p.getNode(),p.getName(),
vipar.get(i).getMeter().getUnits(),"");

metpan.addGraphics(meter,false);
browser.addInfoHandler(vipar.get(i),
new myInfoHandler(pname,meter,null));

} else if(p.isState()){
xState state=new xState(pname,xState.XSIZE,xState.YSIZE);
stapan.addGraphics(state,false);
browser.addInfoHandler(vipar.get(i),

new myInfoHandler(pname,null,state));
} else if(p.getFull().indexOf("Setup_File")>0) param=vipar.get(i);

18.7. Application specific GUI plug-in 149

} // end list of parameters
stapan.addGraphics(state,false);
stapan.updateAll();
metpan.updateAll();
if(frame != null) frame.rebuild(stapan, metpan);

All references or allocated objects from setDimServices we have to free in releaseDimServices:

public void releaseDimServices(){
metpan.cleanup();
stapan.cleanup();
param=null;

}

We provide a little extra class implementing xiUserHandler function infoHandler. Each parameter we want to
monitor gets its own handler instance which has direct access to our graphics panels.

private class myInfoHandler implements xiUserInfoHandler{
private myParameter(String Name, xMeter Meter, xState State){
name = new String(Name); // store
meter=Meter; // store
state=State; // store
}
public String getName(){return name;}
public void infoHandler(xiDimParameter P){
if(meter != null) meter.redraw(

P.getMeter().getValue(),
true, true);

if(state != null) state.redraw(
P.getState().getSeverity(),
P.getState().getColor(),
P.getState().getValue(),
true);

}
}

18.7.5 Store/restore layout

It is absolutely necessary to save and restore window layouts to be able to see the GUI after restart as before. This
is done through xLayout objects which are managed centrally. They keep information about frame position, size,
visibility, and the number of columns in graphics panels. All existing layouts are stored with the save setup button,
and restored on startup.

150 DABC Programmer Manual: GUI

References

[1] Jörn Adamczewski-Musch, Hans Georg Essel, and Sergei Linev. The go4 system homepage, http://go4.gsi.de.

[2] CBM collaboration. Cbm experiment: Technical status report. Technical report, GSI, January 2005.

[3] Clara Gaspar. Dim - distributed information management system http://dim.web.cern.ch/dim/, 2008.

[4] Andreas Kugel, Wenxue Gao, and Guillermo Marcus. The active buffer board online documentation,
http://cbm-wiki.gsi.de/cgi-bin/view/DAQ/ActiveBufferBoardV1, 2008.

[5] Walter F.J. Müller. The n-xyter starter kit, http://cbm-wiki.gsi.de/cgi-bin/view/NXYTER/NXYTER-
StarterKit, 2009.

[6] The Wikipedia. Finite state machine: http://en.wikipedia.org/wiki/State_machine, 2009.

151

http://go4.gsi.de
http://dim.web.cern.ch/dim/
http://cbm-wiki.gsi.de/cgi-bin/view/DAQ/ActiveBufferBoardV1
http://cbm-wiki.gsi.de/cgi-bin/view/NXYTER/NXYTER-StarterKit
http://cbm-wiki.gsi.de/cgi-bin/view/NXYTER/NXYTER-StarterKit
http://en.wikipedia.org/wiki/State_machine

152 REFERENCES

Index

Active Buffer Board, 127
Active Buffer Board

DMA read, 129
DMA read and write, 130
DMA write, 130
overview, 125
with Bnet, 131

Bnet classes
bnet::BuilderModule, 61
bnet::ClusterApplication, 60
bnet::CombinerModule, 61
bnet::FilterModule, 62
bnet::GeneratorModule, 61
bnet::ReceiverModule, 61
bnet::SenderModule, 61
bnet::WorkerApplication, 61

Conventions
DIM service names, 133

Core classes
dabc::Application, 8, 53, 60
dabc::Basic, 57
dabc::Buffer, 7, 52
dabc::Command, 6, 52, 57
dabc::Device, 8, 53, 59
dabc::Factory, 60
dabc::Manager, 52, 59, 63
dabc::MemoryPool, 7, 52
dabc::Module, 59
dabc::ModuleAsync, 52, 59, 84
dabc::ModuleSync, 51, 59, 83
dabc::Parameter, 7, 52, 58
dabc::Pointer, 52
dabc::PoolHandle, 52
dabc::Port, 7, 53, 59
dabc::Transport, 8, 53, 59
dabc::WorkingProcessor, 59
dabc::WorkingThread, 58

DABC
DIM naming conventions, 133
Environment set-up, 14
Installation, 13
Plug-in installation, 18
Setup file, 15

DIM
Conventions, 133

Introduction, 133
DIM Control classes

dimc::Manager, 69
dimc::ParameterInfo, 70
dimc::Registry, 69
dimc::Server, 70
dimc::ServiceEntry, 70

Finite state machine
states, 8, 54
transition commands, 9, 54

Manager interface
CanSendCmdToManager(), 68
CleanupManager(), 66
CommandRegistration(), 67
ConnectPorts(), 65
CreateApplication(), 64
CreateDevice(), 64
CreateMemoryPool(), 65
CreateModule(), 64
CreateTransport(), 64
DeleteModule(), 64
DeletePool(), 66
DestroyObject(), 66
DoStateTransition(), 68
ExecuteCommand(), 68
FindPool(), 66
GetNodeName(), 68
HasClusterInfo(), 67
InvokeStateTransition(), 67
IsAnyModuleRunning(), 65
IsMainManager(), 67
IsModuleRunning(), 65
IsNodeActive(), 68
IsStateTransitionAllowed(), 68
MakeThreadFor(), 65
MakeThreadForModule(), 65
NodeId(), 68
NumNodes(), 67
ParameterEvent(), 67
Print(), 66
RecvOverCommandChannel(), 68
SendOverCommandChannel(), 68
SetCmdReceiver(), 65
StartAllModules(), 64
StartModule(), 64
StopAllModules(), 64

153

154 INDEX

StopModule(), 64
Submit(), 65
Subscribe(), 67
Unsubscribe(), 67

PCI
abb::Device, 127
abb::Factory, 128
abb::ReadoutModule, 128
abb::WriterModule, 128
DMA, 126, 127
pci::BoardDevice, 125
pci::Transport, 126

PCI express, 125

TODO
Adjust old mbs bnet configurator scripts for new

xml format?, 46
dabcsetupfiles, 40
Mbs BNET example with real mbs nodes instead

generators, 46
xPanelGraphics, 138

	I User Manual
	DABC User Manual: Overview
	Outline of this manual
	Release Notes
	Version 1.0.01 (10. March 2009)
	Version 1.0.00 (26. February 2009)

	DABC User Manual: Introduction
	About DABC
	Introduction
	Modules
	Synchronous module
	Asynchronous module

	Commands
	Parameters
	Manager
	Memory and buffers
	Ports
	Transport
	Device
	Application

	Controls and configuration
	Finite state machine
	Commands
	Configuration and monitoring

	Package and library organisation
	Core system
	Control and configuration system
	Plug-in packages
	Bnet package
	Transport packages

	Application packages
	Distribution contents

	DABC User Manual: Setup
	Installing DABC
	Set-up the DABC environment
	DABC setup file
	Setup file example
	Basic syntax
	Context
	Run arguments
	Variables
	Default values

	Installation of additional plug-ins
	Add plug-in packages to $DABCSYS
	Plug-in packages in user directory

	DABC User Manual: GUI
	GUI Guide lines
	GUI Panels
	Main DABC GUI buttons
	DABC control panel
	DABC controller buttons

	Action in progress
	MBS control panel
	Combined DABC and MBS control panel
	Command panel
	Parameter table
	Parameter selection

	Monitoring panels
	States
	Rate meters
	Histograms
	Information
	Logging window

	GUI save/restore setups

	DABC User Manual: MBS GUI
	MBS event building
	MBS setup
	MBS control panel
	MBS controller buttons

	MBS command panel

	MBS DIM parameters
	MBS states
	MBS rates
	MBS histograms
	MBS infos
	MBS tasks
	MBS text
	MBS numbers

	Working directories
	MBS configuration of DIM

	DABC User Manual: DABC Application MBS
	MBS event building with DABC
	MBS setup
	DABC setup
	Combined DABC and MBS control panel
	Combined DABC and MBS controller buttons

	MBS and DABC with Bnet

	DABC User Manual: DABC Application Bnet
	DABC eventbuilder network (BNET)
	DABC eventbuilder network (BNET) with MBS

	DABC User Manual: DABC Application ROC
	DABC as MBS data server
	ROC event building

	II Programmer Manual
	DABC Programmer Manual: Overview
	Introduction
	Role and functionality of the objects
	Modules
	Class dabc::ModuleSync
	Class dabc::ModuleAsync

	Commands
	Parameters
	Manager
	Memory and buffers
	Ports
	Transport
	Device
	Application

	Controls and configuration
	Finite state machine
	Commands
	Parameters for configuration and monitoring

	Package and library organisation
	Core system
	Control and configuration system
	Plugin packages
	Bnet package
	Transport packages

	Application packages
	Distribution contents

	Main Classes
	Core system
	BNET classes

	DABC Programmer Manual: Manager
	Introduction
	Framework interface
	General object management
	Factory methods
	Module manipulation
	Thread management
	Command submission
	Memory pool management
	Miscellaneous methods

	Control system plug-in
	Factory
	Manager
	Virtual methods
	Baseclass methods

	Default implementation for DIM
	dimc::Manager
	dimc::Registry
	dimc::Server
	dimc::ServiceEntry
	dimc::ParameterInfo

	DABC Programmer Manual: Services
	Memory management
	Zero-copy approach
	Memory pool
	Buffer
	Pointer
	Buffer guard
	Allocation

	Threads organization
	Working loop
	Sockets handling
	Mutex usage

	Command execution
	Command class
	Command receiver
	Command client

	DABC Programmer Manual: Plugins
	Introduction
	Modules
	Pool handles
	Ports
	Parameters and configurations
	Commands processing
	ModuleSync
	ModuleAsync
	Special modules

	Device and transport
	Transport
	Device
	Local transport
	Network transport
	Data transport
	Input/output objects

	The DABC application
	Factories

	DABC Programmer Manual: Setup
	Parameter class
	Use parameter for control
	Example of parameters usage
	Configuration parameters
	Usage of commands for configuration

	DABC Programmer Manual: Example MBS
	Overview
	Event iterators
	File I/O
	Socket classes
	Server transport
	Client transport
	Event generator
	MBS event building
	MBS upgrade for DABC
	Increased buffer size support
	Variable sized buffers
	New LMD file format
	MBS data structures
	Connect to MBS transport
	Buffer header
	File header
	Data element structures
	Some fixed numbers

	MBS update for DIM control
	New or modified files
	f_stccomm
	MBS launcher
	MBS DIM commands and parameters
	DIM control modes
	Single node mode
	Multi node mode
	MBS controlled by DIM

	List of icons

	DABC Programmer Manual: Example Bnet
	Overview
	Controller application
	Worker application
	Combiner module
	Network topology
	Event builder module
	Filter module
	BNET test application
	BNET for MBS application

	DABC Programmer Manual: Example ROC
	Overview
	Device and transport
	Combiner module
	Calibration module
	Readout application
	Factory
	Source and compilation
	Running the ROC application

	DABC Programmer Manual: Example PCI
	Overview
	PCI Device and Transport
	pci::BoardDevice
	pci::Transport

	Active Buffer Board implementation
	abb::Device
	abb::ReadoutModule
	abb::WriterModule
	abb::Factory

	Simple read and write tests
	DMA Read from the board
	DMA Write to the board
	Simultaneous DMA Read and Write

	Active Buffer Board with Bnet application

	DABC Programmer Manual: GUI
	GUI Guide lines
	DIM Usage
	DABC DIM naming conventions
	DABC DIM records
	Record ID=0: Plain
	Record ID=1: Generic self describing
	Record ID=2: State
	Record ID=3: Rate
	Record ID=4: Histogram
	Record ID=10: Info
	Record ID=9: Command descriptor
	Commands
	Setting parameters

	Application servers
	DABC GUI usage of DIM

	GUI global layout
	Prompter panels
	Graphics panels

	GUI Panels
	DABC launch panel
	MBS launch panel
	Combined DABC and MBS launch panel
	Parameter table
	Parameter selection panel
	Command panel
	Monitoring panels
	xMeter
	xRate
	xState
	xHisto
	xInfo

	Logging window

	GUI save/restore setups
	Record attributes
	Parameter filter
	Windows layout
	DABC launch panel values
	MBS launch panel values

	DIM update mechanism
	xDimBrowser
	Getting parameters and commands
	xPanelParameter
	xPanelCommand

	Startup sequence
	Update sequence

	Application specific GUI plug-in
	Java Interfaces to be implemented by application
	Interface xiUserPanel
	Interface xiUserCommand
	Interface xiUserInfoHandler

	Java Interfaces provided by GUI
	Interface xiDesktop
	Interface xiDimBrowser
	Interface xiDimCommand
	Interface xiDimParameter
	Interface xiParser

	Other interfaces
	Interface xiPanelItem

	Example
	Store/restore layout

	References
	Index

