The Go4 Analysis Framework
Introduction V6.4

J.Adamczewski-Musch, M.Al-Turany, S.Augustin, D.Bertini, H.G.Essel, S.Linev
6 March 2025

http://go4.gsi.de

http://go4.gsi.de/

Content

The Go4 Analysis Framework INfrodUCtion VB.4.........ccc.oviiriiriiriinieieetesteie sttt e e ste st e e stesaeesaesntesaneseesnne 1
1 TIETOAUCHION. ...ttt sttt ettt ettt ettt s e e st e b e bt s e e b e b e s b e e et et et emt et et emeemteatsseebeebesbe st e besbensensen 7
1.1.1 Go4 tasks with all COMMUNICALIONS.cccuetriririrereeteeter ettt ettt ettt se bt se et e e e e e e e 7
1.1.2 GO QNALYSIS SEEPS...uveruerrerrerresreesteseesseseestesseesseeseessesstessesssessesssessesssessesssesseessesseessesseessesseessesssessesssessesssensens 7
1.1.3 Other analysis fUNCHONS.cceeieriieiereetere et etere et e e s e s e e te s e etesreessessaessesssessesssessasssasseessenseesenseensenses 9

2 GOA ANALYSIS. ..ottt sttt ettt ettt b et s bt et bt et s h e e be e h e e b e e a e e beea e e bt eat e bt et e bt et e eseenbesaeebeeaean 10
2.1 EVENE DASE CLASSES. .. .eutintieiieiietet ettt ettt ettt ettt e b et s bt et eat et e eat e st e eatesbeebesueenbesat e besutenbeeatenbeeatenseentanae 10
2.2 Event classes, INLEITACe t0 IMBS.......ouuiiiiiiiieeiee ettt et ee et e e et e e s eat e e e s st e e ssaseessaatesesssteesssasesssnteesssnseessnnes 10
2.2.1 A SIMPLE EVENE LOOD....c.ueeuietieieiieiereeteeeerte st et e st et e st et e et esbesstebesatenseestesseensessesssessesnsesseensesseesesseensesseens 11
2.3 ANQALYSIS STEP CLASSES. . .eevirveruieieeiierteeiesteetesteetestesteseessesseessesssesseensesseensesssessesseessesssessesssessesssessessensesnsesseensenns 11
2.4 ObjJECt MNANAGEINENL. ... cuverveererreerteererseesseesesseessaessesseessesssessesssesssessesssesssessesssesssessesssessesssesssessesssessesssesssessesssesses 11
2.4.1 GO ODJECES. ..uveeueereeeeeeertestesteetesteestesseestesseessesseassesseassesseesseassessesssasseessasssessanseessesseessesssessesssessesssessesssessenns 11
2.4.2 (GOA PATAIMIELETS. ..cceeuureeeureerauteeeatteeaeuteesauteeessteaaseeesasteeesaseesasteesaseeessstaesassaeesaseeesssteeenssaesssaessssteeenseesaseasans 12
2.4.3 GO CONAITIONS. ..cueeuieteriieieetesteet ettt sttt et st et et e s be et e b e et e bt et e s bt e bt e st enbesutenbesabesbeeabesbeebesbeenbesseentene 13
2.5 Analysis base €lass TGOAANALYSIS.cotererrierteriieientere ettt sat et et s st e st et e s bt e s bt e tesaeesbeeaeesaeesbeeeesaeenseeas 14
2.5.1 USer SUDCLASS Of TGOAANQALYSIS.cceeuerierierieierieeieieteteeeeeseesessessessessessessessessassensensessensessessesseseesessessessenss 14
2.6 Main aNalySiS PIOGTAIMN.c.eeveruierierierierterieritestestesteetesseesesseestesseesessaessesstessesssessesnsessesnsesseensesseensessaensesssensesnes 16
2.6.1 The go4analysis MAiN PrOGTAIMN......c.cceerverrerrerrerrereerseetesseesaesseessesseessessessesssessesssessesssessesssesssessesssessesssessens 16
2.6.2 Command line mMode (DAtCh)........cceecveririiiriecierieereeeee ettt see e st e s te s e e seese e seeseesseessensennes 16
2.6.3 Creating the USET aNalySiS........cccerieerierieriesieieseerteetesteseeseeteseesesseessesssessesseessesseessesssessesssessesssessesssessenns 17
2.6.4 Default USEI ANAlYSiS.....ccveciieierrieiisieeieseeiteseesteseessesseessesreessesssesseessesseessessesssesssessesssessesssessesssessesssessesnsenns 17
2.6.5 Analysis controlled by GO4 GUILL.......couiiiiiiiieiieieeterteiee ettt ettt st e b sbesae e beesesmaenbeas 18
2.6.6 Analysis as server for Multiple GO4 GUIS.........ccecirieiririinieerie sttt ettt ettt s s sbesbesaesbebeneens 18
2.6.7 Configuration Of ANALYSIS........ceceeeriririerierierietetetete et ettt st te st et e te b et e e et e e e e eseesessessessessessessansansans 18
2.6.8 Support Of older analySis COUE.c.coirriirieriirieiietert ettt sttt ettt te st e e tesaeestesaeeee st essesasessesnsensenn 18
2.6.9 SettiNg UP SSH KEYS...cueioiieieieeieeeieeeee ettt et st et e st et e st e b e st e b e s st e beent e seensesseensessesnsesseensesnsensesnenn 19
2.6.10 Start-up of GUI controlled analySis.........cceceeeereeriererriereereeeesestessesstesessesseesesssessesseessesseessesseessesssenses 20
2.6.11 Submit settings and IUN ANALYSIS........ccvereerrerirrerieerteeeesteeseestesseeseseessesssesseessesseessesseessessesssessesssesseessessees 21
2.6.12 Shutdown of the analysis CLIENL......c.cccueiierieeriieeereectec ettt e ae et e s s e s e e bessaesssesseessessaesens 21
2.6.13 Disconnect or shutdown analySis SEIVET........ccceetereriiriirierieeterie ettt sttt sttt esbe st e b et e sbeeeesbeeneenae 21

3 ANALYSIS EXAIMIPLES.....eouiitiiiitieieieetet ettt et ettt ettt et e b et e bt et e bt et e s bt et e sat e besatesae st e nbe et enbeebe bt ebenbeens 22
3.1 ANALYSIS QESIIN..ccueiiiiiiiiieieeteettete ettt ettt ettt et e st e s bt et e s bt et e e bt et e s bt et e s at et e eat e bt st e s bt eabesheebeshe e besaaenbens 22
00 01 1.1 LTRSS RSSO 22
3.1.2 I8 SLEP...eeeueeeuteeeuieeeeenitersteesttesteestee bt esuteesseesutesbeesatesabaesasesseesase e sees st e e btesabe e bae s b e e st esat e e ateease e btesseeneens 22
3.1.3 TWO SEOP.ceeuitieeeiieeeitteeetee ettt e sttt sttt e e e bt e e e st e e sneeeeeabeesesb e e sase e e e abeesensaee s ne e e e st e e e st e e e st e e et tesenre e e e nreesanreenan 22
3.2 Using the eXaMPIES @t GSL.......ccecieeeriieierieeiesieeteseesteseesteseeeaesseessesseesessaesseessessesssessesssassesssessesssesseessessesssensees 23
3.3 Prepare the PACKAZES.ccueteteieeeieee ettt ettt ettt et e a e bt e bt s b st e et e st et et et e st e st e st eatebeebesbesbesbesbenaenbenee 23
3.4 Simple eXxample With 0N STEP.......cctiiiriiriiiereeeeet ettt ettt ettt sae et s bt et e s bt e beebt e b e e st e beeaeenseene 24
3.4.1 EVEIIL PIOCESSOT.....cc.uteitteeuterttenteetteesteesseeeneesbtesstesattessteeateeaseessesaseesaseeastesastesstesaeeeastesnseeabeesaseeastesaseensaennees 24
3.4.2 PATAITIELETS. ..ceeuveeueeetteeiteet e et ete et e st e e st e st esat e s et e e bt e s b e e bt e s bt e st e sa bt e st e e st e e saesase e beesabe e st esabeesseeenseeseeensenane 24
3.4.3 Auto-save file MeChamiSIL.......cccoiiiririieree ettt ettt et 24

3. 4.4 EXAMPLE 10G FIlE....ueieeiiieiieeeereeecee ettt sttt ettt ettt e b et e st et enaeeaeeae e ae et e naeeneenneen 24
3.4.5 Adapting the eXAIMPIE.........ceecierieierieieeeee et ete et e et et e et e e et ese et esseessessesssessesssesseessesseensesseensenseens 25
3.5 EXAMPIE With ONE SEED....ecieeeiiiieeeieeieieeterte et et e e et e s te et e s e eae s e e se s e e sesss e seessessesssesseessesseensesssensessesssessseses 26
3.5.1 ANQALYSIS ClASS....ccueeitiererieeiesieetesteetesteetesteestesseetesseetesseessesseessesseessesssessasssassesssessenssassesssessesssessesssesseessensees 26
3.5.2 ADNALYSIS STEP.c.uvteutetteterteeterttete et et et e et e e bt et e b et s bt et e ae et e e a e e b e e at e b e e a b e bt e a b e bt e a b e bt et e eae e besatenbesatenbes 26
3.5.3 PATAIMIELETS. ..ottt ettt ettt st et et e bt e st e e bt e st e e st e e at e e bt e et e s bt e s be e be e s bt e st e e nae e seeenreeane 26
3.5.4 Auto-5ave file MECRANMISIL......cciririiriirierieeeree ettt ettt ettt e et et e s et et e s e tensensenean 26
3.5.5 EXAMIPIE 10G FIle....ueieiiiiiiiieeteeeee ettt sttt ettt b ettt et s e e be st e aeennenaeen 26
3.5.6 Adapting the eXAIMIPIE.........c.eeciirieierieiereeeee ettt e et e et et e st e et e saesstesaeesesaeessesneensesssensenneens 27
3.6 EXAMPIE With tWO SEEPS....cuieieeiieierieriereetesteeteseete e e ee e et esseesseeseessesseessesseessesssessesssessesssesseessensesnsenseensensennes 28
3.6.1 SEtUP IN SEIUP.Cuunnniieeiiieieee ettt ettt ettt e ettt e sttt e e e bt e e s be e e s beeessubee s nsaeesabeeeesbaesnnteasnseesansteesseeessnseessnnen 28
3.6.2 STEP ONE: UNPACK....c.uieciirtieiietieiteetesteetesteete st etesreesaessaessesseesseessesseessesseassesseessesssessesssessesssessesssessesssensennsenes 28
3.6.3 Steering methods in processor function BUIIAEVENL............cc.cotvirererieniesienieteteteeeeee e seeseesiesee e sseseenean 29
3.6.4 SEEP TWO: ANALYSIS. ¢ .eevtitieteeitetteteet ettt ettt ettt et et s bt e bt et e e a b e bt et e ea b e bt e bt et e e bt e b e et e e bt e bt et e eaaenbeebens 29
3.6.5 PATAIMIELETS. ..o ouvieiteetieet ettt ettt ettt e e et e bt e bt e s bt e e bt e st e e a e e et e e b e e et e e be e st e e bt e s bt e bt e eute e neeenrenane 29
3.6.6 COMAILIONS. c..euventenieieteieiete ettt ettt ettt et s a s bt s b s bbb et et et et eme e st et ssteseebesaesaebesensensenne 29
3.7 Example with some advanced teChNIQUES..........cceovrrierierireeeeeeeete ettt see st e et e re et eseesse et esneensnens 30
3.7.1 SEEP ONE: UNPACK....c.uieieetieiieieriietesteetesteeteseeetesseesaesseessesseesseessesseessessesssessesssesseessesseessesssessesssensesssensesnsenns 30

3.7.2 SEEP TWO: ANALYSIS. c.ureeureruerieererteerteeteseesteetesrtesseetesseesseessesssesseassasseesseessasssessaesseessesseessesssenssessesssenssensesssens 30

3.7.3 PATAIMIELETS. ..o ouveiiieiiieiteett ettt sttt sttt et a e et s bt e bt e s bt e a e e s et e ba e s bt e be e s b e s bt e saae e bt e e an e e naesnreeane 30
374 COMAITIONS. c.etetenietetetetet ettt ettt ettt ettt e e at e bt e a e s a e e b e e be s b e st et e b et et et enteatesteaeebeebeebeebe st e besenteneenee 31
3.8 Example of analysis with a user defined eVENt SOUICE...........cccueitirterienienierierieneresie et 32
3.9 Example of analysis MESH.........ccceciiiiiiiiiieee ettt sttt st ettt et be st 32
39,1 SHTUCKUT. ...eeeuetetteeite ettt ett ettt e st et e et e s bt e st e st esate et e eeste s bt e bt e sabeestesas e e st eeneeentesnseebeesabeeasaesaseesaennees 32
3.9.2 EXECULIOMN SEEPS...ceeuterreeererieenteerteesteesteesutesaseestesseesstesseesstesseesseesaseesstesasaesstesssessseesnsesssaessessseessessseeseens 33
3.9.3 PrOVIAET SEEPS....eevteveeueeteeeesieeterteetesteestesteetesseestesseetesseessesseessesseessesssessesssensesssensesssensessessesnsessessseseessesnees 33
SRS 0 N @) ¥t = 11 = (o) o TP 33
3.9.5 Usage Of the EXAIMPIE......cceeciereieieeieieeeeteet et ste st e st et e s e et este e s esseessesseessesssessesseessesssessesssessesssessesssensens 34
3.10 Examples of embedded Stream analysis..........c.cceevereeeerieerieseeteneeteseesteseessesseessesaessesssesesseessesssessesssessennes 35
3.11 Examples of embedded elder analySis...........cceeerierierietenireeteieee sttt sttt ettt et et a et sttt seete e enean 36
4 HOW t0 USE the GO GUL....cueiiiiiiiiiteeeteete ettt ettt ettt e s e bt et st e bt et e et e s bt e besatesbeebesubesbeenbesaeenaes 37
4.1 GUIIDEIIUS. c.ueerivteeiieeiteeteeete et et e eite st e st e et e e s bt e sbeesae e s bt e sate s bt esabesastesmte e st e seesaseesaaesabeesaseeaseesasesseesneessaesneesane 38
4.1.1 File, TO0lS, ANALYSIS TNEIIUS.ceruirieriirienieeitenteetesitestesttestesteteseteseesatessesstessesssessesnsesseensesseensesseensesssensesnes 38
N A = 13 0 1.0 < w1 RSSO 39

4. 1.3 SELUNGS IMEBIIU..ceuureeruieeenteeeeieeesieeeeereeeeseeeaaseeesasstesaseeesssseesassseesasaeessnseesanseeesaseeessseeesaseessnseessssesesnsseessnseenan 39
4.1.4 WINAOWS ITBIIULcuteutenteuienietettetteteeteeteetestestesteste st e teat et este st et e st estebesbess e beebe st et enbe s et entententententeneeseesessesaens 41
4.2 1.0ad IBraries t0 GUIL.......co.eiiiiiiriieereetete ettt b et s b e st ettt ettt et e a et e st e bt e bt sbe et e besbena et ebenaeneenis 41
4.3 LaUNCR ANALYSIS. .ccvteterterierteeieeteteei ettt ettt et ettt s at et e st et e s st e b e e a b e b e e st e beeat e e bt et e sht et sat e be et e be et e beeabenbeens 42
4.3.1 Launch analysis task in Client MOGEe..........ccoueiiiiriiriiriienieieteeteee ettt ettt sbe et e b e e 42
4.3.2 Launch analysis task in SEIVET MOGE.........ccuerutiriiriinieieeieniterieete st eete sttt et sstesbe et e saeesbeesbesaeesseesesasens 43
4.3.3 Connect to exiSting GO4 aNalySiS SEIVET.........cceretererriereriiereritentestesttestesstetessteeesaeseesseessessessesssessesssessens 43
4.3.4 Launch analysis task @S HTTP SEIVET.........c.cccvecteruerrierrerienieeieneeteseesteseessesseessessessesssessesssessesssessesssessesnes 44
4.3.5 Connect to exiSting GO4 HTTP SEIVET.......ccoiuiiriiiiieieeeiiteeeiteeeieee st eeereeseeeeesseeesssreesenseesenseeesseeesaneeenan 44
4.4 ANalySis CONFIGUIALION......cceeciieieriireereeteseetesee e se et estee et este s e esesseessesseessesseessesseessesssesseessansesssensessenseesenns 46
4.4.1 ConfigUuration WINAOW........c.cecereeuerieriirieierestetete et et et sttt ste st et et et et et et eateaeeaesbeebesbeseebebensetensentenean 46
4.4.2 MUItiple TNPUL FILES...c.eeueeteteiete ettt et et a et s be st b et et e b et et et et et e st e st e beeaeebe b e 47
4.4.3 USer defiNed BVEINL SOUICTES........cecuerterterietetertertestestestestessessessesuesseesesseesteseestestentestentententensensensensensensessessanses 47
4.4.4 Event store and event source for HDF5 fOImat.........cccceeirirenininineeeeeeeeeee ettt ettt see st sae s saeees 47
4.4.5 Auto-save file MEeChANISIIL.....c..ccuiiuiriiriiriiieteierte ettt sttt ettt ettt et ettt et e e e nee 49
4.5 ANALYSIS COMITOL.....eeeuiiriieiereeieeeeteeterte et e ste st e st e e te st e et esteestesaeessesseessesaeessesssensesssensesssenseensenseensesssensesseessesnsenses 50
4.5.1 Analysis terminal WINAOW........cccveeverirrierieieneeieseeteseese st ete et e e e se s eessesseeseessesssessesssessesssessesssessesnsasseens 50
4.5.2 Macro eXecution in the ANalySiS........cceiererrierierieerteseereesteseeseeseeteseesesseessesseessesseessesssessessssssesssessenssensenns 50
4.5.3 Python macros in the analysSis.........cccecieceriecisieriesiesese et e ste s e e seeesaeseeeae s e ese s s essessaessesssessesssensenses 51
4.5.4 User defined macro COMMANd DULLOMS.cc.ceuteteieieietetetetetesteste e stestestesaestesbesbestesbesaesbesbessesbessesaeeneene 51
4.6 MBS SLATUS IMOMILOT. c...ceeveeeuteriieriterttenteesteesitessteeestesbtestesstesstesseesseesseesstesabeesssesstesssesseesseesaseeeseesseesssesnseenns 52
4.7 THE GO DIOWSET.....eeutiriieiiiteeteeitete ettt st e st et e st e sae e te st e saeestesate s bt estesatesaeeneeeutesse et e eatesaeenbesatesseansesaeesaeansanns 53
4.7.1 BIOWSET COIUITIIIS.eveveruertieierieetieieeiteste ettt et e et et ete b et et e s et e sese st esbesbesaeebesbesbeesesaesaeemeeseenteme et eneeneeneen 53
4.7.2 General fuNCHONALILYcocveriireieriirieeteetere ettt ete st e e s e et e et esse e teestesseesseentesseensaensesseensesnsesseensesnsens 54
4.7.3 ANalysis fOlAET COMMTOLS.......ccviriieierieeiireetere et ere et ee st e et e ee et e ee et e ssesseessesssasseessasssensasssensesssensesnsenns 55
4.7.4 The MONITOTING IMOGE........cccveireeieirieierietereesteeeesteeeesteetesseesaesseessesseessasseessesseessessesssesssessessesssesssessesssensanns 55
4.7.5 The WOTKSPACE FOLAET........eceieiieiietieieeetee ettt e e e st et e b e re et e s seessesseessesraessesssessesssensenssensenns 55
4.7.6 BIOWSINEG FIlES...c..ciuiiiiiieiieieei ettt ettt sttt ettt et et et et e ae e bt e bt e b e sbe s besbe st et ebententens 55
4.7.7 Resetting and deleting ODJECES.covuertirirrierieterieetest ettt sttt et e bt et s b e s bt e besabesbe e besbessaenbeas 56
4.7.8 ROOT WED SEIVET COMMECHION. ... ceviruietieieriiiiertetesitertestestestes bt etes bt entesteestesseeeesaeessesatensesasensesasessesnsenseens 56
4.7.9 DABC SEIVET COMMECTIOMN.c.utiurieuiiiiinieieitenieeteereereeseese et ese et eseereesseesnes st snesatessesseessesnnesessseneensenseensenne 57
4.7.10 HiStOGram SEIVET COMMECTION. ...c.c.uerrterrueerrreerreersrterrteesueeestessseessseesseessseessseesssessseessseesssessseessssessseesssessssesne 58
4.8 T GOA tTBE VIBWETeveeueueruiererieeiteuteteutet et eute e et et et et et et et e sensest e bensenbenbe st eebesbesbeebesbesbeebesseestesesneeaeeneeneenes 59
4.8.1 LOCAl TNOME. ...c..eeieutiteitetetet ettt ettt ettt st b e s b e b bt s bt e bt e bt ea e e bt e st e st e at e st e st et et et et et et et e tensentens 59
4.8.2 Remote mode (dynamic list hiStOZIam).........cceoceiriririirireneresee ettt s 59
4.8.3 Creating @ NEW NISTOZBIAIMNL.cc.ueruieterieierteetenteetesteete st te st e b e st e b e at et e eatesbeeatesbesatesaeebesaeensesbeeabesseensessaens 59
4.9 The GO VIEW-PANEL.....coiiriiiiiiiiieeiteteet ettt ettt ettt sttt s e st e st et e et e bt e st e beeatesat et e satebesatebesatesbesabenbesasensaens 61
A.9.1 FIlB IMEIIUL c..cuteiieiieiteteet ettt ettt ettt et s et st este st e s bt e be s bt e b e e bt en b e eaten b e e st e bt estesaeeatesutensesueensesntenseensensaans 62
4.9.2 Edit INBNU.....eetiieieieieeneetceeeest et ettt ettt ettt e st sb b b e sb et e b et et et et e st e st et eatebtebeebesbesbeesessensensennens 62
4.9.3 SEIECE MUeeueeuteuiriietiniertent ettt et ettt et et et et e bt st s bt e bt e b e s e e s e e b et et et et emeemt et eseese e st sbesbeebesbessenbensenseneen 62
4.9.4 OPUIONS ITIEIIU. ...ceeuurteeeieeeerureeeeeteeereeeesustesesstessseeessaseesanseesssseeesssstesasseesssseessssesesanseessseessnseeessseesssseesssseeesnnne 62
4.9.5 Z.0OIM t00IDOX....cueiuiiuiiiiriertiet ettt ettt ettt b s a e bt b e s bt st b b st et et et et et et et et e bt e bt sh e b e b s b e b e benee 63
4.9.6 Draw options and aXiS SCALINE.......c.cccuerveiieiiriereeteseesteet et e seeae s e e tesse s e etesssesseessesssesseessesssesseessesssenses 64
4.9.7 ColOT Pl tO0L......iiiieuiiiieiieieetetee ettt et e et et e b et e st e e bt st e sae et e sae e besbeebesbeebeeneens 66
4.9.8 Channel and WiNAOW MATKETS.........cecueririiiriirientete ettt ettt ettt et saeestesateste st esbe st esbesasesbeeasenbeens 67
.10 CONAITIONS. .. .teutetieteeiteteeterteeteste et e st etesteete st estesseessesstensesstentesstenseestansesatesesatesaeensessesnsesseensesstensesstensesaeansenas 69
4.10.1 Conditions editing in viewpanel marker editor...........cccecuerterirrirniririnenereeeteeeeeee et 69

/0 002 VT e} Ua R0 a <Y 1110) R 71

4.10.3 EIOT TaADS.....ceueeuteuieieieeiteieet ettt ettt et et s et sb e bt b e s b st e et et et et et et e st e a e e a e bt e bt eh e nb e b e b et et e b et e e ens 72
4.10.4 Conditions DOUNA t0 PICLUIES.......ccueecverueeterieieseetesreesteseesteeeesseseessesssessesssessesssesseessessesssessesssessesssesssenses 74
4.10.5 Creating CONAITIONS.cc.eerterterteeterteeterteete st et st ete st et e sbt et e et e bt eates st etesseetesueenbesaeenbesstebesstenseeneenseensenne 74
411 PICEUTES. c..eeeuvteiteetteeteett et e ettt et e et e st e st e st e e st e et e e bt e sabe e bt e sabe e bt e eae e e beeeaee e b e e embesabeesabee st esmteebeeeneesaseesneesanes 75
A2 FIE GULoiieieeieee ettt ettt sttt ettt et et et et et e st e s e e st saesbeebe s s e s ensass et ensantentententeneeseeseesessessesesensensanes 77
.13 PATAITIELETS. ...ttt ettt ettt st e a e st b e et e s e bt e st e b e e e e sa e e aaesaeeabesateaesae e bt sas e st ensenseensentennesanennesace 79
4.13.1 Parameter ODJECLS.eeeverereriereerteeierteetesteetesseetesstessesseessessaessesssessesssesseessessesssesssessesseessessessesssessesssesseensens 79
4.13.2 Parameter @AILOT......c.ceeruirterterterterieriestetet oot ett ettt et e b st st et e be st et et et et e st et e st e st e bt e bt sb e et e besa et e b e betententent 79
4.13.3 Parameters CONtAINING fIttEIS........ccverieriieiereerteseeeeereete st estesteseeseeete s e eseeesesseesseessesssesseessesssesseensesseenns 80
4,14 DYNAIMIC LISES...euvetieiestirtesieeteseerteeeesteseeste s e e tesseesesseesessaessesssesesssessesssessesssessesssesseassessaessessaessenssensenseensenses 81
4.14.1 DyNaAmIC LISt @AITOT...c..eeitieuiiieeieieeet ettt ettt b et b et e s bt et e satebe st esbe st enbesabenbeeabenbens 81
4.14.2 ENTY FOT T8 ATAW....cuiruirtititeieiestestete e etett et et et et e bt ste st e bebe st e tebe s et ententeseeateseesessesbesessessesesensansensans 82
4.14.3 ENLTY fOT EVENTE LOOP...c.eetiieieirieeieeteeee ettt ettt et et es e st sae st e s b e sbe st e b e b etensensententenseneesseseeseesessess 82
4.15 Histogram/condition iNfOrMation.............ccererrierieririieniereeie ettt st ste st e te et e sateseeestesaeeseeensesseessesnsenns 84
4.16 EVeNt iNfOIMAtION. .c..eoverteieieieteiete ettt ettt ettt e a et sae b be s bt e s e e et et et et e st et seeebeeseee 84
.17 HOE SEAIT..c.ueeteeieeeeetenteetesiee e st ete sttt es et e et e e st e sr e e e e s st eseesaeebesse e s e eaa e s e eme e st eme e st emeesstensesaeensesmeensesmnenseeanensans 85
1B USEI GULL...iteieeetetete ettt ettt ettt ettt et et sae e bt b e e bt st et e b et et ea b et et e st et e st ebt e bt ebesbeebenbesbenbensensens 85
4.18.1 QU VEISIOIS. ..uvvvrrerererrrreereeeteeeeeeeeeresessssisssrsssssssssssseseeseseseesessesesssssssssssssssssssssssesessssessssessesssesssssssssssssssssssesesens 85
4.19 Macro execution iN GUL.......c.coviiiiiiiieiienteeeteet ettt ettt st te sttt e st e et e sbesseesabe e saesaseessnesnseeane 86
4.20 Go4 GUI with ROOT 6 WED CANVAS.......coieriiiirieniieieiteieett ettt ettt sttt e s b st e s b st et et e b e e besbe e e e saeeeeae 86

5 Analysis Server for ROOT IMACTOS.ccueeverierterteierietetesteesessessessessessessessessessessessessessessessssessessessessessessessessessensessons 88
5.1 Methods fOr ODJECt TEGISITAION.ccuerciereeeieriteieetere ettt te st et s et e st e ee st e sesatesaesnsessesnsesseensesneensenns 88
5.2 Methods for run control and @XECULION.c.co.evuerterterterteietetetee ettt ettt ettt et e e st ss b sese e sesbeneeneen 88

LS TR BN 2 101 0] <3 TSRS 89

6 Control of remote Go4 analysis from @ ROOT SESSION........ccccceeeverererereerteseesteseesteseesseesessesssessesssessesssessesssesseessens 90
6.1 INTHHAIIZATION. ... ettt ettt ettt et b e bt st et et et et et et e ateat e st e ateat e bt e bt ebeeb e beebe st e ben b et etent et enean 91
6.2 ConNecting the ANalySiS.......coeerirtiririeiereeet ettt ettt st et sat et e st e be st e be s st e beeatenbe et e be et enaeene 91
6.3 Controlling the analysis by COMMANA..........c.cotiieriiiniiireeteee ettt ettt ae s 91
6.4 TBIOWSET EXLEMSIONS. ..c.uuteeuterrierterrterteesttesteessteetesareessesastesateesseesaseesstessseeseessessstesaseessseenseesntessseesseesaseesneesanes 92

7 Go4 analysis With HtD WED SEIVET.......cc.eeiiriirieiirieie ettt ettt st e st este st este et esaestessessesseensessaensesnnensens 93
7.1 Startup of go4analysis With WEDSEIVET.........ccceeciiririiieeee ettt ee e 93
7.2 The GO4 Web BIOWSET GULL......ciuiiiiiiriiiiierierteetet ettt ettt sttt et ettt et b e sae b b sae e e senee 94
7.2.1 The 0bJect hierarChy VIEW......ccccccueeieiiieieriieeesteetesesteseete s e e ste s e e tesseesesseessesssessesssessesssessesssessesssessesssensens 94
7.2.2 The diSPlaY fTAIMIE.......cccuiecieeieeeetecteee et et e et e e st e s e e te e e e s teesse e st e sre e seessesssesseassessaansaessesssensesnsesssesseensenssenns 95
7.2.3 The web browser analysis configuration Web editor............coceeeririererineneneneeeree e 96
7.2.4 Displaying and editing CONAItIONS...........cecteruerriertinieierteree ettt ettt sttt st et et e sae e b e besaeeees 96
7.2.5 The web Drowser Parameter EaIt0T..........co.eiriirierierieeiertertee ettt ettt et e e st e sbe et e st e sbeebesaesbeenses 97
7.2.6 The web browser analysis teITiNaL...........ccceviiriiriieriieriieiertere ettt et e se e te et esae e beeseesseesseennesseens 98

8 The Go4 ComPOSite EVENE CLASSES.....ccveriieierierierierteriertessestesestessessesseesesseessessasssesssessesssessesssessesssessesssessesssessesns 99
8.1 INITOAUCHION. c..c.eetenetetetetete ettt ettt ettt ettt a e bt s bt e bt b e s bt s b e b e b et et et et et emtemteneeseebessesbeebebensens 99
8.2 Application Programmers INLEITACE.cecvevuerierieeieieeeeseetes e ete st ete e e ste s e e ste s e ese e s essasss e seessensesssesseensennes 100
LTG5 <=1 111 o) L= RO 101

G TCOM TADIE. ...ttt sttt b et e bt et ea et s e e s bt et e s bt et e e bt et e e bt e b e e st et e e at e bt et e ebe et e sheebesatennes 104
10 Table of Menu and Toolbar Keyboard SHOTtCULS.ceeririririeieiiteieteteetet ettt ettt ettt 106
11 Event Classes DIAGTAIMS.cccevvertirierierierterieetenteetesteetesttentesteestesutessesatessesssessesnsessesssenseensesstensesseensessensesssessesses 110
12 RELEASE INOLES.....cuveueeuieieieeiieeee ettt sttt ettt et ettt ettt et e b e bt b e s bt sa e b e b et e e et e e et eme et ent e st e st esesaeebeebesbesaensenee 112
12.1 New features in GO4 V6.4 (IMLAI 25)......eccuerirrierieriereerieeteseetesteetesseesesssessesssessesssessesssessesssessesssessesssessasssenns 112
12.2 New features in GO4 V6.3 (JAN 24)....c..cccueeierierieeeereerteeteseeesteseesseesaeseesseessesssesseessesssesseessesssessesssesssesssessenns 112
12.3 New features i GO4 V6.2 (ADT 22).....cccverreeieeeerreeteseesseessessesseessessesseessesssessssssesssessesssesssessssssesssessasssesssanss 112
12.4 New features in GO4 V6.1 (IMAY 21)....cccvecriecreeeerreeteseesteesteseesseesesssesseessesssessesssesssessesssesssessasssesssessasssssssenes 112
12.5 New features in Go4 V6.0 (OCLODET 19).....cc.iciiiieiirieeierieeteseetesteeteereetesseesaesseessesseessesssessesssessesssessessessenns 113
12.6 New features in Go4 v5.2 (JANUATY 17)..c..ccuerierierieieieeeiteieeiestestestesiestestestestesteseese et esessessessessessessensensensensensens 114
12.7 New features in Go4 V5.1 (IMArCh 16).......ccveviiiiiiiiiieeieceeeieeiecieet ettt ettt re et e esreereesreeaaesbeensessaensesseensens 115
12.8 New features in GO4 V5.0 (JUNE 15).....cicuiriiiriiieiierieeiestesieete st et et steseeeee st esteeeesetesaeentesstesseessessnessesnsenns 116
12.9 New features in Go4 v4.6 (INOVEMDET 13).....ccciirirrieririiereerteriesieseesteetesieeteteseesseeseessesseeseesssessesssessesssessens 117
12.10 New features in G4 V4.5 (JULY 11)....ccciieirciirierieeieieeeeseetesieetesteeeeseeetesssesaesneessesssessesssessesssessesssesseesenns 119
12.11 New features in Go4 v4.4 (NOVEMDET 09).......ccceeciirieciereeiteeiesieseesteeeeseeseeseseesseessessesssessesssessesssessesssesses 120
12.12 New features in Go4 V4.3 (JUNE 09)......cccveeverierrieieniesteeiteeeestesteseesseessesssessesssessessesssesssessaessesssessesssesssenns 122
12.13 New features in Go4 V4.2 (APTil 09).....iuiriirieieieteietee ettt ettt ettt st sbe sttt e st e e e e et et 123
12.14 New features in G4 V4.1 (OCLODEI 08)........ccuerreerierreeireerieiteeeesteseesteseesseseessessesseessesseesesseesesseessessssssesses 123
12.15 New features in Go4 V4.0 (FEDIUATY 08)......cc.cverterieriirerierierieeiesieseseesesseseesseseeseesesseeseesesssessessessensessessensens 124
12.16 New features in G04 V3.3 (IMAY 07)...cccueriireriierieriertentenieestestesiessteseeesseseesasessesssesesessesssesssessesssesssessesssenns 124

12.17 New features in G04 V3.2 (JULY 06)......cccccveruerirrieeirrieeeerteeteseeeeseeeeesseessesssessesssessesssessesssessesssessesssessesssenns 125

12.18 New features in G4 V3.1 (IMAY 06).....c.cccvereererreereeiieeeeseesteseessesssesssessesssesssessesssessesssesssesssessesssessesssesssenns 126
12.19 New features in Go4 v3.0 (INOVEIMDET 05)......cceccveieeierreeiesieteseesteseesseseessesseessesseessesseessesssessesssessesssessenns 126
12.20 New features in Go4 v2.10 (JUNE 05).....ccueevuereerreeieesreesresiteseestesteseesseessesseessesssessssssesssesssessasssesssessesssesssenns 127
12.21 New features in G04 v2.9 (FEDIUATY 05)...c..eouererierieriirierierieniesiesesiestesiestesteesessesseesesse et et et est et estensensensensens 128
12.22 New features in G04 v2.8 (SePLEMDET 04).......ceeirieiririieeeeeteeeteteteeetetetetetenteseeessesessensessansensansens 129
12.23 New features in G04 V2.7 (JUNE 04).......coiiririierierieiieeeerieestestesieeste st esteste st essesaesesessesnsesasessesnsesssessesnsenns 129
12.24 New features in G04 V2.6 (IMAY 04).......ceierirrierierierieeieneerteseeseessteseessesssesssessesssesssessesssesssessesssesssessesssenns 130
12.25 New features in Go4 v2.5 (DeCeMDET 03)......cccerirriiriierierieeieneesieseeseesteeseesseesseesesssessesssessesssesssesssessessens 131
12.26 New features in G4 v2.4 (AUZUSE 03).....cccvereecierieireeeenieeeestestesseseessessessesssesseessesseessesssessesssessesssessesssesses 131
12.27 New features in G04 V2.3 (IMAY 03)..cc.ceutrteieieteieteteste e ste st ste e st stesbestesbeebesaesbe s bt saeese et eseeat et et et et et enes 132
12.28 New features in GO4 V2.2 (APTIl 03)....iiiriiieieietetetee ettt ettt ettt st b e s b bbbt et e e et et enis 132
13 EIEOTIAL ettt sttt sttt ettt et e a e a et e a e e a e b e bt e b e b e b et et et et et e te s et eatenteneeaeebeebeeaeesebenee 134
T4 TIAEX. 1. vententeeeeteetee et etee et esteste st e te et et e st e st e st e st eseeseese st e be s et ansansentantenteneestesteseesees e s e s et ensensentensenteneeneeneesesaessesenns 135

1 Introduction

The Go4 (GSI Object Oriented On-line-Offline) Analysis Framework has been developed at GSI. It is based on the
ROOT system of CERN. Therefore all functionality of ROOT can be used.

1.1.1 Go4 tasks with all communications

Go4 has two parts: the analysis framework itself and a Qt based GUI. Both can be used independently, or together.
The separation of the analysis and GUI in two tasks is especially useful for on-line monitoring. The analysis runs
asynchronously to the GUI which is (almost) never blocked. The same analysis can be run in batch/interactive mode
or in remote GUI controlled mode. The GUI can be used stand alone as ROOT file browser and as histogram viewer
for GSI standard histogram servers like MBS. Moreover, the analysis task can be run either as a client bound to one
GUI (default), or can be started as an analysis server with the possibility to connect several GUIs (one controller and
arbitrary number of observers with restricted commands).

GUI r/
Analysis

— - QApplication
- w - TApplication
T
% S u Gul
; [t ser
| Event10: | User event g . =
oA | LT leop £ ff b
- Slfirl‘;:r E -Commands % God GUI
o - W
_User § - Objects a
Histogram - Histogram
sarver client

— v "
Histogram clients: ‘ Auto-save file ‘ | ROOT files

Histogram servers:

GSl histegram API

gui150

1.1.2 Go4 analysis steps

The Go4 framework handles event structures, event processing, and event IO. The analysis event loop is organized in
steps: Each step has an input event, an output event,
Factory Factory and an event processor. The output event calls the event
step 1 step 2 processor to be filled. The event processor has also ac-
cess to the input event. In the current design the analysis

input is data driven. A first event object (input1) is filled from
some event source (input). An output event object (out-

putl) is filled by an event processor object (processl)

which has access to both, inputl and outputl. Option-

ally the output event may be written to a file (filel). In

- file? the next step the input event object (input2) can be ei-

ther the output event object (outputl) from the previous

guil47 step or retrieved from the file. The second output event

object (output?) is filled by the second event processor
object (process2) and can be optionally written to a second file.
The information needed to create the event and processor objects (which are deleted when the event loop terminates)
is stored in step factories which are kept in the analysis.
The processor and output event classes have to be provided by the user. The input classes for standard GSI event
sources are provided by Go4 (see chapter 2, page 10). Analysis and step factory classes are provided by Go4 or can
be implemented by the user as subclasses.

TGodAnalysis

TUserAnalysis

Steps dafinition and cortrol

guil4s

For normal operation, the Go4 analysis steps are designed to run subsequently. But in addition, each analysis step
has access to the output events of all other previous analysis steps, so it would be possible to let analysis steps logi -
cally run “in parallel”, all starting with the output event of the first step, and all delivering their results to the last step
that may collect and combine them.

Chain of analysis steps processed sequentially
Each step can be enfdisabled (framework)
Inputioutput can be switched (framework)
Partial 10 (steered by application)

Each processor has access to all inputs!
Each processor has access to all parameters

guil49

1.1.3 Other analysis functions

Outside the analysis steps the user functions UserPreLoop(), UserPostLoop(), and UserEventFunc() located in the
user analysis class are executed as shown in the figure. In principle, they could be used to implement the full analysis
without using the step mechanism. But for setting up a new analysis the use of steps is strongly recommended, be-
cause steps can be controlled by the GUI and offer event and IO management.

In the event loop, after processing the steps and UserEventFunc() the Go4 dynamic list processor is executed. This
processor can be dynamically configured from the GUI to check conditions and/or fill histograms.

UserPreLoop

ProcessAnalysisSteps

inif objecls

UserEventFunc
histograrming

ProcessDynamicList

TTree registry
UserPostLoop

online TTree:Draw(]

reset abjects

guild6

2 Go4 Analysis

The Go4 concept consists of base classes (interfaces) for event structures, algorithms, and 10, which can be imple-
mented by user subclasses or by framework plug-ins (general service classes) delivered with Go4. Class descriptions
and reference guides are available on the Go4 Website http://go4.gsi.de.

2.1 Event base classes

The interface classes provided by Go4 (a detailed description is in the reference manual) are normally not seen by
the user. Starting with the examples (see chapter 3, page 22) one can better study derived working classes.
TGo4EventElement: Defines the event structure and methods to clear this structure. Input and output event struc-
tures of each step of the analysis are instantiated once at initialization. In the event loop event first cleared (via
Clear() method call) and than filled by the source class, where BuildEvent function is defined.

TGo4EventSource: The source of the event data. This can be e.g. a file of a certain format, or a socket connection to
an event server. The event source class has a BuildEvent(TGo4EventElement*) method, which fills event structures.
In addition, CheckEventClass(TClass*) method can be implemented to check event class during initialization. The
class constructor should open (connect) the source; the destructor should close (disconnect) it properly.
TGo4EventStore: An object responsible for storing the event data. This can be e.g. a local file of a certain format,
but may as well be a connection to some storage device. The virtual method Store(TGo4EventElement*) is used to
store the pointed event object. The class constructor should open the storage; the destructor should close it properly.
TGo4EventProcessor: An object that contains the algorithm to convert an input event object into an output event
object (both of class TGo4EventElement). This is a subclass of TGo4EventSource, since it delivers the filling of the
output event from the input event. The event processor implementation has to “know” the input and output event
classes. Actual code of converting the data (i.e. actually performing the analysis) should be implemented in BuildE-
vent method.

TGo4EventFactory: Defines the actual implementations of all the above. Go4 uses a factory design pattern to create
all event class objects at initialization. The virtual methods:

CreatelnputEvent(), CreateOQutputEvent(), CreateEventSource(TGo4EventSourceParameter?*),
CreateEventStore(TGo4EventStoreParameter*), CreateEventProcessor(TGo4EventProcessorParameter*) have to be
defined in the user factory. They create the respective objects and return the pointer to it. The default factory pro-
vides methods
DefEventSource(classname), DefEventProcessor(objectname, classname), DeflnputEvent(objectname, classname)
and DefOutputEvent(objectname,classname).

Simple examples of a running Go4 analysis can be found on directories $G04SYS/Go4ExampleSimple,
$G04SYS/Go4ExamplelStep, and $G04SYS/Go4Example2Step.

2.2 Event classes, interface to MBS

Go4 offers predefined implementations of the event base classes, including an interface to the GSI data acquisition
Multi Branch System MBS, the GSI list-mode files, and ROOT files.

TGo4EventElement (base class):

TGo4MbsEvent MBS event format 10-1

TGo4MbsSubEvent MBS subevent format 10-1

TGo4CompositeEvent Base class for all composite event structures

TGo4ClonesElement Clonesarray container for composite event
TGo4EventSource (base class):

TGo4MbsFile (read from *.Imd list-mode file with format 10,1)

TGo4MbsEventServer (connect to MBS event server)

TGo4MbsStream (connect to MBS stream server)

TGo4MbsTransport (connect to MBS transport server)

TGo4RevServ (connect to remote event server)

TGo4FileSource (read from *.root file from Go4 tree, i.e. one file containing one TTree

per analysis step)
TGo4EventStore (base class):

TGo4FileStore (write to *.root file with Go4 tree, this file can be used as TGo4File-
Source later)

TGo4BackStore Use TTree existing only in memory to view and analyze event struc-
tures.

These classes can be used directly to write simple analysis.

10

2.2.1 A simple event loop
Using these implementations, getting MBS event data into ROOT (without Go4 framework) could look like this:
#include "Go4EventServer/Go4EventServer.h"

#include "Go4Event/TGo4EventEndException.h"
int main() {

TGo4EventSource* input = new TGo4MbsFile("file.lmd"); // MBS list-mode file
// TGo4EventSource* input= new TGo4MbsTransport('"node"); // MBS transport server
// TGo4EventSource* input= new TGo4MbsStream('"node"); // MBS stream server
// TGo4EventSource* input= new TGo4MbsEventServer("node"); // MBS event server

// TGo4EventSource* input= new TGo4RevServ("node"); // Remote event server

TGo4EventStore* output = new TGo4FileStore("output",1,5); // split level, compres-
sion

TGo4MbsEvent* event = new TGo4MbsEvent();

event->SetEventSource(input);

event->Init();

Int_t eof = 0, numEvents = 0;

while(eof==0) {

try{
event->Fill(); // read event
numEvents++; // eof throws exception
output->Store(event); // write to file
catch(TGo4EventEndException& ex) { eof=1; } // mark end of file
catch(...) { cout << "Error" << endl; eof=2; } // any other error

}

cout << "EOF after " << numEvents << " events" << endl;
}
The events in the ROOT file can be retrieved by program, but not in tree viewers. For the use of tree viewers, a new
output event object should be filled and stored.

2.3 Analysis step classes

As mentioned above a Go4 analysis is organized in steps. The information needed to instantiate a step is kept in the
step factory.

TGo4EventServerFactory (base class): (contains factory methods that already know the above implementa-
tions. User step factories must inherit from this class!)

TGo4StepFactory This TGo4EventServerFactory can be used in most cases as user factory
to set up the analysis steps (example 1Step).

TGo4AnalysisStep objects of this class hold the definition of an analysis step.

Each analysis step has at least an input event object, an output event object and an event processor object. Addition-
ally, it can have an event source (e.g. TGo4FileSource) and an event store (TGo4FileStore) instance. An analysis step
is set up by a TGo4EventServerFactory subclass, i.e. TGo4StepFactory or a user defined subclass.

2.4 Object management

2.4.1 Go4 objects

Objects used in Go4 are organized in ROOT folders. The folder structure is sent to the GUI.
Objects must be registered in the analysis to be seen in the GUI browser. Registered objects
can be located in the processors. The top folders as seen in the GUI are shown on the left

1 Canvases

(3 Conditions side. The methods to register/locate objects are (pointer to the appropriate object, optional
(3 DynamicLists subfolder as string, name including subfolder as string):

1 EventObjects . AddHistogram(pointer,subfolder), GetHistogram(name)

: . AddAnalysisCondition(pointer,subfolder), GetAnalysisCondition(name)

L1 Histograms e AddParameter(pointer,subfolder), GetParameter(name)

(1 Parameters . AddPicture(pointer,subfolder), GetPicture(name)

£ Pictures . AddObject(pointer,subfolder,), GetObject(name)

&1 Trees These methods are available in TGo4Analysis and TGo4EventProcessor subclasses. Ob-

jects created in a TGo4Analysis subclass can be located in all event processors. Objects cre-
1 UserObjects ated in event processors can be located in all subsequent event processors (steps).

Registered objects are stored/ retrieved to/from the auto-save file, if enabled. Retrieval is
done after creation of the analysis singleton before the creation of the steps. When an ob-
ject retrieved from the auto-save file is created in a processor the retrieved object is replaced (stored data lost). When
an object is created in the analysis singleton it will be replaced by the one retrieved from the auto-save file except

guil51

11

histograms which are not retrieved in this case. This means that histograms created in the analysis singleton are al -
ways empty after startup.

Since retrieved auto-save file objects will be replaced by a second registration of the same object with the “Add...”
methods described above, this can be problematic when analysis is configured several times interactively from the
GUI: saved contents may be lost, or user defined object references (pointers) may even get invalid. To avoid such
problems there are several additional registration methods that are highly recommended:

. MakeTHI1(...) - for 1d histogram

. MakeTHZ2(...) - for 2d histogram

. MakeGraph(...) - for graph plot

. MakeRollingGraph(...) - for special graph containing trending information
. MakeWinCond(...) - for window conditions (1d and 2d depending on parameters)
. MakePolyCond(...) - for polygon condition

. MakeEllipseCond(...) - for shaped polygon with ellipse parameters

. MakeCircleCond(...) - for shaped polygon with circle parameters

. MakeBoxCond(...) - for shaped polygon with rectangular box parameters

. MakeFreeShapeCond(...) - for shaped polygon with free shape

. MakeListCond(...) - for a value “whitelist” to check against

. MakeParameter(...) - for parameter objects

These functions will either create the object with the given specifications if it does not exist, or will retrieve the ob -
ject of that name if existing in the Go4 object management (from auto save file if enabled, or from local analysis
memory). The pointer to the object is returned as handle to the user. Note that the function parameters except for the
name will have no effect if an existing object is retrieved. To replace the existing object by another one with new pa-
rameters anyway, method SetMakeWithAutosave(kFALSE) can be called in advance of these registration methods.

2.4.2 Go4 parameters

Parameters used in the analysis are implemented by the user in classes derived from TGo4Parameter. Such objects
are registered to the framework and can be edited by a generic parameter editor (see chapter 4.13.2, page 78). Param-
eter objects can be created in the user analysis or the event processor class. Parameter objects are loaded from an op-
tional auto-save file after instantiation of the analysis and before instantiation of the processor objects. When created
in the analysis the values set in the constructor are therefore overwritten by auto-save. To use the GUI editor, the Up-
dateFrom() method must be implemented to update the local (active) parameter object from the modified one deliv-
ered by the editor. In this method it is up to the user to ignore certain members or to execute whatever he wants. E.g.
one could use parameters to execute commands. Parameters in the auto-save file can be edited. In the editor they can
be saved/retrieved to/from files. Several mechanisms can be implemented to handle the parameter member values.
The main question is how restricted the methods of modification should be.

1. Modify values only in the class constructor, then recompile. To prohibit changes by editor, the Update-
From() method could be just a no-op to avoid undocumented changes. The parameter object should be cre -
ated and registered in the processor constructor (after possible auto-save restore). Pro: the parameter values
are always strictly defined as coded. Con: the parameter values cannot be changed easily.

2. Modify values by editor, use auto-save to store. Create parameter object in analysis constructor. Auto-save
must be enabled. Pro: parameter can modified by editor (UpdateFrom() method must be implemented) and
changes will be restored from auto-save. Con: when the auto-save file must be deleted for some reasons. the
latest values are lost.

3. Use a macro to set values. This macro must be executed in the processor constructor (after auto-save re-
store). UpdateFrom() could just execute the macro to avoid undocumented changes. Pro: values are kept in a
text file and can be modified without recompile. Con: parameter cannot be changed by GUI editor.

4. Best combination: one can use macro saveparam.C([file],wildcard, prefix) from $G04SYS/
macros creating macros (one per parameter) to set all parameters to their current values,. The names are
built from prefix and parameter name. The macro can be executed in CINT (then the parameters are taken
from a file), or in the GUI or in the analysis. The parameter is created in the analysis. Values are set from
macro in processor constructor. By this method parameter values can be edited by GUI, or macro can be
edited. Last version will be used independently of auto-save.

Example:
root[0].x saveparam.C("myfile.root",6"*",6 "setpar")

would produce macros setpar_par1.C, setpar_par2.C etc. The macros have no arguments,

e.g. setpar_pari().
The registration method MakeParameter(fullname, classname, macroname) allows to take into account a parameter
set up macro of name macroname even at initialization. By specifiying the class name classname, Go4 can create

any user defined parameter class on the fly and will put it at location fullname in the Parameters folder, e.g.
fPar=MakeParameter (“gamma/calipars”,”TMyCalibrationPar”,”set_TMyCalibrationPar.C")

12

2.4.3 Go4 conditions

Conditions are objects holding window limits or polygons. One or two values can be checked against the limits or
the polygon, respectively. In addition the conditions have test and true counters. They can be set to return always true
or false or return the inverted test result. They can be edited by the GUI (see chapter 4.10.2, page 70). They can be
used to steer the analysis flow. They are saved/retrieved to/from the auto-save file, if enabled. They can be edited in
the auto-save file. In the editor they can be saved/retrieved to/from files. If a mechanism like for the parameters (4) is
wanted, one can use macro savecond.C([file],wildcard, prefix) from $G04SYS/macros creating macros
(one per condition) to set all conditions to their current values,. The names are built from prefix and condition name.
The macro can be executed in CINT (then the conditions are taken from a file), or in the GUI or in the analysis.

Example:
root[0].x savecond.C("myfile.root","*",6 "setcon")

would produce macros setcon_cond1.C, setcon_cond2.C etc. The macros have three arguments: restore flags,
restore counters, reset counters (0=no, 1=yes), e.g. setcon_cond1(1,0,1).

There are different object registration methods for the different kinds of supported conditions, such as MakeWiu-
Cond(), MakePolyCond(), MakeCircleCond(), MakeEllipseCond(), MakeBoxCond(), MakeFreeShapeCond(), Make-
ListCond(). They define the condition boundaries either directly (class TGo4WindowCond, class TGo4PolyCond), or
allow to parametrize a standard shape that defines the limits of a 2-dimensional polygon (class TGo4ShapedCond).
The shaped conditions may change their parametrization form (circle, ellipse, rectangular) at runtime and may be
even converted into a free polygon shape. This provides a flexible adjustment for the region of interest in various his-
togram maps, as supported by the GUI condition editor (see chapter 4.10.3 on page 71).

The list condition (class TGo4ListCond) contains a set of “good” values that should be checked against. The condi-
tion results true if any value of this “whitelist” matches the value under test. By inverting the condition logic, this
may also be used as excluding “blacklist”. This kind of condition has no graphical representation in the GUI, but
may be changed interactively in the condition editor.

13

2.5 Analysis base class TGo4Analysis

Once the user has defined his/her event class implementations, the analysis steps can be created and registered to the
Go4 analysis framework. The actual framework consists of the TGo4Analysis class, which is a singleton (i.e. there
is only one framework object in each process). This class provides all methods the user needs, it keeps and organizes
the objects (histograms,...), it initializes and saves the data objects.

The user analysis is set up in a subclass of TGo4Analysis, i.e. TUserAnalysis. Constructor and destructor of this user
class, in addition with the overridden virtual methods UserEventFunc(), UserPreLoop(), and UserPostLoop() specify
the user analysis. If these functions are not needed, one can also use the TGo4Analysis class directly, as shown in the
example Simple.

All analysis steps must be created with initial event parameters (input and output filenames) and auto-save settings.
Additionally, some user objects may be created and registered here. Note that histograms created and registered
here are saved to but not updated from the Go4 auto-save file. Persistent histograms of the analysis should be
created in the UserPreLoop function. Existing conditions and parameters, however, are updated when the
auto-save file is loaded. In the constructor of the TUserAnalysis class the analysis step objects are created, each con-
taining instances of its user step factory. The analysis steps are registered at the TGo4Analysis framework, input and
output events of subsequent steps are checked for matching. Furthermore, other objects like histograms, conditions
or parameters can be created in the constructor and registered, so the framework is responsible for their persistence.
Such objects can also be created in the step processors.

In addition to the event processors, the UserEventFunc() allows the user to specify analysis operations that are called
once in each analysis cycle, e.g. filling certain histograms from the output events of all analysis steps. The
UserEventFunc() makes it even possible to call an external analysis framework event by event without using the Go4
Analysis Steps at all, thus taking advantage of the Go4 object management and remote GUI features.

The UserPreLoop() and UserPostLoop() functions may define actions that are executed before starting, or after stop-
ping the main analysis loop, respectively.

Once the user analysis class is defined, there are two modes of operation: The single-threaded batch mode, and the
multi-threaded client mode that connects to the Go4 GUI.

2.5.1 User subclass of TGo4Analysis

Up to Go4 version 4.3 the user subclass of TGo4Analysis has been instantiated in the user main program MainUser-
Analysis. In this case the arguments of the constructor could be chosen arbitrarily. With Go4 version v4.4 a standard
main program (see next section) can replace the MainUserAnalysis. When using this main program the constructor
of a TGo4Analysis derived user class is called with a standard argument list as it is used with main programs. The
constructor of a user analysis must therefore be:

TUserAnalysis::TUserAnalysis(int argc, char** argv) : TGo4Analysis(argc, argv)

{

cout << "User analysis " << argv[0] << "created" << endl;

}

Note that argc is always > 0 and argv [@] is always the analysis name when called from standard main program.

Example
The user analysis could create one analysis step with input from an MBS file with the following code fragments
(note that we use the standard Go4 step factory class and a fixed file name):

TUserAnalysis::TUserAnalysis(int argc, char** argv) : TGo4Analysis(argc, argv)
{
const char* userinput = “data.lmd”;
TGo4StepFactory* factory = new TGo4StepFactory("Factory");
// the objects specified here will be created by the framework later:
factory->DefEventProcessor("Proc", "TUserProc");// object name, class name
factory->DefOutputEvent("Event", "TUserEvent"); // object name, class name

TGo4MbsFileParameter* input = new TGo4MbsFileParameter(userinput);
TGo4AnalysisStep* step = new TGo4AnalysisStep("Analysis", factory,input,0,0);
step->SetSourceEnabled(KkTRUE);

step->SetProcessEnabled(kTRUE);

AddAnalysisStep(step);

}

// Example of using the event loop functions for a trivial counting of events
// fEvents must be defined in TUserAnalysis.h:

14

Int_t TUserAnalysis::UserPreLoop() {
fEvents=0;
return O;

Int_t TUserAnalysis::UserEventFunc() {
fEvents++;
return O;

Int_t TUserAnalysis::UserPostLoop() {
cout << " Total events: " << fEvents << endl;
return O;

15

2.6 Main analysis program

2.6.1 The godanalysis main program

Contrary to previous Go4 versions, it is no longer required to provide a user main analysis program (typically called
MainUserAnalysis). Instead, the standard go4analysis program instantiates and runs user code compiled into a
shared library (typically called 1ibGo4UserAnalysis. so). Most of the functionality previously implemented in
MainUserAnalysis is now in the user analysis class (subclass of TGo4Analysis), which is instatiated by go4analysis.
Existing analysis codes with explicit MainUserAnalysis program are still fully supported.

2.6.2 Command line mode (batch)

The main aim of batch mode is to process event data from files or other data source without GUI intervention. To run
the analysis in batch mode, go4analysis is called from shell with several optional arguments. For instance, the com-
mand:

shell> godanalysis -file test.lmd -asf histos.root

will use file test . lmd as input and store all analysis objects (histograms, graphs) in file histos. root. The full
description of the argument list is:

godanalysis [RUN] [ANALYSIS] [STEP1] [STEP2] ...[USER]

RUN: configuration, relevant for application run mode

-1lib name : user library to load (default: libGo4UserLibrary)
-server [name] : run analysis in server mode, name - optional analysis name
-gui name guihost guiport : run analysis in gui mode, used by GUI launch analysis
-http [port] : run analysis with web-server running,

optionally port can be specified, default 8080
-auth [filename] : use authentication file to restrict access to http server

file should contain 'controller' and 'admin' accounts for 'go4'
domain Could be generated with htdigets utility,
by default '$G04SYS/etc/.htdigest' filename is used
-fastcgi port ! run analysis with fastcgi server running,
which can deliver data to normal webserver
(see mod_proxy_fcgi for Apache)

-jsroot location use JSROOT from other location like
https://root.cern. ch/Js/latest/
-dabc master_host:port : run analysis with optional connection to dabc application,
which could receive objects from running analysis
-run ! run analysis in server mode (default only run if source speci-
fied)
-norun : exclude automatical run
-number NUMBER : process NUMBER events in batch mode
-hserver [name [passwd]] : start histogram server with optional name and password
-log [filename] : enable log output into filename (default:go4logfile.txt)
-v -v0 -vl -v2 -v3 : change log output verbosity
(0 - maximum, 1 - info, 2 - warn, 3 - errors)
-rate : display rate information during run
-print [sub=N] [hex]|dec] : print events, see -help print for more info
-help [topic] : show this help or for selected topic
-version : print only go4 version
-graphics : enable graphics in the analysis

ANALYSIS: common analysis conflguratlons

-name name : specify analysis instance name

-asf [filename] : enable store autosave file and set autosave filename
(default <Name>ASF.root)

-enable-asf [interval] : enable store of autosave file, optionally interval in seconds

-disable-asf : disable usage of asf

-prefs [filename] : load preferences (analysis configuration) from specified file
(default Go4AnalysisPrefs.root)

-no-prefs : disable preferences loading

-maxtreesize value : define maximum tree size, value can be: 2g, 1900m, 1900000000

STEP: individual step conflguratlons

-step name : select step by it's name, if not found, first step will be used
-step number : select step by it's number (first step has number 0)
-enable-step : enable step processing

-disable-step : disable step processing

-file filename : use file filename (lmd or 1ml) as MBS event source

-transport server ! connect to MBS transport server

-stream server : connect to MBS stream server

16

-evserv server connect to MBS event server

-revserv server [port] : connect to remote event server

-port number select custom port number for event source
-retry number : select number of retries when connection to source was lost
-random : use random generator as source

-user name i create user-defined event source

-source filename i read step input from the root file

-hdf5 filename : read step input from hdf5 file (.h5)

-skip num : skip num first events in mbs event source
-mbs-select first last step : select events interval from mbs source
-timeout tm : specify timeout parameter for event source
-enable-source : enable step source

-disable-source : disable step source

-store filename [split buffersize compression] : write step output into the root file
-overwrite-store : overwrite file, when store output
-append-store : append to file, when store output

-backstore name : create backstore for online tree draw
-hdf5store filename : write step output into hdf5 file (.h5)
-userstore name : create user-defined store for output data
-enable-store : enable step store

-disable-store : disable step store

-enable-errstop : enable stop-on-error mode

-disable-errstop : disable stop-on-error mode

-inpevt-class name : (re)define class name of input event
-outevt-class name : (re)define class name of output event

USER: user-defined arguments
-args [userargs] : create user analysis with constructor (int argc, char** argv) signature
all following arguments will be provided as array of strings,
first argument - analysis name

A list of valid arguments can be obtained by launching go4analysis without any arguments. Execution of go4analy-
sis can be terminated by pressing Ctr1-C. The analysis will regularly close all event sources, store results of pro-
cessing in output files and then exit.

2.6.3 Creating the user analysis

On startup go4analysis loads the shared user library and instantiates the user analysis. There is a possibility to pass
extra configuration parameters to the user analysis constructor, calling god4analysis with -args or - X followed by a
user specific parameter list. This list is passed to the analysis constructor:

Example
shell> godanalysis -name TestAna -args xxx.lmd

TUserAnalysis::TUserAnalysis(int argc, char** argv) : TGo4Analysis(argc, argv)

{
// argc is 2

// argv[0@] is "TestAna"
// argv[1l] is "xxx.lmd"
const char* userinput = “default.lmd”;
cout << "User analysis " << argv[0@] << "created" << endl;
if (argc>1) userinput = argv[1];
TGo4MbsFileParameter* input = new TGo4MbsFileParameter(userinput);

}

Similar to the argument list of the main() function argc defines number of parameters and argv contains pa-
rameter values. First parameter in the list is always the analysis instance name (either set in the GUI launch panel or
by

—-name argument, default is Go4Analysis). When godanalysis is started without user-specific arguments, only
analysis name will be in the list and argc is 1. The user argument list can also be specified in the Analysis launch
panel of the GUI.

2.6.4 Default user analysis

In simple cases (only one step) it is not necessary to implement a user-specific analysis class at all. It is sufficient to
implement a processor (and optionally an output event) class. In this case godanalysis will search for such classes in
the loaded library and instantiate them, using the default TGo4Analysis instance and creating one default analysis
step (named Analysis).

17

2.6.5 Analysis controlled by Go4 GUI

In the interactive GUI mode go4analysis provides all the infrastructure needed to manage the connection to the GUI.
Usually, the Go4 GUI is started first and than user launches the analysis program via Launch analysis. Mainly for
debugging purposes one can instead use in the GUI Prepare for client connection menu command and than start
the analysis in an independent shell by command (same as it is called by GUI):

shell> godanalysis -gui SomeName guihost 5000

Here SomeName is an arbitrary analysis name, guihost is the host name where the GUI is started and 5000 is the port
number (may be different, is printed when GUI starts). Same input/output arguments, as in batch mode, can be speci-
fied behind. On startup go4analysis creates the analysis framework and connects the multi-threaded analysis client to
the Go4 GUI. After the connection is established, the complete analysis framework can be controlled from the GUI.
In section 2.6.10, page 20 we describe in detail what is happening on startup of the analysis client and what effect the
GUI control actions have.

2.6.6 Analysis as server for multiple Go4 GUIs

When started from the GUI the analysis connects only this GUI and absolutely depends from it. If something hap-
pens with GUI or GUI just closed, analysis execution will be terminated. However, it is possible to run the analysis
as a server, which allows to connect many GUTIs (one controlling GUI and many observer GUISs).

The analysis is started as server independently from the GUI from a shell like in the batch mode but with argument -
server

shell> godanalysis -server -stream mbs-server -norun

As in batch mode, in server mode analysis will start its event loop if input was specified. To prevent this, the
-norun argument can be add. To force event loop execution with default analysis parameters, -run argument
should be specified. An analysis to run in server mode can also be launched via Launch analysis menu command of
the Go4 GUI when selecting the mode as server.

A Go4 GUI is able to connect any such started server. Login of GUI to the analysis server may be with observer,
controller, or administrator role, respectively; their passwords can be set in user analysis code with DefineServer-
Passwords() method. There can be only one controller or administrator, but multiple observer GUIs. Observers may
only view existing objects, but may not modify them or change analysis setup and running state. Controller may
view and modify objects and analysis configuration, but is not allowed to terminate analysis server. Only Adminis-
trator may shutdown the analysis server.

See section 4.3.2, page 43 for more details on connection of the GUI client.

2.6.7 Configuration of analysis

There are several methods to configure the analysis which can be combined in a defined order:

Constructor of user analysis class

In any case the constructor is called first. All steps must be created. One may set up all steps like setting input and
output filenames, enable/disable steps. One may excecute a macro for that. One may use user arguments given by
godanalysis command (behind -X) or in the Launch analysis panel (Args).

Go4 preferences file

When launched from GUI, or started from shell by go4analysis command with the -server or -gui option, and
settings had been saved before, these settings are now loaded from the file overwriting the coded setup. Default file
name is Go4AnalysisPrefs.root. With -noprefs or -prefs <file> one can disable this loading or specify a dif-
ferent file, respectively. In the Analysis configuration panel a different file also can be loaded.

Arguments to go4analysis

When started from shell now the arguments of go4analysis are used and overwrite the settings.

Hotstart file

When launched from GUI with hotstart file the complete setting from that file is used and overwrites the settings.

2.6.8 Support of older analysis code

In previous go4 versions up to 4.3 it was required to have a user MainUserAnalysis program which was launched via
the AnalysisStart. sh script. In most cases that executable can be used as is. Since version 4.4 the GUI directly
calls the MainUserAnalysis executable (or program or script as specified in the Launch Analysis panel, see section
4.3, page 42) with same argument list as before. When AnalysisStart. sh script had been modified and there-
fore the old launch sequence is required, one should set shell variable GO40LDLAUNCH=yes before starting the
GUL

18

In many real cases the godanalysis is able to correctly instantiate the user analysis, compiled into LibGo4User -
Analysis. so library even if no (int, char**) constructor signature is implemented. To facilitate new Go4 func-
tionality and flexibility, it is recommended to move user code from MainUserAnalysis to user analysis class, (i.e.
TUserAnalysis) and remove MainUserAnalysis.

2.6.9 Setting up ssh keys

For launching the analysis on remote host from the GUI, password-less ssh login on this host must be enabled. It
means, when typing “ssh hostname” command in the shell, no any password shall be requested. To configure such
password-less login, a private/public key pair must be created and the public key must be copied to remote host:

shell> ssh-keygen -t rsa

answer all questions by RET or yes

shell> ssh-copy-id -i ~/.ssh/id_rsa.pub hostname

Now check with “ssh hostname” again that keys are installed properly. Normally, at first time ssh will ask to add
hostname into list of known hosts. Answer “yes” and try login again. Only if ssh works without prompting at all, you
can run analysis on that machine via the Go4 GUI.

There is no longer necessary to configure ssh for running analysis on the same machine (localhost), while now Go4
provides possibility to run analysis directly via exec mode. This solves the nasty problem of configuring ssh and
DNS on machines which are not connected to a network at all.

From historical reason there is still rudimentary support of rsh for analysis launch. rsh in no longer supported in GSI,
therefore it is not so good tested as other launch methods. For use of rsh, make sure that the file . rhosts exists in
user home directory and that it contains entries for the machine names you want to run the Go4 analysis client on.
The file . rhosts could e.g. look like this:

node01

node02

localhost

19

2.6.10 Start-up of GUI controlled analysis

When starting the Go4 analysis from GUI, the following actions take place in that order:

20

1.

N

U

The Launch Analysis GUI panel started by @# reads settings from file $604SYS/etc/go4.prefs.
Based on settings in this file, the launch command is composed and executed. Depending on the analysis
mode (client or server) either -server or -gui argument lists are passed to the executable.
TGo4Analysis or user subclass (e.g. TUserAnalysis) is instantiated and initializes the analysis framework.
The analysis, if in client mode, connects to the Go4 GUI. Optionally, the Go4 histogram/object server is
created. Note that the analysis in server mode does not connect automatically to the starting GUI, but
waits for a separate connect request with login and password from any GUI. Only after this explicit con-
nection the GUI gets control over the analysis server!

The analysis settings are loaded from the default preferences file Go4AnalysisPrefs.root. A message

is sent to the GUI (if successful):
“Analysis Client MyClient: Status Loaded from file Go4AnalysisPrefs.root”

Note that all settings specified before in the compiled code (auto-save file name, event sources, etc.)
are overwritten if the preferences file exists.

The configuration settings are now changed by additional arguments, provided to go4analysis executable.
The analysis objects are loaded and updated from the auto-save file. The file name from the loaded analysis
settings is used, if existing. Otherwise, the filename specified in the preceding user code by SetAuto-save-
File(const chart* name) is used. If successful, a message is sent to the GUI:

"Analysis Client MyClient: Objects Loaded”.

If auto-saving was disabled completely by calling

SetAutoSave(kFALSE), the auto-save file is not opened here even if it exists, and no objects are loaded!
The “overwrite filename” option in the auto-save settings must be disabled to recover objects of a pre-
vious auto-save file; otherwise, all objects in an old file of the same name are lost!

The analysis settings are displayed on the GUI. At this moment, the analysis configuration window pops up
and shows the active settings. Note that a GUI, connected to an analysis server, only in administrator mode
can change the analysis configuration.

End of analysis start-up. A message is sent to the GUI:
“Analysis Client MyClient has finished initialization”.

Note that now the analysis itself is not yet initialized, i.e. the event and processor objects have not
been created, and there are still no connections to event sources, etc.

2.6.11 Submit settings and run analysis

At any time the user may apply new settings to the analysis and start/stop the run. Note that if the GUI runs as client
connected to an analysis server, these operations are permitted for controller or administrator login only. The follow-
ing is happening in the described order:
1. Submit the analysis settings. The settings as displayed in the analysis configuration window are sent to the
analysis client.
i. First, an already existing analysis is closed (see below).

ii. The analysis is initialized with the new settings. Objects are loaded from the new auto-save file except
auto-save is disabled by SetAutoSave(kFALSE). The file name is as specified in the configuration win-
dow.

iii. The event objects are created. Event sources and stores are opened. The constructors of all user events
and event processors are executed. Note that any object (histogram, parameter, etc) which is created
and registered in the user event constructors might replace an object of same name that was
loaded from the auto-save file before! To continue working with the loaded objects, the user should
request pointer to the object by name from the framework here. Only if the object was not found it
should be created anew. Since Go4 v4.4 there are methods to return references to objects which are cre-
ated only if not loaded from auto-save file.

After submit, the Analysis browser can be refreshed by €¥ . When an analysis was running before, the new
analysis is started immediately and the refresh is done automatically.
2. Start the analysis with ¥ :

i. The Go4 GUI will send the start command and refresh the view in the analysis browser.

ii. The UserPreLoop() function is executed once. Here transient pointers to data might be initialized, values
from a user file might be read, etc.

iii. The Analysis event loop is starting. For each event the analysis steps, the dynamic list entries, and the
UserEventFunc() are executed. The loop will run until the event source is at the end, an error occurs, or
the stop command is applied by the user.

Stop the analysis with @ :

i. The event loop is halted. This will not close the analysis itself, i.e. all event objects still exist, event
sources and -stores are still open. When restarting the analysis by «, it will continue with the next
event.

ii. The UserPostLoop() function is executed once. Here transient pointers should be reset to 0, user files
might be written or closed, etc.

4. Save configuration settings: At any time the current settings can be saved to a preferences file. This will not
affect the running analysis. Note that after changing the settings in the analysis configuration window
they must first be submitted to save them!

5. Load Settings: Loading analysis settings from a preferences file will immediately close the running analysis.
The closing actions are just as described below. However, the loaded settings are not initialized until they
have been Submitted again from the analysis configuration window!

W

2.6.12 Shutdown of the analysis client

The analysis client is shut down with the @/ button. This will take the following actions:
1. The connection between analysis and GUI is closed.
2. The destructor of the user analysis class is executed.
3. Close of the analysis (this step can be executed by button &):
1.Objects are written to the previous auto-save file, if SetAutoSave(kTRUE).
2.The event objects are deleted. Go4 event sources (.Imd files and MBS connections) are closed. Event
stores (.root files) are finally written and closed. The destructors of all user events and event processor
classes are executed. All references to the event objects are deleted from the Go4 folders.
3.The dynamic list is reset. All pointers to non existing objects are cleaned up.
4. The analysis client executable terminates. The Go4 GUI is ready to connect the next analysis client.

2.6.13 Disconnect or shutdown analysis server

The GUI may disconnect the analysis server with the &% button. This will neither stop the analysis nor shut-

down the server task, but just close the connections to this GUI. Additionally, when connected to an analysis

server, the GUI has a & button in the analysis toolbar and a menu for Shutdown Analysis server. This is per-

mitted in administrator mode only! This will take the following actions:

1. Analysis server broadcasts message about shutdown to all GUI clients connected. The GUIs will cease moni-
toring activities and prepare for disconnect.

2. The destructor of the user analysis class is executed.

3. Clese of the analysis, see details in 2.6.12

21

3

22

4. The analysis server disconnects all GUI clients fast, i.e. without handshaking protocol, and terminates.

Analysis Examples

To begin with Go4, there are examples of analysis packages delivered with the source release at
https://github.com/gsi-ee/go4.git

After cloning the source repository (git clone https://github.com/gsi-ee/go4.git), you will find them in the sub-
folders of the repository directory go4:

go4/Go4ExampleSimple, go4/God4ExamplelStep, go4/God4Example2Step, go4/God4ExampleAd-
vanced, go4/Go4ExampleUserSource and go4/Go4ExampleMesh. The differences are:

Example Analysis Step factories Event objects Steps
Simple TGo4Analysis TGo4StepFactory TGo4EventElement | Analysis
1Step TXXXAnalysis TGo4StepFactory TXXXEvent Analysis
2Step TXXXAnalysis TXXXUnpackFact TXXXUnpackEvent | Unpack
TXXXAnlFact TXXXAnlEvent Analysis
Advanced TXXXAnalysis TXXXUnpackFact TXXXUnpackEvent | Unpack
TXXXAnlFact TXXXAnlEvent Analysis
UserSource | TYYYAnalysis TYYYUnpackFact TYYYRawEvent Unpack
TYYYUnpackEvent
Mesh TMeshAnalysis TGo4StepFactory 13 different

3.1 Analysis design

If one is going to develop a new analysis with Go4 it is recommended to start with one of the examples. The
question is which one? To make this decision easier, here some considerations:

How many steps do I need? The usage of steps has two aspects:

= modularity of the code: what is the natural granularity. Unpack, calibrate, filter, physics? Subdetectors?

= design of data generations. Are there event filters?

= storage versus computing. Are the processed data bigger than the raw? Is the analysis compute bound?
Modularity of analysis code could be achieved in a single step simply by a chain of function calls of one or sev-
eral classes. However it would get complicated if one wants to disable functions because their successing func-
tion would need their data. This problem is solved by Go4 steps. The events filled by the step processors can be
stored in ROQOT files (trees). The steps produce data generations. These files can then be used as input for sub-
sequent steps replacing the generating step which can be disabled. With two steps one needs at least one output
event (filled and stored by first step) and processed by second step. Note that ROOT files produced by any step
can be processed by stand-alone macros. In this sense there can be always a final step outside Go4 processing
the files of the last step.

Therefore one should first think about data generations and structures.

3.1.1 Simple

Start with this example if you want just produce histograms from raw data. All coding is in one file. No output
event file can be written. Histograms can be saved in ROOT file.

3.1.2 One step

This example has an output event which can be stored in a ROOT file which can be processed by macros. In
addition it has a user analysis class where the functions UserPreLoop, UserPostLoop and UserEventFunc are
implemented.

3.1.3 Two step

In addition we have here two steps. This example also demonstrates how one can configure the analysis com-
pletely by a setup macro.

https://github.com/gsi-ee/go4.git
https://github.com/gsi-ee/go4.git

3.2 Using the examples at GSI

When using Go4 at GSI where it is already installed, Go4 is set up by

. /cvmfs/eel.gsi.de/bin/go4login

Note that there must be a space behind the dot. To see all available go4 versions use command
. /cvmfs/eel.gsi.de/bin/go4login -h

Analysis example programs are started by
godanalysis

or from the GUI which is started by
go4

3.3 Prepare the packages

Copy the content of the Go4 repository directory go4/Go4Examplel(2)Step to a separate location. You can
directly make and run the example. The package consists of the following files:
e Readme.txt
Makefile
Declaration (*.h) files
Implementation (*.cxx) files
XXXLinkDef.h - ROOTCINT class pragma definitions

Cleanup all previously generated files by:

shell> make clean

In all examples there is one string included in all class and file names: “XXX”. It is recommended to replace
this by another string more specific for user task. This is done by rename.sh script, provided together with Go4
distribution. For example, change to “Ship” can be done with:

shell> $G04SYS/build/rename.sh "XXX" "Ship"
Note that "Ship" will be part of all class and file names, therefore do not use a string which is already in any

filename!
To build example, just:

shell> make all

This will create shared library 1ibGo4UserAnalysis.so and libGo4UserAnalysis.rootmap.

23

24

3.4 Simple example with one step

The package Go4ExampleSimple contains a simplest running Go4 analysis. It contains only one default anal-
ysis step and uses the standard Go4 analysis classes TGo4Analysis, TGo4StepFactory and TGo4EventElement.
Therefore the functions UserPreLoop(), UserPostLoop(), and UserEventFunc() are not available. No data can be
stored in the output event. The example uses some conditions and some parameter objects. The step is reading
events from a standard MBS event source, preferably the MBS random source, filling some histograms. No
output file is written. The analysis processes up to eight long word values from up to two sub events.

Analysis must be launched via library libGo4UserAnalysis.so.

3.4.1 Event processor

Processor class: TXXXProc

The analysis, analysis factory, and analysis step (all standard Go4 classes) are created in the go4analysis pro-
gram automatically. The input can be specified via go4analysis input arguments. The only custom code is im-
plemented in processor class. No user event class is used in this example. Members of TXXXProc are his-
tograms, conditions and parameter pointers. In the constructor of TXXXProc the histograms, parameters and
conditions are created. Method BuildEvent() - called event by event - gets a dummy output event pointer as ar-
gument, but cannot fill any output data. The input event pointer is retrieved from the framework. In the first
part, data from the raw input MBS event are copied to arrays of TXXXProc. Two sub-events (crate 1,2) are pro-
cessed. Then the histograms are filled, the 2d one with polygon conditions.

3.4.2 Parameters

Parameter class TXXXParam
In this class one can introduce parameters values and use them in all steps. Parameters can be modified from
GUL

3.4.3 Auto-save file mechanism

See also chapter 4.5.3, page 51. By default auto-save is enabled for batch, disabled with the GUI. The name of
the file is built from the name of input (file, server) like <input>_AS.root. If autosave file enabled all ob-
jects are saved into this ROOT file at the end of the event loop. At startup the auto-save file is read and all ob-
jects are restored from that file. From GUI, objects are loaded from auto-save file when the Submit button is
pressed. Note that histograms are not cleared. One can inspect the content of the auto-save file with the Go4
GUL

3.4.4 Example log file

All lines with **** are from the example classes.

shell> godanalysis -random -number 100000

Event processor TXXXProc of name XXXProc

Output event TGo4EventElement of name XXXOutputEvent

GO4-*> Welcome to Go4 Analysis Framework Release v4.3.2 (build 40302) !
GO04-*> Create factory Factory

GO04-*> Analysis: Added analysis step Analysis

*¥*** Main: starting analysis in batch mode

G04-*> Opening AutoSave file Go4AutoSave.root , UPDATE mode
GO04-*> Analysis LoadObjects: Loading from autosave file Go4AutoSave.root
LoadObjects with Dirscan...

G04-*> AutoSave file Go4AutoSave.root was closed.

G04-*> Factory: Create input event for MBS

**** Event MbsEvent-10-1 has source Random class: TGo4MbsRandom
G04-*> Factory: Create event processor XXXProc

*¥*x* TXXXProc: Create instance XXXProc

G04-*> Factory: Create output event XXXOutputEvent

***¥* Event XXXOutputEvent has source XXXProc class: TXXXProc
G04-*> AnalysisStepManager -- 1Initializing EventClasses done.
GO04-*> Analysis BaseClass -- Initializing EventClasses done.
G04-*> Analysis loop for 100000 cycles is starting...

GO4-*> Analysis Implicit Loop has finished after 100000 cycles.
G04-*> Opening AutoSave file Go4AutoSave.root , RECREATE mode
G04-*> AutoSave file Go4AutoSave.root was closed.

xx TXXXProc: Delete instance

GO4-*> Analysis Step Manager -- Analysis Steps were closed.

**** Main: Done!

3.4.5 Adapting the example

Creating a new class

Provide the definition and implementation files (.h and .cxx)
Add class in XXXLinkDef . h

Then make all.

Most probably you will change TXXXParam to keep useful parameters.

Then definitely you will change TXXXProc to create your histograms, conditions, pictures, and finally write

your analysis function BuildEvent().

25

26

3.5 Example with one step

The package Go4ExamplelStep contains a Go4 analysis with one analysis step. It uses the standard Go4
step factory TGo4StepFactory, but a user written TXXXAnalysis. In this class the functions UserPreLoop(),
UserPostLoop(), and UserEventFunc() can be used. It uses some conditions and some parameter objects. The
step is reading events from a standard MBS event source, preferably the MBS random source, filling some his-
tograms and an output event. The analysis processes up to eight long word values from up to two sub events.
All classes are defined and declared in two files (*.h and *.cxx). Additional descriptions are in the source files.
Analysis must be launched via library libGo4UserAnalysis.so.

3.5.1 Analysis class

Analysis class: TXXXAnalysis
In TXXXAnalysis the analysis step is created with the step factory and input and output parameters. Here the de-
faults are set concerning the event IO. Parameter objects of class TXXXControl also created.

3.5.2 Analysis step

Event class: TXXXEvent

Processor class: TXXXProc

The standard factory created in TXXXAnalysis keeps all information about the step. The TXXXEvent contains
the data members to be filled in TXXXProc from the input event (MBS 10-1). The Clear() method must clear all
these members (an array for each crate in the example). In the constructor of TXXXProc the histograms and
conditions are created, and the pointers to the parameter objects (created in TXXXAnalysis) are retrieved. Func-
tion BuildEvent() - called event by event - gets the output event pointer as argument (TXXXEvent). The input
event pointer is retrieved from the framework. In the first part, data from the raw input MBS event are copied
to the members of output event TXXXEvent. Two sub-events (crate 1,2) are processed. Then the histograms are
filled, the 2d one with polygon conditions.

3.5.3 Parameters

Parameter class TXXXControl

This class has one member "fill" which is checked in TXXXProc->BuildEvent() to fill histograms or not. The
macro

setfill.C(n), n=0,1 can be used in the GUI to switch the filling on or off. It creates macro histofill.C()
which is actually used to set filling on or off (in TXXXProc). You can also modify histofill.C by editor be-
fore running the analysis.

3.5.4 Auto-save file mechanism

See also chapter 4.5.3, page 51. By default auto-save is enabled for batch, disabled with GUI. The name of the
file is built from the input by

<input>_AS.root

If it is enabled all objects are saved into this ROOT file at the end of the event loop. At startup the auto-save
file is read and all objects are restored from that file. When TXXXAnalysis is created, the auto-save file is not
yet loaded. Therefore the objects created here are overwritten by the objects from auto-save file (if any), except
histograms. From GUI, objects are loaded from auto-save file when the Submit button is pressed. Note that his-
tograms are not cleared. One can inspect the content of the auto-save file with the Go4 GUI. Note that appropri-
ate user libraries should be loaded into GUI to access data from auto-save file (see chapter 4.2, page 41).

3.5.5 Example log file

All lines with **** are from the example classes.
shell> godanalysis -file /GSI/lea/gauss.lmd

GO4-*> Welcome to Go4 Analysis Framework Release v4.3.2 (build 40302) !
G04-*> Create factory Factory

**** Analysis: Create file input file.lmd

GO4-*> Analysis: Added analysis step Analysis

*¥*** Main: starting analysis in batch mode ...

G0O4-*> Opening AutoSave file Go4AutoSave.root , UPDATE mode

GO4-*> Analysis LoadObjects: Loading from autosave file Go4AutoSave.root
LoadObjects with Dirscan...

G04-*> AutoSave file Go4AutoSave.root was closed.

G04-*> TGo4MbsFile: Open file /GSI/lea/gauss.1lmd

GO4-*> Factory: Create input event for MBS

**** Event MbsEvent-10-1 has source /GSI/lea/gauss.lmd class: TGo4MbsFile
GO4-*> Factory: Create event processor XXXProc

*¥*x* TXXXProc: Create instance XXXProc

*rxx TXXXControl: Histogram filling enabled

*¥x¥*x*% TXXXProc: Produce histograms

*¥*** TXXXProc: Produce conditions

*¥*x* TXXXProc: Create condition

*xxx TXXXProc: Produce pictures

G04-*> Factory: Create output event XXXEvent

***x* TXXXEvent: Create instance XXXEvent

***¥* Event XXXEvent has source XXXProc class: TXXXProc

GO4-*> AnalysisStepManager -- Initializing EventClasses done.
G04-*> Analysis BaseClass -- Initializing EventClasses done.
*x*x* TXXXAnalysis: PreLoop

Input file: gauss.lmd

Tapelabel: DISK
UserName: goofy
RunID:

Explanation:
Comments:

GO4-*> Analysis loop is starting...
*x¥*x*% TXXXProc: Skip trigger event
First event #: 1
GO04-*> End of event source TGo4MbsFile:
/GSI/lea/gauss.lmd -I-f_evt: no more event
*¥xx% TXXXAnalysis: PostLoop
Last event #: 16605 Total events: 16605
G04-*> Go4 EventEndException appeared after 0 cycles.
*x*x* TXXXAnalysis: Delete instance
G0O4-*> Opening AutoSave file Go4AutoSave.root , RECREATE mode
G04-*> AutoSave file Go4AutoSave.root was closed.
**x* TXXXEvent: Delete instance
**** TXXXProc: Delete instance
G04-*> Analysis Step Manager -- Analysis Steps were closed.
**** Main: Done!

3.5.6 Adapting the example

Creating a new class

Provide the definition and implementation files (.h and .cxx)
Add class in Go4UserAnalysisLinkDef.h

Then make all.

Most probably you will change TXXXParam to keep useful parameters.

Then you might change TXXXEvent to represent your event data.

Keep the Clear() method consistent with the data members!

Then definitely you will change TXXXProc to create your histograms, conditions,
pictures, and finally write your analysis function BuildEvent().

In TXXXAnalysis there are three more functions which eventually can be useful:

UserPreLoop () - called before event loop starts,
UserEventFunc() - called after each TXXXProc::BuildEvent(),
UserPostLoop () - called after event loop stopped.

27

28

3.6 Example with two steps

The package Go4Example2Step contains an unpack step and an analysis step. It uses some conditions and
some parameter objects. Step one is reading events from a standard MBS event source, preferably the MBS
random source, filling some histograms and an output event. Step two uses this event as input and fills another
output event and some more histograms. The analysis processes up to eight long word values from up to two
sub-events.

The events are read from standard GSI event sources (in the GUI one can switch to MBS or event servers).
Then the first user event processor is called (Unpack). This user event processor fills some histograms and the
first user event (unpacked event) from MBS input event. Then the second user event processor is called (Anal-
ysis). This user event processor fills some other histograms and the second user event (calibrated event) from
the first event. The events from the first and second step can optionally be stored in ROOT files (enabled from
GUI). When a ROOT file with unpacked events exists, the first step can be disabled, and this file can be se-
lected as input for the second step (from GUI).

In TXXXAnalysis the two steps are created. Here the defaults are set concerning the event IO. Then macro
setup.C is executed at the end of TXXXAnalysis. Analysis must be launched from GUI via library lib-
Go4UserAnalysis.so.

3.6.1 Setup in setup.C

The whole step setup is done in macro setup.C. It gets two strings as argument which can be specified in com-
mand line
godanalysis -x <type> <name>
or in the GUI Launch panel in the Args field. In setup.C the type string is used to determine the type of the
source, the name string is used to compose file names:

idir/name. lmd or if string starts with @ @idir/name. lml

odir/name_AS.root

odir/name_unpacked.root

odir/name_analyzed.root
idir and odir are directories for the input and output files also specified in setup.C.
If the source type specified (-random, -transport, -stream, -file) is no file, name is used as MBS node name.
When started from GUI, any Go4AnalysisPrefs file overwrites the settings from setup.C. When started
from shell make sure that setup . C is correct!

3.6.2 Step one: unpack

The event filled: TXXXUnpackEvent

The processor: TXXXUnpackProc

The TXXXUnpackEvent contains the data members to be filled from the input event (MBS 10,1). Only the
Clear() method must be changed to clear all these members.

The unpacking code is in the event processor TXXXUnpackProc. Members are histograms, conditions, and pa-
rameter pointers used in the event method BuildEvent().. In the constructor of TXXXUnpackProc the histograms
and conditions are created, and the pointers to the parameter objects (created in TXXXAnalysis) are set. Some
examples are also added here how to create a graph (sinus) and special trending graphs (myrollinggraphs/
rolling1, rolling2) objects.

BuildEvent() is called event by event and gets the output event as argument. The input event is retrieved from
the framework. The first eight channels of crate one and two are filled in histograms Cr1Ch61-08
Cr2ch01-08, respectively. His1g is filled under condition CHis1 on channel 0, His2g under condition
CHis2 on channel 1. When editing conditions CHis1, 2 histograms His1, 2 filled by channel 0,1 will be
displayed automatically to set/display the condition values. Picture condSet shows histograms His1, 2 on
top, His1, 2g at bottom. Open the condition editor in the view panel of the picture. Conditions CHis1, 2 will
be selectable. They are displayed in the pad where they should be set. Both conditions are attached to the pic-
ture (see chapter 4.10.4, page 73). Histogram Cr1Ch1x2 is filled for three polygon conditions: polycon,
polyconar[0@], polyconar[1], all on the same values as the histogram.

3.6.3 Steering methods in processor function BuildEvent

Processing the input event and filling an output event it might be necessary to control the following behaviour:
1. Specify if the output event shall be written to output file (if enabled)

Bool_t isvalid;

. . - code - . . .

out_evt->SetValid(isvalid); // isValid must be set before to KTRUE or kFALSE

return isValid;
Note that the default calling Fill method will set the validity of out_evt to the return value! If one would have a
Fill method implemented in TXXXUnpackEvent calling BuildEvent the return value could be handled differ-
ently there. A subsequent step should check at the beginning if the input event (output event from previous

step) was valid. If not, it should mark its own output event also not valid and return:
Bool_t isValid=kFALSE;
if((inp_evt==0) || !'inp_evt->Isvalid()){ // input invalid
out_evt->Setvalid(isvalid); // invalid
return isvalid; // return the same validity

}

isValid=kTRUE;

. . . . —-code - . . .
out_evt->SetValid(isvalid);
return isValid;

2. Specify if the following steps shall be skipped (optional message) by macro calls
GO4_SKIP_EVENT
GO4_SKIP_EVENT_MESSAGE("Skipped Event %d",count-1)

3. Specify if the analysis shall be stopped immediatedly by macro calls
GO4_STOP_ANALYSIS
GO4_STOP_ANALYSIS_MESSAGE("Stopped after Event %d",count-1)

3.6.4 Step two: analysis

The event filled: TXXXAnIEvent

The processor: TXXXAnIProc

The step two is build in the same way as step one.

Note that the TXXXUnpackEvent is used two times: once as output of step one, and once as input of step two.
The TXXXUnpackEvent instance can be filled by previous unpack step, or can be retrieved from input file. Step
one must be disabled in the second case. The user method BuildEvent() always gets the pointer to the correct
event. Histogram Sum1 is filled by first 4 channels of crate 1 and first 4 channels of crate 2. All channels are
gated with condition winconl. Histograms Sum2, 3 are filled similar, but without gate, and shifted by
XXXPar1, 2->frP1. Histogram Sumlcalib is filled like Sum1 without gate but with values calibrated by
method TXXXCalibPar->Energy() of parameter calipar.

3.6.5 Parameters

With the TXXXParameter class one can store parameters, and use them in all steps. Parameters can be modified
from GUI by double click. There is a macro setparam.C which sets the values. One can disable histogram-
ming in both steps. This doubles the processing speed and is useful if one only wants to create listmode files.

3.6.6 Conditions

There are several conditions created in TXXXUnpackProc. One (polycon) is used in XXXUnpack() for the accu-
mulation of histogram Cr1Ch1x2. Another one (winconl) is used in BuildEvent() of TXXXAnIProc to fill his-
togram Suml. As special examples, four shaped polygon conditions ellipsecond, circlecond, boxcond , and
freecond are defined to illustrate the usage of elliptical, circular, rectangular, and free parametrized shapes.
Two of these (ellipsecond, circlecond) are also checked for filling of histogram Cr1Ch1x2, the others have no
effect on the analysis. Additionally, there is also an example of a “witelist” condition with a list of check values
(Whitelist).

Conditions can be modified by double click in the browser. One can attach a histogram to a condition or attach
conditions to picture pads to ensure that the condition is displayed/set on the proper display.

29

30

3.7 Example with some advanced techniques

The package Go4Examp leAdvanced contains an unpack step and an analysis step. It uses some conditions
and some parameter objects. Step one is reading events from a standard MBS event source, preferably the MBS
random source, filling some histograms and an output event. Step two uses this event as input and fills another
output event and some more histograms. The analysis processes up to eight long word values from up to two
sub events.

The events are read from standard GSI event sources (in the GUI one can switch to MBS or event servers).
Then the first user event processor is called (Unpack). This user event processor fills some histograms and the
first user event (unpacked event) from MBS input event. Then the second user event processor is called (Anal-
ysis). This user event processor fills some other histograms and the second user event (calibrated event) from
the first event. The events from the first and second step can optionally be stored in ROOT files (enabled from
GUI). When a ROOT file with unpacked events exists, the first step can be disabled, and this file can be se-
lected as input for the second step (from GUI).

In TXXXAnalysis the two steps are created with their factories and input and output parameters. Here the de-
faults are set concerning the event 10. When called with a user argument, setup.C macro is executed at the
end of TXXXAnalysis.

Two parameter objects are created (TXXXParameter). They can be used in both steps.

Analysis must be launched from GUI via library libGo4UserAnalysis.so, or from shell by
godanalysis -args file

3.7.1 Step one: unpack

The event filled: TXXXUnpackEvent

The processor: TXXXUnpackProc

The TXXXUnpackEvent contains the data members to be filled from the input event (MBS 10,1). In contrast to
the Go4Example2Step, we apply the TGo4CompositeEvent classes here. Details on the event structure are dis-
cussed in Chapter 7 on page 92.

The unpacking code is in the event processor TXXXUnpackProc. Members are histograms, conditions, and pa-
rameter pointers used in the event method BuildEvent().. In the constructor of TXXXUnpackProc the histograms
and conditions are created, and the pointers to the parameter objects (created in TXXXAnalysis) are set. BuildE-
vent() called event by event and gets the output event as argument. The input event is retrieved from the frame -
work. The first eight channels of crate one and two are filled in histograms Cr1Ch@1-08 .. Cr2Che1-08, re-
spectively. His1g is filled under condition cHis1 on channel 0, His2g under condition cHis2 on channel
1. When editing conditions cHis1, 2 histograms His1, 2 filled by channel 0,1 will be displayed automati-
cally to set/display the condition values. Picture condSet shows histograms His1, 2 on top, His1, 2g at
bottom. Open the condition editor in the view panel of the picture. Conditions cHis1, 2 will be selectable.
They are displayed in the pad where they should be set. Both conditions are attached to the picture (see chapter
4.10.4, page 73). Histogram Cri1Ch1x2 is filled for three polygon conditions: polycon,
polyconar[0], polyconar[1], all on the same values as the histogram.

3.7.2 Step two: analysis

The event filled: TXXXAnIEvent

The processor: TXXXAnIProc

The step two is build in the same way as step one.

Note that the TXXXUnpackEvent is used two times: once as output of step one, and once as input of step two.
The TXXXUnpackEvent instance can be filled by previous unpack step, or can be retrieved from input file. Step
one must be disabled in the second case. The user method BuildEvent() always gets the pointer to the correct
event. Histogram Sum1 is filled by first 4 channels of crate 1 and first 4 channels of crate 2. All channels are
gated with condition winconl. Histograms Sum2, 3 are filled similar, but without gate, and shifted by
XXXPar1, 2->frP1. Histogram Sumlcalib is filled like Sum1 without gate but with values calibrated by
method TXXXCalibPar->Energy() of parameter calipar.

3.7.3 Parameters

With the TXXXParameter class one can store parameters, and use them in all steps. Parameters can be modified
from GUI by double click.

TXXXCalibPar is an example how to use fitters in parameters to calibrate histograms (more chapter 4.13.3,
page 79). Please have a look at the Readme. txt file in this example directory for a detailed description of
the calibration procedure.

3.7.4 Conditions

There are a few conditions created in TXXXUnpackProc. One (polycon) is used in XXXUnpack() for the accu-
mulation of histogram Cr1Ch1x2. Another one (wincon1l) is used in BuildEvent() of TXXXAnlIProc to fill his-
togram Sum1. Conditions can be modified by double click in the browser. One can attach a histogram to a con-
dition or attach conditions to picture pads to ensure that the condition is displayed/set on the proper display.

31

32

3.8 Example of analysis with a user defined event source

The package Go4ExampleUserSource shows a simple example of a user defined event source reading data
from an ASCII text file. Like the one step example, the package can be copied to a user working environment,
and the class names can be renamed replacing the “TYYY-” prefix.

To apply a user defined event source, method CreateEventSource() of the user step factory must be re-imple-
mented to react on a TGo4UserSourceParameter when selected in the controlling GUI, or set as argument for
the godanalysis batch executable . It should then create a TGo4EventSource subclass that the user implements
for his purpose. Note that method CreatelnputEvent() should also be overwritten to create a raw event matching
to the user event source, since the default of the base class TGo4EventServerFactory always delivers a
TGo4MbsEvent.

In this example the event source class TYYYEventSource is prepared to handle any ASCII file containing col-
umns of data separated by blank spaces. Each row is read and its values are converted in order into the Dou-
ble_t fdData array of the raw event class TYYYRawEvent. The array expands automatically depending on the
number of columns. Lines starting with “!” or “#” characters are treated as comments and are ignored. Thus
these two classes need not to be modified for input of any ASCII files of that type. However, both the unpack
procedure as specified in the event processor TYYYUnpackProc , and the unpack event class TYYYUnpack-
Event, are depending on the column’s meanings here and must be adjusted. Additional information can be
found in the README..txt file of the example package.

3.9 Example of analysis mesh

This example on Go4Examp leMesh shows how to set up a Go4 analysis of several steps that build a mesh of
parallel analysis branches with different result generations. Additionally, one can see how the improved TGo4-
FileSource class supports partial input from a ROOT tree.

3.9.1 Structure

The setup of the mesh analysis is done in the constructor of the TMeshAnalysis class. As in the Go4Exam-
plelStep, the general TGo4StepFactory is used to specify the event objects by name and class name. An overall
of 13 analysis steps is defined for this example. Generally, the analysis mesh consists in two different kinds of
steps, the execution steps and the provider steps. The unpack step, however, is as in the other examples just de -
livering sample data from a TGo4MbsSource (standard Go4 gauss example).

The step structure of the example mesh is as sketched in this figure (arrows show dataflow):

InputlProvider Input2Provider Input3Provider
Execl Exec2 Exec3
OutputlProvider Output2Provider Output3Provider

Execl12

l

Output12Provider

Final

3.9.2 Execution steps

These analysis steps do the actual analysis work, i.e. they convert some input event into the output event. This
is the same as in the more simple examples (2-Step). However, to realize a mesh structure, the execution steps
do not work directly on their own input event as assigned from the Go4 framework, but use the input event of
one or more provider steps. The execution steps can access the input event pointers of any provider step by the
provider step name, using the GetinputEvent("stepname”) method. Note that the native input event of the execu-
tion steps is never used here (except for the very first "Unpack" step that processes the initial MBS event di-
rectly, without a provider step). There are no histogramming actions in the execution steps. To view the result
data one has to use a dynamic list histogram or perform a TTree::Draw on the output event's tree, if existing.

3.9.3 Provider steps

These analysis steps do not perform any analysis work at all, but only make sure that their own input event is
always set correctly for the following execution steps, depending on the data flow situation. Generally, there
are two cases:

- the provider step reads the input event directly from a branch of a ROOT tree (TGo4FileSource).

In this case, the input event remains the native input event of this step as created in the step fac-
tory.

- the provider step refers to the result event of a previous execution step.
In this case, the provider processor itself has to find the correct event pointer by name from the Go4 object
management. The default Go4 framework mechanism to handle these two cases will not suffice here, since it
was designed for a subsequent order of steps and not for a mesh with parallel execution branches.
To do this job, all provider steps use the TMeshProviderProc class as general event processor, and the TMesh-
DummyEvent class as pseudo output event. The TMeshDummyEvent is necessary, because the Go4 framework
will always call the Fill() method of the step's output event to execute any action of the step. So TMeshDum-
myEvent::Fill() calls method TGo4ProviderProc::SetReallnput() to set the pointer to the desired input event cor-
rectly.
If the input event is not read from file (native input event of this step), the provider processor has to search for
it by name using the method TGo4Analysis::GetEventStructure("name"). However, the Go4 framework so far
does not offer any additional parameter to specify the name of the appropriate input for a provider step. There-
fore, this example uses the trick to derive the event name search string from the name of the provider processor
itself: the name of this processor (up to the "_") is the name of the required event. Note that TGo4StepFactory
forbids to use same names for different objects, since the object name is used as pointer name in the Pro-
cessLine() call; therefore the processor name can not be identical with the input event name, but must differ by
the "_" extension.
Additionally, the provider steps use the new partial input feature of the TGo4FileSource class (since Go4v2.9).
The name of the event structure defines the name of the TTree branch that should be read from the input file.
The first three provider steps use different parts of the TMeshRawEvent each. If the input event name is set to
the name of the corresponding tree branch (e.g. "RawEvent . fxSubl"), the file source will only read this
branch from the tree. If the input event name is set to the full name of the raw event ("RawEvent", com-
mented out in this example), the complete event is streamed, including the not used parts. Note that in both
cases the event object must consist in the full TMeshRawEvent, although in the partial input case only one sub-
event is filled. This is required for a proper event reconstruction due to the ROOT TTree mechanism. In this ex-
ample, the partial event input might increase the process speed by a factor of 2 compared to the full event input.

3.9.4 Configuration

Although the step configuration can be defined as usual from the analysis configuration GUI, not all combina-
tions of enabled and disabled steps make sense to process a subpart of the complete analysis mesh. For exam -
ple, if execution step 2 shall be processed, the corresponding provider step for its input event has to be enabled,
too. Note that the standard step consistency check of the Go4 framework is disabled here to run such a mesh at
all (SetStepChecking(kFALSE)). So it is user responsibility to ensure that all required event objects are avail-
able for a certain setup. Moreover, with >13 analysis steps the standard analysis configuration GUI becomes
quite inconvenient.

Therefore, the example uses a Go4 parameter TMeshParameter for the easy setup of the configuration. This pa-
rameter has just a set of boolean flags to determine which execution step shall be enabled. Depending on this
setup, the UpdateFrom() method of the parameter also enables or disables the required provider steps. However,
the parameter does not contain the full information of the input file names for the providers yet (In a "real" ap-
plication, this could be implemented in a similar way though).

Thus the configuration procedure looks like this. The TMeshParameter is edited on the GUI to enable the de-
sired execution steps. The parameter is send to analysis and switches the steps on and off. Then the analysis
configuration GUI has to be refreshed by the user pressing button =» to view the new setup. Here the user may
change the names of the event sources for the provider steps, if necessary. After submitting these settings again

33

34

from the configuration GUI, the mesh setup is ready. Note that once the mesh is configured in this way, the
configuration can be stored completely in the analysis preferences and restored on the next startup.

One could also think of a user defined GUI that handles both the setup of the TMeshParameter, and the rest of
the analysis configuration in one window. This would offer the additional advantage that it could show the
structure of the analysis mesh in a graphical way. However, such a user GUI is not delivered here, but can be
created according to the hints given in package Go4UserGUI (see chapter 4.18, page 84).

3.9.5 Usage of the example

One way to test the example could look like this:

Enable the first unpack step, disable the rest of the mesh. Use TGo4MbsRandom as event source for
the Unpack and fill the output event TMeshRawEvent into a ROOT tree (switch on TGo4FileStore of
unpack step). Do this until a reasonable number of events are processed.

Disable the unpack step, enable one or more of the subsequent execution steps. The input for the first
3 provider steps should be the ROOT file that was produced before. Note that the first providers could
also read their sub-events from different files. Eventually, produce further output trees from the execu-
tion steps.

Change the setup in a way that only one branch of the mesh is processed, e.g. only Exec3 and F1i-
nal.

Change the setup in a way that only a certain generation of events is processed, e.g. only Exec1l,
Exec2, and Exec3, writing output files of their results. Alternatively, let only Exec12 and Final
work, reading their provider inputs from these output files.

Change the example code and recompile to add another execution branch, e.g. with new steps for In-
putProvider4, Exec4, OutputProvider4, and collect the results in the existing final step. New classes
TMeshB4inputEvent, TMeshB4AnIProc, and TMeshB4OutputEvent should be defined for this (these
can be derived from the corresponding classes as existing for the Exec3 branch).

Create a new mesh analysis from this template that matches your analysis structure.

3.10 Examples of embedded stream analysis

The stream framework (available at https://github.com/gsi-ee/stream) is a separate C++ analysis framework in-
tended to work with many parallel data “streams”. It can decouple the event loop from the input data sources and
may process an arbitrary number of input buffers into an arbitrary number of output events. It can also treat cases of
multiple non-triggered “free-running” data inputs that are synchronized to corresponding event packets no sooner
than it appears in the analysis software.

Although the stream framework classes are designed independent of any analysis library, there are interface classes
that allow set up, run and control such analysis within a regular Go4 environment. Examples of such analyses are not
part of the Go4 distribution, but can be retrieved when downloading the stream framework and compiled against a
regular Go4 installation. Currently there are several examples dedicated for testing of different data acquisition fron-
tends. A widely used implementation treats various use cases of the TRB3 hardware read out with DABC data acqui-
sition and written to HADES list mode (hld) format (available at

https://web-docs.gsi.de/~dabc/doc/dabc2/hadaqg trb3 package.html).

The actual C++ code for such data formats is written independent of Go4 with different base classes and object orga-
nization methods (subdirectory “framework” of stream installation). The application within Go4 will just use a
number of ROOT macros to enable parts of the provided functionality, or to extend the stream classes for user de-
fined purposes. For instance, subdirectory “application/trb3tdc” of stream installation contains macros
first.C and second.C that are used to set up the TDC mode analysis of the TRB3 hardware. These macros do not
contain analysis actions of different Go4 analysis steps, but will both be invoked at initialization time. In these exam-
ples the whole stream processing is embedded to one Go4 analysis step, and optionally a Go4 user event source for
non-MBS data formats (see subfolder “go4engine” of stream installation). Macro first.C is meant to instantiate
all precompiled entities to be used in the event building analysis of the input streams. Additionally, macro second.C
may optionally define advanced user subclasses of the stream framework that are compiled at runtime using the
ROOT ACIiC features. So these macros refer to processing “steps” of the stream framework.

To download and install all required components for stream analysis (including DABC and Go4 frameworks), the
following link can be used: https://github.com/gsi-ee/pack .

At GSI Ixpool linux, the stream framework is installed together with Go4 and DABC on /cvmfs mounts and can be
activated by calling

. /cvmfs/eel.gsi.de/bin/trb3login

(note the “dot blank” to source the script in bash).

35

https://web-docs.gsi.de/~dabc/doc/dabc2/hadaq_trb3_package.html
https://github.com/gsi-ee/pack
https://github.com/gsi-ee/stream

3.11 Examples of embedded elder analysis

The elder (ElderPT) framework (available at https://git.gsi.de/eel-software/elder) is a separate C++ analysis frame-
work that allows the user to set up the analysis from precompiled processing modules by means of a text based con-
figuration file analysis.config. The concepts of this framework are described here:
https://git.gsi.de/eel-software/elder/elderpt/-/blob/master/README.md?ref type=heads

Concerning the data acquisition formats from MBS used at GSI, elder offers a set of unpacker modules (EELDER
package) that can be used without compiling from the existing installation. A description is available here:
https://git.gsi.de/eel-software/elder/eelder/-/blob/master/README.md?ref type=heads

Although elder may work with an own runtime environment, it can run within Go4 by means of a special interface
implementation of TGo4EventProcessor. The corresponding Go4 library 1ibGo4UserAnalysis.so isin-
stalled together with the elder framework and will be loaded instead of a user compiled library on Go4 startup. It re-
alizes the first Go4 analysis step that may process the regular MBS event sources, and produce histograms and condi-
tions as defined in the elder analysis. The parameters of such analysis are read from an analysis.config script in the
Go4 working directory, for example:

using std
using eel

crate kinpex1
procid 1
module wr_time eel.WRTime
module febexparams eel.FEBEX34_PARAMS
for $i in [0:13]
module febex$i eel.FEBEX34(1,%1i)
end
end

for $i in [0:13]
processor febex/module$i std.tuple(trace[16],filter[16])
trace[0:15] <- kinpexl.febex$i[0:15].trace
filter[0:15] <- kinpex1.febex$i[0:15].filter
waveform trace 200 persistent in trace
histogram trace 16384,0,16384 in resolution
end
end

processor daq/rate std.tuple(time, events)
time <- event.time
events <- event.number
ratemeter events:time

end

This configuration will provide a raw data analysis for a FEBEX system which is read out via optical fibers with a
KINPEX PCle adapter and a PEXARIA white rabbit timestamp receiver. The crate tag tells the elder unpacker to
decode incoming MBS subevents of a defined procid. Note that the processor tag defines processing units in the
elder framework; within Go4 everything is running in the first analysis step. Further details of the elder configuration
syntax are explained in the above references.

At GSI Ixpool linux, the elder framework is installed together with Go4 on /cvmfs mounts and can be activated by
calling

/cvmfs/eel.gsi.de/bin/godelderlogin

(note the “dot blank™ to source the script in bash).

This ensures that elder is used together with the appropriate Go4 (and optionally DABC) runtime environments. Af-
ter calling the login script, just run “go4” and leave the specifications of user analysis library empty in the “Launch
analysis client” window. Note that any (syntax-)error in the elder configuration has the effect that Go4 will stop pro-
cessing. Please have a look in the analysis terminal output then.

36

https://git.gsi.de/eel-software/elder/eelder/-/blob/master/README.md?ref_type=heads
https://git.gsi.de/eel-software/elder/elderpt/-/blob/master/README.md?ref_type=heads
https://git.gsi.de/eel-software/elder

4 How to Use the Go4 GUI

The GUI ist started from shell by command

go4

The following picture shows the GUI with all elements. On the left side you see the Go4 browser. The right
side will be the display panel. Below is the log message window and the analysis status display. With Show/
Hide in the Settings one can configure the layout and save/restore it. All buttons in the top row are also avail-
able as pull down menus commands.

% God v4.3.2 @Ixg0526 <Controller> - o=
File Tools Analysis Settings Windows Help
a = =
XY YTEEITSTY EEY R = Y-k
|@wzs J@fnrens ~|@ [LELEesce=nB0IdPo @HJ DiviaePadl: 1T k[T o
HIIA scatter jINu Errors jICanesian j|x: Lin jIY Lin jIZ Lin j @S
Browser b S
“% Panell: Set conditions
Name | Infe | Time = - -
] Workspace Tolder File Edit Select Options
o |ha histo1 histo title 09:51:4C %‘_
= (3 Analysis folder ram 09:55:30
- (1] Histograms folder
T file.root
ol His1 Condition histogram 09:53:5¢
- [E] eHis1 ‘Go4 window condition 09:53:56¢
& Analysis ‘Controller
=1 ([Histograms All Histogram objects
@[] Crate1 UserFolder
- [Crate2 UserFolder
M crichix2 Crate 1 channel 1x2
|da His1 ‘Condition histogram 09:55:3C
- |da His2 Condition histogram 09:55:3C
A Hisig Gated histogram 09:55:3(
- & His2g ‘Gated histogram 09:55:3(
[da Sumi Sum over 6 channels
- |4 Sum2 Sum over 8 channels shift 1
|4 Sum3 Sum over 8 channels shift 2
& SumicCalib Sum over B channels(keV)
& FitSource Copy of fit data b
|da FitTarget Copy of fit result
- |4 Eventsize Event size [b]
= ([Conditions All Condition objects
- [wincon1 Go4 window condition
- [H] wincon2 ‘Go4 window condition
& cHis1 ‘Go4 window condition 09:56:3(
- [cHis2 Go4 window condition 09:55:3C
--[@] polycon God polygon condition =
T | _le = Analysis Terminal [ERIER
Log window s
Date Time . |Type [Description o
0 q d fro
@ 24.09.08 095427 Info Analysis TXXXAnalysis event classes were initialized.
@ 24.09.08 095427 Info Analysis nameslist was requested from client current
@ 2400.09 095427 Info Client UserClient-Ixg0526-11277 working function is stared...
@ 240909 095427 Info AnalysisClient UserClient-lxg0526-11277 has started analysis processing.
© 24.09.08 095427 Info Analvsis nameslist was reauested from client current LI
= [filedmd - Current Ev/s | HDEEE|A\rerage Ev/s | EE| s | e = = HHH |Events ‘2009-09-24 09;55;29‘

gui300
This would be the minimal look of a running analysis (the date is updated from the analysis):

* God v4.3.2 @Ixg0526 <Controller>
File Tools Analysis Settings Windows Help

& fleima | - Current Evis AP20G | Average Evis 40 s yy9eIOO0 | Events 2009-09-24 10:00:07 J

gui301

There are many keyboard shortcuts to handle windows and actions. See chapter 10, page 105.second.C

37

4.1 GUI menus

The icons in the top line are grouped into three segments corresponding to the first three pull down menus File,
Tools, and Analysis.

4.1.1 File, Tools, Analysis menus

Pull down Icon Function

File Open: opens local ROOT file

Open Remote: open TNetFile, TWebFile or TRFIOFile to access re-
mote data

Connect DABC: open connection to DABC data socket (optional)
Connect HTTP: open connection to ROOT/GO4 web server

Open HIST Server: open connection to gsi histogram server

Import histograms: read from ASCII or ORTEC format file

Save memory: save content of the memory browser into a ROOT file

Close all files: close all ROOT files opened in file browser

Exit: closes window and exit from GUI

Tools View Panel: creates window (canvas) to display histogram(s)

Fit Panel: opens fit panel

Histogram properties: opens window showing histogram properties

Create New His: opens histogram creation window

Condition properties: opens window showing conditions properties

Condition Editor: opens central condition editor

Event Printout: examine current event contents

Create Dyn. List Entry: histogramming on the fly

Load Libraries: opens tool to load ROOT libraries

User GUI: starts user GUI

Analysis Launch Analysis: starts up the analysis task (as client or server)

Connect to Analysis: login to running analysis server

Prepare connection: allow external analysis client connect to this gui

Disconnect Analysis: remove connection without analysis server
shutdown.

Shutdown Analysis server: in administrator mode only!

C L OETHLTMBFEEAREKEEELSHIE B § % 6 §

L 4

Set+Start: submit setting and start analysis
- Start: start analysis events loop (after setup and submit)
@ Stop: stop analysis events loop
% Configuration: open the configuration windows
Analysis Window: opens the output window of the analysis

4.1.2 Help menu

The help menu provides to read several Go4 manuals on-line. Introduction (user manual) F1
Keyboard shortcut F1 will display the main user manual. Note -
that you need an external pdf viewer to be installed on your sys- Reference manual
tem to read them! Additionally, you can get version information Fit Tutorial
about the Qt, ROOT and Go4 environment here, also available —
by pressing keys F2, F3, and F4, resp. If Go4 has been installed About Qt F2
with DABC framework, this is also shown here. About ROOT F3
About DABC
About Go4 F4
4.1.3 Settings menu qui3s7
In the Settings pull down menu as shown on the right side one can set
different parameters .
You can adjust all fields according your needs. Then Save Settings. The Showhide -
next start of the GUI will restore the saved layout. Note that settings also Font...
contain other preferences, like window geometry and tools visibility, Style P
view panel background color and crosshair mode, graphical marker ap- Preferences
pearance, connection setup parameters, etc. By default, the settings are — -
stored in text files $HOME/.config/GSI/go4.conf (for detailed Panel defaults -
settings) and $PWD/.config/GSI/go4toolsrc (contains toolwin- Log actions. ..

dow layouts). To get the standard setup one may delete these two files.
Note that since Qt 4.4 the QSettings are always in the home directory;
however, the Go4 toolwindow settings may still be at a different location
(usually in the current directory to provide different toolbar setups for dif-
ferent Go4 analyses).

Settings behavior can be changed using environment variable GO4SET -
TINGS. If this is set, the GUI toolwindow preferences are used from di-
rectory $GO4SETTINGS. If GO4SETTINGS contains keyword AC-

Generate hotstart

Break hotstart execution
Terminal history
Terminal font...

Save settings

COUNT, the Go4 toolwindow settings at $HOME/ .config/GSI/go4toolsrc are used (like the other

QSettings).

With the Showlhide entry of the settings menu (or with RMB in an
empty menu region) one gets the submenu on the right to select which
tools shall be visible. The actual content of these windows is preserved
even if they are not displayed. This is also available as popup menu
when clicking the right mouse button on an empty field of the main win-
dow.

Keyboard shortcuts F6, F7, and F8 may toggle visibility of Browser,
Log window and MBS monitor tools, resp.

Fonts and Style of the Go4 GUI can be selected from the available ones
after clicking the corresponding menu entries.

Fetch when drawing
Fetch when copying
Fetch when saving
Hide TGo4EventElement
Draw itermn once
v Rubberband when moving windows

Preferences specifies when
objects are fetched automat-
ically from analysis to the
GUI cache: each time when
drawing object into a view
panel, each time when

v Browser F6
Log window F7
MBS monitor FB8

v File Toolbar
v Go4 tools
v Analysis Toolbar

Canvas Tools
Color Tools

v Browser Options

Draw Options

v Hist Draw Options
v Zoom Tools

Go4 Command Line
Tree viewer

v Analysis Command Buttons

GUI HighDFI Scale factor...

copying object to local workspace, or each time when saving lo-
cal objects to file. All or none of the above may be selected. Note

that refreshing the local view manually or in monitoring mode is not affected by these settings. Option Hide
TGo4EventElement toggles if the Go4 Tree viewer may hide, or show all leaves which belong to such event
base class. Option Draw item once enforces that each object is displayed uniquely in one view panel only, so
double clicking the same item again will not draw it in a new pad, but will activate its existing view panel dis-
play. Option Rubberband when moving windows will change the paint mode of all Go4 windows: when en-
abled, windows will show a “rubber band” outline when moved or resized, otherwise window is rendered com-

39

40

pletely during resize. This option may avoid graphics flicker on some systems (Qt5).For Qt versions > 5.6.1,
menu GUI HighDPI Scale factor.. allows to define a Qt specific scaling factor to boost the size of the entire
Go4 GUI for better icon visibility on 4k displays. Note that this scale factor is applied from most recent settings

no sooner than the next restart of the Go4 GUI!

Panel defaults allow to set the default view panel layout.

In Panel defaults» Canvas color menu the default background color for
all newly opened view panels can be set. This color may be saved together
with the other settings. The option Panel defaults» White canvas for
saved images toggles if the canvas background colors are suppressed when
the viewpanel is saved as image. Panel defaults» Marker labels specifies
the default label layout, Panel defaults» Statistics box defines default
fields in ROOT histogram statistics, (see figures below).

The Superimpose mode entry specifies if the view panel is started in su-

Canvas color...

v White canvas for saved images
Marker labels...
Statistics box...

v Superimpose mode
Cross(X)hair mode
Show Event Status

perimpose mode, i.e. histograms overlay existing plots instead of replacing 4 Object_s cloning
them when “drag and dropped” on a pad. The Crosshair mode entry tog- “
gles the default crosshair cursor on/off for all newly opened view panels. o - _date
This crosshair state may be saved together with the other settings. How- v Drawitemname
ever, the crosshair can be switched independently for each pad in the menu Draw line width ...
of the view panel (see chapter 4.9, page 61). Similarly, view panel display Draw fill color ...
options Draw Time, Draw Date, Draw item name, and edit mode Show Draw fill style ...
event status can be set to defaults here. The entries Draw line width.., TH1 draw opt ...
Draw fill color.. , and, Draw fill style..., allow to set defaults of these TH2 draw opt ...
graphical attributes for all histograms and graphs. This may be useful to TH3 draw opt ...
improve the plot visibility on a high resolution display monitor. Moreover, TGraph draw opt ...
default ROOT draw options for TH1, TH2, TH3 histograms and TGraph Printf format ...
can be specified as string of keywords when selecting these menu entries. Palette settings ..
Printf format allows set a format string in printf style controlling the
printed range and accuracy for all float values in the histogram statistic

8 @ Global marker label setup: <@Ixi062> D @ @ &

Windows/Polygons
Draw region label
Display Integral
Display X mean

Display X rms
OS a Global histogram statistic box setup: <@Ixi0&2> & & & X%

Display X maximum [Dizplay ¥ maximum

Display region limits
Display Counts maximurm
[Display ¥ mean

[Display ¥ rms

Show Statistics Box |%.4E

Show in Histogram Statistics:
Point markers

Draw label connection line

Number Format

[2.4E

[x

Histogram Name RMS Underflow Draw marker label

Entries Mean value Overflow Display X coord [Display ¥ coord

Integral Curtosis Skewness [Display X bin# [Display ¥ bir
Dizplay bin contents

Display Errors Width | 020 Height | 0,16

Number Format

| x|

box. Finally, the Palette settings allow to specify the default ROOT color palette, and the minimum and maxi-
mum palette index to be used in the Go4 color palette tool (see section 4.9.7). By this restriction the user may
exclude legacy ROOT palettes <50 which are hardly usable for a proper visualization of 2d histograms.

The Log actions of the GUI can be defined in a setup
window from the settings menu. By default, the log output
(e.g. condition properties, histogram information) is
printed into the shell window where the GUI was started
from. Additionally, a text file may be specified for output.
Logging mode specifies if log output is produced On de-
mand only (i.e. on clicking the log button 2 when avail-
able), or Automatic whenever the content of an editor/in-
formation window changes. Priority defines the level of
output suppression: Errors, Warnings, Infos, or Debugs.

Priority:

Logging mode:

printing on GUI shell window

writing to file: | godlogfile.txt Al

[z][=][c][x]
On demand

Infos

Y| X

Level Errors will only log in case of an error, Debugs
will printout even debug information of the Go4 kernel.
This reflects the priority of the TGo4Log::Message() method.

The Terminal... entry allows specify the set up of the analysis terminal (section 4.5.1). The option Print Time-
stamp toggles to frequently printout the system time within the regular analysis output, i.e. after each text buf -
fer retrieved by the analysis process. This can be useful to evaluate the sequence of some analysis actions in the
analysis terminal log later. The format of such timestamp can be defined with the Timestamp Format... entry,
e.g. yyyy-MM-dd hh:mm:ss.zzz to produce time stamps of the form G04-*> [2019-10-18 18:30:08.059].
With entry History the buffer size for the analysis output window can be limited, the entry Fonts.. lets the user
select the font of the letters.

The Generate hotstart entry will save the current state of the GUI (window geometry, objects in memory and
monitoring list, objects in view panel, analysis settings) to a Go4 hot start file (* . hotstart). The name of
the hot start file can be defined in file dialog here. When re-starting the Go4, the hot start file may be used as
command line argument, restoring the state of GUI and analysis (see chapter 4.17, page 84).

4.1.4 Windows menu

The Windows pull down menu shown on the right side provides items to

arrange the windows and to save and clear the analysis and log windows. ?ﬁljcade

Cascade will arrange all windows of the Go4 workspace in a cascading -

manner, Tile will fill the Go4 workspace uniformly with all active win- I

dows resized as tiles. Close all will close, Minimize all will iconify all Minimize i
workspace windows. Selecting Full screen or keyboard shortcut F11 will LT FEm A
expand the Go4 main window to full size, or collapse it to the previous Save Logwindow
size when selecting it a second time. Clear Logwindow
Save Logwindow and Clear Logwindow allow to save the contents of the Save Analysis window
log window to a text file, and to clear the log entries, resp. Similarly, Save Clear Analysis window
Analysis window will store the text output of the analysis to file, and 1 Analysis Terminal
Clear Analysis window will erase it. 2 Panel

Finally the Windows menu contains a list of all windows in the Go4 1 Panel2: [histo1]
workspa%ce by' their title. SeleFting an entry in this list will activate the cor- F s B
responding window and pop it to the front. " Panel3: [DataRate]

uil67
4.2 Load libraries to GUI :
To access data from user defined classes (like parameters or events) a library including the ROOT dictionary is
required. This library is produced by the make file and has the name 1ibGo4UserAnalysis.so. Itisrecom-
mended to load user libraries for non-Go4 classes (for instance, user event classes) before opening a file with a
TTree, where object of these classes are stored. There are three different ways to do it.
First, any external shared library (with or without ROOT dictionary inside) can be loaded by press of the %&
button on the main window. A file dialog then asks to specify the library to be loaded.
Second, set the environment variable GO4USERLIBRARY to a list of user libraries (separated by colons) to be
loaded when the GUI starts. Typically before run the Go4 GUI the user should type in the shell:

export GO4USERLIBRARY=..../libGo4UserAnalysis.so:..../libOther.so

Third, the new possibility (since ROOT 4.00/08) for automatic load of libraries with a . rootmap file. This
file contains information to automatically load all necessary libraries for user classes. All make files of the Go4
examples generate . rootmap files during compilation. To explicitly generate this file again, type make map
after compilation. If this file is located in the current directory (where GUI is started) or in the user home direc-
tory, all libraries will be loaded automatically at the time when required. For more details about .rootmap
files see the ROOT home page.

41

42

4.3 Launch analysis

Press the ®® button (or Alt a n or Strg n). This will start the Launch analysis window to execute the analysis
task on another host. The operation mode of the analysis task may be “As client” (default), or “As server”; this
has to be specified in the left selection box on top of the Start Analysis window.

The difference of these modes is that in client mode the analysis connects as client to the starting GUI and will
be finished when the Go4 GUI terminates. There can be only one GUI connected to an analysis in client mode.
The starting GUI will connect automatically to the analysis client after launching it with full controller priv-
iliges.

In contrast to this, the analysis started “as server” will be an external process independent of the starting GUI.
Therefore in server mode the analysis can not run embedded into the Qt Window of the GUI. Any number of
Go4 GUIs may connect to this analysis server with different priviliges, but only one GUI may be the authorized
controller. Especially the starting GUI has to login to the analysis server after launching it in a separate dialog
window. In addition to the established analysis server with Go4 sockets, it is also possible to launch the analy-
sis as server with an HTTP server as connection to the GUI, and to additional web browser GUIs. This feature
is selectable with the second operation mode selection box (“Go4 sockets”, or “HTTP server”).

4.3.1 Launch analysis task in client mode

Besides the selection of the operation mode,

the popup window expects an arbitrary o8 &
name for the analysis and the node name of
the machine where the client should be
started. Normally this is the current node Host localhost Port Nam |MyAnalysis
(Localhost) as offered by default. Fur-
thermore there are fields for the user work-
ing directory (in this directory the analysis Lib L'|||ibGD4USEFAna|YSiS-SO | @
is started) and the analysis file (library or Args: |
executable) name . Note that these values
are stored to, and retrieved from the cur-
rent Go4 settings file. Start the analysis
with button Start or RET.

The client will be started in local process @ X|
(starting mode: exec), in a remote shell
(mode: rsh), or secure shell (mode: ssh).
The analysis output is directed to a text window inside the GUI (“Qt window™), or to an external xterm, or to
the KDE konsole (if existing), depending on the selected Shell mode. Individual configurations for starting and
shell mode are stored in $GO4SY S/etc/go4.prefs file and can be adjusted there.

After initialization the client connects to the GUI. When this procedure is done, the message "Starting
analysis client ...Please wait” changes to "Editing Analysis Configuration ..." and the
GUI is ready, popping up an analysis terminal window and the analysis configuration window. Here the analy-
sis steps can be configured (see chapter 4.4, page 46). Then the analysis must be set up by pressing Submit (or
Alt u).

After setting up the analysis it is started by ¥ (or Alt a s or Strg s). In the browser the directory of the remote
Analysis appears. The next figure shows the GUI with a running analysis. On the right side is the browser with
the analysis directories; on the left side the analysis terminal, and the analysis configuration window.

Launch analysis o & W e

Operation mode: As client (default) j|

Dir hwiscJadamczewfgo-ﬂrworkfgo4fGo4ExampIe UserSource/ 4

’—Starting mode ——— Shell mode

® exec) rsh) ssh||® Qtwindow _ xterm _ konsole

% -~ Go4 v4.4.0 @Ixg0523 <Controller name:MyAnalysis> [=][=][x]

File Tools Analysis Settings Windows Help
Browser b .8 v . x An s Terminal
Name [Unpack xxo \/ Analysis xoo \
L1 Workspace Step Control MBS Event printout: 7397212 %s 10 1len 34 trig 1
Analysis ? Mbs Subevent ts 10 1len 14 procid Octl Oecr
B (1 Histograms v Enable Step v Source Store 2742 3032 413 800
B e Fvent source Mb: 1gzb 1963 0 11 g id 4ol 2
(] Crate2 s Subeven s en proci c cor
[J§ crichixz MESEnGbr 1042 915 2701
s His1 . daq3 b1
Il His2 NI g 4l Event 7751078 Type/Subtype 10 1Length 30[w] Trig:
| His1g 0 all 1 1s SubEv ID 0 Type/Subtype 10 1 Length 12[w] Control
i His2g = 183 0 3058 0 3008 0 1396 0
i sSumi Auto Save File 249 0
& Sum2 SubEvID 4 Type/Subtype 10 1Length 6[w] Control
i Sum3 B /gauss_AS root Al @62 0 3042 O
—lla Eventsize Enabled once 5 v Overwrite
&1 Paramsters Analysis Configuration File
|- L DynamicLists
(1 Trees =& [sodanalysisPrefs oot @y Press enter to execute. | @PrintConditions() =y
& (1 Pictures —
([condset =» &= submit [|p Submit+Start| (& Close b @ i = R
dag3 i M3 current Evis 24447 Average Evis s {IE0M000 | Events 2009-11-10 14:46:45
L I
gui305

The configuration window is described in more detail in the next chapters.

4.3.2 Launch analysis task in server mode

To launch the analysis in server mode , the Operation mode in the start dialog window must be switched to
“As server” mode. The other settings are the same as described in section 4.3.1, except for the disabled possi-
bility to run the analysis shell in the internal Qt window of the GUI. Immediately after starting the analysis
server, the Connect to server analysis dialog will pop up, expecting specifications for login of the GUI to the
newly created server.

4.3.3 Connect to existing Go4 analysis server
After the analysis server has been started (from the

start dialog, from other GUI, or from external shell a8 & Gonnect to server analysis &g e &
command line, respectively), the Go4 GUI can con-

nect to the server. This is done via the “Connect Connection Go4 sockets v
server” dialog that is available from the connect but-

ton % in the analysis menu. If the server has been Host localhost Port 5000 ¢
launched before from this GUI, the connect dialog

will popup automatically. To establish this kind of Account Controller v
connection, the “Connect server” dialog offers the

Connection mode “Go4 sockets”. Password v default
Port number must match the connection port as

printed out in server terminal window. Host should Connect X

specify the node name of the server machine.

Three different Accounts (roles) for login are pro-
vided: Observer, Controller, and Administrator.
Each login has to be verified by a password. The Go4 default passwords go4view (observer), go4ctr 1 (con-
troller), and go4super (administrator) are used when the default check box near the Password field is ac-
tive.

These passwords may be changed in user analysis class by method DefineServerPasswords(const char* ad-
min, const char* controller, const char* observer) with the arguments specifying the new password for the ap-
propriate role. In this case, the correct password must be typed into the password field. See code examples (as
comments) in Go4ExamplelStep and Go4ExampleAdvanced.

Only one controller or administrator may be logged in at the analysis server at the same time. If a controller (or
administrator) GUI has already been attached, the next controller or administrator login will get an observer
role. Observers may only view analysis objects and configuration, but may not modify them. Submit, Start and
Stop, and remote macro execution is forbidden for observers, too. The controller account may modify all ob-
jects and the analysis setup and change the analysis running state, but may not shutdown the analysis server it-
self. Finally, only the administrator account may terminate the analysis server. After connection is established,
the GUI main window title will show the role (Observer , Controller, Administrator).

43

After connection a controller can change and submit new the configurations. When connected as an observer,
button £€* may be used to get the object list from the analysis in the browser. One can also get the configuration,
but cannot submit them.

The GUI disconnects from the analysis by #%, but the analysis continues to run. To really shut down the analy-
sis one has to use button &% (administrator only).

No additional code should be implemented by the user to let analyses work as analysis server. All neces-
sary jobs are done by standard go4analysis executable. It is recommended to convert older analysis code to new
launch scheme — mainly remove main executable and provide several initialization routines as it done in exam -
ples. To run analysis as server from shell, one should call “go4analysis —server <name>”. The usage can be
seen in any go4 example packages.

For analysis servers in ROOT macros see chapter 5, page 87

4.3.4 Launch analysis task as HTTP server

To launch the analysis as HTTP —
server mode, the Operation mode in B
the start dialog window must be
switched to “As HTTP server”. In this
case it is also requjred to specify a Host ||DCE|hOSt Port |890'1 A/ Nam |MyAnaIysis
port number for the web server with
the Port spinbox. Note that starting
up the HTTP server might fail if this . /|[ibGo4UserAnalysis.so | &
port number is already occupied on Args: |
the host. In contrast to the Go4 socket
analysis server, the analysis task can {
also run in the internal Qt window of ® exec ' rsh _ ssh|® Qtwindow _ xterm _' konsole
the Go4 GUI. If an external xterm or
konsole window was chosen, their @ &
output would be redirected though to
the Qt analysis window. Immediately
after starting the analysis HTTP server, the Connect to server analysis dialog will pop up, expecting specifi-
cations for login of the GUI to the newly created server (see chapter 4.3.5).

Instead of starting the analysis HTTP server from such GUI, the user may also directly call “go4analysis —http
<port>” in an external shell (see section 7.1, page 92).

Launch analysis Y @ & e

Operation mode: As HTTP server f’|

Dir |'nisc.'adamczewfgo4workfgo4fGo4ExampIe UserSource/ 4

Starting mode —— Shell mode

4.3.5 Connect to existing Go4 HTTP server
If go4analysis has been started as HTTP server (either

from the launch dialog, or by command in external 2 o ———— P O o &
shell), it is possible to connect the Go4 GUI to such

web server apd perform anal¥51s configuration aqd Connection |HLIP semver ”
control via this connection. This can be done even if

go4.analysis is running in pure batch mode, i.e. without Hosk Ixg0546_gsi de | Port 8901 2
option “-server”.

To establ_ish this kind of Connecti.on, the “Connect Account |adamczew other. .. v
server” dialog offers the Connection mode “HTTP —_—
server”. The input fieldS for Host name, Port number, Passwurd |..........| | . default
and optional Account and Password are then dedi-

cated for this web server access. Additionally, besides Connect %
the Go4 standard roles (observer, controller, admin), e

any account name can be specified when choosing the
“other...” entry in the Account combo box. Once con-
nected, the objects at the http server are visible in the
Go4 browser tree and can be drawn in view panels and editors, like with the native Go4 socket connection. All
GUI elements for analysis configuration, rate monitoring and run control will use the http connection. In addi -
tion to the “Go4 sockets” analysis server (chapter 4.3.3), the Go4 HTTP server will also deliver the analysis
text output into the embedded GUI analysis window.

To disconnect the GUI from the web server control, button #% can be used. Like for the Go4 analysis server,
the possible shutdown of the go4analysis process by button &% is restricted to administrator role and depends

on the web server set up. Note that full control of the web server go4analysis is possible only with ROOT ver-
sions > 5.30.00 (> 6.04.00, respectively).

Connections to any number of ROOT or go4analysis web servers may also be done by using the entry @
(Connect HTTP...) of the main File menu (see chapter 4.7.8 on page 56). However, only the first of these con-
nections may get full configuration and control access via the GUI elements. Further go4analysis and ROOT
web servers can be connected to the Go4 GUI just in observer mode, i.e. it is possible to browse and monitor
the objects, but not to modify and control the set up.

45

46

4.4 Analysis configuration

4.4.1 Configuration window

The Analysis configuration window shows

the last valid setup of the analysis steps. |EEMENEERMNTUEIT
These are taken from the user analysis con- / Raw xxx \/ Profile xo0
structor parameters, or from the ROOT file ~ Step Control
GO4Ana1ySiSPrefS. root (Hl analysis ¥ Enable Step ¥ Source ¥ Store
working directory), if existing. ~Event source
The Analysis configuration consists of the

. - . MBS Stream Server -] s
configuration parameters for each analysis
step. The analysis steps are shown in differ- Name:|depc418 =J
ent tabs of the configuration window. The Port: |dflt ~tmout: [1s A/ Retr: [never 2
values for event source, event store and 0 0 fal 75 E a0
working status of the analysis steps can be
changed for each step separately. Depending r Event store
on the chosen Event Source, relevant pa- GoA4FileStore (1 tree/step) (*.root) v
rameter fields will highlight for optional pa- Name:|fdata!test!unpack5.root al
rameters. The MBS File, e.g., can specify an ’— A ’7 i) o
MBS tag file name (see M%S manl;al),};nd oo /‘ 32k8 /‘ IS_% 1000 /‘ S
numbers for the first event, the last event —Auto Save File
and the event number step between subse- E |Go 4AnalysisASF root ﬂ
quent events to be processed. Multiple input A :
metafiles are supported by a preceding @ o0 & ! ‘ ’5—% [ogemmc
character (see chapter 4.4.2, page 47). The Analysis Configuration File
Event Source Remote Event Server needs a ﬂ E (Go4AnalysisPrefs.root ﬂ

Port number, Event Server and Stream
Server can either use the default MBS ports
(“dflt”) or may specify another port number
(when reading data from DABC). Additionally, for the on-line sources one can set a socket timeout Tmout in
seconds and define the number of reconnection retry attempts Retr. The latter is useful if the DAQ must be
restarted, so Go4 will automatically reconnect and continue once the data server is available, without submit-
ting the settings again. For user defined sources (see chapter 4.4.3, page 47), the optional string argument Args
may be evaluated in the user step factory.

The Event Store settings define the ROOT split level and branch buffer size of the ROOT tree, and the file
compression level. Also the number of tree entries interval for flushing out buffers to file (tree autosave inter-
val) can be specified in the rightmost spin box. If the Overwrite radio button is false, new events will be ap-
pended to a previously written tree of the same event store name.

Moreover, steps may be disabled completely: the first step, e.g., can be left out and the second step may read
its input from a previously created output file of the first step. Note: the input of the actual first step must be
specified; otherwise the analysis will not be initialized!

The auto-save file for analysis objects (histograms, conditions, parameters, dynamic list connections) is defined
for all steps with the auto-save interval, the file compression level, and the Overwrite option. Selecting once
for the auto-save interval will prevent saving the objects during the analysis run. However, the auto-save file
will be written once at the analysis shutdown (when pressing Submit for the next settings, or Close, resp.).
Auto-saving can be disabled completely by unchecking the ENABLED checkbox, i.e. the auto-save file is not
even opened for reading previous objects.

Note that the &l buttons at the different name fields will open a browser for the local file system to search for
appropriate file names.

The new settings are activated on the analysis client by pressing the = Submit button (or Alt u). Note: you
have to press Submit even if you want to apply the settings unchanged! To synchronize the configuration
window with the current analysis settings, the refresh button ¥ can be used. This is usually done automatically
on first connection of the analysis, but it might be useful when starting the analysis manually from a different
shell, or when changing the analysis setup independently from the GUI. For convenience, the I submit+start
button will submit the new settings and start the analysis loop immediately.

The submit button closes the previous analysis (i.e. all files and connections will be closed, all event classes ex-
cept for the analysis step factories will be deleted) and initializes the analysis with the new settings. The (&
Close button (or Alt C) will close down the analysis without initializing a new setup. The analysis process, how-
ever, will remain with all registered objects (histograms, conditions, etc.) available.

=»| < submit| ly Submit+Start| 5 Close|

To have the changed settings available on the next analysis client startup, press the Save Button . This will
write the current analysis settings to the file Go4AnalysisPrefs.root (default name for startup), or to
any other ROOT file specified in the file dialog or the filename text field. Previously written configurations can
be loaded using the Load button @ and the corresponding file dialog.
¢ Note 1: A changed configuration must first be submitted to the analysis before it can be saved.
e Note 2: When a new configuration is loaded, the previously active analysis is closed without sav-
ing the configuration. After loading a configuration it appears in the configuration window. Te
initialize the analysis with these new settings, the submit button must be pressed!

4.4.2 Multiple input files

There is the possibility to process multiple input files (source type MbsFile) in one analysis set-up. This can be
achieved by wildcard characters in the Event Source name field, e.g. *. lmd or data???_march03. lmd
or *. All files matching the wildcard expression will be read subsequently without closing the analysis; output
events may be written into one event store. Additionally, one may specify the name of a metafile containing a
list of inputs; the metafile name has to be preceded by an @, e.g. @gaussfiles. lml. Each line of the defini-
tion file gaussfiles. Im1l may contain the following format (values separated by blank spaces):

inputfile tagfile firstevent lastevent skipevents

The numbers of first and last event always refer to the running event count in the currently open event source,
starting with number 1 each (not the event number inside the event header). The skip events number defines
how many events shall be skipped in one file in between two processed events; this may be useful if a long
term sample of a large input file shall be taken. The tag file may contain information which events shall be pro-
cessed in the input file (see MBS manual).
At least the input file name must be specified; wildcards are not allowed here. Complete lines in the metafile
may be commented out by a preceding “!” or “#” character.
Moreover, metafile lines preceded by an @ character are treated as ROOTCINT commands, e.g.

@ .x setup.C

@ TGod4Analysis::Instance()->ShowEvent(“Unpack”); .
These commands are executed in between change of event source, thus allowing to use different setup parame-
ters for different list-mode files.
Note that multiple input files also work in batch mode. However, wildcard expressions must be put in paren-
theses (“”) if they are passed to the MainUserAnalysis or godanalysis as command line parameter. In
batch mode the input file suffix is automatically expanded to * . Lmd, if it was neither . Imd nor . lm1. There-
fore the meta file can also have suffix . lmd, i.e. @myfiles results in reading myfiles. lmd (although it is
a plain text file). A better way is to use suffix . lm1, because then one can omit the @.

4.4.3 User defined event sources

Besides the delivered Go4 event sources for the standard MBS or ROOT file input, there is the possibility to
define any other event source. In the analysis configuration window, there is the selection UserSource for the
analysis step Event Source type. In this case, a TGo4UserSourceParameter object is passed to the step fac-
tory of the step. The user source name, and optionally, port number and a text argument can be specified in the
configuration GUI to be evaluated on analysis initialization. An example of an analyis with a user defined event
source is provided in directory Go4ExampleUserSource of the Go4 distribution. Please see section 3.8, page 32
for further details how to implement a user defined event source.

4.4.4 Event store and event source for HDF5 format

HDF?5 is a widely used data model, library, and file format for storing and managing data' . If the HDF5 li-
braries are existing at the host system (currently Linux only), the Go4 framework can be compiled against these
at installation time and will offer the HDF5 formats as additional implementations for event store and event
source.

To install Go4 with HDF5 support, please follow these steps:

1. Install the HDF5 library on your system. This can be done by the Linux package management, since
many distributions offer HDF5 by default. Alternatively, the HDF5 packages are available for down-
load at https://support.hdfgroup.org/downloads/index.html and may be compiled at any location.

2. Specify the environment variable HDF5INSTALL in the Go4 configuration file build/Make-
file.discover . Please edit the provided line for HDF5NSTALL in this file such that it is uncom-
mented (remove the leading #) and define the location of the top directory of your HDF5 installation.

! https://www.hdfgroup.org/

47

https://www.hdfgroup.org/
https://support.hdfgroup.org/downloads/index.html

48

If you have installed HDF5 via the Linux package management, usually HDF5INSTALL=/usr/1ib64
is a good choice here.
3. Compile Go4 as usual with “make” in the future G04SYS directory.

After successful installation Go4 is capable of writing the output event into HDF5 formatted files by means of
the TGo4HDF5EventStore class. Additionally, the HDF5 files written by TGo4HDF5EventStore can be read
into the subsequent analysis step using the provided TGo4HDF5EventSource plug-in.

In the analysis configuration window, additional entries Go4HDF5 will appear in the selection boxes of Event
source and Event store, allowing to set this kind of event i/0. Moreover, the batch mode analysis program
go4analysis (see section 2.6) will offer additional command line parameters to handle HDF5:

godanalysis -h

STEP: individual step configurations

-step name : select step by it's name, if not found, first step will
be used
-step number : select step by it's number (first step has number 0)

“hdf5 filename : read step input from hdfs file (.h5)
-hdf5store filename : write step output into hdf5 file (.h5)

The following data types and levels of granularity for Go4 event elements are currently supported by the Go4
HDFS5 plug-in:
¢ Fundamental data types (signed and unsigned char, short, int, long; float; double)
e Arrays of fundamental data type (1 and 2 dimensions), like int [100] or double[5][42]
e Standard library vectors of any fundamental type, or vectors of any ROOT class, e.g.
std::vector<long>or std: :vector<TUserSubEvent>
e Standard library vectors of standard library vectors, std: :vector<std: :vector<TUserClass>>
e Structures defined by Go4 composite events (see section 8). Each composite event may contain other
composite events, or the data types above.

The following constraints currently apply for the HDF5 plug-in:

e A HDFS5 file can used as event source for a Go4 analysis step only if it has been produced by a Go4
HDFS5 event store of the previous analysis step. The data structure in the file must match the structure
of the input event object in the consuming analysis step. Especially this has to be provided for dynami-
cally configured members like Go4 composite event components, which may vary for the same user
analysis code depending on the setup!

e Many data types, like TString, std:string, std::map, etc, are currently not yet supported and will not be
written to HDFS5 file.

¢ Performance of Go4 HDF5 i/o is not optimized and is mostly much lower than the native ROOT Tree
i/0. This is especially the case when dealing with std::vectors.

The HDF5 file produced by Go4 may be read back by any HDF5 capable application. For example, their con-
tents can be checked using the h5dump tool of the HDF5 distribution:

adamczew@1lxg1308%: h5dump -H unpack.h5

HDF5 "unpack.h5" {
GROUP "/" {
DATASET "TXXXUnpackEvent" {
DATATYPE H5T_COMPOUND {
H5T_ARRAY { [8] H5T_STD_I32LE } "TXXXUnpackEvent_fiCratel";
H5T_ARRAY { [8] H5T_STD_I32LE } "TXXXUnpackEvent_fiCrate2";
H5T_ARRAY { [8] H5T_STD_I32LE } "TXXXUnpackEvent_fiCrate3";
H5T_ARRAY { [8] H5T_STD_I32LE } "TXXXUnpackEvent_fiCrate4";

DATASPACE SIMPLE { (92562) / (H5S_UNLIMITED) }

3
by
b

The example above shows the structure of the HDF5 file unpack.h5 written by the first analysis step of Go4Ex-
ample2Step (see section 3.6). This file contains 92562 events of class TXXXUnpackEvent . If calling h5dump
unpack . h5 , the contents of the arrays in the event N-tuple will also be dumped to stdout.

Please note that the Go4 HDF5 support is still experimental and not fully tested! Any feedback, experience
reports, or requests for further features is highly welcome!

4.4.5 Auto-save file mechanism

When auto-save is enabled (in MainUserAnalysis), all objects are saved into a ROOT file after every auto-save
interval seconds time, and before termination. The auto-save file can also be written on demand by Save button
= in the configuration window. At startup of the analysis the following actions are done:

1. The analysis is created.

2. The auto-save file is read and all objects are restored from that file. Objects already existing, i.e. cre-
ated in the analysis constructor, are overwritten by the objects from the auto-save file, except his-
tograms. Existing histograms are not restored!

3. Before creating objects in the processor constructor or the PreLoop() method of the analysis one
should check by the proper getter method if the object has been already restored from auto-save. If
not, it can be created. If it is created while already existing the existing object is deleted first, i.e. the
values from auto-save are lost.

When the analysis is controlled from GUI, objects are loaded from auto-save file when the Submit button is
pressed (full sequence see chapter 2.6.11, page 21)

49

4.5 Analysis control

50

4.5.1 Analysis terminal window

When using the Qt Window option in the launch window, the analysis terminal window of the GUI shows all
analysis printouts

% Analysis Terminal [pid:30120]

G04-*> Executing Python script: /misc/adamczew/godwork/god-app/godpy/basic.py &
G04-*= Executeline: TPython::LoadMacro("/misc/adamczew/godwork/god-app/godpy/basic.py")
Entering Python script
before wrapper import:
god == <ROOT.TGodAnalysis object ("GodAnalysis") at O0x1fed69@=>
no NextMatchingObject gives: <ROOT.TObject object at Ox(nil)=>
after wrapper import: =
god == <module 'godpy.god’ from '/misc/adamczew/godwork/god/python/godpy/god.py'>
god.analysis == <ROOT.TGodAnalysis object ("GodAnalysis") at Ox1lfed690>
no NextMatchingObject gives: None
TRACE SFP: © FEBEX: © CHAN: 3 300.0
TRACE SFP: © FEBEX: 0 CHAN: 13 300.0
TRACE SFP: © FEBEX: 1 CHAN: 3 300.0
TRACE SFP: © FEBEX: 1 CHAN: 13 300.0
TRACE, base line restored SFP: @ FEBEX: 0O CHAN: 3 3080.0
TRACE, base line restored SFP: @ FEBEX: 0O CHAN: 13 300.0
TRACE, base line restored SFP: @ FEBEX: 1 CHAN: 3 300.0
TRACE, base line restored SFP: @ FEBEX: 1 CHAN: 13 300.0
FPGA Trapez SFP: 0 FEBEX: 0 CHAN: 3 0.0 i
Press enter to execute."$/mi5c/adamczew/g04w0rk/g04—app/g04py/basic.pﬂ il;é”
L) 2]] & B &
guil33

Button £? clears the window, button v scrolls the visible text down to the end, & prints all histograms info,
B prints all conditions info (make window wide enough for the counter bars). Button % will open the event in-
formation window (see chapter 4.16, page 83).

Additionally, it is possible to kill the analysis process with the ®®% button on the hard way. This will disconnect
the analysis client after a while from the GUI and analysis can be launched again. However, this is not recom-
mended since the ROOT output files may remain in a non valid state after the kill!

Analysis terminal output can be stored by Windows » Save Analysis window menu command to text file.
Analysis terminal output history is limited by 100 Kbytes. This value can be changed in Settings » Terminal
» History menu command. To keep full history, 0 should be set. One can toggle a frequent printout of the sys-
tem timestamp in between the analysis terminal text by using Settings» Terminal » Print timestamps . The
timestamp format may be defined by Settings» Terminal » Timestamp format . The analysis window font
may be set using menu entry by Settings» Ter-

minal » Font... = -
When the analysis task is running in an external JJ % ilE @ I J AJI
shell (xterm, konsole), the buttons and macro gui325

execution line will appear in a special dockwin-
dow (see figure).

4.5.2 Macro execution in the analysis

The analysis terminal window offers the possibility to execute ROOT interpreter commands and macros in the
analysis task. Note that a history of previous commands of the session is available with the macro line combo
box (mouse selection, or arrow down key). [&] looks up for macro files (file filter *.C or *.py).

Using the go4 pointer (already set to TGo4Analysis::Instance()), one has access to all public methods of the
analysis framework from inside the macro. Note that the shortcut @ exists here for TGo4Analysis::Instance()->,
e.g. @PrintHistograms(“Cr1*”) will print all histograms with names matching the wildcard expression. In
macros the environment variable _ GO4ANAMACRO___is defined and may be checked. A detailed description
can be found in the reference manual.

It is not necessary to load the Go4 libraries in the macro again, since these are known at runtime in the analysis

anyway.

See also macro execution in GUI (see 4.19, page 85). $G04SYS/macros directory should be added to entry
Unix.*.Root.MacroPathin .rootrc setup file.

4.5.3 Python macros in the analysis

When beginning the command in the analysis command line with “$”, go4analysis will assume that the given
file is a python macro (suffix *.py) and executes it in PYROOT environment. Please note that this feature re -
quires that ROOT is also installed with Python features activated. The Go4 analysis object is automatically
bound to Python, therefore all methods of class TGo4Analysis are accessible from a Python script with the ref-
erence go4.methodname(). Moreover, a special Python wrapper is provided that optionally embeds the bound
TGo4Analysis into a native Python object go4 that may add additional features. For example, the NextMatchin-
gObject() function has been improved in the Python wrapper with a better wildcard filtering and error handling.
Further functions of the go4 Python wrapper are going to be developed.

The Go4 python wrapper framework is located at the $GO4SYS/python directory of the Go4 installation. Be-
sides this, there are some examples available at the repository https:/subversion.gsi.de/go4/app/go4py , or
https://github.com/gsi-ee/go4-app/tree/master/go4py

In addition to the interactive GUI command line, a Python macro may also be executed from compiled analysis
code when invoking function TGo4Analysis::ExecutePython() .

4.5.4 User defined macro command buttons

A GUI toolbar for user defined analysis macros is available from the menu Settings » Show/hide » Analysis
command buttons. This toolbar offers up to nine configurable command button that allow to execute any
macro command in the remote analysis by mouse click, or by pressing keyboard shortcuts Ctrl-1 to Ctrl-9, resp.
Moreover, commands may be marked to be executed by a timer in the macro configuration window. In this
case, the buttons will show up in green _

color. The corresponding commands G o a. a. o e e a. e O ?s oo
will be frequently invoked if the timer £

of the macro command toolbar is acti-

vated with a given interval, as specified by the ”seconds” spin box on the right side. To activate or stop the

timer, the rightmost button (“arrows” W or “stop” @ sign) may be pressed. In such way it is e.g. possible to
clear all monitored histogram contents every 10 seconds automatically, or to frequently invoke a script doing
some monitoring analysis.

e Define Commands and Tooltips P @ @ &
Command : Tooltip : Timer
Cl .ls list local dir contents ~ on
C2 TGo4log::Start Tracing() enable debug output on
CS TGo4Log::Stop Tracing() disable debug output on
C4 xset_Par.C set parameter to defaults ¥ on
C5 @GetHistogram(“LostEdges")-=Dump(); test of histogram dump on
Cﬁ Jenv show environment ~ on
C? @ClearObjects("Histograms™) Clear all histograms to 0 on
CQ $/misc/adamczew/godwork/god-app/g... |python test on
=/ Reset ¥ OK || @ Cancel

The macro configuration window as shown in the figure will pop up when pressing the leftmost & button.
For each button (C1 to C9) it allows to specify the macro command expression, an arbitrary tooltip, and the
timer execution flag. All commands as discussed in sections 4.5.2 and 4.5.3 can be specified, i.e. calls of com-
piled Go4 framework functions, and execution of ROOT and Python macros. An empty command text will dis-
able the button (grey color). The tooltip will appear as bubble help when pointing the mouse over a button and
should tell the user a summary of the expected actions. The associated keyboard shortcut (Ctrl-1 ... Ctrl-9) is
added to the user tooltip text by default. Finally, the frequent timer execution can be set for each command in -
dividually. The Reset button will clear all entries in the configuration editor, Ok button will activate the modi-
fied setup, and Cancel will discard the changes.

All definitions of these analysis command buttons are immediately stored in the Go4 user settings and are o
available at next GUI startup.

51

https://github.com/gsi-ee/go4-app/tree/master/go4py
https://subversion.gsi.de/go4/app/go4py

4.6 MBS status monitor

When working with the gsi multi branch system mbs as event source, Go4 offers a monitoring tool that can re-
quest information from the status port of a running mbs system. This is available as dock window from the
“Settings/ Show/hide” menu, or will appear when the mbs button #:5 is pressed in the analysis configuration

window.

% - God v3.0-0beta @Ixg0517 <Controller>

52

File Tools Analysis Settings Windows Help
|raviticily b S22 = oS €3] % 2= B @|eor itens <)
% Pangll: MbsEventRate M (mES | % Panel?: streansarver X =
File Edit Options O Apply to all | File Edit Opticns O feply to all ||[Hame
(Clorkspace
Events/s 14:23:56 | % Events served 14:23:56 | i|da histol
80 i--DMhs
[C i~ |4 Moz ventRate |
F r lAMbsDataRate =
14000~ 750 .+ =
C C .F!nalgsls
12000 70 = l:lHlsthr'amg
L C =-[[dCratel
L E -4 CraCho1 —
100001 65 i~ laCriCho2
r E b Cr1Chio3
8000~ 60F | Cr1ChO4
N £ i~ |4 CrdChos
F L | Cr 100G
ElC 551 | Cr1Ch07
E L e CriaChig
4000~ 50F + [(Crate?
L E - M CriChlx2
F £ Hisl
i i
F £ | Hisly
P T I I N VI I U A P Y N P I - His2g N
-2'h0018001600140012001000-300-600400-200 0 09‘180016091409‘12001000-300 -600 -400-200 0 & Fvertsize [~
= = [il |]
MB® [F¢ | M99 | Evs| YOSHOIFA A |Ev N | w/s | g {E}E| B [10-0ct-05 14:23:55‘ E] o More...
[streanserver 5oz [4G | % |- file closed | | e fite @ Status (O Setup (3 Setupil s [[000 bins] O trend
o5 [R3EZ ‘ TIEH‘ Current Ev/s | -HEH‘HVEPagE Evfs BEH| = E4540AA | Events ‘2005-10-10 14:23:56‘

gui327b
The screenshot shows the Go4 main window with the mbs monitor tool docked in the bottom part, right above
the Go4 analysis status line. The mbs monitor by default shows just one line of information, but may be ex-
tended by the lower line with more details using the More... checkbox.

The upper line displays, from left to right: The mbs logo MBS which is animated when the mbs acquisition is
running; a text line to edit the mbs host name; event rate (events/s); total events acquired; data rate (kB/s); total
data acquired (Mb); time and date of last refresh. On the right there are control buttons: With €3 the mbs status
server is newly connected and the information is refreshed. It is possible to refresh the status frequently, this is
switched on and off with the buttons # and @, respectively. The refresh time can be chosen by the “seconds”
spinbox in the lower line of the mbs monitor window.

Additionally, the lower line displays (from left to right): Name of data server in use (streamserver, or
eventserver) and percentage of delivered events 1/n, as it is set in the mbs by command set stream n, or
set event n; percentage of real delivered events from this data server; name of the file which is currently
written by the mbs, if existing, and total amount of data written to file since mbs startup. The #2 button may be
used to print the complete mbs status structure, the complete setup structure, or the multilayer setup structure,
respectively, to the shell from which the gui was started. This is selected by the radiobuttons Status, Setup,
and SetupML. Note that printout of multilayer setup is enabled only if a real multilayer setup exists in the ob-
served mbs.

Besides the time selector for the monitoring frequency, the right side of the second line offers the possibility to
switch on several trending histograms. This is done by the trend checkbox. The overall number of bins may
be changed in the bins selector; the range of one histogram bin equals the monitoring frequency. Note that
trending histograms are only written if the mbs status monitoring is turned on (i.e. no new entry in trend his-
togram by manual refresh using button €¥). Three different trending histograms are currently produced: for the
event rate, the data rate, and the percentage of delivered events at the mbs data server (streamserver or
eventserver). They appear in the Go4 browser in the Workspace/Mbs folder and may be observered in Go4
view panels. The screenshot shows the trending histograms for event rate and streamserver event ratio.

Note that a warning sign A\ will appear in the upper line if connection to mbs status server fails.

4.7 The Go4 browser

After pressing ¥ the analysis starts and the rates are displayed at the bottom as shown in the screen shot below.
The analysis output window and the configuration window have been closed. A view panel created by @ has
been opened and a histogram is displayed by dragging & dropping a histogram from the browser into the can-
vas. Note the logging window displaying messages from the remote analysis. This log panel can be opened in
the Settings menu bar. The complete logging history may be saved into a text file by the
Windows » Save Logwindow menu command.

% = God v3.0-0beta @1xg0517 <Controller> - [Panell: His1]
o6 File Tools Analysis Settings lindows Help =181 x|
P e —3 - T [
zop@sd vk s ERHSE[Wnidily b ©2 a[Q[nfF- @
File Edit Options ™ Apply to all
— _Jj - Hame Flags |Info Tine Class =l
Condition histogram 14:16:47 Clarkspace Folder
~lhistol hista title 09:53:07 THII
Hi +-[(JAnaly=is falder
is1 A
Entrlen 2.9620130+08 EAnalysis Controller TGodAn:
Mean 1028 = COHistograns All Histogram o, .. TFolder
RMS 264.6 +-[(ACratel UserFolder TFolder
S Rderliow sl +-[ACrate2 UserFolder TFolder
Overtlow o - W Cr1Chls? =relt] Crate 1 channel, .. TH2I
IEE - BEERD |l His1 mow Condition histo...14:16:47 THII
Skewness 1084 |l His2 spr Condition histo... THII —
~|daHislg spu Gated histogram TH1I
|l HisZg f=ull} Gated histogram TH1I
| Evertsize =pu Event size [h] THID
L Suml f=all} Sum over 8 chan,.. THI1I
| da Sumz spu Sum over & chan, .. TH1T
| da Sum3 spu Sum over 8 chan,.. TH1I
~ldaSumiCalib f=ull} Sum over & chan, .. THI1I
[scly GodE lement . FiCr. .. THIF
- |da backtest s GodE lement . filr. .. THIF
~|da Myhistomen =du histogram title TH1T
| | da LinnaErkm ot =i GrdF lrment. . il .. | TH1F_ILI
4 »
of i from client current Info
. 14,17 .41 Lwg0517-8714 working function is started... Info
04,1005 14.17.41 AnaluysisClient Mufnaluysiz-lxe0517-5714 has started analusis processing. Infao _|
e e e .. s . - .
- Current Ev/s ‘ EL|EL|§|| Average Ew/s | E'{| s | E500n |Events |2005—10—04 14:18:48‘
I

gui309

The Go4 browser on the right side shows objects from different data locations in a folder structure. Remote ob-
jects in the connected analysis task are listed under the Analysis branch. The Workspace folder contains all
objects that are put into the memory of the local GUI, e.g. by creating fix copies of remote analysis objects. A
root file opened from the files toolbar with the @ button will appear in a folder of the filename; similarly, a
connection to a remote data source like the xrootd, the root webfile, or the gsi histogram server, shows up as
separate browser branch.

4.7.1 Browser columns

Beside the “names” column showing the objects in their folder structure by symbols, the Go4 browser has con-
figurable columns to display different kinds of properties of the displayed objects: Flags,
Info, Date, Time, Class, and Size. These can be switched on and off by the menu that pops
up on right mouse button click in one of these. Moreover, the order of these columns can
be freely arranged in the browser by dragging and dropping their caption to a new position.
The Flags column will indicate certain properties of the object by letters:

¢ m - shall be monitored frequently; or s - is static until explicitely refreshed

* d - object may be deleted; or p - is protected against deletion

e r—read only, can not be reset; or w — writable, may be reset

The Info field will usually show the type of the folder, or the title of the ROOT object.

Date and Time columns show the date or time of the last object refresh to the GUI inernal
cache (for remote data sources), or of the object creation (for local workspace), respectively.
Class column shows the class name, and Size will give an overall object size in bytes.

53

54

Name Flags | Info Date Time Class Sire -+
EAnalysis Cortrol ler TGodAnalys., .. = 92068
fr"l:lHisthr“ams All Histogram objects 2005-10-04 14:24:51 TFolder = GERZE0
=-[(AConditions All Condition objects TFolder = 1456
+-[(A5ubfolder UzerFolder TFolder = 252
- winconl = God window condition 2005-10-04 14:24:51 TGodhinCond 164
- winconz = God window condition 2005-10-04 14:24:51 TGodhinCond 164
sp Go4 polygon condition 20053-10-04 1432451 TGodPo lyCond 120
sp TGodlinCond 20053-10-04 14324151 TGodCondArray 132
sp TGodPolyCond 2003-10-04 14:24:51 TGodCondArray 132
el God window condition 2005-10-04 14:24:51 TGodhinCond 164
btall] God window condition 2005-10-04 14:24:51 TGodhinCond 164
~EnyConny =du 1-D window condition 2005-10-04 14:24:51 TGodhinCond 164
- (Paraneters All Parameter objects TFolder = 2328
- 128 WiKParl This is a God Paramete,.. THHHParameter 320
- 128 WKPar2 This is a God Paranete,., THHHParameter 920
128z jirafittar Thiz is a God Paramete, ., TGodFitter, ,, 32
128 zpacfitter This iz a God Paramete,,. TeodFitter, ., 32
- 123051 {Par Thiz is a God Paramete... Tr¥K¥CalibPar 424
T"EI:IDynamicListS Dyramic List Instances TFolder = B84
—-[(OPictures Picture objects TFolder = 184
EEcondset = Set conditions 2005-10-04 143124151 TGodPicture 92
EAPicturel = Picture example 2005-10-04 143124151 TGodPicture 92
- [ACanvases All TCanvaszes TFolder
= [AlserOh jects For User Objects TFolder = 1586
#yCalibration = 2005-10-04 143124151 TGraph 100
I&HultiTest = Thiz iz a test multigraph2005-10-04 143124151 TMultiGraph 56
=J-(ATrees References to trees TFolder
= #|Analys isxTree This iz a God Status O,,., TTree
- 4§ KHHAN LEvertt HHHANLE vertt TFalder
- % HA¥AN LEvent ThodEvent., .. ¥X¥AnlEvent , TRodEventE, ., TFolder
- 4% ¥¥AN1Event , TGodEy, ., He¥AnlEvent, TGodEventE, .. TFolder
& HH¥An1Event , TRodE v, . . WHRHANLEvent , TGodEventE. . . Bool_t 428
- By AN 1E vent, TGodEy, . . HH¥ANLEvent , TGodEventE, . . Short_t 428
B H¥¥An1Event , friatal16] WA 1Event , froata[16] Float_t 478
- CAEventOh jects Event ohjects of curre... TFolder = 780
+-[(EvertStores References to event st... TFolder =52
+-(IEventSources References to event =o... TFolder = 440L|
gui3ll
4.7.2 General functionality
Each item in the browser has a context menu, which can be activated by 4 Plot
right mouse button click on that item. It is shown in the figure on the A
right. By means of this menu, it is possible to operate on the browsed ob- P Fetch iten(s)
jects. The items in the upper part of the context menu (above the line) are
available for all items, whereas the items in the lower part contain special - e selastee
functionality to control remote data sources like the analysis. h
Histograms and pictures can be plotted either by double click, or by drag
and drop in a view panel, or by the right mouse menu. Item & Plot R
draws each selected histogram into an own graphical pad, I*: Superim- x

pose draws all selected histograms superimposed on one pad.

The browser items represent the structure of a connected data source like
the remote analyis, but will only retrieve the objects on demand. This
happens usually just before the objects are drawn. To explicitely get the
objects into the local memory cache without drawing them, the =» Fetch
item(s) functionality may be used. Note that the browser’s implicit fetch-
ing behaviour may be adjusted in the Settings/Preferences menu by
“Fetch when drawing”, and “Fetch when copying”.

The selected objects may be saved into a ROOT file with menu item &
Save selected... The 541 Export to... functionality will offer the possibil-
ity to export root histograms to ascii or radware format.

Item @ Info shows some information of the object, ** Edit... opens the

Copy to Workspace
Copy to clipboard
Monitor item(s)

@

Z? Clear (Reset to 0)
@f Set Clear protection
=/

K Delete from analyzis
@ Refresh namelist

gui31l

editor if available. Item * Delete Item deletes the selected objects from the local memory, whereas item *
Delete from analysis will delete the corresponding object in the remote analysis, if possible (see chapter 4.7.9.

page 57).

4.7.3 Analysis folder controls

The Analysis folder shows the remote folder structure, which contains all objects that were registered to the
analysis client. At any time the list of the remote objects may be refreshed by the right mouse button entry
Refresh nameslist. The folder Histograms e.g. contains the histograms, the folder Trees will show the struc-
ture of all registered trees, e.g. all trees created by TGo4FileStores.

The eraser item ¢ Clear (Reset to 0) clears the selected objects like histograms, conditions, graphs and so on.
Each object on the analysis has two protection modes — delete protection and clear protection. These modes in-
dicated in Flags column of analysis browser (see below). Delete protection is set for an object when it is cre-
ated and added on the analysis side. It prevents deletion of such objects from GUI. Objects created by GUI
commands have no such protection and can be deleted by the */ Delete from analysis functionality. Clear
protection prevents the user to clear the content of objects by using ¢ . This mode can be set and unset for any
object via context menu commands Set clear protection % and Unset clear protection % , respectively.

4.7.4 The monitoring mode

In the Analysis a histogram, graph, or picture can be set into the monitoring mode by selecting it and pressing
the monitoring entry Monitor item(s) in the right mouse menu. This is indicated by the letter “m” in the
Flags column of the browser (static objects have letter “s”). Monitoring means that the content of objects are
updated continuously from the remote data source (analysis, histogram server,..) to the GUI. This allows e.g. to
watch the filling process of a histogram. The monitoring property of an item may be switched off by the @
Stop items monitoring functionality of the context menu.

Note that only the visible objects are frequently updated, i.e. even if a browser object is in monitoring state, it
will not be copied from the remote data source if is not drawn in any view panel, or displayed in an editor, re-
spectively.

The overall monitoring action can be started with button 2 of the Browser options dock window. Here the
update frequency may be specified in seconds, too. Button @ will cease monitoring of all monitored objects,
but will not change their monitoring property (flags). Additionally, this dock window offers a button %% for im-
mediate refresh of all visible objects, and a filter function for

the browser to display either all objects, or only the moni- [’-7’> 28 Monitored 7
tored objects, or only the currently fetched objects, respec- qui326
tively. The clear button # may be used to clear (reset to 0)

all remote objects at once (see section 4.7.9, page 57). When the Browser options tool is active, the following
keyboard shortcuts can be applied:

F5: Refresh display of all remote histograms
Shift-C: Clear all remote histograms remotely
Shift-M: Start monitoring timer

Shift-N: Stop monitoring timer

4.7.5 The workspace folder

The Workspace folder contains all objects that are put into the memory of the local GUI. This may happen ei-
ther by producing a new histogram from the ROOT menus in the view panel, like a re-binning, or a projection,
or from the Go4 tree viewer; or objects may be copied from elsewhere to the workspace. Item Copy to
Workspace will produce a copy of the current object and put it into the workspace folder. This copy will pre-
serve the subfolder structure of the data source; if e.g. a histogram was copied from analysis folder “His-
tograms/Crate1”, the copy will be placed in folder “Workspace/Analysis/Histograms/Crate1”. The 52 Copy to
clipboard, & Paste from clipboard, respectively, allow a standard copy/paste functionality to any destination
in the workspace. Additionally, in the workspace folder the right mouse button menu offers the Create folder
and the ¥ Rename object functionality, as known from general file system browsers.

4.7.6 Browsing files

ROOT files containing data can be opened (buttons & and @ of the main window file menu, respectively) as
with the native ROOT TBrowser/TTreeViewer. Any ROOT file can be opened. Histograms in these files can be
displayed in the Go4 view panel like local objects. A ROOT tree in a local file can be examined with the tree
viewer of Go4. In contrast to the remote tree viewer mode, trees in a local file are processed by the GUI itself
and do not have an effect on the remote analysis. The GUI knows if a tree viewer entry comes from a remote,
or from a local TTree, so the ¥ button will either send a command to the analysis client for a dynamic his-
togram, or will perform a local TTree::Draw() call.

If the file contains user objects, make sure that the GUI has loaded the proper libraries to access them (see
chapter 4.2, page 41).

55

56

4.7.7 Resetting and deleting objects

Any object in the workspace may be deleted by selecting it and using the popup menu delete item * . Objects
in the Analysis (histograms, conditions, parameters, ...) that were created in analysis code must not be deleted,
for the compiled user analysis would still try to access these objects after deletion. Therefore, deleting these ob-
jects is disabled using the delete protection property (symbol “p” in Flags browser). However, dynamic ob-
jects that had been created from the gui (histograms, conditions, dynamic list connections) are not delete pro-
tected and can be removed by the delete button.

An analysis histogram can be reset (contents and statistic values to zero) by selecting it and chosing the “ &
Clear” entry in the browser’s right mouse button popup menu. Resetting an analysis TGraph object will erase
all points of the curve. For parameters, the method Clear() is called which may be implemented by the user.

All objects within a folder are reset at once by selecting the folder icon in the remote browser and chosing the
@ entry of the right mouse button menu. This has the same effect as calling method ClearObjects(“Folder-
name”) of TGo4Analysis. It is also possible to select multiple objects in the browser and then apply the clear
menu. To clear all remote objects at once, the clear button # in the Browser options dockwindow can be
pressed.

Note that any analysis object can be protected against clearing by a switch in the remote browser’s right mouse
button context menu (See chapter 4.7.3).

4.7.8 ROOT web server connection

From the main window File menu entry @ (Connect HTTP...) it is pos- D
sible to connect any ROOT web server (available for ROOT versions > —
5.34.30) and view the exported objects. This also includes the web server
that go4analysis process may optionally start up (see chapter 7.1, page
92).

Establish conn... |7/ (v (X

Provide http server name

1xg0546 gsi de:8901 |

After selecting the button a dialog window prompts for the hostname and ¥ DK @ Cancel
optional port number, as shown in the picture. Clicking OK will initiate ' '
the connection. If web server required authentication, the Go4 GUI

would prompt again for username and password in separate dialog win- Browser x
dows. After establishing the connection, the exported objects at the web Name '

server are available in the Go4 browser under a folder named
nodename:port, e.g. 1xg0546.gsi.de:8901.

[Workspace
@ Ixg0546.gsi.de:8901

- (O status
The remote web server objects can be displayed and inspected with the Message
Go4 GUI tools as available from the mouse context menu. Native ' Bfg%?f;gﬁta
ROOT objects, like histograms or graphs, can be displayed on Go4 view + (3 Control
panels. If the web server is provided by a go4analysis process, also Go4 B ‘_f' gséorgtr:;“
objects, like conditions and parameters, are available here. If the web + (3 Crate?
server allows write access for the connected account credentials, it is also M cricnix2
possible to modify such objects. Moreover, the first go4analysis process _ t :::;
that is connected to the GUI by its web server can be even configured U His1g
and controlled by the GUI analysis control elements (see chapter 4.4.1 on ' & g':’nzqi’
page 46). This HTTP connection mode has almost the full functionality : t gumg

um

of the regular Go4 socket connection, so it is also provided as alternative
in the setup window to attach the GUI to an existing analysis server (see
chapter 4.3.4 on page 44)

-l Eventsize
-3 Parameters
121 XXXParameter
- [Conditions
-+ E wincon1
B wincon2
H cHis1
H cHis2
[polycon
ellipsecond
circlecond
boxcond
[freecon
winconar
polyconar
+ [Pictures
+ [Events
+ (1 UserObjects

<[)

<>
gui316/317

4.7.9 DABC server connection

If Go4 has been installed together with the data ac-
quisition framework DABC, the main window File

menu contains an additional entry % that connects
to the native command and data socket channel of
any DABC process. The DABC server is identified
by a connection URL of format dabc:/
nodename:port to be specified in a connection dia-
logue window. After a successful connection the ob-
ject hierarchy of DABC appears in the Go4 browser
under a folder named nodename:port, e.g.
1xg0538:1237. This allows displaying and monitor-
ing the ROOT objects that are known to such DABC
node on the Go4 GUL.

-8 |- Establishconn... (?) (= (X

Provide dabc server name
|dabc:/ixg0538:1237] |

OK | Cancell

Browser g
Name Date Time Class
1 Workspace
Analysis TGo4AnalysisF
Ixg0538:1237 TGo4DabcPro
[DABC dabc::Hierarch
®- (3 Ixg0538_pid2812 dabc::Hierarch
B 1 Factories dabc::Hierarch
B+ 3 Threads dabc::Hierarch
~http dabc::Hierarch!
I~ publ dabc::Hierarch!
B2 App dabc::Hierarch
= CommandChl dabc::Hierarch!
— ConnMgr dabc::Hierarch!
(1 FESA dabc::Hierarch
l:l Monitor dabc::Hierarch
3 Test dabc::Hierarch
-BeamProfile dabc::Hierarch
i BeamRate TGraph
i BeamRate2 TGraph
i TestRate TGraph
- Streamerinfo TList

BeamR 2013-11-18 11:29:15

I~ ImageRoot dabc::Hierarch

- CmdReset dabc::Hierarch

= 1 MBS dabc::Hierarch

= (1 x861-15 dabc::Hierarchi
|-t DataRate 2013-11-18 11:27:10 TGraph
i EventRate 2013-11-18 11:27:14 TGraph
I-#h ServerRate TGraph
it rate_log TGraph
% rash_log TGraph
|-t rast_log TGraph
L ratf_log TGraph

| =

gui316/317

57

58

4.7.10 Histogram server connection

% -+ Connect to gsi histo server [2][0][x] Info | |

Server I_]_HgOE]_? ery_frs Connection to histogram server TGcJ
-~ [(Histograns folder
Base I‘cr"S 2-[(JRaw data folder
: +- CIWMED folder
ol I* ‘& newTrigger folder TH:
= = [ZIMON folder
Fart IEOOB E’ = CIMON_scaler folder
Paz=sword |********** folder TH:
folder TH:
folder TH:
i il folder TH:
folder TI_-IIﬂ
A |4 | | F

gui316/317

From the main window File menu entry & one can connect to any GSI histogram server like MBS, GOOSY,
LeA, or another Go4 analysis. The parameters for the histogram server, such as node name (Server), login
name (Base), the socket Port number, the Password, and an optional Filter expression, are specified in a con-
nection dialogue window. After a successful connection the histograms of the server appear in the Go4 browser
in a folder named HServ_basename, if basename is the name of the histogram server base.

4.8 The Go4 tree viewer

The Go4 tree viewer is started via Settings » Show/Hide » Tree viewer menu or via RMB pull down menu.

1] x: | Y z: | L L] 2|

guil40

There are two operation modes for the Go4 tree viewer: the local mode, or the remote mode. Dragging and
dropping the tree leaf names from file or remote browser, the tree viewer will switch automatically into the lo-
cal or remote mode, respectively.

4.8.1 Local mode

The tree viewer works on a tree in a file that was opened in the browser. This is like the original ROOT tree
viewer, with the same logic of drag and drop. However, the Go4 tree viewer supports the resolution of the Go4
composite event information (see section 5, page 87). On pressing button !®, the local tree will be processed as
defined by the given draw expressions in X: ¥: Z: (and optional &) fields of the Go4 tree viewer. The local
histogram of the given name is filled with the result. The histogram will appear in the memory tab and may be
displayed in a view panel. If no name is specified, an automatic name is chosen from the given leaf names.

All classes, which are stored in the tree, should be known to GUI. User should load appropriate libraries before
using local tree viewer (see chapter 4.2, page 41).

4.8.2 Remote mode (dynamic list histogram)

The Analysis folder shows the structure of all objects registered to analysis trees in the Trees subfolder. By
drag and drop the elements of a tree can be put into X: ¥: Z: fields of the Go4 tree viewer. A name and an
optional drawing condition can also be defined here. The logic is the same as for the regular ROOT tree viewer.
On pressing button ¥, this information is passed to the analysis client and a new entry in the Go4 dynamic list
is created. After pressing €¥ in the Analysis panel, a new histogram of the defined name appears in the his-
togram folder (if no name was defined in the tree viewer, a default name is used combining the variable
names). Note: the histogram itself will be created no sooner than the next events after the ¥ are processed, i.e.
the analysis must be running. This histogram will be filled event by event with the defined parameters of the
tree. Go4 internally uses a TTree::Draw() over a number of collected events to update the histogram contents.
This number, the dynamic list interval TreeDrawlinterval, can be set by the analysis method
SetDynListinterval(Ndyn), or can be changed in the dynamic list editor (see chapter 4.14, page 80).

If the histogram specified in the tree viewer already exists when the dynamic list entry is created, the histogram
of that name will be filled by the dynamic list instead of filling a new histogram. Therefore it is possible to cre-
ate a histogram with desired bin size first (see chapter 4.8.3, page 59), and then assign this histogram to a new
entry of the dynamic list. This can be done easily by dragging and dropping a histogram icon from the his-
tograms folder into the histogram textbox of the tree viewer. Again, pressing i will create the dynamic list en-
try; the given histogram will then be filled every Ndyn events. The dynamic list tree is kept in memory, if in the
analysis configuration for output Go4BackStore had been selected.

A histogram filled by the dynamic list, like any other remote histogram, can be displayed continuously in a
view panel by switching on the Go4 monitoring mode (see chapter 4.7.4, page 55).

4.8.3 Creating a new histogram 5 =~ Greate Hew Histogran B
" Class

The button & will popup the histogram creation window. Here [Nen= [(f‘ THL & THZ © TH3
the properties of the histogram to be created anew can be speci- | ;.. foverviod Tupe ‘
. : . L - . FSCDCFEICE
fied (dimensions, precision, binning, range, name, title). The o

. . . . A-HHL1E
histogram may be glther created in the .local directory (Create No. of Bins [0 tin. o Hax. 50
Local), or created in the remote analysis (Create Remote). A
new local histogram will appear in the local objects panel, a re- || -v-fixis
mote histogram is put under the histograms folder in the Go4 ||te. of Bins :[100 Hin. [0 e, [2043
folder structure. A new histogram (like any existing histogram) |
can be used as target for the remote or local tree viewer. This is | | |
done by specifying the histogram name in the tree viewer name
field, or by dragging and dro”B-Ping the histogram icon to this o s ﬁ
name field. The tree viewer &= will then fill the created his- : .
togram instead of creating a new histogram with arbitrary bin- guis17

ning and range settings.

59

60

4.9 The Go4 view-panel

Pressing Wil in the Go4 main control window opens a new Go4 view panel. A new view panel will also pop up
automatically when any object in the browser is selected and the right mouse button menus 8 or I are acti-
vated. Furthermore, objects can be drawn by “drag and drop” from the Go4 Browser to an existing view panel
pad and displayed there. On the left side the optional ROOT graphical editor is embedded. It is opened by
Edit» Show ROOT attributes editor. Select with left mouse an object on the canvas and the editor will change

accordingly.
% Panel2
File Edit Options
e | [Cooled | [priconoicooled PraE

MName
Fanel2:TCanvas

L~ -

FPadiCanvas

™ Fixed aspect ratio
™ Crosshair ¥ Edit
[~ arigx [aGridy
™ Tickx [Tisky
Log Scale ——————
Cx Ty Tz
Eorder Mode

" Sunken border
" Mo border
{* Raised border

Size: |2

S =1 E3
I~ Apply to all ¥ AutoScale

priCo001plaver I—

priCo001p2aver

Time [1.60s]

Panel2 x=-0.00510204, y=-0.00223214

4|
gui318
% Panel3: [pr1C0001p1aver], pr1C0001p2aver = [=] EX
File Edit|Select Options I~ Apply to all ¥ AutoScale
Style | Binn Master object
r::n;et)ompn’j priC0001plaver —— pr1C0001p1aver
Line pr1iC0001p2aver —— pr1C0001p2aver
M- Show [
pr1C0001p1aver] on top
[1 | -
Fil ————————————— B
C11- . - 400
Title :
IPI aver —
300—
Histogram [
Flogt—————————— -
’7 + 20 (3D 200:_
Errar: INo Errars VI N
Style: INo Line VI 100
- Simpler Drawing
™ Show markers
" Draw bar chart —
W % 40 50
| Time [1.60s]
Marker ———— ol
Panel3 x=-7.21978, y=-37.4063 y
gui368

61

An existing view panel can be divided into independent sub-pads by the division buttons in the Canvas Tools
activated with the RMB on an empty region. When several histograms in the browser are selected for plotting,
the view panel division will be done automatically to display all histograms in one new view panel window.
The canvas embedded in the Go4 View panel is an ordinary ROOT canvas, offering all ROOT features of the
mouse button actions on the displayed objects (e.g. opening a histogram fit panel, rescaling the axes using cur-
sor and left mouse button, ...). The currently active sub-pad (indicated by a red frame) can be selected with the
left, or with the middle mouse button (ROOT style), resp. Graphic style and range settings are always applied
to the sub-pad that was selected most recently, except the Apply to all option checkbox is enabled. Note that
the settings are preserved for each pad, i.e. they will be recovered when switching back to the pad.

The view-panel offers the menus:

4.9.1 File menu

Save as.. save the content of the view-panel in dif- Save as...
ferent formats. Brint
Print ... hardcopy the view-panel to $PRINTER or .ps file B
Produce Picture create Go4 picture from viewpanel, put it in Produce Picture
workspace Produce Graph from markers
Produce Graph -
from markers (see description below) Close
Close the view-panel

onil19

If the selected pad contains point markers as created with the Go4 marker panel (see Section 4.9.8, page 67),
function Produce Graph from markers will create a TGraph object containing the marker x,y coordinates.
The new TGraph is named “<Panelname>-Markergraph_<Number>" and is put into the Workspace folder of
the Go4 browser. This is useful to choose certain points in a 2d histogram for a fit. Then one can apply the Go4
fit panel on the TGraph data later.

4.9.2 Edit menu

Show Marker Editor ~ open marker panel
Show ROOT Attributes open ROOT graphics editor

¥ Show marker editor
-1 Show ROOT attributes editor

Show Event Status toggle ROOT event status in bottom line ¥ Show event status
Start condition editor start condition editor if condition is in pad Start condition editor
Clear Markers clear all marker objects in pad Clear markers
Clear Pad clear contents of current pad (and sub-pads) Clear pad
Clear Canvas removes content and pad divisions B

Clear canvas

4.9.3 Select menu

When histograms or graphs are displayed in superimpose
mode, each one may be selected here. Then attributes like
color may be set for selected histogram. If the selected object
is currently not on front of all superimposed objects, an addi-
tional menu entry “Show ... on top” will appear. When cho-
sen, this entry will pop the selected object to the foreground. LI [IRAEE $570 DREHS DERRN 0 S las
Note that the object first must be selected and then set to top.

Master object

¥ TRACE SFP: 0 FEBEX: 0 CHAN: 0
TRACE SFP: 0 FEBEX: 0 CHAN: 1
TRACE SFP: 0 FEBEX: 0 CHAN: 2

4.9.4 Options menu - Crosshair
Crosshair toggle the ROOT pad crosshair mode B
Super Impose toggle superimpose option ¥ Histogram Statistics
Histogram Statistics toggle display statistics box on pad ¥ Multiplot Legend
Multiplot Legend show legend for superimposed histograms ¥ Histogram Title
Histogram Title toggle display histogram title on pad B (P T
Draw Time display refresh time in histogram title box “ Draw Date
Draw Date display refresh date in histogram title box o _

Draw item name display full path and name in histogram title box Draw item name

1:1 Coordinate ratio toggle histogram aspect ratio -/ 11 Coordinate ratio
X-Axis displays time toggle X-axis shows data as timescale - X-Axis displays time

Set X-Axis time format... define ROOT axis time format Set X-Axis time format...

Keep View panel Title Do not overwrite title

. . . - Keep Viewpanel Title
Set View panel Title Set the title

Set Viewpanel Title...

With Settings->Panel defaults one can set defaults for these values. If the Superimpose option is selected,
any new histogram that is dragged to this pad will not replace the existing histogram, but will be displayed in
the same pad with the old one (as ROOT THStack). A legend box will show the graphical style and the name
for each drawn curve. This legend can be toggled on or off with the Multiplot Legend option. The text of each
legend entry can be changed by opening the right mouse button popup menu at the entry position and using the
SetEntryLabel function (see ROOT TLegend class for documentation of further methods in this menu).

It is possible to extend the regular histogram title by information on the refresh time and date by switching on
the options Draw Time, and Draw Date , respectively. Additionally, the full name of the displayed object, i.e.
the complete path and item name in the Go4 browser, may be displayed in the histogram title by toggling the
Draw item name option.

Usually, the title of the view panel window (showing up in the Windows menu of the main Go4 window) is
taken from the object that was drawn most recently in one of the sub-pads. This behavior can be changed by
options Keep View panel Title and Set View panel Title , respectively. This allows specifying a meaningful
name for a view of several histograms that will not change when one histogram is exchanged by drag and drop
on a sub-pad.

The Show event Status option in the edit menu will display the current mouse coordinates and histogram
channel contents in the bottom line of the view panel. If the canvas is divided, this information always refers
to the selected pad.

4.9.5 Zoom toolbox

W—}",ﬁ()(>><cv»~ﬁ:..-;aaa . .
The Zoom toolbox = contains zoom and shift buttons for the
x-, y and z- axes, working on the active pad (red frame). The expansion/compression factor can be set in % of
the current range. The Un-zoom all button & will restore
the complete range of all axes. The set limits button &
will pop up a scale window. Here the range can be typed
X min | -10 X max 10 in and set explicitly by axis values. Additionally, the scal-
ing behavior of the ROOT histogram can be changed: By

¥min| C ¥max| 1752.97 default (AutoScale on), the y-axis (1D histogram) or z-
Z min | C Z max C axis (2D histograms), respectively, is expanded to cover
the full range of channel contents whenever a memory his-

v AutoScale Set togram is updated, or when a monitored histogram is re-
freshed from the analysis. With AutoScale disabled, the

guil39 previous y-range (1D) or z-range (2D), respectively, is in-

variant over any updates. This allows to observe a magni-
fied region of interest in a spectrum, independent of the maximum peak height. Note that the y range of a 1D
histogram can be chosen freely by ROOT TAxis selection with the mouse, i.e. clicking with left mouse button
on the y-axis for the first limit, and dragging the pressed mouse to the second limit of the range. The scale win-
dow is automatically connected to the selected pad and updated accordingly. Note that the AutoScale state for

the current pad is also accessible as checkbox at the top of the viewpanel window. Button provides auto-
zoom functionality for 1/2/3-dim histogram. This automatically adjusts range selection to non-zero content of
the histogram. Can be activated also with Ctrl * keys combinations.
When the zoom tool panel is active, there are several useful keyboard shortcuts (see also the tooltip help of the
corresponding buttons):

Ctrl-Left/Ctrl-Right: Expand/Un-expand range on X axis

Left/Right: Move Histogram left/right on x axis (only if range was expanded)

Up/Down: Expand/Un-expand range on y axis (sets autoscale off!)

Shift-Up/Shift-Down: = Move Histogram up/down on y axis (only if range was expanded)

Ctrl-End/Ctrl-Home: Expand/Un-expand range on z axis (sets autoscale off!)

Shift-Home/Shift-End: Move Histogram up/down on z axis (only if range was expanded)

Ctrl-Minus: Un-zoom ranges totally
Ctrl-Plus: Show/hide range settings window
Ctrl-Star: Apply auto zoom (adjust range to show non-zero region only)

63

4.9.6 Draw options and axis scaling

Draw options and axis scaling can be set by two toolbars: One for all options available (Settings->Showl/hide-
>Draw Options) steered by pull down menus (as described below):

jICarTeswan j|x Lin jIY'Lin jl

JJ scatter
gui366

jINo Errors J [~] °|

and one for a subset (Settings->Show/hide->HIstDraw Options) steered by buttons only:
[ELE : @@ E0R0IFO 0 436,

Both toolbars also offer buttons to change the line color ®, the fill color @, and the marker color @ of the
selected object, resp. Each of these buttons will open a color selection window.
The button icons of the HistDraw Options toolbar correspond to the draw option icons as shown in the pull
down menus below. Additionally, buttons E_and E will scale the Y axis linear or logarthmic,resp; buttons k.
and Lid scale the X axis, and buttons L andE thez axis, resp. When the HistDraw Options is active, keyboard
shortcuts exist for fast toggling the y axis scale:

Ctrl-Page Up: Y axis in logarithmic scale

Ctrl-Page Down: Y axis in linear scale

Buttons M and & set the 1d histogram line style to “scatter” and “simple line”, resp.

The Go4 draw options follow the ROOT draw options (see table on next page).

Draw options for 2-dim and 1-dim histograms and graphs:

64

Details for 2-dim and 1-dim histograms:

'AH o axis
_____|"H stars | +scale
- scafter L lines '
O pixslc LF2 lines-+il hack 19 EatE
©® contUc o ourve i & bk E: _5|mple
i lego? color B barchart ! csaletr E1: edges
& surfc i EZ: rectangles
P polymarkers ' _ L
scale - bk
& mesh color PO i " ; i E3:fill
@& cont! o pRlyrmarkers " gtars i scale - fr & bk E4: contour
8 high resol i 1364/5
@ contd L-line Coordi 8
I noright F il oordinate system:
lego1 shad 3! i
B loo1 shadow | TexT digits baw 4
@ |ego (et F1: fill 1 S 3
: BAR barchart e Joinisslia
B8 cont2 dot biw F2:fill 2
29 contd biw @ lego biw 3 smooth
é mash biw #® legot shadow B bar
é mesh+contour @ lego2 color LP: line + mark .
(& gourand & mesh biw L* ling +* gui365
“45" ol contour % mesh color FP: fill + mark For graphs:
ARR arrow mode surf ¢ FeAfill +* :
BOX boxes & mesh+contour |CP: smooth + mark ——— | < 0 @Tors
TEXT content (& gourand C* smooth +* A norm | arrow
[ASImage <5 col contour BP: srmooth + mark SUpp. 8xIs |=: full arrow
B* srmooth + * AX+ top 2 erropt2
. guil35/gui362/9 AY+. right 3t ermopt 3
AXFY+ K &y| |4 erroptd
Allylow =y 0: asym err qui370/1

Go4 option Description ROOT
scatter black scattered points HIST
pixel ¢ colored pixels coL
cont ¢ colored contour CONT
surf ¢ colored surface SURF2
pix+scale c colored pixels and color scale bar COLZ
cont+scale ¢ colored contour and color scale bar CONTZ
Gouraud smooth grey scale surface SURF4
lego c colored lego LEGO2
lego/shadow lego with one side colored LEGO1
lego bw black and white lego LEGO3
mesh c colored meshed surface SURF1
mesh bw black and white meshed surface SURF
mesh+cont bw meshed surface and colored contour on top SURF3
line ¢ colored contour lines CONT1
line dot bw black dotted contour lines CONT2
line bw black contour lines CONT3
boxes bw black boxes BOX
digits bw channel content as numbers TEXT
ASImage TH2 as TASImage (fast pixel map with scale bar)

PO (1D) Polymarker without lines PO

L (1D) Line L

C (1D) Smooth curve C

B (1D) Bar chart B
mesh+cont2 bw meshed surface and colored contour on top SURF5
cont4 colored contour CONT4
contl+ pal colored contour lines and color scale bar CONT1
cont4+pal colored contour and color scale bar CONT4
arr (2d) arrow plot ARR

65

4.9.7 Color Palette tool

66

The color palette tool can be activated by menu Settings->Show/hide->ColorTools . It offers to
set the ROOT color palette either by index number, or by a corresponding self explaining name (for ROOT 6

and latest 5.34). The available palette index range may be restricted by the preferences in menu Settings-

>Panel defaults->Palette settings. Here also the default palette index can be specified. The number of contour
levels (partitioning of the color legend) used in a 2d plot may be specified in the Contour spinbox of the palette
tool.

Additionally, the pad background color can be set from all available colors by pressing the pad button Band

choosing it on a color wheel pop up.

éiSetPalette[Bg ¢ Mint v

a
o0

~
File Edit Select GreyYellow _
- - - GreenBrownTerrain
~
W

N Wk ;- o W
|||||_|||||_|||||_|||||_|||||_|||||_|||||_|||||_||||

—_

Contour 99 £ Pad: @

Fuchsia

el GreenPink

Island

Lake
LightTemperature

LiEhtTerrain

_Time_G44_10;1]

F.rzctHistograms: 1 Boam; 1544, Faw; |/Loog & PeolinSum X Time Gd4 LT

Neon

- o

|| Apply to alllv/ AutoScale

4.9.8 Channel and window markers

In a view panel a marker panel can be opened by Edit» Show Marker Editor menu item:

% Panell: MUSICI_dE
File Edit Options

M Apply to all

| MUSIC1 dE 16:31:42 |

Region markers

Markar 2 Ragien 1
X = 1.25EEE+D3 Int = 1.31Z4E+04
104 —le__ = 15483 Xmman = 1. 4536E+03
= Xems = 1.T4TOE+0L
— ¥max = 1. 453SE+03
— - Coax = 3. 4100E+0F
Markar 1

£

= 1.1723E+03
= 3504
—

n

103 =
E SEAIE+D]
E 077ZEOL
- (55162403
— 05532401
— _5S7SZ403
- . 6600ZHD2
10% ==
Cross marker ¥1 = 16128403
%2 = 171138403
Int = 1.02392+04
Mmean = 1. 66062403
¥rms = 2.5077E401
10 Mmax = 1.6725E#03

Cmax = 2 2600z+02

S097E+03 LatEX label —»

| L |
800 1600 1800

2000 22
Average dE MUSIC1 (root)

2400

Background

Arrow—> /

—Marker Modes

Region 2

élElﬂ_Lll‘ loop il

e

Pressing once on 4~ button and then one more time in the pad, a channel
marker (cross) with a label and a connecting line is drawn. Once created, any
marker can be re- positioned by chosing its name in the marker selection box
and using again the ¥ button: the next pad click moves the currently active
marker to the picked position. If new is chosen in the marker selection box, a
new marker is created and added to the list. Note that the selected marker is al-
ways displayed on front of all other objects in the pad. Clicking on a marker or
its label box with the left mouse button will also pop it frontmost.
With new selected and loop option enabled, the cursor stays after 4= in point
marker mode. Subsequent clicks in the pad create new markers. This behavior
also applies for the other marker types, respectively:
draws a window marker (with two subsequent LMB clicks) and a label.

draws a polygon marker (TCutG): each click will define one point of the
polygon, a double click will finish the definition of the shape.
X: places a (Latex formatted) label. Note that in ROOT Latex syntax, instead
of the “\” escape character the “#” is used, so e.g “#alpha” will produce a
greek a.

+ draws an arrow from first click to second click.
In loop mode one can switch between the five marker types.

2 outputs the values of the markers to the activated log output.
A selected markers can be deleted by pressing the * button near the marker
selection box. Furthermore, markers may be deleted and configured with RMB
on the cross or inside the window, respectively (see right TGo4Marker menu:
DeleteMarker and

Insert Latex

gui324

TGodHarker: Harker 1

EetHane

DeleteHarker
EetToBin
SetLabelDraw
EetLineDraw
SetXDraw
EetYDraw
SetXbinDraw
Set¥YbinDraw
SetContDraw
EavelabelStyle
ResetlLabel

SetX

Set¥

Delete
DrawClass
DrawClone
Dump

Inspect
SetDrawlption

ZetHarkerAttributes

guil>4

67

TGodNinCondView: :Region 0O

Inzert Latex

SetHame

DeleteRegion
SetToLimits
SetLabelDraw
SetLiwitsDraw
SetIntDraw
SetXHeanDraw
SetXRHEDraw
SetYHeanDraw
SetYRHEDraw
SetXHaxDraw
SetYHaxDraw
SetCHaxDraw
SavelabelStyle
ResetlLabel

Delete

DrawClass
DrawClone

Dump

Inspect
SetDrawlption
SetLineAttributes
SetFillAttributes

68

guil55

left TGo4WinCondView menu:
DeleteRegion). The setter methods con- ! Leel BL=11E]
L . . {0ption_t*) option
figure the layout through little windows 1
as shown above (options 0 or 1, then ap-
ply and cancel). All elements can be . I
moved with LMB (labels are updated). guils6
SavelLabelStyle applies current settings
to all subsequent markers. With Settings » Save settings in the main Go4
window menu these settings will be stored. With Edit» Clear Markers one
can remove all marker elements. To change the graphical attributes one can
use the new ROOT graphical editor. It should be opened by
Edit» Show ROOT attributes editor. When a graphical object is selected
(LMB) the editor changes accordingly. Close the editors also through the
Edit menu.

Apply | Cancel

With Settings » Panel defaults » Marker labels one gets the window shown
below. Here the default layout can be specified and saved.

38 (e Global marker label setup; =@xi062= Lo) K

Windows/Polygons

iDraw region lapel! Display region limits

Dizplay Integral Display Counts maxirmum

Display X mean [] Display ¥ mean
Dizplay X rms [] Display ¥ rms=

Dizsplay X maximum [] Dizplay ¥ maximum

T 4E Mumber Farmat

Point markers
Draw marker label Draw label connection line
Dizplay X coord. [] Display ¥ coord.
] Display X bin# [Display ¥ bird.

Display bin contents

Fo.4E Mumber Farmat

gui3s4

4.10 Conditions

4.10.1 Conditions editing in viewpanel marker editor

A condition may be displayed in an existing viewpanel by dragging and dropping it from the browser to a desti-
nation pad containing a appropriate histogram. The full condition editor (see 4.10.2) may also draw its working
condition to the viewpanel.

It is possible to edit any condition displayed in a viewpanel already by means of the marker editor in the bottom
line (see figure).

™ < r—
% Pare nl, winconl
File Edit Options [~ Apply to all
Sum over 8 channels 09:36:38 | __ Sumi
T Entries 2.152108e+08
= e Mean i
E et
2000 e gt RMS 3868
— . R o o ok e
E winconl T] Underfiow 0
1800 — e g Overflow]
= e e e e e e
E %1 = 2.5686E+03 e Inth geal EIE)
. aoat:
1600 = E o B IR S T Shewness 0.02448
E . e e e
E et
1400 — Int = 2.1521E+08 xR e
E et
E ¥mean = 2.6353E+03 Eererermermre
e e b
1200 — Xrme = 3.BEB5E+01 e
= ok g R ol e T o
E ¥max = 2. 6995E+03 e R
1000 — e e e e e]
= Cmax = 2.0265E+06 e e
E e T Tate e
BOOD — g g A
- e e =t
E T et
— o] e S S S s |
600 — T e
= O e e o e Y o |
- P o B i el i ¥ |
— e e s e o ¥ |
e Ty,
400 e
C g e
e e |
= A D e T
e
200 e
= T e
e e e S e e
o:-|...|. P R - ey I
300 2400 2500 2600 2700 2800
—Marker Modes
_|l7‘% El =l | X: | 1 |I loop Iwmcunl 'l le—)l %l

gui330
Condition wincon 1 is drawn above the histogram Sum1 that is filled only if this condition is true. As the regu-
lar markers (see 4.9.8), the condition may be selected by name in the marker selection box. In addition to the
control buttons for the markers, editing a condition will enable some more buttons in the marker editor. After
changing the condition by moving its boundaries, a &\ will appear to remind you to update the condition by
button <= on the analysis side. With = the current condition state from the analysis side is refreshed in the ed-
itor window. If working on a condition from file, the refresh button £ will appear instead to reload the view-
panel condition.
Button & opens the info window for the selected condition (see 4.15) to view current condition properties that
are not displayed in the viewpanel label. For advanced editing of the condition, the full condition editor may be
invoked using button

69

70

4.10.2 Full condition editor

The condition editor window is popped up when one double clicks on a condition in the browser or using the
edit function * of the browser’s right mouse menu. It may also open by using the & in the viewpanel marker
editor.

In addition to the features of the marker editor, it may display and change all properties of the Go4 condition
class, e.g. counters, testing properties, histogram statistics over the region, etc.

The following figures give some examples.

Condition editor Paneld: [His1]
Analysis/Conditions/cHis 1 Win 1-D File Edit Select » | Apply to all % AutoScale
Cond¥an histogram 16:20:54 2015-05-22 AnalysisHislogramsHs1
[Retums Result |v] [Regulsr |vl s
All counts: 25HEST3 | True: f005001 | 78.74% c iy
3
p—f : r P,
Limits I Cut | Shape | Draw | Stats | Mean] b S
F S
- o
r peose et tereto!
. s A,
Xmin: [2297.02) | Xmax: 3161.9] : ;B
A
Ymin: | | Ymax: |] @b
20f- 4
C by
7 | - F o
.J! s @ & 500 1000 1500 2000 25]0 3000 3500 4000 4500 SDOD

gui328
Window condition cHis1 displayed with histogram His1. The histogram has been bound to the condition by
method SetHistogram() in the analysis. In this case the histogram is automatically displayed when the condition
is edited.
Polygon condition polyconar is a polygon condition array from the two step example which can be dis-
played in a 2d view panel. When a condition array compound is edited, the index of the currently active con-
dition can be set in the upper right spin box. The displayed values always refer to the selected array member.
When selecting an entire condition array in the editor (All button or spin box index “-1”), changes will be ap-
plied to all members.

% Condition editor, 4 Panel2: [Cr1Ch1x2]

Analysis/Conditions/polyconar Polygon E Fle Edit Select » L) Apply to all 8 AutoScale

Crate 1 chanmad 132 153327 201505 22 AnalyssHskagramsTriChie

Crichi
[Retums Result |v] [Regular |v] Frremr e TR
= =T 00 1w L BDIEsa Pean x 1att
. [} - i o Bl Loy
All counts: Co3-0a2 | True: £ MG 1] 1.18% o oot Meany 10
anon[H h N eeens AMS y .52

Xmaan w1 3114ECDT
Nrea w2 7070ELD3
¥max = 136IGERD]
Cmax = 1_2030EL04

[Limits | Cut | Shape | Draw ‘ Stats | Mean

2800

% Integr: 351282 (%] MaxX: 1963.5

2000

% Max: 339466 [I MaxY: 1013.5 1500

1000

g g sl L L L L1 L1
gui329

With the #8 button the active pad of the current view-panel (selected with middle mouse button) is set as dis -
play working pad for the condition. The condition is drawn on this pad until the display button is pressed again
with another active pad. If the working pad contains a histogram, it is assigned to the condition under edit and
its name is shown in the editor. Note that it is possible to exchange the condition work histogram by drag and
drop of a new histogram into the condition editor display pad.

After editing the condition limits graphically on the working pad, the changes will be updated automatically
whenever the mouse enters the editor window. When a condition is changed in the editor (always press Enter to
confirm changes), the graphical representation will be updated automatically. After changing the condition, a
A\ will appear to remind you to update the condition by €= on the analysis side. With =% the current values (e.g.
counters) from the analysis side are updated in the editor window. Conditions can be set to return always true
or false, respectively. The result of a condition check can be inverted. A polygon condition checks, if a point

(x,y) is inside a polygon (TCutG). A window condition checks, if one or two values are inside one or two inter-
vals, respectively.

A condition has counters for the number of all Test() calls performed, and for the number of true results. The
counter values after the last refresh are displayed in the editor. With #? these values are reset to zero and the
condition is directly updated on the analysis side.

The = button allows to pick the boundaries of the condition region with the mouse. This works in the same
way as in the marker editor: for window conditions, two subsequent clicks will take the click position as limits
(for 2d conditions, these clicks define corner points); for polygon conditions, each click will set a corner point
until the mouse double click finishes the pick mode.

Button 28 outputs the current condition values to the GUI starting window, or into a log file if specified in the
Settings menu (see 4.1). Button & saves the condition in a file. If the condition editor is working on a condition
in a ROOT file (via File Browser), the B button will update the changes in the original file by default. This is
useful to edit conditions in an existing auto save file.

4.10.3 Editor tabs

The condition editor offers different tabs: for the condi-

L - . Limit D Stats | M
tion limits or definition values, for the display proper- e | Hraw | Stals | Mean |
ties, for the statistics inside the selected condition range, xmin: [100 Xmax: 12000
and for the mean values, respectively. They are shown
in the next screen shots: Ymin: Ymax:

The Limits tab contains the values of the window condi-
tion limits, or the largest extension of the polygon con- —

. . . Limits Draw | Stats | Mean
dition boundaries. These are updated from the graphical ' : :
representation on the working pad, or can be typed in di- ¥ visible ¥ limits % label
rectly in case of window conditions (to apply the typed _ _ _

Hist: Go4AnalysisASF2 root/Histograms;1/His1;1 Drawn: Panel3
values press RETURN).

The Draw tab shows the names of the histogram and
viewpad used to display the edited condition, and allows
to control some draw properties. Each condition can be
set as visible or not with the visible checkbox. If visible,
the condition is shown on the working pad, otherwise it
is hidden. This is useful when working with condition * Max: 3.62143e+06 Max: 3.62143e+06
arrays. It is recommended for polygon conditions to im-

prove editing. The visibility is a property of the condi- -

tion class itself and is stored in the auto-save file. The Limits | Draw | Stats | Mean |
label checkbox enables the drawing of a graphical label
together with the condition (see screenshot examples).
This label may contain the limits values from the Limits % Max: 3.62143e+06 MaxY: 3.62143e+06
tab; this can be toggled using the limits checkbox. Other

entries of the label may be configured in the Stats and -

Limits | Draw | Stats | Mean |

x| Integr: 3.73271e+08 % MaxX: 199.5

x| Integr: 3.73271e+08 % MaxX: 199.5

Mean tabs. Limits | Cut | Draw | Stats | Mean
The Stats tab shows some statistics (Integral, position |NPoints X Y

and channel content of the maximum) of the current his- *__I=o|a00 800

togram inside the selected condition. In addition, the 1/700 900

Mean tab contains mean and RMS values for x and y di- 2500 1100

rections. Setting the corresponding checkboxes plots ala00 800

these values into the label on the working pad.
The Cut tab is only active for polygon and shaped con-

iti : Limits | Val
ditions. It shows the table of x and y coordinates of the IIlEs) vaues

polygon (TCutG). These values may be edited here (to I\;Pmn;s n -
apply the typed values press RETURN). Moreover, the B
number of polygon points can be changed with the B
NPoints selector box. If the TCutG is edited graphically B
on the pad by mouse, the values in the table will be syn- N

chronized the next time the mouse enters the editor win-

dow. -
The Values tab replaces the Cut tab in case of list condi- | Lmits | Gut | Shape | Draw | Stats | Mean |
tions. These conditions are no graphical cuts, but con- i Centey LI

. . . . - AU,
tain a “whitelist” of integer values to be checked ® Elipse (" Circle *:(3000.00000 2 5
against. The result is true if any of these values matches Box O Freeshape ' >000.00000 = 3 j—
the tested value. Value list conditions are not drawn into rlalf axes . S

- . . s A [300,00000 z i
the view panel, but only show up in the editor. 180 = : 45
z B: 800,00000 =
Autorefresh

71

The Shape tab is only active for shaped conditions. It contains parameters to modify some basic shaped condi-
tions (see section 2.4.3) (ellipse, circle, box, free polygon). The shaped conditions are polygon conditions that
may be parametrized to approximate basic forms, such as Ellipse, Circle, or rectangular Box, as selected in the
Shape control frame. Any of these is defined by center coordinate (X,Y), the diameters of the symmetry half
axes (A,B), and a tilt angle (Theta) in degrees between the x coordinate axis and the alf axis A. If the Autore-
fresh checkbox is selected, any change of these coordinates will be immediately shown in the corresponding
condition display (see right side of screenshot below).

The number of polygon points to approximate the intended shape can be chosen with the Npoints spinbox ele-
ment. Using a small number of points with a Circle shape also allows easily define symmetric polygons in-
scribed into a circle, e.g. a hexagon. For box shaped conditions, however, the number of points is always fixed
to 4. It is possible to exchange the shape on the fly by switching the selection in the Shape control box. The
condition editor will try to convert the polygon points into the new form, based on the center, half axes and tilt
parameters. If the Free shape type is chosen, the shaped condition behaves like a regular polygon condition
and may be edited in the Cut tab or with the mouse on the view panel like any TCutG. The parameters, except
for the number of points, are ignored. If a free shape condition is converted back into circle, ellipse, or box
shape, the condition editor will fit the parameters closest to the existing polygon points, but may change the
free shape points though. As a special case, an ellipse or circular condition can be converted to free shape and
then easily moved to another location on the canvas with the mouse, just by pointing over a border line, click-
ing the left mouse button and moving the selection as known from TCutG manipulation. Switching then back to
the original shape will evaluate the new center coordinates without modifying much the other shape parame-
ters.

% Condition editor % Paneld: [Cr1Chilx2]

Analysis/Conditions/ellipsecond Eliipse File Edit Select Options Apply to all ¥/ AutoScale
Returns Result g Regular I Crate 1 channel 1x2 16:15:43 2015-05-18 Analysis/Histograms/Cr1Ch1x2

All counts | e ‘True | J53 1 |426%

3800

Limits ‘ Cut | Shape [Draw ‘ Stats | Mean |

3600

Shape Center Theta
_ i 3400
® Ellipse Circle X:3000.00000 - 3\\/\-_ //’,’ 3200
Y: |3000,00000 5 o -
Box Free shape = = 3000
Half axes 5 QL
s N
Npoints A |200.00000 - ST 2800
T = |35
180 - B: [800,00000 = 2500

2400

x| Autorefresh 2200

2000

2|le| N|B 0 ||| | x 2400 2600 2800 3000 3200 3400

4.10.4 Conditions bound to pictures

In the next example two conditions are bound to the upper pads of a picture (see chapter 4.11, page 76) by

method AddCondition().

% Panel conditions
File Edit Options

Marker Modes

] el Y) = Bt 221 ENES

gui335

The histograms in the lower pads are filled under the condition shown in the pad above. All picture conditions
will be shown simultaneuosly (if their visible property is true). Mouse click on a picture’s subpad will deliver
the names of all contained conditions into the selection box of the marker editor. The selected condition may be

sl

modified and updated by means of the marker editor, or using the full editor started by [button, as describ
above. The mechanism to bind conditions to picture pads guarantees that a condition is set always on the cor-

rect histogram.

4.10.5 Creating conditions

with the [button of the main window “Tools” menu and tool-
bar, one can open a window to create a new condition in the
analysis. This functionality is available as a shortcut from the
dynamic list editor, too (see 4.14). The Create condition dia-
logue expects a condition name, the type (1-D window, 2-D
window, polygon), and optional an array size. For Array size
“no array”, a single condition is created, otherwise a condition
array compound that contains the given number of conditions.

After pressing the Create remote button, the new condition will
appear in the subfolder Analysis/Conditions of the Go4 browser.
The name field in the create dialog may contain any subfolder
path relative to this default location, e.g. Name: mycondi-
tions/region2 will create new condition region2 in folder

% =+ Create condition

Mame Ir‘egiuns?

Tupe: | 2-0 window j

Array size: 15| =

Create remote | x

ed

I
gui336

Analysis/Conditions/myconditions. Non exisiting subfolders are created in this procedure together with the

conditon.

Once created, the condition can be modified from the condition editor or from the viewpanel marker editor as
described above. When the auto-save mechanism was enabled, the condition will be restored at next analysis
startup. Note that it’s not possible to create a new condition without the analysis connected to the gui!

73

74

4.11 Pictures

The TGo4Picture class provides a way to set up a view in the analysis, which then can be displayed in the Go4
GUL. A picture contains:

= references to objects (via names), which should be displayed;

= division setups of pictures into sub-pictures;

= draw options and parameters like line attributes, axis ranges and so on.

% -+ God v3.0-0beta @1xy0517 <Administrator> - [Panel3: Pic_VMED_13]

o6 File Tools Analysis Settings Windows Help =18 x|
File Edit Options W fpply to all
e e e e e o TR [Fioes =]
o e e 1 e A | =
' : v i ~[EAMI_FoCPOs spu
| i ' I “ B _FOC =pu
[e [_ANG s
- d : BEEMU_Focs2 spu
b o=t o bo— == = = e [l _Focsd spu
= 1 — — i ~ M _Focss s
~[EAsLITL s
ﬂ 1 B [BESLIT? spu
: I -5 IT3 spu
~-CaMusIc
i AMusicl E spu
. . i -EAMusicl T spu
e IEE== +- 80T
=] = I I f'DID
[] =-[(JRaw data
L L i AP ic_WED_O8 spu
- . BEPic_WMED_09 spu
B8P ic_WMED_11 spu
: -\ =
) L)) L))) ~[E8Pic_VMEO_15 spu
s s 2z e b - 2= ; s ; BEPic_WFO_16 spu
I N — — B i -EEPic WMEO_17 spu
Al Al Al Al 1 7 | -f@8Pic W 13 spu
[L i L ‘ L [L i L [L [L [L - EfSastran =pu
L L I B Seatran? spu
- [(dCanvases
+-[JEventOh jects
L L L] L CUserOh jects =
e—— h—— m_——— i = r— iy m_—— /s —y - = 4 I _’I_
| 08 [Futerofi/5as/rRs-sta/nc/v| [oo £vs | JERR | fueraze Evss | s | 2HAH | Events [2005-10-06 10:16:13])
. z

gui337
The following code creates a simple picture, which contains only one histogram:

TGo4Picture* pic = new TGo4Picture(“picl”,”picture title”);
pic->AddH1(histo); // histo is variable of type TH1*

A picture can be divided into sub-pictures like a ROOT canvas can be divided into sub-pads. The division of a
picture can be specified in the picture constructor or by method SetDivision(int ndivy, int ndivx) which creates
ndixy*ndivx sub-pictures inside the picture. Sub-pictures can be accessed via method Pic(posx, posy). For each
picture (and sub-picture) one can specify the following options:

Display header pic->SetDrawHeader ()

X axisrange pic->SetRangeX(double, double)

Y axis range pic->SetRangeY(double, double)

X log scale pic->SetLogScale(0, bool)

Y log scale pic->SetlLogScale(1, bool)

Zlogscale pic->SetLogScale(2, bool)
To add an object to be drawn the following methods can be used:

TH1, TH2, TH3 pic->AddH1(TH1*)

THStack pic->AddHStack(THStack*)

TGraph pic->AddGraph(TGraph*)

TGo4Condition pic->AddCondition(TGo4Condition*)
Each method requires a pointer to the correspondent object and optional draw options (if necessary). When an
object has been added to a picture, the following drawing options can be set for this object (see ROOT manu-
als):

Line attributespic->SetLineAtt(Color_t, Style_t, width_t)

Fill attributes pic->SetFillAtt(Color_t, Style_t)

Marker attributes pic->SetMarkerAtt(Color_t, Size_t, Style_t)
Draw options pic->SetDrawOption(Option_t *)
TStyle attributes pic->SetStyle(TStyle*)

Axis rebining pic->SetRebinX(Int_t ngroupx), pic->SetRebinY(Int_t ngroupy)
For example, to configure a picture with four sub-pads (2 x 2), each with a different histogram, the following
code can be used (first index top down, second left right):

TGo4Picture* pic = new TGo4Picture(“picl”, "picture title”, 2, 2);
pic->SetDrawHeader (KTRUE); // displays time, name and title of picture
pic->Pic(0,0)->AddH1(histol);

pic->Pic(0,0)->SetRangeX(100, 200);

pic->AddH1(®, 1, histo2); // or pic->Pic(0,1)->AddH1(histo2);
pic->Pic(0,1)->SetDrawOption(“lego”);

pic->AddH1(1, ©, histo3, "1lego”);

pic->AddH1(1, 1, histo4);

AddPicture(pic); // add picture to frame work

Similarly the colors in above figure have been set up by:

Color_t his=0;

for(int i=0;i<8;i++) for(int k=0;k<8;k++){
fPictl->Pic(i, k)->SetFillAtt(his,1001);
fPictl->Pic(i, k)->SetLineAtt(his,1,1);
his+=2;

}

The TGo4Picture class supports arbitrary levels of picture divisions. This means that each sub-picture can also
be divided. For instance, a picture with 3 histograms, two in top row and third in bottom row, will be created by
the following code:

TGo4Picture* pic = new TGo4Picture("pic","pic title",2,1);

pic->SetDrawHeader ();

pic->Pic(0,0)->Setbivision(1,2); // divide top widget on two more
pads

pic->Pic(0,0)->Pic(0,0)->AddH1(histol); // add histogram to sub-sub-pad

pic->Pic(0,0)->Pic(0,1)->AddH1(histo2); // add histogram to sub-sub-pad

pic->Pic(1,0)->AddH1(histol, "lego2"); // add histogram to sub-pad

AddPicture(pic);

Current limitations of pictures are:

= Only histograms (TH1), graphs (TGraph) and stacks (THStack) can be add to picture or sub-picture.

= Several histograms or graphs displayed together only when pic->SetSuperimpose(true) is set.

= Conditions can be displayed only in pair with a histogram.

= A condition can be added only after a histogram has been added.
In the Go4 GUI pictures will appear in the analysis browser in the Pictures subfolder. Together with the pic-
ture all correspondent histograms will be automatically transferred. Double click on a picture draws it in a new
view panel. A picture also can directly drag-and-dropped into an existing view panel.
Pictures also can be put to the monitoring list. Putting a picture to the monitoring list automatically puts all his-
tograms of the picture to the monitoring list, too.

75

76

4.12 Fit GUI

All information of a fit like models (= fit functions) and their parameters, references to the data, and the results
are stored in a fitter object (=FO). The fit panel (activated by I button) is the editor of fitter objects. The fit
panel is attached to a fitter object to edit it. Fitter objects are stored in two different locations:
= Fitter objects can be in the browser (file or memory). By double click the fitter object is displayed in
fit panel.
= Fitter objects can be stored in a pad of a view panel (one per pad). Such fitter automatically displayed
in open fit panel when pad is activated.
To create fitter for active pad, Fitter » create for pad menu item or Use pad button of fit panel should be used.
The fitter object can always be copied to memory browser and than saved to the file. The data reference of a fit
object is changed or set when:
= creating or copying a fitter object to a pad,
= dragging a histogram into a pad (the fitter object of the pad gets the reference to that histogram),
= dragging a histogram name into fit panel.
The next picture shows a pad in a view panel and the fit panel. The peak finder tab is shown.

Eile Tools Analysis Settings Hindows Help

DI

EEORENSSA |0l BN EE2 R »||2%H p O 2

R0 0 :ADCL50H
Fitter Tools 3Settings File Edit Options
Hame Hinimizer | — 1
¥ use polynow of order |1 3,
IFitter Peak finderl 80 ADC150H
1 | ROOT (2 | Variant 3 |<| = Entries 3840
D t H d I Mezan 3234
ki oes Noize factor: 2 60 RMS 12.23
W Pol_D Undecflow 0
50
BPol_1 Hinimal noise - Overflow 0
Wl Gauss0 |57 F40 Integral 3518
V] Gauss1 10
W Gauss2 - | 20
VIGauss3 zhanne sun:p
WGaussd ~| 2 i d 10 LAY BT
0 o Seean e - I B b e
Rebuil | lI _I 200 250 300 3;(4::“:,00 450 500 550

Use pad| Find | Fit | braw | Pars [Padv 0 : inpanet v 0 :. Fity| Y O ¢ ¢ Ready

Ready
1

guil29
On the bottom of fit panel there are five buttons:
Use pad If fitter displayed in fit panel, it will be copied to selected pad in last active view panel. If there
is no fitter in fit panel, a new fitter will be created for this pad.
Find Executes peak finder routine. All peak finder parameters should be setup first. Work only in Wizard
mode.
Fit Executes fit.
Draw Draw models, backgrounds and model components as sets up in Settings sub-menu.
Pars Show all fitter parameters in a table. Parameters can be listed one by one or in lines mode, when one
line corresponds to one model and contains amplitude, line position and line width.
There are three different layouts of fit panel, which can be chosen in Tools sub-menus:

Simple Contains several buttons to fit data to polynomial function, gaussian, lorentz and exponent.

Wizard Intuitive and easy-to-use tool to setup data objects and model components. Also includes peak
finder setup. Suitable for most fitting tasks.

Expert Advanced tool, which gives full control over the fitter. Provides a hierarchy view of all objects

inside fitter and possibility to change any relevant data fields. Supports all functionality, which
may not be presented in Wizard tool.
In wizard mode there are three different peak finders available (see previous figure). Variant 2 is ROOT, Vari -
ant 1 searches peaks having specified width range above a threshold, variant 3 searches minima and maxima

using a dynamic noise bandwidth. Variant 3 also allows for summing up channels to reduce the noise. Depend-
ing on the histogram characteristics, either of these may give good results. One has to play with the parameters.
Changing parameters automatically launches a Find.

Found peaks are marked in the View panel pad in red. One can move their position and change their width with
the mouse. Clicking on a data or model entry the right side of the panel shows related information. Models can
be [de]activated clicking on the OK boxes or removed by [-]. New models can be added by [+]. After the fit the

results can be seen pressing the Pars button (which changes to Back to switch the view back):
Fit panel M[=E|% v 0 :ADCISOH I [m] 3
Fitter Tools Zettings Eile Edit Dptions
List of fitter parameters ¥ lines [__ADCTS0H |
BOE
Awplitude |Position 0 |FuH 0 | E
Pol_0 1.56055 Tﬂ;—
Pol_1 =0.000171236 s0F Undertlow
F Overflow L]
Gauss0 J6.636 271.515 28.8185 F Integral 3519
Gaussl 30.1922 320.189 22.3034 - 54:!:—
= E
Gauss? 9.5608 359.471 22.1752 ® 40
Gauss3 8.61364 410.433 22.7324 3{.5_
Gaussd 3.24577 458.392 44.0744 E
-
105
ok]]
Result: Fit func = 927.63T7 MNDF = 3303 200 250 300 3!5'2‘5“ 400 450 500 550
Use pad| Find | Fit | braw | Back | Padv 0 :ir| ¥ 0 :: Ready P

guil30
Fitter sub-menu has following items:
Create for pad create appropriate fitter for selected pad in last active preview panel
Delete delete fitter
Save to browser save fitter to Go4 memory browser
Update reference updates references on data objects from file or memory browsers
Print parameters produces parameters printout, parameters page should be active
Rollback parameters restore value of parameters, which automatically stored before last fit
Close close fit panel
Settings sub-menu contains following items:
Confirmation For each delete action (of fitter, data, model and so on) confirmation message will ap-
pear
Show primitives Show graphical primitives for model position and width and for range settings
Freeze mode Fit panel is not automatically attached to selected pad, but only by create/copy/move
command from Fitter sub-menu
Save with objects Save objects, to which fitter have references, together with fitter. When such a fitter
will be loaded, it will have copy of saved objects. Available only in wizard or ex-
pert mode
Use current range At any fit or peak finder action automatically uses range which is currently selected
on histogram
Draw model Draw model of data
Draw background Draw background (sum of all model components, belongs to background group)
Draw components Draw all model components, which are not belong to background group
Draw on same pad Use same pad for drawing or create separate preview panel

Draw info on pad Draw on pad info box with parameters values

No integral Do not show any integral values on parameters page

Counts In lines mode on parameter page additionally shows counts number for every model
component inside specified range

Integral Shows integral value for every model component inside specified range

Gauss integral Calculates and shows theoretical (based on amplitude and width parameters) integral for
one-dimensional gaussian components. None of specified range conditions are
taken into account.

Recalc gauss width For gauss components recalculates sigma values to full width on half maximum
(FWHM)

Do not use buffers Do not use any memory buffers for fit

Only for data Use buffers only for data objects

For data and models Use buffers for all data objects and model components

Individual settings Use buffers as selected individually for each data object and model component

77

78

Detailed help on fitter and fit panel can be obtained from the main window Help » Fit tutorial.
4.13 Parameters

4.13.1 Parameter objects

Parameters are objects containing a user defined structure of values. These can be applied for controlling and
calibrating the user analysis apart from the analysis framework configuration. All user parameters should be
subclasses of TGo4Parameter. They can be created in the user analysis code and are registered to the Go4
framework by method AddParameter(TGo4Parameter* mypar). Once a parameter was registered, it appears in
the Go4 Parameters folder, it is saved and can be restored from the auto-save file, and it can be edited and up-
dated from the Go4GUI by means of the parameter editor.

4.13.2 Parameter editor

Double clicking a parameter icon 123 in the browser will open the parameter editor as seen in the picture. All
known members of the user parameter class and its base classes are shown here with their names, their type and
their current value.

% -~ Go4 v3.0-0beta @Ixg0517 <Controller> - [Parameter Editor]

o6 File Tools Analysis Settings lindows Help =18
—Farameter
|N Fl
Analysis/Paraneters/CaliPar - THXXCalibPar SO 223
Cdlarkspace
—0Object Membars Hnalgsis
+-(OHistograns

Hame | Tuype Value Comments | 3. CIConditions

fdA[0] Double_t 1,806823 Calibration polynom coeff _ EIParancters

foA[1] Double_t 0,003414 Calibration polynom coeff § R 128yKepPar]

FdA[2] Doubls_t 0,000000 Calibration polynon coeff %NSNP@Q

oA[3] Double_t 0,000000 Calibration polynom coeff Bsizefitter

i~ 128 specfitter

fhRecalibrate Bool_t 15et to KTRUE to make calibration fit in upe | L1280aliPar

fhReadlatabaze Bool_t 05et to kKTRUE to re-read energies from exter f--I:IDgnamiCListS

fxDatabaze Tstring calilines.txt Filename for ascii file with linesname - er E""ClTr*eeS

filinesChannel[2] |Int_t 650 Centroid channel numbers for fitted lines +-OPictures

fflinesErergu[0] Flost_t 1,480708 Databaze energies of calibration lines E""I:ICanvasesl

L inesMames [0] TString AlKa Database names of calibration lines, ?--gﬁven’égmeits

A
frlinesF inder T AC b Fitter to search lines SerbJestE
. Hodify Fitter . . . :

fulCalibrator > + Fitter for calibration of channel/energies

frbGraphName I o Calibration Mame of the graph to contain the calibratic

fuSpectruntane TString CriCh0l Mame of the calibration spectrum histogram

2| |

oo R3G-2 - Currert Ev/s | {L|L|95| Average Ev/s | '-||s | CHE93 |Event3 |2005—10—06 10:51:13| y
L

guil25

Currently supported types are:

e all basic signed and unsigned types, e.g. Double_t fdEnergy; Bool_t fbIsOK;

e the ROOT TString class to wrap text strings, e.g. TString fxMyFilename;

* pointers to TGo4Fitter objects, e.g. TGo4Fitter* fxUnpackfitter;

e arrays of the above in 1 or 2 dimensions, e.g. UInt_t fuvVal[42];
Float_t ffVoltage[5][100];

¢ ROOT classes TArrayl and TArrayD containing arrays of integers and double values, resp.

¢ Comments behind member declarations (e.g. ”// my comment”) are shown in the Comments col-
umn.

Aggregations and pointers to basic types are not supported at the moment (except for aggregated fitter ob-
jects).

Arrays of data are expanded and collapsed in the table by double clicking on the array name. Additionally, the
right mouse button will open a popup menu to navigate through the array without expanding it completely.

The values of the data can be edited after double clicking in the value field of the data member table. Note that
any editing action has to be finished by pressing “return”, “tab”, or “cursor” before it is valid. To apply the
changes, press €= which will update the edited parameter on the analysis side. This is done by method Update-
From(pointer to new) provided by the user class. This means that arbitrary functions can be executed! The

changing of data members is fully controlled by the user class. Vice versa, =» will refresh the table shown in
the editor from the current values of the analysis parameter. Note that all changes not yet applied to the analysis
or saved are overwritten on refresh!

If one is working on a parameter loaded from a file, button 4* will appear instead of =, doing a refresh from
the source file. Note that the original parameter in the file is not changed by the editor immediately; the root file
is updated only when using the save button [&. Then a save dialog window will appear, that allows either over-
writing the original parameter, or saving the changed object to another file.

Finally, €? will erase all editable fields of the table. * will close the editor without modifying the analysis pa-
rameter.

4.13.3 Parameters containing fitters

Sometimes it might be useful to exchange a Go4 fitter object between the analysis and the GUI. A fitter, e.g.,
may be prepared using the FitGUI and then sent to the analysis client where it can be applied to some his -
tograms during analysis. Vice versa, one might want to display the resulting parameters of automatic fits in the
analysis on the GUI. Therefore, the Go4 parameter concept supports the TGo4Fitter class as aggregation mem-
ber, i.e. a pointer to a fitter can be accessed by means of the parameter editor.

The Go4 framework already offers the parameter class TGo4FitterEnvelope that contains one fitter object.
This fitter may be accessed in the analysis by method GetFitter(). In this case it is important that the fitter object
itself is exchanged inside the parameter each time the parameter is updated. Thus the user should not keep the
pointer to the fitter in his/her analysis class, but request the fitter from the (persistent) TGo4FitterEnvelope pa-
rameter with the getter method when the fitter should be used.

Additionally, any user defined subclass of TGo4Parameter may contain references to several fitters or even
arrays of fitter references. Here it is the user responsibility how the fitters refresh their settings in the Update-
From() method. Moreover, one may implement getter and setter methods for the most important values of the
fitters without the need to access the internal fitters directly. An example is TXXXCalibPar in the Go4Exam-
pleAdvanced directory.

Pressing the right mouse button over the name of a fitter member will open a context menu. Selecting Edit...
(or doublc clicking on the fitter) will open the Go4 FitGUI window (see chapter 4.12, page 76). A copy of that
fitter is put into the local workspace of the Fit GUI to be edited or to be applied on any histogram. Selecting
Get from FitPanel in the context menu, the fitter in the parameter object is replaced by a copy of the fitter that
is currently active for the Fit GUL So any fitter existing on the GUI may take the place of any fitter inside a pa -
rameter. Note that the original fitter member in the parameter will be lost after this action unless it is refreshed
by =P from analysis again! To send the changes in the fitter back to the analysis client, like for all parameters
the €= button must be pressed.

Note that in case of a fitter pointer array (e.g. TGo4Fitter* fxFitters[10]), the context menu will
show both the items to manipulate the array view and to edit or update the selected fitter.

79

80

4.14 Dynamic lists

The Go4 dynamic list is a mechanism to connect the event data with a histogram and a condition. The his-
togram is filled from certain data members of the event during the analysis. Optionally, the histogram may be
filled only if a condition that is tested against other data members of the event is true. In contrast to the his-
tograms filled from the compiled user analysis code, the dynamic list offers the possibility to define these rela-
tions on-line during the running analysis. The dynamic list and all newly created histograms and conditions
may be stored in the Go4 auto-save file and are recovered on the next analysis initialization (& or Submit but-
ton in the configuration menu).

In the Go4 browser, the dynamic list folder contains all existing dynamic lists (currently only one default list).
Each list shows the existing dynamic entries by name. Double clicking on a dynamic entry will open the dy-
namic list editor to display and change it.

To create a new dynamic entry, button [l of the main window tools menu will open the create new entry dia-
log window. Here you can define the name and the kind of the dynamic entry. There are 2 different kinds of
Go4 dynamic entries: The TreeEntry and the PointerEntry (see below). After pressing “Create remote” button,
the new dynamic entry will appear in the browser in analysis subfolder DynamicLists.

To delete a dynamic entry completely, select its icon in the Go4 browser and select X in the right mouse but-
ton menu.

% = God v3.0-Obeta @1xg0517 <Controllers [=][a][x]
File Tools fAnalyzis Settings Windows Help

% Panell: hTresDrau 5 ™ [w[B3| % Dynanic List Editor
File Edit Options I Apply to all Entry: TGodTresHistogramEntry
AT W enable Analuzis/Dynamicliszts/hTreebraw 5-0DL

T IFIETTEET
-Ifllunpackout -DL

‘ltesttreadranl-DL

- Treelraw-0L

- Treelran_2-0L

‘lbacktest2-DL

flcynmap-0L

- Treelraw_4-0L

- Treelraw_3-0L

[WireeDraw_5

Hiztogram
’VHna lyzis/Histograns/hTreebraw_5

] Z4TRe+0T
1816

| | Treelraw

+-[JPictures

- [Canvases

+-(UserOb jects

= (ATrees

S #nalysiskTree
S 48 KA LEvent

= g8 WHHANLE vertt TG

% W HKAN 1IEvent

- B H¥¥An 1Event

- 3% ¥H¥AN 1E vent.

Tree Analyziz/Trees/AnalysisxTres

Draw expr, IHHHRnlEvent Jfrhatal]

Cut expr, IHHHHnlEvent;Fr“Data[1]>120

Interval Im
| < | E i 2| &) Ll

+- [LOE vartOh jects -

R36-2 s [T M| Averags Eu/s | 2hl|s| 2021000 |Events [2005-10-06 11:01:41])

gui339

4.14.1 Dynamic list editor

Depending on the kind of the entry, different sub-pads of the editor are enabled: The Histogram and TreeDraw
sub-pad for the TreeEntry, and the Event data and Condition sub-pad for the PointerEntry, respectively.
Any dynamic entry can be enabled or disabled by switching the enabled checkbox. A disabled entry will not be
processed, but is still in the dynamic list. Note that if a dynamic entry fails on initialization (e.g. unknown ob-
ject names), it is disabled automatically.
To apply the changes, press €= which will update/create the edited entry on the analysis side, respectively. Vice
versa, =» will refresh the values shown in the editor from the current status of the analysis dynamic entry. Note
that all changes not yet applied to the analysis are overwritten on refresh! A N Tabel will appear near the up-
date button if the changes have not been applied to the analysis yet.
If one is working on a dynamic entry loaded from a file, button 4% will appear instead of =¥, doing a refresh
from the source file. Note that the original dynamic entry in the file is not changed by the editor immediately;
the root file is updated only when using the save button [E. Then a save dialog window will appear, that allows
either overwriting the original parameter, or saving the changed object to another file.

& will clear the target histogram in the analysis to zero counts, and will reset the events in the backstore tree
(in case of tree draw entry, see below.) This allows to observe changes of the dynamic entry setups directly if
the target histogram is monitored. # will close the editor without modifying the entry.

The editor offers the additional feature to get some information of the histogram and condition status from the
analysis. Clicking & in the Histogram or & in the Condition sub-frames will retrieve and display the current
object status in the histogram or condition status windows, respectively (see chapter 4.15, page 83). This may
be useful to check if histogram or condition settings (dimension, ranges, bin size, etc.) are suitable, without re-
questing these objects in the browser. Additionally, some filling and testing statistics is shown here. The GUI
tool tips show brief explanations for each information line.

The B button prints the names and connections of all existing dynamic entries to the analysis output window.
New histograms or conditions may be created in the analysis by the Wl or the [button, respectively. For his-
tograms, the standard histogram creation window (see chapter 4.8.3, page 59) pops up. Use the Create Remote
button here. For conditions, the “new condition” dialog is started (see chapter 4.10.5, page 73).

4.14.2 Entry for tree draw

Go4 uses the ROOT TTree::Draw() mechanism for the on-line evaluation of the data. This works just as de-
scribed in the ROOT users Guide: A string expression defines which leafs of the tree shall be scanned by name.
Additionally, the name of the output histogram must be specified; the histogram may either already exist (Cre-
ate Remote from Go4 I), or it is created from the first TTree::Draw() by ROOT with automatic range and
binning. Instead of a Go4 condition, this mode works with a TCut string expression to filter the histogram fill-
ing.

Note that the TTree must exist for this mechanism. Usually, the TGo4FileStore output will create and register a
tree that can be used here. If no file output is needed, one can switch on the TGo4BackStore output (configura-
tion window) which will fill a temporary TTree in memory that is cleared after each TTree::Draw() scan of the
dynamic list. The TTree::Draw() is not performed for each single event, but after a number of events have been
filled into the tree. This number can be specified in the user analysis by TGo4Analysis::SetDynListinterval(Int t
val) or by the Interval field.

A new tree draw entry can be created either from the Go4 tree viewer (drag of the tree name from the Analysis
browser and press Y=), or from the Create Dynamic Entry dialog. In the latter case, the tree name, the his-
togram name, the draw expression and optionally a cut expression may be specified directly in the dynamic list
editor after creation. This works by “drag and drop” of historams and tree leafs from the browser to the corre -
sponding fields of the dynamic list editor. Note that the TTree name is recognized automatically from the
dropped leaf.

The advantage of a tree draw entry is that it can access any level of substructures of the event if it is resolved in
the TTree (depending on split level); the Go4 composite event data may be fully accessible here. It offers all
functionality of the ROOT TTree::Draw(). The disadvantage is that you need to fill the event data into a tree to
access it. The histograms are not filled event by event, but the tree is processed in event buffers. The buffer size
should be adjusted by the user depending on the typical event rate. Since the pointers to the data and the his-
togram are searched by name for each Draw() call, the performance is slow compared to histogram filling from
direct pointer access like in the precompiled user analysis case.

4.14.3 Entry for event loop

% =r God v3.0-O0beta @lxg0517 <Controllers [=][o][x]

File Tools Analysis Settings Windows Help

% Panell: cratelldynanic M [wl S | % Dynamic List Editor

File Edit Options I Apply to all Entry: TGodHistogranEntry
S Ty TS| = 1| ™ enable Analyzis/Dynamiclists/test2

~1$hTreeDraw_5-0L
~Iflduntest
i eltest2
+ -[Pictures
-~ ([OCanvases
+ -[llzerh jects
+ [OTrees
- CIEvertOh jects
+ -[JEventStores
+- CIEventSources
+- (JEventPraocessors
= (Events
+-“igMbsE vert-10-1
--“igGodE lenent
™ m fiCratel[16]
Z| -OfiCrate2[16]
O fiCrated[16]
O filrated[16]
i +- (ATGodE ventE lens
+-PIgHHHAN 1Event =

g aos .

RE-2 [BB corrent Evs | TE0Y Awerage Ev/s | 03|s| 153000 |Events |2005-10-06 11:10:53
A
:

Histogran
’;

nalysiz/Histograns /cratelldunamic

Event data | Condition |

X JGodE 1enent /¢ iCratel [1]

Yl

81

82

gui340
In this mode (PointerEntry), the pointers to histogram, event data and an optional Go4 condition are looked up
by name once on initialization of the dynamic list. During the analysis, these pointers are used directly to test
the condition and fill the histogram event-by-event. The information to locate the pointers is taken from the
ROOT TClass information of the user event classes; it is not necessary to fill the event into a TTree.
For the pointer entry, at least the name of an existing histogram and one dimension of the event data must be
specified. This is done in the Event data tab of the editor. Usually, for a new pointer entry the histogram should
be created by li (see above). The new histogram item must then be dropped from the browser to the dynamic
list window.
The event data is defined by the event name and the name of the data member of the corresponding event class,
separated by a slash (“/”). The Go4 browser Analysis folder offers a view of all existing TGo4EventElements in
the EventObjects.Events folder. From here you may just drag and drop the Data member item to the corre-
sponding field of the dynamic list editor. Note that data arrays are shown with their maximum size here, you
need to edit the index afterwards to specify the desired array member.
Similarly, the data to test the condition can be defined in the Condition tab of the editor. The condition is usu-
ally created and registered in the compiled user analysis and is identified by name here. Polygon conditions and
2 dimensional window conditions need the event data specifications both in x and y directions. Note that the
condition event data lines should be left blank if the condition shall not be tested in the dynamic entry (i.e. the
histogram is filled anyway). With [E a new condition can be created. Button B will open the editor for the
specified condition.
The advantage of the pointer entry is that you do not need a TTree. Testing and filling is done for each event by
pointer without any additional string compare after initialization. Therefore it is faster than the tree draw. The
disadvantage is that currently only one level of substructures and only one dimensional arrays are supported (to
be improved...). Implicit summing up of not specified array indices, like in the TTree::Draw(), is not possible
here.

4.15 Histogram/condition information

To check the properties of a histogram or condition, general property windows exist for these objects. They
support drag and drop of icons from Go4 browser. These windows will also pop up from the browser’s context

menu when the &button is chosen.

am Info:

Aralysis/Histograns /CriChlix2

M = ES (% Condition Info:

Analysis/Conditions/wincon2

Crate 1 chanhel 1x2
THZI
Entries 9, 08232+07
®1200 [1,5e+03]
An=1522 .5, HKrns=579,0
Y2200 [1,52+403]
¥m=1047 .8, Yrms=85,8

size:lbsEsn b

I C

God window condition
TGodl inCond

Dim:2

®: [50.0,70.0]

Y1 [80.0,120.0]
Counts:0

True:0

always true - inverse
=ize:l191 b

gui341

With the & button or the & button of the tools menu one opens the histogram or condition information win-
dow, respectively. To see the properties of a histogram or condition, drag the icon from the browser into the
window. With =P the information is updated from analysis. With 82 the information is output to the GUI start
up window, or into a log file if specified in the log settings (see chapter , page 38). With & all histograms (&

all conditions) are listed in the analysis output window. & starts the condition editor for a condition. il gis-

plays the histogram in a view panel.

4.16 Event information

The event information tool window allows to con-
trol printout of event samples from the analysis. The
button [of the tools menu will open the event in-
formation window. This button is also available as a
shortcut in the Qt analysis terminal. The @ entry of
the browser’s context menu (right mouse button)
over an event item will open the event information
tool, too.

The name of the examined event is shown in the top
text line. By default, the MBS event is chosen for

% Event info

Event: Analysis/EventObjects/Events/MosEvent-10-1 HIE |
MBS Event

&

f10

2 |11 A ¥ long T hex

W ShowRemnote [© TTreeSamnple

gui34?2

printout. The event object names may be dragged and dropped to the event information window from the Go4
browser. Clicking the #= button will switch to the MBS event mode directly without the need to drag the

MbsEvent-10-1 icon.

% Analysis Terminal

JH [=] 3

The ShowRemote checkbox selects if the
printout of the event sample is done in the

Event 2179485 Type/Subtype 10 1 Length 26[w] Trigger 1

SubEvID 0 TypelSubtype 10 1Length 6[w] Control O Subcrate 1
985 312
SubEvID 4 Type/Subtype 10 1Length 8[w]Control 2 Subcrate 2

321 131 2593

MBS Event printout: 27607091t/s 10 1len 28trig 1

Mbs Subevent t/s 10 1len 6 procid Ooctl Ocr 1
327 1946

Mbs Subevent t/s 10 1len
312 2082 9

8 procid 4ctrl 2er 2

-
| | 2

=l : . . .
remote analysis terminal, or in the terminal

where the GUI was started. The
TTreeSample checkbox selects if the
PrintEvent() method of the event shall be
called (TTreeSample off), or if the sample
event shall be written to a ROOT Tree
which will use the TTree::Show() method
to scan and display the data (TTreeSample

F DT | . BJEY on). Note that for user event classes that do
| 2| & | 8 not implement a PrintEvent() nothing will
guil52b be displayed except for the TTreeSample

mode.

83

84

Each click on button E= will print events as shown in the upper part of the screen shot left side. The examine
button R will display a new printout of the currently active event (lower output on the left). Note the different
format!

Additionally, for MBS events this window provides in the MBS Event sub-panel parameters for the SetPrint-
Event() method. One can specify in the left field how many MBS events arriving shall be printed out in a spe-
cial format. In the next field a sub-event id may be filtered (default is to display all sub-events). The hex check-
box selects to print the sub-event data either in hex or in decimal format, while the long checkbox defines if the
data is seen as longwords or words. Pressing the E= button will resubmit these settings to the analysis thus initi-
ating a new printout of n events. Note that the MBS Event sub-panel is independent of the settings for the regu-
lar printout of the current event. It works for the remote analysis terminal only, and it uses a different printout
format than the TGo4MbsEvent::PrintEvent() or TTree::Show() methods.

4.17 Hot start

When starting the GUI several actions have to be done to get the analysis running. If these actions are always
the same it would be convenient to save them in a file and execute this file when starting the GUI next time.
This mechanism is called hot start. The typical actions are:

= Launch analysis client

= Submit analysis configuration

= Get analysis folders by $

= Set histograms and pictures into monitoring state

= Open some view panels and display histograms or pictures
After GUI and analysis are configured, one can create a hot start file by Settings» Generate hotstart. A file
selection menu pops up were one can specify a file name. The postfix should be .hotstart. The next time
one can start the GUI with this filename as argument (.hotstart can be omitted). Then all actions stored in
the file are executed.
With care, this file could even be edited.

4.18 User GUI

Go4 provides a possibility to execute user widgets on GUI side. There is an example of a user GUI, included in
the standard Go4 distribution in directory $G604SYS/Go4UserGULI. It can be activated by pressing button
in Tools of main window.

The easiest way to create a user GUI is to copy the content of the standard example to another directory (e.g.
~/UserGUT) and compile it there (make clean, make all). The user should also specify the path to this
directory in GO4USERGUI

export GO4USERGUI=~/UserGUI

The GO4USERGUI variable can also include the name of the library (default 11bGo4RO0TUserGui. so)
which is loaded when user GUI is started. This library must include the special function StartUserGui() which
loads the qt widget library (default 1ibGo4UserGui. so) and creates the top level widget of user GUI. At
the next start of the Go4 GUI pressing the specified GUI will be opened.

The user can freely modify any widgets in the example and create new ones. Changes in library names or the
top widget class should be reflected in the GO4USERGUI variable and the StartUserGui() function.

There is a support of “old style” user GUI, created with older version of Go4 (up to v2.8). In that case correct
path to libraries should be specified like:

export LD_LIBRARY_PATH=~/OldUserGUI/Go4Library:$LD_LIBRARY_PATH

4.18.1 Qt versions

Currently Go4 can be built with Qt5 or Qt6. User GUIs developed with older versions like Qt3 must be con-
verted to be used at least with a Qt5 based Go4. For general conversion rules see:

https://doc.qt.io/qt-5/portingguide.html

https://doc.qt.io/qt-5/portingguide.html

4.19 Macro execution in GUI

% -+ Gody3.1-0 0500 [=1[0l[x]
File Tools Analysis Settings Windows Help
GUI command: j CH %
|Type root or go4 command here ("go4->" to access go4 command interface functions). Return key will start executicm|
gui351

The Go4 command line toolbar can be enabled with the “Settings-Show/hide “ menu. The typed text in the
command line will be executed after pressing “Return” by means of the ROOT CINT Interpreter, so all ROOT
commands are available here. Moreover, the Go4 command environment is aware of the current GUI session
and its objects and may access them by interface methods (see below). Like in plain ROOT, it is also possible
to run complete macros by “.x” command. The button Q) opens a browser for macros on the file system; the
selected macro will be written ready to execute on the command line. With button & the menu as shown in the
figure below appears, showing a list of internally provided Go4 macros. The selected macro call will be copied
to the command line where the empty arguments (e.g. the histogram name) can be edited before execution.

O —— BIOEE Note thgt dragging and dropping a his-

__ togram icon from the Go4 browser to the
ismgrams commandline field will paste its full name
Divide histograms there. So one can easily apply a macro to
Projection X any browser histogram by dropping the
Projection ¥ browser icon inside the blank quotes (“”) of
Correlate histograms
Histogram of histogram the name argument.

Profile X The given macros (located in the

Profile ¥ :

Scale X axis $G04SYS/macros directory) can also be
used as templates for other macros. An en-

Bool_t rebin(const char* name1, int ngroup, Bool_t draw) vironment variable _ GO4MACRO___is de-

v X fined and can be used to write macros to

run in several environments: plain ROOT ,

' guiéSO Go4 GUI, or analysis (see 4.5.2, page 50).

The provided macros hishisto.C and
corrhistos.C are written this way. The histograms to be processed are accessed through the Go4 browser
or from a file, respectively.
corrhistos. C takes the bin contents of two histograms and creates a two-dimensional graph.
hishisto.C creates a histogram and makes a distribution of the bin contents of the source histogram.

Go4 provides an interface of class TGo4AbstractInterface to access the Go4 GUI browser. On the Go4
command line, or within a macro, resp, this interface can be invoked by the “go4 ->” pointer. Note that this is
a different interface than “go4->” in the Go4 analysis macros (see chapter 5 on page 87) which invokes the
TGo4Analysis instance! A further description of the available TGo4AbstractInterface methods can
be found in the reference manual.

Like in the analysis terminal, there is also support for Python macros (*.py) in the GUI command line when in-
voked with a leading “$” character (compare section 4.5.3). Again the Python symbol go4 is not bound to
TGo4Analysis object here, but to TGo4AbstractInterface, providing access to the local browser ob-
jects and GUI features.

Caution! Macros running inside the GUI can crash the GUI!
$G04SYS/macros directory should be added to entry Unix . * .Root.MacroPath in .rootrc setup
file.

4.20 Go4 GUI with ROOT 6 web canvas

Since Go4 version 6 the Go4 GUI may be build with the ROOT6 web canvas using the Qt5 webengine to dis-
play the ROOT canvas. This technique will replace the regular Qt-ROOT interface that has embedded the
ROOT X11 window into the Qt widget of the Go4 viewpanel. Instead, ROOT objects like histograms are ren-
dered with the new JavaScript based web graphics that is going to replace the X11 graphics in future ROOT
version 7. However, this ROOT web graphics is already available as experimental feature in newer versions of
ROOT 6 (>=6.16). As a consequence, Go4 GUI using ROOT web canvas is not limited anymore to operating
systems with X11 graphics, but can be installed to systems with other native graphics engines, like MacOS or
Windows10. The constraint is that Qt5 has to be available with the webengine packets.

85

86

To install Go4 with the web canvas, the following steps are necessary:
e Install Qt5 with the webengine developer modules (linux packages libQt5-qtwebengine-devel or simi-
lar)

e Compile ROOT (version >= 6.16) with following options:
cmake -Droot7=0N -DCMAKE_CXX_STANDARD=14 -Dqt5web=0N

e Compile Go4 with options:
make -withweb=1

After successful installation of the above, it is possible to switch between old Qt-root interface X11 graphics
and new web canvas graphics at startup time of the Go4 GUI. To start go4 with the web canvas graphics, just
type “go4 -web”. The old Qt-root graphics is used when calling “go4 --x11".

Please note that on systems without X11, like MacOS, the web graphics is used by default. The Go4 compila-
tion will require the webengine environment here. Since Go4 version 6.4, the graphics will be selected auto-
matically when “go4” is called without any parameter, depending on the installed environment (e.g. embed-
ded web canvas on wayland desktops where qt5web is mandatory to work with the Go4 GUI.

Please note that this feature is still experimental and has not yet been fully tested! Moreover, neither all
features of the ROOT X11 graphics are yet fully implemented to the web canvas. On the other hand, there are
improved functionalities in the web canvas that have no representation in the old graphics. Any feedback about
bugs or other comments are highly welcome!

5 Analysis Server for ROOT macros

The Go4 analysis server offers the possibility to observe and control execution of normal ROOT macros from
the Go4 GUI. This allows the development of analysis code without respect of Go4 analysis framework classes
(like TGo4EventProcessor, TGo4AnalysisStep and so on) still providing remote access to the running environ-
ment of a user analysis.

It is possible with minimal effort to observe histograms, produced and filled by practically any running ROOT
script. The script go4Init.C initializes Go4 and starts the analysis server in background. Function go4Reg -
isterAl1l() then scans the current directory for existing histograms and makes them available remotely.

Usage:
1. To enable ROOT to find the go4 macros one should enter in the .rootrc a line
Unix.*.Root.MacroPath: .:$(ROOTSYS)/macros:$(G04SYS)/Go4Analy-
sisClient

(Note that . rootrc may be in current directory or in $SHOME.

The standard provided by ROOT is in $RO0TSYS/etc/system.rootrc)
2. Run normal ROOT session.

Execute go4Init.C script by command:

root [0] .x go4Init.C

3. Run user script:
root [1] .x userScript.C

4. When go4Init() is executed, go4 will start the server and printout the port number for connection:
"Waiting for client connection on PORT: 5000"

5. Start the Go4 GUI in and connect to the analysis server running in the CINT. See section 4.3.2 page 43
for more.

The Go4 framework can be accessed after go4Init by the global method
TGo4Analysis* go4= TGo4Analysis::Instance();
After this call, variable go4 can access any method of the analysis framework.

5.1 Methods for object registration
Any object to be seen remotely by the GUI must be registered by one of the following methods:

e go4->AddHistogram(his); // makes histogram TH1* his available in the Go4
GUI

e go4->AddAnalysisCondition(conny);// dito for TGo4Conditions

e go4->AddParameter(par); // dito for TGo4Parameters

e go4->AddPicture(pic); // dito for TGo4Pictures

e go4->AddTree(mytree); // register TTree, but do not change Tree ownership to Go4

e go4->RemoveTree(mytree); // unregister TTree: important to cleanup reference in
Go4 if tree

/I is removed from ROOT (closing TFile !)
e Please see Go4 Reference Manual for other available Add . . . methods!

The go4RegisterAll() function (from Go4lnit.C) registers all histograms found in the current directory.
Some more information can be found in the example macros (see below).

5.2 Methods for run control and execution

e Int_t seconds=go4->WaitForStart(); Pollsuntil the Go4 is set into the "running" state (by
Start button on GUI or SetRunning() method) with 1 second interval. Returns number of seconds
from begin of wait until "running" is switched true. If negative value is returned, a ROOT interrupt has
happened during wait (e.g. Ctrl-C on CINT Canvas).

e Int t state=go4->Process(); Processone main cycle of Go4 event loop from macro. Will first
execute any command from GUI, second call the Go4 main cycle to process analysis steps, user event
function and dynamic list (if existing). This call is required inside any explicit loop in the macro to
process go4 framework analysis actions. The GUI event rate meter is also updated by this method. Re-
turn value is <0 if running state is stopped, otherwise 0.

e go4->SetRunning(Bool_t on); Switch Go4 running state from inside a macro. Useful to react
on analysis conditions

87

88

Bool_t on=go4->IsRunning(); Check the running state of the Go4. Maybe obsolete since this is

done implicitly in methods WaitForStart() and Process(). However, macro loop may be controlled from

GUI independent of Go4 main loop processing.

5.3 Examples:

The following examples can be found in $GO4SY S/macros directory. It is recommended to copy these macros
to a user directory with write access, before executing them.

hsimple.C This is a standard ROOT example from $ROOTSY S/tutorials. The only modification is to

call

go4RegisterAll() after creating histograms.

To run this example, start a regular ROOT session, init the Go4 server and execute script:

root [0] .x go4Init.C

root [1] .x hsimple.C

hsimplego4.C A variation of hsimp le example. This macro will wait until the Go4 start button is

pressed and then run the random filling in infinite loop (mind your disk space, since a TNtuple is filled into

a file here!) Registered objects may be monitored. The loop can be started and stopped at any time from

the Go4 GUI. Please try the remote tree draw on the TNtuple from the Go4 GUI and view the newly cre-

ated histograms. Try to launch the TBrowser before executing the macro and inspect the content of the

"Go4" folders locally...

treedrawgo4.C Macro works on tree in a file. As before, first execute .x go4Init.C:

root [0] .x go4Init.C

root [1] .x treedrawgo4.C("filename")

The "filename" specifies a ROOT file "filename.root" that contains a TTree. Note: first tree found in file

will be used.

This macro contains 2 examples on trees:

1. Direct TTree::Draw() expressions are executed; after finishing, a message is sent to the Go4 GUI and
the output histograms may be viewed here.

2. After registration of the TTree, the go4->Process() will be executed in a loop. Please try the remote
tree draw on the TTree from the GUI and view the result histograms. Loop may be controlled by the
Start/Stop buttons as in example hsimplego4.C.

Control of remote analysis macro from Go4 GUI

5 Sotbngs Windows Help

: “Hcanesian lx tn -flviun -[zun Flae ¢« » 010 He A X
“:Fl,_ltmg,dll Options : 1 I Appiy to all [s
i Syl et Aim ! 5 [Evim s e 1 [F Zl [wvorkspace Toldar

Ll {[FAnalysis Confroller
A S [aHistograms Al Histogram objects
B L B This i the o distrib,
i» = 1 M hpepy BY VE P
> Profile of pz versus .
o] rEACondiions AN Condilion objacts
a3 ~aParamaters Al Parameler objacts
= 1 ZabwynamicLists Dynamic List Inatan, .
: - Traes Raferances to frees
= #intuplea This ks a God Stalu..
i~ [
iy By
g 24
liprandom random
i i
—ZaPiclures Piclure objects

—ZaCanvases Al TCanvases
= LIEventDbjects Evant objects of cur ...
~ZdserObjects For User Objects

R il
E NN

ke | L1ED 134 || Average Evis | MG s | EYTED | Events 2006.08-21 ‘9517”55_ y

Running a ROOT analysis macro in CINT controlled by God GUI

root [0 a0 godng.C

GO Wakzome to God Anahesis Framework Release w3 1-0 (build 301000 'roat [1]

G047 AnabysisClient GodCint Senver-beg0S00-44525 stating inkialization...

GO4"> Anabysis Slave GodCintSenver-big0s00-4525 waiting for submit and stat commands. ..
Wiaiting for client connection on PORT: S000

roat [1] = hsimplegod.C

G047 PoalysistephBnager -- Initizlizing BeentClasses done.

GO4-": Anahysis BazeClass -- Initializing BwertClasses done Miaiting forthe God stat buton.

Use Canwvas menu ' OptiorsAntemupt’ to leave macno.

GO4-": Taskhbanager: Succesfully added new client Display-log0500-4519 thost WgQ0S00, ports S001,5002 5003
G047 Client Display-log0500-4519 i= logged in at GodCirt $enver-teg0s00-4525 3= Controller
Wiaiting for client connection on PORT: S000

G047 AnabysisClient GodCint Server-big0S00-4425 has stated anahysis processing.

Starting execution loop ater 33 s of waiting

G4 AnabysisClient GodCint Senver-big0500-4525 has STOPPED analysis processing.hsimple
Real Time = 7.78 seconds Cpu Time = 6.34 seconds

6 Control of remote Go4 analysis from a ROOT session

Besides the full featured Qt GUI, the Go4 analysis may be controlled and observed by a regular ROOT CINT
session, using the native ROOT GUI for display.

The following screenshot shows at the bottom a go4 CINT analysis server task. Here example hsimplego4.C is
running (see 5.3). This process is connected with the ROOT session in the upper part of the picture, which uses
the regular ROOT GUI to browse and display the analysis objects. This is just like it would be possible with the
usual Go4 GUI. Actually, a multithreaded Go4 master task is running in the background of the upper ROOT
session, while a Go4 slave task is working on the analysis in the lower root session. This analysis process may
not only be a root session with Go4 analysis server, but may as well be a compiled Go4 analysis client exe-
cutable (MainUserAnalysis).

89

90

rivgrol Profs of g vern po
Lk""“ i i The e chtribiion

AER s

ey

iiti

LR
i g g

God functions

Running a ROOT analysis macro in CINT controlled by ROOT browser Windows XP!

root [0 = godloadLlibs. C

roct [1] god = new TGodnterace) _
(class TGodinterface™ Dx319318 |
root [Z] god*Conned Anahsislocalhost 5000,1) el .‘s.:";j
Loginfo = G047 Anahesis nameslist was requested from client Display-log0a00- 26451 | gtttz]
Laginfo = GO4"r Anahysis status was requested from client ...

Loginfo = G047 Client Display-lag0S00-26451 iz logged in at GodCint Server-teg0a00- 16205 as Controllar
rowit [3] mew THRowsen])

(zlass THrowser™)0x 075430

G047 Taskhbnager: Succesfulty added new client Display-lxg0500-4519 thast lg0500, ports S001,5002,5003)
G047 Cliernt Display-leg05b00-44519 is logged in gt GodCint Server-teglb00-4524 a= Controller
Wiaiting for client connection on PORT: 000
I G047 AnatysisClient GodCin Senver-bg0500-4525 has stated analysis processing.
. Starting execution loop after 33 = of waiting
© oG04 AnabysizClient GodCint Server-lgDS00-4525 has STOFPED analysis proceszing.hsimple
Real Time = 7.75 seconds Cpu Time = 5.34 seconds

..... &
6!

gui3l

6.1 Initialization

The controlling Go4 master process is realized in the ROOT session by the TGo4Interface class. After starting
a regular ROOT and loading the Go4 libraries, the call

root [0] new TGo4Interface

will instantiate the master task framework. Explicit loading of libraries is not necessary if the corresponding
ROOT mapfile mechanism is used. Once initialized, the variable go4 is defined as a pointer to the interface
instance and may use all methods of class TGo4Interface. Note that in the analysis server session as
described in section 5, variable go4 refers to the class TGo4Analysis instead!

6.2 Connecting the analysis

To connect to an existing analysis server,use
root [1] go4->ConnectAnalysis("localhost",5000,0, "XXXview");
Arguments are: hostname of the server, the port number, the login account (0=observer, 1=controller, 2=ad-
ministrator), and the password. If password is left out, the default password of this account is used.
Alternatively, an analysis client may be started from this session using
root [1] go4->LaunchAnalysis("test","/u/useril/go4",

"MainUserAnalysis", "1xi003");
With arguments: arbitrary name (“test”), path to the analysis executable, name of the analysis executable, and
node where analysis process shall be started.
The above methods correspond to the Connect analysis and Start analysis dialogues of the Go4 GUI (section
4.3).

6.3 Controlling the analysis by command

Once the connection to the analysis process is established, it can be controlled by several methods:
e go4->SubmitAnalysisConfig(); Submit the analysis configuration. This corresponds to the
Submit button of the Go4 GUI. Usually, the configuration is retrieved from analysis after connection. It

may be modified by several methods of the TGo4Interface before submit, or it may be submitted un-
changed. A submit is required in any case before analysis can be started. Note that this command is not al-
lowed when logged in as observer.

god->StartAnalysis(); Start the analysis run. This corresponds to the Start button of the Go4

GUI. Note that this is not allowed when logged in as observer.

e go4->StopAnalysis(); Stop the analysis run. This corresponds to the Stop button of the Go4
GUI. Note that this is not allowed when logged in as observer.

e go4->StartMonitoring(Int_t period=10); Start monitoring all objects that are set to moni-
toring state and drawn. The update period can be specified in seconds.

e go4->StopMonitoring(); Stop monitoring all objects. Will not reset the monitoring property of

the objects.

e god->DisconnectAnalysis(); Remove connection to remote analysis process.
For a complete reference of available methods, please see the header file $§GO4SYS/include/TGo4Inter -

face.h.

6.4 TBrowser extensions

In addition to the analysis control by TGo4Interface calls, the regular ROOT browser will offer some exten-
sions after the connection has been established. Start the browser with:

root [2] TBrowser br;.

If connected to the analysis, there is a
Go4 folder among the regular ROOT

folders. This will browse the structure
of the remote analysis with subfolders

i~ ROOT Object Browser

Eile Miew Options

[=]|]

Help

3 Mwaz =] 2,

<:|| |e| Optionl v|

. . all Folders |Contents of “fgodsanaly sis/Histogramshaw iy 4w 2"

and all objects. Both histograms and [CrEee e TSt o - _ _

X (@aROOT Fies |da MW WIRE(S:2) |fg MW X423 dg MW_RL(42)
Go4 pictures may be drawn to a new = L M KR4 | CRN

L ; g0 - THI MW XSUM(4:2

canvas by. QOuble ickmg on the item. S - e MWVEE2) A . (4:2)
Go4 conditions will be drawn on dou- -] Histograms lda Mo vicszy | Drawitem
ble-click only together with the his- - (0 Faw ciata gzl’;gl?::n”mpace
togram that was bound to it. The Saihonitoran
ROOT right mouse button menu has SetMonitarOf

entries added for the remote Go4 ob-

jects:

e Draw ltem - will draw it if possi-
ble, just like double-click

e Copy to Workspace - Produce
fix copy to the Workspace folder
in local memory. Just like in the
regular Go4 GUIL

¢ Delete Item - remove object from

analysis if possible

e Set Monitor On/Set Monitor Off -

Togglertdonitaring

Analysis running | Fate = 2373 Ewents = 352000 Time = 223 Date = 2005-10-07 12:54:05 /A
L

Switch the monitoring property of the selected object
* Toggle monitoring — Start and stop monitoring in general. A dialog will appear to request the monitoring
periods in seconds. For zero period, monitoring will be stopped. This corresponds to TGo4Interface meth-
ods StartMonitoring() and StopMonitoring().

gui343

The status line at the TBrowser bottom will show the analysis rate meter, and eventually some messages re-
trieved from the analysis. Additionally, the status messages are printed out to the CINT terminal.

91

92

7 Go4 analysis with http web server

7.1 Startup of go4analysis with webserver

If Go4 has been installed with newer ROOT versions (>5.34.30 / >6.04.00), the ROOT libRHTTP.so library al-
lows controlling the Go4 analysis through a web server. This functionality is then available in go4analysis run-
time executable and can be activated via additional command line parameter "-http PORTNUM", e.g.:

godanalysis -stream r2d2.gsi.de -http 8090

will read DAQ data from MBS stream server on node 12d2.gsi.de and will open web server on localhost with
port 8090. From the Go4 GU], it is also possible to launch the analysis directly with a web server (see chapter
4.3.4 on page 44).

Alternatively, if Go4 has been installed together with DAQ framework DABC (i.e. environment DABCSYS is
set during compilation and points to DABC installation, version >= 2.6.0), additional plug-ins are generated
that allow to connect via a special tcp/io socket to a separate DABC process that offers a web server. This
DABC “master process” can collect data from several different applications (e.g. MBS, Go4, FESA) and export
their objects to be monitored to one common server. Such connection to DABC is initiated by command line
parameter “-dabc master HOST:PORTNUM?”, e.g.:

godanalysis -stream r2d2 -dabc master 1xg0517:8100

Here PORTNUM defines the DABC socket port, not the HTTP webserver port of DABC. This port number is
set in the DABC configuration separately.

7.2 The Go4 web browser GUI

Both web servers (standalone go4analysis, or DABC master process) offer a similar JavaScript- based display
to any web browser. The Go4 web server, in addition, has elements dedicated to control of Go4 objects and of-
fers the most important functionalities of the regular Go4 Qt GUI. The screenshot below shows the browser

view of standard example Go4Example2Step:

a
Fle Edit View History Bookmarks Tools Help

04 analysis - leeweasel <2>

| 9 G4 analysis B3

G

xg0535 gsi.de &

~ & [- coogle

ROOT online server e o

JSROOT version dev 12/06/2015
Hierarchy in json and xml format

[menitering grid 3x3 |~
ok D Ik

cpen all| close all| reload] clear
8 Goa
3 Status

Mo

2AMsg

3 EventsRate
5 Control

~

=

14344352316

objects to File Godk
closed

Events processing rate

Unpack Analysis

Step Control

Enable Step Source O store

Event Source
MBS Random

Name:

Auto Save File

[E [GosanalysisAsFroot

< L]

] ES E =

L L L | I I L
Eire mOm o @meEm mwe Gum Eis

] =» <=submit [submit+start it Close

(& CmdapenfFile

2]

) cmdcloseriles
42 Analysis
] Histograms

XXXParameter

TXXXParameter|

CHisl TGo4winCon Condition histogram

Return Result e e

Regular

(] Crate1
= Cratez

Name || Type

value Comments

All counts:

] crachol
| Crachoz

frP1

100

78.75%

i

True: (22048310

27998902

E T

4| Crachos
| Crachog

frp2

200

Limits Draw Stats Mean

L] Crachos
| Crachos

fbHisto

ltrue

XMin: |100 XMax: |2000

| Cracho?
| Crachos
{# Crichixz

[+]
farr

click to
expand

YMin: YMax:

o HisL
() Hisz
o Hislg

= &

i i

= &

(i His2g
o/ SUmL

Crate 1 channel 1x2

Crate 1 channel 1x2 Crate 2 channel 3

) Sum?2
Y/ Sum3

L Eventsize

=3 Parameters

128 00<Parameter
) Conditions

cHis1
cHisz

dirclecond L L

2120 [0
ey

m

-

2

.,

"

&

o

E
000,00

0000 20

2
000,00

10
-

0,000
@

EEEN

21 i 2 i 3 i

=l

L | ,
E o R T

=

“[Random|[199344.3 /s ev/s[58579.7| s[27872904] events[2015-06-16 08:14:20

7.2.1 The object hierarchy view

The left browser frame reflects the Go4 objects hierarchy, like it is done in the native Go4 GUI browser. Click-
ing on an object icon will draw it on the next free view pad in the display frame on the right side. The display
frame may be divided in different ways as described in section 7.2.2 . When the Monitoring checkbox is se-
lected, the displayed objects are frequently refreshed every 3 seconds.

Besides the default draw mode when an icon is clicked, most objects offer various display options that are
available in a popup menu when the icon is selected with the right mouse button. For instance, the picture on
the left shows the popup menu of a 2 dimensional histogram with following typical entries:

Draw »
Expand

Craw in new window?
Draw as png

Close

.

= dflt>
col
colz
col3

lego

Close : close popup menu, no drawing.

* Draw : with submenu for supported TH2 draw op-

tions (col, colz, col3, lego)

Expand : reveal the substructure of any ROOT object
in the hierarchy tree view. Any icon in the substruc-
ture can be selected and may offer additional inspec-
tion methods. Pointing at a class member icon with
the mouse will show the sourcecode commentary de-
scription, if existing.

Draw in new window : Display selected object in a
separate browser tab or window instead of the display
frame. This entry offers the same submenu as the
Draw field.

Draw as png : Retrieve object as graphical png image
instead of interactively drawn JSROOT object. The
image will be shown in a new browser tab/window.

93

In addition to the Go4 objects registered by the user, the hierarchy frame contains Status and Control folders
with elements to monitor and to control the Go4 runtime environment, such as rate meters, commands, and log
messages text. For example, EventRate measures the processed data events per second.. When the rate meter
icon in the object tree is clicked, the next free view pad will show a visual representation, i.e. a time trending
histogram. If Moenitoring is also checked, the rate meter value will be continuously refreshed.

Besides this event rate trending, the current and average rates, running time and the number of analyzed events
are displayed in a status field at the bottom of the browser. Like in the Go4 Qt GUI also the analysis running
state is visualized by the animated Go4 logo and the event rate background color (green or red). Note that this
background color will turn to dark grey if the web server is temporarily unavailable. The current event source
name is also shown on the left side. This display is refreshed independent of the Monitoring checkbox.

'Random 202571.7 £v/s|188.2| Ev/s 58070.4 s 10928251 Events|2015-06-16 08:05:50

The Log icon if clicked will printout all Go4 log messages into a scrollable text field. Similarly, Msg icon will
show even more debug related messages. Again with option “Menitoring” enabled, these message texts will be
refreshed automatically.

The most important Go4 commands are available as main buttons on top of the hierarchy:

rf?f@"fﬁ-’-

Clicking on a button will invoke this command in the analysis process, such as:
e clear all histogram contents,
start analysis processing,
stop analysis processing,
resubmit current settings and start analysis processing,
open a remote ROOT file to browse objectes (ROOT versions > 5.34.30/ 6.04.00 only)
These commands are exported via the Control folder of the hierarchy, but partially hidden in the list view. Ad-
ditional commands of the web server, e.g. CmdCloseFiles, may appear in this folder and can be invoked by
clicking the list view icon.

This overview lists all control widgets of the Objects Hierarchy frame:

Monitoring checkbox: if checked, all displayed objects are frequently refreshed every 3 seconds.
Viewmode combobox: defines matrix of pads in the view frame, e.g. 3 means 3x3 pads

open all: unfolds the complete object list

close all: compress the complete object list

reload: reload web page

clear all: clear the view frame and set up division as defined by Division spinbox

7.2.2 The display frame

94

The division of the display frame into pads and the grouping display mode can be set
e e up with comboebox menu on top of the objects hierarchy frame:
simple e simple : just one object in the display frame

e collapsible: several objects, one drawn below the other, each view is col-

grid 2x2 lapsible/expandable by clicking its top border
grid 3x3 e grid 2x2, 3x3, 4x4: display frame is subdivided in such number of pads,
grid 4x4 each pad contains one object
tabs e tabs: several objects, each one gets own tab field in the display frame

CriChlx2 =

The histogram display in the view pad can be changed by a pop-up menu that appears
when clicking the right mouse button over it (see picture on right side). The menu en- Unzoom Y
tries are self-explanatory and offer functions for zooming and scaling the axis ranges, | Unzoom
setting the most used draw options, and toggling the histogram statistics box. Axis Disable to oltip
ranges can also be changed when holding the left mouse button over a histogram and Log X
defining a square region by dragging the mouse. Log
Toggle stat
Auto zoom-in
Draw in 3D
Togale col
Toaggle colz

Unzoom X

<

7.2.3 The web browser analysis configuration web editor

Selecting the Control/Analysis icon in the object hierarchy view will show the analysis configuration editor in the
next view pad. This makes it possible to inspect and change the analysis set-up via the web browser.

Unpack Analysis

Step Control |
Enable Step Source Store

Event Source

MBS Stream Server

Name: |r2d—2 Emore...
Port: | dflt - Tmout (s): 1 . Retr (s): never
First: 0 . Last: all . Step: 1 .

Event store

Go4FileStore (*.root)

Name: |RawData.r00t

Auto Save File

& [GodAnalysisASFroot

Enabled 500 . 5 - [overwrite

Analysis Configuration File

= @ [GodanalysisPrefs.root

= ¢ submit A\ B Submit+Start - Close

The GUI elements of the web configuration editor and the functionality are mostly identical to the analysis configu-
ration window of the Go4 Qt GUI (see section 4.4.1).

7.2.4 Displaying and editing conditions

The Go4 condition objects appear as icons in the Conditions folder of the hier-

Draw » <dft> archy tree. Like in the Go4 Qt GUI, conditions can be modified with a condition
Expand editor editor, or displayed on a view pad together with the assigned histogram. If no
Draw in new window? histogram is assigned to the condition, clicking the condition icon will open the

condition editor in the next view pad by default. Otherwise condition and as-
signed histogram are drawn in the view pad. The right mouse button pop-up
Close menu, as shown on the left side, allows selecting the editor draw mode apart
from this defaults <dflt>. Moreover, by drag and drop of a condition icon to any
existing histogram view pad the condition is drawn together with the histogram. This re-implements the known be-
havior of the regular Go4 Qt GUI.

Draw as png

95

ellipsecond TGo4ShapedCond|
Return Result Regular
All counts: True: 35317 4.26%
Cut Shape Draw Stats Mean
X: [3000 A1:[300 Theta: [45
¥: [3000 A2:[800
NPoints | 180 Ellipse g
Ellipse
Circle
Rectangular box
Free Polygon
= ¢ a &

5000

Crate 1 channel 1x2

4500

4000

3500

3000

2500

2000

C ma = 51081 0000

1500

1000

500

CriCh1x2

Entries 1032562
Mean x 2393 06944
Mean y 206256047
RMS x B29.51435
RMS y BEG.90467

500 1000

Ll ol b s
1500 2000 2500 3000

3500

4000

4500 5000

An example of the Go4 web browser condition editor and the display of an elliptical shaped 2 dimensional condition
are shown in the picture above. Design and functionality of the web client editor resembles as close as possible the

well established Go4 Qt GUI (see section 4.10).

7.2.5 The web browser parameter editor

The Go4 parameter objects appear as icons under the Parameter folder in the hierarchy tree. Clicking a parameter
icon will open the web GUI parameter editor in the next view pad.

XXXParameter TXXXParameter
| Name | Type | Value | Comments
| frP1 | Float_t | ,].007 ‘ Offset for calibration
| P2 | Float_t | ,2007 Factor for Calibration
| foHisto Bool_t | ltruei Enable Histogramming
” [+] farr |TArravI ‘ Click to expand ‘Arrav
[-] fArr2 Int_t[3,4] Click to shrink Array
farr2[0][0] Int_t ’07 example of 2d array usage
farr2[0][1] Int_t ’17 example of 2d array usage
farr2[0][2] Int_t ’27 example of 2d array usage
farr2[0][3] Int_t ’37 example of 2d array usage
farr2[1][0] Int_t ’17 example of 2d array usage
farr2[1][1] Int_t ’27 example of 2d array usage
‘ farr2[1][2] Int_t ‘ ’37 example of 2d array usage
farr2[1][3] Int_t ’47 example of 2d array usage
farr2[2][0] Int_t ’27 example of 2d array usage
‘ farr2[2][1] Int_t ‘ ’37 example of 2d array usage
‘ farr2[2][2] Int_t ‘ ’47 example of 2d array usage
‘ farr2[2][3] Int_t ‘ ’57 example of 2d array usage
‘ [+] farr3 | Int_t[3,4,5] ‘ Click to expand ‘Array
= &=

Functionality and operation of the web parameter editor are mostly the same as for the Qt GUI parameter editor (see
section 4.13.2). In addition to this, also editing of 3 dimensional arrays are supported in the web GUI. Any array in
the parameter class is expanded or shrink by clicking on its heading line. This allows changing each single array en-
try. The right mouse button pop-up menus of the Qt GUI for arrays and Go4 fitter members, however, are not sup-
ported in the web GUI.

96

7.2.6 The web browser analysis terminal

Selecting the Control/Terminal icon in the object hierarchy view will show the analysis terminal with macro com-
mand line in the next view pad. The functionality is almost the same as for the Qt GUI analysis window (see section
4.5.1). The top text view will display the analysis output, the command line may execute ROOT and optionally
Python macros, and the buttons provide the actions clear, scroll down, print histograms, and print conditions, respec-

tively

TS

[TRACE,
[TRACE,
[TRACE,
[TRACE,
FPGA Tr
FPGA Tr

PEAK
PEAK
PEAK
PEAK
VALLEY
VALLEY
VALLEY
VALLEY
[Trigger
[Trigger
[Trigger
[Trigger
Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel
Leaving

base
base
base
base
apez
apez

SFP:
SFP:
SFP:
SFP:

SFP:
SFP:
SFP:
SFP:
time -
time -
time -

time
hit
hit
hit
hit
hit
hit
hit
hit
Pyth

line restor
line restor
line restor
line restor
SFP: @ FEB
SFP: 0O FEB

0 FEBEX:

0 FEBEX:

0 FEBEX:

0 FEBEX:

0 FEBEX:
0 FEBEX:
0 FEBEX:
© FEBEX:
Hit time
Hit time
Hit time
- Hit time
pattern per
pattern per
pattern per
pattern per
pattern per
pattern per
pattern per
pattern per
on script

ed SFP: O FEBEX: ©
ed SFP: 0O FEBEX: ©
ed SFP: O FEBEX: 1
ed SFP: O FEBEX: 1
EX: 0O CHAN: 3 0.0
EX: © CHAN: 13 0.0

FPGA Energy(hitlist) SFP: 0 FEBEX: © CHAN:
FPGA Energy(hitlist) SFP: 0 FEBEX: © CHAN:
FPGA Trapez SFP: © FEB
FPGA Trapez SFP: 0 FEB
FPGA Energy(hitlist) SFP: @ FEBEX: 1 CHAN:
FPGA Energy(hitlist) SFP: 0 FEBEX: 1 CHAN:

EX: 1 CHAN: 3 0.0
EX: 1 CHAN: 13 0.0

© CHAN: 3 14153087.0
0 CHAN: 13 14153087.0
1 CHAN: 3 14153087.0
1 CHAN: 13 14153087.0
0 CHAN: 3 1415387
0 CHAN: 13 1415387
1 CHAN: 3 14153087
1 CHAN: 13 14153087
SFP: © FEBEX: 0
SFP: © FEBEX: 0
SFP: © FEBEX: 1
SFP: © FEBEX: 1
event (list) SFP:
event (list) SFP:
event (list) SFP:
event (list) SFP:
event (trace) SFP:
event (trace) SFP:
event (trace) SFP:
event (trace) SFP:

CHAN: 3 300.0
CHAN: 13 300.0
CHAN: 3 300.0
CHAN: 13 300.@

3 1.

13 0.0
30.0
13 0.0

.0

.0

.0

.0

CHAN: 3
CHAN: 13
CHAN: 3
CHAN: 13 0.
O FEBEX: @ CHAN: 3 14153087.0
0 FEBEX: @ CHAN: 13 14153087.0
O FEBEX: 1 CHAN: 3 14153087.0
0 FEBEX: 1 CHAN: 13 14153087.0
O FEBEX: 0 CHAN: 3 14153087.0
© FEBEX: 0 CHAN: 13 14153087.0
© FEBEX: 1 CHAN: 3 14153087.0
© FEBEX: 1 CHAN: 13 14153087.0

DO O
oo @

P

v

Press enter to execute. $/misc/adamczew/godwork/go4-app/godpy/basic.py G+

£ o

97

98

8 The Go4 Composite Event Classes

8.1 Introduction

The Go4 framework applies the concept of the ”event” structure (or class) that represents a set of data values
belonging to the same processing cycle of the analysis loop. As explained before in this document, such event
classes are used both for the input, and for the output data of each analysis step. Which data belongs to each
event cycle is firstly defined by the data acquisition system that reads out and stores such values together.
Mostly an event may correspond to a certain “trigger” situation of the experiment. Here it represents e.g. the
record of all physical interactions in the detector after the reaction between a beam particle and a target. But it
could as well be just a container for data acquired within a given time interval. At later Go4 analysis steps, the
event representation may be redefined by skipping, cutting out, or combining input events.

An experimental set up often consists of DAQ or detector components and subcomponents. These can be many
of the same kind, or many various ones. Each kind of subcomponent may acquire data of the same structure.
The subcomponents must be bundled into components which finally are aggregated to the complete event data
representation. The depth of the subcomponent hierarchy is principally not limited here.

MyEvent

__A__
~— T
MyCrate 1 MyCrate 2 MyCrate 3
A A A
'd Y 'd Y r N\
Ll'\/lyl\ﬂodule 1 LMyModule 4 OtherModule 1
MyModule 2 MyModule 5
MyModule 3 OtherModule 2
A A
' ™ r N\
Int_t data | | Int_t test | ‘ Int_t aux Short_t adc[5] | | Short_t tdc

A typical example is shown in this simplified object diagram. The complete event structure MyEvent consists
of three subcomponents MyCratel, MyCrate2, and MyCrate3 which represent a certain DAQ crate hard-
ware. Each of these crates contains a number of MyModule or OtherModule subcomponents. These provide
primitive variables data, aux, adc[5], etc. which hold the actual data read out by such module. Hence this ex-
ample is reflecting the partitioning of the DAQ hardware. For advanced event structures with detector hits, or
physics data, it is also very likely though that a similar substructuring occurs.

To define a Go4 event class for this situation, the user could of course just aggregate similar subcomponent ob-
jects by means of collection classes, like std::vector, or TObjArray. Storage of such “composite” class with
ROOT 1/O into TGo4FileStore - Trees should be no problem. However, when using the ROOT or Go4Tree-
viewer tool, the representation of the subcomponent data would not show up as separate leaves, even in full tree
split mode 99. Thus the usage of a quick TTree: :Draw() analysis would be impossible for this approach.
Moreover, it would not be possible to identify each single subcomponent by name and apply e.g. partial i/o
when reading back the data, or search for the component in the full input event.

Because of this, the Go4 framework provides the TGo4CompositeEvent class with generic functionality to
aggregate any level of subcomponents with TGo4EventElement objects. When written into the TGo4FileStore
with splitlevel 99, the primitive data members of each subcomponent will appear as a separate leaf in the
ROOT Tree. Moreover, any subcomponent can be retrieved from the top event object by name, or by id num-

ber. The TGo4CompositeEvent implementation uses a TObjArray for the collection of subcomponents, but
redefines the ROOT branch i/o for each subcomponent.

8.2 Application Programmers Interface

Using the composite event in own Go4 analysis code is based on inheritance from the two interface classes
TGo4CompositeEvent and TGo4EventElement.

* TGo4EventElement

“name”, “title”, id

TGo4CompositeEvent |1 1

addEventElement ()

A M

MyEvent

MyEvent ()

MyCrate

MyCrate ()

MyModule OtherModule

Int_t data; Short t adc[5];

Int_t test; Short t tdc;
Int t aux; -

<€— inheritance

S STEPRER association

Elementary subcomponent classes should inherit from TGo4EventElement . These classes are elementary
bricks of the data structure which contain members of all data-types that the ROOT system supports in its IO
split mechanism. In order to create an elementary object, one should follow the TGo4EventElement general in-
terface, and according to this interface the data object should have as parameter of its constructor

e aname (const char?*)

e atitle (const char?*)

* aunique identifier (Int_t)
The name will be used to generate the corresponding TBranchElement branch names in the ROOT TTree lay-
out. The identifier should be unique for each user class.

Data-container classes should inherit from TGo4CompositeEvent. This applies for all classes which will ag-
gregate subcomponents of TGo4EventElement implementation. Because the TGo4CompositeEvent is also a
subclass of TGo4EventElement, it is possible to aggregate composites of subcomposites with theoretically un-
limited depth. To add a subcomponent to a composite event collection, the interface method
® TGo4CompositeEvent::addEventElement(TGo4EventElement * evt)
is to be used when the composite object is created.
To access any subcomponent within a top composite event, there are two methods provided:
® TGo4CompositeEvent::getEventElement (const char* name) will retrieve pointer to event
element by name. Note that this function is invoked full recursively, i.e. the component name is
searched in all subcomponent composites.
® TGo4CompositeEvent::getEventElement (Int_t ix) will retrieve pointer to event element by
index number in the collection of this composite event. Such method is not recursive, but restricted to
the current composite event object.
A simplified UML class diagram of the component example described above is shown in the figure.

99

100

Green solid arrows indicate inheritance (arrow points to the base class); dashed black arrows show aggregation
association between composite event and event element (one composite event “1” may contain many event ele-
ment objects “*”). It is obvious that TGo4CompositeEvent is a subclass of TGo4EventElement, thus allowing
to recursively aggregate subcomponents of composite events.

To implement event object structure of the example situation, classes MyEvent and MyCrate are derived from
TGo4CompositeEvent. Classes MyModule and OtherModule, containing primitive data variables, are simply
derived from TGo4EventElement. The actual set up of the composite object may be done in the constructors of
the composite classes. Constructor MyEvent () will instantiate the contained MyCrate objects with unique
names and id numbers, and put them to the subcomponent collection by means of the addEventElement ()
interface. The MyCrate () constructor of each crate will do similarly for the MyModule, or OtherModule
components. A general object configuration may be read from such constructors to tell by id number which
subcomponent should be created when the Go4 event classes are initialized.

8.3 Example

An example usage of a TGo4CompositeEvent can be found in Go4ExampleAdvanced. The composite struc-
ture is here very similar to the case as discussed above: The input event of the first step TXXXUnpackEvent is a
TGo4CompositeEvent with subcomponents of class TXXXCrate. Each TXXXCrate is also a TGo4Composi-
teEvent, containing a configurable number of TXXXModule objects. The latter is a simple TGo4EventElement
with a structure of elementary variables fiData, fiTest, and fiAux:

class TXXXModule : public TGo4EventElement

{
public:
TXXXModule():TGo4EventElement(), fiData(0) {;}
TXXXModule(const char* name, Short_t id):
TGo4EventElement(name,name,id), fiData(0) {;}
virtual ~TXXXModule() {;}

void Clear(Option_t *t="")

fiData=0;

fiTest=0;

fiAux=0;
}

Int_t GetData(){return fiData;}
void SetData(Int_t dat){fiData=dat;}

Int_t GetTest(){return fiTest;}
void SetTest(Int_t dat){fiTest=dat;}

Int_t GetAux(){return fiAux;}
void SetAux(Int_t dat){fiAux=dat;}

/* in this example, each module represents single channel of data.*/
Int_t fiData;

/* module may have test data channel.*/
Int_t fiTest;

/* module may have aux data channel.*/
Int_t fiAux;

ClassDef (TXXXModule, 1)
Y

The constructor of TXXXModule will pass the name and id number arguments to the TGo4EventElement con-
structor, thus allowing for composite identification.

The classes TXXXCrate and TXXXUnpackEvent just derive from TGo4CompositeEvent, but do not add any
other data members here:

class TXXXCrate : public TGo4CompositeEvent {
public:
TXXXCrate():TGo4CompositeEvent(){;}
TXXXCrate(const char* name, Short_t id);
virtual ~TXXXCrate() {;}

ClassDef (TXXXCrate, 1)
Y
class TXXXUnpackEvent : public TGo4CompositeEvent {
public:
TXXXUnpackEvent () :TGo4CompositeEvent(){;}
TXXXUnpackEvent(const char* name) ;
virtual ~TXXXUnpackeEvent() {;?}

ClassDef (TXXXUnpackEvent, 1)

Hence they are mere data containers to organize the structuring of the TXXXModules. Note that virtual method
Clear () needs not to be implemented in this case, since Clear () of base class TGo4CompositeEvent will

invoke all Clear () methods of the composite components.

The set-up of components is done in the constructors of TXXXUnpackEvent and TXXXCrate, resp.:

TXXXCrate: :TXXXCrate(const char* name,Short_t id)
TGo4CompositeEvent (name, name, id)

{
if(id <0 || 1d>XXX_NUM_CRATES)
{

3

else

{
TString modname;
for(UInt_t ix=0; ix<Config_Crates[id]; ++ix)

printf("TXXXCrate id %d outside range!\n",6id);

modname . Form("XXXCrate%d_XXXModule%d", id, ix);
addEventElement (new TXXXModule(modname.Data(),ix));

}

V72 R SRR R SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

TXXXUnpackEvent: : TXXXUnpackEvent(const char* name)
TGo4CompositeEvent (name, name, 0)

{
TString modname;
for(UInt_t ix=0; ix<XXX_NUM_CRATES; ++ix)
if(Config_Crates[ix]==0) continue; // skip empty crates
modname.Form("XXXCrate%d", ix);
addEventElement (new TXXXCrate(modname.Data(),ix));
}
}

Here the static array Config_Crates[] is used to define the set up of crates and modules. In this example it

can be changed at compilation time by means of some definitions in TXXXUnpackEvent.h:

#define XXX_NUM_MODULES 16
#define XXX_NUM_CRATES 4

// nr of modules in Crate 0 1 2 3
// [
#define NR_MODULES {0, 16, 16, 2}

Definition NR_MODULES will initialize the array Config_Crates[] in TXXXUnpackEvent.cxx, thus defining

the actual configuration:

static UInt_t Config_Crates[XXX_NUM_CRATES] = NR_MODULES;

101

102

When writing such event to a ROOT tree with TGo4FileStore enabled, the composite event substructures can
be inspected with a ROOT or Go4 treeviewer tool.

% - Go4 v4.5.0 @Ixg0532 <Controller name: yAnalysis> - [Panel1: [Cr2-1vsCr-0]]

= File Tools Analysis Settings Windows Help EEE
Qm2s [Glatems /o 20 @aldS A M dn Ay b © 2 = FELEZ @Dz 0o Bdo o0
Browser f File Edit Select Options Apply to all v AutoScale

Name

XXXCrate2_XXXModule1 fiData:XXXCrate1_XXXModule0.fiData 14:08:12 2011-07-29 Analysis/Histograms/Crz-1vsCri-0 Entriss.
= #| UnpackxTree

=« UnpackEvent
=+ XXXCrate1
= & XXXCrate1_XXXModuleO.
W XXXCrate1_XXXModule0 fiData
I XXXCrate1_XXXModule0 fiTest 3000
I XXXCrate1_XXXModule0 fiAux
= s XXXCrate1_XXXModule1.
+ i XXXCrate1_XXXModule2. 2500
= s XXXCrate1_XXXModule3.
= s XXXCrate1_XXXModule4.
+ # XXXCrate1_XXXModule5. 2000
+ # XXXCrate1_XXXModule6.
+ # XXXCrate1_XXXModule7.
» ¢ XXXCrate1_XXXModule8. 1500
+ # XXXCrate1_XXXModule9.
+ 4 XXXCrate1_XXXModule10.
= £ XXXCrate1_XXXModule11. 1000
+ ¢ XXXCrate1_XXXModule12.
= s XXXCrate1_XXXModule13.
+ ¢ XXXCrate1_XXXModule 14. 500
= ¢ XXXCrate1_XXXModule15. m
¢¥ XXXCrate1.TGo4CompositeEvent
= 4% XXXCrate2 0
= 4% XXXCrate2_XXXModuleO.
= #¥ XXXCrate2_XXXModule1.
i XXXCrate2_XXXModule1 fiData _500
% XXXCrate2_XXXModule1 fiTest
§% XXXCrate2_XXXModule1 fiAux
4¥ XXXCrate2_XXXModule2. =
Gl I [»]

e

Il ‘ Il Il Il ‘ Il Il Il Il ‘ 1 Il Il Il ‘ Il Il Il Il | Il 1 Il ‘ 1 Il
500 1000 1500 2000 2500 3000

o

—600

400

200

1 | X: [XXXCrate1 XXXModuleO fiData| Y: XXXCrate2_XXXModule1 fiData| Z: % @CrZ-WsCr‘I-O
Fill target hist from treed
oo EEE Average Evis gls Y335 Events 2011.07-29 14:10:26

This screenshot picture shows the browser view of a tree produced by the above example. Here Go4 filled a dy-
namic list histogram from the fiData members of different subcomponents. The hierarchical representation of
the composite event leaves in the Go4 treeviewer can be used to easily navigate between different subcompo-
nents. Note that the GUI menu “Settings/Preferences/” provides a mode “Hide TGo4EventElement” to hide
all TGo4EventElement leaves in the Go4 treeview. This is useful, since every subcomponent has leaves with
members derived from the base class.

9 Icon Table

File pad: open local ROOT file on disk

File pad: open remote ROOT file (TNetFile, TWebFile, TRFIOFile)

Save content of memory to ROOT file

File pad: close selected ROOT file

File pad: close all ROOT files

Export selected objects of memory browser into another format (ASCII, radware, ROOT)
Stop running analysis, shutdown analysis and terminate GUI

Open view panel

Open fitter window

Open histogram properties window (there: list properties in analysis window)

Open histogram creator window

Open condition properties window (there: list properties in analysis window)

Open condition editor

Open event inspector window

Open dynamic list editor

List dynamic list in analysis window

Open parameter editor

Open browser to (un)load libraries; show list of loaded libraries

Open user GUI

Open analysis launch window

Stop and shut down analysis client, disconnect analysis server

Stop and shut down analysis server

Start analysis. Monitor pad: start updating all objects in list, or only displayed ones.

Stop analysis

Open analysis configuration window (can be closed/opened any time); browser popup menu: edit se-
lected

Open analysis output window (can be closed/opened any time)

Open file browser

Open color editor

Expand/shrink histogram in selected pad in X.

Expand/shrink histogram in selected pad in Y

Expand/shrink histogram in selected pad in Z.

Move expanded histogram in selected pad in X direction

Move expanded histogram in selected pad in Y direction

Move expanded histogram in selected in pad Z direction

Set fill color

Set line color

Set marker color

Scale Y axis linear/logarithmic

Scale Z axis linear/logarithmic

Scale X axis linear/logarithmic

Draw 1d histogram/line style

Reset display in selected pad to histogram limits

Open window to set display limits (applies to selected pad, or all pads if this option is enabled in
view panel)

Execute Tree draw.

Kill analysis

Clear button in browser pads clears objects in analysis, in condition editor clears counters.
Enable clear function for objects

Disable clear function for objects (% does not clear these objects)

Analysis pad: copy selected object(s) to monitor

Remove selected object(s)

Move selected object(s) to memory (from analysis, monitor, or histogram server); or copy object
from analysis to editors (conditions or parameters)

Copy object in editor to analysis (conditions or parameters)

Analysis pad: update folders from analysis. Memory pad: update all objects from analysis and re-

] I o (40 b {5 il (3 VD O

OV LS EED
¥

W
-~

v v ¢

09 >~nocmEfH

‘@‘@HE_F,W
EEI’\‘WF‘I“T

Y FRERRA]

draw.
imi Browser icons for window condition (arrays). Window mode in marker editor
Browser icons for polygon condition (arrays). Polygon mode in marker editor

BRI 17

103

104

®PF PREEE

M@l @

Wl -B\xT

Browser icon for TCanvas

Browser icon for TGraph

Browser icon for Go4 pictures.

Brower icon for TH3 histograms

Browser icon for TH2 histograms

Browser icon for TH1 histograms. Button: draw selected objects (one per pad).

Draw selected objects (all in one pad, superimpose)

Save selected object in memory to ROOT file

Refresh memory list (needed to see new histograms created e.g. by ROOT in the GUI). In condition
editor: refresh values from view panel.

Browser popup menu: open information window for selected histogram or condition
Editors: shows up if object in editor differs from object in analysis (file). Use €= for update.
Condition editor: connect to a picture with conditions (gets list of conditions from it)
Condition editor: update graphics from values in editor.

Output values of condition editor, info window, or markers according settings in the log action.
Close window without further action

Browser icon for dynamic list entries

Insert arrow in marker editor

Pick next mouse click in pad to get values into condition editor or marker editor

Browser icon for a tree

Browser icon for a branch

Browser icon for leafs

10 Table of Menu and Toolbar Keyboard Shortcuts

Note that the Alt-x keys work on windows whereas the Ctrl (Strg)-x keys work directly. Sometimes the same
function is available in both, i.e. Alt-a-n or Strg-n. In these cases the last character is identical.

Ctrl-0 Alt- File menu: Open local file
F-O
Cul-R Alt- File menu: Open Remote file (TNetFile, TWebFile, TR-
F-R FIOFile)
Ctrl-Y Alt- File menu: Save all objects of memorY browser to ROOT
F-Y file
- Alt- File menu: Connect to Histogram server
F-H
Ctrl-Q Alt- File menu: Close (Quit) all files
F-Q
Ctrl-X Alt- File menu: EXit Go4
F-X
Ctrl-v Alt- Tools menu: Open new View panel
T-V
Ctrl-F Alt- Tools menu: Fitpanel
T-F
- Alt- Tools menu: Histogram properties window
T-H
Ctrl-1 Alt- Tools menu: HIstogram creation tool
T-1
- Alt- Tools menu: COndition properties window
T-0
Alt- Tools menu: Condition creation tool
T-C
- Alt- Tools menu: Event printout and inspection tool
T-E
Ctrl-D Alt- Tools menu: General Dynamic list editor
T-D
Ctrl-B Alt- Tools menu: Load liBrary dialog
T-B
Ctrl-U Alt- Tools menu: User GUI
T-U
Ctrl-N Alt- Analysis menu: LauNch analysis process
A-N
Ctrl-C Alt- Analysis menu: Connect to running analysis server
A-C
Ctrl-M Alt- Analysis menu: Disconnect (reMove) analysis
A-
M
Ctrl-T Alt- Analysis menu: SubmiT settings and start analysis run
A-T
Ctrl-S Alt- Analysis menu: Start analysis run
A-S
Ctrl-H Alt- Analysis menu: Stop (Halt) analysis run
A-H
Ctrl-G Alt- Analysis menu: Show/hide analysis confiGuration window
A-G
Ctrl-w Alt- Analysis menu: Show/hide analysis output terminal Window
A-
w
- Alt- Settings menu: shQwr/hide...
S-0

105

Alt-

Settings menu: Fonts...

Alt-
S-Y

Settings menu: StYles...

Alt-
S-L

Settings menu: Log actions

Alt-
S-H

Settings menu: Generate Hotstart

Alt-
S-T

Settings menu: Analysis Terminal history length

Alt-
S-S

Settings menu: Save Settings

Alt-
W-S

Windows menu: CaScade

Alt-
W-

Windows menu: Tile

Alt-
W-

Windows menu: Close all windows

Alt-
W-

Windows menu: Minimize all

Alt-
W-

Windows menu: Save LOg window to text file

Alt-
W-

Windows menu: Clear Log window

Alt-
W-

Windows menu: Save Analysis window to text file

Alt-
W-

Windows menu: Clear analysis Window

F11

Alt-
W-

Windows menu: Toggle Full screen mode

F1

Alt-
H-1

Help menu:

Read Go4 Introduction manual

Alt-
H-R

Help menu:

Read Go4 framework Reference manual

Alt-
H-F

Help menu:

Read Go4 Fitpackage manual

Alt-
H-G

Help menu:

Read Go4 GUI macro command reference

F2

Alt-
H-Q

Help menu:

About Qt

F3

Alt-
H-O

Help menu:

About ROOT

F4

Alt-
H-G

Help menu:

About Go4

106

Alt-U

Analysis configuration window : SUbmit analysis settings

- Alt- View panel file menu: Save as...
I-S

- Alt- View panel file menu: Print...
I-P

- Alt- View panel file menu: ClOse View panel
I-0

- Alt- View panel edit menu: Show/hide marker Editor
E-E

- Alt- View panel edit menu: Show/hide ROOT attributes editor
E-R (TGedEditor)

- Alt- View panel edit menu: Start Condition editor and work on
E-C pad conditions (in pictures)
Alt- View panel edit menu: Show/hide object Event status line
E-E

- Alt- View panel edit menu: Change to 1:1 coordinates ratio
E-1

- Alt- View panel edit menu: Change to Default pad margins
E-D

- Alt- View panel edit menu: Clear Markers
E-
M

- Alt- View panel edit menu: Clear Pad
E-P

- Alt- View panel edit menu: Clear CAnvas
E-A

- Alt- View panel options menu: Toggle Crosshair mode
0-C

- Alt- View panel options menu: Show/hide histogram Statistics
0-S box

- Alt- View panel options menu: Show/hide histogram Title box
O-T

- Alt- View panel options menu: Show/hide multiplot Legend
O-L

- Alt- View panel options menu: Keep view panel title
0-K

- Alt- View panel options menu: Set View panel title...
0-V

- Alt- View panel options menu: Toggle SuperImpose mode
0O-1

- Alt- View panel options menu: Toggle X-axis time display mode
0-X

107

F6 Toggle visibility of browser dock window

F7 Toggle visibility of logging dock window

F8 Toggle visibility of MBS monitor dock window

F9 Toggle visibility of DABC monitor dock window (only if
installed with DABC/DIM)

Ctrl-Left: Zoom tools: Expand range on x axis

Ctrl-Right: Zoom tools: Un-expand range on X axis

Left Zoom tools: Move Histogram left on x axis (if range is
expanded)

Right Zoom tools: Move Histogram right on x axis (if range is
expanded)

Down: Zoom tools: Expand range on y axis (toggles autoscale off)

Up: Zoom tools: Un-expand range on y axis (toggles autoscale
off)

Shift-Up Zoom tools: Move Histogram up on y axis (if range is
expanded)

Shift-Down Zoom tools: Move Histogram down on y axis (if range was
expanded)

Ctrl-End Zoom tools: Expand range on z axis (toggles autoscale off!)

Ctrl-Home Zoom tools: Un-expand range on z axis (toggles autoscale
off!)

Shift-Home Zoom tools: Move Histogram up on z axis (if range was
expanded)

Shift-End Zoom tools: Move Histogram down on z axis (if range was
expanded)

Ctrl-Minus Zoom tools: Un-zoom ranges totally

Ctrl-Plus Zoom tools: Show/hide range settings window

Ctrl-Star: Zoom tools: Apply auto zoom (adjust range to show non-
zero region only)

F5 Browser options: refresh all displayed objects

Shift-C: Browser options: Clear all remote histograms remotely

Shift-M: Browser options: Monitoring on (start timer)

Shift-N: Browser options: No monitoring (stop timer)

108

11 Event Classes Diagrams

The following UML scheme gives an overview of the event base classes and typical implementations:

The TGo4MbsEvent is filled from the TGo4MbsSource (both provided by Go4). The TUserEventProcessor,
which had been defined to match the user’s experiment, takes the raw data from GSI format 10,1 and unpacks
them into the TUserEvent object. Both TGo4MbsEvent and TUserEvent objects can be stored into (different)

TGodFileStore instances. Later these can be read again event-by-event using the TGo4FileSource.

if_ﬁj%

O

(@) i
0 Event classes diagram
TGodEveniSource TGodEventElement
iy iy
TGo4File e
Source ,,-"'" """ S
! e
1 s
TGo4MbsSource u - T
o % 57 Mg, Y ™
e LY i e o ’ g
RSN ¥ ey e
TGodMbsEvent i TUserEvent
User classes ~~~
04.12.01 Go4 - http:figod.gside 7

109

110

00

——
- -

” b

b
{ Previous Step)
hY

Analysis step

-
.‘-h- -

. LGMFiIeSource

%

TGo4EventFactory

A\ .
< Vil
TUserEvent1
-
o
“ey TUserEventFactory 1
; CreateEventsource|)
o CreatenputEvent)
- - L ' L.
Fiig CreateOutputEvent!)
CreateEyve Orer)
TUserEvent2 i
e
F -~
. -éf i
w7 g TGo4FileStore
v NextStep
~ -
o — e - -
04.12.01 God - http:fgod.gsi.de 10
[*]
O =N

Analysis framework

TGodAnalysis —-l
A —= TGo4AnalysisStep
:
1
_ ; I| TGo4EventFactory
register objects |
:
1
1
TUserAnalysis
ey i}’: ——|- -7 | TUserEventFactory_1
| LIsg danalal) =
may Use ~T 2rAnaky'sis)) -"""-\-...___h +-_
L -LserEventFunc() © =~ .5 | TUserEventFactory_n
TExternal
Analysis
04.12.01

Go4 - http:figod.gside

1"

12 Release Notes

12.1 New features in Go4 v6.4 (Mar 25)

1.

kLN

Support ES6 modules, requires ROOT 6.34

Use web graphics on Wayland by default, can be disabled with --x11 command-line argument
GUI: Add histogram import functionality for ASCII (go4 exported) and Ortec MCA formats
Bugfix: display and update result functions of ROOT fitter together with original histogram in GUI
Support TH1L and TH2L classes in MakeTH1/MakeTH?2 methods

12.2 New features in Go4 v6.3 (Jan 24)

6.
7.
8.
9.
10.
11.
12.

Adoption to win64

Skip support of old ROOT version older than 6.24

Remove TGo4Buffer.h - one can use TBufferFile class directly
Require at least c++11 - as ROOT6

Fully delete out-of-date qt3 part

Remove support of Qt4 - either gt5 or qt6 can be used for compilation
Supports MBS Versions 7.0 and 7.1 for MBS monitor in Go4 GUI

12.3 New features in Go4 v6.2 (Apr 22)

1.

SN kw

Provide workaround for same ROOT script execution twice: In current ROOT there is problem to
unload script which uses Go4 libraries. Therefore if same script executed in analysis configuration
phase, analysis cannot be reconfigured and crashes because of that. To solve this, script loaded and
parsed only once by ROOT interpreter and just function called again. If script modified in between,
go4 loads that script again, manipulate function name and call this function. Not all kinds of scripts
may work this way, bat all standard go4 scripts should be working

Bugfixes in TGo4BufferQueue: use again native TBuffer::Expand() for queue of streamed objects
instead of custom implementation. Avoids byte count warnings when transferring parameters objects.
Additionally fixed incorrect memcpy arguments.

Support correct update of TProfile and TProfile2D objects, add them to Go4ExamplelStep

Bugfix in release package: compilation of webgui with older ROOT versions <6.22

Code cleanups: Suppress warnings for new compilers

Bugfix in MbsAPI: new polling mode for remote event server connection could lead to instable stream
server socket

Small adjustment of build system for certain configurations

12.4 New features in Go4 v6.1 (May 21)

1.

Build system and installations

1. Added docker container for Go4 V6.0 on OpenSuse Leap 15.0 Linux. Go4 is build with
ROOT 6.18/04, Qt5 webcanvas and HDF5 support. Docker files are located in
subfolder $GO4SYS/docker. Such container may be executed with a docker server on
any Linux, or using the Docker Desktop/Docker Toolbox environment on Windows or
MacOS. Please see docker/go4v6.0_leap_15.0/README.txt for further information.
Many thanks to Michael Wiebusch (m.wiebusch@gsi.de) for creating the full
Go4/DABC/trb3 docker that has been used as template!

2. Provide preliminary cmake files for compilation of Go4 and user analysis

Go4 GUI
1. Code fully ported to qt6, but without webwidgets while qt6 does not provide them yet
2. Fully remove out-of-date DIM component for DABC v1.0 monitoring
Analysis Framework:
1. Provide example for user-defined event store - Go4ExampleUserStore.It demonstrates
how arbitrary event store can be implemented. Add support of user-defined store in
godanalysis, GUI and hotstart.

111

2. Fix problems of "Remote Event Server" usage together with http/fastcgi servers.In case
of low data rates servers were not responsive, now should be fixed.

12.5 New features in Go4 v6.0 (October 19)

1. Support of ROOT v6

1. Support web-based ROOT6 canvas in the view panel. Requires ROOT v6.16,
compiled with options cmake -Droot7=0ON -DCMAKE_CXX_STANDARD=14
-Dqt5web=0ON

2. Bugfixes in Thread class and interpreter mutex locking (SetProcessLinel.ock
defaults) for ROOT > v6.12

3. Bugfix in TGo4BufferQueue dtor cleanup, inconsistent for ROOT 6.14/04

4. One can specify GO4EXTRAINCLUDE shell variable, which automatically add
to ginterpreter->AddIncludePath when starting go4analysis. This required when user
classes should be used in ACLiC with ROOT6

2. Analysis framework:

1. New Go4 eventstore for HDF5 file format. Needs to specify HDFS5INSTALL
directory when compiling go4 installation. Supports simple datatypes, std::vectors,
and arrays of these. Also supports Go4 composite events with unlimited sublevels.

2. New Go4 eventsource for HDF5 file format. Needs to specifiy HDF5INSTALL
directory when compiling go4 installation. Such hdf5 files can be read into the input
event which have been produced by the corresponding Go4 HDFS5 store only.
Supports simple datatypes, std::vectors, and arrays of these. Also supports Go4
composite events with unlimited sublevels.

3. New Condition class TGo4ListCondition. Handles tests of a variable against a list
of "good" values: if any of these matches the value, the condition becomes true
(whitelist condition, invert condition to get a blacklist). New analysis API functions
MakeListCond(...) are provided.

4. New class TGo4RollingGraph. Implements a trending plot as TMultiGraph with
variable size and averaging. Added corresponding creation methods
MakeRollingGraph to analysis API. It also provides now methods MakeGraph() for
given point arrays, and for a given TF1 function. Adopted from existing code of the
TRemi (reaction microscope) analysis (thanks to Sven Augustin)

5. The sorting order for newly created analysis folders can be specified with method
SetSortingOrder(). If enabled, all subfolders in the Go4 object list are displayed in
alphabetical order. If not, the folders are shown in the order of creation, i.e. the most
recent folders appear at the bottgom.. By default sorting order is off.

3. Go4 GUL:

1. Optional timestamp output in analysis terminal window before each text buffer.
This feature can be toggled by GUI menu "Settings/Terminal/PrintTimestamp". The
format string (QDateTime) can be defined by menu "Settings/Terminal/Timestamp
Format..." dialog. Both properties are stored in go4 settings. Other properties of
Analysis Terminal such history and font, also appear as "Settings/Terminal"
submenus now.

2. Store "Apply to all" flag of the viewpanel in the hotstart.

3. Provide "Auto zoom" flag for the viewpanel. If set, all histograms will be
automatically zoomed into non-zero range. Useful with monitoring, also preserved in
hotstart file.

4. Add Output of current filename to GUI log window in case of MBS listmode list
event source

5. Number of contour levels for histogram can be configured from "Color tools"

6. GUI local command execution: Provide catching std exceptions from ROOT in
case of errors. Added possibility to float histogram results in local macro divhistos.C

7. Fix problem with closing view panel via File/Close menu

8. Bugfix in TGo4BrowwserProxy concerning sumw?2 warnings

9. Bugfix: Display of TGraph like objects in GUI will update also the TF1 functions
contained in the graph, like fitter results. Previously the first TF1 fetched was never
changed again.

112

4. Web client and http server

1. Fix error in http server browsing when folders names are similar list "Ch1" and
"Ch11"

5. Support of MacOS:
1. Provide support of modern Mac platform. Required latest ROOT with qt5web
option build.
2. Add nox11 build flag. Automatically enables withweb flag. Used on Mac
platform by default.
3. Remove force32 build option, was only used for old Mac platforms

12.6 New features in Go4 v5.2 (January 17)

1. Support of ROOT v6

1. Fix problem with ROOTS® - it requires exact location of Go4 include files when

running GUI or analysis. Especially important when doing "make install"
2. Web client and http server

1. When running go4analysis, one could specify alternative (newer) JSROOT

version like go4analysis -random -jsroot http://jsroot.gsi.de/latest/
3. Analysis framework:

1. Changed default test Imd file names of examples to $GO4SYS/data/test.Imd
instead /GSI/lea/gauss.Imd. New method TGo4Analysis::GetDefaultTestFileName()
that delivers the actual pat to this file in the current installation.

4. QtRoot interface::

1. Handle mouse wheel events in QtRoot interface, used in ROOT zooming.

2. Modified qgtroot interface and gui viewpanel to take into account optional Qt5
high dpi scaling factors set by QT_SCALE_FACTOR environment variable (Qt> 5.6.x
only).

5. Go4 GUIL:

1. Added HighDPI Scale factor to Preferences. Can be adjusted via

Settings/Preferences Menu. Requires GUI Restart. Qt Version > 5.6 only!

2. Added panel defaults properties for object draw line width, fill color, and style.
Useful for 4K monitors, where default line width (=1) is too tiny..
3. New toolbar for Analysis Command Buttons: Provides nine buttons C1...C9 that

can be freely configured by the user with commands to be executed in the analysis
process interpreter. Supports ROOT, go4 and Python macros. Default shortcuts
Ctrl-1 ... Ctrl-9 allow fast keyboard interaction. Additionally, an execution timer with
adjustable period allows any user defined command that is checked in the
configuration to be executed frequently.

4. Viewpanel: new feature - double click on histogram pad does unzoom of axes.
For subpads, still another viewpanel with the subpad is opened
5. Viewpanel: improved display of 1:1 coordinate ration for 2d histograms. Aspect

ratio of the selected pad will be automatically re-adjusted when resizing the
viewpanel. Besides, the histogram borders will be expanded to use maximum margins
of the pad..

6. Viewpanel: Added panel defaults property to supress background colors of pads
and frames when exporting the canvas with the Viewpanel "File/SaveAs.." Menu to
various image and print formats. This mode can be set by main window menu
"Settings/PanelDefaults/White canvas for saved images".

7. Viewpanel: bugfix - in Go4 v5.1.0 statistic and label boxes could disappear or be
scrambled when mouse was moved over them. This was an unwanted side-effect of
the previous TGraph/polygon condition crash bugfix.

8. Improvement in main window status message: Ratemeter will clear message
when updating, no message display timeout anymore. Solves problem of GUI
messages still visible behind ratemeter counters.

9. Hotstart script: . Preserve frame position, do not reset frame with every update.

10. Parameter Editor: bugfix - format string precision for Float_t, Double_t, and
Double32_t was reduced to defaults. Now it supports full range of data type and
exponential formatting.

11. Bugfix - when creating hotstart, TLatex object was added to picture specials
twice, which leads to crash when such picture need to be deleted.

113

6. Python scripting:

1. Restructured the whole Go4 python module: moved things that are not
interesting for a user, i.e., implementation details (ExpMem is in expmem.py) and
helper modules (e.g. facade.py) into the go4py.internals namespace/subfolder. Added
nicer error message if go4init is imported outside Go4..

12.7 New features in Go4 v5.1 (March 16)

1. Web client and http server:
1. One can register Start/Stop/Clear commands in any place of THttpServer
hierarchy. Such commands are recognized by the GUI and used when pressing
Start/Stop analysis buttons or Clear analysis objects button
2. Web GUI: Implemented analysis terminal window with macro command line
(requires ROOT>=5.34.34). This also covers the python scripting support.
2. Go4 GUIL:
1. TGo4Style Color Tool: Added selection menu to provide new ROOT6 named
palettes. New entry "Settings/Panel defaults/Palette settings" to specify minimum and
maximum valid ROOT palette indices for spinbox, and default palette index.

2. Added shaped condition class to "Create new condition" tool.
3. Analysis terminal window: added button to scroll down to end of output text.
4. Provided "1:1 Coordinate ratio" display for histograms as pad option for

TGo4Picture. So this property can be saved and recovered with hotstart script, or
predefined in analysis code by method TGo4Picture::SetXYRatioOne(bool). Moved
corresponding entry in viewpanel from Edit to Options menu, can be toggled now.

5. Bug fix in monitoring of polygon conditions: moving condition object with
mouse during monitoring refresh could cause severe memory corruptions and a
crashing GUI, due to temporary static arrays in ROOT painters not treated correctly
when redrawing the objects.

3. Analysis framework:

1. Allow to use graphics in analysis. With "-gr" or "-graphics" option one enable

ROOT graphics. User can create and update canvas or any other TG... object.
4. Python scripting:

1. Support Python Scripting in analysis, either by GUI Analysis terminal command
line or in compiled code: A leading '$' in command line will execute python script of
given name, occasonally TGo4Analysis object is bound as go4 symbol. New methods
ExecuteLine and ExecutePython in TGo4Analysis and TGo4EventProcessor to invoke
regular interpreter commands and python scripts,resp, from compiled code. File search
dialog of Analysis terminal in GUI will provide also file filters for *.py macros.
Thanks to Sven Augustin, MPI Heidelberg, for this idea and code support.

2. Support Python Scripting in GUI command line (TGo4AbstractInterface
binding). File search dialog of GUI commandline tool will provide also file filters for
*.py macros.

114

12.8 New features in Go4 v5.0 (June 15)

1. Support of ROOT v6
1. To provide full support of ROOT6 one dictionary per go4 library will be created.
Exclude dictionary generation for GUI classes while no libraries with Qt classes

exists.
2. Support -std=c++11, which is now used in ROOT6.
3. Activate graphics editor (TGedEditor) when called via context menu. Was not

working due to recent ROOT changes.
4. ROOT v5 is also still fully supported
2. Support of Qt5

1. Use QMdiArea instead of obsolete QWorkspace, solves several small problems
in window management.
2. Workarounds in gtroot interface for Qt5: to avoid known bug with non

compressed X mouse events (https://bugreports.qt.io/browse/QTBUG-40889),
introduced 100ms time limit for processing mouse move events in QRootCanvas. This
improves canvas interaction performance significantly.

3. GUI Settings/Preferences: Added configurable window resize/move mode
("rubberband" outline or full repaint). Reduces window flickering with current Qt5.x
versions due to non compressed X-events

4. Qt 4 is also still fully supported.

3. Web client and http server:

1. Introduce go4.js with generic go4-related JavaScript code

2. Provide JavaScript-based condition, parameter, and analysis configuration editors
in web-browser. To change values via HTTP server in analysis, UpdateFromUrl()
method is implemented for condition and parameter classes, and in new class
TGo4AnalysisWebStatus which is interface for reconfiguring analysis set up.

3. Provide several shortcuts in web interface for commands like: "Start", "Stop",
"Clear", "Resubmit"

4. In web-browser allow to explore parameter and events objects, registered in the
analysis. Hide unsupported types.

5. Add support of fastcgi. Now go4 can deliver its data to standard web server (like
Apache or lighttpd). This allows to control access rights and security with usual
methods, provides by web-servers.

4. Go4 GUI:

1. By default all objects appear in gui with monitor flag. Only monitoring should be
started to get any histogram/graph monitored

2. Improve handling of superimposed graphs and histograms: support time axis,
correctly set colors, adjust size of legends box.

3. When file is opened in Go4, sub-directory will be read only after actively clicked.
Allow read large ROOT files.

4. Store main window geometry and toolboxes settings in hotstart (only >Qt4).

Makes it possible to reproduce exactly view of the main panel.

5. Support access to ROOT-based http server from go4 GUI. Just when staring go4,
specify: [shell] go4 http://localhost:8080

6. GUI can connect to godanalysis with either HTTP server or Go4 sockets with
"Connect to server" button. HTTP server provides same functionality as Go4 sockets
connection and besides shows remote terminal output in the analysis window. Access
to web server (controller/observer roles) can be controlled by htdigest accounts and
password.

7. GUI can start godanalysis as HTTP server with “Launch Analysis” button. This
provides now an alternative mode to the established “Go4 sockets” analysis server.

8. Support setting the ROOT Tree auto save interval in analysis configuration
window for TGo4FileStore output. Defines how often tree is flushed to file during
analysis.

9. When taking ROOT objects from DABC-based application, also request and
unpack list of streamer infos. This allow to browse and display objects with different
class version..

10. Bugfix concerning autoscale in multipad viewpanel.

5. Analysis framework and API:

115

6.

1. In batch mode do not account events in non-running mode, reduce cpu load with
sleep in non-running mode.

2. Added new condition type TGo4ShapedCond. This is subclass of TGo4Polycond
with properties to create ellipse/circle/box-shaped polygon region from
center/radius/tilt parameters. Supported by new registration methods
MakeEllipseCond, MakeCircleCond, MakeBoxCond in TGo4Analysis and
TGo4EventProcessor. Condition editor in qt4 GUI has a tab to manipulate these
conditions interactively. Thanks to Sven Augustin, MPI Heidelberg, for this idea.

3. In go4-config script provide --cflags, --libs and --glibs option. This should allow
to build libraries and executables, which are using go4 libraries.

4. Use MSG_NOSIGNAL option when send/recv data via socket (only for Unix).
Allows to correctly terminate analysis when socket corrupted or broken.

5. Introduce UserPreLoop() and UserPostLoop() methods in TGo4EventProcessor.
One can use such methods without creation of specialized analysis class.
6. Implement TGo4Analysis::GetInputFileName() - returns currently processed file

name. Automatically reset TGo4Analysis::IsNewInputFile() at the end of event
processing.

Go4 examples:

1. Introduce Go4ExampleDabc, which shows usages of DABC functionality in Go4.
Example shows how one can regularly submit commands to running MBS.

2. Changed some histogram definitions in Go4ExampleUserSource, added angular
distribution. Now covers different scenarios of multiple scattering simulation
SCATT2014.

12.9 New features in Go4 v4.6 (November 13)

116

1.

2.

3.

Analysis runtime environment:

1.New printout option for go4analysis: "go4analysis -print bhead thead" will print Imd
buffer and/or file headers together with the event headers. Additionally, most recent
time string from buffer header is printed together with event header

2. Allow to specify port number for any MBS source (beside file) in form name:port like
calling "go4analysis -stream node:6543". Useful for virtual desktops (vnc) where ports
around 6000 are blocked. Same can be done in gui.

3. Add retry counter for some MBS sources - let reconnect server if it was down for
some time. Useful for online analysis when server can be switched off/on very often
for short time. Implemented in MBS source class, can be configured in go4analysis,
qt3/at4 gui, hotstart.

4. Allow to specify several files in row as argument of command "go4analysis -file ..." It
is very useful in the case when wildcard characters are used. Shell automatically
expands all wildcards itself and therefore previous go4 versions get errors. Now
following command is valid: "go4analysis -file *.Imd". Make debug output of the
analysis more clear when processing many files.

5.Add -rate argument to the go4analysis executable. Enables output of current rate in
batch mode.

6. Added support for x-axis time display in TGraph and TH1. New Items in Viewpanel
Options menu: "X-Axis displays time" and "Set xaxis time format"

Analysis framework and API:

Go4 GUI:

1. Add ExecuteScript() method to analysis and event processor. Simplifies usage of
macros in user code.

2.Add in MakeParameter method possibility to execute setup macro In GetParameter
method one could optionally specify class name, which will be verified

3. Allow to use TArrayl and TArrayD in the TGo4Parameter and parameter editor. Now
parameter elements of such classes can be edited and store in script

4.Introduced event processor API methods SetKeepInputEvent() and
SetKeepOutputEvent() to provide "1 to n" and "n to 1" event building functionality.
To be used if input event contains several output event data sets, or vice versa if
several input events must be processed to gain one output event. Each time these
methods are called in event processor, the next analysis cycle will skip all previous, or
all subsequent analysis steps, resp, and will reprocess the input, or continue filling the
output event data, resp.

1.Provide in preference menu possibility to set "draw once" flag. Means every
histogram can only be drawn once when double-clicked in the browser.
2.Implement auto-zoom functionality for 1/2/3-dim histogram (qt3/qt4). Automatically
adjust range selection to non-zero content of the histogram. Can be actiavted also with
Ctrl * keys combinations. Thanks to Michael Traxler for nice idea.
3. Added some keyboard shortcuts for histogram display manipulation:
* Cul-Left/Ctrl-Right: Expand/Unexpand range on x axis
e Left/Right: Move Histogram left/right on x axis (only if range was expanded)
¢ Up/Down: Expand/Unexpand range on y axis (toggles autoscale off)
e Shift-Up/Shift-Down: Move Histogram up/down on y axis (only if range was
expanded)
Ctrl-End/Ctrl-Home: Expand/Unexpand range on z axis (toggles autoscale off)
Shift-Home/Shift-End: Move Histogram up/down on z axis (only if range was
expanded)
Ctrl-Minus: Unzoom ranges totally
Ctrl-Plus: Show/hide range settings window
Ctrl-Page Up: Y axis in logarithmic scale
Ctrl-Page Down: Y axis in linear scale
F5: Refresh display of all remote Histograms
Shift-C: Clear all remote Histograms remotely
Shift-M: Start monitoring timer
e Shift-N: Stop monitoring timer
Note: All these shortcuts do work only if the corresponding toolboxes (zoom tools,
browser options, short histogram draw options) are active!

4.Added shortcut F1 to display the Go4 Introduction Manual as Help.

5. Added shortcuts F6, F7, F8 to toggle visibility of browser, logger, and mbs monitor
dock windows (F9 for DABC monitor if compiled with DIM)

6.GUI analysis status ratemeter: Tooltip of runtime seconds this time as
hour:minute:seconds representation.

7.Graphical Markers and Conditions: Added possibility to define a "printf style" format
string in for the float number display in marker/condition label box (default is %.4E).
When selecting the marker/the condition display on TPad via mouse button, the
ROOQOT context menu provides method SetNumFormat(const char*) to change the
settings of current marker. Context menu function SaveLabelStyle() will set current
format as default for all markers/conditions. MainWindow menu "Settings/Panel
Defaults/MarkerLabels..." also has new field to set this format string. These defaults
can be saved to go4 settings.

8.Add full-screen mode for main window (F11). Both for qt3 and qt4

9. Add possibility to change default position of stat box (only for qt4 gui)

10. Add support of composite events in dynamic list editor (qt3/qt4)

4. Introduced several functionalities from DABC framework classes:

1.To get different DABC functionality to go4, one need to compile go4 with "make
withdabc=1" flag. One should use newest dabc version (>= 2.6.0) from repository.

2.Provide a http server within go4analysis: Just add "-http 8090" arguments to start web
server, which can deliver all go4 objects to a web browser. This provides go4 analysis
view in web browser similar to the go4 GUI. Commands like start/stop analysis and
clear histograms are available via the web interface.

3. Possibility to optionally connect go4 analysis with a DABC “master node”, which can
export go4 data via http server. By this data from many go4 analyses can be
aggregated in the same server.

4.Optionally open direct communication channel from go4 GUI to a DABC node to
access objects. Idea is to have similar look and fill like web-based interface, but with
native ROOT graphics in Go4 GUI.

5.In GUI Analysis Launch Panel one can specify arguments to start http server or to
connect with master DABC application.

6. Support of connection to dabc in gui and hotstart (qt4)

5. Hotstart and GUI scripts:

1.Provide configurable timeout in hotstart script for time when analysis configuration is
submitted. It can be longer as default 20 sec, which now can be changed.

2. Add possibility to refresh names list after analysis configuration. Can be used if
shortly after analysis start new histograms are created, which should be shown in the
gui. For that one need to add following lines to the hotstart: go4->Wait(10); god-

117

>RefreshNamesList(); First wait defines how long one need to guarantee, that analysis
starts.
3.Provide in gui script possibility to request item name, drawn in the panel. Method
name is go4->GetDrawnItemName(panel, cnt = 0). Can be useful in some gui scripts.
Done for qt3/qt4.
4. Added macro fft.C for fast fourier transform of histograms into gui command line.
6. Adjustments for ROOT 5.99 development version.
7. Many small code bugfixes and adjustments for most recent OS and root versions.

12.10New features in Go4 v4.5 (July 11)

118

o1

10.
11.
12.
13.
14.

15.
16.

17.
18.
19.
20.

21.

22.

Implement Ctrl-C handler for go4analysis executable. This will close analysis properly. If go4analysis runs
under gui control: After first Ctrl-C analysis will try normally finish event loop and exit. After second Ctrl-
C it tries immediately store autosave file and exit. All consequent Ctrl-C will just terminate analysis.
Implement -print argument for go4analysis program. This allows to print any kind of event on the terminal -
even without actual user analysis. For instance: go4danalysis -stream r4-4 -number 10 -print
will print 10 events from MBS stream server r4-4. Print also works with user source.

Significant changes in event classes. Reincarnation of TGo4CompositeEvent.It is now can be used again as
output/input of any step. Many errors are fixed.

Add possibility to hide TGo4EventElement members from tree viewer and even viewer. This makes look of
data structures, especially in composite events, much more clean. Default is off, can be changed via
Settings->Preferences menu. Implemented for both qt3 and qt4 version.

Add TGo4CompositeEvent structure to example Go4ExampleAdvanced.

Default implementations for TGo4Parameter methods are provided. Now Clear(), PrintParameter() and
UpdateFrom() methods have meaningful functionality and can be used as is in user derived classes.Thus, it
is possible to declare user parameter class without any additional methods.See Go4ExampleSimple and
Go4Example1Step.

Add support of arbitrary objects in TGo4Picture::AddSpecialObject, show real picture size in the browser
Add possibility to specify wildcard in TGo4EventSource class - allow to treat many subsequent root files,
improve wildcard treatment in TGo4MbsFile, provide wildcard functionality for Windows.

Added possibility that output event of first analysis step can be declared as MbsEvent and just save the
incoming mbs event into ROOT tree without copying the data: added method
TGo4MbsEvent::AssignReference() allows to use TGo4MbsEvent as a "reference" to another
TGo4MbsEvent; added constructor TGo4MbsEvent(const char*) to use it with standard factory

Add to TGo4Analysis static methods IsBatchMode(), IsClientMode(), IsServerMode(), returning running
mode of the analysis. Variable is set in go4analysis program and therefore methods can be used already in
user analysis constructor

Adjusted to new version of gSTORE RFIO/ Imd event input (RFIO v6.0)

Implement TGo4FileStore::SetMaxTreeSize method to let configure size of created tree. Add -maxtreesize
argument to go4analysis to change value in batch.

Add possibility to display/monitor TLatex object from analysis (qt3/qt4).

Keep and restore panel name in hotstart file.

Allow to configure default draw options for classes like TH1/2/3, TGraph

Provide meaningful implementation for TGo4Analysis::SendObjectToGUI method. Now user can send any
registered object (histogram, graph, condition) to gui, where it will be automatically updated. If object
displayed, viewpanel will be updated. This allows do histogram monitoring without activating monitoring
mode.

Optional polygon condition in projection macros

Use 64-bit integer for analysis loop count. Display correctly number of processed events in gui.

Add possibility to select font in analysis window. Sometimes it is useful to set fixed-size font there to see
better formatted output from analysis.

Use gStyle->GetStatFormat() for formatting of fitter parameters output.Add possibility to configure this
format from GUI via Settings/Panel defaults/Printf menu.

Autosave file performance: for complex directory structures, it took sometimes minutes just to open it
during analysis start.Normally analysis reads histograms in the beginning (when autosave enabled) and file
was opened in "update" mode. When closing such file, ROOT writes complete directory structure back to
the file, which may takes minutes. Therefore, for reading autosave will be opened in "read", when writing
"recreate” will be used.

Windows version: Adjust to Microsoft Visual Studio 2010. Support UserGUI in Win32, solve windows
export/import problems. Fix error with user source example under Windows.

23.

Support of MacOS X (Darwin). Still experimental.

12.11New features in Go4 v4.4 (November 09)

1.
2.

3.

10.

11.

12.

13.
14.
15.

16.

17.

18.
19.

Add clear histogram and conditions button in gui

System configuration tested once and stored in $GO4SY S/build/Makefile.gener file. This simplifies
compilation of user analysis and excludes misconfiguration.

Makefile logic improved to be able work with system-wide installed ROOT version - ROOTSYS no
longer required to be set. Instead root-config script should be always available via PATH variable.
ROOT/Qt/Go4 library paths directly specified in all go4 executables (go4, user analysis). This speeds up
start time and allows to run gui and analysis without any login scripts. To disable this compilation
option, during compilation call "make rpath=false"

Introduce standard go4analysis executable, which can be used to launch any user analysis, loading it from
the user (typically libGo4UserAnalysis) library. Minimum changes required - user should implement
CreateUserAnalysis() function. ExampleSimple, Example1Step, Example2Step adjusted to this scheme.
Introduced go4-config utility, which provide possibility to use go4 without setting environment variables
like GO4SYS or LD_LIBRARY_PATH. The only requirement is that go4-config should be accessible via
PATH variable or should be placed in one of the standard locations.

New install capability in makefile. One can compile complete go4 with command "make
prefix=/usr/local", where prefix variable defines installation directory. After compilation completed, "make
install" command will copy binaries in bin/, libraries in lib/, includes in /include/go4 and other additional
staff in share/go4/ subdirectories. After installation it is enough just provide PATH variable to bin/
subdirectory to be able fully use go4 GUI and compile user analysis. To use such installation in old
makefiles, GO4SYS variable should be defined and point to share/go4/ subdirectory. Or one can slightly
modify old makefile, specifying there GO4SY S=$(shell go4-config --go4sys) - see standard examples.

go4 gui can be started with "-observer", "-controller”, "-admin" arguments, followed by optional hostname
[localhost], port number [5000] and access password [none] which defines running analysis server. This
simplify gui handling when running analysis from other shell. Especially useful when running analysis with
godanalysis executable like: “go4analysis -server -stream mbshost"

From gui one can launch analysis without shell, just with simple exec command. This solves problem,
when ssh requires running DNS even when launching analysis on the same node. This also allows to launch
analysis from windows gui.

Logic how analysis started from the gui is completely changed. Instead of two intermediate shell scripts
analysis executable called directly. All shell/terminal/initialization settings for such command collected in
etc/god.prefs file. User allowed to create its own god4.prefs file in current directory to redefine some
settings. With conditional syntax one can define host/OS specific configuration how is analysis started. This
approach allows run go4 analysis on the nodes with completely different OS/software settings. Old scheme
(via AnalysisStart.sh scripts) can be activated by setting export GO4OLDLAUNCH-=Yyes variable before gui
start.

Allow to run analysis, compiled into library, from the gui. Example simple, 1step and 2step shows how it
can be done. From this point on it is no longer necessary to have MainUserAnalysis executable at all.
Signal handler is used to normally stop analysis by Ctrl-C pressing from the user - stop processing, close
connections, save autosave file.

Support TGraphPolar in draw options selection.

Make default location for setting account wide, one should define GO4SETTINGS=LOCAL to store/use
gui settings from current directory.

Simplify event source handling in user code. It is no longer required that event class 'knows' all its possible
sources - only source itself decides which event class and how it fill. Cleanup all sources class in go4 and
examples. Old code will work as is.

godanalysis executable search user library for new classes and create user analysis instance, using
predefined signatures: (const char*) or (int, char**). Constructor signature (int, char**) like for main()
function allows to deliver arbitrary arguments to user code (see Example2Step). If standard signature not
found, any non-default constructor will be tried - most old examples and codes should work. Alternatively,
one can define CreateUserAnalisys(const char*) function to create analysis instance.

Improve saveparam.C and savecond.C macros - better readable code. SavePrimitive() methods are used,
implemented for parameter and condition classes. New saveall.C macro to store all conditions and
parameters in single macro file.

Fix error with connecting DABC/MBS servers second time

Fix error (introduced in v4.3.0) with using autosave files - object was not found correctly there

119

20. Set green/red color in analysis status monitor widget

21. In qt3 version exclude all gui libraries, integrating code in executable (similar to qt4)

22. Suppress symbolic links in user gui library to avoid compilation problem on DOS partitions, where links are
not supported

23. Workaround for TCutG API changes in ROOT 5.25.1 and further

120

12.12 New features in Go4 v4.3 (June 09)

24.

25.
26.
27.
28.
29.
30.
31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44.

45.

46.

47.

48.

49.

Remove Q3Support classes completely - now Qt4 based GUI is pure Qt4 application. This solves many side
effects like crash by style changing or blinking during resize of main window. From this version on Qt4
GUI is default.

rootmap files are generated per library - this simplifies make procedure significantly, old user makefiles are
still working

Go4 makefile now can better recognize standard installed Qt version without QTDIR set. 'make
WITHQT=3' or 'make WITHQT=4" forces usage of specified Qt version.

Fix problem with drawing of THStack from canvas or file.

Add proxy for THStack to be able browse into THStack and draw single histograms from it

Better autoscale of THStack class

Ensure that drawing of histogram first time done only once, in case of 2D histograms doubles the
performance

When running GUI, one can specify one or several root files, which will be loaded automatically
BUGFIX: GUI was hanging when non-existing hotstart file was specified.

New MakeTH1, MakeTH2, MakeWinCond, MakePolyCond, MakeParameter methods in
TGo4EventProcessor class are implemented. They provide easy way to produce analysis objects or take
them from the autosave file. See analysis examples how these methods can be used.

Examples only have Makefile, no Module.mk any more.

Make "COL" as default option for 2-D histogram, improves significantly speed for large histograms, one
can always goes back to scatter plot

Analysis, running inside GUI, runs without DISPLAY variable set (ssh -x). If any graphics required in
analysis, one should run it in separate xterm/konsole application, where ssh -X is done.

After Go4 built, one can call "make clean-bin" to remove all object and dependency files, but executables
and libraries will remain. Useful for installation. Now one can compile (but not run) Go4 without Go4SY'S
set.

Histogram title position is now preserved and restored when histogram is updated.

Solve problem with flickering widgets in Qt4 GUI.

Make Go4ExampleSimple really simple - no more complex parameters or initialization. Main executable is
now more flexible when specifying command line arguments.

When new view panel is created, it should always fit into current main window - before one can get view
panel which two time larger.

Go4 event loop optimization - simple analysis with GUI runs 10-20% faster than before.

Configuration of Qt4 GUI is stored by default in current directory in go4.conf file. One can do "export
GO4SETTINGS=ACCOUNT" to store GUI settings in account-wide location.

Replace "disable" by "enable" check boxes in analysis configuration - makes configuration more intuitive.
Shortcut of each step configuration can be seen together with step name on the top of analysis configuration
panel.

Provide better log output when Go4 open/change/closes Imd/root files in analysis. End of ROOT file no
longer results in ERROR exception, but in End of File exception.

Automatic stop after specified number of events. For all MBS event sources an event count can be set in
configuration panel after which the analysis is stopped and can be continued for the next number of events.
The current values for files specify start and end event number as found in the event data. Often this event
number starts not from 0 and is even rather unknown. In addition it does not allow for stepping through a
file. Note that an event function can stop the loop by throwing TGo4EventEndException(this)
(TGo4EventEndException.h must be included).

For multiple plots he canvas division is taken from the values given in the canvas widget. If these values do
not fit, take defaults as now.

Tree browser: Several enhancements make usage much better: After dragging an item into the tree viewer
field, focus is set into that field, because most probably one has to modify the index. A RET in that field
triggers the browser. Dragging a field and RET accumulates over all indices. TABs move to next input
field. Histograms can be cleared in workspace.

BUGFIX: Adding histograms to an superimpose enabled canvas changed colour only once to red, all
following black. Selecting histograms and superimpose in new plot showed different colours as expected.
Fixed.

121

12.13New features in Go4 v4.2 (April 09)

1.

W

Merge Go4 version 3 with Go4 version 4 together - now same package can be compiled either with Qt 3.3
or Qt 4.4.x. Version of Qt can be selected by setting proper QTDIR path. If QTDIR is not set, default
version will be used (if any)

Replace html documents by pdf, use external pdf viewer for them.

Reduce usage of qt3support classes in Qt4 part of GUI.

Add in Go4Example2Step example of TGo4Fitter usage

Few more options can be set in TGo4Picture: SetStatsAttr, SetAxisTitleFontSize, SetAxisLabelFontSize,
SetTitleAttr;

12.14New features in Go4 v4.1 (October 08)

122

1.

5.

New toolwindow DABC Monitor: For new GSI DAQ framework Data Acquisition Backbone Core.
Allows to inspect all info services registered to any DIM server. Any DABC ratemeter service running on
DABC or MBS nodes may be monitored and filled into trending and statistic histograms. This tool is build
optionally if environment $DIMDIR is set and DIM is installed there.

Added Support of Selaris with CC 5.x (without RFIO). Fixed different warnings from Solaris CC
compiler.

Viewpanel menu: "File/Produce Graph From Markers" will generate new TGraph in local workspace
containing the points of all Go4markers set in the current pad. May be used to fit function to manually
selected positions.

Bugfixes:

a. Viewpanel canvas was not working with Qt >= 4.4.x (empty widget with grey background)
because Qt workspace may change X-window id at runtime. Improved Go4QtRoot interface
classes to reset winld dynamically on resize. Modified rendering of TQRootCanvas to avoid
unnecessary Qt double buffering.

b. Viewpanel embedded TGedEditor was sometimes not displayed at startup. Improved
Go4QtRoot interface to avoid extra Resize() in TQRootWindow::paintEvent which may lose
coordinates of primary editor tab.

c. "Settings/Style" menu would crash GUI sometimes due to unresolved problems in
QtApplication::setStyle when called at application runtime. Workaround: menu will select style
for Go4 settings, style is no sooner activated than on next startup.

d. "Settings/Fonts..." menu would crash GUI sometimes due to unresolved problems in
QtApplication::setFont when called at application runtime. Workaround: menu will select font for
Go4 settings, font is no sooner activated than on next startup.

e. QGo4Settings is not working correctly anymore with Qt>4.4 due to modifications in QSettings
API and Qt settings location. Now general settings must always be kept at
$HOME/.config/GSI/.go4.conf and can not vary for different directories in the same account.
However, the main window toolbar setup may still be saved locally (at
$PWD/.config/GSI/go4toolsrc, default), or account specific (at SHOME/.config/GSI/go4toolsrc).
This is selected as before by setting environment variable GO4SETTINGS="ACCOUNT".

f. Mbs API: streamserver connection timeout was not working correctly (leads to hangup of
analysis control when no data is delivered from streamserver).

g. Mbs API: several errors at reading of *.Imd files with new event format 100,1 (DABC)

h. MbsAPI, for f_stccomm.c file. Fixes problem with connecting 64 bit machine to MBS
events/stream/trasnport server. False usage of select() function.

i. TreeViewer swapped x/y/z coordinates, convention is TTree::Draw("z:y:x"))

Viewpanel: "Produce Picture" did not save all draw options to picture

k. Viewpanel: Mismatch between Go4 viewpanel range (full visible range) and ROOT user range

(referring to low edges of bins) could cause slight shift of x axis range on canvas refresh
Maintenance:

l. Modifications in makefiles - now only in one place in Makefile.config one should specify platform
- Linux, Solaris or Win32. Other small changes in makefiles

m. Adjustments for modifications in ROOT signal-slot mechanism syntax (ROOT >=5.19/02); this
caused viewpanel crash.

—

12.15New features in Go4 v4.0 (February 08)

1.

a.
b.

o .

Pan o

Ported the Go4 GUI for Qt Version 4. This includes the main Go4GUI, the Go4UserGUI
example, and the GSI qtroot interface with the Go4 extensions. Notes:
Go4 v4 REQUIRES Qt3support libraries of Qt4 installation (should be the configure default).
Go4 v4 needs to disable the XInitThreads() in ROOT TGClient initialization to avoid conflicts between
ROOT X11 graphics and Qt4. This is only possible for new ROOT versions that support to switch the
X11.XInitThread resource by environment settings (thanks to Fons Rademakers!).
=> Go4 v4 REQUIRES ROOT VERSION > 5.19/01
Go4 v4 will not work anymore with Qt Versions 3.x. To use Go4 with Qt3, please install
Go4 versions 3.03.0x which will still be supported in parallel.
Mbs event library: Added new event types for future GSI data acquisition framework DABC.
Viewpanel: Correct work of marker class in case of superimposed histograms. Now newly created marker
will be assigned to currently selected histogram.
FitPanel: in Wizard and Expert mode there is now possibility to clone existing model component.
Especially usefull in case of TGo4FitModelFunction and TGo4FitModelFormula classes, which require a
number of different settings.
Bugfixes:
TGo4Browser: Arrays fVisibleColumns and fIndexes has 1 item less than required.
QRootApplication: in constructor numc argument must be delivered as reference.
TGo4MBSViewer: status record must be cleared in constructor.
Fit package concerning parameters handling when some parameters are fixed
MbsAPI, for f_stccomm.c file. Fixes problem with connecting 64 bit machine to MBS
events/stream/trasnport server. False usage of select() function.
Maintenance:
Small adjustments for the new ROOT (5.17.05) browser.
Two ROOT libraries (libTree and libGpad) added to Go4 rootmap file that user Go4 analysis library can
be loaded in CINT session.
ThreadManager workaround for ROOT bug in TThread::Delete() (ROOT bug report 31085): for some
compilers, Go4 GUI crashed when shutting down or disconnecting analysis.

12.16 New features in Go4 v3.3 (May 07)

1.

d.

® A

ok wN

o

10.

11.

Viewpanel
Marker editor: A point- or region marker and its label will pop to the pad foreground when it is
selected with left mouse button. Additionally, selection of a marker in the combo box of the editor will
let it appear frontmost.
In superimpose mode selected histogram can be moved on the top of complete histogram stack via new
menu command "Select/show histo on top".
Draw options enhanced: support for TGraph draw modes and TGraphErrors error style. Reorganization
of draw options for TH1/TH2. New draw options tool for line, marker, and fill colours of histograms and
graphs.
Menu "Select" to chose active object from superimposed histograms and graphs.
Autoscale checkbox as shortcut on top of each viewpanel
Improvement in speed of view panel redraw (up to factor of 2).
Fitpanel improvement: keep y-scaling when fitting on x subrange of histogram
New Zoom toolbar: added buttons for scaling z-axis of 2d histograms.
New icons for zoom toolbar and draw options toolbar.
New additional draw options toolbar to select commonly used drawing options by buttons (lin/log, line,
histo, some 2d styles). The new toolbar is displayed via the RMB options pull down menu.
New example macro scalex.C to scale x-axis of histogram with linear calibration function
Settings menu: "Show event status” selectable as default pad option.
Settings menu: "Statistics Box..." dialog to define default pad options for histogram statistics.
TGo4Picture: new method AddSpecialObject() to add any ROOT graphical object (text labels, markers) to
the picture
Improvement in TGo4MbsFile for partial read of Imd file: Corrected mismatch between first event index
and real event number (before: index=event number-1).
TGo4MbsFile: now can also read list-mode data of old event formats type 4,1 and 4,2. Event will be
converted implicitly into format 10,1 for further processing: User unpack processor gets TGo4MbsEvent
with one TGo4MbsSubevent that contains all event data.
GUI command interface TGo4Abstractinterface. Added methods:
- GetViewPanelName() - returns view panel name
- SetViewPanelName() - changes view panel name

123

- RedrawPanel() - updates view panel view

- Redrawitem() - updates all views of specified items

- FindViewPanel() - searches for view panel of specified name
- GetActiveViewPanel() - returns currently active view panel

12. Maintenance:

a.
b.
C.

g

13.

d.

b.

C.
d.

Some Makefile and build skript improvements
Added missing includes for <math.h>, required by some compilers
Due to changes in ROOT in many Go4 files includes like TROOT . h, TMath.h, TList . h are missing.
Sometimes user should also include these files in user code.
In latest ROOT TBuffer class becomes abstract, therefore one cannot use it directly in the code. Instead,
TBufferFile class must be used.
Adjustment of Makefile because of changes in default libraries for ROOT >= 5.13/04 (separated
libSpectrum.so)
Adjusted Go4ThreadManager package due to changes in TTimer copy constructor for ROOT versions >
5.12.00

. Some bug fixes concerning compilation against old ROOT versions 4.08

Bug fix

for changes in ROOT>v5.14 pad cleanup: Viewpanel with go4 markers on subpads crashed when closed
or cleared.
1-d histogram drawing. Due to some features of ROOT histogram painter several draw options (lin,
barchart and others) not working after TH1::SetSumw2() is called - in there Sumw?2 array sum of squares
of weights is accumulated. Modification in Go4 code were done to avoid Sumw?2 arrays when it not
necessary.
in Go4Socket library (missing include) because of changes in ROOT version 5.14-00
Problems with view panel scaling functionality when build with gcc4.0.x compiler (FC5); fixed.

12.17 New features in Go4 v3.2 (July 06)

124

1.

Analsis framework: TGo4EventElement now implements default method Fill() that calls virtual function
TGo4EventSource::BuildEvent(). As a consequence, for a simple analysis the user only has to implement
BuildEvent() method in his processor class. There is no need to develop a user output event class. Even if a
user output event class shall be used, methods Fill() and Init() are not necessarily needed for a standard
analysis. Go4ExampleSimple and Go4Examp lelStep were changed accordingly.

Analysis framework: TGo4EventProcessor now implements BuildEvent() and can be used in steps which
are only used as handle for event input (branched steps).

Macro usage: Analysis defines _ GO4ANAMACRO___ on startup to be used in any Go4 analysis script to
check the current environment. In GUI, ___GO4MACRO___is defined and can be checked analogously. In
analysis, pointer go4 is already set to TGo4Analysis::Instance(), in GUI to
TGo4Abstractinterface::Instance(), i.e. all methods can be referenced by go4->. (see 4.5.2, page 50, and
4.19, page 85)

Parameter editor offers popup menu GetFromFitPanel for embedded fitters to update fitter settings from
the current fit editor. Useful for calibration parameters that should be fitted interactively to spectra (see
Go4Example2Step).

Rebin in GUI. Now when histogram will be rebinned via right-mouse menu or via ROOT graphical editor,
rebinning will be kept when histogram will be updated next time from analysis. Many views of the same
histogram with different binning are possible. Binning also kept in hot-start file. TGo4Picture has new
SetRebinX(), SetRebinY() methods to configure rebinning of displayed histogram.

All Go4 macros put into new subfolder $604SYS/macr 0s. This directory should be added to entry
Unix.*.Root.MacroPathin .rootrc setup file.

New macros: savecond.C and saveparam.C to create macros to set conditions and parameters to their
current values (see 2.4.2, page 12).

Bugfixes:

a. Access to RFIO root files from Go4 GUI browser was not possible (at GSI), since internal
functions of T1bRFIO. so were shadowed by functions of GSI event lib with same names.
Solved by separating Go4 event library package into different modules for analysis and GUI task.
Analysis server executed UserPostLoop() each time a GUI client was disconnected. Disabled.
Several changes concerning the cleanup mechanism in GUI object manager
AnalysisClient in CINT mode showed thread deadlock for ROOT versions> 5.02-00
Start client dialog selects correct analysis directory when choosing the analysis executable

man o

12.18 New features in Go4 v3.1 (May 06)

1.

New script command line widget for GUI: Allows execution of ROOT commands or macros within Go4
GUI task. Moreover, Go4 hotstart scripts may be invoked here at any time. The widget offers a file dialog to
search for *.C and *.hotstart files. It also has a selector dialog of preloaded commodity functions for
histogram manipulation (rebinning, addition, projection, etc.). These function template calls may be
completed with existing histogram names by dragging histogram items from the browser and dropping them
on the empty command argument. The history of the command line may be saved to the current Go4
settings file . go4/go41localrc and is then restored on next startup. (See 4.19, page 85).
New GUI command interface class TGo4Abstractinterface. It can be accessed by handle "go4->" in GUI
command line. This makes it possible to interact with Go4 GUI views and browser objects in a ROOT/Go4
script. Additionally, all remote analysis control commands are available here, like in the hot start scripts.
Method reference of TGo4Abstractinterface is available in the Go4 help viewer (type "help" in GUI
command line, or use Help » GUI commandline menu of Go4 main window). Example scripts using this
interface are at $604SYS/G04GUI/scripts (definitions of the preloaded command line histogram
functions). Note: have been moved to $604SYS/macros in V3.2.
New general marker label settings dialog. In main window menu Settings » Panel Defaults » Marker
labels.., a checkbox dialog offers to switch all label properties of the region and point markers (visibility
and information displayed in the label). These settings have effect on all new markers of the view panel
marker editor. They are saved in the go4 preferences file .go4/go4localrc. (see 4.9.8, page 67)
Plain ROOT canvases in files are better displayed.
New settings feature Settings » Preferences » Fetch when saving. If enabled, the save browser | save
memory button of the file toolbar will refresh all browser item objects from analysis before saving. Thus
the ROOT file will contain a snapshot of all analysis objects. Otherwise, only the already fetched objects
are saved.
Zoom tools "set scale" dialog upgraded to non modal MDI widget. This will appear always on top of
workspace widgets and refers to currently selected view panel pad. Changes include some bug fixes
concerning the range settings of 2d histograms, and the auto-scale property.
MBS monitor tool: If monitoring switched on, calculation of rates is now done in Go4, averaged over
update time. Parameters of MBS monitor are stored in Go4 settings file.
TGodlInterface: new method ExecuteLine to remotely do CINT call from Go4 master process in the remote
slave process
View panel superimpose mode improvements:

a. is not changed anymore after superimposed draw of FitPanel results, i.e. fitter data histogram can

now be replaced just by drag and drop on the view panel
b. existing axis labels of first histogram are kept

10. FitPanel settings are saved/restored in go4 settings file
11. Fit GUI: Enhanced draw styles for TGraph
12. Bugfixes:

a. Workaround for ROOT crash in histogram rebin editor: Selecting a histogram in view panel for

rebin with the ROOT attributes editor leads to segmentation violation when original histogram was

replaced or deleted.

Crash in Go4 markers/conditions when histogram in view panel was replaced by drag and drop.

Update of histogram in GUI failed when histogram dimensions (ranges) were changed in analysis

d. Position and size of histogram statistic label may now be saved in Go4 picture objects. Thus these

properties can be restored on Go4 hot start.

Crash on closing last non-minimized window in view panel

Problem with empty TGraph as data source in Fitter

g. Crash when FitPanel histogram under work was replaced or deleted in view panel. FitPanel did not
react automatically on changes, happening with histograms (or graphs), displayed on view panel.
Therefore, when superimpose mode was switched off, fitted histogram disappeared from view
panel (and also deleted), while fitter still has pointer on that histogram. Now FitPanel slot in object
manager registered also against all histogram, used in fitting. If histogram is deleted, FitPanel will
be automatically refreshed.

h. Histogram title could not be switched off in superimpose mode in view panel

0o

=

13. Improvements in make files
14. Adjustments of includes due to changes in new ROOT version 5.10

12.19New features in Go4 v3.0 (November 05)

1.

Redesign of the GUI with new internal object manager. Decoupling of controlling functionality from the
Qt graphics layer. Effects many of the following features.

125

&

*®

10.

11.

12.

New Go4 browser. Instead of several tabs for remote analysis, local memory, monitoring list, now one
browser with sub-branches for different data sources, such as remote analysis, histogram servers, root files,
is used. Supports local memory workspace folder with copy and paste by drag and drop, clipboard, and re-
naming. All controls available via right mouse button context menu. Switchable columns for object proper-
ties. Filter for monitored, fetched, and all objects.

New view panel. Improved marker editor with lightweight condition editor. Additional options to display
date and time of refresh, and full object path. Can display same object with different draw styles and ranges
simultaneously. May store current setup as Go4 picture.

New condition editor: More compact layout, shares functionality with view panel marker editor.
Improved parameter editor: May display user parameter structure without loading the user analysis li-
brary into the GUI. Suppresses display of unknown components.

New dynamic list editor: More compact layout. Automatic resolving of event name and data member name
when dragging and dropping from analysis event structure, in case of pointer entry. Dito for tree name and
draw expression in case of tree entry.

New dockwindow for analysis terminal. If analysis is started in external shell, functionality of analysis
output window (macro execution, etc.) shrinks to dockwindow.

Improved dialogs for analysis startup and connection.

Decoupling of libraries from GUI. GUI does not require all analysis libraries anymore due to changes in
command pattern and dependency rearrangements. Will speed up GUI startup time and may reduce memory
consumption.

Status monitor for remote MBS node. New dockwindow offering connection to the mbs status port. Fre-
quently update of daq rates and status possible. Trending histograms in browser workspace. Full printout of
mbs status and setup structures possible.

Go4 analysis status bar improved. Animated Go4 logo shows true running state of analysis, independent
of current event rate. Current event source of first active step displayed per name in text field.

Remote control of Go4 analysis from regular ROOT session. Command interface to connect and control
analysis process from CINT. Inspecting and retrieving Go4 objects with extended root TBrowser possible.

12.20New features in Go4 v2.10 (June 05)

126

Go4TaskHandler redesign: Decouple client and server tasks from master and slave role. This implies that
analysis can run in the network both as server or client task (as in previous Go4 versions). Vice versa, gui
can run either as client or as server (previous behavior). Additionally, TGo4AnalysisClient class now inher-
its TGo4Slave (previously TGo4ClientTask), and TGo4Display inherits TGo4Master (previously
TGo4ServerTask). One analysis server can be connected by many Go4 GUIs (one controller/administra-
tor GUI, and several observer GUISs).

Go4TaskHandler redesign: Password for login of master client to slave server with accounts for admin-
istrator, controller, and observer roles. Additionally, some Go4 commands are forbidden if master is
logged in with a low priority account (observer e.g. may not reconfigure analysis, but only request objects
for display). Default passwords may be changed in MainUserAnalysis code (see chapter 4.3.2 page
43).

Go04GUI prepared to run with analysis server: Command go4 -client will start the GUI master task
in client mode. In this case, the Launch analysis dialogue requests for login account, password, node and
connection port of the analysis server. Moreover, a client GUI may first launch a new analysis server in an
xterm and connect to it afterwards (see chapter 4.3.2 page 43).

Example of analysis server in package Go4Example2Step: MainUserAnalysis may be started from
command line with option —server as third argument (first arguments like batch, see Error: Reference
source not found,page Error: Reference source not found), thus starting the analysis as server. Processing
starts immediately (no submit from GUI necessary). Command line parameters of this example will set ad-
ditional boolean arguments (servermode, autorun) of TGo4AnalysisClient constructor appropriately (see
chapter 4.3.2 page 43).

ROOT macro execution with Go4 analysis server: A Go4 environment and analysis server can be started
from any ROOT session in the background (. X go4Init.C). Go4 GUIs may connect to this server and
request data from running analysis macros, or control macro via Start/Stop buttons. New methods TGo4-
Analysis::WaitForStart() to poll for the Go4 environment running state, and TGo4Analysis::Process() to in-
voke the Go4 analysis loop explicitely from ROOT macro (checks also for STOP). Example macros hsim-
ple.C,hsimplego4.C and treedrawgo4.C. See chapter 5 page 87.

Analysis: UserPreLoop() and UserPostLoop() are only executed once when analysis running state is chang-
ing. In previous versions, each press on Start, or Stop button, respectively, would execute the corresponding
method another time. Bugfix: postloop was called twice if analysis client was terminated in running state.
Bugfix: MbsAPI/f_evt.c (close of streamserver).

10.

Bugfix: Labels for conditions and markers were not drawn correctly in logscale anymore for ROOT
v>4.03/02.

Bugfix: Adjusted reallocation behaviour in TGo4Socket and TGo4Buffer to changed definition of
TBuffer::kisOwner flag for ROOT versions>4.03/02

Fixed several small memory leaks.

12.21 New features in Go4 v2.9 (February 05)

—_

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Keyboard shortcuts for many functions (see table chapter 10, page 105).

Settings for Go4 GUI are now saved in the current directory by default in $PWD/ .go4/go4localrc
and $PWD/ . go4/godtoolsrc, respectively. So different settings for the same login account are possi-
ble now. If the current directory does not contain a Go4 settings file on Go4 GUI startup, it will be created
using the global account preferences at $HOME/ . qt. Settings behavior can be changed using environment
variable GO4SETTINGS. If this is set, the GUI preferences are used from directory $GO4SETTINGS. If
GO4SETTINGS contains keyword ACCOUNT, the Go4 settings at BHOME/ . gt are used (like in previous
Go4 versions).

New context sensitive menus (right mouse button popup) for all GUI browsers.

ROOT object editor TGedEditor will show up in view panel side frame instead of top-level X-window. To
implement this, the Go4 QtRoot interface has a new widget TQRootWindow which embeds a ROOT TG-
CompositeFrame into a QWidget.

Superimposed drawn histograms, THStack objects and TMultiGraph will show a TLegend box in view
panel. The legend box can be switched on or off by view panel menu.

View panel marker editor: Added polygon shaped regions (TCutG).

File browser: Added "Open remote file" functionality to read objects from TNetFile/XRootd (ROOT?:),
TWebFile (http:), and tape library (rfio:).

Analysis browser: Objects may be protected against Clear() (histogram reset to 0), and against deletion in
the analysis. Browser shows protection state in 3™ column as "C" and "D" symbols, respectively. Objects
created from analysis code are always protected against deletion, objects created from GUI may be deleted
from GUI again. Protection against clear may be changed using the browser's right mouse button menu. The
protection state is persistent in the auto save file.

Analysis: Histograms associated with Go4 picture objects will not appear anymore in the analysis Pictures
folder, but only in the Histograms folder.

Analysis macro: New analysis macro MainUserAnalysisMacro.C in directory Go4ExampleSim-
ple. It needs a . rootmap file for automatically loading all necessary libraries. This file is created by the
new files Makefile and Module.mk from the example. One can copy both files from the example, or
modify existing files if they contain application specific changes. Look for map - expressions!

New Method TGo4Analysis::Print() to print the current setup of the analysis and the steps.

Multiple input file (metafile) for TGo4MbsFile may contain lines with CINT commands preceded by an
"@" character. Commands, e.g. ROOT macro execution like ". X setup.C", are performed in between
change of event source.

Metafiles should have suffix . lm1. Then they are recognized without @. The main programs in the exam-
ples have been modified not to add a . lmd to a . lm1 file name (update your main program accord-
ingly!).

TGo4FileSource: Partial 10 functionality - name of the input event defines name of the tree branch to be
read. Additionally, improved read performance for full event.

New Example Go4Examp leMesh to show how to setup an analysis with non-subsequent analysis steps.
May use partial input from tree branch.

Reorganisation of Go4 make files and installation. Reduced number of Go4 libraries. Removed unneces-
sary ROOT dictionary information from libraries. Go4 may be installed without LibASImage. so if this
is not supported on the system.

Implemented .rootmap mechanism to auto-load required Go4 libraries in macros.

Bugfix: Preview panel options menu apply to all did not work for histogram statistics property.

Bugfix: Double click in Go4 GUI browsers was not always working, because of conflict with drag and drop
mode.

Bugfix: When Submit was called without stopping the analysis before, references set in UserPreLoop()
were not updated. Now UserPreLoop() is called also in this case. Additionally, UserPostLoop() is not called
when analysis stops after initialization has failed.

Bug fixes: A set of use cases has been set up to test the GUI functionality. Several bugs have been found
and fixed performing these use cases. The test procedure has improved the stability of the GUI. It will be
extended and used for all future Go4 updates.

127

12.22 New features in Go4 v2.8 (September 04)

1.

2.

4.

6.

7.

L ®

10

11

12

13

14

15

16
17

Marker editor in view panel allows for marking channels or windows. Labels and arrows can be created. All
marker elements can be saved and restored.

New ROOT graphical editor can be called from view panel. The editor dynamically adjusts to the graphical
object selected by LMB.

View panel window title: can optionally be set by user and may be kept constant. If a TGo4Picture is displayed,
the picture name defines the view panel title.

Condition editor: the cursor mode has been removed because the functionality is now provided by the markers
Condition, markers and labels: Implemented correct ROOT streamer (bug fix), i.e. saving and loading these
objects to and from ROOT files is possible with fully recovered functionality and graphical properties. Support
of pad display in linear and log scale (bug fix). Additional controls in RMB menu of ROOT (set ranges, location,
save default properties, reset). Default label setup stored with Go4 GUI settings.

Polygon condition: Implemented statistics functions for work histogram under the cut (integral, mean, rms,
etc.). Enabled InsertPoint and RemovePoint functions in RMB menu (bug fix).

Fit GUI: Selection between sigma and FWHM (default) by Settings » Recalculate gauss width. Fit results
may be printed to terminal or Go4 log file output.

1D drawing: ROOT "L" (line) "C" (curve) "B" (bar chart) "P0" (poly-marker) line styles supported.
Histograms: re-binning, projections, and profiles supported (standard ROOT methods with RMB). Automatic
“synchronize with memory” on pad click to get newly created histograms.

. Histogram client: monitoring implemented (auto-update). Drag and drop support. Display error message when
server connection is not available (bug fix). Store server specification in Go4 settings.

. File store: Storing objects into a ROOT file a title is prompted. This title can be seen in the Go4 browser and the
ROOT browser.

. UserObjects folder: With AddObject(...) histograms, parameters and conditions can be put into folders of the

UserObijects folder. They can be located there by the standard Get methods, e.g. GetHistogram(). Editors work
also with objects in these folders. Note: object names must be unique!

. Log window: Empty messages are now suppressed (bug fix).

. QtRoot interface: bug fix concerning initialization order of X11 system (ROOT init now before Qt init). Lead
to crash of the main GUI on newer Linux systems when using Qt versions > 3.1 (FEDORA2, SuSe9.1)

. Thread manager: bug fix: adjusted default exception handling to work with newer libpthread. so that
uses one process for all threads (e.g. FEDORAZ2). This lead to a crash when Go4 threads were canceled (shut-
down of the go4 GUI).

. Analysis Framework: bug fix: analysis without analysis step (UserEventFunc() only) again possible.

. Client startup script: full PATH and LD_LIBRARY_PATH of the Go4 GUI environment is passed to the anal-
ysis process.

12.23 New features in Go4 v2.7 (June 04)

1.

2.

W

8.

9.
10
11

Keyboard shortcuts (Alt-1 to Alt-5) to select browser tabs (File, Monitor, Remote, Memory, Histogram client).
Items are selectable with arrow keys (left-right to unfold and shrink subfolders). Return key acts as double click.
MBS event classes improvements: Method TGo4MbsSubEvent::IsFilled() checks if the sub-event was filled in
the previous event built. Iterator TGo4MbsEvent::NextSubEvent() by default delivers newly filled sub-events
only, suppressing existing sub-events in list of non used ids. Sub-event data field re-uses the memory allocated
by libgsievent instead of copying it to own buffers. New method TGo4MbsEvent::SetPrintEvent() to set
verbose mode for the next n events. Format changes in TGo4MbsEvent::PrintEvent().

Performance improvements of analysis framework in step manager, dynamic list and MBS event classes.

New EventInfo toolwindow to control printout of an event sample in remote or local terminal. Optionally the
user implemented PrintEvent() method, or the ROOT TTree::Show() output may be used. May control the argu-
ments of TGo4MbsEvent::SetPrintEvent(). Supports drag and drop for event names from remote browser.
Display total memory consumption of histograms and conditions at the end of PrintHistograms() and PrintCon-
ditions() execution, respectively.

TCanvas support in file browser improved: Histograms saved inside a TCanvas in a ROOT file will appear in
memory browser whenever this canvas is displayed

Analysis Terminal window: Limitation of text history buffer to 100 Kb by default, may be changed in settings
menu. Disabled text wrapping in output for scrollbars.

Scale values dialog window extended by zmin and zmax fields. Allows setting minimum and maximum thresh-
olds for channel contents of 2d histograms when auto scale is off.

Conservation of TLateX textfields when changing draw style or histogram statistics boxes visibility

. File browser open file dialog allows multiple file selection
. Analysis configuration window: remember path to previous selected file in event source, auto-save, and prefer-

ences dialogs. Some layout cleanups.

128

12.

13.
14.
15.
16.

17.

Superimpose of histograms with same name from different files possible if overwrite mode is deselected in
memory browser. Histograms will be copied to memory browser with cycle numbers added to names.

Bugfix: Superimpose THStack does not crash anymore when deleting histograms

Bugfix: Crash after closing and re-opening view panel for same histogram with different sub-pad divisions
Bugfix: Analysis did stop when an analysis step without event processor is disabled

Bugfix: histogram bound to condition was not fetched from analysis when double clicking on remote condition
icon

Bugfix: Double click on histogram in divided view panel did pop up this histogram magnified in a new view
panel, but did not initialize view panel colours and crosshair settings correctly.

12.24New features in Go4 v2.6 (May 04)

1.

®

10.

11.

12.
13.

14.

15.

16.
17.
18.
19.
20.

21.
22.

23.
24.
25.
26.

New Go4 Hotstart: The current setup of the GUI (analysis name and settings, view panel geometry, objects in
memory and monitor browser, displayed objects in pads) may be saved to a hot start script file (postfix " . hot -
start") from the Settings » Generate hotstart menu. The script name may be passed as argument on next
Go4 GUI startup (e.g. "go4 mysetup"), which will launch the analysis and restore the settings (e.g. from file
"mysetup.hotstart").

New TGo4ExportManager class transforms and saves ROOT objects into other formats. Currently supported:
plain ASCII (*.hdat, *.gdat) and Radware/gf3 (*.spe). An export filter is available in the GUI memory browser
to save selected objects.

Redesign of Go4 Auto-save mechanism. Subfolders are mapped as TDirectory in TFile now, thus improving per-
formance for large number of objects. Auto-save file is closed after each write, avoiding invalid file states in
case of analysis crash. Dynamic list entries are saved as independent objects.

Example macro Go4Example2Step/convertfile.C converts all histograms and graphs from ROOT
file into ASCII files, conserving the subfolder hierarchy.

New TGo4StepFactory class can be used as standard step factory to simplify the setup of analysis steps for
small analyses. New example package Go4Example1Step shows the usage.

The TGo4Analysis class can now be used as standard analysis class. New example package Go4Examp leS-
imple shows the usage.

New view panel has size of previously active view panel. Default view panel starting size is stored in settings
and recovered on next Go4 startup.

View panel: Switch on/off histogram title display in options menu.

View panel: Switch on/off crosshair for each pad in options menu. Default crosshair mode can be selected in
main window settings menu and is saved and restored by Go4 settings. Crosshair mode button in condition edi-
tor has been removed.

View panel: Default background color can be selected in main window settings menu and is saved/restored by
Go4 settings.

TCanvas objects in analysis task may be send and displayed on GUI. Works both for memory and monitoring
list.

Support of TMultiGraph objects in analysis and GUI (display, memory and monitoring list update).

New draw option TASImage for 2 dim histograms in Go4GUI. May improve rendering speed for large maps
when updating and resizing the canvas. Offers own palette editor in right mouse button popup menu.
Parameter editor: Added column to display the source code comments for each parameter class member as de-
scription.

Condition editor: General editor has button to create a new condition. New condition is defined in a dialog win-
dow and is put into general editor. May be sent to analysis for registration, or saved into a file then. All types of
new conditions (window, polygon, array of these with variable size) are supported.

Object editors (condition, parameter, dynamic list) may save and load objects from/to ROOT files.

Status messages of object editors appear in bottom status line of Go4 main window.

Support of dynamic list entries in file browse: Editor opens on double click.

Histogram and Condition info windows: Object size now takes into account real data size on heap.

New analysis toolbar button for "re-submit and start" shortcut. Useful when file shall be re-read from the be-
ginning after changing something in the setup.

Auto-save may be disabled completely from analysis configuration GUI.

New mode for TGo4MbsFile (*.lmd) wildcard/metafile input: Auto-save file may change its name whenever in-
put file is changed. Name is automatically derived from input filename. Old behavior (one auto-save summing
up all inputs) is still possible. This can be switched with method TGo4Analysis::SetAutoSaveFileChange(bool).
End of .Imd file input gives informational message instead of error message.

Bug fix: avoid log-file crash when Go4 is started in directory without write access.

Bug fix in Go4 Mainwindow exit dialog. Exit via window "x" icon works properly now, too.

Some adjustments to work with ROOT versions > 4.00 in Go4Fit and gtroot packages

129

12.25New features in Go4 v2.5 (December 03)

1. Histograms may be bound to conditions by method TGo4Conditions::SetHistogram(). The bound histogram will

be fetched automatically in GUI whenever condition is edited.

TGo4Picture can contain conditions together with histogram objects.

General condition editor in addition to the condition specific editors. Supports drag and drop of condition icons

and conditions linked to TGo4Pictures.

Warning label for unsaved changes in condition editor, and in dynamic list editor.

Condition editor cursor tab can make copies of the current cursor marker. For printouts with multiple markers.

Analysis log window in GUI displays date and time of last refresh.

New histogram status window, and condition status window in GUI.

Redesign of GUI object management: Added drag and drop support of TGraph, TGo4Picture from all browsers.

Bug fix and improvements in histogram superimpose mode.

Monitoring list supports TGraph, TGo4Picture, and THStack.

10. Logfile mechanism for GUI actions. Log output configurable in Settings menu. Logging output on demand from
condition editor, histogram and condition status windows.

11. View pane can turn on or off histogram statistics box.

12. View panel supports fix/auto scale modes for TH1, THStack, and TGraph objects.

13. View panel resize speed improved (redraw only at the end of resize action). View panel does not start in full
screen mode anymore.

14. Analysis terminal: New buttons for clearing the terminal, PrintHistograms, PrintConditions. Command line has
shortcut “@” for “TGo4Analysis::Instance()->". “KillAnalysis” button buffered with confirmation di-
alog window.

15. “Quit Go4” button buffered with confirmation dialog window.

16. Dynamic list editor can change the global dynamic list interval for analysis.

17. Reorganization of GUI icons.

18. Performance improvements in TTimers of Go4 kernel: Removed Turn On/Off statements.

19. New method TGo4Analysis::NextMatchingObject() for search in analysis objects with wildcard expression.

20. Analysis: PrintHistograms(), PrintConditions() supports wildcard expressions for output list selection.

21. New methods: TGo4Analysis::StoreParameter, StoreCondition, StoreFitter, StoreFolder to write these objects
into event store of an analysis step. Event number will be appended to object keys for parameter logging.

22. Consistency checks of analysis steps can be disabled by new method TGo4Analysis::SetStepChecking(bool). For
setting up of non serial type analysis steps with own user management.

23. TGo4MbsEvent::PrintEvent() extended to display headers and also data field contents of sub-events.

24. New methods: TGo4MbsEvent::GetMbsBufferHeader(), TGo4MbsSource::GetBufferHeader() to access the buffer
headers of list-mode files. Implemented example in GO4Example2Step.

25. Go4 GSI histogram server also exports TGraph objects as histograms (if possible).

26. Implementation of TGo4Condition::Paint() to display Go4 conditions in regular ROOT environment. Conditions
may be drawn on TPad which already contains a histogram. New classes for condition painters and condition
views.

27. Reorganization of the distribution make files.

Rl

NP

w

12.26 New features in Go4 v2.4 (August 03)

1. New Package Go4Log to handle all messages and log file. This replaces the old package Go4Trace. Static
method TGo4Log::Message(char*, ...) can be called everywhere to display text on terminal and optionally write
to log file. Modified Go4 message prompt.

2. Header information of MBS list-mode data files accessible by new methods s_filhe* TGo4MbsSource::Getinfo-
Header() and s_filhe* TGo4MbsEvent::GetMbsSourceHeader().

3. Event source class TGo4MbsRandom to deliver random spectra into MBS events without connection to MBS
node or reading list-mode file. Matches event structure of standard example Go4Example2Step.

4. TGo4Picture objects can be used in the monitoring list.

5. Changes in Analysis configuration window: Number of events, start/stop/skip events may be specified; tag file
name and optional socket timeout. File browser for event source files. Auto-save interval now refers to time
(seconds) instead number of events. Modified layout.

6. Dynamic list editor with button to PrintAll dynamic list entries on analysis terminal.

7. Improved postscript print dialog in View-panel menu.

8. Histogram client API supports conversion into Radware format.

9. Go4 histogram server supports float histograms.

10. Execution of ROOT interpreter commands / macros in the analysis task possible by command line in analysis
terminal window.

11. Re-design of condition editor:

130

12.

13.
14.
15.
16.
17.
18.

a. Display all conditions of array in different colors or hide them optionally. Visibility in editor is property
of TGo4Condition and stored in auto-save file.

Working view-panel pad and reference histogram of condition may be changed at any time.

c. Clear counters button applies clearing to analysis condition immediately and refreshes editor from analy-
sis.

d. Statistics inside window condition limits (integral, maximum, mean, rms, etc) are calculated; these val-
ues are displayed in editor and may be drawn in labels on working pad. Methods to calculate statistical
quantities belong to TGo4WindowCondition class and may be used in analysis, too.

e. Cursor panel with crosshair mode and optional marker to pick values from displayed histogram. Cursor
may be set by mouse click, by moving the graphical marker object, or by defining cursor position in the
text fields. Cursor values may be drawn in label on working pad

f. Extension of polygon condition /TCutG is calculated and shown like the borders of the window condi-
tion.

g. Improved creation of new TCutG functionality. Assignment to current polygon condition may be can-
celled. Handles pads with multiple TCutGs.

Added class TXXCalibPar to Go4Example2Step. Shows a procedure how to calibrate spectra using the Go4
fitter in connection with the parameter mechanism and an ASCII file “database” of line energies.

Make full screen default for new view panels.

When updating objects in Memory folder, a redraw is done automatically.

When monitor updates a View-panel, the pads are updated without blocking the GUI (not yet for picture)
Button besides zoom buttons to enter display limits by values

Drag pictures from Analysis pad to View-panel (only empty view panel, or is inserted in pad)

Some buttons on the browser pads have been rearranged to be consistent. On Memory browser pad the icons for
"update local objects" and "synchronize with directory" have been exchanged to be consistent with Analysis
pad.

12.27 New features in Go4 v2.3 (May 03)

1.

2.

TGraph objects can be registered and displayed correctly. Reset of TGraph (clear all points) by “eraser” button
from GUI possible.

Reset/clear complete folders by selecting them in remote browser and “eraser” button. New method ClearOb-
jects(“Histograms”) to reset all objects of named folder, e.g. all histograms at once.

“Print” button to printout histogram and condition lists with statistics in analysis terminal. These buttons are lo-
cated in the dynamic list editor.

Parameter classes may contain TGo4Fitter* references or arrays of these. Fit GUI can be used to edit fitter from
within parameter editor. Framework provides new class TGo4FitterEnvelope as example parameter. Example put
into TXXXAnalysis.

User defined event source is possible. New class TGo4UserSourceParameter to be checked in analysis step fac-
tory for any kind of input. Example package Go4Examp leUserSour ce shows usage.

New class TGo4Picture to define layout of canvas with histograms. Pictures are registered in Go4 Pictures folder
and stored in auto-save file like histograms; they can be displayed in any view-panel. Example added in
TXXXAnalysis.

Possibility to register complete TCanvas objects in Go4 Canvases folder to be saved within auto-save file.
Switch TGo4Analysis into ROOT batch mode to suppress drawing actions in analysis client while canvas is set
up.

Go4 GUI can display and compare objects from different files in the same view panel now.

12.28 New features in Go4 v2.2 (April 03)

A e

Possibility to select rsh or ssh and analysis output in Xterm or GUI window.

Wildcard in input Imd file names.

Input file name beginning with @ is interpreted as text file containing Imd file names.

An auto-save file can be written on demand (button in configuration menu).

Parameter editor. User parameter objects (subclasses of TGo4Parameter) registered in the analysis can be edited
in the GUI by double click in the browser. Currently supported members are the primary data types and arrays of
these.

New environment variable GO4USERLIBRARY can be set to a colon separated list of ROOT user libraries
which are loaded automatically in the GUI. This is needed for editing parameter objects.

Dynamic lists. A dynamic list editor can be used to create/specify dynamic entries. A dynamic entry consists of
a histogram (can be created new) and a member of an event object which shall be histogrammed. Optionally a
condition can be added. The condition also can be created new. The event structure is expanded in the browser.
Drag&drop is provided to select members.

131

8. The condition editor has been improved. Arrays are now handled properly. TCutGs for polygon conditions can
be created new.

9. TGraph objects are supported like histograms.

10. In the Go4 view panel, the ROOT "event status" (cursor position) can be displayed.

11. The new fit GUI is available. It includes three different peak finders, a simple fitter, a wizard, and full access to
all fitter components. Fitters can be stored/retrieved to/from files or memory.

12. User Makefile: the user executable need to be linked against the make file variable $(GO4LIBS) only, as de-
fined in the Makefile.config of the framework (see Makef1ile of example Go4Example2Step).

132

13 Editorial

Layout used in this document:

Text Times New Roman, 10 pt
Verbatim text Courier new 9 pt
Menu items Arial bold 9 pt

Class names Arial italics , 9 pt
Methods () Arial italics , 9 pt

Go4 screenshots QT4 Style CDE, Font Arial 10pt
Icons in text must be cut from bottom and diminuished to be in line.

Einfiigen->Referenz->Querverweis: Uberschrift+Uberschriftnummer/Seitenzahl

Einfligen->Referenz->Index und Verzeichnisse: Eintrag festlegen, Indexeintrag+Aktuelle Seite. (search for Feld)
Index entries can be edited in text (first:second)

Index aktualisieren (RMB)

Inhaltsverzeichnis aktualisieren (RMB)

133

14 Index

ANALYSIS. ..ottt
ClaSS .. e 14
frameworK......oocveveveeeeiieieieeeeeeeeeeee e 10, 125
JaUNCh. .. 20
SELUD. ceuveeerreereeereenreessreeseeessteesseesseesneessreessseesneens 21
(<]) OO PRUPRPON 7,11, 33, 42, 99

AULO-SAVE...uueeeiiiiiieeeeeeeeeeeens 12,49, 72,128, 130
LSS (0]) <RSP 14
SAV..uurrreeeeeeeeerrrereeeseeenistrrseeseessasssassseesesnssssssesaees 21

BIOWSET...ceiiieetieee ettt e e e e 53
EXPOT e ceeeeeneeeneeeniteerreeesreeereessreesreessseesreessreenane 130
PIOLECHION. ¢ eeeureereeeereeereeereeeeeeeeeeseeesareesaeeenns 128
1210 10] (S 128
SHOTTCULS. ...eeevieeriecre e 129

BuildEvent........ 10, 24, 25, 26, 27, 28, 29, 30, 31, 125

color palette to0l.........cccuveeveecieeieeieee e 66

CONitiON......uviiieeiiee et et e e ar e e
CTEALL. .. uveeeeeeeerreeeeeeerreeeeeeeisraeeeeeeansrreeeesessnsneessennes 74
(Y6 11) RN 71,131
MNATKET.....veeeieeiie ettt 129
Marker editor..........ccveevveeciieriieereeseeere e 69

DABC. 35, 38, 39, 46, 57, 93, 94, 109, 116, 117, 118,
120, 123, 124

draw OptionS......cccveeevereerrererereeeereeeeseeenns 64, 75, 124
Dynamic List......cccereevieneeninienieneencneereeeeeeeeene 81
CONAItION. ...viiieeiiieeeeiiee et e 81
VML eeiieeirreeeeeeiirreeeeeeerteeeeeeerrareeeeeenraeeeeesasnreeeens 81
ETBB. e uteeeeeereeeeeereeeeerteeeertreeeestaeeeeeseeeesnsaeaennsaeaenns 81
L DA Y/=) 1 | OO RURTPPPPPRRRRNE
ClASSES...eecureeereeeieecreeereeete et e ee e e esraeeaneeas 10
MBS....ieeee et e 10
PIIN et eeeiteeeiee et ettt et e et e e e e e saeeeean 129
EVENE ..ottt 10, 59, 82, 100, 101, 103
1<) SO 77
SIGIMIA. ceuveeueerreenteeieeeee et e st s bt e sreesaeesareesaeesnees 129
 310) (a [TSSOt 11
LUETS 0] o) Tl £ 129

Go4 browser37, 52, 53, 57, 58, 62, 63, 74, 81, 83, 84,
86, 127, 129

godanalysis..16, 17, 18, 19, 20, 23, 24, 26, 28, 30, 32,
44, 47,93, 94, 117, 118, 119, 120

help....oooeieeeen 16, 39, 63, 79, 126
HiSTOZIam...ccueeiiieeieeieeeeeteeeee ettt
CTRALE. ... veeeeereeeereeeesieeeeaeeeesaeeeesseeenseeeessseeensseaenns 59
AyNamicC LiSt....cecveeeerieeieieeiereeieseeee et 81
hotstart. .18, 41, 85, 116, 117, 118, 119, 122, 126, 130
Launch analysis........cccceeveeevereesrenvenienne 18, 42, 85, 127
LiDIaries.ccveeeueiecieeereeeee ettt et eetee v ne e
10Ad. . e 41
PAth. e 132
TELO ettt ettt et et 128
USETG UL ..ttt 85
TOOUIMIAD. ¢ eveeeueeeeueeeenreereesreesatessreeeseesseeessessseens 128
11 = el o TR
ANALYSIS. .eeurerreerereeereere et 50

134

CONAItION....eiiieiiieeeeiiee et e 13
GUIL .. e 86
PATAIMIELET . .c...eeeeueeerieeeeieeeereeereessaeeseeeeseeesaneesnees 12
Pathe.ceiiee 51, 86, 125
MaATKET......viiiiecieectte ettt ve e eve e 67
[<Ta 1o) USRS 129

MBS..7, 10, 11, 14, 16, 17, 21, 24, 26, 27, 28, 30, 33,
35, 39, 46, 47, 52, 58, 84, 85, 93, 109, 117, 119,
120, 122, 123, 124, 126, 127, 129, 131

INOAE......iiieeieeeieeeetee et eeteeeeeareeeereeeebeeeeesaeeeerneeens 43
MOde“.......ccoovveeereeeereeeeree e 14, 16, 18, 20, 42, 127
monitoring.....7, 21, 39, 41, 52, 55, 57, 59, 76, 85, 92,
109, 116, 118, 119, 126, 127, 129, 130, 131
1021 1 1<) T
AXISuuuurrreeeeererrrreereeeirrreeeeeeeesrrreeeeesssrraneeesessnrreees 64
€rosshair.........ccoeveeeevvvvvveeeennnns 39, 40, 62, 130, 132
Parameter........cccuvveeeeeeeciiieeee e 12
(<16 110) SRR 12,79
ODJBCE ettt ettt 79
PACHUTE.....eveeeieeecee ettt e
PAd INAEX.....eiiieierieeieeeeeeeee e 76
[5G TSRSt 124
QUi 85, 116, 122, 123, 124
(O] 5= TSRS USSP 85, 116
REDIN....eiiiceeee e e
IMONItOTING..c.uveeieeerreereerieereeereeerreeeeeereeeveeneens 125

ROOT file 7, 11, 22, 24, 26, 28, 30, 34, 38, 46, 47, 49,
54, 55, 72, 89, 104, 105, 106, 122, 126, 129, 130

SETVET “..iieeieirrreeeeeeerirreeeeesserraeeeesssrneeessesssnraaesssssnnes 44
SSheiiiiceecee e 19, 42, 120, 122, 132
stream framework...........cocveevveiiieecie e 35
B USSRt
SHOW .., 129
user defined event SOUICE...........coeeuvvereuveeerveeene 32,47
USET GULL...veeveiereeeieeceeeeteeeeeeeee e 34, 38, 85, 104
ViIieW Panel.....c.ccccoeeeviervienieneeieeeeee e 61
graphical editor.........cccevvererrerreeieeeesceseeeens 129
ROLSTATT. .cvveeiieeere et 130
legend.......ccveieeeeeeeee e 128
D11 <) U 67,129
Bl et e 129
wWeb Drowser..........eevevvvvvvveveeiieinnnes 94, 96, 97, 98, 118
WED SEIVET.....uveveeeeeeeeeiiinnnnnes 38, 56, 93, 94, 116, 118
window*......20, 21, 42, 43, 46, 47, 49, 52, 53, 82, 96,
104, 108, 129, 131
Workspace........cceevveeeeecuerneenieenennne 52, 53, 55, 62, 92

7,8,9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 38, 39,
40, 41, 42, 43, 44, 46, 47, 50, 51, 52, 53, 54, 55,
56, 58, 59, 62, 63, 64, 69, 70, 71, 72, 73, 74, 75,
76, 77,78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89,
90, 91, 92, 94, 95, 96, 97, 103, 104, 105, 106, 108,
116, 117, 118, 119, 120, 122, 123, 124, 125, 126,
127, 128, 129, 130, 131, 132, 133

	The Go4 Analysis Framework Introduction V6.4
	1 Introduction
	1.1.1 Go4 tasks with all communications
	1.1.2 Go4 analysis steps
	1.1.3 Other analysis functions

	2 Go4 Analysis
	2.1 Event base classes
	2.2 Event classes, interface to MBS
	2.2.1 A simple event loop

	2.3 Analysis step classes
	2.4 Object management
	2.4.1 Go4 objects
	2.4.2 Go4 parameters
	2.4.3 Go4 conditions

	2.5 Analysis base class TGo4Analysis
	2.5.1 User subclass of TGo4Analysis

	2.6 Main analysis program
	2.6.1 The go4analysis main program
	2.6.2 Command line mode (batch)
	2.6.3 Creating the user analysis
	2.6.4 Default user analysis
	2.6.5 Analysis controlled by Go4 GUI
	2.6.6 Analysis as server for multiple Go4 GUIs
	2.6.7 Configuration of analysis
	2.6.8 Support of older analysis code
	2.6.9 Setting up ssh keys
	2.6.10 Start-up of GUI controlled analysis
	2.6.11 Submit settings and run analysis
	2.6.12 Shutdown of the analysis client
	2.6.13 Disconnect or shutdown analysis server

	3 Analysis Examples
	3.1 Analysis design
	3.1.1 Simple
	3.1.2 One step
	3.1.3 Two step

	3.2 Using the examples at GSI
	3.3 Prepare the packages
	3.4 Simple example with one step
	3.4.1 Event processor
	3.4.2 Parameters
	3.4.3 Auto-save file mechanism
	3.4.4 Example log file
	3.4.5 Adapting the example

	3.5 Example with one step
	3.5.1 Analysis class
	3.5.2 Analysis step
	3.5.3 Parameters
	3.5.4 Auto-save file mechanism
	3.5.5 Example log file
	3.5.6 Adapting the example

	3.6 Example with two steps
	3.6.1 Setup in setup.C
	3.6.2 Step one: unpack
	3.6.3 Steering methods in processor function BuildEvent
	3.6.4 Step two: analysis
	3.6.5 Parameters
	3.6.6 Conditions

	3.7 Example with some advanced techniques
	3.7.1 Step one: unpack
	3.7.2 Step two: analysis
	3.7.3 Parameters
	3.7.4 Conditions

	3.8 Example of analysis with a user defined event source
	3.9 Example of analysis mesh
	3.9.1 Structure
	3.9.2 Execution steps
	3.9.3 Provider steps
	3.9.4 Configuration
	3.9.5 Usage of the example

	3.10 Examples of embedded stream analysis
	3.11 Examples of embedded elder analysis

	4 How to Use the Go4 GUI
	4.1 GUI menus
	4.1.1 File, Tools, Analysis menus
	4.1.2 Help menu
	4.1.3 Settings menu
	4.1.4 Windows menu

	4.2 Load libraries to GUI
	4.3 Launch analysis
	4.3.1 Launch analysis task in client mode
	4.3.2 Launch analysis task in server mode
	4.3.3 Connect to existing Go4 analysis server
	4.3.4 Launch analysis task as HTTP server
	4.3.5 Connect to existing Go4 HTTP server

	4.4 Analysis configuration
	4.4.1 Configuration window
	4.4.2 Multiple input files
	4.4.3 User defined event sources
	4.4.4 Event store and event source for HDF5 format
	4.4.5 Auto-save file mechanism

	4.5 Analysis control
	4.5.1 Analysis terminal window
	4.5.2 Macro execution in the analysis
	4.5.3 Python macros in the analysis
	4.5.4 User defined macro command buttons

	4.6 MBS status monitor
	4.7 The Go4 browser
	4.7.1 Browser columns
	4.7.2 General functionality
	4.7.3 Analysis folder controls
	4.7.4 The monitoring mode
	4.7.5 The workspace folder
	4.7.6 Browsing files
	4.7.7 Resetting and deleting objects
	4.7.8 ROOT web server connection
	4.7.9 DABC server connection
	4.7.10 Histogram server connection

	4.8 The Go4 tree viewer
	4.8.1 Local mode
	4.8.2 Remote mode (dynamic list histogram)
	4.8.3 Creating a new histogram

	4.9 The Go4 view-panel
	4.9.1 File menu
	4.9.2 Edit menu
	4.9.3 Select menu
	4.9.4 Options menu
	4.9.5 Zoom toolbox
	4.9.6 Draw options and axis scaling
	4.9.7 Color Palette tool
	4.9.8 Channel and window markers

	4.10 Conditions
	4.10.1 Conditions editing in viewpanel marker editor
	4.10.2 Full condition editor
	4.10.3 Editor tabs
	4.10.4 Conditions bound to pictures
	4.10.5 Creating conditions

	4.11 Pictures
	4.12 Fit GUI
	4.13 Parameters
	4.13.1 Parameter objects
	4.13.2 Parameter editor
	4.13.3 Parameters containing fitters

	4.14 Dynamic lists
	4.14.1 Dynamic list editor
	4.14.2 Entry for tree draw
	4.14.3 Entry for event loop

	4.15 Histogram/condition information
	4.16 Event information
	4.17 Hot start
	4.18 User GUI
	4.18.1 Qt versions

	4.19 Macro execution in GUI
	4.20 Go4 GUI with ROOT 6 web canvas

	5 Analysis Server for ROOT macros
	5.1 Methods for object registration
	5.2 Methods for run control and execution
	5.3 Examples:

	6 Control of remote Go4 analysis from a ROOT session
	6.1 Initialization
	6.2 Connecting the analysis
	6.3 Controlling the analysis by command
	6.4 TBrowser extensions

	7 Go4 analysis with http web server
	7.1 Startup of go4analysis with webserver
	7.2 The Go4 web browser GUI
	7.2.1 The object hierarchy view
	7.2.2 The display frame
	7.2.3 The web browser analysis configuration web editor
	7.2.4 Displaying and editing conditions
	7.2.5 The web browser parameter editor
	7.2.6 The web browser analysis terminal

	8 The Go4 Composite Event Classes
	8.1 Introduction
	8.2 Application Programmers Interface
	8.3 Example

	9 Icon Table
	10 Table of Menu and Toolbar Keyboard Shortcuts
	11 Event Classes Diagrams
	12 Release Notes
	12.1 New features in Go4 v6.4 (Mar 25)
	12.2 New features in Go4 v6.3 (Jan 24)
	12.3 New features in Go4 v6.2 (Apr 22)
	12.4 New features in Go4 v6.1 (May 21)
	12.5 New features in Go4 v6.0 (October 19)
	12.6 New features in Go4 v5.2 (January 17)
	12.7 New features in Go4 v5.1 (March 16)
	12.8 New features in Go4 v5.0 (June 15)
	12.9 New features in Go4 v4.6 (November 13)
	12.10 New features in Go4 v4.5 (July 11)
	12.11 New features in Go4 v4.4 (November 09)
	12.12 New features in Go4 v4.3 (June 09)
	12.13 New features in Go4 v4.2 (April 09)
	12.14 New features in Go4 v4.1 (October 08)
	12.15 New features in Go4 v4.0 (February 08)
	12.16 New features in Go4 v3.3 (May 07)
	12.17 New features in Go4 v3.2 (July 06)
	12.18 New features in Go4 v3.1 (May 06)
	12.19 New features in Go4 v3.0 (November 05)
	12.20 New features in Go4 v2.10 (June 05)
	12.21 New features in Go4 v2.9 (February 05)
	12.22 New features in Go4 v2.8 (September 04)
	12.23 New features in Go4 v2.7 (June 04)
	12.24 New features in Go4 v2.6 (May 04)
	12.25 New features in Go4 v2.5 (December 03)
	12.26 New features in Go4 v2.4 (August 03)
	12.27 New features in Go4 v2.3 (May 03)
	12.28 New features in Go4 v2.2 (April 03)

	13 Editorial
	14 Index

