The Go4 Analysis Framework
Introduction V4.5

J.Adamczewski-Musch, M.Al-Turany, D.Bertini, H.G.Essal, S.Linev
29 July 2011

Content

The Go4 Analysis Framework INtrodUCLION VAL ...ttt e e s 1
N 0T (o) TSSO 6
A | 411 7o o L1 1o o SRR 7
211 Go4 tasks With all COMMUNICELIONSccoiueiiiirieiririeiee ettt sttt st e e s seeneeseseeneens 7
212 LoV g S o = o1 7
213 Other analySIS TUNCLIONS.........c.eiiiieiieie ettt e se et e s re s te s tesaeese e e e nteseesbesresaeeneeneenseneents 9

G T o 7 N = Y £ SRS 10
T A Y 7= s o sSSP PPN 10
3.2 Event classes, INTEIfACE IO MBS.........c.vi ittt ettt et e et s e s be e e be s s beeebesebeesabessbeesabesssessnrenan 10
321 A SIMPIE EVENT IOOP ...ttt bbbt b bbbt b e b et b b et bbbt e e ens 10
3.3 ANEIYSIS SO ClASSES. ...ttt ettt bbb b e Rt b e bRt b b et b e b e ene b e ene s 11
34 ODJECE MENAGEIMENTeiitieeieeee ettt h e h et e eese e be s beebeebe e st eaeese e beseeebeebeeaeemseneenbeseesbenbeaneeneeneaneas 11
34.1 LT o= TSP 11
342 (GO PAIAIMELENS......ecueeeeee ettt ettt ettt ettt e bt e bt eabesaeesh e e ehe e sbe e be e e e eaeeeaeeebe e bt em b e eabeeanesheesheeseeeanesneeaneeans 12
343 GO CONAITIONS.veiteeetietesieteste sttt sttt sttt e se et st e seebesbeseebesbeseesesbeseeseebeseeseebeseeseebeseesenbeseesesbeseesenbeneenens 12
35 AnalySiShase Class TGOAANAIYSISc.ccecieeeieiesie st st etee e ste st e este s teste e e e e e st e tesrestesaesssesseseeteseestestesneeneeseenes 13
351 User SUDCIASS Of TGOAANGIYSIS......ccuecuieeeieiiese st st etee e eteste e s e s e te s e esteseestestesaesae e s eseeseesteseesresseennensessens 13
1T IV =TT =g T= VS S o] 0= P 15
3.6.1 The godanalySiS MaIN PIrOGIAIMccuerereresereeeeeereesteseeseessesseeseessessessessessessessesssessessessessessessesseessesennses 15
3.6.2 Command 1iNe MOUE (DAECN)eeeeeerese sttt sre e e e e stesresresneeseeneensennens 15
3.6.3 Creating thE USEN GNAIYSISeiuieeiiiierieieete ettt sttt et b et b e b e b eb e se bt beseebesbeseebesbeneeneas 16
364 DEfAUIT USEN @NBIYSIS.ieiuiitirieiieierieeei ettt bbb e et b bbbt b bt b et b b 16
3.65 ANalysis controlled DY GO GUI ..ot 16
3.6.6 Analysisas server for MUItIPIE GO GUIS.......oo.o it e b 16
3.6.7 Configuration Of BNBIYSIS.c.ciiiiiiire ettt et b et e e e e e see b e sbesaesae e e enteneens 17
3.6.8 SUPPOrt Of OlAEr @NAIYSIS COUE........eieiieite ittt et bbbt e e e e besee st e sbesaeeae e e enteneens 17
3.6.9 SEING UP SN KEY ...ttt ettt e e sttt ae b e e e e st e saesbeseesbestesasesee e enteseesbestesneeseensensensens 17
3.6.10 Start-up of GUI CONLrollEd @NAYSIS.....cceiiiiiiiieciereee ettt e b sre e e e e e s 18
3.6.11 Submit SEttingS and rUN GNAIYSIS.......cceiieiiiisereeie et e e s e te e s resre e e esae st e besresresreeseeseeneeneees 19
3.6.12 Shutdown Of the aNalYSIS CLIENEc..oveieie et ene e e e e s 19
3.6.13 Disconnect or SNULAOWN @NAIYSIS SEIVEScuevueiueeiereeiesiesesese et e eesee s et sre e e e e seentesresressesseeneeeeneenes 19

A ANAIYSIS EXAMPIES......oeceeieecee ettt b et b e bt b e R e bR bR b bt bbbt et b b 20
N 4= Vs Eo o L= o o OSSPSR PPR PP 20
411 ST 1070 P PSR PT PSR URTPTSTRRPPTN 20
412 L0413 (= o U U RSO U PO SURPRPPR 20
41.3 LI o E C: oTO TSRS 20
4.2 USING the EXAMPIES A Sottt et e et bbbt aeeae e e e b e seeebesbeebesbe e e eneeseaneas 20
4.3 Prepar@the PACKAOES.......coi ettt e e sttt b e et e e e e s e et e be s ee e beeReeReeRe e e et e seentesreereeReeneeneenrenrs 21
44 SIMple eXamPle With ONE SEEDocueiiceeccce st s e et s re st e s aesaeeae e e esteseesbestesresreeneeneeseeneas 22
441 VN PIOCESSON ...ttt ettt ittt ettt ettt ettt ettt ettt ae e s b e e bt e s b e e be e e sbe e e be e e bee e ba e e nbee e be e e s bee e ae e e nbeeenree e e 22
442 [01 (= £ OO P RPN 22
443 AULO-SAVE FIlE MECHANISM....c.eiiiiee bbbt e e ens 22
444 [Tz 11010 1= Koo N = 22
445 Adapting the EXAMPIE ... bbb et b b 23
A5 EXAMPIEWITN ONE SEED. ..ottt bbbt bbbt bbb e ens 24
451 AANBIYSIS ClBSS.....eeitieeteete ettt bbbt b et b bR bR R bR R Rt R bt et bt e bt e e ens 24
452 F N A= TS S L o SRS 24
453 ST 1001 [£ ST SRS 24
454 AULO-SAVE FIl @ MECHBNISIM. ... ettt s ee b bt ae s ae e e e s 24
455 [tz 10010 1= oo N = 24
45.6 Adapting the BXAMPIEot a e et r et e re e r e ae e nae e enen 25
4.6 EXAMPIEWIth WO SEEPS.....iiteieeiiiitieieeeereesesie st st et e esae s e s testesaesse e e eseeseesteseesresaeeseeseensenseseenteseessensenneeneesennees 26
46.1 S = (0 LIS = [0 o RS 26
4.6.2 = o1 0] T 0] 7 o RS 26
46.3 Steering methods in processor function BUITAEVENLccoiriiiineinene e 27
464 SEED TWO: BNBIYSIS ..ttt ettt sttt b b e b bt e bt b e s e bt bt h e bbb e bt b e ne b e ne s 27
4.6.5 =0 1< (= £ TR PRPRIN 27
4.6.6 (00T 11 Lo <SSOV 27
4.7 Example with SOme a0vanCed tECNIQUES...........cierirerieie ettt sttt e ettt sae s e ae e e eeeseesbesbesbesbe s e enseseaneas 28
471 SEED ONEL UNPACK ...ttt sttt ettt s e e b e be e ae b e e et e se et e sbesheebeemeeae e s enbeseeebesbesaeeneeneantaneans 28

4.7.2 = oI AT = = £ RS 28

473 [01 (= £SO PP USSPT 28
474 (00 0T 11 o] = PSSR 28
4.8 Example of analysiswith auser defined eVENt SOUICE...........coociiiriiirineere s 30
4.9 EXAMPIE Of @NEIYSIS MESN....cuiiiiiitieeietere ettt bbbt bbbt bbb et b e e et bt e e s e ens 30
49.1 SEIUCTUNE. ..ttt ettt ettt et h e be e bt et e e at e sae e eh e e ehe e ehe 2 be e e e e ae e eae e eReabeem b e eabeeaeesaeesheeseeeanesneennenans 30
49.2 S o U L0 I 1< o1 31
493 0V L= S = o OSSR 31
494 (001170 0= 1 o o SRS 31
495 USAQE Of The EXAMPIE ... st s be s ae e ae e e e s ae st e bestesresreennennennens 32
HOW t0 USETHE GO GUI ...ttt sttt sttt et e st et b e saene et e st e e e seneenennn 33
5.1 GUI MENUS... .ottt sttt se bbbt b e e st e e e e e e Ee e b e SR e e R e e ae e s s e e e R e sReeR e eh e e st e s e e ae et e seeebenbeeneenne e ennes 34
511 File, TOOIS, ANAIYSIS IMENUS.......ccueieieeeiereisese e st e e e st e et sae e e se e e seesressesseesee e enseseestessesneenenneeneenes 34
512 HEID MENUL ...t b bbbt b b s e bbb et b e b 34
513 SEITNGS IMENU. ¢ttt b bbbt s e b e e bt s e e bt e b e se e bt e b e seeb e sb e seebe e b e seebeebeseenenbeneeneas 35
514 R AT T (0TS = oL P 36
A oo 1T o = =S (o 1 LU RSOSSN 36
LG T I 1 0ot g 1= 0 = £ SRR 36
531 Launch analysistask in ClIENt MOOE ..o et 36
53.2 Launch analysistask iN SEIVEr MOOE.......c.cciii e st sr e s be s resaeene e e et es 37
533 CONNECE t0 EXISLING ANAIYSIS SEIVEN ...c.viivecieeieceeeeee e ste sttt e e et e s e te s testestesae e e e ssanteseestestesneeseensensessens 37
LN N = VS FoY o711 (0] SR 39
54.1 (©o 01170 0= 1o 0 1771 o (0 YRS 39
54.2 ANAYSISTEMING WINAOWoviieeeeciesiese sttt e reese e e e e seenteseesrensenneeneenennees 40
54.3 MaCro eXeCUtion iN the @NAYSIS.......ccueierire s e e e e e seeste s reeneene e e eneenes 40
544 AULO-SAVE FIlE MECNANISM. ...ttt b et a et e e st et e seesbeeseeneeneeneenees 40
545 MUITIPIE TNPUE FITES. ...ttt bbb bbb bbb 41
5.4.6 USEr dEfiNEd BVENE SOUICESoveieieeceieeee ettt sttt sttt st ae et e st e besbesbeese e e enaeseesteseesnesseennensensens 41
54.7 SIS (5] 1010 411 (o TR 42
5.4.8 A 2 T @ 11To 11 (o ST SS 43
T I 0= CTe 73 o (0 1T = SRR 45
551 R oY= oo 10] OSSR 45
55.2 GENENal TUNCHIONGIILY ...oveieciececece et e e s e st e s re st e st e e aeese e e e teseesbesnesaeeneennenseneens 46
55.3 FN AT= YA oY 0] L 1= oo o K= P 47
554 QLI L T 00 TR (o 1o 07 o (S 47
555 ISR 0 0= w1 o o = P 47
556 BIOWSING FIIES ...ttt bbb bbbt b bbbt b b 47
557 HiStOgram SErVEr COMMECTIONoiuiuieiirieieiertee ettt bbb bbbt b e b b 47
558 Resetting and deleing ODJECEScouiiiiieieeree bbb bbbt 48
B8 THE GO trEE VIBWES ...ttt sttt et h et e et s bt bt eh e e it e ae e se e beseeebeeheeaeen s e neembeseesbesbeeneeneeneaneas 49
5.6.1 [0 To I 0700 TSRS 49
5.6.2 Remote mode (dynamic liSt hiSIOGram)coeieiirieie et e s 49
5.6.3 Creating @NEW NISIOGIAMceiieierese ettt e et s e e be s be s besbesaeesee e anteseesbestesaeeseennensensens 49
5.7 ThE GO VIEW-PANEL.......ecui ettt sttt e e st e te s be s beeteeaeesee st e beseesbeeaeeneesseseenteseestesaeenneneeeentes 50
571 =1 1= 0 LU OSSPSR 51
5.7.2 0T 41 0 T OSSPSR 51
5.7.3 S = ot 0 1= T TSR PSTRPRT 51
574 L0 01101815 1 1= 0 TS 52
575 Draw OptioNS @nd 8XIS SCAIINGcoveuerrerieirierieeeiesiee ettt b bbbt b bbbt st b e b b 53
5.7.6 Channel and WINAOW MErKENS.........cooiiiiiiiieieiere et st se e e seestesresneeseeeenseneens 55
L3RS T oo [o] o SRR 57
581 Conditions editing in viewpanel marker @ditor ... 57
582 (| oo Talo [N L0 g =" |1 (o] USSR 58
5.8.3 0T 0] = o S PSTS 59
584 ConditioNS BOUN 0 PICIUINEScveiiiiiesie ettt e e s et s ae st e s besae e e e e esaesresbesresneeseennenseneens 60
5.85 (1= 11 To [0 0o [0] = RSSO 60
oIS T (1= TSRO PPSRPSN 61
oI L0 T] | TSP RPN 63
TN R =011 (= £ ST TS PP PP SPP 65
5111 Parameter OIJECES. ..ottt ettt bbb e bbbt r e 65
Lot I o 0= 1 = o [(o SR 65
5.11.3 Parameters CONtANING FITLEIS.......couciiicise ettt 66

LI B 0= 0 T o 1 £SO 67

10

13

L300 220 R B 1Y =3 o T = [o S 67

LN 1Y (= =X - 68
5123 ENLrY fOr @VENE TOOP ...viiieiiteieieiteeiest ettt sttt b ettt b e bbbt b e b b 68
5.13 Histogram/condition INfOIMELION...........coireiririeire ettt bbbt b e e b e seene b seeneas 70
TN S V7 o T 1o 0 7= 4o o SRS 70
TN T T = = APPSR 71
LT T U ==] | TSP 71
LT 20 @ ¢ oo @ 27 SRS 71
5.17 MaACrO €XECULION 1N GUI c..oueiiiiiiciicie ettt st sttt sttt se bt ese e b e e beseebesbeseebenbeseesenteneesens 72
ANAlYSIS SErVEr fOr ROOT MACIOS.......ccuiitieiieeeitesiesteseeteseseeeessestestestessesseessessassessessessessessesssessessessessessessensesssessens 73
(S35 RN (V1= 1 070 SR o o) o = ol (=0 [= 1 1 o SR 73
6.2 Methodsfor run CONrol @ EXECULION........c.ciirieirierieirie ettt st sttt se b b e s be st neeneas 73
LT T o 110 == 74
Control of remote Go4 analysis from @ ROOT SESSIONc.eiuieriirieieirieieesie ettt sbe e s 75
7.1 T QTR = 7.2z o o R 75
7.2 CONNECING the BNEIYSIS .. .ceciiitieeiite ettt b e et b e s b e b st bt beseebesbeseebe st nneneas 75
7.3 Controlling the analysSiS by COMMENG..........ccoiuiiiiii e et sb e s e e 76
T4 TBIOWSES EXEENSIONS......eueiueeuieiereiatesteeteeteeeaseeseesbesaeebeesesaeaaeeaeeabesaeebeeaeaaeaasess e besaeeheeaeaaeaneeseebeseesbesaeeneenseseentas 76
The Go4 COMPOSITE EVENE CIASSES.......eiuiiueeiirieie ettt et s b e bt re e e s be st e sbesbeeae e e enbeseesbesbesaesseensanseseans 77
S35 A 1 oo o 0o 1o TSP STPSPTSN 77
8.2 Application ProgrammerS INEITACE.cciiieie ettt st st e e se e te s ee b e s ae e e eneeeeneas 78
ST T - 1 1o = R 79
Lot T =" o =P RSR 82
Table of Menu Keyboard SNOMCULS............couieiiece e e sre e ene e neeneas 84
Y= A O =SS =Y BT 0 86

LS 1= N\ o (=S 88

121 New featureSin GOA VA.S (JUIY L11) ..ottt et sttt 88
12.2 New featuresin Go4 V4.4 (NOVEMDEN 09)c.ciiriririerieiirieieesie ettt st sttt bbb b e 89
12.3 New featuresin G4 V4.3 (JUNE 09)cviiiieeiierieesesieese e e steseste s e ses e stesesseste e ssestesessestesessessenessessesessenseneans 90
124 New featuresin G4 VA.2 (APFil 09)ceiiiieiieriee ettt st sttt st e sesbe e sesbe e esesbe e esesbenens 90
125 New featuresin Go4 V4.1 (OCIODEN 08)......ccccviirieiiierieisiesieie s e e s e e se e ste et st sesse e e seste e sseste e esessenens 91
12.6 New featuresin Go4 V4.0 (FELIUAY 08)ccceceiiiiiiericieriesestestesteseeeeseestesre s e sresreeseeseetesaestessesnessesseensesenns 91
127 New featureSin GO V3.3 (MY 07) ...ccciiereeeieseee sttt sttt sttt st ettt sbe e st s te e sbesbeneees 92
12.8 New featureSin GO4 V3.2 (JUIY 06)c.ccceeiuerereresesieseeseeseesestestessessesseesesssessessessessessesssessessessessessessesssensessens 93
129 New featureSin GO4 V3.1 (MY 06)ccceeiueriereirriseseeeeseesteseestessessesseesesssessessessesssssesssessessessessessessesssensessens 93
1210 New featuresin Go4 V3.0 (NOVEMDEN 05)cccviiiereeierereseseseeseeeeseeeeseesesresseeseeseessesaessessessessesssensessnns 94
1211 New featureSin GO4 V2.10 (JUNE 05)ooveuiriirieiirierieiestereeie sttt sttt st sttt bbbt ebe bbb e b b 95
1212 New featuresin Go4 V2.9 (FEDIUBIY 05)coieiierieirienieiesie ettt st s bbb 95
1213 New featuresin Go4 V2.8 (SEPtEMBEr 04) ..ottt et s 96
1214 New featureSin GO4 V2.7 (JUNE D4)oceieeeierieeiesieestesee e s e ses e steses e ste et ste e testeseesestesessessesessesaenessessenenns 97
1215 New featureSin GO4 V2.6 (MY D4)cccoceeeierieeiieieee e s e sesteste e ettt ste et ste e seste et stenessesteensessensans 97
1216 New featuresin GO4 V2.5 (DECEMDEN 03)ciiiuiririeieieiie e sie sttt et e e et besaesae e e sesaesbesaesaesaesneeneeseans 98
1217 New featureSin GO4 V2.4 (AUGUSE O3)cceiirieiririeesienieeste et stesee e ste et see e sseste e seste et stenessessenessesseneans 99
1218 New featureSin GO4 V2.3 (MY 03)cccuiireririiieirieeesieese e te s te ettt et sse e testenessessenens 100
1219 New featuresin GO4 V2.2 (APFil 03)ccoeiiieie ettt sttt se et sr e st e sreeneene e e eneees 100
0 TSP 101

1 Editorial

Layout used in this document:

Text Times New Roman, 10 pt
Verbatimtext Courier new 9 pt
Menu items Arial bold 9 pt

Class names Arial italics , 9 pt
Methods() Arial italics , 9 pt

Go4 screenshots QT4 Style CDE, Font Arial 10pt
Icons in text must be cut from bottom and diminuished to be in line.

Einfligen->Referenz->Querverweis: Uberschrift+Uberschriftnummer/Seitenzahl

Einfligen->Referenz->Index und Verzeichnisse: Eintrag festlegen, Indexeintrag+Aktuelle Seite. (search for Feld)
Index entries can be edited in text (first:second)

Index aktualisieren (RMB)

Inhaltsverzeichnis aktualisieren (RMB)

2 Introduction

The Go4 (GSI Object Oriented On-line-Offline) Analysis Framework has been developed at GSl. It is based on the
ROQOT system of CERN. Therefore al functionality of ROOT can be used.

2.1.1 God4 tasks with all communications

Go4 has two parts: the analysis framework itself and a Qt based GUI. Both can be used independently, or together. The
separation of the analysis and GUI in two tasks is especially useful for on-line monitoring. The analysis runs asynchro-
nously to the GUI which is (almost) never blocked. The same analysis can be run in batch/interactive mode or in remote
GUI controlled mode. The GUI can be used stand alone as ROOT file browser and as histogram viewer for GSI stan-
dard histogram servers like MBS. Moreover, the analysis task can be run either as a client bound to one GUI (default),
or can be started as an analysis server with the possibility to connect several GUIs (one controller and arbitrary number
of observers with restricted commands).

gul o Preencer |
Analysis

— - QApplication
_ o - TApplication
. T = User GUI
| Event10: | User event @ > S
o R B - N e i
- Slfi:::r %8| | -Commands | |3 God GUI
- . W
- User § - Objects |
Histogram - Histogram
server client

— v ",
Histogram clients: ‘ Auto-save file | ‘ ROOT files

Histogram servers:

GSl histogram API

guils0

21.2 Go4 analysis steps

The Go4 framework handles event structures, event processing, and event 10. The analysis event loop is organized in
steps. Each step has an input event, an output event, and
Factory Factory an event processor. The output event calls the event proc-
step 1 step 2 essor to be filled. The event processor has also access to
the input event. In the current design the analysis is data
driven. A first event object (inputl) is filled from some
event source (input). An output event object (outputl) is
filled by an event processor object (processl) which has
access to both, inputl and outputl. Optionally the output
event may be written to a file (filel). In the next step the
input event object (input2) can be either the output event
object (outputl) from the previous step or retrieved from
qui147 the file. The second output event object (output?) is filled

by the second event processor object (process?) and can be

input2 = outputi

--w file2

optionally written to a second file.

The information needed to create the event and processor objects (which are deleted when the event loop terminates) is
stored in step factories which are kept in the analysis.

The processor and output event classes have to be provided by the user. The input classes for standard GSI event
sources are provided by Go4 (see chapter 3, page 10). Analysis and step factory classes are provided by Go4 or can be
implemented by the user as subclasses.

TGodAnalysis

-
-
-——

TUserAnalysis

Framework
User Code

Staps definition and comtrol

guil48

For normal operation, the Go4 analysis steps are designed to run subsequently. But in addition, each analysis step has
access to the output events of all other previous analysis steps, so it would be possible to let analysis steps logically run
“in parallel”, all starting with the output event of the first step, and all delivering their results to the last step that may

collect and combine them.

Chain of analysis steps processed sequentially
Each step can be en/disabled (framework)
Inputioutput can be switched (framewocrk)
Partial 10 (steered by application)

Each processor has access to all inputs!
Each processor has access to all parameters

guil49

2.1.3 Other analysis functions

Outside the analysis steps the user functions UserPreLoop(), UserPostLoop(), and UserEventFunc() located in the user
analysis class are executed as shown in the figure. In principle, they could be used to implement the full analysis with-
out using the step mechanism. But for setting up a new analysis the use of stepsis strongly recommended, because steps
can be controlled by the GUI and offer event and IO management.

In the event loop, after processing the steps and UserEventFunc() the Go4 dynamic list processor is executed. This
processor can be dynamically configured from the GUI to check conditions and/or fill histograms.

UserPreLoop

ProcessAnalysisSteps

init abjects

UserEventFunc
histagraming

ProcessDynamicList

TTree registry /‘_?f
UserPostLoop

onling TTrag: Oraw(]

resef ohjecis

guil46

3 Go4 Analysis

The Go4 concept consists of base classes (interfaces) for event structures, algorithms, and 10, which can be imple-
mented by user subclasses or by framework plug-ins (general service classes) delivered with Go4. Class descriptions
and reference guides are available on the Go4 Website http://go4.gsi.de.

3.1 Event base classes

The interface classes provided by Go4 (a detailed description is in the reference manual) are normally not seen by the
user. Starting with the examples (see chapter 4, page 20) one can better study derived working classes.
TGo4EventElement: Defines the event structure and methods to clear this structure. Input and output event structures
of each step of the anaysis are instantiated once at initiaization. In the event loop event first cleared (via Clear()
method call) and than filled by the source class, where BuildEvent function is defined.

TGo4EventSource: The source of the event data. This can be e.g. afile of a certain format, or a socket connection to an
event server. The event source class has a BuildEvent(TGo4EventElement*) method, which fills event structures. In
addition, CheckEventClass(TClass*) method can be implemented to check event class during initiaization. The class
constructor should open (connect) the source; the destructor should close (disconnect) it properly.

TGo4EventStore: An object responsible for storing the event data. This can be e.g. aloca file of a certain format, but
may as well be a connection to some storage device. The virtual method Store(TGo4EventElement*) is used to store the
pointed event object. The class constructor should open the storage; the destructor should close it properly.
TGo4EventProcessor: An object that contains the algorithm to convert an input event object into an output event ob-
ject (both of class TGo4EventElement). Thisis a subclass of TGo4EventSource, since it deliversthe filling of the output
event from the input event. The event processor implementation has to “know” the input and output event classes. Ac-
tual code of converting the data (i.e. actually performing the analysis) should be implemented in BuildEvent method.
TGo4EventFactory: Defines the actual implementations of all the above. Go4 uses a factory design pattern to create al
event class objects at initialization. The virtual methods:

CreatelnputEvent(), CreateOutputEvent(), CreateEventSource(TGo4EventSourceParameter*), CreateEvent-
Store(TGo4EventStoreParameter*), CreateEventProcessor(TGo4EventProcessorParameter*) have to be defined in the
user factory. They create the respective objects and return the pointer to it. The default factory provides methods
DefEventSource(classname), DefEventProcessor(objectname, classname), DeflnputEvent(objectname, classname) and
DefOutputEvent(objecthame,classname).

Simple examples of a running Go4 anaysis can be found on directories $G4SYS/ Go4Exanpl eSi npl e,
$CHASYS/ GodExanpl elSt ep, and $GASYS/ God4Exanpl e2St ep.

3.2 Event classes, interface to MBS

Go4 offers predefined implementations of the event base classes, including an interface to the GSI data acquisition
Multi Branch System MBS, the GSl list-mode files, and ROOT files.

TGo4EventElement (base class):

TGo4MbsEvent MBS event format 10-1
TGo4MbsSubEvent MBS subevent format 10-1
TGo4CompositeEvent Base class for all composite event structures
TGo4ClonesElement Clonesarray container for composite event
TGo4EventSource (base class):
TGo4MbsFile (read from *.Imd list-mode file with format 10,1)
TGo4MbsEventServer (connect to MBS event server)
TGo4MbsStream (connect to MBS stream server)
TGo4MbsTransport (connect to MBS transport server)
TGo4RevServ (connect to remote event server)
TGo4FileSource (read from *.root file from Go4 tree, i.e. onefile containing one TTree per
analysis step)
TGo4EventStore (base class):
TGo4FileStore (write to *.root file with Go4 tree, thisfile can be used as TGo4FileSource
later)
TGo4BackStore Use TTree existing only in memory to view and analyze event structures.

These classes can be used directly to write simple analysis.

3.2.1 A simple event loop
Using these implementations, getting MBS event data into ROOT (without Go4 framework) could look like this:

10

#i ncl ude " Go4Event Server/ God4Event Server. h"
#i ncl ude " Go4Event/ TGo4Event EndExcepti on. h"

i nt

mai n() {

event - >Set Event Sour ce(i nput);
event->lnit();
Int_ t eof = 0, nunEvents = 0O;
whi | e(eof ==0) {

try{

TGo4Event Sour ce* i nput = new TGo4MisFile("file.lmd"); /1 MBS list-node file
/1 TGodEvent Source* input= new TGo4MisTransport (" node"); /1 MBS transport server
/| TGodEvent Sour ce* input= new TGo4MisSt rean(" node"); /'l MBS stream server
/| TGodEvent Sour ce* input= new TGo4MisEvent Server ("node"); // MBS event server
/| TGodEvent Source* input= new TGo4RevServ("node"); /1 Renpte event server
TGo4Event St ore* output = new TGo4FileStore("output”,1,5); // split level, conpression
TGo4MosEvent * event = new TGodMoisEvent ();
/1 read event

event->Fill();
nurrEvent s++;

/1 eof throws exception

out put - >St ore(event) ; /Il wite to file
}
cat ch(TGo4Event EndException& ex) { eof=1; } /1 mark end of file
catch(...) { cout << "Error" << endl; eof=2; } /1 any other error

cout << "EOF after " << nunBEvents << " events" << endl;

}

The eventsin the ROOT file can be retrieved by program, but not in tree viewers. For the use of tree viewers, anew
output event object should be filled and stored.

3.3 Analysis step classes
As mentioned above a Go4 analysisis organized in steps. The information needed to instantiate a step is kept in the step

factory.

TGo4EventServerFactory (base class): (contains factory methods that already know the above implementations.
User step factoriesmust inherit from this class!)

TGo4StepFactory This TGo4EventServerFactory can be used in most cases as user factory to

TGo4AnalysisStep

set up the analysis steps (example 1St ep).
objects of this class hold the definition of an analysis step.

Each analysis step has at least an input event object, an output event object and an event processor object. Additionally,
it can have an event source (e.g. TGo4FileSource) and an event store (TGo4FileStore) instance. An analysis step is set
up by a TGo4EventServerFactory subclass, i.e. TGo4StepFactory or a user defined subclass.

3.4 Object management

3.4.1 Go4 objects

[J Canvases

Objects used in Go4 are organized in ROOT folders. The folder structure is sent to the GUI.
Objects must be registered in the analysis to be seen in the GUI browser. Registered objects
can be located in the processors. The top folders as seen in the GUI are shown on the |eft side.

(3 Conditions The methods to register/locate objects are (pointer to the appropriate object, optional subfolder

(3 DynamicLists as string, name including subfolder as string):

(3 EventObjects o AddHistogram(pointer,subfolder), GetHistogram(name)

(&8 Histograms . AddAnaIysisCond?tion(pointer,subfolder), GetAnalysisCondition(hame)

: . AddParameter(pointer,subfolder), GetParameter(name)

(3 Parameters . AddPicture(pointer,subfolder), GetPicture(name)

[Pictures These methods are available in TGo4Analysis and TGo4EventProcessor subclasses. Objects

& Trees created in a TGo4Analysis subc_lass can be located in all event processors. Objects created in
_ event processors can be located in all subsequent event processors (steps).

(1 UserObjects Registered objects are stored/retrieved to/from the auto-save file, if enabled. Retrieval is done

qui151 after creation of the analysis singleton before the creation of the steps. When an object re-

trieved from the auto-save file is created in a processor the retrieved object is replaced (stored

data lost). When an object is created in the analysis singleton it will be replaced by the one retrieved from the auto-save
file except histograms which are not retrieved in this case. This means that histograms created in the analysis singleton
are always empty after startup.

11

3.4.2 Go4 parameters

Parameters used in the analysis are implemented by the user in classes derived from TGo4Parameter. Such objects are
registered to the framework and can be edited by a generic parameter editor (see chapter 5.11.2, page 65). Parameter
objects can be created in the user analysis or the event processor class. Parameter objects are loaded from an optional
auto-save file after instantiation of the analysis and before instantiation of the processor objects. When created in the
analysis the values set in the constructor are therefore overwritten by auto-save. To use the GUI editor, the Up-
dateFrom() method must be implemented to update the local (active) parameter object from the modified one delivered
by the editor. In this method it is up to the user to ignore certain members or to execute whatever he wants. E.g. one
could use parameters to execute commands. Parameters in the auto-save file can be edited. In the editor they can be
saved/retrieved to/from files. Several mechanisms can be implemented to handle the parameter member values. The
main question is how restricted the methods of modification should be.

1. Maodify values only in the class constructor, then recompile. To prohibit changes by editor, the UpdateFrom()
method could be just a no-op to avoid undocumented changes. The parameter object should be created and reg-
istered in the processor constructor (after possible auto-save restore). Pro: the parameter values are aways
strictly defined as coded. Con: the parameter values cannot be changed easily.

2. Modify values by editor, use auto-save to store. Create parameter object in analysis constructor. Auto-save
must be enabled. Pro: parameter can modified by editor (UpdateFrom() method must be implemented) and
changes will be restored from auto-save. Con: when the auto-save file must be deleted for some reasons. the
latest values are lost.

3. Useamacro to set values. This macro must be executed in the processor constructor (after auto-save restore).
UpdateFrom() could just execute the macro to avoid undocumented changes. Pro: values are kept in a text file
and can be modified without recompile. Con: parameter cannot be changed by GUI editor.

4, Best combination: one can use macro saveparam C([fil e], wi | dcard, prefix) from$GHASYS/ nacr os
creating macros (one per parameter) to set al parametersto their current values,. The names are built from pre-
fix and parameter name. The macro can be executed in CINT (then the parameters are taken from afile), or in
the GUI or in the analysis. The parameter is created in the analysis. Values are set from macro in processor
constructor. By this method parameter values can be edited by GUI, or macro can be edited. Last version will
be used independently of auto-save.

Example:
root[0].x saveparam C("nyfile.root","*" "setpar")

would produce macros set par _par 1. C, set par _par 2. C etc. The macros have no arguments,
e.g.set par_par1().

3.4.3 Go4 conditions

Conditions are objects holding window limits or polygons. One or two values can be checked against the limits or the
polygon, respectively. In addition the conditions have test and true counters. They can be set to return aways true or
false or return the inverted test result. They can be edited by the GUI (see chapter 5.8.2, page 58). They can be used to
steer the analysis flow. They are saved/retrieved to/from the auto-save file, if enabled. They can be edited in the auto-
save file. In the editor they can be saved/retrieved to/from files. If a mechanism like for the parameters (4) is wanted,
one can use macro savecond. C([file],wildcard, prefix) from $GO4SYS/ macros creating macros (one per
condition) to set al conditions to their current values,. The names are built from prefix and condition name. The macro
can be executed in CINT (then the conditions are taken from afile), or in the GUI or in the analysis.

Example:

root[0].x savecond. C("nyfile.root","*" "setcon")

would produce macros set con_condl1. C, setcon_cond2. C etc. The macros have three arguments: restore flags,
restore counters, reset counters (0=no, 1=yes), e.g. set con_cond1(1, 0, 1).

12

3.5 Analysis base class TGo4Analysis

Once the user has defined hisher event class implementations, the analysis steps can be created and registered to the
Go4 analysis framework. The actual framework consists of the TGo4Analysis class, which is a singleton (i.e. there is
only one framework object in each process). This class provides all methods the user needs, it keeps and organizes the
objects (histograms,...), it initializes and saves the data objects.

The user analysis is set up in a subclass of TGo4Analysis, i.e. TUserAnalysis. Constructor and destructor of this user
class, in addition with the overridden virtual methods UserEventFunc(), UserPreLoop(), and UserPostLoop() specify the
user analysis. If these functions are not needed, one can also use the TGo4Analysis class directly, as shown in the exam-
pleSi mpl e.

All analysis steps must be created with initial event parameters (input and output filenames) and auto-save settings. Ad-
ditionally, some user objects may be created and registered here. Note that histograms created and registered here
are saved to but not updated from the Go4 auto-save file. Persistent histograms of the analysis should be created
in the UserPreLoop function. Existing conditions and parameters, however, are updated when the auto-save file
is loaded. In the constructor of the TUserAnalysis class the analysis step objects are created, each containing instances
of its user step factory. The analysis steps are registered at the TGo4Analysis framework, input and output events of
subsequent steps are checked for matching. Furthermore, other objects like histograms, conditions or parameters can be
created in the constructor and registered, so the framework is responsible for their persistence. Such objects can also be
created in the step processors.

In addition to the event processors, the UserEventFunc() allows the user to specify analysis operations that are called
once in each analysis cycle, e.g. filling certain histograms from the output events of all analysis steps. The UserEvent-
Func() makes it even possible to call an external analysis framework event by event without using the Go4 Analysis
Steps at all, thus taking advantage of the Go4 object management and remote GUI features.

The UserPreLoop() and UserPostLoop() functions may define actions that are executed before starting, or after stopping
the main analysis loop, respectively.

Once the user analysis class is defined, there are two modes of operation: The single-threaded batch mode, and the mul-
ti-threaded client mode that connects to the Go4 GUI.

3.5.1 User subclass of TGo4Analysis

Up to Go4 version 4.3 the user subclass of TGo4Analysis has been instantiated in the user main program MainUserAna
lysis. In this case the arguments of the constructor could be chosen arbitrarily. With Go4 version v4.4 a standard main
program (see next section) can replace the MainUserAnalysis. When using this main program the constructor of a
TGo4Analysis derived user classis called with a standard argument list as it is used with main programs. The construc-
tor of auser analysis must therefore be:

TUser Anal ysi s:: TUser Anal ysi s(int argc, char** argv) : TGo4dAnal ysi s(argc, argv)
{

cout << "User analysis << argv[0] << "created" << endl;
}
Note that ar gc isaways> 0 and ar gv[0] isawaysthe analysis name when called from standard main program.

Example
The user analysis could create one analysis step with input from an MBS file with the following code fragments (note
that we use the standard Go4 step factory class and afixed file name):

TUser Anal ysi s:: TUser Anal ysi s(int argc, char** argv) : TGo4Anal ysi s(argc, argv)
{
const char* userinput = “data.|lnd”;
TGo4St epFact ory* factory = new TGo4St epFact ory("Factory");
/1 the objects specified here will be created by the framework | ater:
factory->Def Event Processor ("Proc", "TUserProc");// object name, class nane
fact ory->Def Qut put Event (" Event", "TUser Event"); // object nane, class nane

TCGo4MosFi | eParaneter* input = new TGo4MosFi | ePar anet er (useri nput);

TGo4Anal ysi sSt ep* step = new TGo4Anal ysi sSt ep("Anal ysi s", factory, i nput, 0, 0);
st ep- >Set Sour ceEnabl ed(kTRUE) ;

st ep- >Set Pr ocessEnabl ed(kTRUE) ;

AddAnal ysi sSt ep(step);

}

/1l Exanpl e of using the event |oop functions for a trivial counting of events
/1l fEvents nust be defined in TUserAnal ysis. h:

13

Int_t TUserAnal ysis:: UserPreLoop() {
f Event s=0;
return O;

}
Int_t TUserAnal ysis:: User Event Func() {

f Event s++;
return O;

}
Int_t TUserAnal ysis:: User Post Loop() {

cout << " Total events: " << fEvents << endl;
return O;

14

3.6 Main analysis program

3.6.1 The godanalysis main program

Contrary to previous Go4 versions, it is no longer required to provide a user main anaysis program (typically called
Mai nUser Anal ysi s). Instead, the standard godanalysis program instantiates and runs user code compiled into a
shared library (typically caled | i bGo4User Anal ysi s. so). Most of the functionality previously implemented in
MainUserAnalysis is now in the user analysis class (subclass of TGo4Analysis), which is instatiated by godanalysis.
Existing analysis codes with explicit MainUserAnalysis program are still fully supported.

3.6.2 Command line mode (batch)

The main aim of batch mode is to process event data from files or other data source without GUI intervention. To run
the analysis in batch mode, godanalysis is called from shell with several optional arguments. For instance, the com-
mand:

shel | > godanalysis —file test.| ml —asf histos.root

will use filet est. | nd as input and store al anaysis objects (histograms, graphs) in file hi st 0s. r oot . The full
description of the argument listis:

godanal ysis [RUN] [ANALYSI S] [STEP1] [STEP2] ...[USER]

RUN: configuration, relevant for application run node

-lib name : user library to load (default: |ibGo4UserLibrary)

-server [nane] : run analysis in server node, nane is optional analysis nane
-gui nanme gui host guiport : run analysis in gui node, used by GU |aunching the analysis
-run : run analysis in server node (default: run if source specified)
-norun : do not automatically start event |oop

- nunber NUMBER . process NUMBER events in batch node

-hserver [nanme [passwd]] : start histogram server with optional name and password

-log [fil enane] : enable log output into filenanme (default:go4logfile.txt)

-hel p : show this help

-v -v0 -vl -v2 -v3 : log verbosity (0 - maximum 1 - info, 2 - warn, 3 - errors)"

ANALYSI S: common anal ysis configurations

-nane nane : specify analysis instance nane

-noprefs : do not use preferences file.

-prefs [file] . use preferences file, default file is God4Anal ysi sPrefs.root
-asf filenanme . set autosave filenane and enable it, default <Nane>ASF.r oot
-enabl e-asf [interval] : enable store of autosave file, optionally interval in seconds
- di sabl e- asf : di sabl e usage of asf

STEP: individual step configurations (steps nust have been created in analysis (see bel ow

-step name| nunber : select step by it’s nane or nunber (first enabled step is default)
-enabl e-step : enable step processing

-di sabl e-step . disable step processing

-file filenanme. | nd : use Ind file as event source

-file filename.|n : use Inm neta file as event source
-file @il enane . use Inm nmeta file as event source
-transport server : connect to MBS transport server
-stream server : connect to MBS stream server

-evserv server . connect to MBS event server

-revserv server port : connect to port of renpte event server
-random : use random generator as source

-user name : create user-defined event source
-source filenanme : read step input fromthe root file

- enabl e- sour ce . enable step source

- di sabl e-source . disable step source

-store filenanme . wite step output into the root file
-enabl e-store : enable step store

-di sabl e-store : disable step store

- append-store . append step store file
-overwite-store : overwite step store file

- backst ore nane : create backstore for online tree draw
-enabl e-errstop : enabl e stop-on-error node

-di sabl e-errstop . disabl e stop-on-error node

USER: argument |ist passed to the user anal ysis constructor
-X or —args [userargs] create user analysis with constructor (int argc, char** argv) signature
all following argunents will be provided as array of strings
first argunent is anal ysis nane

15

A list of valid arguments can be obtained by launching godanalysis without any arguments. Execution of godanalysis
can be terminated by pressing Ct r | - C. The analysiswill regularly close all event sources, store results of processing in
output files and then exit.

3.6.3 Creating the user analysis

On startup godanalysis loads the shared user library and instantiates the user analysis. There is a possibility to pass ex-
tra configuration parameters to the user analysis constructor, calling go4analysis with - ar gs or - x followed by a user
specific parameter list. Thislist is passed to the analysis constructor:

Exanpl e
shel | > god4anal ysis —nane Test Ana —args xxx.|nd

TUser Anal ysi s:: TUser Anal ysi s(int argc, char** argv) : TGodAnal ysi s(argc, argv)

{
I/l argc is 2

/1 argv[0] is "TestAna"
[l argv[1l] is "xxx.|md"
const char* userinput = “default.|nd”;
cout << "User analysis " << argv[0] << "created" << endl;
if (argc>1) userinput = argv[1];
TCGo4MosFi | eParaneter* input = new TGo4MosFi | ePar anet er (useri nput);

}

Similar to the argument list of the mai n() function ar gc defines number of parametersand ar gv contains parame-
ter values. First parameter in the list is always the analysis instance name (either set in the GUI launch panel or by
—nane argument, default is Go4Anal ysi s). When godanalysis is started without user-specific arguments, only
analysis name will be in the list and ar gc is 1. The user argument list can also be specified in the Analysis launch
panel of the GUI.

3.6.4 Default user analysis

In simple cases (only one step) it is not necessary to implement a user-specific analysis class at al. It is sufficient to
implement a processor (and optionally an output event) class. In this case godanalysis will search for such classesin the
loaded library and instantiate them, using the default TGo4Analysis instance and creating one default analysis step
(named Anal ysi s) .

3.6.5 Analysis controlled by Go4 GUI

In the interactive GUI mode godanalysis provides al the infrastructure needed to manage the connection to the GUI.
Usually, the Go4 GUI is started first and than user launches the analysis program via Launch analysis. Mainly for de-
bugging purposes one can instead use in the GUI Prepare for client connection menu command and than start the
analysis in an independent shell by command (same asiit is called by GUI):

shel | > god4anal ysi s —gui SoneNane gui host 5000

Here SomeName is an arbitrary analysis name, guihost is the host name where the GUI is started and 5000 is the port
number (may be different, is printed when GUI starts). Same input/output arguments, as in batch mode, can be specified
behind. On startup godanalysis creates the analysis framework and connects the multi-threaded analysis client to the
Go4 GUI. After the connection is established, the complete analysis framework can be controlled from the GUI. In sec-
tion 3.6.10, page 18 we describe in detail what is happening on startup of the analysis client and what effect the GUI
control actions have.

3.6.6 Analysis as server for multiple Go4 GUIs

When started from the GUI the analysis connects only this GUI and absolutely depends from it. If something happens
with GUI or GUI just closed, analysis execution will be terminated. However, it is possible to run the analysis as a
server, which allows to connect many GUIs (one controlling GUI and many observer GUIs).

The analysisis started as server independently from the GUI from a shell like in the batch mode but with argument —
server

shel | > go4anal ysis —server —stream nmbs-server -norun

As in batch mode, in server mode analysis will start its event loop if input was specified. To prevent this, the - nor un
argument can be add. To force event loop execution with default analysis parameters, - r un argument should be speci-

16

fied. An analysis to run in server mode can also be launched via Launch analysis menu command of the Go4 GUI
when selecting the mode as server.

A Go4 GUI is able to connect any such started server. Login of GUI to the analysis server may be with observer, con-
troller, or administrator role, respectively; their passwords can be set in user analysis code with DefineServerPass-
words() method. There can be only one controller or administrator, but multiple observer GUIs. Observers may only
view existing objects, but may not modify them or change analysis setup and running state. Controller may view and
modify objects and analysis configuration, but is not alowed to terminate analysis server. Only Administrator may
shutdown the analysis server.

See section 5.3.2, page 37 for more details on connection of the GUI client.

3.6.7 Configuration of analysis

There are several methods to configure the analysis which can be combined in a defined order:

Constructor of user analysis class

In any case the constructor is called first. All steps must be created. One may set up all steps like setting input and out-
put filenames, enable/disable steps. One may excecute a macro for that. One may use user arguments given by
godanalysis command (behind —x) or in the Launch analysis panel (Args).

Go4 preferencesfile

When launched from GUI, or started from shell by go4analysis command with the —ser ver or —gui option, and set-
tings had been saved before, these settings are now loaded from the file overwriting the coded setup. Default file name
is GodAnalysisPrefs.root. With —nopref s or —prefs <fil e> one can disablethisloading or specify a different file,
respectively. In the Analysis configuration panel adifferent file also can be loaded.

Argumentsto godanalysis

When started from shell now the arguments of godanalysis are used and overwrite the settings.

Hotstart file

When launched from GUI with hotstart file the complete setting from that file is used and overwrites the settings.

3.6.8 Support of older analysis code

In previous go4 versions up to 4.3 it was required to have a user MainUserAnalysis program which was launched via
the Anal ysi sSt art . sh script. In most cases that executable can be used as is. Since version 4.4 the GUI directly
callsthe MainUserAnalysis executable (or program or script as specified in the Launch Analysis panel, see section 5.3,
page 36) with same argument list as before. When Anal ysi sSt art . sh script had been modified and therefore the
old launch sequence is required, one should set shell variable GO4OLDLAUNCH=y es before starting the GUI.

In many real cases the godanalysis is able to correctly instantiate the user analysis, compiled into
I i bGo4User Anal ysi s. so library even if no (int, char**) constructor signature is implemented. To facilitate new
Go4 functionality and flexibility, it is recommended to move user code from MainUserAnalysis to user analysis class,
(i.e. TUserAnalysis) and remove MainUserAnalysis.

3.6.9 Setting up ssh keys

For launching the analysis on remote host from the GUI, password-less ssh login on this host must be enabled. It means,
when typing “ssh hostname” command in the shell, no any password shall be requested. To configure such password-
lesslogin, a private/public key pair must be created and the public key must be copied to remote host:

shel | > ssh-keygen -t rsa

answer all questions by RET or yes

shel | > ssh-copy-id -i ~/.ssh/id_rsa. pub hostnane

Now check with “ssh hosthame” again that keys are installed properly. Normally, at first time ssh will ask to add host-
name into list of known hosts. Answer “yes’ and try login again. Only if ssh works without prompting at all, you can
run analysis on that machine viathe Go4 GUI.

There is no longer necessary to configure ssh for running analysis on the same machine (localhost), while now Go4
provides possibility to run analysis directly via exec mode. This solves the nasty problem of configuring ssh and DNS
on machines which are not connected to anetwork at all.

From historical reason there is still rudimentary support of rsh for analysis launch. rsh in no longer supported in GSI,
thereforeit is not so good tested as other launch methods. For use of rsh, make sure that thefile. r host s existsin user
home directory and that it contains entries for the machine names you want to run the Go4 analysis client on. Thefile

. rhost s could e.g. look like this:
nodeO1l

node02

| ocal host

17

3.6.10 Start-up of GUI controlled analysis
When starting the Go4 analysis from GUI, the following actions take place in that order:

18

1

The Launch Analysis GUI panel started by @& reads settings from file $GO4SYS/ et ¢/ go4. pref s.
Based on settings in thisfile, the launch command is composed and executed. Depending on the analysis
mode (client or server) either - ser ver or - gui argument lists are passed to the executable.

TGo4Analysis or user subclass (e.g. TUserAnalysis) isinstantiated and initializes the analysis framework.
The analysis, if in client mode, connectsto the Go4 GUI. Optionally, the Go4 histogram/object server is cre-
ated. Note that the analysisin server mode does not connect automatically to the starting GUI, but waits for a
separate connect request with login and password from any GUI. Only after this explicit connection the GUI
gets control over the analysis server!

The analysis settings are loaded from the default preferences file Go4Anal ysi sPref s. root . A messageis
sent to the GUI (if successful):

“Anal ysis Client My/Cient: Status Loaded fromfile Go4Anal ysisPrefs.root”

Notethat all settings specified before in the compiled code (auto-save file name, event sour ces, etc.) are
overwritten if the preferencesfile exists.

The configuration settings are now changed by additional arguments, provided to godanalysis executable.
The analysis objects are loaded and updated from the auto-save file. The file name from the loaded analysis
settingsis used, if existing. Otherwise, the filename specified in the preceding user code by SetAuto-
saveFile(const chart* name) is used. If successful, amessageis sent to the GUI:

"Analysis Client MyAient: Objects Loaded”.

If auto-saving was disabled completely by calling

SetAutoSave(KFALSE), the auto-save file is not opened here even if it exists, and no objects are loaded! The
“overwritefilename” option in the auto-save settings must be disabled to recover objects of a previous
auto-save file; otherwise, all objectsin an old file of the same name are lost!

The analysis settings are displayed on the GUI. At this moment, the analysis configuration window pops up
and shows the active settings. Note that a GUI, connected to an analysis server, only in administrator mode
can change the analysis configuration.

End of analysis start-up. A message is sent to the GUI:

“Analysis Client My\ient has finished initialization”.

Note that now the analysisitself isnot yet initialized, i.e. the event and processor objects have not been
created, and there are still no connectionsto event sour ces, etc.

3.6.11 Submit settings and run analysis

At any time the user may apply new settings to the analysis and start/stop the run. Note that if the GUI runs as client
connected to an analysis server, these operations are permitted for controller or administrator login only. The following
is happening in the described order:

1. Submit the analysis settings. The settings as displayed in the analysis configuration window are sent to the
analysis client.

i. First, an already existing analysisis closed (see below).
ii. Theanaysisisinitiaized with the new settings. Objects are loaded from the new auto-save file except
auto-saveis disabled by SetAutoSave(kFALSE). Thefile name s as specified in the configuration window.

iii. Theevent objects are created. Event sources and stores are opened. The constructors of all user events and
event processors are executed. Note that any object (histogram, parameter, etc) which is created and
registered in the user event constructor s might replace an object of same namethat was loaded from
the auto-save file befor el To continue working with the loaded objects, the user should request pointer to
the object by name from the framework here. Only if the object was not found it should be created anew.
Since Go4 v4.4 there are methods to return references to objects which are created only if not loaded from
auto-savefile.

After submit, the Analysis browser can be refreshed by €% . When an analysis was running before, the new analy-
sisis started immediately and the refresh is done automatically.

2. Start theanaysiswith &

i. The Go4 GUI will send the start command and refresh the view in the analysis browser.
ii. The UserPreLoop() function is executed once. Here transient pointers to data might be initialized, values
from auser file might be read, etc.

iii. The Anaysisevent loop is starting. For each event the analysis steps, the dynamic list entries, and the
UserEventFunc() are executed. The loop will run until the event sourceis at the end, an error occurs, or the
stop command is applied by the user.

3. Stop theanaysiswith @ :

i. Theevent loop ishalted. Thiswill not close the analysisitsalf, i.e. all event objects till exist, event sources
and -stores are still open. When restarting the analysisby &, it will continue with the next event.
ii. The UserPostLoop() function is executed once. Here transient pointers should be reset to 0, user files might
be written or closed, etc.

4. Save configuration settings: At any time the current settings can be saved to a preferencesfile. Thiswill not af-
fect the running analysis. Note that after changing the settingsin the analysis configuration window they
must first be submitted to save them!

5. Load Settings: Loading analysis settings from a preferences file will immediately close the running analysis.
The closing actions are just as described below. However, the loaded settings are not initialized until they have
been submitted again from the analysis configuration window!

3.6.12 Shutdown of the analysis client

The analysis client is shut down with the & button. Thiswill take the following actions:
1. The connection between analysis and GUI is closed.
2. Thedestructor of the user analysis classis executed.
3. Closeof the analysis (this step can be executed by button &=):
i. Objects are written to the previous auto-save file, if SetAutoSave(kTRUE).

ii. Theevent objects are deleted. Go4 event sources (.Imd files and MBS connections) are closed. Event stores
(-root files) are finally written and closed. The destructors of al user events and event processor classes are
executed. All referencesto the event objects are deleted from the Go4 folders.

iii. Thedynamic listisreset. All pointers to non existing objects are cleaned up.
4. Theanaysis client executable terminates. The Go4 GUI isready to connect the next analysis client.

3.6.13 Disconnect or shutdown analysis server

The GUI may disconnect the analysis server with the ™ putton. Thiswill neither stop the analysis nor shut-

down the server task, but just close the connectionsto this GUI. Additionally, when connected to an analysis

server, the GUI has a % button in the analysis toolbar and amenu for Shutdown Analysis server. Thisis permit-

ted in administrator mode only! Thiswill take the following actions:

1. Analysisserver broadcasts message about shutdown to all GUI clients connected. The GUIs will cease monitor-
ing activities and prepare for disconnect.

2. Thedestructor of the user analysis classis executed.

3. Closeof theandysis, see detailsin 3.6.12

4. Theanalysis server disconnects all GUI clients fagt, i.e. without handshaking protocol, and terminates.

19

4 Analysis Examples
To begin with Go4,

$GASYS/ GodExanpl elSt ep,
$CUSYS/ Go4Exanpl eUser Sour ce and $G4SYS/ Go4Exanpl eMesh. The differences are:

there are examples of

$CASYS/ GodExanpl e2St ep,

analysis packages a $GMSYS/ Go4Exanpl eSi npl e,
$GASYS/ GodExanpl eAdvanced,

Example Analysis Step factories Event objects Steps
Simple TGo4Analysis TGo4StepFactory TGo4EventElement | Analysis
1Step TXXXAnalysis TGo4StepFactory TXXXEvent Analysis
2Step TXXXAnalysis TXXXUnpackFact TXXXUnpackEvent | Unpack
TXXXAnIFact TXXXAnIEvent Analysis
Advanced TXXXAnalysis TXXXUnpackFact TXXXUnpackEvent | Unpack
TXXXAnIFact TXXXAnIEvent Analysis
UserSource | TYYYAnalysis TYYYUnpackFact TYYYRawEvent Unpack
TYYYUnpackEvent
Mesh TMeshAnalysis TGo4StepFactory 13 different

4.1 Analysis design

If oneis going to develop anew analysis with Go4 it is recommended to start with one of the examples. The question is
which one? To make this decision easier, here some considerations:

How many steps do | need? The usage of steps has two aspects:

= modularity of the code: what is the natural granularity. Unpack, calibrate, filter, physics? Subdetectors?

= design of data generations. Are there event filters?

= storage versus computing. Are the processed data bigger than the raw? I's the analysis compute bound?

Modularity of analysis code could be achieved in asingle step simply by a chain of function calls of one or several
classes. However it would get complicated if one wants to disable functions because their successing function would
need their data. This problem is solved by Go4 steps. The events filled by the step processors can be stored in ROOT
files (trees). The steps produce data generations. These files can then be used as input for subsequent steps replacing the
generating step which can be disabled. With two steps one needs at least one output event (filled and stored by first
step) and processed by second step. Note that ROOT files produced by any step can be processed by stand-alone mac-
ros. In this sense there can be always afinal step outside Go4 processing the files of the last step.

Therefore one should first think about data generations and structures.

411 Simple

Start with this example if you want just produce histograms from raw data. All coding isin onefile. No output event
file can be written. Histograms can be saved in ROOT file.

4.1.2 One step

This example has an output event which can be stored in aROQOT file which can be processed by macros. In addition it
has a user analysis class where the functions User Prel.oop, UserPostLoop and User EventFunc are implemented.

41.3 Two step

In addition we have here two steps. This example also demonstrates how one can configure the analysis completely by a
setup macro.

4.2 Using the examples at GSI

When using Go4 at GS| whereitisaready instaled, Go4 is set up by
go4l ogin
Note that there must be a space behind the dot. To see al relevant environment variables use command
go4dversi on
The output of this command would be helpful if you report problems.

Analysis example programs are started by
godanal ysi s

or from the GUI which is started by
go4

20

4.3 Prepare the packages

Copy the content of the directory $G4SYS/ Go4Exanpl el(2) St ep to a separate location. Y ou can directly make and
run the example. The package consists of the following files:
e Readne. txt
Makefil e
Declaration (*.h) files
I mpl ementation (*.cxx) files
XXXLi nkDef . h - ROOTCI NT cl ass pragnma definitions

Cleanup all previously generated files by:

shel | > make cl ean

In all examplesthereisone string included in all class and file names: “XXX". It is recommended to replace this by
another string more specific for user task. Thisis done by rename.sh script, provided together with Go4 distribution. For
example, change to “ Ship” can be done with:

shel | > $GX4SYS/ bui | d/ renanme. sh " XXX" " Shi p"

Note that "Ship" will be part of &l class and file names, therefore do not use a string which is already in any filename!
To build example, just:

shel | > make all

Thiswill create shared library | i bGo4User Anal ysi s. so andl i bGo4User Anal ysi s. r oot map.

21

4.4 Simple example with one step

The package $G4SYS/ Go4Exanpl eSi npl e contains a simplest running Go4 analysis. It contains only one default
analysis step and uses the standard Go4 analysis classes TGo4Analysis, TGo4StepFactory and TGo4EventElement.
Therefore the functions UserPreLoop(), UserPostLoop(), and UserEventFunc() are not available. No data can be stored
in the output event. The example uses some conditions and some parameter objects. The step is reading events from a
standard MBS event source, preferably the MBS random source, filling some histograms. No output file is written. The
analysis processes up to eight long word values from up to two sub events.

Analysis must be launched vialibrary libGo4UserAnalysis.so.

441 Event processor

Processor class: TXXXProc

The analysis, analysis factory, and analysis step (all standard Go4 classes) are created in the godanalysis program auto-
matically. The input can be specified via godanalysis input arguments. The only custom code is implemented in proces-
sor class. No user event classis used in this example. Members of TXXXProc are histograms, conditions and parameter
pointers. In the constructor of TXXXProc the histograms, parameters and conditions are created. Method BuildEvent() -
called event by event - gets a dummy output event pointer as argument, but cannot fill any output data. The input event
pointer is retrieved from the framework. In the first part, data from the raw input MBS event are copied to arrays of
TXXXProc. Two sub-events (crate 1,2) are processed. Then the histograms are filled, the 2d one with polygon condi-
tions.

4.4.2 Parameters

Parameter class TXXXParam
In this class one can introduce parameters values and use them in all steps. Parameters can be modified from GUI.

4.4.3 Auto-save file mechanism

See also chapter 5.4.4, page 40. By default auto-save is enabled for batch, disabled with the GUI. The name of thefileis
built from the name of input (file, server) like <input> AS.root. If autosave file enabled all objects are saved into
this ROQT file at the end of the event loop. At startup the auto-save file is read and all objects are restored from that
file. From GUI, objects are loaded from auto-save file when the submit button is pressed. Note that histograms are not
cleared. One can inspect the content of the auto-save file with the Go4 GUI.

4.4.4 Example log file

All lineswith **** are from the example classes.

shel | > god4anal ysi s -random - nunber 100000

Event processor TXXXProc of name XXXProc

Qut put event TGo4Event El enent of name XXXQut put Event

G-*> Wl come to Go4 Anal ysis Franework Rel ease v4.3.2 (build 40302) !
GX-*> Create factory Factory

G- *> Anal ysis: Added anal ysis step Anal ysis

**** Main: starting analysis in batch node ...

G- *> (Openi ng Aut oSave fil e Go4AutoSave.root , UPDATE node
G- *> Anal ysis LoadObj ects: Loading from autosave file Go4Aut oSave.root
LoadObj ects with Dirscan...

G- *> AutoSave file God4AutoSave.root was cl osed.

GX-*> Factory: Create input event for MBS

**** Event MdsEvent-10-1 has source Random cl ass: TGo4MbsRandom
G- *> Factory: Create event processor XXXProc

*x*x TXXXProc: Create instance XXXProc

G- *> Factory: Create output event XXXQutput Event

****% Fyent XXXCQut put Event has source XXXProc class: TXXXProc
G- *> Anal ysi sStepManager -- Initializing Eventd asses done.
GX-*> Anal ysis BaseC ass -- Initializing EventCd asses done.
GX-*> Analysis |oop for 100000 cycles is starting...

GX-*> Analysis Inplicit Loop has finished after 100000 cycl es.
G- *> (Qpeni ng AutoSave file Go4AutoSave.root , RECREATE node
G- *> Aut oSave fil e Go4AutoSave.root was cl osed.

**xx TXXXProc: Delete instance

GX-*> Analysis Step Manager -- Analysis Steps were cl osed.
**** Main: Done!

22

4.4.5 Adapting the example

Creating anew class

Provide the definition and implementation files (.h and .cxx)
Add classin XXXLi nkDef . h

Then make all.

Most probably you will change TXXXParam to keep useful parameters.

Then definitely you will change TXXXProc to create your histograms, conditions, pictures, and finally write your analy-
sis function BuildEvent().

23

4.5 Example with one step

The package $GO4SYS/ Go4Exanpl elSt ep contains a Go4 analysis with one analysis step. It uses the standard Go4
step factory TGo4StepFactory, but a user written TXXXAnalysis. In this class the functions UserPreLoop(), UserPost-
Loop(), and UserEventFunc() can be used. It uses some conditions and some parameter objects. The step is reading
events from a standard MBS event source, preferably the MBS random source, filling some histograms and an output
event. The analysis processes up to eight long word values from up to two sub events. All classes are defined and de-
clared in two files (*.h and *.cxx). Additional descriptions arein the sourcefiles.

Analysis must be launched vialibrary libGo4UserAnalysis.so.

4.5.1 Analysis class

Anadysisclass. TXXXAnalysis
In TXXXAnalysis the analysis step is created with the step factory and input and output parameters. Here the defaults are
set concerning the event 10. Parameter objects of class TXXXControl also created.

4.5.2 Analysis step

Event class: TXXXEvent

Processor class: TXXXProc

The standard factory created in TXXXAnalysis keeps all information about the step. The TXXXEvent contains the data
members to be filled in TXXXProc from the input event (MBS 10-1). The Clear() method must clear all these members
(an array for each crate in the example). In the constructor of TXXXProc the histograms and conditions are created, and
the pointers to the parameter objects (created in TXXXAnalysis) are retrieved. Function BuildEvent() - called event by
event - gets the output event pointer as argument (TXXXEvent). The input event pointer is retrieved from the framework.
In the first part, data from the raw input MBS event are copied to the members of output event TXXXEvent. Two sub-
events (crate 1,2) are processed. Then the histograms are filled, the 2d one with polygon conditions.

4.5.3 Parameters

Parameter class TXXXControl

This class has one member "fill" which is checked in TXXXProc->BuildEvent() to fill histograms or not. The macro
setfill.C(n), n=0,1 can be used in the GUI to switch the filling on or off. It creates macro hi st ofi | I . C() which
is actually used to set filling on or off (in TXXXProc). You can also modify hi st of i | | . C by editor before running the
analysis.

4.5.4 Auto-save file mechanism

See also chapter 5.4.4, page 40. By default auto-save is enabled for batch, disabled with GUI. The name of the file is
built from the input by

<input> AS.root

If it is enabled all objects are saved into this ROOT file at the end of the event loop. At startup the auto-save fileis read
and all objects are restored from that file. When TXXXAnalysis is created, the auto-save file is not yet loaded. Therefore
the objects created here are overwritten by the objects from auto-save file (if any), except histograms. From GUI, ob-
jects are loaded from auto-save file when the submit button is pressed. Note that histograms are not cleared. One can
inspect the content of the auto-save file with the Go4 GUI. Note that appropriate user libraries should be loaded into
GUI to access data from auto-save file (see chapter 5.2, page 36).

4.5.5 Example log file

All lineswith **** are from the example classes.

shel | > godanalysis -file /GSl/|eal gauss. | nd

G4-*> Wl cone to Go4 Anal ysis Franework Rel ease v4.3.2 (build 40302) !
GXA-*> Create factory Factory

**** Analysis: Create file input file.lnd

G- *> Anal ysis: Added anal ysis step Anal ysis

**** Main: starting analysis in batch node ...

G- *> Openi ng Aut oSave fil e God4AutoSave.root , UPDATE node

G- *> Anal ysis LoadObj ects: Loading from autosave fil e God4Aut oSave.root
LoadObj ects with Dirscan...

G- *> AutoSave file God4AutoSave.root was cl osed.

G-*> TGo4MosFile: Open file /GSI/ | eal gauss. | nd

GXA4-*> Factory: Create input event for MBS

% FEvent MdsEvent-10-1 has source /GSl/I|eal/gauss.|nd class: TGo4MosFile

24

GXH-*> Factory: Create event processor XXXProc

**xx TXXXProc: Create instance XXXProc

*xxx TXXXControl: Hi stogramfilling enabl ed

**x*x TXXXProc: Produce histograns

****x TXXXProc: Produce conditions

**xx*x TXXXProc: Create condition

*x%% TXXXProc: Produce pictures

GX-*> Factory: Create output event XXXEvent

x*xx TXXXEvent: Create instance XXXEvent

****x Event XXXEvent has source XXXProc cl ass: TXXXProc

G- *> Anal ysi sStepManager -- Initializing EventC asses done.

GMA-*> Anal ysis BaseC ass -- Initializing Eventd asses done.
*x%x TXXXAnal ysis: PreLoop

Input file: gauss.|nd

Tapel abel : DI sK
User Nane: goofy
Runl D:

Expl anat i on:

Comment s:

GX-*> Analysis loop is starting...

*xxx TXXXProc: Skip trigger event

First event #: 1

G- *> End of event source TGo4MosFil e:

/GSl/lealgauss.|Ind -1-f_evt: no nore event

*x%x TXXXAnal ysis: Post Loop

Last event #: 16605 Total events: 16605

G- *> Go4 Event EndException appeared after 0 cycles.

*x%% TXXXAnal ysis: Delete instance

G- *> Openi ng AutoSave file Go4Aut oSave.root , RECREATE node
G- *> AutoSave file God4AutoSave.root was cl osed.

*x%% TXXXEvent: Del ete instance

*x%% TXXXProc: Del ete instance

GX-*> Analysis Step Manager -- Analysis Steps were cl osed.
% Main: Done!

4.5.6 Adapting the example

Creating anew class

Provide the definition and implementation files (.h and .cxx)
Add classin Go4UserAnalysisLinkDef.h

Then make all.

Most probably you will change TXXXParam to keep useful parameters.

Then you might change TXXXEvent to represent your event data.

K eep the Clear() method consistent with the data members!

Then definitely you will change TXXXProc to create your histograms, conditions,
pictures, and finally write your analysis function BuildEvent().

In TXXXAnalysis there are three more functions which eventually can be useful:
UserPreLoop () - called before event loop starts,

UserEventFunc() - called after each TXXXProc::BuildEvent(),

UserPostLoop () - called after event loop stopped.

25

4.6 Example with two steps

The package $GO4SY S/IGo4Exanpl e2St ep contains an unpack step and an analysis step. It uses some conditions
and some parameter objects. Step one is reading events from a standard MBS event source, preferably the MBS random
source, filling some histograms and an output event. Step two uses this event as input and fills another output event and
some more histograms. The analysis processes up to eight long word values from up to two sub-events.

The events are read from standard GS| event sources (in the GUI one can switch to MBS or event servers). Then the
first user event processor is called (Unpack). This user event processor fills some histograms and the first user event
(unpacked event) from MBS input event. Then the second user event processor is called (Analysis). This user event
processor fills some other histograms and the second user event (calibrated event) from the first event. The events from
the first and second step can optionally be stored in ROOT files (enabled from GUI). When a ROOT file with unpacked
events exists, the first step can be disabled, and this file can be selected as input for the second step (from GUI).

In TXXXAnalysis the two steps are created. Here the defaults are set concerning the event 10. Then macro set up. Cis
executed at the end of TXXXAnalysis. Analysis must be launched from GUI vialibrary libGo4UserAnalysis.so.

4.6.1 Setup in setup.C
The whole step setup is done in macro setup.C. It gets two strings as argument which can be specified in command line
godanal ysi s —x <type> <nane>
or in the GUI Launch panel in the Args field. In setup.C the type string is used to determine the type of the source, the
name string is used to compose file names:

idir/nane. | nd orif string startswith@ @ di r/ nanme. | m

odi r/ name_AS. r oot

odi r/ name_unpacked. r oot

odi r/ nanme_anal yzed. r oot
idir and odir aredirectoriesfor theinput and output files also specified inset up. C.
If the source type specified (-random, -transport, -stream, -file) isno file, name is used as MBS node name. When
started from GUI, any Go4Anal ysi sPr ef s file overwrites the settings from setup.C. When started from shell make
surethat set up. Cis correct!

4.6.2 Step one: unpack

The event filled: TXXXUnpackEvent

The processor: TXXXUnpackProc

The TXXXUnpackEvent contains the data members to be filled from the input event (MBS 10,1). Only the Clear()
method must be changed to clear all these members.

The unpacking code is in the event processor TXXXUnpackProc. Members are histograms, conditions, and parameter
pointers used in the event method BuildEvent().. In the constructor of TXXXUnpackProc the histograms and conditions
are created, and the pointers to the parameter objects (created in TXXXAnalysis) are set. BuildEvent() called event by
event and gets the output event as argument. The input event is retrieved from the framework. The first eight channels
of crate one and two are filled in histograms Cr 1Ch01- 08 ... Cr 2Ch01- 08, respectively. Hi s1g isfilled under condi-
tion cHi s1 on channel 0, Hi s2g under condition cHi s2 on channel 1. When editing conditions cHi s1, 2 histo-
grams Hi s1, 2 filled by channel 0,1 will be displayed automatically to set/display the condition values. Picture cond-
Set shows histograms Hi s1, 2 on top, Hi s1, 2g at bottom. Open the condition editor in the view panel of the pic-
ture. ConditionscHi s1, 2 will be selectable. They are displayed in the pad where they should be set. Both conditions
are attached to the picture (see chapter 5.8.4, page 60). Histogram Cr 1Ch1x2 is filled for three polygon conditions:
pol ycon, polyconar[0], polyconar]| 1], al onthe same values as the histogram.

26

4.6.3 Steering methods in processor function BuildEvent

Processing the input event and filling an output event it might be necessary to control the following behaviour:
1. Specify if the output event shall be written to output file (if enabled)
Bool t isValid;
. . . . —code - . . .
out _evt->SetValid(isValid); // isValid nmust be set before to kTRUE or kFALSE
return isValid,
Note that the default calling Fill method will set the validity of out_evt to the return value! If one would have a Fill
method implemented in TXXXUnpackEvent calling BuildEvent the return value could be handled differently there. A
subsequent step should check at the beginning if the input event (output event from previous step) was valid. If not, it

should mark its own output event also not valid and return:
Bool _t isVal i d=kFALSE;
if((inp_evt==0) || !inp_evt->IsValid()){ // input invalid
out _evt->SetValid(isValid); /1 invalid
return isValid; // return the sanme validity

}

i sVal i d=kTRUE;

. . . . —code - . . .

out _evt->SetValid(isValid);
return isValid;

2. Specify if the following steps shall be skipped (optional message) by macro calls
GO4_SKI P_EVENT
GO4_SKI P_EVENT_MESSAGE(" Ski pped Event %", count-1)

3. Specify if the analysis shall be stopped immediatedly by macro calls
G4 STOP_ANALYSI S
GO4_STOP_ANALYSI S_MESSAGE(" St opped after Event %", count-1)

4.6.4 Step two: analysis

The event filled: TXXXAnIEvent

The processor: TXXXAnlIProc

The step two is build in the same way as step one.

Note that the TXXXUnpackEvent is used two times: once as output of step one, and once as input of step two.

The TXXXUnpackEvent instance can be filled by previous unpack step, or can be retrieved from input file. Step one
must be disabled in the second case. The user method BuildEvent() always gets the pointer to the correct event. Histo-
gram Sunl is filled by first 4 channels of crate 1 and first 4 channels of crate 2. All channels are gated with condition
wi nconl. Histograms Sun?, 3 are filled similar, but without gate, and shifted by XXXPar 1, 2- >f r P1. Histogram
Sumilcal i b is filled like Suml without gate but with values calibrated by method TXXXCalibPar->Energy() of pa
rameter cal i par .

4.6.5 Parameters

With the TXXXParameter class one can store parameters, and use them in all steps. Parameters can be modified from
GUI by double click. There is a macro set par am C which sets the values. One can disable histogramming in both
steps. This doubles the processing speed and is useful if one only wants to create listmode files.

4.6.6 Conditions

There are afew conditions created in TXXXUnpackProc. One (polycon) is used in XXXUnpack() for the accumulation of
histogram Cr1Ch1x2. Another one (winconl) is used in BuildEvent() of TXXXAnIProc to fill histogram Suml. Condi-
tions can be modified by double click in the browser. One can attach a histogram to a condition or attach conditions to
picture pads to ensure that the condition is displayed/set on the proper display.

27

4.7 Example with some advanced tecniques

The package $G0O4SY S/Go4Exanpl eAdvanced contains an unpack step and an analysis step. It uses some condi-
tions and some parameter objects. Step one is reading events from a standard MBS event source, preferably the MBS
random source, filling some histograms and an output event. Step two uses this event as input and fills another output
event and some more histograms. The analysis processes up to eight long word values from up to two sub events.

The events are read from standard GS| event sources (in the GUI one can switch to MBS or event servers). Then the
first user event processor is called (Unpack). This user event processor fills some histograms and the first user event
(unpacked event) from MBS input event. Then the second user event processor is called (Analysis). This user event
processor fills some other histograms and the second user event (calibrated event) from the first event. The events from
the first and second step can optionally be stored in ROOT files (enabled from GUI). When a ROOT file with unpacked
events exists, the first step can be disabled, and this file can be selected as input for the second step (from GUI).

In TXXXAnalysis the two steps are created with their factories and input and output parameters. Here the defaults are set
concerning the event 10. When called with a user argument, set up. C macro is executed at the end of TXXXAnalysis.

Two parameter objects are created (TXXXParameter). They can be used in both steps.

Analysis must be launched from GUI vialibrary libGo4UserAnalysis.so, or from shell by

godanal ysis —args file

4.7.1 Step one: unpack

The event filled: TXXXUnpackEvent

Theprocessor: TXXXUnpackProc

The TXXXUnpackEvent contains the data members to be filled from the input event (MBS 10,1). In contrast to the
GodExample2Step, we apply the TGo4CompositeEvent classes here. Details on the event structure are discussed in
Chapter 8 on page 77.

The unpacking code is in the event processor TXXXUnpackProc. Members are histograms, conditions, and parameter
pointers used in the event method BuildEvent().. In the constructor of TXXXUnpackProc the histograms and conditions
are created, and the pointers to the parameter objects (created in TXXXAnalysis) are set. BuildEvent() called event by
event and gets the output event as argument. The input event is retrieved from the framework. The first eight channels
of crate one and two are filled in histograms Cr 1Ch01- 08 ... Cr 2Ch01- 08, respectively. Hi s1g isfilled under condi-
tion cHi s1 on channel 0, Hi s2g under condition cHi s2 on channel 1. When editing conditions cHi s1, 2 histo-
grams Hi s1, 2 filled by channel 0,1 will be displayed automatically to set/display the condition values. Picture cond-
Set shows histograms Hi s1, 2 on top, Hi s1, 2g at bottom. Open the condition editor in the view panel of the pic-
ture. Conditions cHi s1, 2 will be selectable. They are displayed in the pad where they should be set. Both conditions
are attached to the picture (see chapter 5.8.4, page 60). Histogram Cr 1Ch1x2 is filled for three polygon conditions:
pol ycon, polyconar[0], polyconar]| 1], al onthe same values asthe histogram.

4.7.2 Step two: analysis

The event filled: TXXXAnIEvent

The processor: TXXXAnlIProc

The step two is build in the same way as step one.

Note that the TXXXUnpackEvent is used two times: once as output of step one, and once as input of step two.

The TXXXUnpackEvent instance can be filled by previous unpack step, or can be retrieved from input file. Step one
must be disabled in the second case. The user method BuildEvent() always gets the pointer to the correct event. Histo-
gram Sunl is filled by first 4 channels of crate 1 and first 4 channels of crate 2. All channels are gated with condition
wi nconl. Histograms Sun?, 3 are filled similar, but without gate, and shifted by XXXPar 1, 2- >f r P1. Histogram
Sumilcal i b is filled like Suml without gate but with values calibrated by method TXXXCalibPar->Energy() of pa
rameter cal i par .

4.7.3 Parameters

With the TXXXParameter class one can store parameters, and use them in all steps. Parameters can be modified from
GUI by doubleclick.

TXXXCalibPar is an example how to use fitters in parameters to calibrate histograms (more chapter 5.11.3, page 66).
Please have alook at the Readre. t xt filein this example directory for a detailled description of the calibration pro-
cedure.

4.7.4 Conditions

There are afew conditions created in TXXXUnpackProc. One (polycon) is used in XXXUnpack() for the accumulation of
histogram Cr1Ch1x2. Another one (winconl) is used in BuildEvent() of TXXXAnlIProc to fill histogram Suml. Condi-

28

tions can be modified by double click in the browser. One can attach a histogram to a condition or attach conditions to
picture pads to ensure that the condition is displayed/set on the proper display.

29

4.8 Example of analysis with a user defined event source

The package Go4Exanpl eUser Sour ce shows asimple example of a user defined event source reading data from an
ASCII text file. Like the one step example, the package can be copied to a user working environment, and the class
names can be renamed replacing the “TYY'Y-" prefix.

To apply a user defined event source, method CreateEventSource() of the user step factory must be re-implemented to
react on a TGo4UserSourceParameter when selected in the controlling GUI, or set as argument for the godanalysis
batch executable . It should then create a TGo4EventSource subclass that the user implements for his purpose. Note that
method CreatelnputEvent() should also be overwritten to create araw event matching to the user event source, since the
default of the base class TGo4EventServerFactory aways delivers a TGo4MbsEvent.

In this example the event source class TYYYEventSource is prepared to handle any ASCII file containing columns of
data separated by blank spaces. Each row isread and its values are converted in order into the Double_t fdData array of
the raw event class TYYYRawEvent. The array expands automatically depending on the number of columns. Lines start-
ing with “!” or “#" characters are treated as comments and are ignored. Thus these two classes need not to be modified
for input of any ASCII files of that type. However, both the unpack procedure as specified in the event processor TYY-
YUnpackProc , and the unpack event class TYYYUnpackEvent, are depending on the column’s meanings here and must
be adjusted. Additional information can be found in the README.txt file of the example package.

4.9 Example of analysis mesh

This example on Go4Exanpl eMesh shows how to set up a Go4 analysis of several steps that build a mesh of parallel
analysis branches with different result generations. Additionally, one can see how the improved TGo4FileSource class
supports partial input from a ROOT tree.

4.9.1 Structure:

The setup of the mesh analysis is done in the constructor of the TMeshAnalysis class. As in the GodExamplelStep, the
general TGo4StepFactory is used to specify the event objects by name and class name. An overal of 13 analysis stepsis
defined for this example. Generally, the analysis mesh consists in two different kinds of steps, the execution steps and
the provider steps. The unpack step, however, is as in the other examples just delivering sample data from a
TGo4MbsSource (standard Go4 gauss example).

The step structure of the example mesh is as sketched in this figure (arrows show dataflow):

Input1Provider Input2Provider Input3Provider
| Execl | | Exec2 | | Exec3 |
OutputlProvider Output2Provider Qutput3Provider

o = -

Outputl2Provider

Final

30

4.9.2 Execution steps:

These analysis steps do the actual analysis work, i.e. they convert some input event into the output event. This is the
same as in the more simple examples (2-Step). However, to realize a mesh structure, the execution steps do not work
directly on their own input event as assigned from the Go4 framework, but use the input event of one or more provider
steps. The execution steps can access the input event pointers of any provider step by the provider step name, using the
GetlnputEvent("stepname”) method. Note that the native input event of the execution steps is never used here (except
for the very first "Unpack" step that processes the initial MBS event directly, without a provider step). There are no his-
togramming actions in the execution steps. To view the result data one has to use a dynamic list histogram or perform a
TTree::Draw on the output event'stree, if existing.

4.9.3 Provider steps:

These analysis steps do not perform any analysiswork at all, but only make sure that their own input event is always set
correctly for the following execution steps, depending on the data flow situation. Generally, there are two cases:

- the provider step reads the input event directly from a branch of a ROOT tree (TGo4FileSource). In this

case, the input event remains the native input event of this step as created in the step factory.

- theprovider step refersto the result event of a previous execution step.
In this case, the provider processor itself has to find the correct event pointer by name from the Go4 object manage-
ment. The default Go4 framework mechanism to handle these two cases will not suffice here, since it was designed for
a subsequent order of steps and not for a mesh with parallel execution branches.
To do this job, al provider steps use the TMeshProviderProc class as genera event processor, and the TMesh-
DummyEvent class as pseudo output event. The TMeshDummyEvent is hecessary, because the Go4 framework will al-
ways call the Fill() method of the step's output event to execute any action of the step. So TMeshDummyEvent::Fill() calls
method TGo4ProviderProc::SetReallnput() to set the pointer to the desired input event correctly.
If the input event is not read from file (native input event of this step), the provider processor has to search for it by
name using the method TGo4Analysis::GetEventStructure("name"). However, the Go4 framework so far does not offer
any additional parameter to specify the name of the appropriate input for a provider step. Therefore, this example uses
the trick to derive the event name search string from the name of the provider processor itself: the name of this proces-
sor (up to the™_") isthe name of the required event. Note that TGo4StepFactory forbids to use same names for different
objects, since the object name is used as pointer name in the ProcessLine() call; therefore the processor name can not be
identical with the input event name, but must differ by the" " extension.
Additionally, the provider steps use the new partial input feature of the TGo4FileSource class (since Go4v2.9). The
name of the event structure defines the name of the TTree branch that should be read from the input file. The first three
provider steps use different parts of the TMeshRawEvent each. If the input event name is set to the name of the corre-
sponding tree branch (e.g. "RawEvent . f xSub1"), the file source will only read this branch from the tree. If the input
event name is set to the full name of the raw event ("RawEvent ", commented out in this example€), the compl ete event
is streamed, including the not used parts. Note that in both cases the event object must consist in the full TMesh-
RawEvent, although in the partial input case only one sub-event isfilled. Thisis required for a proper event reconstruc-
tion due to the ROOT TTree mechanism. In this example, the partial event input might increase the process speed by a
factor of 2 compared to the full event input.

4.9.4 Configuration:

Although the step configuration can be defined as usual from the analysis configuration GUI, not all combinations of
enabled and disabled steps make sense to process a subpart of the complete analysis mesh. For example, if execution
step 2 shall be processed, the corresponding provider step for its input event has to be enabled, too. Note that the stan-
dard step consistency check of the Go4 framework is disabled here to run such a mesh at all (SetStepCheck-
ing(KFALSE)). So it is user responsibility to ensure that all required event objects are available for a certain setup.
Moreover, with >13 analysis steps the standard analysis configuration GUI becomes quite inconvenient.

Therefore, the example uses a Go4 parameter TMeshParameter for the easy setup of the configuration. This parameter
has just a set of boolean flags to determine which execution step shall be enabled. Depending on this setup, the Up-
dateFrom() method of the parameter also enables or disables the required provider steps. However, the parameter does
not contain the full information of the input file names for the providers yet (In a "real" application, this could be im-
plemented in asimilar way though).

Thus the configuration procedure looks like this. The TMeshParameter is edited on the GUI to enable the desired exe-
cution steps. The parameter is send to analysis and switches the steps on and off. Then the analysis configuration GUI
has to be refreshed by the user pressing button =2 to view the new setup. Here the user may change the names of the
event sources for the provider steps, if necessary. After submitting these settings again from the configuration GUI, the
mesh setup is ready. Note that once the mesh is configured in this way, the configuration can be stored completely in
the analysis preferences and restored on the next startup.

One could also think of a user defined GUI that handles both the setup of the TMeshParameter, and the rest of the
analysis configuration in one window. This would offer the additional advantage that it could show the structure of the

31

analysis mesh in a graphical way. However, such a user GUI is not delivered here, but can be created according to the
hints given in package Go4UserGUI (see chapter 5.16, page 71).

4.9.5 Usage of the example:
One way to test the example could look like this:

32

Enable the first unpack step, disable the rest of the mesh. Use TGo4MbsRandom as event source for the Un-
pack and fill the output event TMeshRawEvent into a ROOT tree (switch on TGo4FileStore of unpack step).
Do this until areasonable number of events are processed.

Disable the unpack step, enable one or more of the subsequent execution steps. The input for the first 3 pro-
vider steps should be the ROOT file that was produced before. Note that the first providers could aso read
their sub-events from different files. Eventually, produce further output trees from the execution steps.

Change the setup in away that only one branch of the mesh is processed, e.g. only Exec3 and Fi nal .
Change the setup in a way that only a certain generation of eventsis processed, e.g. only Exec1, Exec2, and
Exec3, writing output files of their results. Alternatively, let only Exec12 and Fi nal work, reading their
provider inputs from these output files.

Change the example code and recompile to add another execution branch, e.g. with new steps for Input-
Providerd, Exec4, OutputProvider4, and collect the results in the existing fina step. New classes
TMeshB4InputEvent, TMeshB4AnIProc, and TMeshB4OutputEvent should be defined for this (these can be de-
rived from the corresponding classes as existing for the Exec 3 branch).

Create a new mesh analysis from this template that matches your analysis structure.

5 How to Use the Go4 GUI

The GUI ist started from shell by command

go4

The following picture shows the GUI with all elements. On the right side you see the Go4 browser. The left side will be
the display panel. Below is the Tree viewer, and under this the message window, the mbs monitor, and the anaysis
status display. With Show/Hide in the Settings one can configure the layout and savelrestore it. All buttons in the top
row are also available as pull down menus commands.

Go4 v4.3.2 @Ixg0526 <Controller> =1
File Tools Analysis Seftings Windows Help

Z20aE@sd LILEERHSE [wwunaly b @
IE-3 »m@"ma\ﬂags.L;o@o;ggaggo@|”mmepaai;mx|—:|1 -

Hlu‘ scatter ;“Nﬂ Errors L‘!Cartﬂsian j!){: Lin J!Y‘ Lin _"Z Lin ;I @S S
Browser x
“% Panel1: Set conditions
Name | Info I Time 2] . -
& Workspace Tolder File Edit Selsct Options ™ Apply to all ¥ AutoScale
~|da histot hsto title 09:51:4C == [Condition Mstgcark: 83330)
= (1 Analysis folder L fe=s e
- (] Histograms folder
T2 fileroot
- Lla His1 Condition histogram 09:53:58
& cHis1 Go4 window condition 09:53:5¢
B Analysis Controller
- [Z Histograms All Histogram objects
B (I Crate1 UserFolder
= (1 Crate2 UserFolder
- W crichix2 Crate 1 channel 1x2
| His1 Condition histogram 09:55:3(
i His2 Condition histogram 09:55:3(
|4 His1g CGated histogram 09:556:3C
- |da His2g CGated histogram 09:556:3C
+ lda Sumi Sum over 8 channels
+ lda Sum2 Sum over 8 channels shift 1
+ |l Sum3 Sum over 8 channels shift 2
| SumiCalib Sum over 8 channels(keV)
~|da FitSource Copy of fit data b
; |da FitTarget Copy of fit result
|lda Eventsize Event size [b]
=2 D Conditions All Condition objects
+-[B wincon1 Cod window condition
- [E wincon2 Cod window condition
[Ef cHis1 Cod window condition 09:56:3C
[Ef cHis2 Cod window condition 09:56:3C
[# polycon Cod polygon condition =
| | _>H | == Analysis Teminal FlIslES)|

Log window

Date Time . |Type |Description =
g 0 p S TR B =

@ 240009 095427 |Info Analysis TXXXAnalysis event classes were initialized.

© 240909 095427 |Info Analysis nameslist was requested from client current

© 240009 095427 Info Client UserClientIxg0s26-11277 working function is startec...

© 240009 095427 Info AnalysisClient UserClient-IxgD526- 11277 has staried analysis processing.

' 2409.09 095427 Info Analvsis nameslist was reauested from client current ;!
9 fema | -‘ curentevis (JOAGH Average Evis ©0 s | G9BA0OD | Events [2000-09-24 095629

Thiswould be the minimal look of arunning analysis (the date is updated from the analysis):

% Go4 v4.3.2 @Ixg0526 <Controller>
File Toocls Analysis Settings Windows Help

|er Imd |-‘ Current Ev/s 32025 | Average Evis = HE Y4Y9R3000 | Events 2009-09-24 10:00:07 J

There are many keyboard shortcutsto handle windows and actions. See chapter 10, page 84.

33

5.1 GUI menus

Theiconsin the top line are grouped into three segments corresponding to the first three pull down menusFile, Tools,
and Analysis.

5.1.1 File, Tools, Analysis menus

Pull down Icon Function
File Open: opensloca ROOT file
Open Remote: open TNetFile, TWebFile or TRFIOFile to access remote data
Open HServer: open conntection to gsi histogram server
Save memory: save content of the memory browser into a ROOT file
Close all files: close all ROOT files opened in file browser
Exit: closes window and exit from GUI
View Panel: creates window (canvas) to display histogram(s)
Fit Panel: opensfit panel
Histogram properties: opens window showing histogram properties
Create New His: opens histogram creation window
Condition properties: opens window showing conditions properties
Condition Editor: opens central condition editor
Event Printout: examine current event contents
Create Dyn. List Entry: histogramming on the fly
Load Libraries: openstool to load ROOT libraries
User GUI: starts user GUI
Launch Analysis: starts up the analysistask (as client or server)
Connect to Analysis: login to running analysis server
Prepare connection: alow external analysis client connect to this gui
Disconnect Analysis: remove connection without analysis server shutdown.
Shutdown Analysis server: in administrator mode only!
Set+Start: submit setting and start analysis
Start: start analysis events loop (after setup and submit)
Stop: stop analysis events loop
Configuration: open the configuration windows
Analysis Window: opens the output window of the analysis

Tools

Analysis

A%0vTSE4eLqehigTrEARESELVHIDEG

5.1.2 Help menu
The help menu provides to read several Go4 manuals on-line. Note that you need an external pdf viewer to beinstalled

on your system to read them! Additionally, you can get version information about the Qt, ROOT and Go4 environment
here.
Introduction (user manual)

Reference manual

Fit Tutorial

About Ot F2
About ROOT F3
About Go4 F4

gui357

5.1.3 Settings menu

In the Settings pull down menu as shown on the right side one
can set different parameters. Fonts and Style of the Go4 GUI
can be selected here from the available ones.

Preferences specifies when objects are fetched automatically
from analysis. Additionally, Hide TGo4EventElement togglesif
the Go4 Tree viewer may hide, or show all leaves which belong
to such event base class.

Panel defaults allows to set the histogram Statistics box and
the default view panel layout

You can adjust al fields according your needs. Then Save Set-
tings. The next start of the GUI will restore the saved layout.
Note that settings also contain other preferences, like window
geometry and tools visihility, view panel background color and
crosshair mode, graphical marker appearance, connection setup
parameters, etc. By default, the settings are stored in text files
$HOVE/ . confi g/ GSI/ go4. conf (for detailed settings) and
$PWY . confi g/ GSI/ go4t ool src (contains toolwindow
layouts) To get the standard setup one may delete these two
files. Note that since Qt 4.4 the QSettings are aways in the home
directory; however, the Go4 toolwindow settings may still be at a
different location (usualy in the current directory to provide dif-
ferent toolbar setups for different Go4 analyses).

Settings behavior can be changed using environment variable

Showhide »
FEonts...
Style »

Preferances

Canvas color...

Warker labels..

v Cross{Xihair mode
|7 Show Event Status
|T Objects cloning
Ij Draw time

v Draw date

Panel defaults

Log actions...

Generate hotstart

Break hotstart execution
Terminal history

Save Settings |—

Draw item name

% = Global histogram statistic box setup:

v Show Statistics Box
Show in Histogram Statistics:

v Histogram Name v RMS v Underflow

¥ Entries v Mean value '« Overlow
v Integral Curtosis v Skewness
Display Errors

[vl] x

gui356/353/361

GAASETTI NGS. If this is set, the GUI toolwindow preferences are used from directory $GASETTI NGS. If

GASETTI NGS contains ACCOUNT,

keyword

the

$HOVE/ . confi g/ GSI / go4t ool src areused (like the other QSettings).

With the Show/hide entry of the set-
tings menu (or with RMB in an empty
menu region) one gets the window on
the right to select which tools shall be

MBS monitor
v Browser

DABC monitor

visible. The actual content of these ¥ Log window
Wlndpws is prese_rv_ed even if _they are ¢ File Toolbar
not displayed. Thisis also available as
popup menu when clicking the right ¥ ©04teols
mouse button on an empty field of the v Analysis Toolbar
main window. v Canvas Tools
Color Tools
v Browser Options

¥ Draw Options
The Log actions of the GUI can be
defined in a setup window from the
settings menu. By default, the log
output (e.g. condition properties, his-
togram information) is printed into the
shell window where the GUI was
started from. Additionally, a text file

Hist Draw Options
Zoom Tools
God Command Line

Tree viewer

may be specified for output. Logging mode specifies if log output is produced On demand only (i.e. on clicking the

Go4 toolwindow Settings
4 -~ Setwp GUI Logying [2][=][o][x]
Logging mode: On demand
Priority: Inros
printing on GUI shell window
writing to file: | godlcgfile bt al
vl X
I I
gui355/142

a

log button £ when available), or Automatic whenever the content of an editor/information window changes. Priority
defines the level of output suppression: Errors, Warnings, Infos, or Debugs. Level Errors will only log in case of an
error, Debugs will printout even debug information of the Go4 kernel. This reflects the priority of the

TGo4Log::Message() method.

In the Panel defaults» Canvas color menu the default background color for all newly opened view panels can be set.
This color may be saved together with the other settings. Panel defaults > Marker labels specifies the default label lay-

out.

35

The Crosshair mode entry toggles the default crosshair cursor on/off for all newly opened view panels. This crosshair
state may be saved together with the other settings. However, the crosshair can be switched independently for each pad
in the menu of the view panel (see chapter 5.7, page 50).

The Generate hotstart entry will save the current state of the GUI (window geometry,
objects in memory and monitoring list, objects in view panel, analysis settings) to a

Go4 hot start file (*. hot st ar t). The name of the hot start file can be defined in file Ut
dialog here. When re-starting the Go4, the hot start file may be used as command line Close all
argument, restoring the state of GUI and analysis (see chapter 5.15, page 71). Minimize all
With Terminal history the buffer size for the analysis output window can be limited. Save Logwindow
] Clear Logwindow
51 4 WlndOWS menu Save Analysis window
The Windows pull down menu shown on the right side provides items to arrange the Clear Analysis window
windows and to save and clear the analysis and log windows. |7 Analysis Terminal

guil67

5.2 Load libraries to GUI

To access data from user defined classes (like parameters or events) a library including the ROOT dictionary is re-
quired. This library is produced by the make file and has the name | i bGo4User Anal ysi s. so. It isrecommended to
load user libraries for non-Go4 classes (for instance, user event classes) before opening a file with a TTree, where ob-
ject of these classes are stored. There are three different waysto do it.

First, any external shared library (with or without ROOT dictionary inside) can be loaded by press of the € button on
the main window. A file dialog then asks to specify the library to be loaded.

Second, set the environment variable GO4USERL| BRARY to alist of user libraries (separated by colons) to be loaded
when the GUI starts. Typically before run the Go4 GUI the user should type in the shell:

export GAUSERLI BRARY=. .../l ibGo4User Anal ysis.so:..../libOQher.so

Third, the new possibility (since ROOT 4.00/08) for automatic load of libraries with a. r oot map file. This file con-
tains information to automatically load all necessary libraries for user classes. All make files of the Go4 examples gen-
erate . r oot map files during compilation. To explicitly generate this file again, type nake map after compilation. If
this file is located in the current directory (where GUI is started) or in the user home directory, al libraries will be
loaded automatically at the time when required. For more details about . r oot map files see the ROOT home page.

5.3 Launch analysis

Press the @ button (or Alt a n or Strg n). Thiswill start the Launch analysis window to execute the analysis task on
another host. The operation mode of the analysis task may be“Asclient” (default), or “As server”; this has to be speci-
fied in the selection box on top of the Start Anaylsis window.

The difference of these modesisthat in client mode the analysis connects as client to the starting GUI and will be fin-
ished when the Go4 GUI terminates. There can be only one GUI connected to an analysisin client mode. The starting
GUI will connect automatically to the analysis client after launching it with full controller priviliges.

In contrast to this, the analysis started “as server” will be an external process independent of the starting GUI. Therefore
in server mode the analysis can not run embedded into the Qt Window of the GUI. Any number of Go4 GUIs may
connect to this analysis server with different priviliges, but only one GUI may be the authorized controller. Especially
the starting GUI has to login to the analysis server after launching it in a separate dialog window.

5.3.1 Launch analysis task in client mode

Besides the selection of the operation mode, the
popup window expects an arbitrary name for the [me U L= KL ED A [2][=][a][x]
analysis and the node name of the machine Operation mode: As client (default)

where the client should be started. Normally this [
is the current node (I ocal host) as offered by
default. Furthermore there are fields for the user
working directory (in this directory the analysis Lib lib GodUserAnalysis @)
is started) and the analysis file (library or execu-

localhost MName MyAnalysis

Dir | ./go4/Go4Example2Step | @

table) name . Note that these values are stored Arge: .gauss

to, and retrieved from the current Go4 sl e b 2l

settings file. Start the analysis with button Start exec rsh ssh Qt windew | xterm konsole
or RET. .

The client will be started in local process (start- v X
ing mode: exec), in aremote shell (mode: rsh), or ' gui'304

secure shell (mode: ssh). The analysis output is
directed to a text window inside the GUI (“Qt

36

window™), or to an external xterm, or to the KDE konsole (if existing), depending on the selected Shell mode. Individ-
ual configurations for starting and shell mode are stored in $GO4SY Setc/go4.prefsfile and can be adjusted there.

After initialization the client connects to the GUI. When this procedure is done, the message "St arti ng anal ysi s
client ...Please wait” changesto"Editing Analysis Configuration .."and the GUI isready popping
up an analysis terminal window and the analysis configuration window. Here the analysis steps can be configured (see
chapter 5.4, page 39). Then the analysis must be set up by pressing Submit (or Alt u).

After setting up the analysisit is started by # (or Alt a s or Strg s). In the browser the directory of the remote Analysis
appears. The next figure shows the GUI with arunning analysis. On the right side is the browser with the analysis direc-
tories; on the left side the analysis terminal, and the analysis configuration window.

% -» Go4 v4.4.0 @lxg0523 <=Controller name:MyAnalysis>
File Tools Analysis Seftings Windows Hzlp

Browser X of e E T = ~nalysis Temminal

J/ Unpack xxo \/” Analysis xoo \

Name

L1 Workspace MBS Event printout: 7397212 t's 10 1 len 34 trig 1
E Analysis Step Control Mbs Subevent ts 10 1len 14 procic. Dt 0o
- (11 Histograms v Enatle Step v Source Store 2742 3032 413 800
E- (1 Craiet Event source 132 965
E- 1 Crale? Mbs Subevent t's 10 1len 8 procid dctl 2cr
[I crichixz SIERS REMI 1042 915 2701
b His Name: |dag3 e
| His2 i g — Event 7751073 Type/Subtype 10 1Length 30[w] Trig:
-l His'g 0 all 1 1s SubEVID O Type/Subtype 10 1 Length 12[w] Control
|4 His2g 183 n 3nska n 3nona n 1396 0
I da Sum1 Autc Save File 24¢ o]
A& Sum2 ~ SubEv 1D 4 Type/Sublype 10 1 Lenglh G[w] Conuol
| Sum3 B || /gauss_ASrod 4 862 0 3042 O
|l Eventsize Enabled | orce 5 v Ovenwrie
udilions o
[]‘8 Parameters Analysis Corfiguration File
1 Dynam cLists
3 Trees = [Go4rnalysisProferoot @ Press enler to execute. @FPriniConditions() al
[(3 Pictures —
: L ~ Submi ubmit+3tart, [& Close
|-y conaSet > | ¢ submit, [l Submit+3tart| (3 CI e &z a @ &
dag3 I2 M3H curent Evis 24447 | Average Evis 0] s | IED4O00 | Events 2008 11 10 14:46:46

gui305

The configuration window is described in more detail in the next chapters.

5.3.2 Launch analysis task in server mode

To launch the analysisin server mode, the Operation mode in the start dialog window must be switched to “as server”.
The other settings are the same as described in section 5.3.1, except for the disabled possibility to run the analysis shell
in the internal Qt window of the GUI. Immidiately after starting the analysis server, the Connect to analysis server
dialog will pop up, expecting specifications for login of the GUI to the newly created server.

5.3.3 Connect to existing analysis server

Once the analysis server has been started (from the start dialog, from other GUI, or from external shell command line,
respectively), one can connect this GUI to the server. Thisis done via the “ Connect server” dialog that is available from
the connect button & in the analysis menu. If the server has been launched before from this GUI, the connect dialog
will popup automatically.

Port number must match the connection port as % -» Connect to server analysis |[E|BI[=1E3]
printed out in server terminal window. Host should
specify the node name of the server machine. Host localhost Port 5000
Three different accounts (roles) for login are provided:
Observer, Controller, and Administrator. Each login
has to be verified by a password. The Go4 default Fassword
passwords go4vi ew (observer), go4ct r| (control-
ler), and go4super (administrator) are used when
the default check box near the Password field is ac- . .
tive. gui306
These passwords may be changed in user analysis
class by method DefineServerPasswords(const char* admin, const char* controller, const char* observer) with the ar-
guments specifying the new password for the appropriate role. In this case, the correct password must be typed into the
password field. See code examples (as comments) in Go4ExamplelStep and GodExampleAdvanced.

Only one controller or administrator may be logged in at the analysis server at the same time. If a controller (or admin-
istrator) GUI has aready been attached, the next controller or administrator login will get an observer role. Observers

Mode Observer

default

Connect x

37

may only view analysis objects and configuration, but may not modify them. Submit, Start and Stop, and remote
macro execution is forbidden for observers, too. The controller account may modify all objects and the analysis setup
and change the analysis running state, but may not shutdown the analysis server itself. Finally, only the administrator
account may terminate the analysis server. After connection is established, the GUI main window title will show the
role (Observer , Controller, Administrator).

After connection a controller can change and submit new the configurations. When connected as an observer, button
may be used to get the object list from the analysisin the browser. One can a so get the configuration, but cannot submit
them.

The GUI disconnects from the analysis by &g, but the analysis continues to run. To really shut down the analysis one
has to use button && (administrator only).

No additional code should be implemented by the user to let analyseswork as analysis server. All necessary job is
done by standard godanalysis executable. It is recommended to convert older analysis code to new launch scheme —
mainly remove main executable and provide several initialization routines as it done in examples. To run analysis as
server from shell, one should call “ godanalysis —server <name>". The usage can be seen in any go4 example packages.

For analysis serversin ROOT macros see chapter 6, page 73

38

5.4 Analysis controls

5.4.1 Configuration window

The Analysis configuration window shows the last
valid setup of the analysis steps. These are taken from
the user analysis constructor parameters, or from the
ROOQOT file Go4Anal ysi sPrefs. root (in analy-

% Analysis Configuration
[Unpack xxx \/Analysis xco \
Step Control

+ Enable Step v Source v Store
sisworking directory), if existing. Event Souroe
The Analysis configuration consists of the configura- MBS Stream Server -
tion parameters for each analysis step. The analysis :
steps are shown in different tabs of the configuration Name: [dag3 Y
window. The values for event source, event store and 0 all 15
working status of the analysis steps can be changed Event store
for each step separately. Depending on the chosen Go4FileStore (1 ree/step) (* root)
Event Sour_ce, relevant parameter fleld:_s will high- Name: | /gauss_unpacked oot a
light for optional parameters. The MBS File, e.g., can
specify an MBS tag file name (see MBS manual), and ! 100 kB Fag) 3 i e
numbers for the first event, the last event and the Auto Save File
event number step between subsequent events to be
processed. Multiple input metafiles are supported by a bl || /gauss_AS.rool &
preceding @ character (see chapter 5.4.5, page 41). Enabled once 5 v Ovenwrite

The Event Source Remote Event Server may need a
Port number, other on-line sources can set the socket
timeout in seconds. For user defined sources (see
chapter 5.4.6, page 41), the optional string argument
Args may be evaluated in the user step factory.
The Event Store settings define the ROOT split level
and branch buffer size of the ROOT tree, and the file
compression level. If the Overwrite radio button is false, new events will be appended to a previously written tree of
the same event store name.
Moreover, steps may be disabled completely: the first step, e.g., can be left out and the second step may read its input
from a previously created output file of the first step. Note: the input of the actual first step must be specified; oth-
erwisethe analysiswill not beinitialized!
The auto-save file for analysis objects (histograms, conditions, parameters, dynamic list connections) is defined for all
steps with the auto-save interval, the file compression level, and the Overwrite option. Selecting once for the auto-
save interval will prevent saving the objects during the analysis run. However, the auto-save file will be written once at
the analysis shutdown (when pressing submit for the next settings, or Close, resp.). Auto-saving can be disabled com-
pletely by unchecking the ENABLED checkbox, i.e. the auto-save file is not even opened for reading previous objects.
Note that the 2! buttons at the different name fields will open a browser for the local file system to search for appropri-
ate file names.
The new settings are activated on the analysis client by pressing the % submit button (or Alt u). Note: you have to
press submit even if you want to apply the settings unchanged! To synchronize the configuration window with the
current analysis settings, the refresh button =# can be used. Thisis usually done automatically on first connection of the
analysis, but it might be useful when starting the analysis manually from a different shell, or when changing the analysis
setup independently from the GUI. For convenience, the B submit+start button will submit the new setti ngs and start
the analysis loop immediately.
The submit button closes the previous analysis (i.e. al files and connections will be closed, all event classes except for
the analysis step factories will be deleted) and initializes the analysis with the new settings. The (& Close button (or Alt
C) will close down the analysis without initializing a new setup. The analysis process, however, will remain with all
registered objects (histograms, conditions, etc.) available.
To have the changed settings available on the next analysis client startup, press the save Button . This will write the
current analysis settings to the file Go4Anal ysi sPr ef s. r oot (default name for startup), or to any other ROOT file
specified in the file dialog or the filename text field. Previously written configurations can be loaded using the Load
button (& and the corresponding file dialog.

e Notel: A changed configuration must first be submitted to the analysis before it can be saved.

e Note 2: When a new configuration is loaded, the previously active analysis is closed without saving the

configuration. After loading a configuration it appears in the configuration window. To initialize the
analysiswith these new settings, the submit button must be pressed!

Analysis Configuration File
= [& GodanalysisPrefs root &)

-~

=p | ¢= submit ||} Submit+Start (& Close

gui307

39

5.4.2 Analysis terminal window

When using the Qt Window option in the launch window, the analysis terminal window of the GUI shows al analysis
printouts

% fAnalysis Terminal 1N [=] B

WTTICOTIAT OOooE=r L1 | T

-TGo4CondArray polyconar Printout:

polyconar000000 11964 1% | |
paolyconar000001 11964 1% | |
polyconar000002 0 ox| |
polyconar000003 0 ox| |
polyconar000004 0o 0% |
cHisl 13000 795 [++++++H+HHHHH R |
cHis2 11964 698 [+ - |

++++End Conditions+i+++++44

Total size of all conditions is: 6752 bytes.

HBS Event printout: 13000 t/s 10 1 len 34 trig 0
Hbs Subevent tf= 10 1 len 6 procid 0 ctrl 0 cr 1
267 3018
Hbs Subevent tfs= 10 1 len 16 procid 4 ctrl 2 cr 2
333 957 2298 1287
13 241 1376
< | ;Ij
Press enter to execute. |.x setupl.C j \é |

24| £d i B Y

qui133

Button ## clears the window, & prints all histograms info, B prints all conditions info (make window wide enough for
the counter bars). Button (R will open the event information window (see chapter 5.14, page 70).

Additionally, it is possible to kill the analysis process with the ®& button on the hard way. This will disconnect the
analysis client after a while from the GUI and analysis can be launched again. However, this is not recommended since
the ROOT output files may remain in anon valid state after the kill!

Analysis terminal output can be stored by Windows» Save Analysis window menu command to text file. Analysis
terminal output history islimited by 100 Kbytes. This value can be changed in Settings» Terminal history menu com-
mand. To keep full history, 0 should be set.

When the analysis task is running in an external shell -
(xterm, konsole), the buttons and macro execution | @] /| & | [R|] RNEN

line will appear in a specia dockwindow (see figure). qui325

5.4.3 Macro execution in the analysis

The analysis terminal window offers the possibility to execute ROOT CINT commands and macros in the analysis task.
Note that a history of previous commands of the session is available with the macro line combo box (mouse selection,
or arrow down key). [&] looks up for macro files.

Using the go4 pointer (already set to TGo4Analysis::Instance()), one has access to all public methods of the analysis
framework from inside the macro. Note that the shortcut @ exists here for TGo4Analysis::Instance()->, e.g.
@PrintHistograms(“Cr1*”) will print al histograms with names matching the wildcard expression. In macros the envi-
ronment variable GO4ANAMACRO _ is defined and may be checked. A detailed description can be found in the ref-
erence manual.

It is not necessary to load the Go4 libraries in the macro again, since these are known at runtime in the analysis anyway.
See also macro execution in GUI (see 5.17, page 72). $GMMSYS/ macr os directory should be added to entry
Uni x. *. Root . MacroPat hin. r oot r ¢ setup file.

5.4.4 Auto-save file mechanism

When auto-save is enabled (in MainUserAnalysis), all objects are saved into a ROOT file after every auto-save interval
seconds time, and before termination. The auto-save file can also be written on demand by Save button [d in the con-
figuration window. At startup of the analysis the following actions are done:

1. Theanalysisiscreated.

2. Theauto-savefileisread and all objects are restored from that file. Objects already existing, i.e. created in the
analysis constructor, are overwritten by the objects from the auto-save file, except histograms. Existing histo-
grams are not restored!

3. Before creating objects in the processor constructor or the PreLoop() method of the analysis one should check
by the proper getter method if the object has been already restored from auto-save. If not, it can be created. If it
is created while aready existing the existing object is deleted firgt, i.e. the values from auto-save are | ost.

40

When the analysisis controlled from GUI, objects are loaded from auto-save file when the submit button is pressed (full
sequence see chapter 3.6.11, page 19)

5.4.5 Multiple input files

There isthe possibility to process multiple input files (source type MbsFile) in one analysis set-up. This can be achieved
by wildcard characters in the Event Source name field, e.g. *. | nd or dat a???_nar ch03. | nd or *. All files
matching the wildcard expression will be read subsequently without closing the analysis; output events may be written
into one event store. Additionally, one may specify the name of a metafile containing alist of inputs; the metafile name
has to be preceded by an @ e.g. @aussfil es. | m . Each line of the definition file gaussfil es. | M may con-
tain the following format (values separated by blank spaces):

inputfile tagfile firstevent lastevent skipevents

The numbers of first and last event always refer to the running event count in the currently open event source, starting
with number 1 each (not the event number inside the event header). The skip events number defines how many events
shall be skipped in one file in between two processed events; this may be useful if along term sample of alarge input
file shall be taken. The tag file may contain information which events shall be processed in the input file (see MBS
manual).
At least the input file name must be specified; wildcards are not alowed here. Complete lines in the metafile may be
commented out by a preceding “!” or “#" character.
Moreover, metafile lines preceded by an @character aretreated asROOTCINT commands, e.g.

@.x setup.C

@ TGo4Anal ysi s: : I nstance() - >ShowEvent (“ Unpack”); .
These commands are executed in between change of event source, thus allowing to use different setup parameters for
different list-mode files.
Note that multiple input files also work in batch mode. However, wildcard expressions must be put in parentheses
(“") if they are passed to the Mai nUser Anal ysi s or godanalysis as command line parameter. In batch mode the in-
put file suffix is automatically expanded to *. | nd, if it was neither . | md nor . | m . Therefore the meta file can also
have suffix . | nd, i.e. @yfil es resultsinreading nyfi | es. | nmd (although it isaplain text file). A better way isto
use suffix . | i, because then one can omit the @

5.4.6 User defined event sources

Besides the delivered Go4 event sources for the standard MBS or ROOT file input, there is the possibility to define any
other event source. In the analysis configuration window, there is the selection UserSource for the analysis step Event
Source type. In this case, a TGo4UserSourceParameter object is passed to the step factory of the step. The user source
name, and optionally, port number and a text argument can be specified in the configuration GUI to be evaluated on
analysis initialization. An example of an analyis with a user defined event source is provided in directory
GodExampleUserSource of the Go4 distribution. Please see section 4.8, page 30 for further details how to implement a
user defined event source.

41

5.4.7 MBS status monitor

When working with the gsi multi branch system mbs as event source, Go4 offers a monitoring tool that can request in-
formation from the status port of a running mbs system. This is available as dockwindow from the “ Settings/
Show/hide” menu, or will appear when the mbs button # is pressed in the analysis configuration window.

% - God v3.0-0beta @1xg0517 <«Controller>
File Tools Analysiz Settings Windows Help

|ranisicaly b @ 2

% Panell: MosEventRate M [s[E | % Pancl?: streamserver

[O]ml: H @l

File Edit Options O Apply to all | File Edit Options [Apply to all
| Events/s 14:23:56 | |__% Events served 14:23:56 | Ll histal
80 =-[Mbs
C |4 MhsEvertRate _|
E ~|da MbsDataRate 5
14000 75 i ctresnserver
12000| 70:_ 2 [OHistograns
C =-[(ACratel
E |4 Cr1chol -
(I 65 |l Cr1ChOZ
C E “da Cr1CHO3
8000 60 | da Cr1ChO4
C E |4 Cr1Ches
L C | Cr1Ch0s
e 551 b Ll CriCho7
E E M Cr1Cho
4000 50F +-(Crate?
r E - Iy CriChing
L r |l Hisl
2000 451 &Hizz
L F A Hislg
plove bbbl b B bl L. - His7g I«
-20006180616001406120061000-800 -600 -400 -200 0 4o lda Eventsize =
s il I]
MB® |32 ‘ HE99 | Ev/s | 4o {SE03E 9 |Ev | 1A5 | kB/s ‘ 29 {EHE| HB |10—Dct—05 14:23:55‘ E] o Mare, ..
[streanserver 502 | 45 |2 |- file closed - | T 1B fite @ Status O Sstup (O Setuphl [2s B [1000 bins B B trend
& [REa-2 "TIH0 | Current Ev/s 7 fAverage Ev/s s NN | Events |2005-10-10 14:23:56
o bz [T . M | B EMGMOO0 y
gui327b

The screenshot shows the Go4 main window with the mbs monitor tool docked in the bottom part, right above the Go4
analysis status line. The mbs monitor by default shows just one line of information, but may be extended by the lower
line with more details using the More... checkbox.

The upper line displays, from left to right: The mbs logo RiE= which is animated when the mbs acquisition is running;
atext lineto edit the mbs host name; event rate (events/s); total events acquired; datarate (kB/s); total data acquired
(Mb); time and date of last refresh. On the right there are control buttons: With € the mbs status server is newly con-
nected and the information is refreshed. It is possible to refresh the status frequently, thisis switched on and off with the
buttons ¥ and @, respectively. The refresh time can be chosen by the “seconds” spinbox in the lower line of the mbs
monitor window.

Additionally, the lower line displays (from left to right): Name of data server in use (streamserver, or eventserver) and
percentage of delivered events 1/n, asit is set in the mbsby command set stream n, orset event n; percent-
age of real delivered events from this data server; name of the file which is currently written by the mbs, if existing, and
total amount of data written to file since mbs startup. The £ button may be used to print the complete mbs status struc-
ture, the complete setup structure, or the multilayer setup structure, respectively, to the shell from which the gui was
started. Thisis selected by the radiobuttons Status, Setup, and SetupML. Note that printout of multilayer setup is en-
abled only if areal multilayer setup exists in the observed mbs.

Besides the time selector for the monitoring frequency, the right side of the second line offers the possibility to switch
on several trending histograms. This is done by the trend checkbox. The overall number of bins may be changed in
the bins selector; the range of one histogram bin equals the monitoring frequency. Note that trending histograms are
only written if the mbs status monitoring is turned on (i.e. no new entry in trend histogram by manual refresh using but-
ton €8). Three different trending histograms are currently produced: for the event rate, the data rate, and the percentage
of delivered events at the mbs data server (streamserver or eventserver). They appear in the Go4 browser in the Work-
space/Mbs folder and may be observered in Go4 view panels. The screenshot shows the trending histograms for event
rate and streamserver event retio.

Note that awarning sign 2 will appear in the upper line if connection to mbs status server fails.

42

5.4.8 DABC monitor

When working with the new gsi DAQ framework DABC (Data Acquisition Backbone Core, see http://dabc.gsi.de) as
event source, Go4 offers amonitoring tool that can request info services from the DIM server (Distributed Information
Management, see http://dim.web.cern.ch/dim/) of the DABC control system. It is avail able as dockwindow from the
“Settings/ Show/hide” menu. Note: thistool isavailable only if Go4 installation was build with environment vari-
able $DIMDIR set to the DIM ingtallation directory!

9 =w God v3.4-0 @IxgO517 [] 2]
Eile Tools Analysis Settings Windows Help
2 3 =N] — -
|[paavivilp p @2 m| 2o PSS It dcd=noofco Bl R SFREHSE
H@ Wy |25 3: . Allitems ~
% Panel1: [DataRate.Sender-TrendingAverage] M =B |2 Panel2: [DataRate.Receiver-StatsFast]
Namea
File Edit Select Options I Apply to all ¥ AutoScale | Fjle Edit Select Options I Apply to all ¥ AutoScale
— ((1Workspace
MB/s 16:07:37 | counts 16:07:39 i |da hiisto 1
Mean 54.61
F F rms 11z ||| = EIDABC
70 14— Integral 446 =-[Ixio11.gsi.de: 1970-Worker:42
C - | DataRate.Receiver-Trending.
F 12-_ ‘| Ja DataRate.Receiver-Trending.
60 o = [[Ixio0s.gsi.de:1970-Worker:42
F - |l DataRate.Sender-TrendingF a
50— 10 i~|la DataRate.Receiver-Trending.
r r DataRate.Receiver-StatsFast
O 8 E““LkDataRale,Sendar-TrendingA,
C L i-|k DataRate.Recelver-Trending.
F 6; """ |l DataRate.Receiver-Stats Aver
301 L - [Ixio10.gside: 1970-Worker:42
F C H LIADataRate_Re:eiverrTrending.
20} 4 ‘|l DataRate. Receiver-Trending.
10~ 2
-‘ﬁﬂﬂ -800 -800 -700 -600 -500 -400 -300 -200 -100 O uIJ 10 20 30 40 50 60 70 80 90 100
5 MB/s ‘ i
~DIM dns server —————— ~DABC Nodes —Ratemeter View
IngDEW,gEi,de @ Context % State Iﬁaiam eters | Service list Name % Walue | Trending |Slalisti
- Ixg0517.gsi.de:1969 Running I~ Show I Dump 1xi009.gsi.de:1970/Worker:42/DataRate. 63.9993 MB/s |¥ histogramM histc
Mi Okt 22 16:07:39 2008 1xi009 .gsi.de: 1970 Running W Show ¥ Dump 1xi009.gsi.cle: 1970/ Worker:42/DataRate. 63.2675 MB/s ¥ histogramI™ histc
¥ more... 1xi010.gsi.de: 1970 Running F Show I” Dump 1xi010.gsi.de:1970/Worker:42/DataRate|49.6 184 MB/s [¥ histogram[™ histe
1xi011.gsi.de: 1970 Running W Show " Dump 1xi010.gsi.de: 1970/Worker:42/DataRate. 49.8574 MB/s I~ histogram[™ histe
e 1xi012 gsi.de: 1970 Running F Show ™ Dump 1xi011.gsi.cle:1970/Worker:42/DataRate.50.1071 MB/s ¥ histegram ™ histc
Rate §@ 1xi0 1 1.gsi.de: 1970/Worker:42/DataRate.50.0979 MB/s I histograml™ histc
Ixi0 12.gsi.cle: 1970/ Worker:42/DataRate. 64.0035 MB/s I histogramI™ histc
% histogramming on |Print DIM services of the nodes checked as 'Dump’ to lerminall 1xi0 12.gsi.de: 1970/Worker:42/DataRate.|63.9918 MB/s I~ histogram[l™ histc
lﬁ
=
¥ each sample
¥ average 3: 4 | |
Ready
I I
gui362

The picture shows the Go4 main window with the DABC monitor tool at the bottom and some histograms filled with
monitored data. On the |eft side of the monitor tool (frame DIM dns server) the hostname which runs the DIM name
server can be specified. When pressing the €% button, the list of DIM servicesis refreshed from the dns server. The
time and date of the most recent refresh of any requested DIMinfo appearsin the text line below the dns server name.
The more... checkbox alows to show or hide the Inspector frame that contains more controls (see below).

Any node that exports a DABC state service will show up in the DABC Nodeslist (table in the middle); the first col-
umn gives the XDAQ Context namein theform nodenamne: port, as specified in DABC setup. The current value of
the DABC finite state machine (or the MBS acquisition status, resp.) is marked with its corresponding colour and name
in the State column of the nodes table, e.g. “Running”.

By using the Show checkboxes in the Ratemeter s column the user can select to subscribe for all DABC rate parameters
of the corresponding node. These subscribed rate parameters will show up in the Ratemeter View list (table on the
right). The first two columns of the Ratemeter View list denote the full DIM parameter Name (unique for each DIM
name server scope) and the current Value (in the units as published by the DIM service, here Mb/s). The table informa-
tion is refreshed by means of the DIM mechanism whenever arate service is updated. Note that awarning sign & and
the number “-1" will appear inthe Value columnif apreviously known service variable is currently not available.
This may happen when DABC is switched into “Halted” state which will remove DABC modules and their rate pa-
rameters.

The histogram checkboxes in the Trending and Statistics columns of the Ratemeter View table select which rateme-
ter values shall be filled into a trending or statistics histogram, resp. These histograms can be found in the “Work-

43

http://dabc.gsi.de/
http://dim.web.cern.ch/dim/

space/DABC” folder of the Go4 browser, sorted into subfolders according their full context names. They can be dis-
played in aviewpanel, renamed, saved to afile, etc. like any other Go4 histogram (See chapters 5.5 and 5.7).

The histogramming is controlled by the Inspector frame (on the left). The histogramming on checkbox toggles the
histogramming of the selected values on or off. Before turning on the histogramming, the user may chose the histogram
binsize by means of the binsize spinbox. Note: when binsize is changed, al previous trending/statistics histograms will
be replaced and lose their contents! If each sample is checked, there will be fast trending (or statistics, resp.) histo-
grams which arefilled at every update of the DIM service (usually in 1 sinterval). If average is checked, there will be
average trending (or statistics, resp.) histograms which are updated with the average of the values accumulated during a
user defined time interval. Thistime interval is set by the spinbox next to the aver age checkbox (here 5 s). Both each
sample and aver age histograms may be accumulated simultaneously; if neither each sample nor average is checked,
there will be no histogramming.

Besides observing the rate parameter values, it is possible to print the current values of any DIM service exported on the
DABC nodes. The Dump checkbox in the Servicelist column of the DABC nodes table selects a node for afull ser-
vice list inspection. The 8 button in the I nspector frame may then be used to print the current values of all selected
services to stdout of the shell from which the gui was started. Moreover, it is possible to dump services only if their
name contains a certain text, or if it matches a shell-like wildcard expression. Thisfilter expression may be written into
the text field near the &4 button before pressing it. In the screenshot example shown in the figure, only parameters with
names containing the string “Rate” would be dumped.

5.5 The Go4 browser

After pressing # the analysis starts and the rates are displayed at the bottom as shown in the screen shot below. The
analysis output window and the configuration window have been closed. A view panel created by i has been opened
and a histogram is displayed by dragging & dropping a histogram from the browser into the canvas. Note the logging
window displaying messages from the remote analysis. This log panel can be opened in the Settings menu bar. The
complete logging history may be saved into atext file by the Windows» Save Logwindow menu command.

% =» God v3.0-0beta @1xg0517 <«Controller> - [Panel1: His1]
o6 File Tools fAnalysis Settings Windows Help 151 =]
- e Y = | o — = i I
zopEsd @ik s AREHSE[vivinidak|p b O2 2||Q[»F: 2@ e o
File Edit Options ™ Apply to all
— = - MHame Flags |Info Time Class =]
| Cont:il_glon histogram 14:16:47 | llorkspace Tolder
247 lahistol histo title 09:53:07 THII
o - +-[(Analysis folder
22 His1 A)
F Entries 2.062013e+00 Hnalgms Controller TGodAn:
ZU:— Mean 1020 4--[:|Hi3tograms All Histogram o... TFolder
F RMS 264.6 +-[_ICrate zerfolder older
18 +-(Cratel UserFold TFold
E Undlerflow 5611 +-(Crate? lUzerfolder TFolder
16 Overtlow o - B Cr1Chix2 spu Crate 1 channel,.. TH2I
1af- WS B |l His1 mow Condition histo...14:16:47 THI
E Skewness 108 |l His2 spr Condition histo... THIT —
12:_ |l Hislg fezall Gated histogram TH1I
10 -|daHisZg =l Gated hiztogram TH1I
E M Eventsize el Event =ize [b] THID
8F | da Suml spu Sum over 8 chan... THII
6:— | Sum2 spu Sum over 3 chan,.. TH1I
E | Sum3 = Sum over 8 chan,,. TH1I
4 | SumiCalib spu Sum over 3 chan,.. TH1I
F | L sdu GodE lenent Filr. . THIF
2 : : : - |da backtest sdu GodElement . fiCr. .. THIF
C Ll Ll B) H h' -t d h' -t -t'-tl 'l'HlI
07500 1000 1500 2000 2500 3000 3500 4000 4500 5000 “latinistonen sdu histogran title |
| | »
Date / Time Description Type i"
i 04,10,05 14,17.45 Analysis nameslist was reguested from client current i
©04,10,05 14,17.41 Client MuAnalysis-lxg0517-8714 working function is started... Info
04,1005 14.17.41 PnalysisClient Mufnalusis-1xg0517-8714 has started analusis processing. Info _I
W n a a s e 44 a— a - £y . A . P A . . -~
H o [RaG-Z 243y | current Evis 24E | Average Ev/s Ells BEEO00 | Events |2005-10-04 14:18:48 /j

Qui309

The Go4 browser on the right side shows objects from different data locations in a folder structure. Remote objects in
the connected analysis task are listed under the Analysis branch. The Workspace folder contains all objects that are
put into the memory of the local GUI, e.g. by creating fix copies of remote analysis objects. A root file opened from the
files toolbar with the & button will appear in a folder of the filename; similarly, a connection to a remote data source

like the xrootd, the root webfile, or the gsi histogram server, shows up as separate browser branch.

5.5.1 Browser columns

Beside the “names’ column showing the objectsin their folder structure by symbols, the Go4 browser has configurable

columns to display different kinds of properties of the displayed objects: Flags, Info, Date, Time,
Class, and Size. These can be switched on and off by the menu that pops up on right mouse but-
ton click in one of these. Moreover, the order of these columns can be freely arranged in the
browser by dragging and dropping their caption to a new position.
The Flags column will indicate certain properties of the object by letters:

e m - shall be monitored frequently; or s - is static until explicitely refreshed

e d - object may be deleted; or p - is protected against deletion

e 1 —read only, can not bereset; or w—writable, may be reset

TheInfo field will usually show the type of the folder, or the title of the ROOT object.
Date and Time columns show the date or time of the last object refresh to the GUI inernal cache
(for remote data sources), or of the object creation (for local workspace), respectively.
Class column shows the class name, and Size will give an overall object sizein bytes.

45

Name Flags |Info Date Time Class Size =
ElAnalyzis Controller TeodAnalys, .. = BE2068
'}--CIHisthr“ams ALl Histogram objects 2005-10-04 14:24:51 TFolder = BERZED
--(AConditions A1l Condition objects TFaolder = 1456
+- ((35ubfolder UserFolder TFolder = 252
~Hlwinconl = God window condition 2006-10-04 14:24:51 ThodWinCond 164
- Elwincon? =l God window condition 2005-10-04 14:24:51 ThodWinCond 164
=] God polyzon condition 2005-10-04 1424351 ThodPolyCond 120
sl TaodlinCond 2005-10-04 14:24:51 THodCondArea 132
s} TGodPolyCond 2005-10-04 14 :24 151 TGodConcdArea 132
=hu God window condition 2005-10-04 1424351 TGodlinCond 164
s} God window condition 2005-10-04 14:24 151 TGodlinCond 164
- ElnyConny = 1-0 window condition 2005-10-04 14:24 151 TeodlinCond 164
- [(OParamsters A1l Parameter objects TFaolder = 2328
- 128 kP 1 Thizs iz a God Parawnete,.. TrH¥KParaneter 920
- 123 KHKPar? This iz a God Paranete, .. TH¥KParaneter G920
~128sizefitter This iz a God Parawmete, .. TGodFitter,,, 32
- 128 spectitter Thiz iz a God Paramete., .. TGodFitter, .. 32
- 122 03] {Par This iz a God Parawnete, .. Tr¥KCalibPar 424
T--EDDgnamicLists Dynamic List Instances TFolder = 3=d
- (IPictures Ficture ohjects TFolder = 184
EEcondset =] Set conditions 2005-10-04 14:24351 TGodPicture 92
EaPicturel =hu Picture example 2005-10-04 14+24351 TGodPicture 92
- [Canvases All TCanwases TFolder
—-[(AUserih jects For User Objects TFolder = 156
Wy Calibrat ion spn 2005-10-04 14:24:51 TGraph 100
EHul‘tiTest =N Thiz iz 3 test multigraph2005-10-04 14:24:51 THUlt iGraph 4]
=-(ATrees References to trees TFolder
2 #lAnalysis«Trea Thiz iz a3 God Status 0, TTree
- % KA LE vent. ¥HHANLEvent., TFolder
S g AN Event, ThodEvent , , K{HAnLEvent , TGodEventE, | . TFolder
He 4% KHEANLEvent TGodEy, . ¥HHAnLEvent , TRodEventE, ., TFolder
- By H¥AN1Event TGodEy, . W¥¥AN1Event , TGodEventE, . . Bool_t 428
-~ E AN LEvent TGodEy, , . HHEAnlEvent , ThaodEventE. . . Short_t 428
- B HHAN1Event , friata[16] Ki¥ANLEvent , fr0ata(16] Float._t 438
- (JEventOb jects Event objects of curre... TFolder = 7a0—
+- (JEventStores References to event st... TFolder = 82
+- [(JEventSources References to event so... TFolder = 440 x|
gui3ll
5.5.2 General functionality
Each item in the browser has a context menu, which can be activated by right i Piot
mouse button click on that item. It is shown in the figure on the right. By A

means of thismenu, it is possible to operate on the browsed objects. The items
in the upper part of the context menu (above the line) are available for all
items, whereas the items in the lower part contain special functionality to con-
trol remote data sources like the analysis.

Histograms and pictures can be plotted either by double click, or by drag and
drop in a view panel, or by the right mouse menu. Item i Plot draws each
selected histogram into an own graphical pad, It Superimpose draws all se-
lected histograms superimposed on one pad.

The browser items represent the structure of a connected data source like the
remote analyis, but will only retrieve the objects on demand. This happens
usually just before the objects are drawn. To explicitely get the objects into the
local memory cache without drawing them, the =2 Fetch item(s) functionality
may be used. Note that the browser’s implicit fetching behaviour may be ad-
justed in the Settings/Preferences menu by “Fetch when drawing”, and “Fetch
when copying”.

The selected objects may be saved into a ROOT file with menu item & Save
selected... The B Export to... functionality will offer the possibility to export
root histograms to ascii or radware format.

Item @ Info shows some information of the object, ® Edit... opens the editor

=y Fetch iten(s)
& Save selected,,,

»
x

Copy to Workspace
Copy to clipboard

Monitor item{s)
®

7 Clear (Reset to 0)

& Set Clear protection

2

2 Delete from analysis

@ Refresh namelizt

gui31l

if available. Item *| Delete Item deletes the selected objects from the local memory, whereas item *| Delete from
analysis will delete the corresponding object in the remote analysis, if possible (see chapter 5.5.8. page 48).

46

5.5.3 Analysis folder controls

The Analysis folder shows the remote folder structure, which contains all objects that were registered to the analysis
client. At any time the list of the remote objects may be refreshed by the right mouse button entry 22 Refresh
nameslist. The folder Histograms €.g. contains the histograms, the folder Trees will show the structure of all registered
trees, e.g. all trees created by TGo4FileStores.

The eraser item & Clear (Reset to 0) clears the selected objects like histograms, conditions, graphs and so on.

Each object on the analysis has two protection modes — del ete protection and clear protection. These modes indicated in
Flags column of analysis browser (see below). Delete protection is set for an object when it is created and added on the
analysis side. It prevents deletion of such objects from GUI. Objects created by GUI commands have no such protection
and can be deleted by the *| Delete from analysis functionality. Clear protection prevents the user to clear the content
of objects by usng #. This mode can be set and unset for any object via context menu commands
Set clear protection € and Unset clear protection € , respectively.

5.5.4 The monitoring mode

In the Analysis a histogram, graph, or picture can be set into the monitoring mode by selecting it and pressing the
monitoring entry ™ Monitor item(s) in the right mouse menu. This is indicated by the letter “m” in the Flags column
of the browser (static objects have letter “s’). Monitoring means that the content of objects are updated continuously
from the remote data source (analysis, histogram server,..) to the GUI. This alows e.g. to watch the filling process of a
histogram. The monitoring property of an item may be switched off by the & Stop items monitoring functionality of
the context menu.
Note that only the visible objects are frequently updated, i.e. even if a browser object is in monitoring state, it will not
be copied from the remote data source if is not drawn in any viewpanel, or displayed in an editor, respectively.
The overall monitoring action can be started with button 2= of the Browser options dockwindow. Here the update
frequency may be specified in seconds,too. Button & will cease monitoring of all monitored objects, but will not
change their monitoring property (flags). Additionally, this dockwindow offers a button €% for immediate refresh of all
visible abjects, and a filter function for the browser to display either all
objects, or only the monitored objects, or only the currently fetched m’> 2s Monitored ‘P
objects, respectively. The clear button & may be used to clear (reset to .

. . gui326
0) al remote objects at once (see section 5.5.8, page 48) .

5.5.5 The workspace folder

The Workspace folder contains all objects that are put into the memory of the local GUI. This may happen either by
producing a new histogram from the ROOT menus in the viewpanel, like a rebinning, or a projection, or from the Go4
tree viewer; or objects may be copied from elsewhere to the workspace. Item & Copy to Workspace will produce a
copy of the current object and put it into the workspace folder. This copy will preserve the subfolder structure of the
data source; if e.g. a histogram was copied from analysis folder “Histograms/Cratel”, the copy will be placed in folder
“Workspace/AnalysisHistograms/Cratel”. The E& Copy to clipboard, B2 Paste from clipboard, respectively, allow a
standard copy/paste functionality to any destination in the workspace. Additionally, in the workspace folder the right
mouse button menu offers the Create folder and the ¥ Rename object functionality, as known from general file sys-
tem browsers.

5.5.6 Browsing files

ROOT files containing data can be opened (buttons = and @ of the mainwindow file menu, respectively) as with the
native ROOT TBrowser/TTreeViewer. Any ROOT file can be opened. Histograms in these files can be displayed in the
Go4 view pand like local objects. A ROQOT treein alocal file can be examined with the tree viewer of Go4. In contrast
to the remote tree viewer mode, treesin alocal file are processed by the GUI itself and do not have an effect on the re-
mote analysis. The GUI knows if atree viewer entry comes from a remote, or from alocal TTree, so the i button will
either send a command to the analysis client for a dynamic histogram, or will perform alocal TTree::Draw() call.

If the file contains user objects, make sure that the GUI has loaded the proper libraries to access them (see chapter 5.2,

page 36).

5.5.7 Histogram server connection

From the main window File menu entry k& one can connect to any GSl histogram server like MBS, GOOSY, L€eA, or
another Go4 analysis. The parameters for the histogram server, such as node name (Server), login name (Base), the
socket Port number, the Password, and an optional Filter expression, are specified in a connection dialogue window.
After a successful connection the histograms of the server appear in the Go4 browser in a folder named
HServ_basename, if basename is the name of the histogram server base.

47

Info [c1sl

;- Comnect ta gsihisto server 2l[ljx] FuHSery Connection to histogram server TGcJ
Server 1017 =8 [;IHisthPa ms folder
—-[[dRaw data folder
Base |frs 4 CIVMED folder
Eilter v Lk nenTr Lzger folder TH:
- - [CIMON folder
Port 5008 e =~ COMON_scaler folder

|l MOM_scaler(00Y folder
|4 MOM_scaler(0ly folder
| MON_scaler {02y folder
¢ M MOM_scaler(03) folder
A MON scaler(04Y folder
A |4l |

Paz=word |*****x**m

I;Ii';i'i'i'i‘
4

gui316/317

5.5.8 Resetting and deleting objects

Any object in the workspace may be deleted by selecting it and using the popup menu delete item *. Objects in the
Analysis (histograms, conditions, parameters, ...) that were created in analysis code must not be deleted, for the com-
piled user analysis would still try to access these objects after deletion. Therefore, deleting these objects is disabled us-
ing the delete protection property (symbol “p” in Flags browser). However, dynamic objects that had been created
from the gui (histograms, conditions, dynamic list connections) are not delete protected and can be removed by the de-
lete button.

An analysis histogram can be reset (contents and statistic values to zero) by selecting it and chosing the “ # Clear” en-
try in the browser’s right mouse button popup menu. Resetting an analysis TGraph object will erase all points of the
curve. For parameters, the method Clear() is called which may be implemented by the user.

All objects within afolder are reset at once by selecting the folder icon in the remote browser and chosing the ¢ entry
of the right mouse button menu. This has the same effect as calling method ClearObjects(“Foldername”) of
TGo4Analysis. It is aso possible to select multiple objects in the browser and then apply the clear menu. To clear all
remote objects at once, the clear button £ in the Browser options dockwindow can be pressed.

Note that any analysis object can be protected against clearing by a switch in the remote browser’ s right mouse button
context menu (See chapter 5.5.3).

48

5.6 The Go4 tree viewer
The Go4 tree viewer is started via Settings » Show/Hide» Tree viewer menu or viaRMB pull down menu.

=] x| v: | z:] % | 1l]

gui140

There are two operation modes for the Go4 tree viewer: the local mode, or the remote mode. Dragging and dropping the
tree leaf names from file or remote browser, the tree viewer will switch automatically into the local or remote mode,
respectively.

5.6.1 Local mode

The tree viewer works on a tree in a file that was opened in the browser. This is like the original ROOT tree viewer,
with the same logic of drag and drop. However, the Go4 tree viewer supports the resolution of the Go4 composite event
information (see section 6, page 73). On pressing button ¥, the local tree will be processed as defined by the given
draw expressionsin X: ¥: Z: (and optional &) fields of the Go4 tree viewer. The local histogram of the given nameis
filled with the result. The histogram will appear in the memory tab and may be displayed in aview panel. If no nameis
specified, an automatic name is chosen from the given leaf names.

All classes, which are stored in the tree, should be known to GUI. User should load appropriate libraries before using
local tree viewer (see chapter 5.2, page 36).

5.6.2 Remote mode (dynamic list histogram)

The Analysis folder shows the structure of all objects registered to analysis trees in the Trees subfolder. By drag and
drop the elements of atree can be put into %: ¥: Z: fields of the Go4 tree viewer. A hame and an optional drawing
condition can also be defined here. The logic is the same as for the regular ROOT tree viewer. On pressing button ¥,
this information is passed to the analysis client and a new entry in the Go4 dynamic list is created. After pressing € in
the Analysis panel, a new histogram of the defined name appears in the histogram folder (if no name was defined in the
tree viewer, a default name is used combining the variable names). Note: the histogram itself will be created no sooner
than the next events after the ¥ are processed, i.e. the analysis must be running. This histogram will be filled event by
event with the defined parameters of the tree. Go4 internally uses a TTree::Draw() over a number of collected events to
update the histogram contents. This number, the dynamic list interval TreeDrawlinterval, can be set by the analysis
method SetDynListinterval(Ndyn), or can be changed in the dynamic list editor (see chapter 5.12, page 67).

If the histogram specified in the tree viewer already exists when the dynamic list entry is created, the histogram of that
name will be filled by the dynamic list instead of filling a new histogram. Therefore it is possible to create a histogram
with desired bin size first (see chapter 5.6.3, page 49), and then assign this histogram to a new entry of the dynamic list.
This can be done easily by dragging and dropping a histogram icon from the histograms folder into the histogram text-
box of the tree viewer. Again, pressing ¥ will create the dynamic list entry; the given histogram will then be filled
every Ndyn events. The dynamic list tree is kept in memory, if in the analysis configuration for output Go4BackStore
had been sel ected.

A histogram filled by the dynamic list, like any other remote histogram, can be displayed continuously in a view panel
by switching on the Go4 monitoring mode (see chapter 5.5.4, page 47).

5.6.3 Creating a new histogram

p % —m Create Mew Histogram IEIE
The button & will popup the histogram creation window. Here the prop- [lass
erties of the histogram to be created anew can be specified (dimensions, [=3 (“ THL € TH2 C T
precision, binning, range, name, title). The histogram may be either cre- |rit1e [overvien (Igge(. D BF 31 @O ‘
ated in the local directory (Create Local), or created in the remote analy- |, . ..
sis (Create Remote). A new local histogram will appear in the local ob- No. of Birs 1[50 Hin, [o Hase. [30

jects panel, a remote histogram is put under the histograms folder in the
Go4 folder structure. A new histogram (like any existing histogram) can | "-fis
be used as target for the remote or local tree viewer. Thisisdone by speci- || M- of 8ins ¢jw00 Hin.fo -
fying the histogram name in the tree viewer name field, or by dragging |-
and dropping the histogram icon to this name field. The tree viewer & | | |
will then fill the created histogram instead of creating a new histogram
with arbitrary binning and range settings. [create Local| create genote| 1'

Qui317

49

5.7 The Go4 view-panel

Pressing @8 in the Go4 main control window opens a new Go4 view panel. A new view panel will also pop up auto-
matically when any object in the browser is selected and the right mouse button menus il or It are activated. Further-
more, objects can be drawn by “drag and drop” from the Go4 Browser to an existing view panel pad and displayed
there. On the Ileft side the optiona ROOT graphica editor is embedded. It is opened by
Edit» Show ROOT attributes editor. Select with Ieft mouse an object on the canvas and the editor will change accord-
ingly.

% Panel2 M=
File Edit Options [~ Apply to all ¥ AutoScale

e | [Cooled | [pricoooicooled |

Mame

Fane |2: TCanvas T 500
Fill ——————
LI~ -

FadrCanvas

" Fised aspect ratio

" Grosshair M Edit
™ aridx ™ arigy
™ Tickx ™ Ticky

o 120
me
Log Scale
= Oy Oz
Border Mode 100 priCoooip2aver
" Sunken border | »
' Mo border i

' Faised border

Size: |2

U

Timse [1.802]

Panel2 x=-0.00510204, y=-0.00223214

A

gui318
% Panel3: [pr1C0001p1aver], priC0001p2aver M =1 B3
File Edit| Select Options I Apply to all ¥ AutoScale
Stz | Binn Master object
r:i";emmmzp pr1C0001p1aver —— pr1C0001plaver
Line priC0001p2aver —— pr1C0001p2aver
.- Show [pr1C0001p1aver] on top
I 1 | —
Fill ———————————— C
C11- . |- 400
Title C
IF'1 aver ~
300
Histogram L
Flot———— —
’7 = 2.0 3D 200__
Error: INo Errars vI L
Style: INo Line vI ."]0
- SiMmiEle [Erening
[T Show markers
Il -
- — % R
| Time [1.60s]
Marker ——— | T
Panel3d x=-7.21978, y=-37.4063 Ahizes

50

An existing view panel can be divided into independent sub-pads by the division buttonsin the Canvas Tools activated
with the RMB on an empty region. When several histograms in the browser are selected for plotting, the view panel
division will be done automatically to display all histogramsin one new view panel window.

The canvas embedded in the Go4 View panel is an ordinary ROOT canvas, offering all ROOT features of the mouse
button actions on the displayed objects (e.g. opening a histogram fit panel, rescaling the axes using cursor and left
mouse button, ...). The currently active sub-pad (indicated by ared frame) can be selected with the left, or with the mid-
dle mouse button (ROOT style), resp. Graphic style and range settings are always applied to the sub-pad that was se-
lected most recently, except the Apply to all option checkbox is enabled. Note that the settings are preserved for each
pad, i.e. they will be recovered when switching back to the pad.

The buttons [0 %0 ¢ »3¢& v A X 2w 2 5 @ @] (y141) are zoom and shift buttons for the x-, y and z- axes, work-

ing on the active pad (red frame). The expansion/compression factor can be set in % of the current range. The Un-zoom

all button & will restore the complete range of all axes. The set limits button & will popup a scale window. Here the

range can be typed in and set explicitly by axis values. Additionally, the

scaling behavior of the ROOT histogram can be changed: By default

(AutoScale on), the y-axis (1D histogram) or z-axis (2D histograms),

X min | -10 A max | 10 respectively, is expanded to cover the full range of channel contents

v minlC SRRl 1752 97 whenever a memory histogram is updated, or when a monitored histo-

gram is refreshed from the analysis. With AutoScale disabled, the pre-

Z min | C Z max |C vious y-range (1D) or z-range (2D), respectively, is invariant over any

updates. This allows to observe a magnified region of interest in a spec-

[L CoEtTE Set trum, independent of the maximum peak height. Note that the y range of

: a 1D histogram can be chosen freely by ROOT TAXis selection with the

QU139 mouse, i.e. clicking with left mouse button on the y-axis for the first

limit, and dragging the pressed mouse to the second limit of the range. The scale window is automatically connected to

the selected pad and updated accordingly. Note that the AutoScale state for the current pad is also accessible as check-
box at the top of the viewpanel window.

The view-pand offers the menus;

5.7.1 File menu

Saveas.. save the content of the view-panel in different for- Save as..

mats. Print

Print ... hardcopy the view-panel to $PRINTER or .psfile B

Produce Picture create Go4 picture from viewpanel, put it in work- Produce Picture

E’F;?)%euceGraph Produce Graph from markers
from markers (see description below) Close

Close the view-panel gui319

If the selected pad contains point markers as created with the Go4 marker panel (see Section 5.7.6, page 55), function
Produce Graph from markerswill create a TGraph object containing the marker x,y coordinates. The new TGraph is
named “<Panelname>-Markergraph_<Number>" and is put into the Workspace folder of the Go4 browser. Thisis use-
ful to chose certain pointsin a 2d histogram for afit. Then one can apply the Go4 fit panel on the TGraph data later.

5.7.2 Edit menu

. Show Marker edit
Show M arker Editor Opa'] marker panel

Show ROOT Attributes open ROOT graphics editor Sl ST o (Eeiter
Show Event Status toggle ROOT event status in bottom line Show Event Status
1:1 coordinateratio adjust pad marginsto 1:1 coordinate ratio Start condition editor
Default pad margins restore default pad margins 11 . -
. f 1:1 coordinates ratio
Clear Markers clear all marker objectsin pad i
Clear Pad clear contents of current pad (and sub-pads) DI e A TS
Clear Canvas removes content and pad divisions Clear Markers
Clear Pad
Clear Canvas
Ui 320
5.7.3 Select menu ?
When histograms or graphs are displayed in superimpose mode, each one may
be selected here. Then attributes like color may be set for selected histogram. If |j His1
the selected object is currently not on front of al superimposed objects, an addi- His2
Show [His1] on top 51

gui320a

tional menu entry “Show ... on top” will appear. When chosen, this entry will pop the selected object to the foreground.
Note that the object first must be selected and then set to top.

5.7.4 Options menu
Crosshair toggle the ROOT pad crosshair mode m
Super Impose toggle superimpose option v SBuperimpose

Histogram Statistics toggle display statistics box on pad ’T Histogram Statistics
Multiplot L egend show legend for superimposed histograms]T Multiplot Legend
Histogram Title toggle display histogram title on pad - -

Draw Time display refresh timein histogram title box ’T H'SIogr_am Litle
Draw Date display refresh date in histogram title box | Draw Time

Draw item name display full path and name in histogram title box Draw Date

Keep View panel Title Do not overwritetitle DTS Fem MRS

Set View panel Title Set thetitle Keep Viewpanel Title

Set Viewpanel Title._

guils9

With Settings->Panel defaults one can set defaults for these values. If the Superimpose option is selected, any new
histogram that is dragged to this pad will not replace the existing histogram, but will be displayed in the same pad with
the old one (as ROOT THStack). A legend box will show the graphical style and the name for each drawn curve. This
legend can be toggled on or off with the Multiplot Legend option. The text of each legend entry can be changed by
opening the right mouse button popup menu at the entry position and using the SetEntryLabel function (see ROOT
TLegend class for documentation of further methods in this menu).

It is possible to extend the regular histogram title by information on the refresh time and date by switching on the op-
tions Draw Time , and Draw Date ,respectively. Additionally, the full name of the displayed object, i.e. the complete
path and item name in the Go4 browser, may be displayed in the histogram title by toggling the Draw item name op-
tion.

Usually, the title of the view panel window (showing up in the Windows menu of the main Go4 window) is taken from
the object that was drawn most recently in one of the sub-pads. This behavior can be changed by options Keep View
panel Title and Set View panel Title , respectively. This allows to specify a meaningful name for a view of several his-
tograms that will not change when one histogram is exchanged by drag and drop on a sub-pad.

The Show event Status option in the edit menu will display the current mouse coor dinates and histogram channel

contents in the bottom line of the view panel. If the canvas is divided, this information always refers to the selected
pad.

52

5.7.5 Draw options and axis scaling

Draw options and axis scaling can be set by two toolbars: One for al options available (Settings->Show/hide->Draw
Options) steered by pull down menus (as described bel ow):

] Eros

leartesian le:Lin jlY:Lin jl

lesce®

gui 366

and one for a subset (Settings->Show/hide->HlstDraw Options) steered by buttons only:

e @R moodo o qui367

Both toolbars also offer buttons to change the line color @, the fill color &, and the marker color @ of the selected
object, resp. Each of these buttons will open a color selection window.
The button icons of the HistDraw Options toolbar correspond to the draw option icons as shown in the pull down menus

below. Additionally, butthgns E and Ewill scale the Y axis linear or logarthmic,resp; buttons L. and Lid scale the X
axis, and buttons k= and E the Z axis, resp. Buttons and B set the 1d histogram line style to “scatter” and “simple

line”, resp.

The Go4 draw options follow the ROOT draw options (see table on next page).

Draw optionsfor 2-dim and 1-dim histograms and graphs:

0 pixel ¢

& contD o

i lego2 color
Ed surf ¢

& mesh color
@ cont! ¢

@& contd

i lego1 shadow
@ lego biw

22 cont2 dot biw
28 cont3 hiw

& mash biw

&2 mesh+contour
&' gourand

“%5 col contour
ARR armow mode
BOX boxes
TEXT content

B ASImage

AH no axis
*H stars
[lines

LF2 lines+fill

S curve

B barchar

F polymarkers
PO polymarkers
9 high resol

I noright
TEXT digits bhw
BAR barchart
@ lego biw

@ lego1 shadow
i lego2 color

& mash biw

&8 mesh color
= surf ¢

2 mesh+contour
(& gourand

“&3 col contour

F1:Aill 1

F2:fil 2

G smooth

B: bar

LP: line + mark

L* line +*

FP:fill + mark
F*fill + ¥

CP: emoaoth + mark
C¥ smooth + ¥

BF: smooth + mark
B* smooth + %

gui135/gui362/9

Detailsfor 2-dim and 1-dim histograms:

NoErrors
E: simple
E1: edges

i scale-fr EZ: rectangles

i scale - bk E3- fill

i scale-fr & bk E4: contour

gui364/5
Coordinate system:
gui 365

For graphs:
e X N0 ermors
LA NOrm axis = arrowW
SUPP. axXis = full arrow
AX+top 2 erapt?
AY+: right aropt 2
AX+Y+ x &y| |4 emroptd
Aliylow =y 0: asym err Quiz7O

53

Go4 option Description ROOT
scatter black scattered points H ST
pixel ¢ colored pixels CaL
cont ¢ colored contour CONT
surf ¢ colored surface SURF2
pix+scalec colored pixels and color scale bar caLz
cont+scalec | colored contour and color scale bar CONTZ
Gouraud smooth grey scale surface SURF4
legoc colored lego LEGO2
lego/shadow | lego with one side colored LEGOL
lego bw black and white lego LEGO3
mesh ¢ colored meshed surface SURF1
mesh bw black and white meshed surface SURF
mesh+cont bw meshed surface and colored contour on top SURF3
linec colored contour lines CONT1
line dot bw black dotted contour lines CONT2
line bw black contour lines CONT3
boxes bw black boxes BOX
digits bw channel content as numbers TEXT
ASImage TH2 as TASImage (fast pixel map with scale bar)

PO (1D) Polymarker without lines PO

L (1D) Line L

C (1D) Smooth curve C

B (1D) Bar chart B
mesh+cont2 | bw meshed surface and colored contour on top SURF5
cont4 colored contour CONT4
cont1+ pal colored contour lines and color scale bar CONT1
cont4+pal colored contour and color scale bar CONT4
arr (2d) arrow plot ARR

5.7.6 Channel and window markers

In aview panel amarker panel can be opened by Edit» Show Marker Editor menu item:

% Panell: MUSIC1 dE
File Edit Options

™ Apply to all

| MUSIC1 dE 16:31:42 |

Region rparkars

Harkas 2 RAE Ragisn 1

X = 1.256EE+I3 Int = 1.31Z4E+D4

104 © = 19489 Mmman = 1. 453EE+03
— Xems = 1.74TO0E+OL
— ¥eax = 1. 4535E+03
— Crax = 3.4100E+02
Markar 1
[X = 1.17Z5E+D3
c = 3504
10°
SEA3E+DT

10?2

Cross marker

1_612BE+03
1_7113e4+03
nt = 1.02395+04
rms = 2.5077E+0L
Amax = 1.E725E+03
= 7 2a00E+02

10

=amnd L atey label > Background

DTTZE+0
_5S16E+03
.DS93E+AL
_E57SE+03 Arrow—
EE00E+02

| |
'800 1000 1200 1800

2000 2200 2400

Average dE MUSIC1 (root)

—Marker Modes

l:?:l @l | x:l'],ll'luup R

ol

Pressing once on K> button and then one more time in the pad, a channel marker
(cross) with alabel and a connecting line is drawn. Once created, any marker can be re-
positioned by chosing its name in the marker selection box and using again the 4 but-
ton: the next pad click moves the currently active marker to the picked position. If new
is chosen in the marker selection box, a new marker is created and added to the list.
Note that the selected marker is always displayed on front of all other objects in the
pad. Clicking on a marker or its label box with the left mouse button will also pop it
frontmost.
With new selected and loop option enabled, the cursor stays after # in point marker
mode. Subsequent clicks in the pad create new markers. This behavior also applies for
the other marker types, respectively:
i draws awindow marker (with two subsequent LMB clicks) and alabel.
draws a polygon marker (TCutG): each click will define one point of the polygon, a
double click will finish the definition of the shape.
X: places a (Latex formatted) label. Note that in ROOT Latex syntax, instead of the “\”
escape character the “#” isused, so e.g “#alpha’ will produce agreek a.
"} draws an arrow from first click to second click.
In loop mode one can switch between the five marker types.

82 outputs the values of the markers to the activated |og output.
A selected markers can be deleted by pressing the * button near the marker selection
box. Furthermore, markers may be deleted and configured with RMB on the cross or
inside the window, respectively (see right TGo4Marker menu: DeleteMarker and

gQui324

TGodHarker : :Harker 1

Insert Latex
SetHame
DeleteHarker
SetToBin
SetLabelDraw
SetLineDraw
SetiDraw
SetYDraw
SetXbinDraw
SetYhinDraw
SetContDraw
SavelLabel3tyle
ResetlLabel
SetX

Set¥

Delete
DrawClass

DrawClone

Dump

Inspect
SetDrawlption
SetHarkerfAttributes

guils4

55

TGodWinCondUiew: :Region 0O

Insert Latex

layout through little windows as shown above (op-

Sethane

DeleteRegion
SetToLinits
SetlabelDraw
SetlLiwitsDraw
SetIntDraw
SetXHeanDraw
SetXRHSDraw
SetYHeanDraw
SetYRHEDraw
SetX¥HaxDraw
SetYHaxDraw
SetCHaxDraw
SavelabelStyle
Resetlabel

Delete

DrawClass
DrawClone

Dump

Inspect
SetDrawlption
SetlLineAttributes
SetFillAttributes

tions 0 or 1, then apply and cancel). All elements
can be moved with LMB (labels are updated).
SavelLabelStyle applies current settings to al sub-
sequent markers. With Settings» Save settings in
the main Go4 window menu these settings will be
stored. With Edit» Clear Markers one can remove

editors also through the Edit menu.

Here the default layout can be specified and saved.

BIIIES)

% -» (Global marker label setup:

~Windows/Polygons

]

& Draw region label Display region limits

o

Display Counts maximum

& Display X mean Display Y mean

& Display X rms Display Y rms

i e B

& Display X maximum Display Y maximum

56

gui155 —Point markers

 Draw marker label & Draw label connection line
& Display X coord. ~ Display Y coord.
¢ Display X bin# ¢ Display Y bin#.

& Display bin contents

OK | Cancel
4

gui3s4

left TGo4WinCondView menu: DeleteRegion). The setter methods configure the

% g
(Option_t*) option
1
Apply | Cancel

L
guil56

al marker elements. To change the graphical attributes one can use the new ROOT
graphical editor. It should be opened by Edit»Show ROOT attributes editor.
When a graphical object is selected (LMB) the editor changes accordingly. Close the

With Settings» Panel defaults» Marker labels one gets the window shown below.

5.8 Conditions

5.8.1 Conditions editing in viewpanel marker editor

A condition may be displayed in an existing viewpanel by dragging and dropping it from the browser to a destination
pad containing a appropriate histogram. The full condition editor (see 5.8.2) may also draw its working condition to the

viewpanel.

It is possible to edit any condition displayed in aviewpanel already by means of the marker editor in the bottom line

(seefigure).

% Panel?: Suml, winconl
File Edit Options

[Boply to all

| Sum over 8 channels 09:36:38 I
#10°

Sum1

Entries

2000

b
)

o
o

winconl
1800

PR
i

X1 = 2 _S6HEE+03

X2 = 2_7004E+03

Int -1521E+08
Xmean .E6353E+D3
Xrma -BBBSE+01
Xmax -69595E+03
Cmax _02E65E+06

1600
1400
1200
1000

L B B B)
b3 R R k3

800
600
400
200

_LII|III|III|III|III|III|III|III|III|III|I

s
h

e
i
i

)
iy
o
b
L
e
i
i
o

L
t'i‘"

HE
il
tﬂ-‘,‘:

5
s
*o

'.'#.""""f“.'#‘"""""#

#ﬁhﬁﬂﬁagrttﬁ

S
R

i
.

iﬁ%ﬁ%ﬁﬂ%ﬂﬂ?ﬂ#Ji

R
i
hEEEEEE

[TT]
B
‘-I'

i

3

W
3
3
'I"I

i

&
F
A

o
b
A

i

i
A

s
"

i

e
o
pped

Mean
RMS

L
o
i,
4

R
i
'

EEEEy

2
0l
o

Y 0'#':':
{
i
¥

&
¥

)

R
Al

e

.

L

A
¥

X

¥

y
)
Wy'h

Z.152108e+08
2625
38 68

Underflow 0
Overflow
Integral

Shewness 0.02448

1]
21BRes0E

%

i
i
il
o

WA

i
'

e
£

EEEEEEE
Ly
iﬂ!‘ﬂl‘!‘!

.

i
)

AR

&
o
)
v

+
i
0
'i

LR

]
(R
:
0
B

REEEEEE Y
0

)
s
| :1';:
Y

%
LR,

i

fih

LEREEE R
h

AR

oo
L
e

o
LR PR

Q'U-‘ii'“iﬂ-ii

A
i

i o
{

A
x

.
)

4
Y

Pt

Ay

4

o

:* i,‘,ﬂ‘iiﬂ-iii'
.i

i
S
i
'.'

SEEEEREALY
&

W
A

&
i
By

&

o
PERER LW W L REEEEEEE

X
A
,
5
)

a
)
!
W

i

L2

i

f
.}

h
i

¥

k=

e
]
(=]
(=]

L
400 2500

[=]
[=]
L]
pe]
(=]
=]
o
[=]
[=]

—Marker Modes

] B @ x| L e e 1] x| | 8] B 4| &< g

gui330

Condition wincon 1 is drawn above the histogram Suml that isfilled only if this condition is true. As the regular mark-
ers (see 5.7.6), the condition may be selected by name in the marker selection box. In addition to the control buttons for
the markers, editing a condition will enable some more buttonsin the marker editor. After changing the condition by
moving its boundaries, a 4\ will appear to remind you to update the condition by button &= on the analysis side. With
= the current condition state from the analysis side is refreshed in the editor window. If working on a condition from

file, the refresh button &%

will appear instead to reload the viewpanel condition.

Button B opens the info window for the selected condition (see 5.13) to view current condition properties that are not
displayed in the viewpand label. For advanced editing of the condition, the full condition editor may be invoked using

button El.

57

5.8.2 Full condition editor

The condition editor window is popped up when one double clicks on a condition in the browser or using the edit func-
tion ® of the browser’ s right mouse menu. It may also open by using the Bl in the viewpanel marker editor.

In addition to the features of the marker editor, it may display and change all properties of the Go4 condition class, e.g.
counters, testing properties, histogram statistics over the region, etc.

The following figures give some examples.

& Condition editor % Parell: Hi=l, c

Aralysiz/Conditions/cHizl Win 1-D File Edit Options M Apply ta all

IR‘etur“ns Result j IREEL,I].EIF‘ j Condition histogram 09:14:39

ALl counts: | YIBA9900H | True: [383 03967 s0.00z
Limit= I Draw | Stats | Mean | e + s e

T 1084
X1 = 2 ITROERDI
X = 3 GEEMERDI
Int = 7.3722m408
Txman = 2. TOdmsdd
- o Irza = 3. T0S2E4D
¥mins [2375.52 Kmawt [3086.,92 = I v
Cmax = 7. B331ma0

‘fmin:l 'fmax:l

2| &« A =
gui328

Window condition cHi s1 displayed with histogram Hi s1. The histogram has been bound to the condition by method
SetHistogram() in the analysis. In this case the histogram is automatically displayed when the condition is edited.
Polygon condition pol yconar isapolygon condition array from the two step example which can be displayed in a 2d
view panel. When a condition array compound is edited, the index of the currently active condition can be set in the
upper right spin box. The displayed values always refer to the selected array member. When selecting an entire condi-
tion array in the editor (All button or spin box index “-1"), changes will be applied to all members.

% Condition editor MEE % Panell: CriChlx?, polyconar Y = B9
Analysiz/Conditions /polyconar Polugon |1 3: F|ll| File Edit Options I™ Apply to all
|Retums Fesn Lt J |RegulaP J _Crm:e1channal1x2 08:21:23 |
ALl counts: | YYYEH 39E | True: '-|EIEEE'IE| 1.11% 35“;_ palyconar00oool
Limits | Drau | Stats IHean | 3000;— ‘ Int = 1.2464E407
» _" . Yrax = 1.0133E+03
2500 N
V¥ Integr: 7,246392+07 ¥ Mawr: 1963,11 E
mo_— .-'
¥ Mawx: 2.463282+06 W Maxl: 1013.3 - ‘
mf- i
“‘>| <__,| Bl gl ﬂl t&l 7 % 000 1200 1400 1500 18003000 3200 240t

gui329
With the il button the active pad of the current view-panel (selected with middle mouse button) is set as display work-
ing pad for the condition. The condition is drawn on this pad until the display button is pressed again with another ac-
tive pad. If the working pad contains a histogram, it is assigned to the condition under edit and its name is shown in the
editor. Note that it is possible to exchange the condition work histogram by drag and drop of a new histogram into the
condition editor display pad.
After editing the condition limits graphically on the working pad, the changes will be updated automatically whenever
the mouse enters the editor window. When a condition is changed in the editor (always press Enter to confirm changes),
the graphical representation will be updated automatically. After changing the condition, a % will appear to remind you
to update the condition by €= on the analysis side. With =» the current values (e.g. counters) from the analysis side are

58

updated in the editor window. Conditions can be set to return always true or false, respectively. The result of a condition
check can be inverted. A polygon condition checks, if a point (x,y) is inside a polygon (TCutG). A window condition
checks, if one or two values are inside one or two intervals, respectively.

A condition has counters for the number of all Test() calls performed, and for the number of true results. The counter
values after the last refresh are displayed in the editor. With «# these values are reset to zero and the condition is di-
rectly updated on the analysis side.

The ¥ button allows to pick the boundaries of the condition region with the mouse. This works in the same way as in
the marker editor: for window condtions, two subsequent clicks will take the click position as limits (for 2d conditions,
these clicks define corner points); for polygon conditons, each click will set a corner point until the mouse double click
finishes the pick mode.

Button &8 outputs the current condition values to the GUI starting window, or into alog file if specified in the Settings
menu (see 5.1). Button B saves the condition in afile. If the condition editor is working on a condition in a ROOT file
(viaFile Browser), the I button will update the changes in the original file by default. Thisis useful to edit conditions
in an existing auto savefile.

5.8.3 Editor tabs

The condition editor offers four tabs: for the condition limits, for the display properties, for the statistics inside the se-
lected condition range, and for the mean values, respectivly They are shown in the next screen shots:

The Limits tab contains the values of the window condition limits, or the largest extension of the polygon condition
boundaries. These are updated from the graphical representation on the working pad, or can be typed in directly in case
of window conditions (to apply the typed values press RE-

TURN). Limits I | Draw | Stats | Mean |

The Cut tab is only active for polygon conditions. It shows
the table of x and y coordinates of the polygon (TCutG).
These values may be edited here (to apply the typed values Ymin: | Ymax: |
press RETURN). Moreover, the number of polygon points
can be changed with the NPoints selector box. If the TCutG ~ 9ui33L

is edited graphically on the pad by mouse, the values in the Limits | | Draw | Stats | Mean |
table will be synchronized the next time the mouse enters the
editor window.

The Draw tab shows the names of the histogram and Hist: AnalysisfHistogramsfHis1 Drawn: Panel2
viewpad used to display the edited condition, and allows to
control some draw properties. Each condition can be set as Qui332
visible or not with the visible checkbox. If visible, the Limits |Cut |Draw | Stats |Mean |

condition is shown on the working pad, otherwise it is hid-

den. Thisis useful when working with condition arrays. It is F Integr: 1397 V MaxxX: 613.378
recommended for polygon conditions to improve editing.
The visibility is a property of the condition classitself and is
stored in the auto-save file. The label checkbox enables the Qui333
drawing of a graphical label together with the condition (see
screenshot examples). This label may contain the limits

Xmin: |100 Xmax: |2000

I visible I limits ¥ label

¥ Max: 56 ™ MaxY: 913.317

Limits | Cut |Draw | Stats | Mean |

values from the Limits tab; this can be toggled usirjg the 7 XMean: 574.498 % XRMS: 60.7887
limits checkbox. Other entries of the label may be configured
inthe Stats and Mean tabs. ™ YMean: 918.792 I~ YRMS: 48.7535
The Stats tab shows some statistics (Integral, position and gui334
channel content of the maximum) of the current histogram Limits | cut ||3raW | stats | Mean |
inside the selected condition. In addition, the Mean tab NPoints X [y |
contains mean and RMS values for x and y directions. |4 2o 400 800
Setting the corresponding checkboxes plots these values into 700 900
the label on the working pad. 600 1100
400 800

gui3334a

59

5.8.4 Conditions bound to pictures

In the next example two conditions are bound to the upper pads of a picture (see chapter 5.9, page 63) by method

AddCondition().

% Panel3: Set conditions
File Edit Options

Conditian histogram 034858

Marker Modes

gui335

The histograms in the lower pads are filled under the condition shown in the pad above. All picture conditions will be
shown simultaneuodly (if their visible property is true). Mouse click on a picture’s subpad will deliver the names of all
contained conditions into the selection box of the marker editor. The selected condition may be modified and updated
by means of the marker editor, or using the full editor started by Bl button, as described above. The mechanism to bind
conditions to picture pads guarantees that a condition is set always on the correct histogram.

5.8.5 Creating conditions

With the & button of the main window “Tools’” menu and toolbar, one
can open a window to create a new condition in the analysis. This
functionality is available as a shortcut from the dynamic list editor, too
(see 5.12). The Create condition dialogue expects a condition name, the
type (1-D window, 2-D window, polygon), and optional an array size.
For Array size “no array”, a single condition is created, otherwise a
condition array compound that contains the given number of conditions.
After pressing the Create remote button, the new condition will appear
in the subfolder Analysis/Conditions of the Go4 browser. The name field
in the create dialog may contain any subfolder path relative to this
default location, e.g. Nane: nycondi ti ons/ regi on2 will create new
condition region2 in folder Analysis/Conditions/myconditions. Non
exisiting subfolders are created in this procedure together with the con-
diton.

% = Create condition
Name: |Pegiun32
Tupe: IZ—D windaw j
Array size: 19| =
Create Pemotel x
; I
gui336

Once created, the condition can be modified from the condition editor or from the viewpanel marker editor as described
above. When the auto-save mechanism was enabled, the condition will be restored at next analysis startup. Note that
it's not possible to create a new condition without the analysis connected to the gui!

60

5.9 Pictures

The TGo4Picture class provides away to set up aview in the analysis, which then can be displayed in the Go4 GUI. A
picture contains:

= referencesto objects (via names), which should be displayed;

» division setups of picturesinto sub-pictures;

» draw options and parameters like line attributes, axis ranges and so on.

% =m Go4 v3.0-0beta @1xg0517 <Administrator> - [Panel3: Pic_VMED_13]

o6 File Tools fnalysis Settings Windows Help

File Edit Options

¥ fpply to all
Name

T ME

+- CIMUB
- [E8MI_FOCPOS
-~ EEM_FOC
i

el
=
=pu
=pu
el
=

BIAML)_Focs2
BEMl_Focs4
BEMI_Focss

=pu
fal')
el

i EEMusicl E
i EEMusicl T
+-[I8CT
(31D

=pu
=pu

—-(JRav data

i FEEPic_UMEO_OR =
BaPic_WMED 08 =pul
BEPic_WMEO_11 =l

=pu

ic_W =pu

spu
fal')

=
=pu
spu

i EESeetran
- [HASeatran?
~[(Canvases
+-[[JEventOh jects
[AlserOh jects =

S

R e = o e - = 4

B |

|08 |fufpr‘ufij'Goﬂ/FRS—Stdflmd,fp| - Current Evfs | HEEE| Average Ev/s ‘

The following code creates a simple picture, which contains only one histogram:

TGo4Pi cture* pic =
pi c- >AddH1(hi sto);

cHB398 |Events |2005—10—06 10:16:13| y
i

gui337

new TCGo4Pi cture(“picl”, picture title”);
/1 histo is variable of type THL*

A picture can be divided into sub-pictures like a ROOT canvas can be divided into sub-pads. The division of a picture
can be specified in the picture constructor or by method SetDivision(int ndivy, int ndivx) which creates ndixy* ndivx sub-
pictures inside the picture. Sub-pictures can be accessed via method Pic(posx, posy). For each picture (and sub-picture)

one can specify the following options:

Display header pi c- >Set Dr awHeader ()

X axisrange pi c- >Set RangeX(doubl e, doubl e)
Y axisrange pi c- >Set RangeY(doubl e, doubl e)
X log scale pi c- >Set LogScal e(0, bool)

Y log scale pi c- >Set LogScal e(1, bool)

Zlog scae pi c- >Set LogScal e(2, bool)

To add an object to be drawn the following methods can be used:

TH1, TH2, TH3 pi c- >AddH1(TH1*)

THStack pi c- >AddHSt ack(THSt ack*)

TGraph pi c- >AddG aph(TG aph*)
TGo4Condition pi ¢c- >AddCondi ti on(TGo4Condi ti on*)

Each method requires a pointer to the correspondent object and optional draw options (if necessary). When an object
has been added to a picture, the following drawing options can be set for this object (see ROOT manuals):

Line attributes pic->SetLineAtt(Color t, Style t, Wdth_t)

Fill attributes pic->SetFillAtt(Color_t, Style t)

Marker attributes pi c- >Set Mar ker Att (Col or _t, Size t, Style t)

Draw options pi c- >Set DrawOpti on(Option_t *)

TStyleattributes pi c->Set Styl e(TStyl e*)

AXxisrebining pi c- >Set Rebi nX(I nt _t ngroupx), pic->SetRebinY(Int_t ngroupy)

61

For example, to configure a picture with four sub-pads (2 x 2), each with a different histogram, the following code can
be used (first index top down, second left right):

TGo4Pi cture* pic = new TCGo4Picture(“picl”, "picture title”, 2, 2);

pi c- >Set Dr awHeader (KTRUE) ; // displays time, name and title of picture
pi c->Pi c(0, 0) - >AddH1(hi st 01) ;

pi c->Pi c(0, 0) - >Set RangeX(100, 200);

pi c->AddH1(0, 1, histo2); // or pic->Pic(0,1)->AddHL(histo2);

pi c->Pi c(0, 1)->Set DrawOpti on(“l ego”);

pi c- >AddH1(1, 0, histo3, "lego”);

pi c- >AddH1(1, 1, histo4);

AddPi cture(pic); // add picture to franme work

Similarly the colorsin above figure have been set up by:

Col or _t his=0;

for(int i=0;i<8;i++) for(int k=0;k<8; k++) {
fPictl->Pic(i,k)->SetFillAtt(his, 1001);
fPictl->Pic(i,k)->SetLineAtt(his,1,1);
hi s+=2;

}

The TGo4Picture class supports arbitrary levels of picture divisions. This means that each sub-picture can aso be di-
vided. For instance, a picture with 3 histograms, two in top row and third in bottom row, will be created by the follow-
ing code:

TGo4Pi cture* pic = new TCGo4Picture("pic","pic title",2,1);

pi c- >Set Dr awHeader () ;

pi c->Pi c(0, 0)->SetDi vision(1,2); // divide top widget on two nore pads
pi c->Pi c(0, 0)->Pi c(0,0)->AddH1(histol); // add histogramto sub-sub-pad

pi c->Pic(0,0)->Pic(0,1)->AddHL(histo2); // add histogramto sub-sub-pad

pi c->Pi c(1, 0) - >AddH1(hi stol, "l ego2"); /1 add histogramto sub-pad

AddPi cture(pic);

Current limitations of pictures are:

= Only histograms (TH1), graphs (TGraph) and stacks (THStack) can be add to picture or sub-picture.

= Several histograms or graphs displayed together only when pic->SetSuperimpose(true) is set.

= Conditions can be displayed only in pair with a histogram.

= A condition can be added only after a histogram has been added.
In the Go4 GUI pictures will appear in the analysis browser in the Pictures subfolder. Together with the picture all cor-
respondent histograms will be automatically transferred. Double click on a picture draws it in a new view panel. A pic-
ture also can directly drag-and-dropped into an existing view panel.
Pictures also can be put to the monitoring list. Putting a picture to the monitoring list automatically puts al histograms
of the picture to the monitoring list, too.

62

5.10 Fit GUI

All information of a fit like models (= fit functions) and their parameters, references to the data, and the results are
stored in afitter object (=FO). The fit panel (activated by ¥ button) is the editor of fitter objects. The fit panel is at-
tached to afitter object to edit it. Fitter objects are stored in two different locations:

= Fitter objects can bein the browser (file or memory). By double click the fitter object is displayed in fit panel.

» Fitter objects can be stored in a pad of aview panel (one per pad). Such fitter automatically displayed in open

fit panel when pad is activated.

To create fitter for active pad, Fitter» create for pad menu item or Use pad button of fit panel should be used. The
fitter object can always be copied to memory browser and than saved to the file. The data reference of afit object is
changed or set when:

= creating or copying afitter object to a pad,

= dragging a histogram into a pad (the fitter object of the pad gets the reference to that histogram),

= dragging a histogram name into fit panel.
The next picture shows a pad in aview panel and the fit panel. The peak finder tab is shown.

0 [=][o][=]
File Tools Analysis Settings Hindows Help
lFEHOIEREOY | o EXEEE2R |5 p R
3y 0 :ADCISO0R
Fitter Tools Settings File Edit Options
Hame Hinimizer | — 1
[use polynow of order |1 3,
IFittEP Peak finder'l 8 ADC150H
1 | ROOT (2 | Variant 3 |<| = Enties 3840
D t H d I Mean 3234
ki oes Noize factor: 2 60 RMS 2.2
E1Pol_0 ” Underfiow D
BPol_1 Hinimal noise - Overfize o
1Gauss0 |57 Fa0 integral 3518
[V Gauss1 20
] Gauss2 ch | I
M Gauss3 Zhanne SU.AUD _|_|
A o N [
MGaussd x| 2 o ! . WL
o o e i) b e e
Hehuill lI _I 200 250 300 .ﬂﬁrlnnm 450 500 550
Use pad| Find | Fit | braw | Pars [Pad v 0 : inpanet v 0 :. Fity] Y O ¢ ¢ Ready
H?ady y

4
gui129

On the bottom of fit panel there are five buttons:
Use pad If fitter displayed in fit panel, it will be copied to selected pad in last active view panel. If thereis no fit-
ter in fit panel, a new fitter will be created for this pad.

Find Executes peak finder routine. All peak finder parameters should be setup first. Work only in Wizard
mode.

Fit Executes fit.

Draw Draw models, backgrounds and model components as sets up in Settings sub-menu.

Pars Show all fitter parameters in a table. Parameters can be listed one by one or in lines mode, when one

line corresponds to one model and contains amplitude, line position and line width.

There are three different layouts of fit panel, which can be chosen in Tools sub-menus:

Simple Contains several buttons to fit datato polynomia function, gaussian, lorentz and exponent.

Wizard Intuitive and easy-to-use tool to setup data objects and model components. Also includes peak finder
setup. Suitable for most fitting tasks.

Expert Advanced tool, which gives full control over the fitter. Provides a hierarchy view of al objects inside
fitter and possibility to change any relevant data fields. Supports al functionality, which may not be
presented in Wizard tool.

In wizard mode there are three different peak finders available (see previous figure). Variant 2 is ROOT, Variant 1
searches peaks having specified width range above a threshold, variant 3 searches minima and maxima using a dynamic
noise bandwidth. Variant 3 also alows for summing up channels to reduce the noise. Depending on the histogram char-

63

acteristics, either of these may give good results. One has to play with the parameters. Changing parameters automati-

cally launches aFind.

Found peaks are marked in the View panel pad in red. One can move their position and change their width with the
mouse. Clicking on a data or model entry the right side of the panel shows related information. Models can be
[de]activated clicking on the OK boxes or removed by [-]. New models can be added by [+]. After the fit the results can
be seen pressing the Pars button (which changes to Back to switch the view back):

Fit panel M =] | & 0 :ADC150 _[Ol=
Eitter Jools Zettings File Edit Options
List of fitter paramweters ¥ lines [IFADL1 30H N
-1 ==
Awplitude [Position 0 |Fuhi 0 | g
Pol_D 1.56055 m;—
Pol_1 -0.000171236 sob- Underflaw
E Orverflow L1}
Gauss0 36.686 271.515 23.%185 E Integral 3518
Gaussl 30.1922 320.139 27_3084 - 50:—
= F
Gauss?2 9.35608 399.471 22.1732 ® 40
Gauss3 §.61364 410.433 22.7324 31:115—
Gaussd 3.24577 458.392 44 0744 E
20
10f-
ok | I] |
Result: Fit func = 927.637 HNDF = 3308 200 250 300 3§gisu 400 450 500 550
Use pad| Find | Fit | braw | Back [Padv 0 : it v 0 :: Ready 4

guil30

Fitter sub-menu has following items:

Create for pad
Delete

Save to browser
Update reference
Print parameters
Rollback parameters
Close

create appropriate fitter for selected pad in last active preview panel
delete fitter

save fitter to Go4 memory browser

updates references on data objects from file or memory browsers
produces parameters printout, parameters page should be active
restore value of parameters, which automatically stored before last fit
close fit panel

Settings sub-menu contains following items:

Confirmation
Show primitives
Freeze mode

Save with objects
Use current range

Draw model

Draw background
Draw components
Draw on same pad
Draw info on pad
No integral
Counts

Integral
Gauss integral

Recalc gauss width
Do not use buffers
Only for data

For data and models
Individual settings

For each delete action (of fitter, data, model and so on) confirmation message will appear
Show graphical primitives for model position and width and for range settings

Fit panel is not automatically attached to selected pad, but only by create/copy/move com-
mand from Fitter sub-menu

Save objects, to which fitter have references, together with fitter. When such afitter will be
loaded, it will have copy of saved objects. Available only in wizard or expert mode

At any fit or peak finder action automatically uses range which is currently selected on his-
togram

Draw model of data

Draw background (sum of all model components, belongs to background group)

Draw all model components, which are not belong to background group

Use same pad for drawing or create separate preview panel

Draw on pad info box with parameters values

Do not show any integral values on parameters page

In lines mode on parameter page additionally shows counts number for every model com-
ponent inside specified range

Shows integral value for every model component inside specified range

Calculates and shows theoretical (based on amplitude and width parameters) integral for
one-dimensional gaussian components. None of specified range conditions are taken into
account.

For gauss components recal culates sigma values to full width on half maximum (FWHM)
Do not use any memory buffers for fit

Use buffers only for data objects

Use buffers for all data objects and model components

Use buffers as selected individually for each data object and model component

Detailed help on fitter and fit panel can be obtained from the main window Help» Fit tutorial.

64

5.11 Parameters

5.11.1 Parameter objects

Parameters are objects containing a user defined structure of values. These can be applied for controlling and calibrating
the user analysis apart from the analysis framework configuration. All user parameters should be subclasses of
TGo4Parameter. They can be created in the user analysis code and are registered to the Go4 framework by method
AddParameter(TGo4Parameter* mypar). Once a parameter was registered, it appears in the Go4 Parameters folder, it is
saved and can be restored from the auto-save file, and it can be edited and updated from the Go4GUI by means of the
parameter editor.

5.11.2 Parameter editor

Double clicking a parameter icon 123 in the browser will open the parameter editor as seen in the picture. All known
members of the user parameter class and its base classes are shown here with their names, their type and their current
value.

% -™ God v3.0-Obeta @1xg0517 <Controller> - [Parameter Editor]

o8 File Tools fAnalysiz Bettings lindows Help _| 8| x
Parameter l—l—
H Fl
Analusis/Parameters,/CaliPar - THHXCalibPar Sl S22
[(lorkspace
Dhject Menbers Hnalysis
+-(JHistograms
Hame |Type Value Commerts | i (CIConditions
foA[0] Double_t 1,906323 Calibration polynom coeff COParameters
fdA1] Double_t 0,003414 Calibration polynom coeff b 128 WP
foA[2] Double_t 0.,000000 Calibration polynon cosff -%H}'}'Hpar?Q
R3] Doubla t 0000000 Calibration polynon costf 1sizefitter
128 specfitter
fhRecalibrate Bool_t 15et to KTRUE to make calibration fit in upc 1228051 {Par
fhReadDatabasze Bool_t 0/5et to KTRUE to re-read energies from exter T"[:IDHHEImiCLiStS
fulatabase Tstring calilines.txt Filename for ascii file with linesname - er é""[:ITr"ees
filinesChannel[2] |Int_t 650 Centroid channel numhers for fitted lines #-OPictures
ffLinesErergy[0] Float_t 1,486708 Database erergies of calibration lires é""[:IEanuasesl
ful inesHamnes[0] Tatring Alka Databaze names of calibration lines, ?--gﬁven‘ggweits
e
frlinesF inder ToAT b oy Fitter to search lines Serth.eCts
: Hodify Fitter : : : :
fwlCalibrator X % Fitter for calibration of channel/energies
fularaphNamne el o Calibration Name of the graph to contain the calibratic
frspectrunNans Tstring Cr1Cho1 Mame of the calibration spectrum histogram
| |+
u—>| <-u| EI| ¢?| x| d | 2l

s |

‘ 0.8 RaG-2 - Current Ev/s | Y5 | Average Evis | CHA93 ‘Events |2005—10—06 10:51:13I y

gQuil2s

Currently supported types are:

al basic signed and unsigned types, e.g. Doubl e_t fdEnergy; Bool _t fblsOK;

the ROOT TString class to wrap text strings, e.g. TSt ri ng f xMyFi | enaneg;

pointersto TGo4Fitter objects, e.g. TGo4Fi tter* fxUnpackfitter;

and arrays of thesein 1 or 2dimensions, e.g. Ul nt _t fuVval [42]; Float _t ffVoltage[5][100];
Comments behind member declarations are shown in the Comments column.

Aggregations and pointersto basic types are not supported at the moment (except for aggregated fitter objects).
Arrays of data are expanded and collapsed in the table by double clicking on the array name. Additionally, the right
mouse button will open a popup menu to navigate through the array without expanding it completely.

The values of the data can be edited after double clicking in the value field of the data member table. Note that any edit-
ing action has to be finished by pressing “return”, “tab”, or “cursor” before it is valid. To apply the changes, press &=
which will update the edited parameter on the analysis side. This is done by method UpdateFrom(pointer to new) pro-
vided by the user class. This means that arbitrary functions can be executed! The changing of data members is fully
controlled by the user class. Vice versa, =» will refresh the table shown in the editor from the current values of the
analysis parameter. Note that all changes not yet applied to the analysis or saved are overwritten on refresh!

If oneisworking on a parameter loaded from afile, button €% will appear instead of =¥, doing arefresh from the source
file. Note that the original parameter in the file is not changed by the editor immediately; the root file is updated only
when using the save button E. Thenasave dialog window will appear, that allows either overwriting the original pa-
rameter, or saving the changed object to another file.

Finally, ¢ will erase all editable fields of the table. # will close the editor without modifying the analysis parameter.

65

5.11.3 Parameters containing fitters

Sometimes it might be useful to exchange a Go4 fitter object between the analysis and the GUI. A fitter, e.g., may be
prepared using the FitGUI and then sent to the analysis client where it can be applied to some histograms during analy-
sis. Vice versa, one might want to display the resulting parameters of automatic fits in the analysis on the GUI. There-
fore, the Go4 parameter concept supports the TGo4Fitter class as aggregation member, i.e. a pointer to a fitter can be
accessed by means of the parameter editor.

The Go4 framework already offers the parameter class TGo4FitterEnvelope that contains one fitter object. This fitter
may be accessed in the analysis by method GetFitter(). In this case it isimportant that the fitter object itself is exchanged
inside the parameter each time the parameter is updated. Thus the user should not keep the pointer to the fitter in his’her
analysis class, but request the fitter from the (persistent) TGo4FitterEnvelope parameter with the getter method when the
fitter should be used.

Additionally, any user defined subclass of TGo4Parameter may contain references to severa fitters or even arrays of
fitter references. Here it is the user responsibility how the fitters refresh their settings in the UpdateFrom() method.
Moreover, one may implement getter and setter methods for the most important values of the fitters without the need to
access theinternal fittersdirectly. An example is TXXXCalibPar in the Go4Exanpl eAdvanced directory.

Pressing the right mouse button over the name of a fitter member will open a context menu. Selecting Edit... (or doublc
clicking on the fitter) will open the Go4 FitGUI window (see chapter 5.10, page 63). A copy of that fitter is put into the
local workspace of the Fit GUI to be edited or to be applied on any histogram. Selecting Get from FitPanel in the con-
text menu, the fitter in the parameter object is replaced by a copy of the fitter that is currently active for the Fit GUI. So
any fitter existing on the GUI may take the place of any fitter inside a parameter. Note that the original fitter member in
the parameter will be lost after this action unless it is refreshed by =2 from analysis again! To send the changes in the
fitter back to the analysis client, like for all parameters the &= button must be pressed.

Note that in case of afitter pointer array (e.g. TGo4Fi tter* fxFitters[10]), the context menu will show both
the items to manipulate the array view and to edit or update the selected fitter.

66

5.12 Dynamic lists

The Go4 dynamic list is a mechanism to connect the event data with a histogram and a condition. The histogram is
filled from certain data members of the event during the analysis. Optionally, the histogram may be filled only if a con-
dition that is tested against other data members of the event is true. In contrast to the histograms filled from the com-
piled user analysis code, the dynamic list offers the possibility to define these relations on-line during the running
analysis. The dynamic list and al newly created histograms and conditions may be stored in the Go4 auto-save file and
are recovered on the next analysis initialization (& or Submit button in the configuration menu).

In the Go4 browser, the dynamic list folder contains all existing dynamic lists (currently only one default list). Each list
shows the existing dynamic entries by name. Double clicking on a dynamic entry will open the dynamic list editor to
display and changeit.

To create a new dynamic entry, button [Ell of the main window tools menu will open the create new entry dialog win-
dow. Here you can define the name and the kind of the dynamic entry. There are 2 different kinds of Go4 dynamic en-
tries: The TreeEntry and the PointerEntry (see below). After pressing “Create remote” button, the new dynamic entry
will appear in the browser in analysis subfolder DynamicLists.

To delete adynamic entry completely, select itsicon in the Go4 browser and select ®linthe right mouse button menu.

% -m Go4 v3.0-Obeta @Ixg0517 <Controller> [=] (o] <]
File Tools Analysis Settings Windows Help
% Parell: HTi & N [S| Dynamic List Editor 100 < ﬁ
Fila Edit Options I Apply to all —Entry: TGodTreeHistogramEmtry ame----u:uc:gnte T
M ¥ enzhle Analysis/Dynamiclists/hTreeDraw_5-0DL ‘ - lunpackout -DL
N T Hish - Ttesttreedrawl-DL
12:_ :r::‘n 2.4:%;:): istogran f— ""thl’"EBDI’"EIhJ-DL
E Aus w012 AnalyzisHiztogranshTreelran_5 Ik* | 7 | - FThTreeDraw_2-0L
3 Undartiow ; - [flbacktest2-0L
3 e zarsen | | TreeDrau | ~1flldunmap-DL

[h TreeDraw_4-DL
- [AhTreeDraw_3-0L
-+ [fhTreeDraw_5-DL
+-(dPictures

. . - [Canvases
Tree Analysis/Trees/Analys isxTree
ysis/ /naly +- (Userth jects
=g [:_ITPees
4--J_ﬂnalgsis><Tr“ee
: = 4% KHANLEvent.
Draw expr., IHHHﬂnlEven‘thr“Data[] =4 AN I vent TG

- % HHKAN Evertt

Cut expr, I}{H}{ﬂn 1Event, friatal1]:120 - B HHHAN LEvent
- S WHMAN L Evert

Interval |1000 events ﬂ IEvent f
nlEvent.fr

glgl il ‘i--[:IEvent.."Db,jec‘ts _,l;

= | &
‘ R3G-2 | -IEEE”Cument Ev/s | T ‘Hver“age Ev/s | chk {‘ s | Zie oon ‘Events |2005—10—06 11:01:41‘ y
I gui|339

5.12.1 Dynamic list editor

Depending on the kind of the entry, different sub-pads of the editor are enabled: The Histogram and TreeDraw sub-pad
for the TreeEntry, and the Event data and Condition sub-pad for the PointerEntry, respectively.

Any dynamic entry can be enabled or disabled by switching the enabled checkbox. A disabled entry will not be proc-
essed, but is still in the dynamic list. Note that if a dynamic entry fails on initialization (e.g. unknown object names), it
is disabled automatically.

To apply the changes, press €= which will update/create the edited entry on the analysis side, respectively. Vice versa,
=2 will refresh the values shown in the editor from the current status of the analysis dynamic entry. Note that all
changes not yet applied to the analysis are overwritten on refresh! A N label will appear near the update button if the
changes have not been applied to the analysis yet.

If one is working on a dynamic entry loaded from a file, button €% will appear instead of =, doing a refresh from the
source file. Note that the original dynamic entry in the file is not changed by the editor immediately; the root file is up-
dated only when using the save button E. Then asave dialog window will appear, that allows either overwriting the
original parameter, or saving the changed object to another file.

will clear the target histogram in the analysisto zero counts, and will reset the events in the backstore tree (in case
of tree draw entry, see below.) This allows to observe changes of the dynamic entry setups directly if the target histo-
gram is monitored. * will close the editor without modifying the entry.

The editor offers the additional feature to get some information of the histogram and condition status from the analysis.
Clicking & in the Histogram or @ in the Condition sub-frames will retrieve and display the current object status in the

67

histogram or condition status windows, respectively (see chapter 5.13, page 70). This may be useful to check if histo-
gram or condition settings (dimension, ranges, bin size, etc.) are suitable, without requesting these objects in the
browser. Additionally, some filling and testing statistics is shown here. The GUI tool tips show brief explanations for
each information line.

The ® button prints the names and connections of all existing dynamic entries to the analysis output window.

New histograms or conditions may be created in the analysis by the i or the B button, respectively. For histograms,
the standard histogram creation window (see chapter 5.6.3, page 49) pops up. Use the Create Remote button here. For
conditions, the “new condition” dialog is started (see chapter 5.8.5, page 60).

5.12.2 Entry for tree draw

Go4 uses the ROOT TTree::Draw() mechanism for the on-line evaluation of the data. This works just as described in the
ROQOT users Guide: A string expression defines which leafs of the tree shall be scanned by name. Additionally, the
name of the output histogram must be specified; the histogram may either already exist (Create Remote from Go4 I),
or it is created from the first TTree::Draw() by ROOT with automatic range and binning. Instead of a Go4 condition, this
mode works with a TCut string expression to filter the histogram filling.

Note that the TTree must exist for this mechanism. Usually, the TGo4FileStore output will create and register atree that
can be used here. If no file output is needed, one can switch on the TGo4BackStore output (configuration window)
which will fill a temporary TTree in memory that is cleared after each TTree::Draw() scan of the dynamic list. The
TTree::Draw() is not performed for each single event, but after a number of events have been filled into the tree. This
number can be specified in the user analysis by TGo4Analysis::SetDynListinterval(Int_t val) or by the Interval field.

A new tree draw entry can be created either from the Go4 tree viewer (drag of the tree name from the Analysis browser
and press f#), or from the Create Dynamic Entry diaog. In the latter case, the tree name, the histogram name, the
draw expression and optionally a cut expression may be specified directly in the dynamic list editor after creation. This
works by “drag and drop” of historams and tree leafs from the browser to the corresponding fields of the dynamic list
editor. Note that the TTree name is recognized automatically from the dropped | eaf.

The advantage of a tree draw entry is that it can access any level of substructures of the event if it is resolved in the
TTree (depending on split level); the Go4 composite event data may be fully accessible here. It offers all functionality
of the ROOT TTree::Draw(). The disadvantage is that you need to fill the event data into a tree to access it. The histo-
grams are not filled event by event, but the tree is processed in event buffers. The buffer size should be adjusted by the
user depending on the typical event rate. Since the pointers to the data and the histogram are searched by name for each
Draw() call, the performance is slow compared to histogram filling from direct pointer access like in the precompiled
user analysis case.

5.12.3 Entry for event loop

% =™ God v3.0-0beta @Ixg0517 <Controllers [=][a][x]
File Tool= Analysis Settings Windows Help
% Panell: cratelldynanic M= ES |% Dynanic List Editor ﬁ
File Edit Options | Applu to all |-Entrds TGodHistogranErmtry ane _
v s dala o Tha Ty T = " ¥ enshle Analysiz/Dunamiclizts/test? 1#lhTreeDraw_5-0L
: Histogram
’;nalys is/Histogramns/cratelldynanic = + -[APictures
([ACanvases
Event data I Condition | +- (Userb jects
- [OTrees
= [:IE vertib jects
X [5odE Lenent /f iCrate1[1] ++(EventStores
+- CEventSources
+- [AEvertProcessors
=--OEvents
+-“igMbsEvertt -10-1
=-“1gG04E lement

& W fiCratel[16]
-0 filratez[16]
-0 filrate3[16]
-0 filrated[16]

¢ (OTGo4EventElene |
+- QK HHAN IEvent -
4 I I 3
‘ R3G-2 | B {EE‘Cur“r"ent Ev/s | 'EEL” Average Ev/s | EE” s | 1 153000 ‘Events |2005—10—06 11:10:53‘ y
L L
gui340

In this mode (PointerEntry), the pointers to histogram, event data and an optional Go4 condition are looked up by name
once on initialization of the dynamic list. During the analysis, these pointers are used directly to test the condition and

68

fill the histogram event-by-event. The information to locate the pointers is taken from the ROOT TClass information of
the user event classes; it is not necessary to fill the event into aTTree.

For the pointer entry, at least the name of an existing histogram and one dimension of the event data must be specified.
This is done in the Event data tab of the editor. Usually, for a new pointer entry the histogram should be created by l&
(see above). The new histogram item must then be dropped from the browser to the dynamic list window.

The event data is defined by the event name and the name of the data member of the corresponding event class, sepa-
rated by a slash (“/”). The Go4 browser Analysis folder offers a view of all existing TGo4EventElements in the Even-
tObjects.Events folder. From here you may just drag and drop the Data member item to the corresponding field of the
dynamic list editor. Note that data arrays are shown with their maximum size here, you need to edit the index afterwards
to specify the desired array member.

Similarly, the data to test the condition can be defined in the Condition tab of the editor. The condition is usually created
and registered in the compiled user analysis and is identified by name here. Polygon conditions and 2 dimensional win-
dow conditions need the event data specifications both in x and y directions. Note that the condition event data lines
should be left blank if the condition shall not be tested in the dynamic entry (i.e. the histogram is filled anyway). With
& anew condition can be created. Button Bl will open the editor for the specified condition.

The advantage of the pointer entry is that you do not need a TTree. Testing and filling is done for each event by pointer
without any additional string compare after initialization. Therefore it is faster than the tree draw. The disadvantage is
that currently only one level of substructures and only one dimensional arrays are supported (to be improved...). Implicit
summing up of not specified array indices, like in the TTree::Draw(), is not possible here.

69

5.13 Histogram/condition information

To check the properties of a histogram or condition, general property windows exist for these objects. They support
drag and drop of icons from Go4 browser. These windows will also pop up from the browser’s context menu when the
® button is chosen.

istogram Infoi M= BT (% Condition Info:
Analysis/Histograms/CriChix2 Analysis/Condit ions/wincon?
Crate 1 channel 1x2 God window condition
THZI TGodWinCond
Entries:9,6823a+07 Dim:2
®:200 [1,5e+03] Wi [B0,0,70,0]
¥n=1522.5, Hras=579.0 Y [80.0,120.0]
Y200 [1,52+403] Count=:0
Y¥m=1047 .58, Yrns=E5,8 Trug 0
- always true - inverse
- sizetl9l b
=ize:1R3836 b z 10-06 11:12:11

2005-10-06 11:11:38

= = 2 @ =8 B H

gui341

with the B button or the @ button of the tools menu one opens the histogram or condition information window, re-
spectively. To see the properties of a histogram or condition, drag the icon from the browser into the window. With =»

the information is updated from analysis. With 88 the information is output to the GUI start up window, or into alog
fileif specified in the log settings (see chapter 5.1.2, page 34). With & all histograms (8 all conditions) are listed in the

analysis output window. 21 starts the condition editor for a condition. (1} displays the histogram in a view panel.

5.14 Event information

The event information tool window alows to control % Evert info
printout of event samples from the analysis. The button
@of the tools menu will open the event information Event: Analyzis/Eventlb jects/Events/MosEvent-10-1 El

window. This button is also available as a shortcut in the MBS Event

Qt analysis terminal. The € entry of the browser's [0 2 [2 7 long T hex
context menu (right mouse button) over an event itemwill

open the event information tool, too.

The name of the examined event is shown in the top text El ¥ ShouRenote I~ TTreeSanple
line. By default, the MBS event is chosen for printout. The :
event object names may be dragged and dropped to the Qui342

event information window from the Go4 browser. Clicking the #= button will switch to the MBS event mode directly
without the need to drag the MbsEvent-10-1 icon.

3 Analysia Torminal IO The ShowRemote checkbox selects if the printout of the
Evert 2178485 Type/Subtype 10 1Length 26[w] Trigger 1 B event sample is done in the remote analysis terminal, or
SubEvID 0 Typef/Subtype 10 1Length 6[w]Control 0 Subcrate 1 in the termina where the GUI was started. The

985 312 . .
SubEvID 4 Type/Subtype 10 1Llsngth &[] Control 2 Subcrate 2 TTreeSample checkbox selects if the PrintEvent()
s st 2593 method of the event shall be called (TTreeSample off),
MBS Event printout: 2760709 t/s 10 1len 26trig 1 - or if the sample event shall be written to a ROOT Tree
Mo e 10 e Brods Dt Ger which will use the TTree::Show() method to scan and
Mos Subevert /™ 10 glen Bprosid dctl Zer 2 display the data (TTreeSample on). Note that for user
4 | Lr' event classes that do not implement a PrintEvent()
Press enter to exacute. | - éﬂ nothi ng will be dlsplayed except for the TTreeSample

LT I mode. . |

QuiIE2D Each click on button E will print events as shown in the

upper part of the screen shot left side. The examine but-
ton B will display a new printout of the currently
active event (lower output on the left). Note the different format!

Additionally, for MBS events this window provides in the MBS Event sub-panel parameters for the SetPrintEvent()
method. One can specify in the left field how many MBS events arriving shall be printed out in a special format. In the

70

next field a sub-event id may be filtered (default is to display all sub-events). The hex checkbox selects to print the sub-
event data either in hex or in decimal format, while the long checkbox definesif the data is seen as longwords or words.
Pressing the E button will resubmit these settings to the analysis thus initiating a new printout of n events. Note that the
MBS Event sub-panel isindependent of the settings for the regular printout of the current event. It works for the remote
analysis terminal only, and it uses a different printout format than the TGo4MbsEvent::PrintEvent() or TTree::Show()
methods.

5.15 Hot start

When starting the GUI several actions have to be done to get the analysis running. If these actions are always the same
it would be convenient to save them in a file and execute this file when starting the GUI next time. This mechanism is
called hot start. The typical actions are:

= Launch analysisclient

= Submit analysis configuration

= Get analysisfolders by 4.1

= Set histograms and pictures into monitoring state

= Open some view panels and display histograms or pictures
After GUI and analysis are configured, one can create a hot start file by Settings» Generate hotstart. A file selection
menu pops up were one can specify afile name. The postfix should be . hot st ar t . The next time one can start the GUI
with thisfilename as argument (. hot st art can be omitted). Then all actions stored in the file are executed.
With care, thisfile could even be edited.

5.16 User GUI

Go4 provides a possibility to execute user widgets on GUI side. There is an example of a user GUI, included in the
standard Go4 distribution in directory $G04SYS/ Go4User GUI . It can be activated by pressing button in Tools
of main window.
The easiest way to create a user GUI is to copy the content of the standard example to another directory (e.g.
~/UserGUI) and compile it there (make cl ean, make al |). The user should also specify the path to this directory
in GAUSERGU

export GMAUSERGU =~/ User GUI

The GMUSERGUI variable can also include the name of the library (default | i bGo4ROOTUser Gui . so) which is
loaded when user GUI is started. This library must include the special function StartUserGui() which loads the gt widget
library (default | i bGo4User Gui . so) and creates the top level widget of user GUI. At the next start of the Go4 GUI
pressing = the specified GUI will be opened.

The user can freely modify any widgets in the example and create new ones. Changes in library names or the top widget
class should be reflected in the GO4USERGUI variable and the StartUserGui() function.

There is a support of “old style” user GUI, created with older version of Go4 (up to v2.8). In that case correct path to
libraries should be specified like:

export LD_LIBRARY _PATH=~/OldUserGUI/Go4Library:$LD_LIBRARY_ PATH

5.16.1 Qt3 and Qt4

Currently Go4 can be built with Qt3 or Qt4. User GUIs devel oped with Qt3 must be converted to be used with a Qt4
based Go4. For general conversion rules see:
http://doc.trolltech.com/4.0/porting4.html

71

http://doc.trolltech.com/4.0/porting4.html

5.17 Macro execution in GUI

% -» (o4 v3.1-0 @lxg0500
File Tools Analysis Settings Windows Help
GUI command: j G+ %

|Type root or go4 command here ("go4->" to access go4 command interface functions). Return key will start execuhon\

]
guié51
The Go4 command line toolbar can be enabled with the “ Settings-Show/hide “ menu. The typed text in the com-
mand line will be executed after pressing “Return” by means of the ROOT CINT Interpreter, so all ROOT commands
are available here. Moreover, the Go4 command environment is aware of the current GUI session and its objects and
may access them by interface methods (see below). Like in plain ROOT, it is also possible to run complete macros by
“ x” command. The button 2y opens a browser for macros on the file system; the selected macro will be written ready
to execute on the command line. With button & the menu as shown in the figure below appears, showing alist of inter-
nally provided Go4 macros. The selected macro call will be copied to the command line where the empty arguments
(e.g. the histogram name) can be edited before exe-
[— Z=mp| cution. Note that dragging and dropping ahisto-
gram icon from the Go4 browser to the com-
mandline field will paste its full name there. So one

eb istog-am
Add/substract histograms

Divide histograms can easily apply amacro to any browser histogram
EFOJZECEO” f‘r by dropping the browser icon inside the blank
rojection .

Correlate histograms qUOte_s() Of the name argument

Histogram of histogram The given macros (located in the

ggg:gi $CASYS/ macr os directory) can also be used as

Scale X axis templates for other macros. An environment vari-
able GMMACRO _ isdefined and can be used to

Bool_t rebin{const char* name, int ngroup, Bool_t draw) write macros to run in several environments: p|ain

vl % ROOT , Go4 GUI, or analysis (see 5.4.3, page 40).

The provided macros hi shi st 0. Cand

guil350 corr hi st os. Carewritten thisway. The histo-
grams to be processed are accessed through the Go4

browser or from afile, respectively.

corr hi st os. Ctakesthe bin contents of two histograms and creates a two-dimensional graph.

hi shi st 0. Ccreates a histogram and makes a distribution of the bin contents of the source histogram.

Go4 provides an interface of class TGo4Abst r act | nt er f ace to access the Go4 GUI browser. On the Go4 com-
mand line, or within a macro, resp, this interface can be invoked by the “go4- >" pointer. Note that thisis a different
interface than “go4- >" in the Go4 analysis macros (see chapter 6 on page 73) which invokes the TGo4Anal ysi s
instance! the A further description of the available TGo4Abst r act | nt er f ace methods can be found in the refer-
ence manual.

Caution! Macros running insidethe GUI can crash the GUI!
$CHASYS/ macr os directory should be added to entry Uni x. *. Root . Macr oPat h in. r oot r ¢ setupfile.

72

6 Analysis Server for ROOT macros

The Go4 analysis server offers the possihility to observe and control execution of normal ROOT macros from the Go4
GUI. Thisallows the development of analysis code without respect of Go4 analysis framework classes (like
TGo4EventProcessor, TGo4AnalysisStep and so on) still providing remote access to the running environment of a user
analysis.
It is possible with minimal effort to observe histograms, produced and filled by practically any running ROOT script.
The script go4l ni t . Cinitializes Go4 and starts the analysis server in background. Function go4Regi ster Al | ()
then scans the current directory for existing histograms and makes them available remotely.
Usage:
1. Toenable ROOT to find the go4 macros one should enter in the .rootrc aline
Uni x. *. Root . MacroPat h: . : $(ROOTSYS)/ macr os: $(GASYS) / GodAnal ysi sd i ent
(Notethat . r oot r ¢ may bein current directory or in SHOME.
The standard provided by ROOT isin $ROOTSYS/ et ¢/ system rootr c)
2. Runnormal ROOT session.
Execute go4l ni t . Cscript by command:
root [0] .x godlnit.C
3. Runuser script:
root [1] .x userScript.C
4. Whengodl nit () isexecuted, go4 will start the server and printout the port number for connection:
"Waiting for client connection on PORT: 5000"
5. Start the Go4 GUI in and connect to the analysis server running in the CINT. See section 5.3.2 page 37 for
more.

The Go4 framework can be accessed after go4l ni t by the global method
TGo4Anal ysi s* god4= TGo4Anal ysi s:: |l nstance();
After this call, variable go4 can access any method of the analysis framework.

6.1 Methods for object registration
Any object to be seen remotely by the GUI must be registered by one of the following methods:

e go4->AddHi st ogram(hi s); /I makes histogram TH1* hi s available in the Go4 GUI

e go4->AddAnal ysi sCondi ti on(conny) ; // dito for TGo4Conditions

e go4->AddPar anet er (par); /I dito for TGo4Parameters

e go4->AddPi cture(pic); /I dito for TGo4Pictures

e go4->AddTree(nytree); /I register TTree, but do not change Tree ownership to Go4

e go4->RenoveTree(nytree); /I unregister TTree: important to cleanup reference in Go4 if tree

I/l isremoved from ROOT (closing TFile!)
e Please see Go4 Reference Manual for other available Add. . . methods!

Thego4Regi st er Al | () function (from Go4lnit.C) registers al histograms found in the current directory. Some
more information can be found in the example macros (see below).

6.2 Methods for run control and execution

e |Int_t seconds=go4->WaitForStart(); PollsuntiltheGo4issetintothe"running" state (by Start
button on GUI or Set Runni ng() method) with 1 second interval. Returns number of seconds from begin of
wait until "running" is switched true. If negative valueis returned, a ROOT interrupt has happened during wait (e.g.
Ctrl-C on CINT Canvas).

e Int_t state=go4d->Process(); Processonemain cycleof Go4 eventloop from macro. Will first execute
any command from GUI, second call the Go4 main cycle to process analysis steps, user event function and dy-
namic list (if existing). Thiscall isrequired inside any explicit loop in the macr o to process go4 framework
analysis actions. The GUI event rate meter is also updated by this method. Return value is <0 if running stateis
stopped, otherwise 0.

e go4->Set Runni ng(Bool _t on); Switch Go4 running state from inside amacro. Useful to react on analy-
sis conditions

e Bool _t on=go4- >l sRunni ng(); Check therunning state of the Go4. Maybe obsolete since thisis done
implicitly in methods WaitForStart() and Process(). However, macro loop may be controlled from GUI independent
of Go4 main loop processing.

73

6.3 Examples:

The following examples can be found in $GO4SY S/macros directory. It is recommended to copy these macros to a user
directory with write access, before executing them.
¢ hsimple.C Thisisastandard ROOT example from $ROOTSY S/tutorias. The only modification isto call
go4Regi ster Al | () after creating histograms.
To run this example, start aregular ROOT session, init the Go4 server and execute script:
root [0] .x godlnit.C
root [1] .x hsinple.C
o hsimplego4.C A variation of hsi npl e example. This macro will wait until the Go4 start button is pressed and
then run the random filling in infinite loop (mind your disk space, since a TNtuple isfilled into afile herel) Regis-
tered objects may be monitored. The loop can be started and stopped at any time from the Go4 GUI. Please try the
remote tree draw on the TNtuple from the Go4 GUI and view the newly created histograms. Try to launch the
TBrowser before executing the macro and inspect the content of the "Go4" folders locally...
e treedrawgo4.C Macro worksontreein afile. Asbefore, first execute .x go4init.C:
root [0] .x godlnit.C
root [1] .x treedrawgo4.C("fil enane")
The "filename" specifies a ROOT file "filename.root" that contains a TTree. Note: first tree found in file will be
used.
This macro contains 2 examples on trees:
1. Direct TTree::Draw() expressions are executed; after finishing, a message is sent to the Go4 GUI and the output
histograms may be viewed here.
2. After registration of the TTree, the go4->Process() will be executed in aloop. Please try the remote tree draw
on the TTree from the GUI and view the result histograms. Loop may be controlled by the Start/Stop buttons
asinexample hsi npl ego4. C.

Control of remote analysis macro from Go4 GUI

1 1 % i F

~ Eita Tocls Analysis Setngs Windows Halp alml
=|{Me Emrors ~Hcanesian =[x tn =|[viun [z Ln _'.F:,%H CHr o dvaxs vang %]
ﬁ :Fl,_u____ﬁdll Oplions I Appty to al
“ i i_ A } [v [Y i ;..mﬂ‘*-ipaﬁﬁ lﬂ|dﬁd‘
- (T Anatysis Conlroller
&l - ZaHistograms AN Histogram objects
il This is the pe distrib,
iy = & hpepy Py VS P
i-] Profile of pz versus .
i | ~EaCondiions Al Condilion objects
4 | ~ddParameters Al Parameler objacts
w] Zabwynamiclists Dynamic List instan. .
i A Traes Referances o frees
= #inbpla This is & God Sialu..

i 2

ey By

gz 4

iprandom random

1 Bi H

—dPictures Piclure objects

laCanvases All TCanvases
= ZIEventObjects Evant objects of cur...
-E@sarOblects For User Objects

i
E

| Current Evis Lmiﬁ-imjénmun Ewis |

R

Running a ROOT analysis macre in CINT controlled by God GUI

roat [0] .« gosink.C

GO4-"x Mizkome to God Analysis Framework Release w3, 1-0 (build 201007 oot [1]

GO4-"> AnahysisClient GodCint Sencer-kg0500-4525 stating intialization ...

GO4"> Analysis Slave GodCint Server-ligOS00-4525 waiting for submit and stat cormmands. ..
Wiaiting for client connection on PORT: S000

raot [1] .« hsimplegod.C

GO4-7> Analysis tephBnager -- Initializing BeertClasses done.

GO4-"> fAnahysis BaseClass - Initiglizing BwentClasses done Wiaiting forthe God start buton.

Use Carvas menu 'OptiorsAntemupt’ to legve macro.

GO4"> TaskhBnager: Succesfully added new client Display-lig0500-4519 thost kgO500, ports A001,5002 50037
GO4"> Client Display-leg0a00-4519 is logged in at GodCirt Senver-g0a00-4524 a= Controller
Miziting for client connection on PORT: 5000

GO4"r AnatysisClient GodCint Senver-lg0500-4525 has stated anabysis processing.

Starting eecution loop after 33 = of waiting

GO4"> AnahysisClient GodCint Senver-lg0500-4525 has STOPPED anatysis processing.hsimple
Feal Time = 7.75 seconds Cpu Time = 534 seconds

Fﬁj* | GO0 Evenis 2006-06-21 181715

74

7 Control of remote Go4 analysis from a ROOT session

Besides the full featured Qt GUI, the Go4 analysis may be controlled and observed by aregular ROOT CINT session,
using the native ROOT GUI for display.

The following screenshot shows at the bottom a go4 CINT analysis server task. Here example hsimplego4.C is running
(see 6.3). This process is connected with the ROOT session in the upper part of the picture, which uses the regular
ROOT GUI to browse and display the analysis objects. Thisisjust like it would be possible with the usual Go4 GUI.
Actually, amultithreaded Go4 master task is running in the background of the upper ROOT session, while a Go4 dave
task isworking on the analysisin the lower root session. This analysis process may not only be aroot session with Go4
analysis server, but may as well be a compiled Go4 analysis client executable (MainUserAnalysis).

il Fipeed Profe of g vernn o
HEamiscatyvoriamgas TS TS STER T
Hlicaront fue | Yoo JERCT

E : - God functions

roat [0] .« godLoadlibs. C

roat [1] god= new TGodinterface)

[clas= TGodinterface™ Ox9319318

roat [2] god*Conned Anabysislocalhost " 5000,17

Loginfo = GO473 Anahysis nameslist was requested from cliert Display-lag0500- 26451

Loginfe = G047 Anabysis status was requested from client ..

Loginfo = G073 Client Display-lxg0500-26451 is logged in at GodCirt Senver-beg0s00- 16205 as Controller
roat [3] new THrowsen)

(clas= THrowser™ 0x907 930

GO4-"> Taskhianager: Succesfully added new client Display-lag0s00-4519 (thost kg0S00, ports S001,5002 5003
GO4"> Client Display-lxg0500-4519 i= logged in gt GodCint Senver-bg0500-45245 a= Controller
faiting for client connection on PORT: A000
I GO47: AnalysisClient GodCint Senver-lg0a00-45245 has stated analysis processing.
. Starting execution loop after 33 s of waiting
© G044 AnahysisClient GodCint Senver-g0S00-4525 has STOPPED anahysis processing.hsimple
Feal Time = 7.74seconds Cpu Time = §.34 seconds

7.1 Initialization

The controlling Go4 master processis realized in the ROOT session by the TGodl nterface class. After starting aregu-
lar ROOT and loading the Go4 libraries, the call

root [0] new TCo4lnterface

will instantiate the master task framework. Explicit loading of librariesis not necessary if the corresponding ROOT
mapfile mechanism is used. Once initialized, the variable go4 is defined as a pointer to the interface instance and may
use al methods of class TGo4l nt er f ace. Notethat in theanalysis server session as described in section 6,
variablego4 referstotheclassTGo4Anal ysi s instead!

7.2 Connecting the analysis

To connect to an existing analysis server ,use
root [1] go4->Connect Anal ysi s("l ocal host", 5000, 0, "XXXview');

75

Arguments are: hostname of the server, the port number, the login account (O=observer, 1=controller, 2=administrator),
and the password. If password is |eft out, the default password of this account is used.
Alternatively, an analysis client may be started from this session using
root [1] go4->LaunchAnal ysis("test","/u/userl/ go4",
"Mai nUser Anal ysi s", "I xi 003");
With arguments: arbitrary name (“test”), path to the analysis executable, name of the analysis executable, and node
where analysis process shall be started.
The above methods correspond to the Connect analysis and Start analysis dialogues of the Go4 GUI (section 5.3).

7.3 Controlling the analysis by command

Once the connection to the analysis process is established, it can be controlled by several methods:

e go4->Subm t Anal ysi sConfig(); Submittheanaysisconfiguration. This corresponds to the Submit but-
ton of the Go4 GUI. Usually, the configuration is retrieved from analysis after connection. It may be modified by
several methods of the TGo4l nterface before submit, or it may be submitted unchanged. A submit isrequired in
any case before analysis can be started. Note that this command is not allowed when logged in as observer.

e go4->Start Anal ysi s(); Starttheanaysisrun. This corresponds to the Start button of the Go4 GUI. Note
that thisis not allowed when logged in as observer.

e go4->StopAnal ysis(); Stoptheanalysisrun. Thiscorrespondsto the Stop button of the Go4 GUI. Note
that thisis not allowed when logged in as observer.

e go4->StartMnitoring(lnt_t period=10); Start monitoringall objectsthat are set to monitoring
state and drawn. The update period can be specified in seconds.

e Qgo4->StopMnitoring(); Stopmonitoringall objects. Will not reset the monitoring property of the ob-
jects.

e go4->Di sconnect Anal ysi s(); Remove connection to remote analysis process.

For a complete reference of available methods, please see the header file $GO4SY Slinclude/TGo4l nt er f ace. h.

7.4 TBrowser extensions

In addition to the analysis control by TGo4lnterface calls, the regular ROOT browser will offer some extensions after
the connection has been established. Start the browser with:
root [2] TBrowser br; .

If connected to the analysis, thereisa Go4 Z.-* ROOT Object Browser LEX
folder among the regular ROOT folders. Eile View Options Help
Thiswill browse the structure of the remote = Mz = s, [| & omen[
analys.s with subfolders and all Ob] ects. All Folders J Tilugtsof"fg04mn;5f:3|@|5g|;ramsmwrmw4fmw42"
Both histograms and Go4 pictures may be A1l mw wIREC:2) |fg WG4 [MWKLGAZ)
drawn to anew canvas by double clicking on |‘:|F‘DDT Flles L v 5742) | TR

the item. Go4 conditions will be drawn on %{Emms L MWy | THLEMUE XSUM(:2)
double-click only together with the -] Histograms [v _viea:2y (g Drawdtem

histogram that was bound to it. The ROOT -2 Raw data ngesi;?::fkspace

right mouse button menu has entries added = ethonitoron

for the remote Go4 objects: Setvonitoroft

e Draw Item - will draw it if possible, TaggleManitaring

just like double-click

e Copy to Workspace - Produce fix
copy to the Workspace folder in local
memory. Just like in the regular Go4

cut. 9 MW
e Delete Item - remove object from o | ;I_I
ar]a| yS| S |f posg b|e .é.nlalysis Funning | Fate = 2373 Events = 362000 Time = 223 Date = 2005-10-07 125405 : 2
o Set Monitor On/Set Monitor Off - gui343
Switch the monitoring property of the
selected object

e Toggle monitoring — Start and stop monitoring in general. A dialog will appear to request the monitoring periods
in seconds. For zero period, monitoring will be stopped. This corresponds to TGo4l nterface methods StartM onitor-
ing() and StopMonitoring().

The status line at the TBrowser bottom will show the analysis rate meter, and eventually some messages retrieved from
the analysis. Additionally, the status messages are printed out to the CINT terminal.

76

8 The Go4 Composite Event Classes

8.1 Introduction

The Go4 framework applies the concept of the ”event” structure (or class) that represents a set of data values belonging
to the same processing cycle of the analysis loop. As explained before in this document, such event classes are used
both for the input, and for the output data of each analysis step. Which data belongs to each event cycle isfirstly defined
by the data acquisition system that reads out and stores such values together. Mostly an event may correspond to a cer-
tain “trigger” situation of the experiment. Here it represents e.g. the record of all physical interactions in the detector
after the reaction between a beam particle and atarget. But it could as well be just a container for data acquired within a
given time interval. At later Go4 analysis steps, the event representation may be redefined by skipping, cutting out, or
combining input events.

An experimental set up often consists of DAQ or detector components and subcomponents. These can be many of the
same kind, or many various ones. Each kind of subcomponent may acquire data of the same structure. The subcompo-
nents must be bundled into components which finally are aggregated to the complete event data representation. The
depth of the subcomponent hierarchy is principally not limited here.

MyEvent

__A_
- T
MyCrate 1 MyCrate 2 MyCrate 3
A A A
'4 Y r Y 'd N
LMyModule 1 LMyModule 4 OtherModule 1
MyModule 2 MyModule 5
MyModule 3 OtherModule 2
A A
r ™ 'd ™
Int_t data | ‘ Int_t test | | Int_t aux Short_t adc[5] | | Short_t tdc

A typical exampleis shown in this simplified object diagram. The complete event structure MyEvent consists of three
subcomponents MyCratel, MyCrate2, and MyCrate3 which represent a certain DAQ crate hardware. Each of these
crates contains a number of MyModule or OtherModule subcomponents. These provide primitive variables data,
aux, adc[5], etc. which hold the actual data read out by such module. Hence this example is reflecting the partitioning
of the DAQ hardware. For advanced event structures with detector hits, or physics data, it is aso very likely though that
asimilar substructuring occurs.

To define a Go4 event class for this situation, the user could of course just aggregate similar subcomponent objects by
means of collection classes, like std::vector, or TObjArray. Storage of such “composite” class with ROOT 1/0O into
TGo4FileStore - Trees should be no problem. However, when using the ROOT or Go4Treeviewer tool, the represen-
tation of the subcomponent data would not show up as separate leaves, even in full tree split mode 99. Thus the usage of
aquick TTr ee: : Draw() analysiswould be impossible for this approach. Moreover, it would not be possible to iden-
tify each single subcomponent by name and apply e.g. partia i/o when reading back the data, or search for the compo-
nent in the full input event.

Because of this, the Go4 framework provides the TGo4CompositeEvent class with generic functionality to aggregate
any level of subcomponents with TGo4EventElement objects. When written into the TGo4FileStore with splitlevel 99,
the primitive data members of each subcomponent will appear as a separate leaf in the ROOT Tree. Moreover, any sub-
component can be retrieved from the top event object by name, or by id number. The TGo4CompositeEvent imple-
mentation uses a TObjArray for the collection of subcomponents, but redefines the ROOT branch i/o for each sub-
component.

77

8.2 Application Programmers Interface

Using the composite event in own Go4 analysis code is based on inheritance from the two interface classes
TGo4CompositeEvent and TGo4EventElement.

Elementary subcomponent classes should inherit from TGo4EventElement . These classes are elementary bricks of
the data structure which contain members of all data-types that the ROOT system supportsin its 1O split mechanism. In
order to create an elementary object, one should follow the TGo4EventElement general interface, and according to this
interface the data object should have as parameter of its constructor

e aname(const char¥*)

e atitle(const char*)

e auniqueidentifier (I nt _t)
The name will be used to generate the corresponding TBranchElement branch names in the ROOT TTree layout. The
identifier should be unique for each user class.

Data-container classes should inherit from TGo4CompositeEvent. This applies for all classes which will aggregate
subcomponents of TGo4EventElement implementation. Because the TGo4CompositeEvent is also a subclass of
TGo4EventElement, it is possible to aggregate composites of subcomposites with theoretically unlimited depth. To add
a subcomponent to a composite event collection, the interface method
e TGo4ConpositeEvent: : addEvent El enent (TGo4Event El enent * evt)
isto be used when the composite object is created.
To access any subcomponent within atop composite event, there are two methods provided:
® TGo4CompositeEvent::getEventElement (const char* name) Will retrieve pointer to event element
by name. Note that this function isinvoked full recursively, i.e. the component nameis searched in all sub-
component composites.
® TGo4CompositeEvent::getEventElement (Int_t ix) will retrieve pointer to event e ement by index
number in the collection of this composite event. Such method is not recursive, but restricted to the current
composite event object.

A simplified UML class diagram of the component example described above is shown in the figure.

* TGo4EventElement

“name”, “title”, id

TGo4CompositeEvent |1 : 1
addEventElement ()
A Iy
MyEvent
MyEvent ()
MyCrate
MyCrate()
MyModule OtherModule
Int_t data; Short t adc[5];
Int_t test; Short t tdcy
Int t auwx;
<—— inheritance -

D PO O association

78

Green solid arrows indicate inheritance (arrow points to the base class); dashed black arrows show aggregation associa-
tion between composite event and event element (one composite event “1” may contain many event element objects
“*™). It isobvious that TGo4CompositeEvent is a subclass of TGo4EventElement, thus alowing to recursively aggre-
gate subcomponents of composite events.

To implement event object structure of the example situation, classes MyEvent and MyCrate are derived from
TGo4CompositeEvent. Classes MyModule and OtherModule, containing primitive data variables, are simply derived
from TGo4EventElement. The actual set up of the composite object may be done in the constructors of the composite
classes. Constructor MyEvent () will instantiate the contained MyCrate objects with unique names and id numbers,
and put them to the subcomponent collection by means of theaddEvent El enent () interface. The MyCr at e()
constructor of each crate will do similarly for the MyModule, or OtherModule components. A general object configura-
tion may be read from such constructorsto tell by id number which subcomponent should be created when the Go4
event classes are initialized.

8.3 Example

An example usage of a TGo4CompositeEvent can be found in $G0O4SYS GodExampleAdvanced. The composite struc-
ture is here very similar to the case as discussed above: The input event of the first step TXXXUnpackEvent is a
TGo4CompositeEvent with subcomponents of class TXXXCrate. Each TXXXCrate is also a TGo4CompositeEvent,
containing a configurable number of TXXXModule objects. The latter is a smple TGo4EventElement with a structure
of elementary variablesfi Dat a, fi Test,andfi Aux:

class TXXXMWbdul e : public TGo4Event El enent
{

publi c:
TXXXModul e() : TGo4Event El enent (), fiData(0) {;}
TXXXModul e(const char* nanme, Short_t id):
TGo4Event El ement (nane, nane, id), fiData(0) {;}
virtual ~TXXXModule() {;}
void Clear(Option_t *t="")
fi Dat a=0;
fi Test =0;
fi Aux=0;
}
Int_t GetData(){return fiData;}
void SetData(lnt_t dat){fi Data=dat;}
Int_t GetTest(){return fiTest;}
void SetTest(Int_t dat){fi Test=dat;}
Int_t GetAux(){return fiAux;}
voi d Set Aux(Int_t dat){fi Aux=dat;}
/* in this exanple, each nodul e represents single channel of data.*/
Int_t fiData;

/* nmodul e may have test data channel.*/
Int_t fiTest;

/* nodul e may have aux data channel . */
Int_t fiAux;

Cl assDef (TXXXModul e, 1)
b

The constructor of TXXXModule will pass the name and id number arguments to the TGo4EventElement constructor,
thus allowing for composite identification.

The classes TXXXCrate and TXXXUnpackEvent just derive from TGo4CompositeEvent, but do not add any other data
members here:

class TXXXCrate : public TGo4ConpositeEvent {
publi c:
TXXXCr at e() : TGo4Conposi teEvent (){;}
TXXXCr at e(const char* nanme, Short_t id);
virtual ~TXXXCrate() {;}

Cl assDef (TXXXCr at e, 1)

79

cl ass TXXXUnpackEvent : public TGo4ConpositeEvent {
publi c:
TXXXUnpackEvent () : TGo4Conposi teEvent (){;}
TXXXUnpackEvent (const char* nane) ;
virtual ~TXXXUnpackEvent () {;}

Cl assDef (TXXXUnpackEvent , 1)

Hence they are mere data containers to organize the structuring of the TXXXModules. Note that virtual method

Cl ear () needsnot to beimplemented in this case, since d ear () of base class TGo4CompositeEvent will invoke all
d ear () methods of the composite components.

The set-up of components is done in the constructors of TXXXUnpackEvent and TXXXCrate, resp.:

TXXXCr at e: : TXXXCr at e(const char* nane, Short _t id)
TGo4Conposi t eEvent (nane, nane, i d)

{
if(id <0 || id>XXX_NUM CRATES)
{
printf("TXXXCrate id %l outside range!\n",id);
}
el se
{
TString nodnane;
for(Unt_t ix=0; ix<Config_Crates[id]; ++iXx)
{
nmodnane. For n{ " XXXCr at e%d_XXXNModul e%d" , i d, i x) ;
addEvent El enent (new TXXXMbdul e(nodnane. Data(),ix));
}
}
}

VRS R R AR RS EEEE R EREEEEEEEEEEEEEREEEEEEEEEE R

TXXXUnpackEvent : : TXXXUnpackEvent (const char* nane)
TGo4Conposi t eEvent (nane, nane, 0)

TString nodnane;
for(uUnt_t ix=0; ix<XXX_NUM CRATES; ++i x)
{
if(Config_Crates[ix]==0) continue; // skip enpty crates
nmodnane. For n{ " XXXCr at e%d" , i X) ;
addEvent El enent (new TXXXCr at e(nodnane. Data(),ix));

}

Here the static array Confi g_Cr at es[] isused to define the set up of crates and modules. In this exampleit can be
changed at compilation time by means of some definitions in TXXXUnpackEvent.h:

#defi ne XXX_NUM MODULES 16
#def i ne XXX_NUM_CRATES 4

/1 nr of nmodules in Crate 0o 1 2 3
I |
#defi ne NR_MODULES {0, 16, 16, 2}

Definition NR_MODULES will initialize the array Confi g_Cr at es[] in TXXXUnpackEvent.cxx, thus defining the actual
configuration:

static Ul nt_t Confi g_Crat es[XXX_NUM _CRATES] = NR_MODULES;

80

When writing such event to a ROOT tree with TGo4FileStore enabled, the composite event substructures can be in-
spected with aROOT or Go4 treeviewer tool.

9 -~ God .50 2lgiS2 «Contoler name-MyAnalysss - [Paselt: [Cr2-wsCr-0f]
= Flle Tools Analysis Ssttngs Windows Help

= v XXX Crate 1 XXXModuleD.
B XXXCrale1_X¥XModule(fiData
i XXX Crate1_XXXModule0 fiTest
B XXXCrate1 XXXModuleD fiAux

« ¢ XXX Crate 1_XXXModule1.

v HEECale 1 _ KK Module?

= o XXX Crate1 XXXModule3.

= XX Crate1_J00Module.

o WX X Crate 1 _XXXModulef

& XXXCrate] XxXxXModuled

« v XK Crate 1_XXXModuler.

= ' KXKCrate 1_XXXModuei

= o XXX Crate1_XXXModule9.

oot XXX Crate 1 XXXModule10.

+ XXX Urate 1_XXXModue11.

v MEKGale ! KXKModde 12

= v XXX Crate 1 XXXModule13.

= o XX Crate1_J00MModule14.

ot WA X Crate XX XModue15

& XXXCrate1 TGodCompositeEvent

AR Crate2

o KEECiale? _XKXEModde0

1 XXX Crate2 XX XModue1.

B XXXCrate2 XXXModule fiData
B RXXUrale?_XXXModule? hlest
% XXXCrate? XXXModule fiAux

= v XXX Crate2 XXXModule2.

£

Sk wp b OB

IFLES @PS®Z =05 PO @

Apply to all v AutoScale

OOOCe sl _IODM e, it JO0UCr st 00 Mrchll iDals 14013 2011-07-50 AnabysinHistogranmdCrd-1vsCrl-0

E3 el d

B2 LS Aitems 222 d 2 EH S A R &
|Browser ® Fie Edit Select Opians
Mame i

= #|UnpackuTree
- ¢t UnpackEvent
4 KRR Cratel ~

3000
2500[

2000]

1500
1000[
500[

0

-500[I
0 500

1000

1 | 1
1500

1 I |
200

0

2500

3000

¥: XXXCratel XXXModuled fiData Yo XXXCrate? XX¥Modulel fiDats Z: |

CREM Average Evis Bs

&

4235 Events 2011-07-29 14:10°26

Tl | er2-tvscrlo

This screenshot picture shows the browser view of atree produced by the above example. Here Go4 filled adynamic

list histogram from the f i Dat a members of different subcomponents. The hierarchical representation of the composite
event leaves in the Go4 treeviewer can be used to easily navigate between different subcomponents. Note that the GUI
menu “ Settings/Preferences/” provides amode “Hide TGo4EventElement” to hide all TGo4EventElement leavesin
the Go4 treeview. Thisis useful, since every subcomponent has leaves with members derived from the base class.

81

9 Icon Table

File pad: open local ROOT file on disk

File pad: open remote ROQOT file (TNetFile, TWebFile, TRFIOFile)

Save content of memory to ROOT file

File pad: close selected ROQT file

File pad: close all ROOT files

Export selected objects of memory browser into another format (ASCII, radware, ROOT)
Stop running analysis, shutdown analysis and terminate GUI

Open view panel

Open fitter window

Open histogram properties window (there: list propertiesin analysis window)

Open histogram creator window

Open condition properties window (there: list propertiesin analysis window)

Open condition editor

Open event inspector window

Open dynamic list editor

List dynamic list in analysis window

Open parameter editor

Open browser to (un)load libraries; show list of loaded libraries

Open user GUI

Open analysis launch window

Stop and shut down analysis client, disconnect analysis server

Stop and shut down analysis server

Start analysis. Monitor pad: start updating all objectsin list, or only displayed ones.

Stop analysis

Open analysis configuration window (can be closed/opened any time); browser popup menu: edit selected
Open analysis output window (can be closed/opened any time)

Open file browser

Open color editor

Expand/shrink histogram in selected pad in X.

Expand/shrink histogramin selected padin Y

Expand/shrink histogram in selected pad in Z.

Move expanded histogram in selected pad in X direction

Move expanded histogram in selected pad in Y direction

Move expanded histogram in selected in pad Z direction

Set fill color

Set line color

Set marker color

ScaleY axislinear/logarithmic

Scale Z axis linear/logarithmic

Scale X axis linear/logarithmic

Draw 1d histogram/line style

Reset display in selected pad to histogram limits

Open window to set display limits (applies to selected pad, or all padsif thisoption is enabled in view panel)
Execute Tree draw.

Kill analysis

Clear button in browser pads clears objectsin analysis, in condition editor clears counters.
Enable clear function for objects

Disable clear function for objects (¥ does not clear these objects)

Analysis pad: copy selected object(s) to monitor

Remove selected object(s)

Move selected object(s) to memory (from analysis, monitor, or histogram server); or copy object from analy-
sisto editors (conditions or parameters)

Copy object in editor to analysis (conditions or parameters)

Analysis pad: update folders from analysis. Memory pad: update all objects from analysis and redraw.
Browser icons for window condition (arrays). Window mode in marker editor

Browser icons for polygon condition (arrays). Polygon mode in marker editor

Browser icon for TCanvas

Browser icon for TGraph

Browser icon for Go4 pictures.

CREM»OvEE $ e SHAT »THARE = &F YOOV,
4

W
"

Y v e

‘W% 8 SREOOPI CT OO >~ No
HE

<

BFEEES
i

(o]
N

o Su[TrR

-,
>

ik

WrEF -SxPR

Brower icon for TH3 histograms

Browser icon for TH2 histograms

Browser icon for TH1 histograms. Button: draw selected objects (one per pad).

Draw selected objects (all in one pad, superimpose)

Save selected object in memory to ROOT file

Refresh memory list (needed to see new histograms created e.g. by ROOT in the GUI). In condition editor:
refresh values from view panel.

Browser popup menu: open information window for selected histogram or condition

Editors: shows up if object in editor differs from object in analysis (file). Use %= for update.
Condition editor: connect to a picture with conditions (gets list of conditions from it)
Condition editor: update graphics from valuesin editor.

Output values of condition editor, info window, or markers according settings in the log action.
Close window without further action

Browser icon for dynamic list entries

Insert arrow in marker editor

Pick next mouse click in pad to get values into condition editor or marker editor

Browser icon for atree

Browser icon for a branch

Browser icon for leafs

10 Table of Menu Keyboard Shortcuts

Note that the Alt-x keys work on windows whereas the Ctrl (Strg)-x keyswork directly. Sometimes the same function is
available in baoth, i.e. Alt-a-n or Strg-n. In these cases the last character isidentical.

Ctrl-O [Alt-F-O | File menu: Open local file

Ctrl-R [Alt-F-R | File menu: Open Remotefile (TNetFile, TWebFile, TRFIOFile)

Ctrl-Y [Alt-F-Y | Filemenu: Save al objects of memorY browser to ROOT file

- Alt-F-H | File menu: Connect to Histogram server

Ctrl-Q [Alt-F-Q | Filemenu: Close (Quit) all files

Ctrl-X [Alt-F-X | Filemenu: EXit Go4

Ctrl-V [Alt-T-V | Tools menu: Open new View panel

Ctrl-F [AIt-T-F | Tools menu: Fitpanel

- Alt-T-H | Tools menu: Histogram properties window

Ctrl-l [Alt-T-I Tools menu: HI stogram creation tool

- Alt-T-O | Tools menu: COndition properties window

Alt-T-C | Tools menu: Condition creation tool

- Alt-T-E | Tools menu: Event printout and inspection tool

Ctrl-D [Alt-T-D | Tools menu: General Dynamic list editor

Ctrl-B [Alt-T-B | Tools menu: Load liBrary dialog

Ctrl-U [Alt-T-U | Tools menu: User GUI

CtrI-N [Alt-A-N | Analysis menu: LauNch analysis process

Ctrl-C [Alt-A-C | Analysis menu: Connect to running analysis server

Ctrl-M [Alt-A-M | Analysis menu: Disconnect (reMove) anaysis

Ctrl-T [Alt-A-T | Analysis menu: SubmiT settings and start analysisrun

Ctrl-S [Alt-A-S | Analysis menu: Start analysisrun

Ctrl-H [Alt-A-H | Analysis menu: Stop (Halt) analysisrun

Ctrl-G [Alt-A-G | Analysis menu: Show/hide analysis confiGuration window

Ctrl-W [Alt-A-W | Analysis menu: Show/hide analysis output terminal Window

- Alt-S-O | Settings menu: shOw/hide...

- Alt-S-F | Settings menu: Fonts...

- Alt-SY | Seftings menu: StYles...

- Alt-S-L | Settings menu: L og actions

- Alt-S-H | Settings menu: Generate Hotstart

- Alt-ST | Settings menu: Analysis Terminal history length

- Alt-S-S | Settings menu: Save Settings

- Alt-W-S | Windows menu: CaScade

- Alt-W-T | Windows menu: Tile

- Alt-W-C | Windows menu: Close all windows

- Alt-W-M | Windows menu: Minimize all

- Alt-W-O | Windows menu: Save LOg window to text file

- Alt-W-L | Windows menu: Clear L og window

- Alt-W-A | Windows menu: Save Analysis window to text file

- Alt-W-W | Windows menu: Clear analysis Window

- Alt-H-I Help menu: Read Go4 | ntroduction manual

- Alt-H-R | Help menu: Read Go4 framework Reference manua

- Alt-H-F | Help menu: Read Go4 Fitpackage manual

Alt-H-G | Help menu: Read Go4 GUI macro command reference

F2 Alt-H-Q | Help menu: About Ot

F3 Alt-H-O | Help menu: About ROOT

F4 Alt-H-G | Help menu: About Go4

Alt-U

If analysis configurati

on window is active: SUbmit analysis settings

- Alt-1-S View panel file menu: Saveas...

- Alt-1-P View panel file menu: Print...

- Alt-1-O | View panel file menu: ClOse View panel

- Alt-E-E | View panel edit menu: Show/hide marker Editor

- Alt-E-R | View panel edit menu: Show/hide ROOT attributes editor (TGedEditor)

- Alt-E-C | View panel edit menu: Start Condition editor and work on pad conditions (in pictures)
Alt-E-E | View panel edit menu: Show/hide object Event statusline

- Alt-E-1 | View panel edit menu: Changeto 1:1 coordinates ratio

- Alt-E-D | View panel edit menu: Change to Default pad margins

- Alt-E-M | View panel edit menu: Clear Markers

- Alt-E-P | View panel edit menu: Clear Pad

- Alt-E-A | View panel edit menu: Clear CAnvas

- Alt-O-C | View panel options menu: Toggle Crosshair mode

- Alt-O-S | View panel options menu: Show/hide histogram Statistics box

- Alt-O-T | View panel options menu: Show/hide histogram Title box

- Alt-O-L | View panel options menu: Show/hide multiplot L egend

- Alt-O-K | View panel options menu: K eep view panel title

- Alt-O-V | View panel options menu: Set View pand title...

- Alt-O-I View panel options menu: Toggle Superl mpose mode

85

11 Event Classes Diagrams

The following UML scheme gives an overview of the event base classes and typical implementations:

The TGo4M bsEvent is filled from the TGo4M bsSour ce (both provided by Go4). The TUser EventProcessor, which
had been defined to match the user’s experiment, takes the raw data from GSI format 10,1 and unpacks them into the
TUserEvent object. Both TGo4M bsEvent and TUser Event objects can be stored into (different) TGo4FileStore in-
stances. Later these can be read again event-by-event using the TGo4FileSour ce.

~

i
@) Es=NL
0 O . 2 e | Ul
Event classes diagram 4
TGo4EventSource TGodEventElement
A A
TGo4File =
Source ,.f" """ & hs Y
! T
1 ‘-_‘_
TGod4MbsSource "\ , g
e w - . 5 # » ™~ = b &
% - -y sty "’-. E i “'“\
3 TGo4MbsEvent =5y e TUserEvent !

-
- Pl
-
. -
e

User classes
04.12.01 God - http:figod.gsi.de T

86

O -
o Analysis step
+ Previous Step) TGodEventFactory
“~o._ __.=" |TGo4FileSource
T\ - <7
A Vil
TUserEvent1
T ey TUserEventFactory 1
s CreateEventSourcel)
e CreatelnputEvent()
o (?réafﬁe@L:tputEvéﬁh()
TUserEvent2? s
i :‘%h
R T
e Ty TGod4FileStore
v NextStep !}

N . - &

04.12.01 God - http:figod.gside 10
0 GSR _d
O -

Analysis framework
TGo4Analysis —l
A —> TGo4AnalysisStep

register ohjects

TGod4EventFactory

I_-__! ’-e _.—-____.‘--_

TUserEventFactory 1

-
—_

~ -.; TUserEventFactory _n

UserAnalysis
may use Ananysis()
. = ~UserEventFunci)
é_" & | -
TExternal
Analysis
04.12.01

God - http:figod.gside

11

87

12 Release Notes

12.1

88

10.
11
12.
13.
14.

15.
16.

17.
18.
19.
20.

21.

22.

23.

New features in Go4 v4.5 (July 11)

Implement Ctrl-C handler for godanalysis executable. Thiswill close analysis properly. If godanalysis runs
under gui control: After first Ctrl-C analysiswill try normally finish event loop and exit. After second Ctrl-C it
triesimmediately store autosave file and exit. All consequent Ctrl-C will just terminate analysis.

Implement -print argument for godanalysis program. This allows to print any kind of event on the terminal -
even without actual user analysis. For instance: go4analysis -stream r4-4 -number 10 -print Will
print 10 events from MBS stream server r4-4. Print also works with user source.

Significant changesin event classes. Reincarnation of TGo4CompositeEvent.It is now can be used again as
output/input of any step. Many errors are fixed.

Add possihility to hide TGo4EventElement members from tree viewer and even viewer. This makes look of
data structures, especially in composite events, much more clean. Default is off, can be changed via Settings-
>Preferences menu. Implemented for both gt3 and qt4 version.

Add TGo4CompositeEvent structure to example Go4ExampleAdvanced.

Default implementations for TGo4Parameter methods are provided. Now Clear(), PrintParameter() and Up-
dateFrom() methods have meaningful functionality and can be used asisin user derived classes.Thus, it is pos-
sible to declare user parameter class without any additional methods. See Go4ExampleSimple and
Go4ExamplelStep.

Add support of arbitrary objectsin TGo4Picture:: AddSpecial Object, show real picture sizein the browser
Add possibility to specify wildcard in TGo4EventSource class - alow to treat many subsequent root files, im-
prove wildcard treatment in TGo4MbsFile, provide wildcard functionality for Windows.

Added possibility that output event of first analysis step can be declared as MbsEvent and just save the incom-
ing mbs event into ROOT tree without copying the data: added method TGo4MbsEvent:: AssignReference() al-
lowsto use TGo4MbsEvent as a "reference” to another TGo4MbsEvent; added constructor
TGo4MbsEvent(const char*) to use it with standard factory

Add to TGo4Analysis static methods IsBatchMode(), IsClientMode(), IsServerMode(), returning running
mode of the analysis. Variable is set in godanalysis program and therefore methods can be used already in user
analysis constructor

Adjusted to new version of gSTORE RFIO/ Imd event input (RFIO v6.0)

Implement TGo4FileStore:: SetMaxTreeSize method to let configure size of created tree. Add -maxtreesize ar-
gument to godanalysis to change value in batch.

Add possibility to display/monitor TLatex object from anaysis (qt3/qt4).

Keep and restore panel name in hotstart file.

Allow to configure default draw options for classes like TH1/2/3, TGraph

Provide meaningful implementation for TGo4Analysis::SendObjectToGUI method. Now user can send any
registered object (histogram, graph, condition) to gui, whereit will be automatically updated. If object dis-
played, viewpanel will be updated. This allows do histogram monitoring without activating monitoring mode.
Optional polygon condition in projection macros

Use 64-hit integer for analysis loop count. Display correctly number of processed eventsin gui.

Add possibility to select font in analysis window. Sometimesit is useful to set fixed-size font there to see bet-
ter formatted output from analysis.

Use gStyle->GetStatFormat() for formatting of fitter parameters output.Add possibility to configure this format
from GUI via Settings/Panel defaults/Printf menu.

Autosave file performance: for complex directory structures, it took sometimes minutes just to open it during
analysis start.Normally analysis reads histograms in the beginning (when autosave enabled) and file was
opened in "update" mode. When closing such file, ROOT writes complete directory structure back to thefile,
which may takes minutes. Therefore, for reading autosave will be opened in "read", when writing "recreate”
will be used.

Windows version: Adjust to Microsoft Visual Studio 2010. Support UserGUI in Win32, solve windows ex-
port/import problems. Fix error with user source example under Windows.

Support of MacOS X (Darwin). Still experimental.

12.2

10.

11.

12.

13.
14.

15.

16.

17.

18.
19.
20.
21.
22,

23.

New features in Go4 v4.4 (November 09)

Add clear histogram and conditions button in gui

System configuration tested once and stored in $GO4SY S/build/M akefile.gener file. This simplifies compila-
tion of user analysis and excludes misconfiguration.

M akefile logic improved to be able work with system-wide installed ROOT version - ROOT SY S no longer
required to be set. Instead root-config script should be always available via PATH variable.

ROOT/Qt/Go4 library paths directly specified in al go4 executables (go4, user analysis). This speeds up start
time and allowsto run gui and analysis without any login scripts. To disable this compilation option, during
compilation call "make rpath=false"

Introduce standard godanalysis executable, which can be used to launch any user analysis, loading it from
the user (typically libGo4UserAnalysis) library. Minimum changes required - user should implement Cre-
ateUserAnalysis() function. ExampleSimple, ExamplelStep, Example2Step adjusted to this scheme.
Introduced go4-config utility, which provide possibility to use go4 without setting environment variableslike
GO4SYSor LD_LIBRARY_PATH. The only requirement is that go4-config should be accessible viaPATH
variable or should be placed in one of the standard locations.

New install capability in makefile. One can compile complete go4 with command "make prefix=/usr/local”,
where prefix variable definesinstallation directory. After compilation completed, "make install" command will
copy binariesin bin/, librariesin lib/, includes in /include/go4 and other additional staff in share/go4/ subdirec-
tories. After installation it is enough just provide PATH variable to bin/ subdirectory to be able fully use go4
GUI and compile user analysis. To use such installation in old makefiles, GO4SY S variable should be defined
and point to share/go4/ subdirectory. Or one can slightly modify old makefile, specifying there

GOA4SY S=%(shell go4-config --godsys) - see standard examples.

go4 gui can be started with "-observer”, "-controller”, "-admin" arguments, followed by optional hostname
[localhost], port number [5000] and access password [none] which defines running analysis server. Thissim-
plify gui handling when running analysis from other shell. Especially useful when running analysis with
godanalysis executable like: “godanalysis -server -stream mbshost"

From gui one can launch analysis without shell, just with simple exec command. This solves problem, when
ssh requires running DNS even when launching analysis on the same node. This also allows to launch analysis
from windows gui.

Logic how analysis started from the gui is completely changed. Instead of two intermediate shell scripts analy-
sis executable called directly. All shell/terminal/initialization settings for such command collected in
etc/god.prefsfile. User allowed to create its own go4.prefs file in current directory to redefine some settings.
With conditional syntax one can define host/OS specific configuration how is analysis started. This approach
alows run go4 analysis on the nodes with completely different OS/software settings. Old scheme (via Analy-
sisStart.sh scripts) can be activated by setting export GO40LDLAUNCH=yes variable before gui start.

Allow to run analysis, compiled into library, from the gui. Example simple, 1step and 2step shows how it can
be done. From this point on it is no longer necessary to have MainUserAnalysis executable at all.

Signal handler isused to normally stop analysis by Ctrl-C pressing from the user - stop processing, close con-
nections, save autosavefile.

Support TGraphPolar in draw options selection.

Make default location for setting account wide, one should define GO4SETTINGS=L OCAL to store/use gui
settings from current directory.

Simplify event source handling in user code. It is no longer required that event class 'knows all its possible
sources - only source itself decides which event class and how it fill. Cleanup al sources classin go4 and ex-
amples. Old code will work asis.

godanalysis executable search user library for new classes and create user analysis instance, using predefined
signatures: (const char*) or (int, char**). Constructor signature (int, char**) like for main() function allows to
deliver arbitrary argumentsto user code (see Example2Step). If standard signature not found, any non-default
constructor will be tried - most old examples and codes should work. Alternatively, one can define Cre-
ateUserAnalisys(const char*) function to create analysis instance.

Improve saveparam.C and savecond.C macros - better readable code. SavePrimitive() methods are used, im-
plemented for parameter and condition classes. New saveall.C macro to store all conditions and parametersin
single macrofile.

Fix error with connecting DABC/MBS servers second time

Fix error (introduced in v4.3.0) with using autosave files - object was not found correctly there

Set green/red color in analysis status monitor widget

In gt3 version exclude all gui libraries, integrating code in executable (similar to qt4)

Suppress symbolic linksin user gui library to avoid compilation problem on DOS partitions, where links are
not supported

Workaround for TCutG API changesin ROOT 5.25.1 and further

89

12.3 New features in Go4 v4.3 (June 09)

24

25,
26.
27.
28.
29.
30.
31.

32.
33.

34.
35.
36.
37.
38.
39.
40.
41.

42.
43.

44,

45.

46.

47.

48.

49,

12.4

90

. Remove Q3Support classes completely - now Qt4 based GUI is pure Qt4 application. This solves many side
effects like crash by style changing or blinking during resize of main window. From this version on Qt4 GUI is
default.

rootmap files are generated per library - this simplifies make procedure significantly, old user makefiles are
still working

Go4 makefile now can better recognize standard installed Qt version without QTDIR set. '‘make WITHQT=3'
or 'make WITHQT=4' forces usage of specified Qt version.

Fix problem with drawing of THStack from canvas or file.

Add proxy for THStack to be able browse into THStack and draw single histograms from it

Better autoscale of THStack class

Ensure that drawing of histogram first time done only once, in case of 2D histograms doubles the performance
When running GUI, one can specify one or several root files, which will be loaded automatically

BUGFIX: GUI was hanging when non-existing hotstart file was specified.

New MakeTH1, MakeTH2, MakeWinCond, MakePolyCond, MakeParameter methods in TGo4EventProcessor
class are implemented. They provide easy way to produce analysis objects or take them from the autosave file.
See analysis examples how these methods can be used.

Examples only have Makefile, no Module.mk any more.

Make "COL" asdefault option for 2-D histogram, improves significantly speed for large histograms, one can
always goes back to scatter plot

Analysis, running inside GUI, runs without DISPLAY variable set (ssh -x). If any graphics required in analy-
sis, one should run it in separate xterm/konsol e application, where ssh -X is done.

After Go4 built, one can call "make clean-bin" to remove all object and dependency files, but executables and
libraries will remain. Useful for installation. Now one can compile (but not run) Go4 without Go4SY S set.
Histogram title position is now preserved and restored when histogram is updated.

Solve problem with flickering widgetsin Qt4 GUI.

Make GodExampleSimple really simple - no more complex parameters or initialization. Main executableis
now more flexible when specifying command line arguments.

When new view panel is created, it should always fit into current main window - before one can get view panel
which two time larger.

Go4 event loop optimization - simple analysis with GUI runs 10-20% faster than before.

Configuration of Qt4 GUI is stored by default in current directory in go4.conf file. One can do "export
GOASETTINGS=ACCOUNT" to store GUI settings in account-wide location.

Replace "disable" by "enable" check boxes in analysis configuration - makes configuration more intuitive.
Shortcut of each step configuration can be seen together with step name on the top of analysis configuration
panel.

Provide better log output when Go4 open/change/closes Imd/root filesin analysis. End of ROOT file no longer
resultsin ERROR exception, but in End of File exception.

Automatic stop after specified number of events. For all MBS event sources an event count can be set in con-
figuration panel after which the analysis is stopped and can be continued for the next number of events. The
current values for files specify start and end event number as found in the event data. Often this event number
starts not from 0 and is even rather unknown. In addition it does not alow for stepping through afile. Note that
an event function can stop the loop by throwing TGo4EventEndException(this) (TGo4EventEndException.h
must be included).

For multiple plots he canvas division is taken from the values given in the canvas widget. If these values do not
fit, take defaults as now.

Tree browser: Several enhancements make usage much better: After dragging an item into the tree viewer
field, focusis set into that field, because most probably one has to modify theindex. A RET in that field trig-
gersthe browser. Dragging afield and RET accumulates over all indices. TABs moveto next input field. His-
tograms can be cleared in workspace.

BUGFIX: Adding histograms to an superimpose enabled canvas changed colour only once to red, all following
black. Selecting histograms and superimpose in new plot showed different colours as expected. Fixed.

New features in Go4 v4.2 (April 09)

Merge Go4 version 3 with Go4 version 4 together - now same package can be compiled either with Qt 3.3 or
Qt 4.4.x. Version of Qt can be selected by setting proper QTDIR path. If QTDIR is not set, default version will
be used (if any)

Replace html documents by pdf, use external pdf viewer for them.

Reduce usage of gt3support classesin Qt4 part of GUI.

Add in Go4Example2Step example of TGo4Fitter usage

5. Few more options can be set in TGo4Picture: SetStatsAttr, SetAxisTitleFontSize, SetAxisLabel FontSize,
SetTitleAttr;

12.5 New features in Go4 v4.1 (October 08)

1. New toolwindow DABC Monitor: For new GSI DAQ framework Data Acquisition Backbone Core. Allows
to inspect all info services registered to any DIM server. Any DABC ratemeter service running on DABC or
MBS nodes may be monitored and filled into trending and statistic histograms. Thistool is build optionally if
environment $DIMDIR isset and DIM isinstalled there.

2. Added Support of Solariswith CC 5.x (without RFIO). Fixed different warnings from Solaris CC compiler.

3. Viewpanel menu: "File/Produce Graph From Markers' will generate new TGraph in local workspace contain-
ing the points of all Go4markers set in the current pad. May be used to fit function to manually selected posi-
tions.

4. Budfixes:

a Viewpaned canvas was not working with Qt >= 4.4.x (empty widget with grey background) because
Qt workspace may change X-window id at runtime. Improved Go4QtRoot interface classes to re-
set winld dynamically on resize. Modified rendering of TQRootCanvas to avoid unnecessary Qt dou-
ble buffering.

b. Viewpane embedded TGedEditor was sometimes not displayed at startup. |mproved Go4QtRoot
interface to avoid extra Resize&() in TQRootWindow::paintEvent which may lose coordinates of pri-
mary editor tab.

c. " Settings/Style" menu would crash GUI sometimes due to unresolved problems in QtApplica
tion::setStyle when called at application runtime. Workaround: menu will select style for Go4 set-
tings, style is no sooner activated than on next startup.

d. " Settings/Fonts..." menuwould crash GUI sometimes due to unresolved problems in QtApplica-
tion::setFont when called at application runtime. Workaround: menu will select font for Go4 set-
tings, font is no sooner activated than on next startup.

e. QGo4Settingsis not working correctly anymore with Qt>4.4 due to modificationsin QSettings API
and Qt settings location. Now general settings must always be kept at $SHOME/.config/GSI/.go4.conf
and can not vary for different directories in the same account. However, the main window toolbar
setup may still be saved locally (at $PWD/.config/GSl/go4tool src, default), or account specific (at
$HOME/.config/GSl/go4toolsrc). Thisis selected as before by setting environment variable
GOA4SETTINGS="ACCOUNT".

f. MbsAPI: streamserver connection timeout was not working correctly (leads to hangup of analysis
control when no dataiis delivered from streamserver).

g. MbsAPI: severa errors at reading of *.Imd files with new event format 100,1 (DABC)

h. MbsAPI , for f_stccomm.c file. Fixes problem with connecting 64 bit machineto MBS
events/stream/trasnport server. False usage of select() function.

i. TreeViewer swapped x/y/z coordinates, convention is TTree::Draw("z:y:x"))

j- Viewpane: "Produce Picture" did not save all draw optionsto picture

k. Viewpand: Mismatch between Go4 viewpanel range (full visible range) and ROOT user range (re-

ferring to low edges of bins) could cause slight shift of x axis range on canvas refresh

5. Maintenance:

m.

Modifications in makefiles - now only in one place in Makefile.config one should specify platform -
Linux, Solaris or Win32. Other small changes in makefiles

Adjustments for modifications in ROOT signal-slot mechanism syntax (ROOT >=5.19/02); this
caused viewpanel crash.

12.6 New features in Go4 v4.0 (February 08)

Ported the Go4 GUI for Ot Version 4. Thisincludes the main Go4GUI, the Go4UserGUI example,
and the GSI gtroot interface with the Go4 extensions. Notes:
Go4 v4 REQUIRES Qt3support libraries of Qt4 installation (should be the configure default).
Go4 v4 needs to disable the XInitThreads() in ROOT TGClient initialization to avoid conflicts between
ROOT X11 graphicsand Qt4. Thisisonly possible for new ROOT versions that support to switch the
X11.XInitThread resource by environment settings (thanks to Fons Rademakers!).
=> Go4 v4 REQUIRESROOT VERSION > 5.19/01
Go4 v4 will not work anymor e with Ot Versions 3.X. To use Go4 with Qt3, please install
Go4 versions 3.03.0x which will still be supported in parallel.
2. Mbsevent library: Added new event types for future GSI data acquisition framework DABC.
3. Viewpane: Correct work of marker classin case of superimposed histograms. Now newly created marker will
be assigned to currently selected histogram.

1.

a

b.

C.

91

Poo T’

oo’

FitPanel: in Wizard and Expert mode there is now possibility to clone existing model component. Especially
usefull in case of TGo4FitM odel Function and TGo4FitM odel Formula classes, which require anumber of dif-
ferent settings.
Budfixes:
TGo4Browser: Arrays fVisibleColumns and flndexes has 1 item less than required.
QRootApplication: in constructor numc argument must be delivered as reference.
TGo4MBSViewer: status record must be cleared in constructor.
Fit package concerning parameters handling when some parameters are fixed
MbsAPI |, for f_stccomm.c file. Fixes problem with connecting 64 bit machineto MBS
events/stream/trasnport server. False usage of select() function.
Maintenance:
Small adjustments for the new ROOT (5.17.05) browser.
Two ROQT libraries (libTree and libGpad) added to Go4 rootmap file that user Go4 analysis library can be
loaded in CINT session.
ThreadManager workaround for ROOT bug in TThread::Delete() (ROOT bug report 31085): for some
compilers, Go4 GUI crashed when shutting down or disconnecting analysis.

12.7 New features in Go4 v3.3 (May 07)

92

1
a

]

apLn

N o

10.

11.

12.
a

b.

C.

d.

Viewpane
Marker editor: A point- or region marker and its label will pop to the pad foreground when it is selected
with left mouse button. Additionally, selection of a marker in the combo box of the editor will let it appear
frontmost.
In superimpose mode selected histogram can be moved on the top of complete histogram stack via new
menu command " Select/show histo on top".
Draw options enhanced: support for TGraph draw modes and TGraphErrors error style. Reorganization of
draw options for THL/TH2. New draw options tool for line, marker, and fill colours of histograms and
graphs.
Menu " Select” to chose active object from superimposed histograms and graphs.
Autoscale checkbox as shortcut on top of each viewpanel
Improvement in speed of view panel redraw (up to factor of 2).
Fitpanel improvement: keep y-scaling when fitting on x subrange of histogram
New Zoom toolbar: added buttons for scaling z-axis of 2d histograms.
New iconsfor zoom toolbar and draw options toolbar.
New additional draw options toolbar to select commonly used drawing options by buttons (lin/log, line,
histo, some 2d styles). The new toolbar is displayed viathe RMB options pull down menu.
New example macr o scalex.C to scale x-axis of histogram with linear calibration function
Settings menu: "Show event status” selectable as default pad option.
Settings menu: " Statistics Box..." dialog to define default pad options for histogram statistics.
TGo4Picture: new method AddSpecialObject() to add any ROOT graphical object (text labels, markers) to the
picture
I mprovement in TGo4MbsFile for partial read of Imd file: Corrected mismatch between first event index and
real event number (before: index=event number-1).
TGo4M bsFile: now can also read list-mode data of old event formats type 4,1 and 4,2. Event will be con-
verted implicitly into format 10,1 for further processing: User unpack processor gets TGo4MbsEvent with one
TGo4MbsSubevent that contains all event data.
GUI command interface TGo4Abstractinterface. Added methods:
- GetViewPanelName() - returns view panel name
- SetViewPanelName() - changes view panel name
- RedrawPanel() - updates view panel view
- Redrawltem() - updates all views of specified items
- FindViewPanel() - searches for view panel of specified name
- GetActiveViewPanel() - returns currently active view panel
Maintenance:
Some Makefile and build skript improvements
Added missing includes for <math.h>, required by some compilers
Dueto changesin ROOT in many Go4 filesincludes like TROOT. h, TMvat h. h, TLi st . h are missing.
Sometimes user should also include these filesin user code.
In latest ROOT TBuffer class becomes abstract, therefore one cannot use it directly in the code. Instead,
TBufferFile class must be used.
Adjustment of Makef i | e because of changesin default libraries for ROOT >= 5.13/04 (separated libSpec-
trum.so)

f.

g.

13.
a

b.

C.

d.

12.8
1

12.9

Adjusted Go4ThreadManager package due to changesin TTimer copy constructor for ROOT versions >
5.12.00
Some bug fixes concerning compilation against old ROOT versions 4.08

Bug fix
for changesin ROOT>v5.14 pad cleanup: Viewpanel with go4 markers on subpads crashed when closed or
cleared.
1-d histogram drawing. Due to some features of ROOT histogram painter several draw options (lin, barchart
and others) not working after TH1::SetSumw?2() is called - in there Sumw?2 array sum of squares of weights
is accumulated. Madification in Go4 code were done to avoid Sumw2 arrays when it not necessary.
in Go4Socket library (missing include) because of changesin ROOT version 5.14-00
Problems with view panel scaling functionality when build with gce4.0.x compiler (FC5); fixed.

New features in Go4 v3.2 (July 06)

Analsis framewor k: TGo4EventElement now implements default method Fill() that calls virtual function
TGo4EventSource::BuildEvent(). As a consequence, for asimple analysis the user only has to implement
BuildEvent() method in his processor class. There is no need to develop a user output event class. Even if auser
output event class shall be used, methods Fill() and Init() are not necessarily needed for a standard analysis.
Go4Exanpl eSi npl e and Go4Exanpl elSt ep were changed accordingly.

Analysis framework: TGo4EventProcessor how implements BuildEvent() and can be used in steps which are
only used as handle for event input (branched steps).

Macro usage: Analysisdefines GO4ANAMACRO _ on startup to be used in any Go4 analysis script to
check the current environment. In GUI, _ GOAMACRO__ isdefined and can be checked analogously. In
analysis, pointer go4 is already set to TGo4Analysis::Instance(), in GUI to TGo4Abstractinterface::Instance(),
i.e. al methods can be referenced by go4- >. (see 5.4.3, page 40, and 5.17, page 72)

Parameter editor offers popup menu GetFromFitPanel for embedded fitters to update fitter settings from the
current fit editor. Useful for calibration parameters that should be fitted interactively to spectra (see
GodExanpl e2St ep).

Rebin in GUI. Now when histogram will be rebinned via right-mouse menu or via ROOT graphical editor, re-
binning will be kept when histogram will be updated next time from analysis. Many views of the same histo-
gram with different binning are possible. Binning also kept in hot-start file. TGo4Picture has new SetRebinX(),
SetRebinY() methods to configure rebinning of displayed histogram.

All Go4 macr os put into new subfolder $G04SYS/ macr os. Thisdirectory should be added to entry

Uni x. *. Root . MacroPat hin. r oot r ¢ setup file.

New macros; savecond. Cand savepar am Cto create macrosto set conditions and parametersto their
current values (see 3.4.2, page 12).

Bugdfixes:

a. Accessto RFIO root files from Go4 GUI browser was not possible (at GSI), since internal functions
of I i bRFI O so were shadowed by functions of GSI event lib with same names. Solved by separat-
ing Go4 event library package into different modules for analysis and GUI task.

Analysis server executed UserPostLoop() each time a GUI client was disconnected. Disabled.
Several changes concerning the cleanup mechanism in GUI object manager

AnalysisClient in CINT mode showed thread deadlock for ROOT versions> 5.02-00

Start client dialog selects correct analysis directory when choosing the analysis executable

Pop o

New features in Go4 v3.1 (May 06)

New script command line widget for GUI: Allows execution of ROOT commands or macros within Go4
GUI task. Moreover, Go4 hotstart scripts may be invoked here at any time. The widget offers afile dialog to
search for *.C and *.hotstart files. It also has a selector dialog of preloaded commodity functions for histogram
manipulation (rebinning, addition, projection, etc.). These function template calls may be completed with exist-
ing histogram names by dragging histogram items from the browser and dropping them on the empty com-
mand argument. The history of the command line may be saved to the current Go4 settings file

. go4/ godl ocal r ¢ and isthen restored on next startup. (See 5.17, page 72).

New GUI command interface class TGo4Abstractinterface. It can be accessed by handle "go4- >" in GUI
command line. This makes it possible to interact with Go4 GUI views and browser objectsin a ROOT/Go4
script. Additionally, al remote analysis control commands are available here, like in the hot start scripts.
Method reference of TGo4Abstractinterface is available in the Go4 help viewer (type "help" in GUI command
line, or use Help» GUI commandline menu of Go4 main window). Example scripts using thisinterface are at
$CASYS/ Co4GUI / scri pt s (definitions of the preloaded command line histogram functions). Note: have
been moved to $GASYS/ macr os in V3.2.

93

New general marker label settings dialog. In main window menu Settings » Panel Defaults > Marker la-
bels.., acheckbox dialog offers to switch all label properties of the region and point markers (visibility and in-
formation displayed in the label). These settings have effect on al new markers of the view panel marker edi-
tor. They are saved in the go4 preferencesfile . go4/ go4l ocal r c. (see 5.7.6, page 55)
Plain ROOT canvasesin files are better displayed.
New settings feature Settings » Preferences» Fetch when saving. |f enabled, the save browser / save
memory button of the file toolbar will refresh all browser item objects from analysis before saving. Thus the
ROOQOT file will contain a snapshot of all analysis objects. Otherwise, only the already fetched objects are
saved.
Zoom tools "set scale” dialog upgraded to non modal MDI widget. Thiswill appear aways on top of work-
space widgets and refers to currently selected view panel pad. Changes include some bug fixes concerning the
range settings of 2d histograms, and the auto-scale property.
MBS monitor tool: If monitoring switched on, calculation of ratesis now done in Go4, averaged over update
time. Parameters of MBS monitor are stored in Go4 settings file.
TGodlnterface: new method ExecuteLine to remotely do CINT call from Go4 master process in the remote
slave process
View panel superimpose mode improvements:

a. isnot changed anymore after superimposed draw of FitPanel results, i.e. fitter data histogram can now

be replaced just by drag and drop on the view panel
b. existing axislabels of first histogram are kept

10. FitPanel settings are saved/restored in go4 settingsfile
11. Fit GUI: Enhanced draw stylesfor TGraph
12. Bugfixes:

a. Workaround for ROOT crash in histogram rebin editor: Selecting a histogram in view panel for rebin
with the ROOT attributes editor leads to segmentation violation when original histogram was replaced
or deleted.

b. Crashin Go4 markers/conditions when histogram in view panel was replaced by drag and drop.

Update of histogram in GUI failed when histogram dimensions (ranges) were changed in analysis

Position and size of histogram statistic label may now be saved in Go4 picture objects. Thus these

properties can be restored on Go4 hot start.

e. Crashonclosing last non-minimized window in view panel

f. Problem with empty TGraph as data source in Fitter

g. Crashwhen FitPanel histogram under work was replaced or deleted in view panel. FitPanel did not
react automatically on changes, happening with histograms (or graphs), displayed on view panel.
Therefore, when superimpose mode was switched off, fitted histogram disappeared from view panel
(and also deleted), while fitter still has pointer on that histogram. Now FitPanel slot in object manager
registered also against all histogram, used in fitting. If histogram is deleted, FitPanel will be automati-
cally refreshed.

h. Histogram title could not be switched off in superimpose mode in view panel

Qo0

13. Improvementsin make files
14. Adjustments of includes due to changesin new ROOT version 5.10

12.10New features in Go4 v3.0 (November 05)

%4

1.

2.

Redesign of the GUI with new internal object manager. Decoupling of controlling functionality from the Qt
graphics layer. Effects many of the following features.

New Go4 browser. Instead of several tabs for remote analysis, local memory, monitoring list, now one
browser with sub-branches for different data sources, such as remote analysis, histogram servers, root files, is
used. Supports local memory workspace folder with copy and paste by drag and drop, clipboard, and renaming.
All controls available viaright mouse button context menu. Switchable columns for object properties. Filter for
monitored, fetched, and all objects.

New view panel. Improved marker editor with lightweight condition editor. Additional optionsto display date
and time of refresh, and full object path. Can display same object with different draw styles and ranges simul-
taneously. May store current setup as Go4 picture.

New condition editor: More compact layout, shares functionality with view panel marker editor.

Improved parameter editor: May display user parameter structure without loading the user analysis library
into the GUI. Suppresses display of unknown components.

New dynamic list editor: More compact layout. Automatic resolving of event name and data member name
when dragging and dropping from analysis event structure, in case of pointer entry. Dito for tree name and
draw expression in case of tree entry.

New dockwindow for analysisterminal. If analysisis started in external shell, functionality of analysis out-
put window (macro execution, etc.) shrinks to dockwindow.

Improved dialogsfor analysis startup and connection.

10.

11.

12.

Decoupling of librariesfrom GUI. GUI does not require all analysis libraries anymore due to changesin
command pattern and dependency rearrangements. Will speed up GUI startup time and may reduce memory
consumption.

Status monitor for remote MBS node. New dockwindow offering connection to the mbs status port. Fre-
guently update of daq rates and status possible. Trending histograms in browser workspace. Full printout of
mbs status and setup structures possible.

Go4 analysis status bar improved. Animated Go4 logo shows true running state of analysis, independent of
current event rate. Current event source of first active step displayed per namein text field.

Remote control of Go4 analysis from regular ROOT session. Command interface to connect and control
analysis process from CINT. Inspecting and retrieving Go4 objects with extended root TBrowser possible.

12.11New features in Go4 v2.10 (June 05)

1.

7.
8.

9.

10.

GodTaskHandler redesign: Decouple client and server tasks from master and slave role. Thisimplies that
analysis can run in the network both as server or client task (asin previous Go4 versions). Vice versa, gui can
run either as client or as server (previous behavior). Additionally, TGo4AnalysisClient class now inherits
TGo4Slave (previously TGo4ClientTask), and TGo4Display inherits TGo4Master (previously
TGo4ServerTask). Oneanalysis server can be connected by many Go4 GUI s (one controller/administrator
GUI, and several observer GUIs).

Go4TaskHandler redesign: Password for login of master client to slave server with accounts for adminis-
trator, controller, and observer roles. Additionally, some Go4 commands are forbidden if master islogged in
with alow priority account (observer e.g. may not reconfigure analysis, but only request objects for display).
Default passwords may be changed in Mai nUser Anal ysi s code (see chapter 5.3.2 page 37).

Go4GUI prepared to run with analysisserver: Command go4 - cl i ent will start the GUI master task in
client mode. In this case, the Launch analysis dialogue requests for login account, password, node and con-
nection port of the analysis server. Moreover, aclient GUI may first launch a new analysis server in an xterm
and connect to it afterwards (see chapter 5.3.2 page 37).

Example of analysis server in package GodExample2Step: Mai nUser Anal ysi s may be started from
command line with option —ser ver asthird argument (first arguments like batch, see Error! Reference
source not found.,page Error! Bookmark not defined.), thus starting the analysis as server. Processing starts
immediately (no submit from GUI necessary). Command line parameters of this example will set additional
boolean arguments (servermode, autorun) of TGo4AnalysisClient constructor appropriately (see chapter 5.3.2
page 37).

ROOT macr o execution with Go4 analysis server: A Go4 environment and analysis server can be started
from any ROOT session in the background (. x go4l ni t . C). Go4 GUIs may connect to this server and re-
quest data from running analysis macros, or control macro via Start/Stop buttons. New methods
TGo4Analysis::WaitForStart() to poll for the Go4 environment running state, and TGo4Analysis::Process() to
invoke the Go4 analysis loop explicitely from ROOT macro (checks also for STOP). Example macros hsi m
pl e. C hsi npl ego4. Candt r eedr ango4. C. See chapter 6 page 73.

Analysis. UserPreLoop() and UserPostLoop() are only executed once when analysis running state is changing.
In previous versions, each press on Start, or Stop button, respectively, would execute the corresponding
method another time. Bugfix: postloop was called twice if analysis client was terminated in running state.
Bugfix: MdsAPI /f _evt . c (close of streamserver).

Bugfix: Labelsfor conditions and markers were not drawn correctly in logscale anymore for ROOT
v>4.03/02.

Bugdfix: Adjusted reallocation behaviour in TGo4Socket and TGo4Buffer to changed definition of
TBuffer::kisOwner flag for ROOT versions>4.03/02

Fixed several small memory leaks.

12.12New features in Go4 v2.9 (February 05)

1
2.

3.

Keyboard shortcuts for many functions (see table chapter 10, page 84).

Settingsfor Go4 GUI are now saved in the current directory by default in $PVDY . go4/ go4l ocal r ¢ and
$PWDY . go4/ go4t ool sr c, respectively. So different settings for the same login account are possible now.
If the current directory does not contain a Go4 settings file on Go4 GUI startup, it will be created using the
global account preferences at $HOVE/ . gt . Settings behavior can be changed using environment variable
GASETTI NGS. If thisis set, the GUI preferences are used from directory $GOASETTI NGS. If

GAASETTI NGS contains keyword ACCOUNT, the Go4 settings at $HOVE/ . gt are used (like in previous Go4
versions).

New context sensitive menus (right mouse button popup) for all GUI browsers.

95

4. ROOT object editor TGedEditor will show up in view panel side frame instead of top-level X-window. To
implement this, the Go4 QtRoot interface has a new widget TQRootWindow which embeds a ROOT TGCom-
positeFrame into a QWidget.

5. Superimposed drawn histograms, THStack objects and TMultiGraph will show aTLegend box in view panel.

The legend box can be switched on or off by view panel menu.

View panel marker editor: Added polygon shaped regions (TCutG).

Filebrowser: Added " Open remotefile" functionality to read objects from TNetFile/XRootd (ROOT:),

TWebFile (http:), and tape library (rfio:).

8. Analysisbrowser: Objects may be protected against Clear() (histogram reset to 0), and against deletion in
the analysis. Browser shows protection state in 3 column as "C" and "D" symbols, respectively. Objects cre-
ated from analysis code are always protected against deletion, objects created from GUI may be deleted from
GUI again. Protection against clear may be changed using the browser's right mouse button menu. The protec-
tion state is persistent in the auto savefile.

9. Analysis. Histograms associated with Go4 picture objects will not appear anymore in the analysis Pictures
folder, but only in the Histograms folder.

10. Analysis macro: New analysis macro Mai nUser Anal ysi sMacr o. Cindirectory Go4Exanpl eSi npl e.
It needsa. r oot map file for automatically loading all necessary libraries. Thisfileis created by the new files
Makefi | e and Modul e. nk from the example. One can copy both files from the example, or modify exist-
ing files if they contain application specific changes. Look for map- expressions!

11. New Method TGo4Analysis::Print() to print the current setup of the analysis and the steps.

12. Multipleinput file (metafile) for TGo4MbsFile may contain lineswith CINT commands preceded by an
"@" character. Commands, e.g. ROOT macro execution like". x set up. C', are performed in between
change of event source.

13. Metafiles should have suffix . | m . Then they are recognized without @. The main programsin the examples
have been modified nottoadda. | ndtoa. | m file name (update your main program accor dingly!).

14. TGo4FileSource: Partial 10 functionality - name of the input event defines name of the tree branch to be
read. Additionally, improved read performance for full event.

15. New Example Go4Exanpl eMesh to show how to setup an analysis with non-subseguent analysis steps. May
use partia input from tree branch.

16. Reorganisation of Go4 make files and installation. Reduced number of Go4 libraries. Removed unnecessary
ROOT dictionary information from libraries. Go4 may be installed without | i bASI nage. so if thisis not
supported on the system.

17. Implemented .rootmap mechanism to auto-load required Go4 libraries in macros.

18. Budfix: Preview panel options menu apply to all did not work for histogram statistics property.

19. Bugfix: Double click in Go4 GUI browsers was not always working, because of conflict with drag and drop
mode.

20. Bugfix: When Submit was called without stopping the analysis before, references set in UserPreLoop() were
not updated. Now UserPreLoop() is called also in this case. Additionally, UserPostLoop() is not called when
analysis stops after initialization has failed.

21. Bugfixes: A set of use cases has been set up to test the GUI functionality. Several bugs have been found and
fixed performing these use cases. The test procedure has improved the stability of the GUI. It will be extended
and used for al future Go4 updates.

No

12.13New features in Go4 v2.8 (September 04)

96

Marker editor in view panel allows for marking channels or windows. Labels and arrows can be created. All
marker elements can be saved and restored.

New ROOT graphical editor can be called from view panel. The editor dynamically adjusts to the graphical ob-
ject selected by LMB.

View panel window title: can optionally be set by user and may be kept constant. If a TGo4Picture is displayed,
the picture name defines the view panel title.

Condition editor: the cursor mode has been removed because the functionality is now provided by the markers
Condition, markers and labels: Implemented correct ROOT streamer (bug fix), i.e. saving and loading these ob-
jectsto and from ROOT filesis possible with fully recovered functionality and graphical properties. Support of pad
display in linear and log scale (bug fix). Additional controlsin RMB menu of ROOT (set ranges, location, save de-
fault properties, reset). Default label setup stored with Go4 GUI settings.

Polygon condition: Implemented statistics functions for work histogram under the cut (integral, mean, rms, etc.).
Enabled InsertPoint and RemovePoint functions in RMB menu (bug fix).

Fit GUI: Selection between sigma and FWHM (default) by Settings ™ Recalculate gauss width. Fit results may
be printed to terminal or Go4 log file output.

1D drawing: ROOT "L" (line) "C" (curve) "B" (bar chart) "P0" (poly-marker) line styles supported.

10.

11.

12.

13.

14.

15.

16.
17.

Histograms: re-binning, projections, and profiles supported (standard ROOT methods with RMB). Automatic
“synchronize with memory” on pad click to get newly created histograms.

Histogram client: monitoring implemented (auto-update). Drag and drop support. Display error message when
server connection is not available (bug fix). Store server specification in Go4 settings.

File store: Storing objectsinto a ROOT file atitleis prompted. Thistitle can be seen in the Go4 browser and the
ROOT browser.

User Objectsfolder: With AddObject(...) histograms, parameters and conditions can be put into folders of the
UserObjects folder. They can be located there by the standard Get methods, e.g. GetHistogram(). Editors work
also with objects in these folders. Note: object names must be unique!

L og window: Empty messages are now suppressed (bug fix).

QtRoot interface: bug fix concerning initialization order of X11 system (ROOT init now before Qt init). Lead to
crash of the main GUI on newer Linux systems when using Qt versions > 3.1 (FEDORA2, SuSe9.1)

Thread manager: bug fix: adjusted default exception handling to work with newer | i bpt hr ead. so that uses
one process for all threads (e.g. FEDORAZ2). This lead to a crash when Go4 threads were canceled (shutdown of the
go4 GUI).

Analysis Framework: bug fix: analysis without analysis step (UserEventFunc() only) again possible.

Client startup script: full PATHand LD_LI BRARY _PATH of the Go4 GUI environment is passed to the analysis
process.

12.14New features in Go4 v2.7 (June 04)

1.

2.

10.
11.

12.
13.
14.
15.
16.

17.

Keyboard shortcuts (Alt-1 to Alt-5) to select browser tabs (File, Monitor, Remote, Memory, Histogram client).
Items are selectable with arrow keys (left-right to unfold and shrink subfolders). Return key acts as double click.
MBS event classes improvements. Method TGo4MbsSubEvent::IsFilled() checks if the sub-event wasfilled in the
previous event built. Iterator TGo4MbsEvent::NextSubEvent() by default delivers newly filled sub-events only, sup-
pressing existing sub-eventsin list of non used ids. Sub-event data field re-uses the memory allocated by

| i bgsi event instead of copying it to own buffers. New method TGo4MbsEvent::SetPrintEvent() to set verbose
mode for the next n events. Format changes in TGo4MbsEvent::PrintEvent().

Performance improvements of analysis framework in step manager, dynamic list and MBS event classes.

New Eventlnfo toolwindow to control printout of an event samplein remote or local terminal. Optionally the user
implemented PrintEvent() method, or the ROOT TTree::Show() output may be used. May control the arguments of
TGo4MbsEvent::SetPrintEvent(). Supports drag and drop for event names from remote browser.

Display total memory consumption of histograms and conditions at the end of PrintHistograms() and PrintCondi-
tions() execution, respectively.

TCanvas support in file browser improved: Histograms saved inside aTCanvas in a ROOT file will appear in
memory browser whenever this canvasis displayed

Analysis Terminal window: Limitation of text history buffer to 100 Kb by default, may be changed in settings
menu. Disabled text wrapping in output for scrollbars.

Scale values dialog window extended by zmin and zmax fields. Allows setting minimum and maximum thresholds
for channel contents of 2d histograms when auto scale is off.

Conservation of TLateX textfields when changing draw style or histogram statistics boxes visibility

File browser open file dialog allows multiple file selection

Analysis configuration window: remember path to previous selected file in event source, auto-save, and prefer-
ences dialogs. Some layout cleanups.

Superimpose of histograms with same name from different files possible if overwrite mode is deselected in mem-
ory browser. Histograms will be copied to memory browser with cycle numbers added to names.

Bugfix: Superimpose THStack does not crash anymore when deleting histograms

Bugfix: Crash after closing and re-opening view panel for same histogram with different sub-pad divisions
Bugfix: Analysis did stop when an analysis step without event processor is disabled

Bugfix: histogram bound to condition was not fetched from analysis when double clicking on remote condition
icon

Bugfix: Double click on histogram in divided view panel did pop up this histogram magnified in anew view panel,
but did not initialize view panel colours and crosshair settings correctly.

12.15New features in Go4 v2.6 (May 04)

1.

New Go4 Hotstart: The current setup of the GUI (analysis name and settings, view panel geometry, objectsin
memory and monitor browser, displayed objects in pads) may be saved to a hot start script file (postfix

". hot st ar t ") from the Settings » Generate hotstart menu. The script name may be passed as argument on next
Go4 GUI startup (e.g. "go4 nyset up"), which will launch the analysis and restore the settings (e.g. from file
"nmyset up. hotstart").

97

10.

11.
12.
13.

14.

15.

16.
17.
18.
19.
20.

21.
22.

23.
24,
25,
26.

New TGo4ExportManager class transforms and saves ROOT objects into other formats. Currently supported: plain
ASCII (*.hdat, *.gdat) and Radware/gf3 (*.spe). An export filter is available in the GUI memory browser to save
selected objects.

Redesign of Go4 Auto-save mechanism. Subfolders are mapped as TDirectory in TFile now, thus improving per-
formance for large number of objects. Auto-savefileis closed after each write, avoiding invalid file states in case of
analysis crash. Dynamic list entries are saved as independent objects.

Example macro Go4Exanpl e2St ep/ convert fil e. Cconvertsal histograms and graphs from ROOT file
into ASCII files, conserving the subfolder hierarchy.

New TGo4StepFactory class can be used as standard step factory to simplify the setup of analysis steps for small
analyses. New example package Go4ExamplelStep shows the usage.

The TGo4Analysis class can now be used as standard analysis class. New example package

CGo4Exanpl eSi npl e shows the usage.

New view panel has size of previously active view panel. Default view panel starting sizeis stored in settings and
recovered on next Go4 startup.

View panel: Switch on/off histogram title display in options menu.

View panel: Switch on/off crosshair for each pad in options menu. Default crosshair mode can be selected in main
window settings menu and is saved and restored by Go4 settings. Crosshair mode button in condition editor has
been removed.

View panel: Default background color can be selected in main window settings menu and is saved/restored by Go4
settings.

TCanvas objectsin analysis task may be send and displayed on GUI. Works both for memory and monitoring list.
Support of TMultiGraph objectsin analysis and GUI (display, memory and monitoring list update).

New draw option TASImage for 2 dim histograms in Go4GUI. May improve rendering speed for large maps when
updating and resizing the canvas. Offers own palette editor in right mouse button popup menu.

Parameter editor: Added column to display the source code comments for each parameter class member as de-
scription.

Condition editor: Genera editor has button to create a new condition. New condition is defined in adialog win-
dow and is put into general editor. May be sent to analysis for registration, or saved into afile then. All types of
new conditions (window, polygon, array of these with variable size) are supported.

Object editors (condition, parameter, dynamic list) may save and load objects from/to ROOT files.

Status messages of object editors appear in bottom status line of Go4 main window.

Support of dynamic list entriesin file browse: Editor opens on double click.

Histogram and Condition info windows: Object size now takes into account real data size on heap.

New analysis toolbar button for "re-submit and start" shortcut. Useful when file shall be re-read from the begin-
ning after changing something in the setup.

Auto-save may be disabled completely from analysis configuration GUI.

New mode for TGo4MbsFile (*.Imd) wildcard/metafile input: Auto-save file may change its name whenever input
fileis changed. Name is automatically derived from input filename. Old behavior (one auto-save summing up all
inputs) is still possible. This can be switched with method TGo4Analysis::SetAutoSaveFileChange(bool).

End of .Imd file input gives informational message instead of error message.

Bug fix: avoid log-file crash when Go4 is started in directory without write access.

Bug fix in Go4 Mainwindow exit dialog. Exit viawindow "x" icon works properly now, too.

Some adjustments to work with ROOT versions > 4.00 in Go4Fit and gtroot packages

12.16New features in Go4 v2.5 (December 03)

1

wn

O N O~

11.
12.

98

Histograms may be bound to conditions by method TGo4Conditions::SetHistogram(). The bound histogram will be
fetched automatically in GUI whenever condition is edited.

TGo4Picture can contain conditions together with histogram objects.

General condition editor in addition to the condition specific editors. Supports drag and drop of condition icons and
conditions linked to TGo4Pictures.

Warning label for unsaved changes in condition editor, and in dynamic list editor.

Condition editor cursor tab can make copies of the current cursor marker. For printouts with multiple markers.
Analysislog window in GUI displays date and time of last refresh.

New histogram status window, and condition status window in GUI.

Redesign of GUI object management: Added drag and drop support of TGraph, TGo4Picture from all browsers.
Bug fix and improvements in histogram superimpose mode.

Monitoring list supports TGraph, TGo4Picture, and THStack.

L ogfile mechanism for GUI actions. Log output configurable in Settings menu. Logging output on demand from
condition editor, histogram and condition status windows.

View pane can turn on or off histogram statistics box.

View panel supports fix/auto scale modes for TH1, THStack, and TGraph objects.

13.

14.

15.
16.
17.
18.
19.
20.
21

22

23.
24,

25.
26.

27.

View panel resize speed improved (redraw only at the end of resize action). View panel does not start in full screen
mode anymore.

Analysisterminal: New buttons for clearing the terminal, PrintHistograms, PrintConditions. Command line has
shortcut “ @” for “TGo4Anal ysi s:: I nstance()->". “KillAnalysis’ button buffered with confirmation dialog
window.

“Quit Go4” button buffered with confirmation dialog window.

Dynamic list editor can change the global dynamic list interval for analysis.

Reorganization of GUI icons.

Performance improvementsin TTimers of Go4 kernel: Removed Turn On/Off statements.

New method TGo4Analysis::NextMatchingObject() for search in analysis objects with wildcard expression.
Analysis. PrintHistograms(), PrintConditions() supports wildcard expressions for output list selection.

New methods: TGo4Analysis::StoreParameter, StoreCondition, StoreFitter, StoreFolder to write these objects into
event store of an analysis step. Event number will be appended to object keys for parameter logging.

Consistency checks of analysis steps can be disabled by new method TGo4Analysis::SetStepChecking(bool). For
setting up of non serial type analysis steps with own user management.

TGo4MbsEvent::PrintEvent() extended to display headers and also data field contents of sub-events.

New methods. TGo4MbsEvent::GetMbsBufferHeader(), TGo4MbsSource::GetBufferHeader() to access the buffer
headers of list-mode files. Implemented example in Go4Exanpl e2St ep.

Go4 GSI histogram server also exports TGraph objects as histograms (if possible).

Implementation of TGo4Condition::Paint() to display Go4 conditionsin regular ROOT environment. Conditions
may be drawn on TPad which already contains a histogram. New classes for condition painters and condition
views.

Reorganization of the distribution make files.

12.17New features in Go4 v2.4 (August 03)

1.

ok

BO©Ko~ND

12.

13.
14.
15.
16.

New Package Go4L og to handle all messages and log file. This replaces the old package Go4Trace. Static method
TGo4lLog::Message(char*, ...) can be called everywhere to display text on terminal and optionally write to log file.
Modified Go4 message prompt.

Header information of MBS list-mode data files accessible by new methods s filhe*
TGo4MbsSource::GetinfoHeader() and s _filhe* TGo4MbsEvent::GetMbsSourceHeader().

Event source class TGo4MbsRandom to deliver random spectrainto MBS events without connection to MBS node
or reading list-mode file. Matches event structure of standard example Go4Exanpl e2St ep.

TGo4Picture objects can be used in the monitoring list.

Changesin Analysis configuration window: Number of events, start/stop/skip events may be specified; tag file
name and optional socket timeout. File browser for event source files. Auto-save interval now refers to time (sec-
onds) instead number of events. Maodified layout.

Dynamic list editor with button to PrintAll dynamic list entries on analysis terminal.

Improved postscript print dialog in View-panel menu.

Histogram client API supports conversion into Radware format.

Go4 histogram server supports float histograms.

Execution of ROOT interpreter commands/ macrosin the analysis task possible by command line in analysis ter-
minal window.

. Re-design of condition editor:

a. Display dl conditions of array in different colors or hide them optionally. Visibility in editor is property of
TGo4Condition and stored in auto-savefile.

b. Working view-panel pad and reference histogram of condition may be changed at any time.

c. Clear counters button applies clearing to analysis condition immediately and refreshes editor from analysis.

d. Statisticsinside window condition limits (integral, maximum, mean, rms, etc) are calculated; these values
are displayed in editor and may be drawn in labels on working pad. Methods to calculate statistical quanti-
ties belong to TGo4WindowCondition class and may be used in analysis, too.

e. Cursor panel with crosshair mode and optional marker to pick values from displayed histogram. Cursor may
be set by mouse click, by moving the graphical marker object, or by defining cursor position in the text
fields. Cursor values may be drawn in label on working pad

f. Extension of polygon condition /TCutG is calculated and shown like the borders of the window condition.

g. Improved creation of new TCutG functionality. Assignment to current polygon condition may be cancelled.
Handles pads with multiple TCutGs.

Added class TXXCalibPar to Go4Exanpl e2St ep. Shows a procedure how to calibrate spectra using the Go4
fitter in connection with the parameter mechanism and an ASCI| file “database” of line energies.

Make full screen default for new view panels.

When updating objectsin Memory folder, aredraw is done automatically.

When monitor updates a View-panel, the pads are updated without blocking the GUI (not yet for picture)
Button besides zoom buttons to enter display limits by values

99

17.
18.

12
1

2.

3.

12

grwNE

10.
11.

12.

100

Drag pictures from Analysis pad to View-panel (only empty view panel, or isinserted in pad)
Some buttons on the browser pads have been rearranged to be consistent. On Memory browser pad the icons for
"update local objects' and "synchronize with directory" have been exchanged to be consistent with Analysis pad.

.18New features in Go4 v2.3 (May 03)

TGraph objects can be registered and displayed correctly. Reset of TGraph (clear all points) by “eraser” button
from GUI possible.

Reset/clear complete folders by selecting them in remote browser and “eraser” button. New method ClearOb-
jects(“Histograms™) to reset al objects of named folder, e.g. al histograms at once.

“Print” button to printout histogram and condition lists with statistics in analysisterminal. These buttons are lo-
cated in the dynamic list editor.

Parameter classes may contain TGo4Fitter* references or arrays of these. Fit GUI can be used to edit fitter from
within parameter editor. Framework provides new class TGo4FitterEnvelope as example parameter. Example put
into TXXXAnalysis.

User defined event source is possible. New class TGo4UserSourceParameter to be checked in analysis step factory
for any kind of input. Example package Go4Exanpl eUser Sour ce shows usage.

New class TGo4Picture to define layout of canvas with histograms. Pictures are registered in Go4 Pictures folder
and stored in auto-save file like histograms; they can be displayed in any view-panel. Example added in TXXXAna-
lysis.

Possibility to register complete TCanvas objectsin Go4 Canvases folder to be saved within auto-save file. Switch
TGo4Analysis into ROOT batch mode to suppress drawing actions in analysis client while canvasis set up.

Go4 GUI can display and compare objects from different files in the same view panel now.

19New features in Go4 v2.2 (April 03)

Possihility to select rsh or ssh and analysis output in Xterm or GUI window.

Wildcard in input Imd file names.

Input file name beginning with @ is interpreted as text file containing Imd file names.

An auto-save file can be written on demand (button in configuration menu).

Parameter editor. User parameter objects (subclasses of TGo4Parameter) registered in the analysis can be edited in
the GUI by double click in the browser. Currently supported members are the primary data types and arrays of
these.

New environment variable GO4USERL| BRARY can be set to a colon separated list of ROOT user libraries which
areloaded automatically in the GUI. Thisis needed for editing parameter objects.

Dynamic lists. A dynamic list editor can be used to create/specify dynamic entries. A dynamic entry consists of a
histogram (can be created new) and a member of an event object which shall be histogrammed. Optionally a condi-
tion can be added. The condition also can be created new. The event structure is expanded in the browser.
Drag&drop is provided to select members.

The condition editor has been improved. Arrays are now handled properly. TCutGs for polygon conditions can be
created new.

TGraph objects are supported like histograms.

In the Go4 view panel, the ROOT "event status' (cursor position) can be displayed.

The new fit GUI isavailable. It includes three different peak finders, a simple fitter, awizard, and full accessto all
fitter components. Fitters can be stored/retrieved to/from files or memory.

User Makefile: the user executable need to be linked against the make file variable $(GO4LI BS) only, as defined
inthe Makefi |l e. confi g of theframework (see Makef i | e of example Go4Exanpl e2St ep).

13 Index

Anaysis
class, 13
framework, 10, 93
launch, 18
setup, 19
step, 11
Auto-save, 12, 40, 98
restore, 13
save, 19
Browser, 45
export, 98
protection, 96
remote, 96
shortcuts, 97
Condition, 12
create, 60
dynamic list, 67
editor, 58, 99
marker, 96
marker editor, 57
Dynamic list, 67
condition, 67
event, 67
histogram, 67
tree, 67
Event
classes, 10
MBS, 10
print, 97
Fitter, 63
sigma, 96
Folder, 11, 45
user objects, 97
Histogram

create, 49
dynamic list, 67
Hotstart, 97
Libraries
.rootmap, 96
load, 36
path, 100
rfio, 96
userGUI, 71
Macro
analysis, 40
condition, 12
GUI, 72
parameter, 12
path, 40, 72, 93
Marker, 55
condition, 57
editor, 96
Parameter, 12
editor, 12, 65
object, 65
Picture
pad index, 62
Rebin
monitoring, 93
Tree
dynamic list, 67
show, 97
View panel, 50
graphical editor, 96
hotstart, 97
legend, 96
marker, 55, 96
title, 96

101

	The Go4 Analysis FrameworkIntroduction V4.5
	1 Editorial
	2 Introduction
	2.1.1 Go4 tasks with all communications
	2.1.2 Go4 analysis steps
	2.1.3 Other analysis functions

	3 Go4 Analysis
	3.1 Event base classes
	3.2 Event classes, interface to MBS
	3.2.1 A simple event loop

	3.3 Analysis step classes
	3.4 Object management
	3.4.1 Go4 objects
	3.4.2 Go4 parameters
	3.4.3 Go4 conditions

	3.5 Analysis base class TGo4Analysis
	3.5.1 User subclass of TGo4Analysis

	3.6 Main analysis program
	3.6.1 The go4analysis main program
	3.6.2 Command line mode (batch)
	3.6.3 Creating the user analysis
	3.6.4 Default user analysis
	3.6.5 Analysis controlled by Go4 GUI
	3.6.6 Analysis as server for multiple Go4 GUIs
	3.6.7 Configuration of analysis
	3.6.8 Support of older analysis code
	3.6.9 Setting up ssh keys
	3.6.10 Start-up of GUI controlled analysis
	3.6.11 Submit settings and run analysis
	3.6.12 Shutdown of the analysis client
	3.6.13 Disconnect or shutdown analysis server

	4 Analysis Examples
	4.1 Analysis design
	4.1.1 Simple
	4.1.2 One step
	4.1.3 Two step

	4.2 Using the examples at GSI
	4.3 Prepare the packages
	4.4 Simple example with one step
	4.4.1 Event processor
	4.4.2 Parameters
	4.4.3 Auto-save file mechanism
	4.4.4 Example log file
	4.4.5 Adapting the example

	4.5 Example with one step
	4.5.1 Analysis class
	4.5.2 Analysis step
	4.5.3 Parameters
	4.5.4 Auto-save file mechanism
	4.5.5 Example log file
	4.5.6 Adapting the example

	4.6 Example with two steps
	4.6.1 Setup in setup.C
	4.6.2 Step one: unpack
	4.6.3 Steering methods in processor function BuildEvent
	4.6.4 Step two: analysis
	4.6.5 Parameters
	4.6.6 Conditions

	4.7 Example with some advanced tecniques
	4.7.1 Step one: unpack
	4.7.2 Step two: analysis
	4.7.3 Parameters
	4.7.4 Conditions

	4.8 Example of analysis with a user defined event source
	4.9 Example of analysis mesh
	4.9.1 Structure:
	4.9.2 Execution steps:
	4.9.3 Provider steps:
	4.9.4 Configuration:
	4.9.5 Usage of the example:

	5 How to Use the Go4 GUI
	5.1 GUI menus
	5.1.1 File, Tools, Analysis menus
	5.1.2 Help menu
	5.1.3 Settings menu
	5.1.4 Windows menu

	5.2 Load libraries to GUI
	5.3 Launch analysis
	5.3.1 Launch analysis task in client mode
	5.3.2 Launch analysis task in server mode
	5.3.3 Connect to existing analysis server

	5.4 Analysis controls
	5.4.1 Configuration window
	5.4.2 Analysis terminal window
	5.4.3 Macro execution in the analysis
	5.4.4 Auto-save file mechanism
	5.4.5 Multiple input files
	5.4.6 User defined event sources
	5.4.7 MBS status monitor
	5.4.8 DABC monitor

	5.5 The Go4 browser
	5.5.1 Browser columns
	5.5.2 General functionality
	5.5.3 Analysis folder controls
	5.5.4 The monitoring mode
	5.5.5 The workspace folder
	5.5.6 Browsing files
	5.5.7 Histogram server connection
	5.5.8 Resetting and deleting objects

	5.6 The Go4 tree viewer
	5.6.1 Local mode
	5.6.2 Remote mode (dynamic list histogram)
	Creating a new histogram

	5.7 The Go4 view-panel
	File menu
	Edit menu
	Select menu
	Options menu
	5.7.5 Draw options and axis scaling
	5.7.6 Channel and window markers

	5.8 Conditions
	5.8.1 Conditions editing in viewpanel marker editor
	5.8.2 Full condition editor
	5.8.3 Editor tabs
	5.8.4 Conditions bound to pictures
	5.8.5 Creating conditions

	5.9 Pictures
	5.10 Fit GUI
	5.11 Parameters
	5.11.1 Parameter objects
	5.11.2 Parameter editor
	5.11.3 Parameters containing fitters

	5.12 Dynamic lists
	5.12.1 Dynamic list editor
	5.12.2 Entry for tree draw
	5.12.3 Entry for event loop

	5.13 Histogram/condition information
	Event information
	5.15 Hot start
	5.16 User GUI
	5.16.1 Qt3 and Qt4

	5.17 Macro execution in GUI

	6 Analysis Server for ROOT macros
	6.1 Methods for object registration
	6.2 Methods for run control and execution
	6.3 Examples:

	7 Control of remote Go4 analysis from a ROOT session
	7.1 Initialization
	7.2 Connecting the analysis
	7.3 Controlling the analysis by command
	7.4 TBrowser extensions

	8 The Go4 Composite Event Classes
	8.1 Introduction
	8.2 Application Programmers Interface
	8.3 Example

	9 Icon Table
	10 Table of Menu Keyboard Shortcuts
	11 Event Classes Diagrams
	12 Release Notes
	12.1 New features in Go4 v4.5 (July 11)
	12.2 New features in Go4 v4.4 (November 09)
	12.3 New features in Go4 v4.3 (June 09)
	12.4 New features in Go4 v4.2 (April 09)
	12.5 New features in Go4 v4.1 (October 08)
	12.6 New features in Go4 v4.0 (February 08)
	12.7 New features in Go4 v3.3 (May 07)
	12.8 New features in Go4 v3.2 (July 06)
	12.9 New features in Go4 v3.1 (May 06)
	12.10 New features in Go4 v3.0 (November 05)
	12.11 New features in Go4 v2.10 (June 05)
	12.12 New features in Go4 v2.9 (February 05)
	12.13 New features in Go4 v2.8 (September 04)
	12.14 New features in Go4 v2.7 (June 04)
	12.15 New features in Go4 v2.6 (May 04)
	12.16 New features in Go4 v2.5 (December 03)
	12.17 New features in Go4 v2.4 (August 03)
	12.18 New features in Go4 v2.3 (May 03)
	12.19 New features in Go4 v2.2 (April 03)

	13 Index

