The Go4 Analysis Framework
Fit Tutorial v2.9

J.Adamczewski, M.Al-Turany, D.Bertini, H.G.Essdl, SLinev
24 February 2005

I €T (10 IR = = o S SRN 5

1000 A 1 11 0o [T 1 oo OSSPSR 5
2 1 = 1 1T 0o USSP 5
1.3 ThEOretiCal PrefaCe.....c.coiiiicie et st e s b e s aeenneennreens 6
2 GOAFIT DASE ClASSES.coiiiiee ettt bbbt st s b et st e bttt b e et b e 7
2.1 TGOAFITNAMEU ClESS.......ceiieiiiiesiieesee st eie e e sieeae e ste e e sseesteeeesreesseessesseenseeneesseenseanensseenses 7
2.2 TGOAFITPAramMELEr ClaSS......cccvieeriieiiesiesieerieseeseeeseeste e s e s e eeesreesseeseesseesseeneesseenseeneessennees 7
2.3 TGOAFITPArSLISE ClaSS.....uciiieisiiriisiieieiee ettt st sre b et e seenbenresne e 7
24 TGOAFTCOMPONENE ClaSS.....ccueiiiiiitiecieeitiesie et ettt e et se e e re e sre e e be e sbe e e beesseessseesresenreesneas 7
25 TGo4FitData & TGOAFItDatalter ClasseScccoviieieereeiesiese e 8
2.6 TGOAFITMOUE] ClESS.....cceiieeiieiesii e see sttt te e s e nae e e sse e teeneesseenneeneenneenen 9
3 Specificimplementation for Dase ClasSSES.........ccoiii e 9
G R N €To (D= r= | TS 0o = FO SRS 9
N K CTo L DT = = o o R ST ST PPRR 9
G T I To L T =]] SRS S 10
34 TGOAFIIMOUE POIYNOM ..ottt ste b e s reesneesnneens 10
35 TGOAFITMOUEI GAUSSL.......ccveieeirerieeiieieeiesie sttt sttt st sae st st e s s se et e e e seneessestesreanis 10
3.6 TGOAFITMOUEIGAUSS2......c.eeeveeeeetieiieeiesieeseeee st e e e e sseeseeeseeeseesseeneesseesseeneesseenseeneesseensnansens 11
3.7 TGOAFITMOUEIGAUSSNc.eeeieeeiisiierieeiesiee st eee st esteeeesseesseeseesseesseeseesseesseeneesseesseensessenssnanenns 11
3.8 TGOAFItMOGEIFTOMDELAccveieeeieeie ettt sae e s sae e 12
3.9 TGOAFItMOAEIFOIMUIAL........coieieeeieieee et ae e sneenaeeneesreensnenenas 12
3.10 TGOAFItMOGEIFUNCLION ...ttt ae e sneesaeeneesreenseeneens 12
A TGOAFITEN ClASS.....ccueiiteiiiitieite ettt b bbbt st e b e et e sae e sbeeatesaeenbeentesaeenresnnens 13
N @0 0 (U o (] Vo N 1 SRRSO 13
4.2 SUPPIY GAEBTO FITEEN ..ottt nresne e 14
G N AN (o) 1Y N1 = L. 15
43.1 Fitter cONfiguIration aCHION.........cccueeiiiiieeiie e ene e 15
4.3.2 Minuit MiNIMIiZatioN ACHION.........ooiiieieee e e 16
4.3.3 Amplitude estimation BCHIONcoeeieieiere e sr e 17
4.3.4 (@0 11018 8ot 1[0 o SR ROPT PR 17
435 PEAK FINAEI BCHION.....c..eieeieie et s 17
4.4 AcCCesSING tO fitter rESUIt VAIUESoocviecieece ettt 17
T e = 01U 101U | USRS PTPPR R 18
T IS (o110 N L= SO 18
T T 11 00 =S OSSPSR 19
oI R = 11 = RSP SSRPRN 19
5.2 EXAIMPIE 2.t bbb a ettt e e e b e enn 19
5.3 EXAIMPIE SR b bRttt b e e n e e ens 19
o R = 1] 0= SRRSO 20
T = 1] 0[RRSI 20
5.6 EXAMPIEB.. .ottt b e b e ens 20
5.7 EXAIMPIE 7t R b bRttt b e b e ens 20

7

5.8 EXAMPIE S b et e b e e pe e reeareenreeareeas 21
5.9 EXAMPIE .. et b e pe e naeeareenreennreeas 21
5,10 EXAMPIE L0 ettt b bttt bbbttt e et e b e ens 21
511 EXAMPIE L1ttt bbbttt b bbb a et e e b e r e 21
TN g 0] o] L ST 21
e L T . TSP 22
6.1 GELING SLAMEA ...ttt b e naennenne s 22
6.2 GENETEl @SPECLS.......eiieiiterie sttt bbb bbb e bt naennenae s 24
6.3 Fit panel menu and DUITONScooiiiiiie e 24
B.4 SIMPIETOOI ... e ar e 26
LTI V1Y = o X (o o] S 28
6.5.1 D= = 1 SRR 28
6.5.2 1Y o0 L= ES T RSP 28
6.5.3 T R s S (U o TSR RRRIN 29
6.5.4 = 1 10 = SRR 29
6.6 EXPEITTOON ..o et b et b naennenne s 31
REFEIEINCES ...ttt b et bt s bt b e ae e b et e Rt R e et e e ne e be b nae e 31

1 Getting started

1.1 Introduction

Go4Fit package based on the ROOT system of CERN. It provides necessary functionality to perform
fitting of model parameters to given data. Package defines set of base classes and introduces several
useful implementations for them. Package can be extent by users for their specific requirements.
The central class of Fo4Fit package — TGo4Fitter. It collects all information, necessary for fitting:

data objects, which should be fitted;

model components with their parameters;

aset of actions under fit-function like minimization;

results of fitting.
Main features of package:

Full support of N-dimensional space;

Several histograms can be fitted at once;

One model component can be assigned to several data objects,

Dependency between fitted parameters can be easily introduced,;

All fitting information concentrated in fitter object (not in histogram, asin ROOT).

Fitter can be easily reused for set of data;

Fitter with all configurations can be stored and restored from file.

1.2 Installing

You can find source code of Go4Fit package and online documentation of Go4Fit package on Go4
web site http://go4.gsi.de/. After download Go4Fit.tar.gz file, it should be copied to location, where
Go4Fit package will be installed. Shell command:

gzip -dc Go4Fit.tar.gz | tar -xf -
extracts al filesin two subfolders: “Go4Fit/” and “ Go4FitExample/”. To compile Go4Fit package, just
enter “Go4Fit/” subfolder and execute “make all”. After this “libGo4Fit.so” library will be created. To
compile Go4FitExample package, call “make all” command in “Go4FitExample/” subfolder. This
creates a set of executables. The short descriptions of each example are given in next chapters.
In case of installing full Go4 package, you obtain Go4Fit package and set of examples automatically.
All classes, provided by Go4Fit package, placed in separate files. All classes start their names from
“TGo4Fit” dignature. Class definitions are placed in header files with name like
“TGodFitClassName.h” and implementation file “TGodFitClassName.cxx”. For instance,
“TGo4FitModel Gaussl.h” and “ TGo4FitModel Gaussl.cxx”.
To create complied program, which is used Go4Fit package, it should include appropriate header files
and be linked to “libGo4Fit.so” library. Some hints can be found in examples, which can be compiled
to executable programs.
To use Go4Fit package in CINT, library should be loaded first:

[root] > gSystem->Load(* libGo4Fit.so”);
Then script, which uses Go4Fit classes, can be executed.

1.3 Theoretical preface

As aresult of experimental work, one usually gets a set of experimental data C,, measured at points
X; . This can be any kind of spectra (histograms), functional dependency (graphics) and so on. Let
assume, that obtained data can be approximated by some model M, , which is depend not only from

coordinates values X; , but also from the set of parameters @, or m; =m;(X;,;) . Theam of fitting

in this case is to define such a set of parameters a,, which gives best possible convergence between

model M, and data C, . Most frequently C° test is used:

(Ci - m;)2

s?

c’=3
[|

c? gives best estimations of model parameters &, in case of normal distribution in each point of

experimental data C; . In case of counting experiments (gamma-spectroscopy or similar) experimental

values C, becomes Poisson distributed. To provide c? sum, several estimations are used [1]:

2
sz:éw,
2_2 (Ci - mi)2
v ~a max(c, 1)

2 _ o (Ci +min(c;,1) - m,)2
g - A '
i c +1
But best possible results can be achieved only using maximum likelihood method. In this case
maximization of logarithm of maximum likelihood probability function is used:
L=3[m - ¢ In(m,)]+ const

C

Once fit function defined, different optimization methods can be used to find optimal values of

parameters a, and get an estimation of their errors.

Typically model m; can consist of several additive components. For instance, gamma spectrum can be
decomposed on sum of background, several peaks with compton parts and so on. Thus, model can be
represented as:
m = A1m1+A2m2 +__.+Akmk :é Akmk’

k

where A* - scaling or amplitude parameter for each component of model. Some components may not
have such scale parameter, then A*° 1.

In case of gauss statistics best estimations for amplitude parameters (in case if al the rest are well
known) can be found from the system of liner equations :

M, A“ =B, , where
m
s? '

Mlk:é.

|
o) C
B =8 5

In case if poisson statistics and using maximum likelihood methods iterations process can be
introduced [2]. It based on similar equations and after 4-5 iterations gives very good estimations for

amplitude parameters A*.

2 Go4Fit base classes

2.1 TGo4FitNamed class

Thisis dight extension of TNamed ROOT class. In advance TGo4FitNamed class has owner and so-
called “full name”, which is combination of owner name and name of object, separated by dot like
“OwnerName.ObjectName”. If owner has full name, it will be used to combine full name of object. To
get full name of object, GetFullName() method should be used. Most of Go4Fit classes are inherited
from TGo4FitNamed class.

Setting owner to object does not mean, that objects will be destroyed automatically when owner is
destroyed. Therefore, if program sets owner to some object, it should take care about case, when owner
will be destroyed before this object.

2.2 TGod4FitParameter class

This class describes single parameter of model or data. Parameter class is inherited from
TGo4FitNamed class and always has owner. Thus, if models and data names unique, the full name of
their parameters also will be unique. Parameter class introduces following properties. name; full name;
value; error; parameter fixed or not; allowed range for values; minimum step in value changing

(epsilon).

2.3 TGo4FitParsList class

This is container class for TGo4FitParameter objects. It has ordered list of parameters objects.
Parameters may be owned or not owned by TGo4FitParsList object. To access parameters objects from
list, following methods should be used: NumPars(), GetPar(), FindPar(). TGo4FitParsList class also
provides a set of methods to access parameters properties via parameters names. Either name of full
name of parameter can be used in all such method as well as in FindPar() method.

2.4 TGo4FitComponent class

This is generic class, which combine common properties for model and data objects. It inherits from
TGo4FitParsList class, thusit can hasalist of parameter.

One of the parameter can be selected as amplitude. Normally amplitude is the first parameter in the list
and has name “Ampl”. If amplitude parameter is not created, assumed that amplitude is equal to 1. The
derived objects (data and models) use amplitude to scale (multiply) bins on amplitude value.

TGo4FitComponent can define axis ranges, where data or model should be used. Following methods
should be used for define ranges. SetRange(), ExcludeRange(), SetRangeMin(), SetRangeMax(),
ClearRanges(). AddRangeCut() method defines polygon condition for two-dimensional case, using
ROOT TCutG object. Out of defined ranges no any calculations will be done. Several SetRange() or
ExcludeRange() routines can be applied for same axis. This means, that multiple range segments can
be selected on the same axis. If range value is not specified for some coordinate, full data range will be
used.

2.5 TGod4FitData & TGo4FitDatalter classes

Access to the experimental data in package is done via abstract TGo4FitData and TGo4FitDatalter
classes. The main aim of these classes — provide a common interface to data like TH1, TGraph,
TProfile and so on.

Normally inherited from TGo4FitData classes should not be used as storage place for data. This
means, that it should contain object like TH1 and provide interface to access data from this object (via
iterator).

By default, TGo4FitData uses native axis scale, taken from source object (for instance, TAxisof TH1).
Also bin numbers can be used as scale value (SetUseBinScale() methods). In advance, these axis
values (native scale or bin numbers) can be transformed by special axis transformation objects, derived
from TGo4FitAxisTrans class. This may be simple linear transform of one axis (TGo4FitLinearTrans
class) or more complex matrix transformation (TGo4dFitMatrixTrans class). Several axis
transformation objects can be assigned to data and they will act one by one on scale values.

Data object uses range conditions, inherited from TGo4FitComponent class, to select bins, where data
should be fitted. In addition to range limits, data object can select/deselect point by amplitude
threshold (method SetExcludel essThen()).

TGo4FitDatalter class provides generic interface to access data, contained in TGo4FitData object. For
each data bin iterator can provide following values:

Value() — bin content;

StandardDeviation() — standard deviation of bin content;

Scales() — array of scale values of size ScalesSize();

Widths() — array of width values (check HasWidths() before use widths values);

Indexes() — array of index of size IndexesSize() (check Haslndexes() before use them).
TGo4FitDatalter class has two main methods. Reset() and Next(). Reset() initialize iterator and takes
first point from data object. Next() shifts to the next point of data. Iterator object should be created by
TGo4FitData::Makelter() method. Typical usage of iterator is:

TCGo4FitDatalter* iter = data->Makelter();
if (iter->Reset()) do {
/1 sone action for each data bins |ike
cout << iter->Value() << endl;
} while(iter->Next());
delete iter;

Each implementation of data object providesit’s specific iterator, derived from TGo4FitDatalter class.

2.6 TGo4FitModel class
To represent single model component m¥, basic abstract TGo4FitMode! class is introduced. Object,

inherited from this class, should be always assigned to one or several TGo4FitData object and retrieve
from them scale values. According to parameters and scales values, object calculates model values.
Model will not be calculated out of data range and out of range conditions, defined for model itself.

To assign model to several data objects, AssignToData() method should be used. Assignment dso can
be done, when mode! is adding to fitter.

Each model class has it's own specific list of parameters. Most of model objects may (or should) has
amplitude parameter. Some of the model objects can interpret their parameters as abstract line position
and width. In such a case these parameters can be accessed via following methods. SetPosition(),
GetPosition(), SetWidth() and GetWidth().

Several model components can be combined to one logical group. For this SetGrouplndex(int) and
GetGrouplndex() methods should be used. Default group index of each component is—1, which means
that component does not belong to any group. For components, which are belong to background,
reserved group index O (can be set via SetBackgroundGrouplndex() method).

3 Specific implementation for base classes

3.1 TGo4FitDataHistogram

Data objects, which provides access to generic TH1 ROOT histogram class. There are severa
implementations of TH1 for one, two and three-dimensional histogram. All of them inherited from
TH1 class and supported in TGo4FitDataHistogram object.

The histogram can be assigned to TGo4FitDataHistogram object in constructor, in SetHistogram()
method or in SetObject() method of fitter. Histogram may owned, or may not owned by data object.
TGo4FitDataHistogram gets from histogram number of dimensions and number of bins on each axis.
The first and last bins on each axis (0 and NBins+1 indexes) are excluded from data analysis. This
means, that data object uses only bins, which hasindexes from 1 to NBins.

As scale values central position of each axis bin is using, taken from proper TAxis object of TH1
object.

3.2 TGo4FitDataGraph

Data objects, which provides access to TGraph and TGraphErrors ROOT classes. TGraph is just N
pointswith X and Y coordinates. Thisis mean, that it may be only one-dimensional.

The TGraph object can be assigned to TGo4FitDataGraph object in constructor, in SetGraph() method
or in SetObject() method of fitter. TGraph object may owned, or may not owned by data object.
TGo4FitDataGraph gets Y values as bins containment. X values are using as axis values.

If TGraphErrors object is assigned, the error values of Y can be used as sigmas in chi-square
calculations (fit-function type should be ff_chi_square).

3.3 TGo4FitDataProfile

Data objects, which provides access to TProfile ROOT class.

The TProfile object can be assigned to TGo4FitDataProfile object in constructor, in SetProfile()
method or in SetObject() method of fitter. TProfile object may owned, or may not owned by data
object.

3.4 TGo4FitModelPolynom
Model objects, which reproduce component of polynomial function like:
Polynom(x,y, z,...) = Ampl xx™ xy™ xz" x..

The order of polynomial function should be sets up in constructor like:

TGo4Fi t Model Pol ynom *pl = new TGo4Fi t Model Pol ynon{*“ Pol 1", or der x, or dery, order z);
or

TArrayD orders(5);

Orders[0] = 1.; Oders[1l] = 0.;

TGo4Fi t Model Pol ynom *p2 = new TCGo4Fi t Mbdel Pol ynon{* Pol 2", Or ders) ;

According to number of parameters in constructor TGo4FitModelPolynom has set of parameters
“Order0”, “Orderl” and so on, representing polynom orders for axis X, y and so on correspondently.
By default, these parameters are fixed and not fitted in optimizations. To change this default behavior,
use:

pl->Fi ndPar (“Order0")->Set Fi xed(kFALSE) ;

TGo4FitModel Polynom class aways has amplitude parameter, named “Ampl”. It can be accessed by
its name, for instance:

pl->Fi ndPar (“ Ampl ") - >Set Val ue(1000.) ;
or

pl->Cet Anpl i t udePar (“ Ampl ”) - >Set Val ue(1000.) ;

GetAmplitudePar() method can be used in other models classes only if they create amplitude
parameters, otherwise method returns 0.

3.5 TGo4FitModelGaussl1

One dimensional gaussian pesk.

(Pos- x)* 6

Gaussl(x, Y, z,. Ampl xexpg- ——*—
slix.y.2,.) = Amp pg 2 XWidth?
where “Ampl” — amplitude, “Pos’ — position of gaussian peak, “Width” — width of gaussian. In
constructor initial values of these parameter and number of selected axis (0 — x axis, 1 —y axis and so

on) should be setup:

(in case when x axis is selected)

TGo4Fi t Model Gaussl *g = new TGo4Fit Model Gauss1(“Gauss”, 10., 5., 1);

where “Gauss” — name of model component, “10.” — peak position, “5.” — peak width, “1” — selected
axis (here—vy).

3.6 TGo4FitModelGauss?2

Two dimensional gaussian peak. Has following parameters.

Ampl —amplitude;

PosO — line position on first coordinate;

Posl — line position on second coordinate;

WidthO — line width on first coordinate;

Width1 — line width on second coordinate;

Cov0_1 — covariation between first and second coordinate.

By default, first coordinate associated with x axis, second — with y axis. To create instance of this
model:

TGo4Fi t Model Gauss2 *g = new TCGodFi t Model Gauss2(*“ Gauss”, 5., 5., 1., 1., 0.5);

where first parameter — name of model component, then initial value for positions, widths and
covariation parameters are defined. To assigned coordinates to another axis, two more parameters
should be used in the constructor:

TGo4Fi t Model Gauss2 *g = new TCo4Fit Model Gauss2(*“ Gauss”, 5., 5., 1., 1., 0.5, 1,
2);

where 1 — assignment of first coordinateto y axis, 2 - assignment of second coordinate to z axis.

3.7 TGo4FitModelGaussN

N-dimensional gaussian peak. Has following parameters:
Ampl —amplitude;

Pos0, Posl, ... —line positions,
WidthO, Widthl, ... —line widths;
Cov0_1, CovO 2, ..., Covl 2, ... —covariations parameters.

To create instance of this model:

TGo4Fi t Model GaussN *g = new TGo4Fi t Model GaussN(“ Gauss”, 2);

where first parameter — name of model component, second — number of dimensions.

3.8 TGo4FitModelFromData

Model object, which is using TGo4FitData object to produce model bins. In constructor one should
just specify data object (it may be TGo4dFitDataHistogram or other), which will be used as model.
Optionally, amplitude parameter can be created. For instance:

TH1* histo = CGetHi stogranSonmewhere();
TGo4Fi t Dat aHi st ogram *h = new TCGo4Fi t Dat aH st ogran(“hdata”, histo, kFALSE);
TGo4Fi t Model FronData *m = new TGo4Fi t Model FronDat a(“ hnodel ", h, KFALSE);

The dimensions and bins number on each axis of data object, used in model, should be absolutely the
same, as in data object, which should be fitted. Assigned data object will be owned by
TGo4FitModelFromData object. But data source object (histogram “histo” in example) may not be
owned by object and may be provided later by SetObject() method of fitter.

TH1* histo = CGetHi stogranSonmewhere();
m >Set bj ect (" hdata”, histo);

The name of data object “hdata” should be used, when assigning data to TGo4FitModel FromData
object via SetObject() method of fitter.

3.9 TGo4FitModelFormula

Model object, which uses ROOT TFormula class facility. Any kind of one-line expression can be
analyzed by TFormula object and evaluated for given set of axis values and set of parameters.
TGo4FitModel Formula in constructor creates additional parameters with names “Par0”, “Parl” and so
on, which can be used in equation and can be optimized. Optionally amplitude parameters with name
“Ampl” can be created. In constructor expression, number of additional parameters and using of
amplitude parameter should be specified. Fort instance, equation with 3 parameters and amplitude:

TGo4Fi t Model Formul a *f = new TGo4Fi t Model For mul a(“ For ni,
"(x-ParQ)*(y-Parl)*(z-Par2)”, 3, kTRUE);

3.10 TGo4FitModelFunction

Model objects, which used external user function to calculate model values. The function should has
such signature:

Doubl e_t Func(Double_t* coord, Int_t ncoord, Double t* pars, Int_t npars) {
/1l coord — array of axis values, ncoord — nunber of axis val ues

/1 pars — nmodel paraneters val ues, npars — nunber of paraneters

return (coord[0]-pars[0])*(coord[1]-pars[1])*(coord[?2]-pars[2]);
}
In constructer user should define name and title of object, pointer to user function, number of
parameters and, optionally, using additional amplitude parameters. For instance, user function with
three parameters and amplitude:

TGo4Fi t Model Function *f = new TGo4Fi t Model Functi on(“func”, “user function Func”,
&Func, 3, kTRUE);

In constructor “ParQ”, “Parl”, “Par2” and “Ampl” parameters will be created. They are accessible in
usual way from fitter or model object itself.

Important notice — this model object can not be saved to file and restored in proper way, because
address of user function may change in between. To correctly use this object after saving and restoring
routines, user should directly set address of user function to TGo4FitModelFunction object
(SetUserFunction() method) before using it. Otherwise, run-time error will occur. To avoid this user
should create it's own model class (see example 4) or put function to shared library (example 2).

If shared library is created, it can be used in constructor like:

new TGo4Fi t Model Functi on(" Gaussl1", "Exanpl e8Func.so", "gaussian", 3, KTRUE));

During initialization routine library will be loaded and function will be used for modeling. In this case,
if library will be present on the same location, model object can be reused directly after storing to file
and reading it back.

4 TGo4Fitter class

4.1 Constructing fitter

Thisis central class of Go4Fit package. It collects data objects and models components, which should
be fitted to data.

For each data unit, which should be used in analysis (TH1, TGraph or other), user should create an
appropriate data object (like TGo4FitDataHistogram or other) and set it to fitter. In constructor unique
name of this object should be set up like “ Data0” . Fitter will own this data object.

For each model component an appropriate model object (like TGo4FitModelGaussl or
TGo4FitModelPolynom or other) should be created. Model object aso should have unique name.
When user add model to fitter, in first parameter of TGo4Fitter::SetModel() routine user should put
name of the data object, to which model component should be assigned to. If model assigned to several
data objects, AssignToData() method of TGo4FitModel class should be used before model will be
added to fitter.

All data and model objects have a name (they are inherited from TGo4FitNamed class). Fitter provides
methods to access them via name: FindData() method returns pointer on TGo4FitData object,
FindModel () —-method returns pointer on TGo4FitModel object.

From all data and model objects fitter collect parameters to common list. The methods for work with
parameters list fitter inherits from TGodFitParsList class. Only should be mentioned, that in all
operations full name of parameter preferable to use. All parameters, which are not fixed, will be used
in optimization.

If data and models objects are set, fitter knows a way to get data bins C; and build a model bins m .
Method SetFitFunctionType() sets the type of fit function, which should be used in parameters
optimization. Now six type of fit function can be used:

ff_least_squares c®withs2°1
ff_chi_square c?
ff_chi_Pearson c
ff_chi_Neyman c
ff_chi_gamma Cq
ff_ML_Poisson L

User also can specify its own function in SetUserFitFunction() method, where any kind of calculations
with model and data bins can be performed.

4.2 Supply datato fitter

Each data object class, inherited from TGo4FitData class, has a method to set data to this object. For
instance, TGo4FitDataHistogram class has method SetHistogram() to set any of TH1 or inherited
object. Thus, if user exactly know structure of fitter, it can access to each data object via GetData() or
FindData() methods, and, using correct typecast, provide necessary data for them.

There is a general interface to set data to fitter via SetObject() method. In simplest case user should
just provide pointer on data source (for instance, pointer on TH1) to this method without any
additional parameters. Fitter will analyze, if there are data objects, which can contain TH1 histogram.
And if such object is present and if this object has no histogram yet (in other words, it requires
histogram to be set to), data object will obtain histogram and SetObject() method returns non-zero
value. In casg, if two data objects can obtain a histogram, two call of SetObject() method is necessary.
First call will provide histogram for first data object, second call will provide histogram to second data
object. Thus, sequence of SetObject() calls is very important and may be very probable source of
errors.

In SetObject() method user can directly set up name of data object, which should obtain data source
(histogram), or position name for the histogram (assuming, that data object can contain more than one
histograms). If there is histogram already in data object, it will be replaced by new histogram. In this
case only for specified data object the histogram can be assigned to. This reduces possible source of
errors.

The same method can be used to provide not only data source objects to fitter. For instance,
SetObject() can be used to setting axis transformation object(s) to data object.

Each data source object, provided via SetObject() method, can be owned or not owned by data object.
If histogram is owned by data object, it will be destroyed together with data object.

To check, if al necessary objects is set for fitter, CheckObjectes() method should be used. To clear
pointers on data source objects (only if they are not owned by data object), ClearObjects() routines
should be used.

To ingpect al objects, containing in fitter, Print() method can be used. It prints all objects with
description and their parameters.

4.3 Actions on the fitter

Creating a fitter and setting to it specific data objects and model objects, user provides a way to
calculate a fit function. Next step — perform optimization of fit functions and see results of fit. This
functionality is provided by list of actions, handled by fitter. The possible actions are: applying
configurations for fitter, amplitude estimations for model components, Minuit minimization routine or
output.

Each action is represented by object, derived from TGo4FitterAction class. It has abstract DoAction()
method, which performs some actions under the fitter. Each implementation of this class introduces
own realization of this method.

To add action object to fitter, call AddAction() method of fitter. To execute all actions, DoActions()
routine should be called. Thisinitialize the fitter, sequentialy calls DoAction() method for each action
and finalize fitter. External list of actions, placed to TObjArray, can be executed instead of internal list
of actions (address on TObjArray can be sets as parameter of DoActions() routine). Explicit action can
be executed via DoAction() method.

During actions execution some of memory can be used for intermediate buffers for data and models.
Usage of buffers significantly increase speed of calculation. SetMemoryUsage() method can define
different scheme for memory usage. Possible value of integer parameter for this method: 0 — without
buffers (default), 1 — buffers only for data, 2 — buffers for data and models, 3 — individual setting of
buffers via SetUseBuffers() method of TGo4FitComponent class.

4.3.1 Fitter configuration action

By default all fitter parameters are used in optimization as independent from each other. But there are a
lot of situation, then one would like to introduce some kind of dependency between parameters. For
instance, two lines have constant difference in positions. In other cases some of the parameter
properties should be redefined without touching of parameter object itself. For such a cases
configuration class TGo4FitterConfig was introduced. There are several routines of TGo4FitterConfig
class, which provide useful fitter configurations:

SetParFixed() — fix value of given parameter;

SetParRange() — fix range for given parameter;

SetParEpsilon() — set initial error for given parameter.

SetParlnit() — set initial value for parameter (can be double value or expression);

SetParDepend() — set dependency of given parameter via expression;

AddParNew() — create new parameter, which can be used in expressions,

Several configuration objects can be added to actions list. It may be useful, if several minimization
routines are used. Then before each minimization action new configuration can be applied.

4.3.2 Minuit minimization action

Now only TGo4FitMinuit class, provided general minimization routine, is available. It uses standard
ROOT TMinuit class [3]. TGo4FitMinuit class includes Minuit commands list, which will be executed
during minimizatione. There are several methods of TGo4FitMinuit class to operate with command
list:

AddCommand() - add command to commands list;

GetNumCommands() — get number of commandsin list;

GetCommand() — get command from list;

ClearCommands() — clear commands list.

To get full description of Minuit commands, see Minuit reference manual [4].

In additional to standard Minuit commands, one adds result command, which get status and results
values from Minuit and store them as TGo4FitMinuitResult objects in TGo4FitMinuit results list. The
syntax of command is

result [xxxx [result_nane]]

where “result’- identifier of this command, “xxxx” — flags field (default — “1000"), “result_name”-
optional name of result object (default — “Result”). The each “x” in flags field can be: “0” — option
switched off or “1” — switched on. The meanings of flags are:
1. Storing of current parameters values and errors (ParVaues and ParError arrays of doubles,
TArrayD class).
2. Storing result of Minos error analysis (EPLUS, EMINUS, EPARAB & GLOBCC arrays of
doubles). Normally should be used after “MINOs’ command of Minuit.
3. Storing error matrice estimations to ERRORMATRIX (TMatrix class). Columns and
strings in matrix, corresponds to fixed elements, will be set to O.
4. Storing contour plot in CONTOX, CONTQY (both are arrays of doubles) and CONTOCH
(array of char, TArrayC). Normally should be switched on after “MNContour” command
of Minuit.
Result object aways store status values of Minuit (see MNSTAT command in Minuit reference
manual [4]):
FMIN — the best function value found so far;
FEDM - the estimated vertical distance remaining to minimum;
ERRDEF — the value of UP defining parameter uncertainties;
NPARI —number of currently variable parameters;
NPARX —the highest (external) parameter number defined by user;
ISTAT — a status integer indicating how good is the covariance matrix.
Several result commands can be present in Minuit command list and the same number of
TGo4FitMinuitResult object will be present in TGo4FitMinuit object after minimization is finished.
Results can be accessed via index, using GetNumResults() and GetResult() methods or via result
name, using FindResult() method. The results objects always owned by TGo4FitMinuit object and
stored together with it. Thus, if TGo4FitMinuit object will be saved together with fitter, the
TGo4FitMinuitResult objects al'so will be stored and can be accessed later, then fitter will be loaded.

4.3.3 Amplitude estimation action

In additional to general minimization routine very useful amplitude estimation algorithm can be used.
If rest of models parameters have good initial estimation, the amplitude parameter can be defined by
solving of system of linear equations, as described in theoretical preface part. This agorithm is
provided by TGo4FitAmplEstimation class. This action can be added by AddAmplEstimation() routine
of fitter. Typically, this action should be added before minimization routine.

4.3.4 Output action

To add some output to actions, TGo4FitterOutput action class should be used. In constructor output
command and options (if required) should be specified. Also AddOuputAction() routine of fitter can
be used. Now only “Print” and “Draw” commands are available. For options description see
correspondent fitter output methods (described later in the text).

4.3.5 Peak finder action

This action is able (in some situations and with proper setup) find peaks on the selected data object and
construct appropriate model components. After TGo4FitPeakFinder object is created, name of data
object, to which peak finder will be applied, should be set by SetDataName() method. Also can be
specified, if peak finder should delete al models, which are associated to this data (via
SetClearModels() method). There are three different peak finder algorithms: Variant 1 (first), ROOT
(second), Variant 3 (third).

First method selects lines by amplitude threshold, which is defined as relative to maximum amplitude
value. Then this lines checks, if their width is in defined range for width. If so, gaussian with defined
line position and width will be added to fitter. Setup method is SetupForFirst().

Second method is use ROOT TSpectrum class. It requires only expected line width as parameter.
Setup method is SetupForSecond().

Third method is searching maximums and minimums on histogram according to setup of noise
characteristics. It requires noise factor parameter, minimum noise value and number of channels,
which should be sum up to one before peak finding. Setup method is SetupForThird().

In advance, peak finder can add polynomial function for background approximation. This is
SetupPolynomia Background() method.

When peak finder action is add to actions list, it will be executed only when
TGo4Fitter::DoActions(kTRUE) method will be called. This parameter says, that any action in the list
can change and setup fitter components freely. Therefore, if peak finder in actionslist, but DoActions()
called without parameters (default value — kFALSE), peak finder action will not be executed.

4.4 Accessing to fitter result values

After executing actions chain, all parameters values can be accessed either from fitter or from specific
model or data object directly. A full list of parameters can be printed on standard output by
Print(“Pars’) method of fitter. The Draw() method can be used to draw data, full model and some of
model components. CreateDrawObject() method of fitter gives an ability to directly create any object,
which is displayed by Draw() command.

In the end of actions chain execution fitter creates and store array, which contains parameters values.
These values can be access via GetResults() and GetResultVaue() methods of fitter. Instead of using
parameters values, TGo4FitterConfig object provides an ability to specify any valid expression of
parameters values, which will be consider as result values (see TGo4FitterConfig::AddResult()). If
such configuration object was added to action chain, results will contain only calculated by these
expressions values. Fitter also store gained fit-function value (GetResultFF() method) and number of
degrees of freedom (GetResultNDF() method).

4.5 Fitter output

Following options are valid for Print() method of fitter:

ok print overal info of al internal

ok also call print for referenced objects

“Pars’ print only pars values

“Ampls’ print amplitude values

“Lines’ print lines parameters (amplitude, pos, width) for each component
“Results’ print result values

Following options are valid for Draw() method:

ok draw all data objects on same pad

“Data0” draw data with name “Data0” and it's model

“Data0-" draw only data without model

“Data0*” draw data and all model components, assigned to data

“Data0, Gaussl” draw data, model and model component with name Gaussl

“Data0-, Background” draw data and sum of al components, assigned to background
group

“Data0-, Group0, Groupl” draw data, components sum of group O (background) and
components sum of group 1

If options string starts with “#” symbol, Draw() method automatically create canvas for output

4.6 Storing fitter

Fitter can be stored to streamer via standard Write() method, inherited by fitter from TObject. Fitter
always store to streamer all data, al models, al actions in list and result values (only structures, not
executable codes) By default, supplied to fitter objects (like histograms) with ownership flag also will
be stored to streamer. To save objects with fitter independently of ownership,
SetSaveFlagForObjects(kTRUE) routine should be used. To restore fitter, streamer Get() method
should be used.

Using this fitter storage mechanism, one can once create fitter, configure and store it and then fitter can
be easily used in other program, where it should be just restored from streamer (see examples 6 and 7).

5 Examples

In “GodFitExample/” subfolder there is a set of ssimple examples, which are illustrated different
possibilities of using Go4Fit package. With dlight modifications some of this examples can be easily
reused in another programs. These examples can be run both in compiled and CINT mode (except 3-rd
example). To use them in CINT, God4Fit library should be loaded to CINT first. It can be done by
command:

[root] > gSystem->Load(* libGo4Fit.so”);
Then, to run example, just type:

[root] > .x Examplel.cxx
To use program directly, they should be compiled and then executed from normal shell.

5.1 Example 1

Thisisone of the simplest examples using Go4Fit package.

In the beginning fitter is created. In constructor name of the fitter, type of the fit function and usage of
standard actions list (amplitude estimation and then Minuit minimizer) are specified.

Then data object is created. It uses histogram as data, which should be fitted (files with sample
histograms is provided with package). In constructor name of data object, pointer on histogram and
ownership flag are specified. Then usage of binary scale and axis range are specified. Finally, data
object add to fitter.

The sample histogram consist of two gaussian and polynomial background. Therefore, four
components are created and added to fitter. When model is adding to fitter, data object name, to which
model is assigned, is specified.

To see results of fitting, output action with draw of histogram and its components is added. Then
DoActions() routine of fitter executes all actions.

5.2 Example 2

Modification of example 1.

In this example instead of TGo4FitModel Gaussl class for peak approximation TGo4FitModel Function
class and function, placed in “Example2Func.cxx” file, are used. Function performs usual calculation
of gaussian inside. Function compiled to shared library and loaded during initialization. In this way
any kind of user function can be implemented. User is able to specify names and initial values for
parameters of TGo4FitModel Function model component.

5.3 Example 3

Same as example 2, but user function is represented by Fortran function, placed to library. This library
linked to program in compiled time and in TGo4FitModel Function constructor direct address of this
function is specified.

5.4 Example 4

Same as first three examples, but for peak approximation new model class created. It has two
parameters and amplitude. This example shows how to easy create user model class. To use this
example from CINT, “libExample4.s0” library should be loaded first.

5.5 Example 5

Extension of the first example. After first spectra is evaluated, it replaced by another spectra, where
two additional lines are present. Thus, two additional gaussian components are added.

5.6 Example 6

Simultaneous fit of both histograms, used in example 5. Example also shows more intelligent way of
fitter using for histograms evaluating and results storing.

Two histograms should have the same parameters (position and width) for two most intense gaussian
peaks. Usage of dependencies between parameters are shown.

In ConstructFitter() function new TGo4Fitter object is created. It supplied by necessary model and data
objects. In addition to amplitude estimation and minimizer, configuration action object is created. It
introduces dependency between several parameters by SetParDepend() method. It aso gives initial
values for some parameters.

After fitter is created, histogram are assigned to fitter with ownership flag. Thus, then fitter will be
deleted, it also delete these histograms. In addition, axis transformation object is created
(ConstructTransformation() function) and assigned to both data objects. After fitting actions are done,
fitter stored to file with all supplied objects by smple StoreFitter() function. Finaly, fitter is
destroying.

After that in any time and in any other program fitter can be restored from file — RestoreFitter()
function — and all result parameters and result graphics can be reproduced very easy.

Thus, storing fitter with all objects gives ability to “froze” fitter and reproduce all results later. If fitter
will be store without data, to reproduce results graphics one should supply same data source objects
(histograms and axis transformation in this example) to fitter again. Parameters, as they belong to
models objects, always store together with fitter.

5.7 Example 7

Same as example 6, but instead of using separate models for same gaussian peaks and introducing
dependency between their parameters, same model components are assigned to both histogram. In this
case additional ratio parameter is appeared. It will be minimized together with other parameters. Also
usage of TGo4FitMinuit class with individual set of command isinvoked.

Usage of dot connection mechanism is shown in this example. When data objects are created, each
data objects reserve place (means, create dots) for axis transformation objects. Then
ConnectSlots(“datal. Trans0”, “data2.Trans0”) method of fitter is called to connect these two dots.
This connects dlot of first data to slot of second data. If for any of data object axis transformation
object will be set, pointer on it immediately appear in other data object. Therefore SetObect() method

of fitter with axis transformation object as parameter used only one in example later. This connection
will remain also after storage of fitter to file.

5.8 Example 8

Example of using two-dimensional modeling. In the first part TGo4FitModel Gauss2 class and fitter are
used to just create two-dimensional histogram with gaussian. On the second stage this histogram
modeling with using of TGo4FitModel GaussN class. Also usage of TCutG class for region selection is
shown.

5.9 Example 9

Exampe of using integration of model in each data bin. On the first stage two-dimensional histogram
with four gaussian peaks are creates. Histogram has 1000 bins on each dimension. Then histograms
replaced by another, which has only 10 bins on each dimension and modeling is repeated. The integral
of two obtained histograms is differ on about 3%. Then for each models SetlntegrationsProperty()
method sets depth of integration to 5. This means, that for each dimension interval inside each bin will
be divided on 2"5 = 32 parts for integrations. As a result, for calculating of each beans 32x32 = 1024
evaluations will be done. But in this case integral with high precision corresponds to original one.

5.10 Example 10

This example shows, how shape of one histogram can be used as model component of another
histogram.

5.11 Example 11

This is example of using peak finder action to fit histogram. In the beginning fitter is created with
standard actions list and data object for histogram. When histogram is adding, axis range is specified,
where fit and peak finding will takes place. Then peak finder action is adding to the first place in
actions list. Peak finder is setup to use first variant of peak finding algorithm. Finally
DoActions(kTRUE) routine is caled to execute al actions, including peak finder, which able to
change fitter objects. As aresult, data object and model will be drawn.

5.12 Example 12

Example of fitting TGraph object. Created TGraph object consists of combination of two polynomial
functions, where first one consider as background and second one with limited ranges consider as line
(group index is 123). Draw() routine shows graphic, background (sum of components with O group
index) and line (sum of components with 123 index).

6 Fit panel

Fit panel, integrated to Go4 main GUI, provide graphical interface to edit fitter object and al its
components, executes fit and see result of fitting. To activate fit panel, just press correspondent button
on toolbar of main Go4 GUI.

6.1 Getting started
To perform typical fit one should first display histogram and activate fit panel (Figure 1).

%% 0 :hDegl20 P c Fit panel
File Edit Options Fitter Tools Settings
hmn:u_FIz hDeg120_P_c
Enfrles 105188
250 A Mo fitter created. You can:
300 DTl HE PP 1. Select a pad with histogram (by MM button) and create

a fitter with the "Use pad" button.

2. Drag a fitter from browser to this panel.

3. Double click on a fitter in the browser,

4. Create a fitter by "Fitter/Create for panel” menu
command.

5. Create a fitter by "FitterfCreate for workspace" menu
command.

250

200

150

100

50

i M ol T AT et S A sl L i
2300 2400 2500 2600 2700 2800 2900

C: Ready 4 | Use padl Find | Fit | Draw | Pars | Workspace. No fitter

Figure 1. Histogram and empty fit panel

From the beginning fit panel is empty. To start fitting histogram, press Use pad button in the bottom of
fit panel or call Fitter/Create for pad menu item. This create fitter in selected pad, setup new data
object for histogram and show fitter in wizard page (Figure 2).

2% [hDegl20 P c© Fit panel
File Edit Options Fitter Tools Settings
L= fhDeg2Hahe e deme Minimizer | Data: Datal of class: TGodFitDataHistag
F ey 28 Fitter Peak finder | Models:
A g S Data Models I use buffers for data
3["] :_ Infagral 2.8338+04 ijects
2505— Mame Class | 0w
2005— Histogram |hDeg120_P_c THID |fals
150
100
o Rebuild]]
& SRR
3300 2300 2500 2600 2700 2800 2900 Use range | Clear rangesl Draw d
C: Ready 4 | Use padl Find | Fit | Draw | Pars | Attached to panel: v 0 . Fitter: Fitter

Figure 2. Newly created fitter in wizard page

On wizard page list of data objects and list of model components are displayed. To add new model
components to fitter, one should press “+” button below model list. From the list of model components

one can select polynom, gaussian or other function. Typically polynomial or exponential components
are used for background approximation and several gaussian or lorentz components for peaks
approximation. One can change model parameters in the right side of fit panel after selecting this
model in the models list. If model has position and width parameters (for gaussian and lorentz), it will
be also drawn on the histogram pad with red color. One can move these graphical objects to adjust
model parameters (Figure 3).

2% [:hDeglZ20 P c© Fit panel
File Edit Cptions Fitter Tools Settings
Lomart-2} NDegl20 P Néme Minimizer | Data; Datal of class: TGo4FitDataHistog
e [Fiter Peakfinder | Models: Pol_0 Pol_1 Gauss0 Gauss]
) R Data Models I use buffers for data
3["] Inkgral 2.p33e+04 PO'_D ijeCtS
250 WPol_1 Marme Class | Qw
b Gauss0 Histogram [nDeg120 P ¢ |THID |fals

200

Gauss1

150

100

List of data ohjects
- Reb -
03300 2400 2500 2600 2700 2800 2900 lUse range | Clear rang88| Draw d
C: Ready v Use padl Find | Fit | Crrenay | Pars | Attached to panel: % 0 . Fitter: Fitter

Figure 3. Four model components added to fitter

Then one can start fitting by pressing Fit button on the bottom of fit panel. This executes default list of
actions (amplitude estimation and Minuit MIGRAD command). Obtained model will be drawn on the
same pad with the histogram. To repeat fit, Fit button should be pressed again. To see values of all
fitter parameters, Par s button should be pressed (Figure 4).

%% 0 :hDegl20 P c Fit panel
File Edit Options Fitter Tools Settings
oo ran_e hDeni120_F_c List of fitter parameters _I lines
Enfrles 106 1568
E = o Fixed |Value Error Epsilon |Min |Max
350;— e Pol_OAmpl [fix 453022 2.00558
e e Pol 0.0rderd [fix 0 0
E Pol 1.Ampl |od fix | -0.0108415 0.00075096
250 Pol_1.0rderd J fix] 0
e Gauss0.Ampl | fix 324,048 402179
E GaussO.Pos [fix 232935 0.1515843
1502— Gauss0Aidth | fix 144874 0.132351
e Gauss1.Ampl [fix 135.4 270006
F Gaussl.Pos |l fix 267292 0.257063
su;— Gauss1Width | fix 14,4057 0226803
02300 2a00 '2'5:11'1 2500 'z'rlnﬁ 200 2000

Result: Fit func = 885,738 MNDF = 701

! Ready 4 | Use padl Find | Fit | Draw | Back | Attached to panel: % 0 .. Fitter; Fitter

Figure 4. Moddl (blue) and list of fitter parameters

Afterwards fitter can be saved to memory browser (and than to file), using appropriate commands in
Fitter submenu.

6.2 General aspects

Fit panel shows fitter, to which it was attached. Fitter can be situated in any pad of any preview panel
(normal operation mode) or in workspace of fit panel itself. When user selects any pad (by any mouse
button click), fit panel will attach to this pad and display fitter or empty page, if fitter is not exists.
When fitter situated in pad, it always obtain reference to data (histogram or graph) from this pad.
Therefore, if data will be changed in pad, reference to this data will be automatically updated in fitter.
In this mode user is not able to change number and type of data objects in fitter — they are always
corresponds to data objects, which are in the pad (or in the sub pads).

When fit panel displays fitter from its workspace, user is able to setup number and type of data objects
freely. In this mode data references can be obtained from different view panels, from Go4 disk browser
or Go4 memory browser. But fit panel cannot keep track on al this objects and guarantee reference
validity. User should take care, that supplied for fitter datais still exists and not destroyed by file close
or deletion from memory browser.

When fitter is saving to Go4 memory browser, al reference to data will be lost. But when this fitter
will be loaded to workspace and copied to the pad, it automatically obtains correct reference to data in
pad.

6.3 Fit panel menu and buttons

Fit panel has menu with three items: Fitter, Tools and Settings. Fitter submenu contains a following set
of commands:

Create for pad create appropriate fitter for selected pad in last active preview panel
Delete delete fitter

Save to browser save fitter to Go4 memory browser

Update reference updates references on data objects from file or memory browsers
Print parameters produces parameters printout, parameters page should be active
Rollback parameters restore value of parameters, which automatically stored before last fit
Close closefit panel

Tools submenu gives an ability to switch between following tools:

Smple Contains severa buttons to fit data to polynomial function, gaussian,
lorentz and exponent.

Wizard Intuitive and easy-to-use tool to setup data objects and model
components. Also includes peak finder setup. Suitable for most fitting
tasks.

Expert Advanced tool, which gives full control over the fitter. Provides a

hierarchy view of all objects inside fitter and possibility to change any
relevant data fields. Supports al functionality, which may not be
presented in Wizard tool.

Settings submenu contains following items:
Confirmation For each delete action (of fitter, data, model and so on) confirmation

message will appear

Show primitives

Freeze mode

Use current range

Save with objects

Draw model
Draw background

Draw components
Draw on same pad
Draw info on pad
No integral
Counts

Integral
Gauss integral

Recalculate gauss
width

Do not use buffers
Only for data

For data and models
Individual settings

Show graphical primitives for model position and width and for range
settings

Fit panel is not automatically attached to selected pad, but only by
create/copy/move command from Fitter submenu

At any fit or peak finder action automatically usesrange whichis
currently selected on histogram

Save objects, to which fitter have references, together with fitter. When
such afitter will be loaded, it will have copy of saved objects. Available
only in expert mode

Draw model of data

Draw background (sum of all model components, belongs to
background group)

Draw all model components, which are not belong to background group
Use same pad for drawing or create separate preview panel

Draw on pad info box with parameters values

Do not show any integral values on parameters page

In lines mode on parameter page additionally shows counts number for
every model component inside specified range

Shows integral value for every model component inside specified range
Calculates and shows theoretical (based on amplitude and width
parameters) integral for one-dimensional gaussian components. None of
specified range conditions are taken into account.

For gauss components recal culates sigma values to full width on half
maximum (FWHM)

Do not use any memory buffersfor fit

Use buffers only for data objects

Use buffersfor all data objects and model components

Use buffers as selected individually for each data object and model
component

On the bottom of fit panel there are five buttons:

Use pad

Find

Fit
Draw

Pars

If fitter displayed in fit panel, it will be copied to selected pad in last
active view panel, otherwise appropriate fitter will be created for this
pad.

Executes peak finder routine. All peak finder parameters should be
setup first. Work only in Wizard mode.

Executesfit.

Draw model, background and model components as sets up in Settings
submenu.

Show all fitter parameters in table. Parameters can be listed one by one
or in lines mode, when each line corresponds to each model components
and contains amplitude, line position and line width.

6.4 Simple tool

The layout of Fit panel in Simple mode can be seen at Figure 5. There are five buttons:

Polynom Fits data to polynomial function. Order of polynom is sets at the right
side of button.

Gaussian Fit data to gaussian line shape. Zero estimation for line position and
width is taken from first and second momentum estimation.

Lorenz Fit data to lorenz line shape. Zero estimation for line position and width
istaken from first and second momentum estimation.

Exponent Fit data to exponential function

Clear models Remove al model components

Pressing one of button (excluding last one) adds appropriate model components and immediately
executes fit. Only selected in pad data range is used for fitting. If necessary, fitting can be repeated by
pressing Fit button in the bottom of fit panel.
This tool should be used, if data has smple shape and can be easily approximated by one of listed
functions or their combinations. For instance, if histogram has peak with polynomial background and
one needs fast approximation of its parameters, one should perform following sequence of action:

1. show this histogram in the preview panel;

2. zoom on pad axis range to peak;

3. show up fit panel without fitter;

4. press Use pad button to create fitter for selected pad,;

5. choose Simpletool page (Figure 5);

&Y 0 :hDegl20_P_c Fit panel
File Edit Options Fitter Tools Settings
Dag 120_P. Polynom 1] :
C Moan %679
L RMS FLED i
160 — Underfiaw] Ml
E Cverflow]
140 - ntagral 7386 Lorenz |
120
1nuf Exponent |
80
£ Clear modeli
60
w0k
201
_j PRI BRI SR S (TSR N |
Y620 2640 2660 2680 2700 2720 2740 276
C: Ready 4 | Use padl Find | Fit | Drawl Pars |

Figure 5. Fit panel after activating Simple tool

6. press Gaussian button (Figure 6);

%Y 0 :hDegl20 P c Fit panel

File Edit Options Fitter Tools Settings
hoentzn_rb ROegl20_F ¢ Polynom | ID ﬂ
Enfriat 105158
B Maan %679
o RMS PR i
e o] Gaussian |
E cverflow]
140 ntagral 7386
o Lorenz |
120 F
100F Exponent |
80
F Clear modeli
60
40
20
...I...I...I...I....
Y620 2640 2660 2660 2700 2720 2740 276

C: Beady 4 | Use padl Find | Fit | Drawl Pars |

Figure 6. Simple gauss fit

7. choose proper polynom order and press Polynom button (if necessary) (Figure 7);

%% [hQegl?20 P c Fit panel
Eile Edit Options Eitter Tools Settings
hoeatz_rb RDegi20_P_¢& Polynom | ID ﬂ
Entran
RME i
160 - BU Gaussian |
Cwvarflow
Foa Lorenz |
Exponent |
Clear mudelﬂ
i i S W
Y620 2640 2660 2680 2700 2720 2740 276

C: Ready 4 | Use padl Fing | Fit | Drawl Pars |

Figure 7. Simple gauss fit + polynom
8. press Par s button to see parameters values.

If selected range has more than one line, one can try to approximate this line by pressing Gaussian
button again. This adds second gaussian lines and tries to locate it properly. The graphical primitives
(drawn by red) will represent position and width of all modeled peaks, therefore their parameters can
be adjusted by changing position of these graphical objects.

This simple method may fail in case of several peaks or other complex combination of components. In
this case one can switch to Wizard or Expert tool page. All obtained results (model components and
their parameters) will remain and can be used in these advanced tools further.

6.5 Wizard tool

The layout of Fit panel in Wizard mode can be seen at Figure 2. Left side of fit panel consists of fitter
name editor, data list and models list. Right side of fit panel used to show appropriate information
about selected item.

6.5.1 Data list

Datalist show names of al data objects in fitter. By clicking mouse on data name, on right side setup
page for this data will appear (see Figure 3). It includes class information, names of assigned model
components, buffers usage and table with list of objects, assigned to data. Typicaly table shows
information about TH1 or TGraph object, to which data object gets references. Data object page also
include buttons: Use range - add selected on pad axis range to range conditions (can be applied several
time for different ranges); Clear ranges — clear al range conditions; Draw — draw only specified data
with model and components as specified in settings. By double-click on data name appear input dialog
to change data name.

When fit pandl is attached to fitter in pad, data object always has reference to histograms or graphs
from this pad. If user drag-and-drop new histogram to this pad, fitter and fit panel will be automatically
updated. But in this mode number and type of data objects are fixed to pad structure, where fitter is
situated. If attached pad has histogram, fitter will has only data object of TGo4FitDataHistogram type.
If selected pad divided on several sub pads (such underlying pad can be selected by pressing middlie-
mouse button between sub pads), fitter will have appropriate number of data objects, which will be
fitted simultaneously (so-called multifit mode). Thus, if structure of pad is changed (by dividing on
several sub pads), list of data objects can be recreated by pressing Rebuild button, situated down to
datalist.

If fit panel is attached to fitter in workspace, number and types of data objects ruled by user. There are
two buttons done to data list: “+” button show popup menu to add new data object of specified type, “-
" button removes currently selected data object. Reference to histogram or graph for these data objects
can be assigned by different ways: drag-and-drop histogram or graph from Go4 memory browser or
from Go4 file browser to table of assigned objects; can be taken from last active view panel via popup
menu, activated via right-mouse-button click on correspondent item of table. In popup menu there are
also items. clear reference, clone object and get it owned, connect to another data object to have
reference to same histogram or graph.

6.5.2 Models list

Models list show names of all model components in fitter. Left to each model name there is square
with sign, when this model component assigned to currently selected data. By mouse clicking inside
this square, user can invert assignment. Should be taken into account, that model component can be
assigned to severa data objects. Down to model list there are two buttons. “+” add model
component(s) from popup list, “-* delete all selected model components. By clicking mouse on model
name, on right side setup page for this model component will appear (see Figure 8). It includes class
information, assignment of this component to background group, usage of buffers and list of all model
parameters.

FY 0 :hDeglZ20 P c Fit panel

File Edit Options Fitter Tools Settings
LT e 12 R deme Minimizer | Model: Gauss1 of class: TGodFittodel G
£ e i ol Peak finder | _| background 1 use buffers
350 — Underdow 1
HE Data Models Fixed |Value |Error |Epsilo

300

Ampl | fix 0 1]
Pos |ol fix | 267279 0
Wigth |1 fix | 28.8928 0

250

Gauss|

200

150

s Rebuild| 4] -
3300 2400 2500 2600 2700 2800 [
C: Ready 4 | Use padl Find | Fit | Diraw | Pars | Attached to panel: % 0 : Fitter: Fitter

Figure 8. Model setup page

6.5.3 Minimizer setup

Clicking of Minimizer button shows special page to setup parameters of minimization process (Figure
9). It includes type of fit function, flag of usage amplitude estimation and number of MIGRAD
iterations of Minuit. When user press Fit button on the bottom of the widget, according to these
settings list of actions will be created. If both actions disabled (unchecked amplitude estimation and
iterations number equal to 0), standard actions list will be executed.

%% 0 :hDegl20 P c Fit panel
File Edit Options Fitter Tools Settings
B N hlinimi : :
o} :5:?120‘125; IT:ame e | Fit function
Moan 2678 itter + 2
= i Peak finder Chi square _.fl
350:— Undorfow [
E o ; L el _| use amplitudes estimations
3["] :_ Indsgral 2.7328+04 POI_D p

FPol_1 MIGRAD iterations [0 =

250 F

W Gauss0
M Gauss]

200 F
150 F

100 |

Rebuild] -

50 F

2300 2400 2500 2600 2700 2800

: Ready 4 Ilse padl Fird | Fit | Cram | Pars | Attached to panel: ¥ 0 . Fitter: Fitter

Figure 9. Minimizer setup page

6.5.4 Peak finder

Clicking of Peak finder button shows page with parameters for peak finder action. When user first
time activate peak finder page, this creates TGo4FitPeakFinder action and adds this action first to
actions list. Later this action will always remain with fitter. On this page user can specify usage of
polynomial function for background approximation, type of peak finder (by selecting proper tab) and
parameters for selected peak finder. After all necessary parameters are set peak finder action can be
executed by pressing Find button in the bottom of fit panel. Peak finder will be applied to currently

selected data object. All assigned to this data model component will be removed. Found model
components will be displayed in models list and shown in pad in red color. After finding the peaks

they can be fitted to data by pressing Fit button or peak finder can be repeated with another parameters
Set.

Typical sequence of user actions to perform peak finder is:
1. show histogram in preview panel;
2. activatefit panel and create fitter for selected pad;
3. if necessary, select specific axis range on pad and press Use range button;
4. press Peak finder button and setup parameters,

2% [:hDegl2d P c Fit panel
File Edit Cptions Fitter Tools Settings
Do 120, e 3 Mame Minimizer
oo o ;3,5120“:;“ : I H use polynom of order |1 i’
: me" ||| [Fiter Peak finder | ,
30 e Variant 1 | ROOT (2) | Variant 3
E overtaw 0 [Cata Models
e :_ Infegral 27328404 Daral'l Moise factor, 2
250 E— kinimal noise
F |5
200
150 Channel sumup
F 2 -
100 -
gl Rehuild| e
2300 2100 2500 2600 2700 2800
C: Ready 4 | Use padl Find | Fit | Dirauy | Pars | Attached to panel; v 0 . Fitter: Fitter

Figure 10. Peak finder setup page

5. press Find button to perform peak finder;
6. if necessary, adjust peak finder parameters and press Find button again;
7. press Fit button.

2% [:hDegl20 P c Fit panel
File Edit Options Fitter Tools ZSettings
Deq 120_F RDen 20_F, Marme Minimizer
o r] - I H use polynom of order |1 i’
F wean 2676 IFIU.EI' Peak finder I
350 - Tl Varlant 1 | RODT (2) | Variant 3
E ousrtow 0 Data hModels
e :_ Infegral 27928404 Da’ral’l Moise factor: 3.2
250 f— hinimal noise
2003— I5
150 Channel sumup
r Fy
100 I2 z’
L Rehuild |
3300 200 2500 2600 2700 2800
C: Ready 4 | Use padl Find | Fit | Dirawy | Pars | Atached to panel: ¥ 0 . Fitter: Fitter

Figure 11. Results of peaks finding

6.6 Expert tool

The layout of Fit panel in Expert mode can be seen at Figure 12.

%% 0 :hDegl20 P c Fit panel
File Edit Options Fitter Tools Settings
Depi120_P. [
tomwerp Element Tl Class name: TGo4Fitter
F
aE ®-Data Mame IFitter
g -Datall : , ,
300 Inbgral 27320+04 arMadels Title IFIU.EI' ObJECt
F m-Pol_0
250 - B-Pol_1 Fit function type
200 E-GaussO Chi sguare _"l
E p-Gauss]
150 r-Ohjects Associations:
E F-Actions [ratal: Paol_0 Pol_1 Gauss0 Gauss]
100 —Finder
E —AmplEstim
o L Minit
Y500 a0 éslnn' BT 'z1|nn' — 2800 SRS
-‘
€ Ready 4 | Use padl Find | Fit | Draw | Pars | Attached to panel: ¥ 0 . Fitter: Fitter

Figure 12. Expert tool

On the left side situated hierarchy list of structures and objects inside fitter. Usually each item
represents one object (data, model component, parameter) or aggregation of objects.

Top item in the list corresponds to fitter itself. Fitter item always has following sub items: Data with
list of all data objects, Models with list of all model components, Objects with list of all reference to
external objects, Actions with list of al action objects, Results with list of result values. Selecting of
one item on left side activate appropriate setup page on right side of fit panel, where all relevant
parameters can be set. For each item in the list exists a set of allowed operations, which can be
activated via right-mouse button popup menu. This menu also automatically appears in menu of fit
panel.

Thistool givesfull control under fitter. For instance, user can specify any sequence of actions for fitter
or use transformation objects for data axis. There is more operation to setup axis ranges for each data
or model component. In general, this tool should be used in case, when Wizard tool do not provide
requested functionality, which is existsin fitter.

7 References

1. T.Hauschild, M.Jentschel, Comparison of maximum likelihood estimation and chi-square
statistics applied to counting experiments, Nucl. Instr. and Meth. A 457 (2001) 384-401

2. V.A.Muravsky, S.A.Tolstov, A.L.Kholmetskii, Comparison of the least squares and the
maximum likelihood estimators for gamma-spectroscopy, Nucl. Instr. and Meth. B 145
(1998) 573-577

3. ROOT reference guide, http://root.cern.ch/root/htmldoc/Classl ndex.html

4. F.James, MINUIT, function minimization and error analysis. Reference Manual. Version
94.1. http://wwwinfo.cern.ch/asdoc/minuit/minmain.html

