
User Manual

J.Adamczewski-Musch, S.Linev, H.G.Essel
GSI Darmstadt,
Experiment Electronics Department

Produced: August 18, 2009, Revisions:
Titel: DABC: User Manual

Document Date Editor Revision Comment
DABC-user 2009-03-10 Hans G.Essel 1.0.1 First scetch

2

Contents

1 DABC User Manual: Overview 1

1.1 Outline of this manual . 1

1.2 Release Notes . 1

1.2.1 Version 1.0.01 (10. March 2009) . 1

1.2.2 Version 1.0.00 (26. February 2009) . 2

2 DABC User Manual: Introduction 3

2.1 About DABC . 3

2.2 Introduction . 3

2.2.1 Modules . 3

2.2.1.1 Synchronous module . 4

2.2.1.2 Asynchronous module . 4

2.2.2 Commands . 4

2.2.3 Parameters . 5

2.2.4 Manager . 5

2.2.5 Memory and buffers . 5

2.2.6 Ports . 5

2.2.7 Transport . 6

2.2.8 Device . 6

2.2.9 Application . 6

2.3 Controls and configuration . 6

2.3.1 Finite state machine . 6

2.3.2 Commands . 8

2.3.3 Configuration and monitoring . 8

2.4 Package and library organisation . 8

2.4.1 Core system . 8

2.4.2 Control and configuration system . 8

2.4.3 Plug-in packages . 8

3

4 CONTENTS

2.4.3.1 Bnet package . 9

2.4.3.2 Transport packages . 9

2.4.4 Application packages . 10

2.4.5 Distribution contents . 10

3 DABC User Manual: Setup 11

3.1 Installing DABC . 11

3.2 Set-up the DABC environment . 12

3.3 DABC setup file . 13

3.3.1 Setup file example . 13

3.3.2 Basic syntax . 13

3.3.3 Context . 13

3.3.4 Run arguments . 14

3.3.5 Variables . 14

3.3.6 Default values . 15

3.4 Installation of additional plug-ins . 16

3.4.1 Add plug-in packages to $DABCSYS . 16

3.4.2 Plug-in packages in user directory . 17

4 DABC User Manual: GUI 19

4.1 GUI Guide lines . 19

4.2 GUI Panels . 19

4.2.1 Main DABC GUI buttons . 20

4.2.2 DABC control panel . 21

4.2.2.1 DABC controller buttons . 22

4.2.3 Action in progress . 23

4.2.4 MBS control panel . 23

4.2.5 Combined DABC and MBS control panel . 23

4.2.6 Command panel . 23

4.2.7 Parameter table . 24

4.2.7.1 Parameter selection . 25

4.2.8 Monitoring panels . 25

4.2.8.1 States . 25

4.2.8.2 Rate meters . 26

4.2.8.3 Histograms . 27

4.2.8.4 Information . 27

CONTENTS 5

4.2.8.5 Logging window . 27

4.3 GUI save/restore setups . 28

5 DABC User Manual: MBS GUI 29

5.1 MBS event building . 29

5.1.1 MBS setup . 29

5.1.2 MBS control panel . 29

5.1.2.1 MBS controller buttons . 30

5.1.3 MBS command panel . 31

5.2 MBS DIM parameters . 32

5.2.1 MBS states . 32

5.2.2 MBS rates . 33

5.2.3 MBS histograms . 33

5.2.4 MBS infos . 33

5.2.5 MBS tasks . 33

5.2.6 MBS text . 33

5.2.7 MBS numbers . 34

5.3 Working directories . 34

5.3.1 MBS configuration of DIM . 34

6 DABC User Manual: DABC Application MBS 37

6.1 MBS event building with DABC . 37

6.1.1 MBS setup . 37

6.1.2 DABC setup . 37

6.1.3 Combined DABC and MBS control panel . 39

6.1.3.1 Combined DABC and MBS controller buttons 39

6.2 MBS and DABC with Bnet . 40

7 DABC User Manual: DABC Application Bnet 43

7.1 DABC eventbuilder network (BNET) . 43

7.2 DABC eventbuilder network (BNET) with MBS . 44

8 DABC User Manual: DABC Application ROC 45

8.1 DABC as MBS data server . 45

8.2 ROC event building . 46

References 47

Index 49

Chapter 1

DABC User Manual: Overview

[user/user-overview.tex]

1.1 Outline of this manual

This DABC User Manual contains all information that is necessary to install and use the DABC frame-
work.

Chapter 2, page 3 should be useful to understand the most commonly used terms of DABC.

Chapter 3, page 11 describes how to install the DABC packages on any linux machine, and how to set up
the working environment. Additionally, some typical use cases and their configuration files are shown.
The following chapters then give more detailed explanations how to operate in different modes with the
DABC Java GUI:

Chapter 4, page 19 covers the general functionality of the GUI which is common for most applications.
Especially, this is mostly sufficient to control a DAQ cluster purely with one or several DABC nodes.

Chapter 5, page 29 describes the DABC GUI in a mode to control a pure MBSdata acquisition system
without a native DABC node.

The application use case for a mixed DAQ cluster, both with DABC and MBS nodes, is treated in Chapter
6, page 37.

Chapter 7, page 43 describes the use case of a DABC builder network (BNET), both with and without
using MBS .

Finally, Chapter 8, page 45 describes the use case of ROC front-ends.

However, the scope of the DABC User Manual does not contain detailed descriptions of the DABC
framework architecture, the software mechanisms, and the example programs. These subjects are treated
thouroughly in the DABC Programmer Manual.

1.2 Release Notes

1.2.1 Version 1.0.01 (10. March 2009)

1. Add IP multicast support in SocketTransport.
2. Add IB multicast support in verbs::Transport.

1

2 DABC User Manual: Overview

3. Possibility to add user-defined parameters directly in xml file - in Context/User section.
4. If Context/Run/copycfg = true, config file will be copied to working directory of specified node,

useful for cluster without common file system.
5. Implement all-to-all and multicast tests in net-test application.
6. Bugfix several minor errors in Verbs plugin.
7. Bugfix: suppress output of scripts running from ssh (caused problems with GUI).
8. Bugfix: GUI: Register DIM service after full instantiation of parameter object.
9. Bugfix: GUI: Histogram drawer had uninitialized field.

1.2.2 Version 1.0.00 (26. February 2009)

These are the features of the first official release:

1. A Data Acquisition framework in C++ language for linux platforms with modular components for
dataflow on multiple nodes.

2. Runtime environment with basic services for: threads, event handling, memory management, com-
mand execution, configuration, logging, error handling

3. Plug-in mechanism for user defined DAQ applications
4. Plug-in mechanism for a control system. Features a finite state machine logic and parameters

for monitoring and configuration. The default implementation is based on the DIM protocol
(http://dim.web.cern.ch/dim)

5. Java GUI to operate the standard DIM control system of DABC/MBS. Fully generic evaluating
DABC process variables, but extendable by user written components.

6. Contains a sub-framework to set-up distributed event builder networks (BNET)
7. Supports TCP/IP and InfiniBand/verbs networks for data transport
8. Supports formats and readout of GSI’s standard DAQ system MBS (Multi Branch System). May

also write data into MBS listmode format, and may emulate MBS socket data servers. Addition-
ally, MBS systems can be controlled by the DABC GUI.

Chapter 2

DABC User Manual: Introduction

[user/user-introduction.tex]

2.1 About DABC

The Data Acquisition Backbone Core DABC is a Data Acquisition (DAQ) framework with modular com-
ponents for dataflow on multiple nodes. It provides a C++ runtime environment with all basic services,
such as: threads and event handling, memory management, command execution, configuration, logging
and error handling. User written DAQ applications can be run within this environment by means of a
plug-in mechanism.

DABC contains a sub-framework with additional interfaces to set-up distributed event builder networks.
As transport layers for such networks, tcp/ip and InfiniBand/verbs are supported.

DABC supports by default the data formats and readout connections of GSI’s standard DAQ system MBS
(Multi Branch System). It may also write data files with the MBS *.lmd format, and it may emulate
MBS data server sockets, such as stream or transport servers.

The DABC control system features a finite state machine logic and parameters for monitoring and con-
figuration. The current implementation is based on the DIM protocol [2], other implementations could
replace this one. A generic Java GUI is provided to operate this standard DIM control system. This GUI
may also control MBS systems which support the DIM communication. It is extendable by user written
components.

2.2 Introduction

The the following sections we give a short introduction to the main components and terms of DABC.
Figure 2.1 should be helpful.

2.2.1 Modules

All processing code runs in module objects. There are two general types of modules: synchronous and
asynchronus. A synchronous module may block for longer time waiting for data and must therefore run
in its own computing thread. Asynchronous modules must never block. Therefore several of them may
run as a chain in one single thread.

3

4 DABC User Manual: Introduction

DABC Module

port

port

DABC Module

port

port

process process

Device

Transport

Device

Transport

Network

Object manager

locally (by reference)

Central data manager
Memory pools BufferqueueBufferqueue

Threads

Figure 2.1: Components and data flow.

2.2.1.1 Synchronous module

Each synchronous module is executed by a dedicated working thread. The thread executes a method
MainLoop() with arbitrary code, which may block the thread. In blocking calls of the framework (re-
source or port wait), optionally command callbacks may be executed implicitly. A timeout may be set for
all blocking calls; this can optionally throw an exception when the time is up. On timeout with exception,
either the MainLoop() is left and the exception is then handled in the framework thread; or the Main-
Loop() itself catches and handles the exception. On state machine commands (e.g. Halt or Suspend, see
Programmer Manual section ??), the blocking calls are also left by exception, thus putting the mainloop
thread into a stopped state.

2.2.1.2 Asynchronous module

Several asynchronous modules may be run by a shared working thread. The thread processes an event
queue and executes appropriate callback functions of the module that is the receiver of the event. Events
are fired for data input or output, command execution, and if a requested resource (e.g. memory buffer)
is available. The callback functions must never block the working thread. Instead, the callback must
return if further processing requires to wait for a requested resource. Therefore each callback function
must check the available resources explicitly whenever it is entered.

2.2.2 Commands

A module may register Command objects and may define command actions by overwriting a virtual
command callback method ExecuteCommand.

2.2. Introduction 5

2.2.3 Parameters

A module may register Parameter objects. Parameters are accessible by name; their values can be
monitored and optionally changed by the controls system. Initial parameter values can be set from XML
configuration files.

2.2.4 Manager

The modules are organized and controlled by one manager object which is persistent independent of the
application’s state.

The manager is an object manager that owns and keeps all registered basic objects into a folder structure.

Moreover, the manager defines the interface to the control system. This covers registering, sending, and
receiving of commands; registering, updating, unregistering of parameters; error logging and global error
handling.

The manager receives and dispatches commands to the destination modules where they are queued and
eventually executed by the modules threads (see Programmer Manual section ??). The manager has an
independent manager thread, used for manager commands execution, parameters timeout processing and
so on.

2.2.5 Memory and buffers

Data in memory is referred by Buffer objects. Allocated memory areas are kept in MemoryPool objects.
In general case a buffer contains a list of references to scattered memory fragments from memory pool.
Typically a buffer references exactly one segment. Buffers may have an empty list of references. In
addition, buffers can be supplied with a custom headers.

The buffers are provided by one or several memory pools which preallocate reasonable memory from the
operating system. A memory pool may keep several sets, each set for a different configurable memory
size.

A new buffer may be requested from a memory pool by size. Depending on the module type and mode,
this request may either block until an appropriate buffer is available, or it may return an error value if it
can not be fulfilled. The delivered buffer has at least the requested size, but may be larger. A buffer as
delivered by the memory pool is contiguous.

Several buffers may refer to the same fragment of memory. Therefore, the memory as owned by the
memory pool has a reference counter which is incremented for each buffer that refers to any of the
contained fragments. When a consumer frees a buffer object, the reference counters of the referred
memory blocks are decremented. If a reference counter becomes zero, the memory is marked as "free"
in the memory pool.

2.2.6 Ports

Buffers are entering and leaving a module through Port objects. Each port has a buffer queue of config-
urable length. A module may have several input, output, or bidirectional ports. The ports are owned by
the module.

6 DABC User Manual: Introduction

2.2.7 Transport

Outside the modules the ports are connected to Transport objects. On each node, a transport may either
transfer buffers between the ports of different modules (local data transport without copy), or it may
connect the module port to a data source or sink (e. g. file i/o, network connection, hardware readout).

In the latter case, it is also possible to connect ports of two modules on different nodes by means of a
transport instance of the same kind on each node (e. g. InfiniBand verbs transport connecting a sender
module on node A with a receiver module on node B via a verbs device connection).

2.2.8 Device

A transport belongs to a Device object of a corresponding type that manages it. Such a device may have
one or several transports. The threads that run the transport functionality are created by the device. If the
Transport implementation shall be able to block (e. g. on socket receive), there can be only one transport
for this thread.

A device object usually represents an I/O component (e. g. network card). There may be several device
objects of the same type in an application scope. The device objects are owned by the manager singleton;
transport objects are owned and managed by their corresponding device.

A device is persistent independent of the connection state of the transport. In contrast, a transport is
created during connect() or open() and deleted during disconnect() or close(), respectively.

A device may register parameters and define commands. This is the same functionality as available for
modules.

2.2.9 Application

The Application is a singleton object that represents the running application of the DAQ node (i. e. one
per system process). It provides the main configuration parameters and defines the runtime actions for
the different control system states (see Programmer Manual section ??). In contrast to the Manager
implementation that defines a framework control system (e.g. DIM, EPICS), the Application defines the
experiment specific behaviour of the DAQ.

2.3 Controls and configuration

2.3.1 Finite state machine

The running state of the DAQ system is ruled by a Finite State Machine [4] on each node of the cluster.
The manager provides an interface to switch the application state by the external control system. This
may be done by calling state change methods of the manager, or by submitting state change commands
to the manager (from GUI).

Some of the application states may be propagated to the active components (modules, device objects),
e.g. the Running or Ready state which correspond to the activity of the thread. Other states like Halted
or Failure do not match a component state; e.g. in Halted state, all modules are deleted and thus do not
have an internal state. The granularity of the control system state machine is not finer than the node
application.

There are 5 generic states to treat all set-ups:

2.3. Controls and configuration 7

DoConfigure DoEnable DoStart

DoStop

DoHaltDoHalt

DoHalt
F X

H C E R

DoError

Figure 2.2: The finite state machine as defined by the manager.

Halted : The application is not configured and not running. There are no modules, transports, and
devices existing.

Configured : The application is mostly configured, but not running. Modules and devices are created.
Local port connections are done. Remote transport connections may be not all fully connected,
since some connections require active negotiations between different nodes. Thus, the final con-
necting is done between Configured and Ready.

Ready : The application is fully configured, but not running (modules are stopped).
Running : The application is fully configured and running.
Failure : This state is reached when there is an error in a state transition function. Note that a run error

during the Running state would not lead to Failure, but rather to stop the run in a usual way (to
Ready).

The state transitions between the 5 generic states correspond to commands of the control system for each
node application:

DoConfigure : between Halted and Configured. The application plug-in creates application specific
devices, modules and memory pools. Application typically establishes all local port connections.

DoEnable : between Configured and Ready. The application plug-in may establish the necessary con-
nections between remote ports. The framework checks if all required connections are ready.

DoStart : between Ready and Running. The framework automatically starts all modules, transport and
device actions.

DoStop : between Running and Ready. The framework automaticall stops all modules, transport and
device actions, i.e. the code is suspended to wait at the next appropriate waiting point (e.g. begin
of MainLoop(), wait for a requested resource). Note: queued buffers are not flushed or discarded
on Stop !

DoHalt : switches states Ready , Running , Configured, or Failure to Halted. The framework automati-
cally deletes all registered objects (transport, device, module) in the correct order.

8 DABC User Manual: Introduction

2.3.2 Commands

The control system may send (user defined) commands to any component (module , device, application).
Execution of these commands is independent of the state machine transitions.

2.3.3 Configuration and monitoring

The configuration is done using parameter objects. On application startup time, the configuration system
may set the parameters from a configuration file (e.g. XML configuration files). During the application
lifetime, the control system may change values of the parameters by command. However, since the set
up is changed on DoConfigure time only, it may be forbidden to change true configuration parameters
except when the application is Halted.

Otherwise, there would be the possibility of a mismatch between the monitored parameter values and the
really running set up. However, the control system may change local parameter objects by command in
any state to modify minor system properties independent of the configuration set up (e.g. switching on
debug output, change details of processing parameters).

The current parameters may be stored back to the XML file.

Apart from the configuration, the control system may use local parameter objects for monitoring the
components. When monitored parameters change, the control system is updated by interface methods
of the manager and may refresh the GUI representation. Programmer Manual Chapter ??, page ?? will
explain the usage of parameters for configuration in detail.

2.4 Package and library organisation

The complete system consists of several packages.

2.4.1 Core system

The Core system package defines all base classes and interfaces and implements basic functionalities for
object organization, memory management, thread control, and event communication.

2.4.2 Control and configuration system

Depends on the Core system. Defines functionality of state machine, command transport, parameter
monitoring and modification. Implements the connection of configuration parameters with a database
(i.e. a file in the trivial case). Interface to the Core system is implemented by subclass of Manager.

Note that default implementations of state machine and a configuration file parser are already provided
by the Core system.

2.4.3 Plug-in packages

Plug-in packages may provide special implementations of the core interface classes:
Device, Transport, Module, or Application. Usually, these classes are made available to the system
by means of a corresponding Factory that is automatically registered in the Manager when loading the
plug-in library.

2.4. Package and library organisation 9

DABC Base

User

Plug-ins

User Application

DIM

DIM Ctrl

X
M

L
 C

o
n

fig

Java GUI

BNET

User GUI

verbs
PCI

sockets

C
o

n
tro

ls

MBS

U
ser C

o
n

fig
u

ratio
n

Figure 2.3: Schematic view of the distributed DABC components (coloured) and user specific extensions (white)

When installed centrally, the Plugin packages are kept in subfolders of the $DABCSYS/plugins
directory. Alternatively, the Plugin packages may be installed in a user directory and linked against the
Core system installation.

2.4.3.1 Bnet package

This package depends on the Core system and implements modules to cover a generic event builder
network. It defines interfaces (virtual methods) of the special Bnet modules to implement user specific
code in subclasses. The Bnet package provides a factory to create specific Bnet modules by class name. It
also provides application classes to define generic functionalities for worker nodes and controller nodes.
These may be used as base classes in further Application packages.

2.4.3.2 Transport packages

Depend on the Core system, and may depend on external libraries or hardware drivers. Implement
Device and Transport classes for specific data transfer mechanism, e.g. verbs or tcp/ip socket. May
also implement Device and Transport classes for special data input or output. Each transport package
provides a factory to create a specific device by class name.

However, the most common transport implementations are put directly to the Core system, e.g. local
memory, or socket transport; the corresponding factory is part of the Core system then.

10 DABC User Manual: Introduction

2.4.4 Application packages

They depend on the Core system, and may depend on several transport packages, on the Bnet package,
or other plugin packages. They may also depend on other application packages. Application packages
provide the actual implementation of the core interface class Application that defines the set-up and
behaviour of the DAQ application in different execution states. This may be a subclass of specific existing
application. Additionally, they may provide experiment specific Module classes.

When installed centrally, the Application packages are kept in subfolders of the $DABCSYS/applications
directory. Alternatively, an Application package may be installed in a user directory and linked against
the Core system installation and the required Plugin packages.

2.4.5 Distribution contents

The DABC distribution contains the following packages:

Core system : This is plain C++ code and independent of any external framework.
Bnet plugin : Depends on the core system only.
Transport plugins : Network transport for tcp/ip sockets and InfiniBand verbs. Additionally, transports

for GSI Multi Branch System MBS connections (socket, filesystem) is provided. Optionally, exam-
ple transport packages may be installed that illustrate the readout of a PCIe board, or data taking
via UDP from an external readout controller (ROC) board.

Control and configuration system : The general implementation is depending on the DIM framework
only. DIM is used as main transport layer for commands and parameter monitoring. On top of
DIM, a generic record format for parameters is defined. Each registered command exports a self
describing command descriptor parameter as DIM service. Configuration parameters are set from
XML setup files and are available as DIM services.

GUI A generic controls GUI using the DIM record and command descriptors is implemented with Java.
It may be extendable with user defined components.

Application packages : some example applications, such as:
◦ Simple MBS event building
◦ Bnet with switched MBS event building
◦ Bnet with random generated events

Chapter 3

DABC User Manual: Setup

[user/user-setup.tex]

3.1 Installing DABC

When working at the GSI linux cluster, the DABC framework is already installed and will be maintained
by people of the gsi EE department. Here DABC needs just to be activated from any GSI shell by typing
. dabclogin (dot space). In this case, please skip this installation section and proceed with following
section 3.2, page 12 describing the set-up of the user environment.

However, if working on a separate DAQ cluster outside GSI, it is mandatory to install the DABC software
from scratch. Hence the DABC distribution is available for download at http://dabc.gsi.de. It is provided
as a compressed tarball of sources dabc_vn.m.ss.tar.gz where n m and ss are version numbers.
The following steps describe the recommended installation procedure:

1. Unpack this DABC distribution at an appropriate installation directory, e. g. :
cd /opt/dabc;
tar zxvf dabc_v1.0.00.tar.gz

This will extract the archive into a subdirectory which is labelled with the current version number
like /opt/dabc/dabc_v1.0.00. This becomes the future DABC system directory.

2. Prepare the DABC environment login script: A template for this script can be found at
scripts/dabclogin.sh
• Edit the DABCSYS environment according to your local installation directory. This is done in

the following lines:
export DABCSYS=/opt/dabc/dabc_1_0.00

• Specify correct location of your JAVA installation. This is done in the lines (shown here an
example, make sure to get the path where the include directory is located):
export JAVA_HOME=/usr/lib/jvm

• Copy the script to a location in your global $PATH for later login, e. g. /usr/bin. Alterna-
tively, you may set an alias to the full pathname of dabclogin.sh in your shell profile.

3. Execute the just modified login script in your shell to set the environment:
. dabclogin.sh

This will set the environment for the compilation.
4. Change to the DABC installation directory and start the build:

cd $DABCSYS
make

This will compile the DABC framework and install a suitable version of DIM in a subdirectory of
$DABCSYS/dim.

11

http://dabc.gsi.de

12 DABC User Manual: Setup

After succesful compilation, the DABC framework installation is complete and can be used from any
shell after invoking . dabclogin.sh The next sections 3.2, page 12 and 3.3, page 13 will describe
further steps to set-up the DABC working environment for each user.

3.2 Set-up the DABC environment

Once the general DABC framework is installed on a system, still each user must "activate" the environ-
ment and do further preparations to work with it.

1. Execute the DABC login script in a linux shell to set the environment. At GSI linux installation,
this is done by
. dabclogin

For the user installation as described in above section 3.1, page 11, by default the script is named
. dabclogin.sh

The login script will already enable the DABC framework for compilation of user written compo-
nents. Additionally, the general executable dabc_run now provides the DABC runtime environ-
ment and may be started directly for simple "batch mode" applications on a single node.
However, further preparations are necessary if DABC shall be used with DIM control system and
GUI.

2. Open a dedicated shell on the machine that shall provide the DIM name server, e. g.
ssh nsnode.cluster.domain
export DIM_DNS_NODE=nsnode.cluster.domain
. dabclogin.sh
dimDns &
dimDid &

to launch the DIM name server. This is done once at the beginning of the DAQ setup; usually
the DIM name server needs not to be shut down when DABC applications terminate. The DID is
useful for inspecting DIM services.

3. Set the DIM name server environment variable in any DABC working shell (e. g. the shell that
will start the dabc gui later):
. dabclogin.sh
export DIM_DNS_NODE=nsnode.cluster.domain

4. Now the DABC GUI can be started in such prepared shell by typing dabc, (or mbs for a plain
MBS gui, resp.). See below in gui section.

To operate a DABC application one should create a dedicated working directory to keep all relevant files:

• Setup files for DABC (XML).
• Log files (text).

The following section 3.3, page 13 gives a general description of the setup file syntax.

The GUI may run on a machine with no access to the DABC working directory, e. g. a windows PC.
Therefore the GUI setup files may use a different working directory, containing:

• Data files for startup panels (XML).
• Configuration files for GUI (XML).

These configuration files for the GUI are described in more detail in Chapter 4, page 19.

Of course both setups, for the DABC application and the GUI, can be put into one working directory if
the GUI has access to it.

3.3. DABC setup file 13

3.3 DABC setup file

The setup file is an XML file in a DABC-specific format, which contains values for some or all configu-
ration parameters of the system.

3.3.1 Setup file example

Let’s consider this simple but functional configuration file:

<?xml version="1.0"?>
<dabc version="1">
<Context host="localhost" name="Generator">
<Run>

<lib value="libDabcMbs.so"/>
<func value="InitMbsGenerator"/>

</Run>
<Module name="Generator">

<Port name="Output">
<OutputQueueSize value="5"/>
<MbsServerPort value="6000"/>

</Port>
</Module>

</Context>
</dabc>

This is an example XML file for an MBS generator, which produces MBS events and provides them to
an MBS transport server. This use case is described further in section 8.1, page 45.

Other examples of DABC setup files can be found in the sections 6.1, page 37, 7.1, page 43, and 7.2,
page 44 of this manual.

3.3.2 Basic syntax

A DABC configuration file should always contain <dabc> as root node. Inside the <dabc> node one or
several <Context> nodes should exists. Each <Context> node represents the application context which
runs as independent executable. Optionally the <dabc> node can have <Variables> and <Defaults>
nodes, which are described further in the following sections 3.3.5, page 14 and 3.3.6, page 15.

3.3.3 Context

A <Context> node can have two optional attributes:

"host" host name, where executable should run, default is "localhost"
"name" application (manager), default is the host name.

Inside a <Context> node configuration parameters for modules, devices, memory pools are contained. In
the example file one sees several parameters for the output port of the generator module.

14 DABC User Manual: Setup

3.3.4 Run arguments

Usually a <Context> node has a <Run> subnode, where the user may define different parameters, relevant
for running the DABC executable:

lib name of a library which should be loaded. Several libraries can be specified.
func name of a function which should be called to create modules. This is an alternative to instantiating

a subclass of dabc::Application (compare section ??, page ??)
runfunc function name to run some sequence of operations (start, stop, reconfigure) over application.

Useful for batch mode
port ssh port number of remote host
user account name to be used for ssh (login without password should be possible)
init init script, which should be called before dabc application starts
test test script, which is called when test sequence is run by run.sh script
timeout ssh timeout
debugger argument to run with a debugger. Value should be like "gdb -x run.txt –args", where file

run.txt should contain commands "r bt q".
workdir directory where DABC executable should start
debuglevel level of debug output on console, default 1
logfile filename for log output, default none
loglevel level of log output to file, default 2
DIM_DNS_NODE node name of DIM dns server, used by DIM controls implementation
DIM_DNS_PORT port number of DIM dns server, used by DIM controls implementation
cpuinfo instantiate dabc::CpuInfoModule to show CPU and memory usage information. Value must

be >= 0. If 0, only two parameters are created, if 15 - several ratemeters will be created.
parslevel level of pars visibility for control system, default 1

3.3.5 Variables

In the root node <dabc> one can insert a <Variables> node which may contain definitions of one or
several variables. Once defined, such variables can be used in any place of the configuration file to set
parameter values. In this case the syntax to set a parameter is:

<ParameterName value="${VariableName}"/>

It is allowed to define a variable as a combination of text with another variable, but neither arithmetic nor
string operations are supported.

Using variables, one can modify the example in the following way:

<?xml version="1.0"?>
<dabc version="1">
<Variables>
<myname value="Generator"/>
<myport value="6010"/>

</Variables>
<Context name="Mgr${myname}">
<Run>
<lib value="libDabcMbs.so"/>
<func value="InitMbsGenerator"/>

</Run>
<Module name="${myname}">

3.3. DABC setup file 15

<SubeventSize value="32"/>
<Port name="Output">

<OutputQueueSize value="5"/>
<MbsServerPort value="${myport}"/>

</Port>
</Module>

</Context>
</dabc>

Here context name and module name are set via myname variable, and mbs server socket port is set via
myport variable.

There are several variables which are predefined by the configuration system:

• DABCSYS - top directory of DABC installation
• DABCUSERDIR - user-specified directory
• DABCWORKDIR - current working directory
• DABCNUMNODES - number of <Context> nodes in configuration files
• DABCNODEID - sequence number of current <Context> node in configuration file

Any shell environment variable is also available as variable in the configuration file to set parameter
values.

3.3.6 Default values

There are situations when one needs to set the same value to several similar parameters, for instance the
same queue length for all output ports in the module. One possible way is to use syntax as described
above. The disadvantage of such approach is that one must expand the XML file to set each queue length
explicitely from the appropriate variable; so in case of a big number of ports the file will be very long
and confusing to the user.

Another possibility to set several parameters at once consists in wildcard rules using "*" or "?" symbols.
These can be defined in a <Defaults> node:

<?xml version="1.0"?>
<dabc version="1">
<Variables>
<myname value="Generator"/>
<myport value="6010"/>

</Variables>

<Context name="Mgr${myname}">
<Run>

<lib value="libDabcMbs.so"/>
<func value="InitMbsGenerator"/>

</Run>
<Module name="${myname}">

<SubeventSize value="32"/>
<Port name="Output">

<MbsServerPort value="${myport}"/>
</Port>

</Module>
</Context>
<Defaults>
<Module name="*">

16 DABC User Manual: Setup

<Port name="Output*">
<OutputQueueSize value="5"/>

</Port>
</Module>

</Defaults>
</dabc>

In this example for all ports which names begin with the string "Output", and which belong to any
module, the output queue length will be 5. A wildcard rule of this form will be applied for all contexts
of the configuration file, i. e. by such rule we set the output queue length for all modules on all nodes.
This allows to configure a big multi-node cluster with a compact XML file.

Another possibility to set default value for some parameters - create parameter with the same name in
parent object. Here word create is crutial - one should use CreateParInt() method in module constructor -
it is not enough just put additional tag in xml file. For instance, one can create parameter "MbsServerPort"
in generator module and than MBS server transport, created for output port, will use that value for as
default server port number.

3.4 Installation of additional plug-ins

Apart from the DABC base package, there may be additional plug-in packages for specific use cases.
Generally, these plug-in packages may consist of a plugins part and an applications part. The plugins
part offers a library containing new components (like Devices, Transports, or Modules). The appli-
cations part mostly contains the XML setup files to use these new components in the DABC runtime
environment; however, it may contain an additonal library defining the DABC Application class.

As an example, we may consider a plug-in package for reading out data from specific PCIe hardware like
the Active Buffer Board ABB [3]. This package is separately available for download at http://dabc.gsi.de
and described in detail in chapter ??, page ?? of the DABC programmer’s manual.

There are principally two different ways to install such separate plug-in packages: Either within the
general DABCSYS directory as part of the central DABC installation, as described in following section
3.4.1, page 16. Or at an independent location in a user directory, as described in section 3.4.2, page 17.

3.4.1 Add plug-in packages to $DABCSYS

This is the recommended way to install a plug-in package if this package should be provided for all users
of the DABC installation. A typical scenario would be that an experimental group owns dedicated DAQ
machines with system manager priviliges. In this case, the plugin-package may be installed under the
same account as the central DABC installation (probably, but not necessarily even the root account). The
new plug-in package should be directly installed in the $DABCSYS directory then, with the following
steps:

1. Download the plug-in package tarball, e. g. abb1.tar.gz
2. Call the dabclogin.sh script of the DABC installation (see section user-env)
3. Copy the downloaded tarball to the $DABCSYS directory and unpack it there:

cp abb1.tar.gz $DABCSYS
cd $DABCSYS
tar zxvf abb1.tar.gz
This will extract the new components into the appropriate plugins and applications folders
below $DABCSYS.

http://dabc.gsi.de

3.4. Installation of additional plug-ins 17

4. Build the new components with the top Makefile of $DABCSYS:
make

5. To work with the new components, the configuration script(s) of the applications part should be
copied to the personal workspace of each user (see section 3.3, page 13). For the ABB example,
this is found at
$DABCSYS/applications/bnet-test/SetupBnetIB-ABB.xml

3.4.2 Plug-in packages in user directory

This is the case when DABC is installed centrally at the fileserver of an institute, and several experimental
groups shall use different plug-ins. It is also the recommended way if several users want to modify the
source code of a plug-in library independently without affecting the general installation.

The new plug-in package should be installed in a user directory then, with the following steps:

1. Download the plug-in package tarball, e. g. abb1.tar.gz
2. Create a directory to contain your additional DABC plugin packages:

mkdir $HOME/mydabcpackages
3. Call the dabclogin.sh script of the DABC installation (see section user-env)
4. Copy the downloaded tarball to the $DABCSYS directory and unpack it there:

cp abb1.tar.gz $HOME/mydabcpackages
cd $HOME/mydabcpackages
tar zxvf abb1.tar.gz
This will extract the new components into the appropriate plugins and applications folders
below the working directory.

5. To build the plugins part, change to the appropriate package plugin directory and invoke the local
Makefile, e. g. for the ABB example:
cd $HOME/mydabcpackages/plugins/abb
make
This will create the corresponding plug-in library in a subfolder denoted by the computer architec-
ture, e. g. :
$HOME/mydabcpackages/plugins/abb/x86_64/lib/libDabcAbb.so

6. For some plug-ins, there may be also small test executables with different Makefiles in subfolder
test. These can be optionally build and executed independent of the DABC runtime environ-
ment.

7. The DABC working directory for the new plug-in will be located in subfolder
applications/plugin-name
For the ABB example, the application will set up a builder network with optional Active Buffer
Board readouts, so this is at
$HOME/mydabcpackages/applications/bnet-test
As in this example, there may be an additional library to be build containing the actual Application
class. This is done by invoking the Makefile within the directory:
cd $HOME/mydabcpackages/applications/bnet-test
make
Here the application library is produced directly on top of the working directory:
$HOME/mydabcpackages/applications/bnet-test/libBnetTest.so

8. The actual locations of the newly build libraries (plugins, and optionally applications part) has to be
edited in the <lib> tag of the corresponding DABC setup-file (here: SetupBnetIB-ABB.xml).
The default set-up examples in the plug-in packages assume that the library is located at $DABCSYS/lib,
as it is in the alternative installation case as described in section 3.4.1, page 16.

18 DABC User Manual: Setup

Chapter 4

DABC User Manual: GUI

[user/user-gui.tex]

4.1 GUI Guide lines

The current DABC GUI is written in Java using the DIM software as communication layer. The standard
part of the GUI described here may be extended by application specific parts. How to add such extensions
is described in the programmer’s manual. Typically they are started as prompter panels via buttons in the
main GUI menu.

The standard part builds a set of panels (windows) according the parameters the DIM servers offer. Only
services from one single DIM name server (node name specified as shell variable DIM_DNS_NODE)
defining a name space can be processed. See 5.3.1, page 34 for preparations.

The GUI needs no file access to the DABC working directory. However, user must have ssh (or rsh)
access to the DABC (or MBS) master node. Currently the GUI must run under the same account as
the DABC. In monitoring mode (no commands) the GUI may run under different account. Master node
must have remote access to all worker nodes. The user’s ssh settings must enable remote access without
prompts.

The layout of the GUI can be adjusted to individual needs. It is strongly recommended to save these
settings to see the same layout after a restart of the GUI. The GUI can be restarted any time. DABC and
MBS systems continue without GUI.

4.2 GUI Panels

Figure 4.1: Main toolbar buttons.

Fig. 4.1, page 19 shows the main menu of DABC (minimal view). The GUI as it comes up is divided

19

20 DABC User Manual: GUI

in three major parts: one sees on top a toolbar with icon buttons. Most of these open other windows.
The dark line at the bottom shows a list of active DIM servers. The other windows are placed in the
white middle pane. The functions of the buttons and the invoked panels is described in the next sections.
Depending on the application some buttons may be not seen, additional ones may show up. If one does
not work with MBS plug-ins the control panels for MBS are of cause not useful.
Fig. 4.2, page 20 shows a more typical view of a running DABC. In general, all panels (including the

Figure 4.2: More typical full screen view.

GUI itself) can be closed and reopened any time.

4.2.1 Main DABC GUI buttons

Quit GUI. Will prompt (RET will quit). The DABC will continue to run. The GUI may be started

4.2. GUI Panels 21

anywhere again. In case you saved the layout (recommended, see 4.3, page 28) and you start the GUI
from the same directory it will look pretty much the same as you left it.

Test, shell script

Save settings: window layout, record attributes, command arguments, parameter selection filters.
Details see 4.3, page 28. Note that the content of the control panels must be saved by similar buttons in
these panels.

Open DABC MBS control panel, see 6.1.3, page 39.

Open DABC control panel, see 4.2.2, page 21.

Open MBS control panel, see 5.1.2, page 29.

Refresh. All parameters and commands are removed. Rebuild DIM service list from DIM name
server. Parameters and Commands are sorted alphabetically by name. All panels are updated. In normal
operation there is no need to refresh manually.

Open command panel (4.2.6, page 23).

Open parameter table (4.2.7, page 24).

Open parameter selection panel (4.2.7.1, page 25).

Open rate meter panel (4.2.8, page 25).

Open histogram panel (4.2.8, page 25).

Open state panel (4.2.8, page 25).

Open info panel (4.2.8, page 25).

Open log panel (4.2.8, page 25).

Eventually one might see additional icons from application panels (this one is only an example).

The three control panels (DABC, MBS, combined DABC and MBS) are used depending on the ap-
plication to be controlled. Eventually an application provides additional specific control panels.

4.2.2 DABC control panel

The standard DABC control panel is shown in 4.3, page 22. As mentioned already some applications may
provide their own control panels like the MBS applications (see section 5.1.2, page 29). But most of the
buttons are very common. From left to right they startup a system, configure it, start data taking, pause
data taking, stop tasks, shut down. At the very left we see a save button, at the right a shell execution
button. Values are read from file DabcControl.xml (default, may be saved/restored to/from other
file, see 4.3, page 28).

<?xml version="1.0" encoding="utf-8"?>
<DabcLaunch>
<DabcMaster prompt="DABC Master" value="node.xxx.de" />
<DabcName prompt="DABC Name" value="Controller:41" />
<DabcUserPath prompt="DABC user path" value="myWorkDir" />
<DabcSystemPath prompt="DABC system path" value="/dabc" />

22 DABC User Manual: GUI

Figure 4.3: DABC controller panel.

<DabcSetup prompt="DABC setup file" value="SetupDabc.xml" />
<DabcScript prompt="DABC Script" value="ps" />
<DabcServers prompt="%Number of needed DIM servers%" value="5" />
</DabcLaunch>

DabcMaster: Node where the master controller shall be started. Can be one of the worker nodes.
DabcName: A unique name inside DABC of the system.
DabcUserPath: User working directory. The GUI does not need to have access to the filesystem.
DabcSystemPath: Path where the DABC is installed.
DabcSetup: Setup file name.
DabcScript: Command to be executed in an ssh at the master node.
DabcServers: Number of workers and controllers. This information is minimum for the GUI to know

when all DABC nodes are up. The GUI waits until this number of DIM servers is up and running.
Note that this number must be consistent with the DABC setup file used.

The name server name is translated from shell environment variable DIM_DNS_NODE, the user name
from shell environment variable USER. Password can be chosen when the first remote shell script is
executed (which itself is protected by user password). All following commands then need this password.

4.2.2.1 DABC controller buttons

Save panel settings to the file Control file. If you choose a name different from the default you must
set a shell variable to it to get the values from that file (see 4.3, page 28).

Startup all tasks. Executes a DABC script dabcstartup.sc via ssh on the master node under
user name. Then it waits until the number of DIM servers expected are announced. A progress panel
pops up during that time (see 4.2.3, page 23). When the servers are up the main GUI Update is triggered
building all panels from scratch according the parameters offered by the servers.

Configure. Executes state transition command Configure on master node and waits for the transition.
All plug-in components are created. Then execute Enable. Waits until all workers go into Ready state.
Now the DABC is ready to run. Triggers the main GUI Update.

Start acquisition. Executes Start command. All components go into running state Running.

4.2. GUI Panels 23

Pause acquisition. Executes Stop command. All components go into standby state Ready.

Halt acquisition. Executes Halt command. This closes all plug-ins. States go into Halted. Next
must be shut down or configure.

Exit all processes by EXIT commands. After 2 seconds trigger the main GUI Update.

Shut down all processes on all nodes by script. This is the hard shut down.

ssh shell script execution on master node.

4.2.3 Action in progress

Figure 4.4: Launching progress.

When starting up, configure or shut down the GUI has to wait until the front-ends have completed the
action. During that time a progress window similar to the one shown in Fig. 4.4, page 23 pops up. Please
wait until the popup disappears.

4.2.4 MBS control panel

To control and monitor a stand-alone MBS system a dedicated control panel is provided by the MBS
application. This panel is described in the MBS section 5.1.2, page 29.

4.2.5 Combined DABC and MBS control panel

To control and monitor MBS front-ends with DABC event builders a dedicated control panel is provided
by the MBS application. This panel is described in the MBS section 6.1.3, page 39.

4.2.6 Command panel

The control system of DABC and/or the application specific plug-ins can define commands. These
commands are encoded as DIM services including a full description of arguments. Therefore the GUI
can build up at runtime a command tree and provide the proper forms for each command. Commands
are executed in all components of DABC.

The DABC naming convention for commands and parameters defines four main name fields separated
by slashes:

1. DIM server name space (example: DABC)
2. Node (example: lxg0523)
3. Application (example: Controller:41)
4. Name (example: doEnable)

24 DABC User Manual: GUI

Figure 4.5: Command panel.

Example: DABC/lxg0523/Controller:41/doEnable. Fig. 4.5, page 24 shows on the left side the com-
mand tree. The tree is built from name, application, nodes. Double click (or RETURN) on a treenode
executes the command on all treenodes below. A click on a command opens at the right side the ar-
gument panel. Entering argument values and RETURN executes the command. In the example shown
in the figure double click on doEnable would execute that command on three nodes. Double click on
Eventbuilder would execute only on two nodes.

4.2.7 Parameter table

DABC parameters are DIM services as the commands. The naming convention is the same. The server
providing parameters can be make them (no)visible and (un)changable. DABC defines some special
parameter types having a data structure and a specific interpretation like a rate parameter having a value,
limits, a color, and a graphic presentation. A rate parameter is assumed to be changed and updated
regularly. The GUI displayes these special parameters in dedicated panels. Parameters are used in all
components of DABC. The central place for all parameters in the GUI is the parameter table as shwon

Figure 4.6: Parameter table.

in Fig. 4.6, page 24. The parameter table holds all parameters which are marked by the provider to be
visible. The parameter values can be changed in the Set value column if no minus sign is there in which
case the provider does not grant modification. The buttons in the Show column indicate if the parameter
is shown in some graphics panel. It can be removed from or added to this panel by the buttons. The
table can be ordered by columns (click on column header). The column width can be adjusted and is
saved/restored by main save button (see 4.3, page 28).

4.2. GUI Panels 25

Figure 4.7: Parameter selection panel and selected parameter list.

4.2.7.1 Parameter selection

To get a more selective view on the parameters one can specify filters in the panel shown at the left side of
Fig. 4.7, page 25. Text substrings for each of the four name fields can be specified as well as a selection
of record types. Values can be saved (see 4.3, page 28). With the check boxes the filter function for each
of these can (de)activated. The parameter list at the right window in Fig. 4.7, page 25 shows only the
parameters matching all filters.

If the data field is white the parameter can be changed. This cannot be done in place because the param-
eter might be updated in the mean time. Instead press RETURN in the field. A prompter will pop up to
enter the value.

4.2.8 Monitoring panels

As already mentioned the DABC provides definitions of special purpose DIM parameters. These Records
can be recognized by the GUI and are handled in appropriate way. Currently there are

◦ States
◦ Rates
◦ Histograms
◦ Infos

4.2.8.1 States

States are records having a number for severity (0 to 4), a color, and a brief state description (see Fig.
4.8, page 26). Of cause the states of the DABC state machine are shown as states. Application plug-ins
may use this kind of records also for other information.

26 DABC User Manual: GUI

Figure 4.8: States.

Figure 4.9: Rates.

4.2.8.2 Rate meters

All rate meters are displayed in the meter panel, Fig.4.9, page 26. Meters can be removed in the parameter
table (See Fig. 4.6, page 24) with the Show buttons like the other graphical parameters. Saving the setup,
the visibility will be preserved.

Figure 4.10: Steering menus.

4.2. GUI Panels 27

On the left side in Fig. 4.10, page 26 the Settings menu is shown. It affects all items in the panel. One
can Zoom (toggle between large and normal view), change the number of columns, change the display
mode, toggle Autoscale, and set limits (applied to all meters).

Besides that each individual item can be adjusted by right mouse button. The context menu is shown on
the right. All changes done individually are changing the defaults! The global changes can be overwritten
by these defaults. All settings are saved with the setup and restored on GUI startup (see 4.3, page 28).

4.2.8.3 Histograms

Histogram panels are handled in pretty much the same way as the rate meters. All histograms are

Figure 4.11: Histograms.

displayed in the histogram panel, Fig.4.11, page 27. Histograms can have arbitrary size set in Layout
menu.

4.2.8.4 Information

Figure 4.12: Info.

Information records mainly display one line of text with a color (see Fig. 4.12, page 27).

4.2.8.5 Logging window

Fig. 4.13, page 28 show the logging window.

28 DABC User Manual: GUI

Figure 4.13: Logging.

4.3 GUI save/restore setups

There are several setups which can be stored in XML files and are retrieved when the xGUI is started
again. The file names can be specified by shell variables.

DABC_CONTROL_DABC : Values of DABC control panel. Saved by button in panel.
Default DabcControl.xml. Filename in panel itself.

DABC_CONTROL_MBS : Values of MBS control panel. Saved by button in panel.
Default MbsControl.xml. Filename in panel itself.

DABC_RECORD_ATTRIBUTES : Attributes of records. Saved by main save button.
Default Records.xml.

DABC_PARAMETER_FILTER : Values of parameter filter panel. Saved by main save button.
Default Selection.xml.

DABC_GUI_LAYOUT : Layout of frames. Saved by main save button.
Default Layout.xml.

Chapter 5

DABC User Manual: MBS GUI

[user/user-gui-mbs.tex]

5.1 MBS event building

5.1.1 MBS setup

Any MBS system can be controlled by the DABC GUI. It can run in two operation modes: with MBS
event builder or DABC event builder (see 6.1, page 37). The first case means a standard MBS system.

To control a standard MBS nothing has to be done by the user on the MBS side.
Except

• The node running the GUI must get granted rsh access at least to the MBS node where the prompter
or dispatcher shall run. This means that the node name and user name of the GUI node must be in the
.rhosts file in the Lynx home directory

• The node name of the Lynx node itself also must be in .rhosts.
• In the user’s MBS startup file (typically startup.scom) the m_daq_rate task must be started as

last task (this is probably the case already). This task calculates the rates. The GUI waits for this task
after execution of the startup file. Because MBS has no states there is no other way to know when the
startup has finished.

Of cause, the MBS itself must have been built with the DIM option (since version v5.1). Central log file
is written as usual. Optionally one can provide a text file with specifications which parameters shall be
published by DIM (see 5.3.1, page 34).

For the standard MBS control one needs no DABC installation. The GUI jar file is sufficient. DIM must
be installed. See installation guide on the download page.

5.1.2 MBS control panel

Fig. 5.1, page 30 shows the panel to be used to control a standard MBS. The values are restored from file
MbsControl.xml (default, may be saved to other file, see 4.3, page 28). The file MbsControl.xml
can be created easily in the GUI itself by filling the input fields of the control panel and save.

<?xml version="1.0" encoding="utf-8"?>
<MbsLaunch>

29

30 DABC User Manual: MBS GUI

Figure 5.1: MBS controller.

<MbsMaster prompt="MBS Master" value="node-xx" />
<MbsUserPath prompt="MBS User path" value="myMbsDir" />
<MbsSystemPath prompt="MBS system path" value="/mbs/v51" />
<MbsStartup prompt="MBS startup" value="startup.scom"/>
<MbsShutdown prompt="MBS shutdown" value="shutdown.scom"/>
<MbsCommand prompt="Script command" value="whatever command" />
<MbsServers prompt="%Number of needed DIM servers%" value="3" />
</MbsLaunch>

MbsMaster : Lynx node where the MBS prompter is started.
MbsUserPath : MBS user working directory. The GUI need not to have access to that filesystem.
MbsSystemPath : Path on Lynx where the MBS is installed. GUI needs no access to this path.
MbsStartup : The user specific MBS startup command procedure, typically startup.scom, located

on user path.
MbsShutdown : The user specific MBS shutdown command procedure, typically shutdown.scom,

located on user path.
MbsCommand : With RET an MBS command in executed (on current node). The shell script button

executes this string as rsh command on master node.
MbsServers : Number of nodes plus prompter. This information is minimum for the GUI to know when

all MBS nodes are up. The GUI waits until this number of DIM servers is up and running.

That file can be created from within the GUI in the MBS controller panel. Enter all values necessary, and
store them.

5.1.2.1 MBS controller buttons

Save panel settings, see 4.3, page 28.

Execute script prmstartup.sc at master node. Starts prompter, dispatchers and message loggers
and waits until they are up. Trigger the main Update. A progress panel pops up during that time (see
4.2.3, page 23).

Execute script dimstartup.sc at master node. Starts dispatcher and message logger for single
node MBS. Trigger the main Update.

5.1. MBS event building 31

Configure. Execute user’s MBS startup procedure in prompter (dispatcher). Wait for all m_daq_rate
tasks are running. Trigger the main Update.

Start acquisition. Execute Start acquisition. Wait for all acquisition states go into Running.

Pause acquisition. Execute Stop acquisition. Wait for all acquisition states go into Stopped.

Halt acquisition. Execute user’s MBS shutdown procedure in prompter. Prompter, dispatcher and
message loggers should still be running.

Shut down all. Execute script prmshutdown.sc at master node. After 2 seconds trigger the main
Update.

Show acquisition. Output in log panel.

Shell script executes command on master node.

5.1.3 MBS command panel

Figure 5.2: Command panel.

Fig. 5.2, page 31 shows on the left side the command tree. Double click (or RETURN) on a command
executes the command. The top tree level is the executing MBS task, below that are the commands, and
the master node (prompter node) is the only node below each command. However, command is sent to
the prompter node, but executed on the current node which is displayed in the info panel (see Fig. 5.4,
page 32). Click on a command opens at the right side the argument panel. Entering argument values and
RETURN executes the command.

Only the MBS commands of the running tasks are shown. Fig. 5.3, page 32 shows that only dispatcher
and prompter are up and therefore only their commands are seen. Fig. 5.4, page 32 shows in addition
the commands of util and transport after configuration.

32 DABC User Manual: MBS GUI

Figure 5.3: Info and command panel.

Figure 5.4: Info and command panel.

5.2 MBS DIM parameters

5.2.1 MBS states

Acquisition/State Running | Stopped
BuildingMode/State Delayed | Immediate
EventBuilding/State Working | Suspended
FileOpen/State File open | File closed
RunMode/State DABC connected | MBS to DABC | Transport client | MBS standalone
SpillOn/State Spill ON | Spill OFF

5.2. MBS DIM parameters 33

TriggerMode/State Master | Slave

5.2.2 MBS rates

MSG/DataRateKb KByte/s
MSG/DataTrendKb KBytes/s as trend
MSG/EventRate Events/s
MSG/EventTrend Events/s as trend
MSG/EvSizeRateB Event size sample in bytes
MSG/EvSizeTrendB Event size sample in bytes
MSG/StreamRateKb Stream server Kbyte/s
MSG/StreamTrendKb Stream server Kbyte/s as trend
MSG/FileFilled File filled in percent
MSG/StreamsFull Number of full streams in percent
MSG/TriggerRate Trigger/s of readout tasks
MSG/TriggernnRate (nn=01...15) Trigger/s type nn of readout tasks

5.2.3 MBS histograms

Shown in histo window.

MSG/TrigCountHis Histogram with 16 channels for counts of trigger types (0 = total) as seen by the
readout task.

MSG/TrigRateHis Histogram with 16 channels for count rates of trigger types (0 = total) as seen by
the readout task.

5.2.4 MBS infos

Shown in info window.

MSG/eFile Name of file.
MSG/ePerform Events, MBytes, Events/s and MBytes/s.
MSG/eSetup Name of setup file loaded.
PRM/Current Current command execution node (master node only).
PRM/NodeList List of nodes (master node only).

5.2.5 MBS tasks

Task list is shown in info window (name slightly different):

Dispatch Msg_Log Read_Meb Collector Transport Event_Serv Util Read_Cam Esone_Serv Stream_Serv
Histogram Prompt Rate SMI Sender Receiver Asynch_Receiver Rising Time_Order Vme_Serv

5.2.6 MBS text

MSG/GuiNode Node where GUI runs
MSG/Date Date as written in file header
MSG/Run Run ID as written in file header
MSG/Experiment Experiment as written in file header
MSG/User Lynx user name as written in file header

34 DABC User Manual: MBS GUI

MSG/Platform CPU platform

5.2.7 MBS numbers

MSG/BufferSize
MSG/Buffers collected so far.
MSG/Events collected so far.
MSG/FileMbytes written in file.
MSG/FlushTime
MSG/MBytes collected so far.
MSG/StreamKeep
MSG/StreamMbytes
MSG/StreamScale
MSG/StreamSync
MSG/UserVal_nn (nn=00...15) These values can be set in the user readout function.
MSG/TriggernnCount (nn=01...15) Trigger counts type nn of readout tasks.

5.3 Working directories

5.3.1 MBS configuration of DIM

Optional text file dimsetup in the MBS working directory specifies which rate meters, histograms or
states shall appear in the GUI. Upper limits of the rate meters can be specified. This file can be copied
from $MBSROOT/set/dimsetup. Only the parameters which are in this file are optional.

Note, that a file name of an open lmd file is only displayed when either FileOpen or FileFilled is selected
for this node.

This file controls the rate meter and state appearance.
File name must be dimsetup and in the MBS working directory.
The value numbers are the maximum values for rate meters
Colons only if value is specified!
Node names must be uppercase, * wildcards all

##========= All nodes:
##---- Rates:

* EventRate : 10000.
#* EventTrend : 10000.

* DataRateKb : 16000.
#* DataTrendKb : 16000.
#* StreamRateKb : 16000.
#* StreamTrendKb : 16000.
#* EvSizeRateB : 128.
#* EvSizeTrendB : 128.
++ File filling status in percent, typically only on one node (transport)
#* FileFilled : 100.
#* StreamsFull : 100.
#* TriggerRate : 10000.
++ Trigger rates for the individual triggers: 01...15
#* Trigger01Rate : 10000.

##---- States:

5.3. Working directories 35

++ Delayed or immediate event building:

* BuildingMode
++ Current eventbuilding running or suspended:

* EventBuilding
++ Shows spill signal:
#* SpillOn
++ Shows if file is open, typically only on one node (transport)
#* FileOpen
++ Show trigger master
#* TriggerMode

##---- User integers from daqst, 00...15
can be set by f_ut_set_daqst_user(index,value);
#* UserVal_00
#* TriggerCount
++ Trigger counts for the individual triggers: 01...15
#* Trigger01Count

##---- Histograms
#* TrigCountHis
#* TrigRateHis

##======== Node XXX (uppercase)
#XXX EventRate : 10000.
#XXX DataRateKb : 16000.
#XXX FileOpen
#XXX FileFilled : 100.
#XXX SpillOn
#XXX EventTrend : 10000.
#XXX DataTrendKb : 16000.
#XXX TriggerMode

36 DABC User Manual: MBS GUI

Chapter 6

DABC User Manual: DABC Application
MBS

[user/user-app-mbs.tex]

6.1 MBS event building with DABC

In this case one DABC node reads data from several MBS nodes via Transport socket connections, and combines
them into one MBS output event.

To run MBS front-ends with DABC nodes as event builders some modifications of the MBS setup files must be
done. For the DABC side setup files must be provided.

6.1.1 MBS setup

When we want to use DABC nodes as event builders, we need a different setup on the MBS side. We assume that
we have more than one MBS node. Such a multi-node system is controlled by an MBS prompter running on one
node.

• The setup has to be changed such that all nodes run as if they are stand alone (this is done typically by setting
COL_MODE to 0 in the usf setup file). That means that each node must run the Readout - Collector - Transport
- Daq_rate chain. The DABC event builders connect to the transports.

• The MBS buffer size should be set to the stream size and the number of buffers per stream must be set to one.

6.1.2 DABC setup

On the DABC user working directory we need configuration files.

Summary of parameters:

MbsFileName File name for list mode data file (LMD). Overwritten by command.
MbsFileSizeLimit File closes when size is reached, and new file opens.
BufferSize Should match MBS buffer size.
MbsServerKind Transport | Stream.
MbsServerPort Port number transport (6000).
MbsServerName MBS node of transport.
NumInputs Number of MBS channels for one combiner.
DoFile Provide output file.
DoServer Provide server.

37

38 DABC User Manual: DABC Application MBS

These parameters are used to configure an optional event generator:

NumSubevents
FirstProcId
SubeventSize
Go4Random

The following example configuration file $DABCSYS/applications/mbs/Combiner.xml shows how to
configure one combiner module reading from two MBS transport servers. A simple setup looks like this:

<?xml version="1.0"?>
<dabc version="1">
<Context host="localhost" name="MbsEb">
<Run>
<lib value="libDabcMbs.so"/>
<func value="StartMbsCombiner"/>

</Run>
<Module name="Combiner">

<NumInputs value="2"/>
<DoFile value="false"/>
<DoServer value="true"/>
<BufferSize value="16384"/>
<Port name="Input0">

<MbsServerKind value="Transport"/>
<MbsServerName value="X86-xx"/>
<MbsServerPort value="6000"/>

</Port>
<Port name="Input1">

<MbsServerKind value="Transport"/>
<MbsServerName value="X86-yy"/>
<MbsServerPort value="6000"/>

</Port>
<Port name="FileOutput">

<OutputQueueSize value="5"/>
<MbsFileName value="combiner.lmd"/>
<MbsFileSizeLimit value="128"/>

</Port>
<Port name="ServerOutput">

<MbsServerKind value="Stream"/>
</Port>

</Module>
</Context>

</dabc>

We have one node (Context) with a simple run function StartMbsCombiner() that uses a single Module to do the
event combination from two input Ports. The node names and other parameters of the external MBS connec-
tions are specified in the MbsServerName properties of these ports. Of course the MBS setup must match these
definitions.

There are two output Ports in parallel here: A FileOutput that writes into a *.lmd file as specified in the property
MbsFileName; and a ServerOutput that offers a standard MBS stream server for a monitoring program. A full
description is in Programmer Manual section ??, page ??.

Now we can use the combined controller panel to startup MBS and DABC.

6.1. MBS event building with DABC 39

Figure 6.1: Combined DABC and MBS controller.

6.1.3 Combined DABC and MBS control panel

This panel shown in Fig. 6.1, page 39 is simply a superposition of the single ones. Here the Context name of the
DABC node and the DABC setup file name must be specified. Number of DABC servers is one.

6.1.3.1 Combined DABC and MBS controller buttons

Save panel settings, see 4.3, page 28.

Execute script dabcstartup.sc at DABC master node. Starts DIM servers. Execute script prmstartup.sc
at MBS master node. Starts prompter, dispatchers and message loggers. Waits for all components (Sum of DIM
servers) are running. A progress panel pops up during that time (see 4.2.3, page 23). If all components are up
trigger the main Update.

Configure. Execute user’s MBS startup procedure in prompter. Waits for all MBS Daq_rate tasks are run-
ning. Executes state transition command Configure on DABC master node and wait for the transition. All plug-in
components are created. Then execute Enable. If all components are up trigger the main Update.

Start MBS acquisition, wait for all acquisition states Running, then execute DABC Start command. All
components go into running state Running.

Pause acquisition. Execute MBS stop acquisition, wait for all acquisition states Stopped. Execute DABC
Stop command. All components go into standby state Ready.

Halt acquisition. Executes DABC Halt command. This closes all plug-ins. States go into Halted. Execute

40 DABC User Manual: DABC Application MBS

user’s MBS shutdown procedure in prompter. Prompter, dispatcher and message loggers should still be running.
Next must be shut down or configure. After two seconds trigger the main Update.

Shut down all. Execute EXIT command on all DABC nodes. Execute script prmshutdown.sc at MBS
master node. After two seconds trigger the main Update.

MBS Show acquisition. Output in log panel.

Shell script for MBS master node.

Shell script for DABC master node.

6.2 MBS and DABC with Bnet

The following example configuration file $DABCSYS/applications/bnet-mbs/SetupBnetMbs.xml
shows how to configure two DABC nodes reading from two MBS transport servers and two event builder nodes.
Another node is used as controller.

The example setup file shows two techniques: first the use of XML variables which are set at the beginning, and
can then be referenced, second the specification of default values for parameters of contexts or modules.

<?xml version="1.0"?>
<dabc version="1">
<!-- Enter the values for specific setup -->
<Variables>

<ctrl value="lxg0523"/>
<mbs1 value="r3g-100"/>
<mbs2 value="r3g-101"/>
<read1 value="lx1001"/>
<read2 value="lx1002"/>
<eb1 value="lx1003"/>
<eb2 value="lx1004"/>
<bufsize value="65536"/>
<custport value="6000"/>

</Variables>
<Context host="${ctrl}" name="Controller">
<Run>
<lib value="${DABCSYS}/lib/libDabcBnet.so"/>
<runfunc value="RunTestBnet"/>

</Run>
<Application class="bnet::Cluster">

<NetDevice value="dabc::SocketDevice"/>
<CtrlBuffer value="2048"/>
<TransportBuffer value="${bufsize}"/>
<NumEventsCombine value="1"/>

</Application>
</Context>
<Context host="${read1}" name="Read1">
<Application class="bnet::MbsWorker">

<NumReadouts value="1"/>
<Input0Cfg value="${mbs1}"/>

</Application>
</Context>
<Context host="${read2}" name="Read2">
<Application class="bnet::MbsWorker">

<NumReadouts value="1"/>

6.2. MBS and DABC with Bnet 41

<Input0Cfg value="${mbs2}"/>
</Application>

</Context>
<Context host="${eb1}" name="Build1"/>
<Context host="${eb2}" name="Build2"/>
<Defaults>

<Context name="*">
<Run>

<logfile value="${Context}.log"/>
<loglevel value="1"/>
<cpuinfo value="1"/>

</Run>
<Module name="*">

<Ratemeter name="Data*" lower="0" upper="20"/>
<Ratemeter name="Event*" lower="0" upper="20000"/>

</Module>
</Context>
<Context name="Read*">

<Run>
<lib value="libDabcBnet.so"/>
<lib value="libDabcMbs.so"/>
<lib value="libBnetMbs.so"/>

</Run>
<Application class="bnet::MbsWorker">

<IsSender value="true"/>
<ReadoutBuffer value="${bufsize}"/>

</Application>
<Module name="Combiner">

<Port name="Input*">
<MbsServerPort value="${custport}"/>
<InputQueueLength value="20"/>

</Port>
</Module>

</Context>
<Context name="Build*">

<Run>
<lib value="libDabcBnet.so"/>
<lib value="libDabcMbs.so"/>
<lib value="libBnetMbs.so"/>

</Run>
<Application class="bnet::MbsWorker">

<IsReceiver value="true"/>
<IsFilter value="false"/>
<EventBuffer value="${bufsize}"/>

</Application>
</Context>

</Defaults>
</dabc>

With the same setup of the two MBS nodes as before we can run this example. In the DABC control panel we only
have to change the number of DABC servers (5), and the name of the setup file.

42 DABC User Manual: DABC Application MBS

Chapter 7

DABC User Manual: DABC Application
Bnet

[user/user-app-bnet.tex]

7.1 DABC eventbuilder network (BNET)

The full functionality of DABC is shown in the case that the DAQ uses an event building network (BNET),
transferring the partial data from n readout nodes to m event building nodes, such that each event builder can work
on the full detector data. This scenario is discussed in detail in chapter ??, page ?? of the DABC programmer’s
manual. Appropriate configuration files can be found at
$DABCSYS/applications/bnet-test directory. An example setup file SetupBnet.xml may look like
this:

<?xml version="1.0"?>
<dabc version="1">
<Context host="localhost" name="Controller:41">
<Run>

<runfunc value="RunTestBnet"/>
</Run>
<Application class="bnet::Cluster">

<NetDevice value="dabc::SocketDevice"/>
</Application>

</Context>
<Context host="lxi009" name="Worker1:42"/>
<Context host="lxi010" name="Worker2:42"/>
<Context host="lxi011" name="Worker3:42"/>
<Context host="lxi012" name="Worker4:42"/>
<Defaults>
<Context name="*">
<Run>
<logfile value="test${DABCNODEID}.log"/>
<loglevel value="1"/>
<lib value="libDabcBnet.so"/>

</Run>
</Context>
<Context name="*Worker*">

<Run>
<lib value="${DABCSYS}/applications/bnet-test/libBnetTest.so"/>

43

44 DABC User Manual: DABC Application Bnet

</Run>
<Application class="bnet::TestWorker">
<IsGenerator value="true"/>
<IsSender value="true"/>
<IsReceiver value="true"/>
<NumReadouts value="4"/>

</Application>
</Context>

</Defaults>
</dabc>

The setup of such BNET contains several <Context> nodes. Generally, the BNET has two types of nodes:

• One "Controller" node that has a master controller functionality, implemented in the <Application> of class
"bnet::Cluster". The controller node must be specified at the DABC GUI setup to receive the direct cluster
control commands, e. g. state machine transitions commands. In the DABC BNET framework, the controller
also keeps a general parameter <NetDevice> for the data connection device of the entire DAQ cluster; this can
be "dabc::SocketDevice" for tcp/ip, or "verbs::Device" for an InfiniBand cluster.

• Several "Worker" nodes of an experiment specific <Application>. They may be configured for different jobs
in the BNET; this example provides an Application class "bnet::TestWorker" with some boolean parameters to
define the functionality.

Note the usage of wildcards "*" in the <Context> names to define properties that should be valid for all nodes
matching the pattern, e. g. the libraries to load, or the common application setup for all worker nodes. Here
there are 4 workers which all produce random event data (enabled in <IsGenerator>), and all send their data to
all others (enabled in <IsSender>). In parallel, they all receive data from the other workers to build the complete
event (enabled in <IsReceiver>).

Such BNET setup is best started by means of the DABC GUI. The name of the controller <Context> node and
the setup file name must be specified in the control panel of the GUI (see section 4.2.2, page 21). Then all nodes

can be started just by the "Launch" button . The configuration and run control of the nodes is done by the state
machine buttons of the control panel.

7.2 DABC eventbuilder network (BNET) with MBS

A more realistic example of a BNET uses data which is read from n external MBS nodes, each connected to one
DABC readout node, and transferred to m DABC eventbuilder nodes. Example file
$DABCSYS/applications/bnet-mbs/SetupBnetMbs.xml shows the configuration for an MBS event
building with 2 DABC readout nodes, connected with 2 MBS nodes each (simulated by DABC generator modules
here), and 2 DABC event builder nodes. A detailled description of this setup is given in section ??, page ?? of the
DABC programmer manual. The usage of such configuration is similar to the BNET example as described above
in section 7.1, page 43: The list of <Context> nodes (or the corresponding <Variables>, resp.) must be edited
for the actual node names. Additionally the names of the MBS nodes for readout should be specified. Then the
BNET setup may be launched and controlled by the DABC GUI.

Chapter 8

DABC User Manual: Application ROC

[user/user-app-roc.tex]

8.1 DABC as MBS data server

The use case here is that a single DABC node should provide data in the MBS event format on a server socket to be
used by external analysis and monitoring programs like Go4 [1]. The event data can be simulated by a generator
module. A practical case is to read data from any front-ends and format it like MBS events. This method is used
by the ROC readout.

For the random event generator, such set-up looks like this:

<?xml version="1.0"?>
<dabc version="1">
<Context host="lxi009" name="Server">
<Run>

<lib value="libDabcMbs.so"/>
<func value="InitMbsGenerator"/>

</Run>
<Module name="Generator">

<NumSubevents value="3"/>
<FirstProcId value="77"/>
<SubeventSize value="128"/>
<Go4Random value="false"/>
<BufferSize value="16384"/>
<Port name="Output">

<OutputQueueSize value="5"/>
<MbsServerKind value="Stream"/>
<MbsServerPort value="6006"/>

</Port>
</Module>

</Context>
</dabc>

There is only one Context node, specified by the nodename, with one simple C function InitMbsGenerator() to
run, and with one Module that produces the event data as specified in its parameters. The data server is specified
by parameters of the Output Port: The tag MbsServerKind can be Stream or Transport to emulate either variant
of the standard MBS server sockets. A complete description of this example can be found in Programmer Manual
section ??, page ??. The setup files for standard MBS use cases can be found in directory

$DABCSYS/applications/mbs

45

46 DABC User Manual: DABC Application ROC

8.2 ROC event building

A more practical use case is to prepare data as MBS events that was read by DABC from external front-end
hardware. This is shown with the setup-file for the readout controller ROC example (see the full description of this
example in Programmer Manual chapter ??, page ??):

<?xml version="1.0"?>
<dabc version="1">
<Context name="Readout">
<Run>
<lib value="libDabcMbs.so"/>
<lib value="libDabcKnut.so"/>
<logfile value="Readout.log"/>

</Run>
<Application class="roc::Readout">
<DoCalibr value="0"/>
<NumRocs value="3"/>
<RocIp0 value="cbmtest01"/>
<RocIp1 value="cbmtest02"/>
<RocIp2 value="cbmtest04"/>
<BufferSize value="65536"/>
<NumBuffers value="100"/>
<TransportWindow value="30"/>
<RawFile value="run090.lmd"/>
<MbsServerKind value="Stream"/>
<MbsFileSizeLimit value="110"/>

</Application>
</Context>
</dabc>

Here the parameters are defined for the <Application> instance "roc::Readout" that controls the readout of 3 ROC
nodes via UDP, and combines the data into one MBS event by means of some internal Modules. Hence there is no
simple run function as before, the DABC runtime environment will call appropriate methods of the Application to
configure and run the set-up. Note that in this case the MBS data is not only provided to a stream server as defined
in <MbsServerKind>, but is also written to a *.lmd (list mode data) file which can be specified in application
parameter <RawFile>.

Both single node examples above do not require to be launched from the DABC GUI (although this is possible and
may be useful to monitor the data rates and actual parameters). They can be started directly from a shell by calling
the standard dabc_run executable with the configuration file name as argument: dabc_run Readout.xml.
This executable will load the specified libraries, create the application, configure it, and switch the system in the
Running state.

References

[1] Jörn Adamczewski-Musch, Hans Georg Essel, and Sergei Linev. The go4 system homepage, http://go4.gsi.de.

[2] Clara Gaspar. Dim - distributed information management system http://dim.web.cern.ch/dim/, 2008.

[3] Andreas Kugel, Wenxue Gao, and Guillermo Marcus. The active buffer board online documentation,
http://cbm-wiki.gsi.de/cgi-bin/view/DAQ/ActiveBufferBoardV1, 2008.

[4] The Wikipedia. Finite state machine: http://en.wikipedia.org/wiki/State_machine, 2009.

47

http://go4.gsi.de
http://dim.web.cern.ch/dim/
http://cbm-wiki.gsi.de/cgi-bin/view/DAQ/ActiveBufferBoardV1
http://en.wikipedia.org/wiki/State_machine

48 REFERENCES

Index

Core classes
dabc::Application, 6
dabc::Buffer, 5
dabc::Command, 4
dabc::Device, 6
dabc::MemoryPool, 5
dabc::Parameter, 5
dabc::Port, 5
dabc::Transport, 6

DABC
Environment set-up, 12
Installation, 11
Plug-in installation, 16
Setup file, 13

Finite state machine
states, 6
transition commands, 7

TODO
Adjust old mbs bnet configurator scripts for new

xml format?, 44
dabcsetupfiles, 38
Mbs BNET example with real mbs nodes instead

generators, 44

49

	DABC User Manual: Overview
	Outline of this manual
	Release Notes
	Version 1.0.01 (10. March 2009)
	Version 1.0.00 (26. February 2009)

	DABC User Manual: Introduction
	About DABC
	Introduction
	Modules
	Synchronous module
	Asynchronous module

	Commands
	Parameters
	Manager
	Memory and buffers
	Ports
	Transport
	Device
	Application

	Controls and configuration
	Finite state machine
	Commands
	Configuration and monitoring

	Package and library organisation
	Core system
	Control and configuration system
	Plug-in packages
	Bnet package
	Transport packages

	Application packages
	Distribution contents

	DABC User Manual: Setup
	Installing DABC
	Set-up the DABC environment
	DABC setup file
	Setup file example
	Basic syntax
	Context
	Run arguments
	Variables
	Default values

	Installation of additional plug-ins
	Add plug-in packages to $DABCSYS
	Plug-in packages in user directory

	DABC User Manual: GUI
	GUI Guide lines
	GUI Panels
	Main DABC GUI buttons
	DABC control panel
	DABC controller buttons

	Action in progress
	MBS control panel
	Combined DABC and MBS control panel
	Command panel
	Parameter table
	Parameter selection

	Monitoring panels
	States
	Rate meters
	Histograms
	Information
	Logging window

	GUI save/restore setups

	DABC User Manual: MBS GUI
	MBS event building
	MBS setup
	MBS control panel
	MBS controller buttons

	MBS command panel

	MBS DIM parameters
	MBS states
	MBS rates
	MBS histograms
	MBS infos
	MBS tasks
	MBS text
	MBS numbers

	Working directories
	MBS configuration of DIM

	DABC User Manual: DABC Application MBS
	MBS event building with DABC
	MBS setup
	DABC setup
	Combined DABC and MBS control panel
	Combined DABC and MBS controller buttons

	MBS and DABC with Bnet

	DABC User Manual: DABC Application Bnet
	DABC eventbuilder network (BNET)
	DABC eventbuilder network (BNET) with MBS

	DABC User Manual: DABC Application ROC
	DABC as MBS data server
	ROC event building

	References
	Index

