00001 //--------------------------------------------------------------- 00002 // Go4 Release Package v2.10-5 (build 21005) 00003 // 03-Nov-2005 00004 //--------------------------------------------------------------- 00005 // The GSI Online Offline Object Oriented (Go4) Project 00006 // Experiment Data Processing at DVEE department, GSI 00007 //--------------------------------------------------------------- 00008 // 00009 //Copyright (C) 2000- Gesellschaft f. Schwerionenforschung, GSI 00010 // Planckstr. 1, 64291 Darmstadt, Germany 00011 //Contact: http://go4.gsi.de 00012 //---------------------------------------------------------------- 00013 //This software can be used under the license agreements as stated 00014 //in Go4License.txt file which is part of the distribution. 00015 //---------------------------------------------------------------- 00016 /*---------------------------------------------------------------------- 00017 DISCLAIMER 00018 00019 This code is provided ``as is'' without express or implied 00020 warranty. The authors do not and cannot warrant the performance 00021 of the code provided, or the results that may be obtained by 00022 its use or its fitness for any specific use. In no event shall 00023 the authors be liable for any loss or damages that arise 00024 from the use of this code. 00025 00026 BUGS: 00027 Report to: moudgill@cs.cornell.edu 00028 00029 ----------------------------------------------------------------------*/ 00030 00031 /*---------------------------------------------------------------------- 00032 This file contains the C implementation of various random number 00033 generators as described in 00034 Seminumerical Algorithms, Vol. 2, The Art of Computer Programming, 00035 by D.E. Knuth. 00036 00037 Included are: 00038 Beta 00039 Bionomial 00040 Exponential 00041 Gamma 00042 Geometric 00043 Normal 00044 Uniform 00045 00046 This was implemented by Mayan Moudgill, Tushar Deepak Chandra 00047 and Sandeep Jain in 1984 as part of the project requirement 00048 for the degree of Bachelor of Technology in Computer Science 00049 and Engineering at the Indian Institute of Technology, Kanpur. 00050 00051 ----------------------------------------------------------------------*/ 00052 00053 /*---------------------------------------------------------------------- 00054 00055 This file ccntains the beta random number generator. 00056 The algorithm used depends on the size of the inputs; 00057 for small a and b, we use the method of M.D. Johnk 00058 (Metrica 8, 1964, pg 5-15), in which we repeatedly 00059 take two uniformly distributed numbers till the sum of 00060 their 1/a and 1/b powers is less than 1. Then we return 00061 one number divided by their sum. 00062 Otherwise, we generate two gamma distributed numbers, 00063 with orders a and b and return one number divided by their 00064 sum. 00065 00066 Reference: The Art of Computer Programming, D.E. Knuth 2nd ed., 3.4.1e 00067 00068 ----------------------------------------------------------------------*/ 00069 00070 /*---------------------------------------------------------------------- 00071 00072 p_dBeta() returns beta distributed random numbers 00073 with mean parameters a and b. 00074 00075 Input: 00076 a,b : positive doubles. 00077 seed : a pointer to an unsigned integer. This is used to 00078 store previous uniform variate calculated for 00079 calculation of next uniform variate. 00080 It must not be changed by calling program. 00081 00082 Output: an beta distributed double, with parameters a and b. 00083 00084 ----------------------------------------------------------------------*/ 00085 00086 extern double p_dUniform (); 00087 extern double pow (); 00088 extern double p_dGammaGen (); 00089 #define BETA_TURNING_POINT 2 00090 00091 double p_dBeta (a,b,seed) 00092 double a,b; 00093 unsigned int *seed; 00094 { 00095 if (a*b < BETA_TURNING_POINT) 00096 { 00097 double u1,u2,p1,p2,x; 00098 00099 p1 = 1/a; 00100 p2 = 1/b; 00101 do 00102 { 00103 u1 = pow (p_dUniform(seed),p1); 00104 u2 = pow (p_dUniform(seed),p2); 00105 } while ((x=u1+u2) > 1); 00106 return (u1/x); 00107 } 00108 else 00109 { 00110 double x,y; 00111 00112 x = p_dGammaGen (a,seed); 00113 y = p_dGammaGen (b,seed); 00114 return (x/(x+y)); 00115 } 00116 } 00117 00118 /*------------------------------------------------------------------------------ 00119 00120 This file contains the binomial random number generator. 00121 Unfortunately, here I actually have to simulate it for want of 00122 a better method. Thus if a binomial is required with 00123 mean .3 and n=50,fifty uniform variables are required! 00124 00125 Reference: The Art of Computer Programming, D.E. Knuth 2nd ed., 3.4.1f 00126 00127 ------------------------------------------------------------------------------*/ 00128 00129 /*------------------------------------------------------------------------------ 00130 p_iBionamial() returns bionomially distributed random numbers 00131 with n trials of events with a probability p. 00132 00133 Input: 00134 n : the numer of trials 00135 p : the probability of success in each trial 00136 seed : a pointer to an unsigned integer. This is used to 00137 store previous uniform variate calculated for 00138 calculation of next uniform variate. 00139 It must not be changed by calling program. 00140 00141 Output: a bionomially distributed integer, with n trials of 00142 events with probability p. 00143 00144 ------------------------------------------------------------------------------*/ 00145 00146 extern double p_dUniform (); 00147 00148 int p_iBinomial (p,n,seed) 00149 unsigned int *seed; 00150 int n; 00151 double p; 00152 { 00153 int i,ans=0; 00154 00155 for (i=0;i<n;i++) 00156 if (p_dUniform (seed) <= p) 00157 ans++; 00158 00159 return (ans); 00160 } 00161 /*------------------------------------------------------------------------------ 00162 00163 This file contains exponential random number function.The method 00164 is to get a uniform random number U in (0,1] and return -ln(U). 00165 Care is taken to aviod U=0; 00166 00167 Reference: The Art of Computer Programming, D.E. Knuth 2nd ed., 3.4.1d 00168 00169 ------------------------------------------------------------------------------*/ 00170 00171 /*------------------------------------------------------------------------------ 00172 p_dExponential() returns exponentially distributed random numbers 00173 with mean lambda. 00174 00175 Input: 00176 lambda: the mean. 00177 seed : a pointer to an unsigned integer. This is used to 00178 store previous uniform variate calculated for 00179 calculation of next uniform variate. 00180 It must not be changed by calling program. 00181 00182 Output: an exponentially distributed double, with mean lambda 00183 00184 ------------------------------------------------------------------------------*/ 00185 00186 extern double p_dUniform(); 00187 extern double log(); 00188 00189 double p_dExponential (lambda,seed) 00190 double lambda; 00191 unsigned int *seed; 00192 { 00193 double u= p_dUniform( seed); 00194 00195 while (u == (double)0) 00196 u= p_dUniform( seed); 00197 00198 return (-lambda*log(u)); 00199 } 00200 /*---------------------------------------------------------------------- 00201 00202 The standard Gamma distribution has been implemented using 00203 two functions: 00204 <1> For integer orders 00205 <2> For order in range (0..1) 00206 00207 A gamma distribution of order X+Y is the same as that of the 00208 sum of two independent gamma distributions of orders X and Y 00209 respectivley. Hence, for general orders, we split the order 00210 into it's integer and fractional parts, calculate their gamma 00211 variates, and sum the variates obtained. 00212 00213 Reference: The Art of Computer Programming, D.E. Knuth 2nd ed., 3.4.1e 00214 ----------------------------------------------------------------------*/ 00215 00216 /*---------------------------------------------------------------------- 00217 00218 There are 2 methods for Gamma with integer A. The fisrt is to 00219 get the sum of A independent exponential variates, is quick, 00220 but grows linearly with A. The second method gets a closed 00221 form and is more or less independent of A in speed. Therefore 00222 for A>GAMMA_TURNING_POINT we should switch methods. 00223 00224 GAMMA_TURNING_POINT is 7 for a Sun SS-10. 00225 00226 Reference: D.E.D.E. Knuth,The art of computer programming,Vol 2 00227 Chapter 3.4.1E algo A (p.129) 00228 00229 ----------------------------------------------------------------------*/ 00230 00231 #define GAMMA_TURNING_POINT 7 00232 extern double p_dUniform (); 00233 extern double log (); 00234 extern double exp (); 00235 extern double sqrt (); 00236 extern double tan (); 00237 extern double pow(); 00238 extern double floor(); 00239 00240 double p_dGammaInt (a,seed) 00241 int a; 00242 unsigned int *seed; 00243 { 00244 if (a>GAMMA_TURNING_POINT) 00245 { 00246 double x,y,v,sqrt2a1,asub1,y2; 00247 00248 sqrt2a1 = sqrt ((double)(2*a - 1)); 00249 asub1 = a-1; 00250 while (1) 00251 { 00252 y = tan (3.1415926536*p_dUniform (seed)); 00253 y2 = y*sqrt2a1; 00254 if ((x = y2 + asub1) <= 0) 00255 continue; 00256 v = p_dUniform (seed); 00257 if (v <= (1+y*y)*exp((asub1)*log(x/asub1)-y2)) 00258 return (x); 00259 } 00260 } 00261 else 00262 { 00263 double ans=1; 00264 while (a--) 00265 ans *= p_dUniform (seed); 00266 return (-log(ans)); 00267 } 00268 } 00269 00270 /*---------------------------------------------------------------------- 00271 00272 GammaGen() takes any order A>0, and generates a gamma variate 00273 as described above. 00274 00275 The function incorporated in GammaGen() for generating gamma 00276 variates in range (0..1) was given by Fishman. It is taken 00277 from: 00278 W.J.Kennedy,Jr & James E. Gentle, Statistical Computing, pg214 00279 00280 ----------------------------------------------------------------------*/ 00281 00282 double p_dGammaGen (A,seed) 00283 double A; 00284 unsigned *seed; 00285 { 00286 if (A <= 5) 00287 { 00288 double b,p,inva,res=0; 00289 double EXP= 2.71828182; 00290 double a,f; 00291 int g; 00292 00293 f= floor( A); 00294 a= A-f; 00295 g= (int) f; 00296 00297 if( a!=0) 00298 { 00299 inva= 1/a; 00300 b= 1.0 + a/EXP; 00301 00302 while(1) 00303 { 00304 p= b*p_dUniform(seed); 00305 if( p<=1.0 ) 00306 { 00307 res= pow(p, inva); 00308 if( p_dUniform(seed) <= exp( -res)) break; 00309 } 00310 else 00311 { 00312 res= - log( (b-p)/a); 00313 if( p_dUniform(seed) <= 1.0/pow(res, 1-a)) break; 00314 } 00315 } 00316 } 00317 00318 if ( g>0) 00319 res += p_dGammaInt(g,seed); 00320 00321 return(res ); 00322 } 00323 else /*Use the same function as integer*/ 00324 { 00325 double x,y,v,sqrt2a1,asub1,y2; 00326 00327 sqrt2a1 = sqrt (2*A - 1); 00328 asub1 = A-1; 00329 while (1) 00330 { 00331 y = tan (3.1415926536*p_dUniform (seed)); 00332 y2 = y*sqrt2a1; 00333 if ((x = y2 + asub1) <= 0) 00334 continue; 00335 v = p_dUniform (seed); 00336 if (v <= (1+y*y)*exp((asub1)*log(x/asub1)-y2)) 00337 return (x); 00338 } 00339 } 00340 } 00341 /*------------------------------------------------------------------------------ 00342 00343 This file contains functions to generate geometric random numbers. 00344 P(1) = p 00345 P(2) = p(1-p) 00346 P(i) = p(1-p)^(i-1) 00347 Keep generating a uniform random number till it is lesser than p. 00348 OR 00349 Take ceil (log (U)/log (p)).Though this is slower,we will select this 00350 if p < .20 because as p falls,the iterative algo tends to slow 00351 down and 00352 they are equally fast at p = GEOMETRIC_TURNING_POINT. 00353 Note that when p is large,the first method is nearly twice as 00354 fast as 00355 the second but when it can be made arbitarily slow by reducing p. 00356 00357 GEOMETRIC_TURNING_POINT is 0.38 for a Sun SS-10. 00358 00359 ERROR HANDLING: if p>1 or p<=0 then we have an error 00360 00361 ------------------------------------------------------------------------------*/ 00362 00363 extern double p_dUniform(); 00364 extern double log(); 00365 extern double ceil(); 00366 #define GEOMETRIC_TURNING_POINT 0.38 00367 00368 int p_iGeometric (p,seed) 00369 double p; 00370 unsigned int *seed; 00371 { 00372 int i=1; 00373 00374 if (p < GEOMETRIC_TURNING_POINT) 00375 return ((int) ceil(log (p_dUniform(seed))/log (1-p))); 00376 00377 while (p_dUniform(seed) > p) 00378 i++; 00379 return (i); 00380 } 00381 00382 /*------------------------------------------------------------------------------ 00383 00384 This file contains functions to generate normally distributed 00385 variables. It uses the polar method developed by G.E.P. Box, M.E. 00386 Muller and G. Marsaglia. 00387 00388 Reference: D.E.D.E. Knuth, The Art of Computer Programming Ed. 2, 3.4.1C 00389 00390 ------------------------------------------------------------------------------*/ 00391 00392 /*------------------------------------------------------------------------------ 00393 p_dNormal() returns a normally distributed double variable with 00394 mean 00395 mean, standard deviation sigma. 00396 00397 00398 ------------------------------------------------------------------------------*/ 00399 00400 extern double p_dUniform(); 00401 extern double log(); 00402 extern double sqrt(); 00403 00404 double p_dNormal (mean,sigma,seed) 00405 double mean,sigma; 00406 unsigned int *seed; 00407 { 00408 00409 double u1, u2, v1, v2, s; 00410 static char flag= 0; 00411 static double x1, x2; 00412 00413 if( flag ) 00414 { 00415 flag=0; 00416 return(x2*sigma + mean); 00417 } 00418 00419 do { 00420 u1= p_dUniform(seed); 00421 u2= p_dUniform(seed); 00422 00423 v1= 2* u1 -1; 00424 v2= 2* u2 -1; 00425 s= v1*v1 + v2*v2; 00426 } while( s>=1); 00427 00428 s= sqrt( -2*log(s)/s); 00429 x1= v1* s; 00430 x2= v2* s; 00431 00432 flag= 1; 00433 return( x1*sigma + mean); 00434 00435 } 00436 extern double exp(); 00437 extern double p_dUniform(); 00438 00439 int p_iPoisson(mu,seed) 00440 double mu; 00441 unsigned *seed; 00442 { 00443 double total=1, till; 00444 int count= -1 ; 00445 00446 till= exp( -mu); 00447 while( total > till) 00448 { 00449 total *= p_dUniform(seed); 00450 count++; 00451 } 00452 00453 return(count); 00454 } 00455 00456 /*------------------------------------------------------------------------------ 00457 00458 This file contains functions for the generation of uniformly 00459 distributed random numbbers. The linear congruential method is 00460 used. Function used is 00461 00462 X[n+1]= ( a * X[n] + c ) mod m 00463 00464 with 00465 a= 1664525 , 00466 c= 1 , 00467 m= 2^32 . 00468 00469 Reference : D.E. Knuth, The Art of Computer Programming, Chapter 3. 00470 00471 ------------------------------------------------------------------------------*/ 00472 00473 00474 #define _Mult 1664525 00475 #define _Cons 1 00476 #define _Mask 0xFFFF 00477 #define _Lo(X) (X&_Mask) /* the 16 LSB of X */ 00478 #define _Hi(X) ((X>>16)&_Mask) /* the 16 MSB of X (if 32 bit)*/ 00479 00480 00481 /*------------------------------------------------------------------------------ 00482 00483 p_iUniform() and p_dUniform generate uniformly distributed random 00484 numbers, the first returning an unsigned integer in range [0,2^33-1], 00485 and the other a double in range [0.0, 1.0) 00486 00487 Input: the pointer to an unsigned number; this is X[n]. This 00488 location is used to store the value of the old seed, 00489 hence should not be changed by calling routine. 00490 00491 Output: a random number, X[n+1] calculated from Input using given 00492 formula, converted into correct type (unsigned or double). 00493 00494 00495 ------------------------------------------------------------------------------*/ 00496 00497 unsigned p_iUniform ( seed) 00498 unsigned *seed; 00499 { 00500 unsigned lo, hi; 00501 00502 lo= _Lo(_Lo(*seed) * _Lo(_Mult) + _Cons); 00503 hi= _Lo(_Hi(*seed) * _Lo(_Mult))+_Lo(_Hi(_Mult) * _Lo(*seed))+ 00504 _Hi(_Lo(*seed) * _Lo(_Mult) + _Cons); 00505 00506 *seed= (hi<<16 | lo); 00507 return( *seed ); 00508 } 00509 00510 00511 static unsigned Scal=0xFFFFFFFF; 00512 double p_dUniform( seed) 00513 unsigned * seed; 00514 { 00515 unsigned lo, hi; 00516 00517 lo= _Lo(_Lo(*seed) * _Lo(_Mult) + _Cons); 00518 hi= _Lo(_Hi(*seed) * _Lo(_Mult))+_Lo(_Hi(_Mult) * _Lo(*seed))+ 00519 _Hi(_Lo(*seed) * _Lo(_Mult) + _Cons); 00520 00521 *seed= (hi<<16 | lo); 00522 return( ((double)*seed)/Scal ); 00523 } 00524 /* 00525 00526 -- 00527 -------------------------------------------------------------------------- 00528 Mark Feldman \\_==_o Skydivers do 00529 E-mail : u914097@student.canberra.edu.au \\ it at 120mph.... 00530 -------------------------------------------------------------------------- 00531 */ 00532 00533 00534 //----------------------------END OF GO4 SOURCE FILE ---------------------