
Enterprise

PL/I

for

z/OS

PL/I

for

AIX

WSED

PL/I

for

Windows

Language

Reference

Version

3

Release

3.0

SC27-1460-03

���

Fifth

Edition

(October

2003)

This

edition

applies

to

Enterprise

PL/I

for

z/OS

Version

3

Release

3

(5655-H31),

IBM

PL/I

for

AIX

V2.0.0.0,

and

WSED

PL/I

for

Windows

V5.1.1,

and

to

any

subsequent

releases

of

any

of

these

products

until

otherwise

indicated

in

new

editions

or

technical

newsletters.

Make

sure

you

are

using

the

correct

edition

for

the

level

of

the

product.

Order

publications

through

your

IBM

representative

or

the

IBM

branch

office

serving

your

locality.

Publications

are

not

stocked

at

the

address

below.

A

form

for

readers’

comments

is

provided

at

the

back

of

this

publication.

If

the

form

has

been

removed,

address

your

comments

to:

IBM

Corporation,

Department

HHX/H1

555

Bailey

Ave.

San

Jose,

CA,

95141-1099

United

States

of

America

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

International

Business

Machines

Corporation

1998,2003.

All

rights

reserved.

Note!

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

537.

Contents

Tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Figures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Chapter

1.

About

this

book

.

.

.

.

.

. 1

Notation

conventions

used

in

this

book

.

.

.

.

. 1

Semantics

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Industry

standards

used

.

.

.

.

.

.

.

.

.

. 4

Enhancements

in

this

release

.

.

.

.

.

.

.

.

. 4

Enhancements

in

recent

releases

.

.

.

.

.

.

.

. 6

Chapter

2.

Program

elements

.

.

.

.

. 9

Single-byte

character

set

.

.

.

.

.

.

.

.

.

. 9

Statement

elements

for

SBCS

.

.

.

.

.

.

.

. 13

Statements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Groups

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

Double-byte

character

set

.

.

.

.

.

.

.

.

.

. 18

Chapter

3.

Data

elements

.

.

.

.

.

.

. 21

Data

items

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Data

types

and

attributes

.

.

.

.

.

.

.

.

.

. 22

Computational

data

types

and

attributes

.

.

.

. 26

Chapter

4.

Expressions

and

references

51

Order

of

evaluation

.

.

.

.

.

.

.

.

.

.

.

. 54

Targets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

Operational

expressions

.

.

.

.

.

.

.

.

.

. 55

Array

expressions

.

.

.

.

.

.

.

.

.

.

.

. 69

Structure

expressions

.

.

.

.

.

.

.

.

.

.

. 71

Restricted

expressions

.

.

.

.

.

.

.

.

.

.

. 71

Chapter

5.

Data

conversion

.

.

.

.

.

. 73

Built-in

functions

for

computational

data

conversion

74

Converting

string

lengths

.

.

.

.

.

.

.

.

.

. 75

Converting

arithmetic

precision

.

.

.

.

.

.

.

. 76

Converting

mode

.

.

.

.

.

.

.

.

.

.

.

. 76

Converting

other

data

attributes

.

.

.

.

.

.

. 76

Source-to-target

rules

.

.

.

.

.

.

.

.

.

.

. 77

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

Chapter

6.

Program

organization

.

.

. 87

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

Blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Packages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

Procedures

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

Built-in

subroutines

.

.

.

.

.

.

.

.

.

.

. 105

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

Passing

arguments

to

procedures

.

.

.

.

.

.

. 107

Begin-blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

Entry

data

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Entry

invocation

or

entry

value

.

.

.

.

.

.

. 124

CALL

statement

.

.

.

.

.

.

.

.

.

.

.

. 124

RETURN

statement

.

.

.

.

.

.

.

.

.

.

. 125

OPTIONS

option

and

attribute

.

.

.

.

.

.

. 126

RETURNS

option

and

attribute

.

.

.

.

.

.

. 134

Chapter

7.

Type

definitions

.

.

.

.

. 135

User-defined

types

(aliases)

.

.

.

.

.

.

.

.

. 135

Defining

ordinals

.

.

.

.

.

.

.

.

.

.

.

. 136

Defining

typed

structures

and

unions

.

.

.

.

. 138

Declaring

typed

variables

.

.

.

.

.

.

.

.

. 139

Typed

structure

qualification

.

.

.

.

.

.

.

. 141

Using

ordinals

.

.

.

.

.

.

.

.

.

.

.

.

. 143

Type

functions

.

.

.

.

.

.

.

.

.

.

.

.

. 145

Chapter

8.

Data

declarations

.

.

.

.

. 147

Explicit

declaration

.

.

.

.

.

.

.

.

.

.

. 147

Implicit

declaration

.

.

.

.

.

.

.

.

.

.

. 150

Scope

of

declarations

.

.

.

.

.

.

.

.

.

.

. 151

RESERVED

attribute

.

.

.

.

.

.

.

.

.

.

. 158

Data

alignment

.

.

.

.

.

.

.

.

.

.

.

.

. 159

Defaults

for

attributes

.

.

.

.

.

.

.

.

.

. 162

Arrays

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 167

Structures

.

.

.

.

.

.

.

.

.

.

.

.

.

. 170

Unions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 172

Structure/union

qualification

.

.

.

.

.

.

.

. 173

LIKE

attribute

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Chapter

9.

Statements

and

directives

187

ALLOCATE

statement

.

.

.

.

.

.

.

.

.

. 187

Assignment

and

compound

assignment

statements

187

ATTACH

statement

.

.

.

.

.

.

.

.

.

.

. 193

BEGIN

statement

.

.

.

.

.

.

.

.

.

.

.

. 193

CALL

statement

.

.

.

.

.

.

.

.

.

.

.

. 193

CLOSE

statement

.

.

.

.

.

.

.

.

.

.

.

. 193

DECLARE

statement

.

.

.

.

.

.

.

.

.

.

. 193

DEFINE

ALIAS

statement

.

.

.

.

.

.

.

.

. 193

DEFINE

ORDINAL

statement

.

.

.

.

.

.

.

. 193

DEFINE

STRUCTURE

statement

.

.

.

.

.

.

. 193

DEFAULT

statement

.

.

.

.

.

.

.

.

.

.

. 193

DELAY

statement

.

.

.

.

.

.

.

.

.

.

.

. 194

DELETE

statement

.

.

.

.

.

.

.

.

.

.

. 194

DETACH

statement

.

.

.

.

.

.

.

.

.

.

. 194

DISPLAY

statement

.

.

.

.

.

.

.

.

.

.

. 194

DO

statement

.

.

.

.

.

.

.

.

.

.

.

.

. 195

END

statement

.

.

.

.

.

.

.

.

.

.

.

.

. 205

ENTRY

statement

.

.

.

.

.

.

.

.

.

.

.

. 206

EXIT

statement

.

.

.

.

.

.

.

.

.

.

.

.

. 206

FETCH

statement

.

.

.

.

.

.

.

.

.

.

.

. 206

FLUSH

statement

.

.

.

.

.

.

.

.

.

.

.

. 206

FORMAT

statement

.

.

.

.

.

.

.

.

.

.

. 206

FREE

statement

.

.

.

.

.

.

.

.

.

.

.

. 206

GET

statement

.

.

.

.

.

.

.

.

.

.

.

.

. 206

GO

TO

statement

.

.

.

.

.

.

.

.

.

.

.

. 207

IF

statement

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

%INCLUDE

directive

.

.

.

.

.

.

.

.

.

.

. 209

ITERATE

statement

.

.

.

.

.

.

.

.

.

.

. 209

LEAVE

statement

.

.

.

.

.

.

.

.

.

.

.

. 210

iii

%LINE

directive

.

.

.

.

.

.

.

.

.

.

.

. 211

LOCATE

statement

.

.

.

.

.

.

.

.

.

.

. 211

%NOPRINT

directive

.

.

.

.

.

.

.

.

.

.

. 211

%NOTE

directive

.

.

.

.

.

.

.

.

.

.

.

. 211

null

statement

.

.

.

.

.

.

.

.

.

.

.

.

. 212

ON

statement

.

.

.

.

.

.

.

.

.

.

.

.

. 212

OPEN

statement

.

.

.

.

.

.

.

.

.

.

.

. 212

%OPTION

directive

.

.

.

.

.

.

.

.

.

.

. 212

OTHERWISE

statement

.

.

.

.

.

.

.

.

.

. 213

PACKAGE

statement

.

.

.

.

.

.

.

.

.

.

. 213

%PAGE

directive

.

.

.

.

.

.

.

.

.

.

.

. 213

%POP

directive

.

.

.

.

.

.

.

.

.

.

.

.

. 213

%PRINT

directive

.

.

.

.

.

.

.

.

.

.

.

. 214

PROCEDURE

statement

.

.

.

.

.

.

.

.

.

. 214

%PROCESS

directive

.

.

.

.

.

.

.

.

.

.

. 214

*PROCESS

directive

.

.

.

.

.

.

.

.

.

.

. 214

%PUSH

directive

.

.

.

.

.

.

.

.

.

.

.

. 214

PUT

statement

.

.

.

.

.

.

.

.

.

.

.

.

. 215

READ

statement

.

.

.

.

.

.

.

.

.

.

.

. 215

RELEASE

statement

.

.

.

.

.

.

.

.

.

.

. 215

RESIGNAL

statement

.

.

.

.

.

.

.

.

.

.

. 215

RETURN

statement

.

.

.

.

.

.

.

.

.

.

. 216

REVERT

statement

.

.

.

.

.

.

.

.

.

.

. 216

REWRITE

statement

.

.

.

.

.

.

.

.

.

.

. 216

SELECT

statement

.

.

.

.

.

.

.

.

.

.

.

. 216

SIGNAL

statement

.

.

.

.

.

.

.

.

.

.

. 218

%SKIP

directive

.

.

.

.

.

.

.

.

.

.

.

. 218

STOP

statement

.

.

.

.

.

.

.

.

.

.

.

. 218

UNLOCK

Statement

.

.

.

.

.

.

.

.

.

.

. 218

WAIT

statement

.

.

.

.

.

.

.

.

.

.

.

. 218

WHEN

statement

.

.

.

.

.

.

.

.

.

.

.

. 218

WRITE

statement

.

.

.

.

.

.

.

.

.

.

.

. 219

Chapter

10.

Storage

control

.

.

.

.

. 221

Storage

classes,

allocation,

and

deallocation

.

.

. 221

Static

storage

and

attribute

.

.

.

.

.

.

.

.

. 222

Automatic

storage

and

attribute

.

.

.

.

.

.

. 223

Controlled

storage

and

attribute

.

.

.

.

.

.

. 224

Based

storage

and

attribute

.

.

.

.

.

.

.

.

. 228

Area

data

and

attribute

.

.

.

.

.

.

.

.

.

. 237

List

processing

.

.

.

.

.

.

.

.

.

.

.

.

. 240

ASSIGNABLE

and

NONASSIGNABLE

attributes

242

NORMAL

and

ABNORMAL

attributes

.

.

.

.

. 242

BIGENDIAN

and

LITTLEENDIAN

attributes

.

.

. 243

HEXADEC

and

IEEE

attributes

.

.

.

.

.

.

. 244

CONNECTED

and

NONCONNECTED

attributes

244

DEFINED

and

POSITION

attributes

.

.

.

.

.

. 245

INITIAL

attribute

.

.

.

.

.

.

.

.

.

.

.

. 250

Chapter

11.

Input

and

output

.

.

.

.

. 257

Data

sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

Files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 259

Opening

and

closing

files

.

.

.

.

.

.

.

.

. 264

SYSPRINT

and

SYSIN

.

.

.

.

.

.

.

.

.

. 269

Chapter

12.

Record-oriented

data

transmission

.

.

.

.

.

.

.

.

.

.

.

. 271

Data

transmitted

.

.

.

.

.

.

.

.

.

.

.

. 271

Data

transmission

statements

.

.

.

.

.

.

.

. 272

Options

of

data

transmission

statements

.

.

.

. 274

Processing

modes

.

.

.

.

.

.

.

.

.

.

.

. 277

Chapter

13.

Stream-oriented

data

transmission

.

.

.

.

.

.

.

.

.

.

.

. 281

Data

transmission

statements

.

.

.

.

.

.

.

. 282

Options

of

data

transmission

statements

.

.

.

. 283

Transmission

of

data-list

items

.

.

.

.

.

.

.

. 288

Data-directed

data

specification

.

.

.

.

.

.

. 289

Restrictions

on

data-directed

data

.

.

.

.

.

. 289

Edit-directed

data

specification

.

.

.

.

.

.

. 293

List-directed

data

specification

.

.

.

.

.

.

. 297

PRINT

attribute

.

.

.

.

.

.

.

.

.

.

.

. 300

DBCS

data

in

stream

I/O

.

.

.

.

.

.

.

.

. 301

Chapter

14.

Edit-directed

format

items

303

A-format

item

.

.

.

.

.

.

.

.

.

.

.

.

. 303

B-format

item

.

.

.

.

.

.

.

.

.

.

.

.

. 304

C-format

item

.

.

.

.

.

.

.

.

.

.

.

.

. 304

COLUMN

format

item

.

.

.

.

.

.

.

.

.

. 305

E-format

item

.

.

.

.

.

.

.

.

.

.

.

.

. 306

F-format

item

.

.

.

.

.

.

.

.

.

.

.

.

. 308

G-format

item

.

.

.

.

.

.

.

.

.

.

.

.

. 310

L-format

item

.

.

.

.

.

.

.

.

.

.

.

.

. 310

LINE

format

item

.

.

.

.

.

.

.

.

.

.

.

. 311

P-format

item

.

.

.

.

.

.

.

.

.

.

.

.

. 311

PAGE

format

item

.

.

.

.

.

.

.

.

.

.

.

. 312

R-format

item

.

.

.

.

.

.

.

.

.

.

.

.

. 312

SKIP

format

item

.

.

.

.

.

.

.

.

.

.

.

. 313

X-format

item

.

.

.

.

.

.

.

.

.

.

.

.

. 313

Chapter

15.

Picture

specification

characters

.

.

.

.

.

.

.

.

.

.

.

.

. 315

Picture

repetition

factor

.

.

.

.

.

.

.

.

.

. 316

Picture

characters

for

character

data

.

.

.

.

.

. 316

Picture

characters

for

numeric

character

data

.

.

. 317

Chapter

16.

Condition

handling

.

.

.

. 331

Condition

prefixes

.

.

.

.

.

.

.

.

.

.

.

. 331

On-units

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

REVERT

statement

.

.

.

.

.

.

.

.

.

.

. 337

SIGNAL

statement

.

.

.

.

.

.

.

.

.

.

. 337

RESIGNAL

statement

.

.

.

.

.

.

.

.

.

.

. 338

Multiple

conditions

.

.

.

.

.

.

.

.

.

.

. 338

CONDITION

attribute

.

.

.

.

.

.

.

.

.

. 338

Chapter

17.

Conditions

.

.

.

.

.

.

. 339

ANYCONDITION

condition

.

.

.

.

.

.

.

. 339

AREA

condition

.

.

.

.

.

.

.

.

.

.

.

. 340

ATTENTION

condition

.

.

.

.

.

.

.

.

.

. 341

CONDITION

condition

.

.

.

.

.

.

.

.

.

. 342

CONVERSION

condition

.

.

.

.

.

.

.

.

. 343

ENDFILE

condition

.

.

.

.

.

.

.

.

.

.

. 344

ENDPAGE

condition

.

.

.

.

.

.

.

.

.

.

. 345

ERROR

condition

.

.

.

.

.

.

.

.

.

.

.

. 346

FINISH

condition

.

.

.

.

.

.

.

.

.

.

.

. 347

FIXEDOVERFLOW

condition

.

.

.

.

.

.

.

. 347

INVALIDOP

condition

.

.

.

.

.

.

.

.

.

. 348

KEY

condition

.

.

.

.

.

.

.

.

.

.

.

.

. 348

NAME

condition

.

.

.

.

.

.

.

.

.

.

.

. 349

iv

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

OVERFLOW

condition

.

.

.

.

.

.

.

.

.

. 350

RECORD

condition

.

.

.

.

.

.

.

.

.

.

. 350

SIZE

condition

.

.

.

.

.

.

.

.

.

.

.

.

. 351

STORAGE

condition

.

.

.

.

.

.

.

.

.

.

. 352

STRINGRANGE

condition

.

.

.

.

.

.

.

.

. 353

STRINGSIZE

condition

.

.

.

.

.

.

.

.

.

. 354

SUBSCRIPTRANGE

condition

.

.

.

.

.

.

.

. 354

TRANSMIT

condition

.

.

.

.

.

.

.

.

.

. 355

UNDEFINEDFILE

condition

.

.

.

.

.

.

.

. 356

UNDERFLOW

condition

.

.

.

.

.

.

.

.

. 357

ZERODIVIDE

condition

.

.

.

.

.

.

.

.

.

. 357

Chapter

18.

Multithreading

facility

.

. 359

Creating

a

thread

.

.

.

.

.

.

.

.

.

.

.

. 360

ATTACH

statement

.

.

.

.

.

.

.

.

.

.

. 360

Terminating

a

thread

.

.

.

.

.

.

.

.

.

.

. 361

Waiting

for

a

thread

to

complete

.

.

.

.

.

.

. 361

Detaching

a

thread

.

.

.

.

.

.

.

.

.

.

. 362

Condition

handling

.

.

.

.

.

.

.

.

.

.

. 362

Task

data

and

attribute

.

.

.

.

.

.

.

.

.

. 362

Sharing

data

between

threads

.

.

.

.

.

.

.

. 363

Sharing

files

between

threads

.

.

.

.

.

.

.

. 363

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

.

. 365

Declaring

and

invoking

built-in

functions,

pseudovariables,

and

built-in

subroutines

.

.

.

. 368

Specifying

arguments

for

built-in

functions,

pseudovariables,

and

built-in

subroutines

.

.

.

. 369

Accuracy

of

mathematical

functions

.

.

.

.

.

. 370

Categories

of

built-in

functions

.

.

.

.

.

.

. 370

ABS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 382

ACOS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 383

ACOSF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 383

ADD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 383

ADDR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 384

ADDRDATA

.

.

.

.

.

.

.

.

.

.

.

.

. 384

ALL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 385

ALLOCATE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 385

ALLOCATION

.

.

.

.

.

.

.

.

.

.

.

.

. 385

ALLOCSIZE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 385

ANY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 386

ASIN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 386

ASINF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 386

ATAN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 387

ATAND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 387

ATANF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 388

ATANH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 388

AUTOMATIC

.

.

.

.

.

.

.

.

.

.

.

.

. 388

AVAILABLEAREA

.

.

.

.

.

.

.

.

.

.

. 388

BINARY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 389

BINARYVALUE

.

.

.

.

.

.

.

.

.

.

.

. 389

BIT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 390

BITLOCATION

.

.

.

.

.

.

.

.

.

.

.

.

. 390

BOOL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 390

BYTE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 391

CDS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 391

CEIL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 391

CENTERLEFT

.

.

.

.

.

.

.

.

.

.

.

.

. 392

CENTRELEFT

.

.

.

.

.

.

.

.

.

.

.

.

. 392

CENTERRIGHT

.

.

.

.

.

.

.

.

.

.

.

. 392

CENTRERIGHT

.

.

.

.

.

.

.

.

.

.

.

. 393

CHARACTER

.

.

.

.

.

.

.

.

.

.

.

.

. 393

CHARGRAPHIC

.

.

.

.

.

.

.

.

.

.

.

. 394

CHARVAL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 395

CHECKSTG

.

.

.

.

.

.

.

.

.

.

.

.

.

. 395

COLLATE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 396

COMPARE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 396

COMPLEX

.

.

.

.

.

.

.

.

.

.

.

.

.

. 397

CONJG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 397

COPY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 397

COS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 398

COSD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 398

COSF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 398

COSH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 399

COUNT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 399

CS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 399

CURRENTSIZE

.

.

.

.

.

.

.

.

.

.

.

.

. 401

CURRENTSTORAGE

.

.

.

.

.

.

.

.

.

.

. 401

DATAFIELD

.

.

.

.

.

.

.

.

.

.

.

.

.

. 402

DATE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 402

DATETIME

.

.

.

.

.

.

.

.

.

.

.

.

.

. 402

DAYS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 403

DAYSTODATE

.

.

.

.

.

.

.

.

.

.

.

.

. 404

DAYSTOSECS

.

.

.

.

.

.

.

.

.

.

.

.

. 404

DECIMAL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 405

DIMENSION

.

.

.

.

.

.

.

.

.

.

.

.

. 405

DIVIDE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 406

EDIT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 406

EMPTY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 407

ENDFILE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 407

ENTRYADDR

.

.

.

.

.

.

.

.

.

.

.

.

. 407

ENTRYADDR

pseudovariable

.

.

.

.

.

.

.

. 408

EPSILON

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 408

ERF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 408

ERFC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 408

EXP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 409

EXPF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 409

EXPONENT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 409

FILEDDINT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 410

FILEDDTEST

.

.

.

.

.

.

.

.

.

.

.

.

. 410

FILEDDWORD

.

.

.

.

.

.

.

.

.

.

.

.

. 411

FILEID

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 411

FILEOPEN

.

.

.

.

.

.

.

.

.

.

.

.

.

. 412

FILEREAD

.

.

.

.

.

.

.

.

.

.

.

.

.

. 412

FILESEEK

.

.

.

.

.

.

.

.

.

.

.

.

.

. 412

FILETELL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 413

FILEWRITE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 413

FIXED

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 413

FLOAT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

FLOOR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

GAMMA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

GETENV

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 415

GRAPHIC

.

.

.

.

.

.

.

.

.

.

.

.

.

. 415

HANDLE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 416

HBOUND

.

.

.

.

.

.

.

.

.

.

.

.

.

. 416

HEX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 417

HEXIMAGE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 418

HIGH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 418

HUGE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 418

IAND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 419

Contents

v

IEOR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 419

IMAG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 420

IMAG

pseudovariable

.

.

.

.

.

.

.

.

.

. 420

INDEX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 420

INOT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 421

IOR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 421

ISIGNED

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 422

ISLL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 422

ISMAIN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 423

ISRL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 423

IUNSIGNED

.

.

.

.

.

.

.

.

.

.

.

.

. 423

LBOUND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 424

LEFT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 424

LENGTH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 425

LINENO

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 425

LOCATION

.

.

.

.

.

.

.

.

.

.

.

.

.

. 425

LOG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 426

LOGF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 426

LOGGAMMA

.

.

.

.

.

.

.

.

.

.

.

.

. 427

LOG2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 427

LOG10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 427

LOG10F

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 427

LOW

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 428

LOWERCASE

.

.

.

.

.

.

.

.

.

.

.

.

. 428

LOWER2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 428

MAX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 429

MAXEXP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 429

MAXLENGTH

.

.

.

.

.

.

.

.

.

.

.

.

. 430

MEMINDEX

.

.

.

.

.

.

.

.

.

.

.

.

.

. 431

MEMSEARCH

.

.

.

.

.

.

.

.

.

.

.

.

. 432

MESEARCHR

.

.

.

.

.

.

.

.

.

.

.

.

. 433

MEMVERIFY

.

.

.

.

.

.

.

.

.

.

.

.

. 433

MEMVERIFYR

.

.

.

.

.

.

.

.

.

.

.

.

. 434

MIN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 435

MINEXP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 435

MOD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 436

MPSTR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 437

MULTIPLY

.

.

.

.

.

.

.

.

.

.

.

.

.

. 438

NULL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 438

OFFSET

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 438

OFFSETADD

.

.

.

.

.

.

.

.

.

.

.

.

. 439

OFFSETDIFF

.

.

.

.

.

.

.

.

.

.

.

.

. 439

OFFSETSUBTRACT

.

.

.

.

.

.

.

.

.

.

. 439

OFFSETVALUE

.

.

.

.

.

.

.

.

.

.

.

.

. 439

OMITTED

.

.

.

.

.

.

.

.

.

.

.

.

.

. 440

ONCHAR

.

.

.

.

.

.

.

.

.

.

.

.

.

. 440

ONCHAR

pseudovariable

.

.

.

.

.

.

.

.

. 440

ONCODE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 440

ONCONDCOND

.

.

.

.

.

.

.

.

.

.

.

. 441

ONCONDID

.

.

.

.

.

.

.

.

.

.

.

.

. 441

ONCOUNT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 442

ONFILE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 442

ONGSOURCE

.

.

.

.

.

.

.

.

.

.

.

.

. 442

ONGSOURCE

pseudovariable

.

.

.

.

.

.

.

. 443

ONKEY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 443

ONLOC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 444

ONSOURCE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 444

ONSOURCE

pseudovariable

.

.

.

.

.

.

.

. 444

ONSUBCODE

.

.

.

.

.

.

.

.

.

.

.

.

. 445

ONWCHAR

.

.

.

.

.

.

.

.

.

.

.

.

.

. 445

ONWCHAR

pseudovariable

.

.

.

.

.

.

.

. 445

ONWSOURCE

.

.

.

.

.

.

.

.

.

.

.

.

. 446

ONWSOURCE

pseudovariable

.

.

.

.

.

.

. 446

ORDINALNAME

.

.

.

.

.

.

.

.

.

.

.

. 446

ORDINALPRED

.

.

.

.

.

.

.

.

.

.

.

. 447

ORDINALSUCC

.

.

.

.

.

.

.

.

.

.

.

. 447

PACKAGENAME

.

.

.

.

.

.

.

.

.

.

.

. 447

PAGENO

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 447

PLACES

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 448

PLIASCII

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 448

PLICANC

.

.

.

.

.

.

.

.

.

.

.

.

.

. 449

PLICKPT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 449

PLIDELETE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 449

PLIDUMP

.

.

.

.

.

.

.

.

.

.

.

.

.

. 450

PLIEBCDIC

.

.

.

.

.

.

.

.

.

.

.

.

.

. 450

PLIFILL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 450

PLIFREE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 451

PLIMOVE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 451

PLIOVER

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 452

PLIREST

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 452

PLIRETC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 452

PLIRETV

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 453

PLISAXA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 453

PLISAXB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 453

PLISRTA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 454

PLISRTB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 454

PLISRTC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 454

PLISRTD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 454

POINTER

.

.

.

.

.

.

.

.

.

.

.

.

.

. 455

POINTERADD

.

.

.

.

.

.

.

.

.

.

.

.

. 455

POINTERDIFF

.

.

.

.

.

.

.

.

.

.

.

.

. 456

POINTERSUBTRACT

.

.

.

.

.

.

.

.

.

.

. 456

POINTERVALUE

.

.

.

.

.

.

.

.

.

.

.

. 456

POLY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 457

PRECISION

.

.

.

.

.

.

.

.

.

.

.

.

.

. 457

PRED

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 458

PRESENT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 458

PROCEDURENAME

.

.

.

.

.

.

.

.

.

.

. 458

PROD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 458

PUTENV

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 459

RADIX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 459

RAISE2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 459

RANDOM

.

.

.

.

.

.

.

.

.

.

.

.

.

. 460

RANK

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 460

REAL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 460

REAL

pseudovariable

.

.

.

.

.

.

.

.

.

. 461

REM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 461

REPATTERN

.

.

.

.

.

.

.

.

.

.

.

.

. 461

REPEAT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 462

REVERSE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 462

RIGHT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 462

ROUND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 463

SAMEKEY

.

.

.

.

.

.

.

.

.

.

.

.

.

. 464

SCALE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 464

SEARCH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 465

SEARCHR

.

.

.

.

.

.

.

.

.

.

.

.

.

. 466

SECS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 466

SECSTODATE

.

.

.

.

.

.

.

.

.

.

.

.

. 467

SECSTODAYS

.

.

.

.

.

.

.

.

.

.

.

.

. 468

SIGN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 468

SIGNED

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 468

SIN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 469

vi

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

SIND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 469

SINF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 469

SINH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 469

SIZE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 470

SOURCEFILE

.

.

.

.

.

.

.

.

.

.

.

.

. 471

SOURCELINE

.

.

.

.

.

.

.

.

.

.

.

.

. 471

SQRT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 471

SQRTF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 471

STORAGE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 472

STRING

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 472

STRING

pseudovariable

.

.

.

.

.

.

.

.

.

. 473

SUBSTR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 473

SUBSTR

pseudovariable

.

.

.

.

.

.

.

.

.

. 473

SUBTRACT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 474

SUCC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 474

SUM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 475

SYSNULL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 475

SYSTEM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 475

TALLY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 476

TAN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 476

TAND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 476

TANF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 476

TANH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 477

THREADID

.

.

.

.

.

.

.

.

.

.

.

.

.

. 477

TIME

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 478

TINY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 478

TRANSLATE

.

.

.

.

.

.

.

.

.

.

.

.

. 478

TRIM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 479

TRUNC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 479

TYPE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 480

TYPE

pseudovariable

.

.

.

.

.

.

.

.

.

.

. 480

UNALLOCATED

.

.

.

.

.

.

.

.

.

.

.

. 480

UNSIGNED

.

.

.

.

.

.

.

.

.

.

.

.

.

. 481

UNSPEC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 481

UNSPEC

pseudovariable

.

.

.

.

.

.

.

.

. 483

UPPERCASE

.

.

.

.

.

.

.

.

.

.

.

.

. 483

VALID

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 484

VALIDDATE

.

.

.

.

.

.

.

.

.

.

.

.

. 484

VARGLIST

.

.

.

.

.

.

.

.

.

.

.

.

.

. 485

VARGSIZE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 485

VERIFY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 485

VERIFYR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 486

WCHARVAL

.

.

.

.

.

.

.

.

.

.

.

.

. 487

WEEKDAY

.

.

.

.

.

.

.

.

.

.

.

.

.

. 487

WHIGH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 488

WIDECHAR

.

.

.

.

.

.

.

.

.

.

.

.

.

. 488

WLOW

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 488

XMLCHAR

.

.

.

.

.

.

.

.

.

.

.

.

.

. 489

Y4DATE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 490

Y4JULIAN

.

.

.

.

.

.

.

.

.

.

.

.

.

. 491

Y4YEAR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 491

Chapter

20.

Type

Functions

.

.

.

.

. 493

Invoking

type

functions

.

.

.

.

.

.

.

.

.

. 493

Specifying

arguments

for

type

functions

.

.

.

. 493

Brief

descriptions

of

type

functions

.

.

.

.

.

. 494

BIND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 494

CAST

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 494

FIRST

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 495

LAST

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 495

NEW

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 496

RESPEC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 496

SIZE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 496

Chapter

21.

Preprocessor

Facilities

497

Preprocessor

Options

.

.

.

.

.

.

.

.

.

.

. 498

Preprocessor

Scan

.

.

.

.

.

.

.

.

.

.

.

. 499

Preprocessor

Variables

and

Data

Elements

.

.

.

. 500

Preprocessor

References

and

Expressions

.

.

.

. 501

Scope

of

Preprocessor

Names

.

.

.

.

.

.

.

. 501

Preprocessor

Procedures

.

.

.

.

.

.

.

.

.

. 502

Preprocessor

Built-In

Functions

.

.

.

.

.

.

. 507

Preprocessor

Statements

.

.

.

.

.

.

.

.

.

. 516

Preprocessor

Examples

.

.

.

.

.

.

.

.

.

. 526

Appendix.

Limits

.

.

.

.

.

.

.

.

.

. 531

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 537

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 538

Bibliography

.

.

.

.

.

.

.

.

.

.

.

. 539

Enterprise

PL/I

publications

.

.

.

.

.

.

.

. 539

PL/I

for

MVS

&

VM

.

.

.

.

.

.

.

.

.

.

. 539

z/OS

Language

Environment

.

.

.

.

.

.

.

. 539

CICS

Transaction

Server

.

.

.

.

.

.

.

.

.

. 539

DB2

UDB

for

OS/390

and

z/OS

.

.

.

.

.

.

. 539

DFSORT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 540

IMS/ESA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 540

z/OS

MVS

.

.

.

.

.

.

.

.

.

.

.

.

.

. 540

z/OS

UNIX

System

Services

.

.

.

.

.

.

.

. 540

z/OS

TSO/E

.

.

.

.

.

.

.

.

.

.

.

.

. 540

z/Architecture

.

.

.

.

.

.

.

.

.

.

.

.

. 540

Unicode

and

character

representation

.

.

.

.

. 540

Glossary

.

.

.

.

.

.

.

.

.

.

.

.

. 541

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 555

Contents

vii

viii

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Tables

1.

Alphabetic

equivalents

.

.

.

.

.

.

.

.

. 10

2.

Decimal

digit

equivalents

.

.

.

.

.

.

.

. 10

3.

Special

character

equivalents

.

.

.

.

.

.

. 11

4.

Composite

symbol

description

.

.

.

.

.

. 12

5.

Delimiters

.

.

.

.

.

.

.

.

.

.

.

.

. 14

6.

Operators

.

.

.

.

.

.

.

.

.

.

.

.

. 14

7.

Classification

of

attributes

by

constant

types

25

8.

Classification

of

attributes

by

variable

types

26

9.

Abbreviations

for

coded

arithmetic

data

attributes

.

.

.

.

.

.

.

.

.

.

.

.

. 27

10.

FIXED

BINARY

SIGNED

data

storage

requirements

.

.

.

.

.

.

.

.

.

.

.

. 30

11.

FIXED

BINARY

UNSIGNED

data

storage

requirements

.

.

.

.

.

.

.

.

.

.

.

. 30

12.

Abbreviations

for

string

data

attributes

34

13.

Results

of

arithmetic

operations

for

one

or

more

FLOAT

operands

.

.

.

.

.

.

.

.

. 59

14.

Results

of

arithmetic

operations

between

two

unscaled

FIXED

operands

under

RULES(ANS)

. 60

15.

Results

of

arithmetic

operations

between

two

scaled

FIXED

operands

under

RULES(ANS)

. 60

16.

Results

of

arithmetic

operations

between

two

FIXED

operands

under

RULES(IBM)

.

.

.

. 61

17.

Comparison

of

FIXED

division

and

constant

expressions

.

.

.

.

.

.

.

.

.

.

.

. 62

18.

Special

cases

for

exponentiation

.

.

.

.

.

. 63

19.

Bit

operations

.

.

.

.

.

.

.

.

.

.

.

. 64

20.

Bit

operation

examples

.

.

.

.

.

.

.

.

. 64

21.

Priority

of

operations

and

guide

to

conversions

68

22.

CEIL

(n*3.32)

and

CEIL

(n/3.32)

values

76

23.

Ordinal-handling

built-in

functions

.

.

.

. 143

24.

Type

functions

.

.

.

.

.

.

.

.

.

.

. 145

25.

Scopes

of

data

declarations

.

.

.

.

.

.

. 152

26.

Scopes

of

entry

and

label

declarations

153

27.

Alignment

on

integral

boundaries

of

halfwords,

words,

and

doublewords

.

.

.

. 159

28.

Alignment

requirements

.

.

.

.

.

.

.

. 160

29.

Default

arithmetic

precisions

.

.

.

.

.

. 163

30.

Compound

assignment

operators

.

.

.

.

. 189

31.

Alternative

file

attributes

.

.

.

.

.

.

.

. 260

32.

Attributes

by

data

transmission

type

260

33.

Attributes

of

PL/I

file

declarations

.

.

.

. 261

34.

Attributes

implied

by

implicit

open

.

.

.

. 267

35.

Merged

and

implied

attributes

.

.

.

.

.

. 267

36.

Options

and

format

items

for

PRINT

files

300

37.

Character

picture

specification

examples

317

38.

Examples

of

digit

and

decimal

point

characters

.

.

.

.

.

.

.

.

.

.

.

.

. 319

39.

Examples

of

zero

suppression

characters

320

40.

Examples

of

insertion

characters

.

.

.

.

. 322

41.

Examples

of

signs

and

currency

characters

326

42.

Interpretation

of

the

T,

I,

and

R

picture

characters

.

.

.

.

.

.

.

.

.

.

.

.

. 326

43.

Examples

of

credit,

debit,

overpunched,

and

zero

replacement

characters

.

.

.

.

.

.

. 328

44.

Examples

of

exponent

characters

.

.

.

.

. 328

45.

Examples

of

scaling

factor

characters

329

46.

Classes

and

status

of

conditions

.

.

.

.

. 332

47.

Arithmetic

built-in

functions

.

.

.

.

.

. 371

48.

Array-handling

built-in

functions

.

.

.

.

. 371

49.

Buffer-management

built-in

functions

372

50.

Condition-handling

built-in

functions

372

51.

Date/time

built-in

functions

.

.

.

.

.

. 373

52.

Date/time

patterns

.

.

.

.

.

.

.

.

.

. 374

53.

Floating-point

inquiry

built-in

functions

375

54.

Floating-point

manipulation

built-in

functions

375

55.

Input/output

built-in

functions

.

.

.

.

. 375

56.

Integer

manipulation

built-in

functions

376

57.

Mathematical

built-in

functions

.

.

.

.

. 376

58.

Miscellaneous

built-in

functions

.

.

.

.

. 377

59.

Ordinal-handling

built-in

functions

.

.

.

. 378

60.

Precision-handling

built-in

functions

.

.

.

. 378

61.

Built-in

pseudovariables

.

.

.

.

.

.

.

. 379

62.

Storage

control

built-in

functions

.

.

.

.

. 379

63.

String-handling

built-in

functions

.

.

.

.

. 380

64.

Built-in

subroutines

.

.

.

.

.

.

.

.

. 382

65.

Length

of

bit

string

returned

by

UNSPEC

482

66.

Type

functions

.

.

.

.

.

.

.

.

.

.

. 494

67.

Language

element

limits

.

.

.

.

.

.

.

. 531

68.

Macro

facility

limits

.

.

.

.

.

.

.

.

. 534

ix

x

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Figures

1.

Named

constants

.

.

.

.

.

.

.

.

.

.

. 46

2.

A

PL/I

application

structure

.

.

.

.

.

.

. 88

3.

Package

statement

.

.

.

.

.

.

.

.

.

. 92

4.

Array

argument

with

parameters

.

.

.

.

. 97

5.

Valid

and

invalid

call

statements

.

.

.

.

. 117

6.

Sample

program

illustrating

LIST

attribute

118

7.

Example

of

scopes

of

various

declarations

156

8.

Mapping

of

example

structure

.

.

.

.

.

. 181

9.

Mapping

of

minor

structure

G

.

.

.

.

.

. 181

10.

Mapping

of

minor

structure

E

.

.

.

.

.

. 182

11.

Mapping

of

minor

structure

N

.

.

.

.

.

. 182

12.

Mapping

of

minor

structure

S

.

.

.

.

.

. 182

13.

Mapping

of

minor

structure

C

.

.

.

.

.

. 183

14.

Mapping

of

minor

structure

M

.

.

.

.

.

. 183

15.

Mapping

of

major

structure

A

.

.

.

.

.

. 184

16.

Offsets

in

final

mapping

of

structure

A

185

17.

Example

of

one-directional

chain

.

.

.

.

. 241

xi

xii

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Chapter

1.

About

this

book

Notation

conventions

used

in

this

book

.

.

.

.

. 1

Semantics

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Industry

standards

used

.

.

.

.

.

.

.

.

.

. 4

Enhancements

in

this

release

.

.

.

.

.

.

.

.

. 4

Improved

performance

.

.

.

.

.

.

.

.

.

. 4

Enhancements

in

recent

releases

.

.

.

.

.

.

.

. 6

This

book

is

a

reference

for

the

programmer

using

the

IBM

PL/I

compiler

in

these

IBM

products:

v

Enterprise

PL/I

for

z/OS

V3R3

v

PL/I

for

AIX

V2.0.0.0

v

WSED

PL/I

for

Windows

V5.1.1

It

is

not

a

tutorial,

but

is

designed

for

the

reader

who

already

has

a

knowledge

of

the

PL/I

language

and

who

requires

reference

information

needed

to

write

a

program

for

an

IBM

PL/I

compiler.

It

contains

guidance

information

and

general-use

programming

interfaces.

Because

this

book

is

a

reference

manual,

it

is

not

intended

to

be

read

from

front

to

back,

and

terms

can

be

used

before

they

are

defined.

Terms

are

highlighted

where

they

are

defined

in

the

book,

and

definitions

are

found

in

the

glossary.

Text

set

apart

by

the

workstation

opening

and

closing

icons

designates

features

which

are

supported

only

on

PL/I

workstation

products

(AIX,

OS/2,

and

Windows).

Notation

conventions

used

in

this

book

The

following

sections

describe

how

information

is

presented

in

this

book.

Examples

and

user-supplied

information

are

presented

in

mixed-case

characters.

The

following

rules

apply

to

the

syntax

diagrams

used

in

this

book:

Arrow

symbols

Read

the

syntax

diagrams

from

left

to

right,

from

top

to

bottom,

following

the

path

of

the

line.

��───

Indicates

the

beginning

of

a

statement.

───�

Indicates

that

the

statement

syntax

is

continued

on

the

next

line.

�───

Indicates

that

a

statement

is

continued

from

the

previous

line.

───��

Indicates

the

end

of

a

statement.

Diagrams

of

syntactical

units

other

than

complete

statements

start

with

the

�───

symbol

and

end

with

the

───�

symbol.

Conventions

v

Keywords,

their

allowable

synonyms,

and

reserved

parameters,

appear

in

uppercase

for

MVS

and

OS/2®

platforms,

and

lowercase

for

UNIX®

platforms.

These

items

must

be

entered

exactly

as

shown.

v

Variables

appear

in

lowercase

italics

(for

example,

column-name).

They

represent

user-defined

parameters

or

suboptions.

1

v

When

entering

commands,

separate

parameters

and

keywords

by

at

least

one

blank

if

there

is

no

intervening

punctuation.

v

Enter

punctuation

marks

(slashes,

commas,

periods,

parentheses,

quotation

marks,

equal

signs)

and

numbers

exactly

as

given.

v

Footnotes

are

shown

by

a

number

in

parentheses,

for

example,

(1).

v

A

�

symbol

indicates

one

blank

position.

Required

items

Required

items

appear

on

the

horizontal

line

(the

main

path).

��

REQUIRED_ITEM

��

Optional

Items

Optional

items

appear

below

the

main

path.

��

REQUIRED_ITEM

optional_item

��

If

an

optional

item

appears

above

the

main

path,

that

item

has

no

effect

on

the

execution

of

the

statement

and

is

used

only

for

readability.

��

REQUIRED_ITEM

optional_item

��

Multiple

required

or

optional

items

If

you

can

choose

from

two

or

more

items,

they

appear

vertically

in

a

stack.

If

you

must

choose

one

of

the

items,

one

item

of

the

stack

appears

on

the

main

path.

��

REQUIRED_ITEM

required_choice1

required_choice2

��

If

choosing

one

of

the

items

is

optional,

the

entire

stack

appears

below

the

main

path.

��

REQUIRED_ITEM

optional_choice1

optional_choice2

��

Repeatable

items

An

arrow

returning

to

the

left

above

the

main

line

indicates

that

an

item

can

be

repeated.

��

REQUIRED_ITEM

�

repeatable_item

��

If

the

repeat

arrow

contains

a

comma,

you

must

separate

repeated

items

with

a

comma.

About

this

book

2

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

REQUIRED_ITEM

�

,

repeatable_item

��

A

repeat

arrow

above

a

stack

indicates

that

you

can

specify

more

than

one

of

the

choices

in

the

stack.

Default

keywords

IBM-supplied

default

keywords

appear

above

the

main

path,

and

the

remaining

choices

are

shown

below

the

main

path.

In

the

parameter

list

following

the

syntax

diagram,

the

default

choices

are

underlined.

��

REQUIRED_ITEM

default_choice

optional_choice

optional_choice

��

Fragments

Sometimes

a

diagram

must

be

split

into

fragments.

The

fragments

are

represented

by

a

letter

or

fragment

name,

set

off

like

this:

|

A

|.

The

fragment

follows

the

end

of

the

main

diagram.

The

following

example

shows

the

use

of

a

fragment.

��

STATEMENT

item

1

item

2

A

��

A:

item

3

item

4

KEYWORD

item

5

item

6

Substitution-block

Sometimes

a

set

of

several

parameters

is

represented

by

a

substitution-block

such

as

<A>.

For

example,

in

the

imaginary

/VERB

command

you

could

enter

/VERB

LINE

1,

/VERB

EITHER

LINE

1,

or

/VERB

OR

LINE

1.

��

/VERB

<A>

LINE

line#

��

where

<A>

is:

��

EITHER

OR

��

Parameter

endings

Parameters

with

number

values

end

with

the

symbol

'#',

parameters

that

are

names

end

with

'name',

and

parameters

that

can

be

generic

end

with

'*'.

��

/MSVERIFY

MSNAME

msname

SYSID

sysid#

��

About

this

book

Chapter

1.

About

this

book

3

The

MSNAME

keyword

in

the

example

supports

a

name

value

and

the

SYSID

keyword

supports

a

number

value.

Semantics

To

describe

the

PL/I

language,

the

following

conventions

are

used:

v

The

descriptions

are

informal.

For

example,

we

usually

write

“x

must

be

a

variable”

instead

of

the

more

precise

“x

must

be

the

name

of

a

variable”.

Similarly,

we

can

sometimes

write

“x

is

transmitted”

instead

of

“the

value

of

x

is

transmitted”.

When

the

syntax

indicates

“reference”,

we

can

later

write

“the

variable”

instead

of

“the

referenced

variable”.

v

When

we

say

that

two

different

source

constructs

are

equivalent,

we

mean

that

they

produce

the

same

result,

and

not

necessarily

that

the

implementation

is

the

same.

v

Unless

specifically

stated

in

the

text

following

the

syntax

specification,

the

unqualified

term

“expression”

or

“reference”

refers

to

a

scalar

expression.

For

an

expression

other

than

a

scalar

expression,

the

type

of

expression

is

noted.

For

example,

the

term

“array

expression”

indicates

that

neither

a

scalar

expression

nor

a

structure

expression

is

valid.

v

When

a

result

or

behavior

is

undefined,

it

is

something

you

“must

not”

do.

Use

of

an

undefined

feature

is

likely

to

produce

different

results

on

different

implementations

or

releases

of

a

PL/I

product.

The

application

program

is

considered

to

be

in

error.

v

Default

is

used

to

describe

an

alternative

value,

attribute,

or

option

that

is

assumed

by

the

system

when

no

explicit

choice

is

specified.

v

Implicit

is

used

to

describe

the

action

taken

in

the

absence

of

an

explicit

specification

by

the

program.

v

The

lowercase

letter

b,

when

not

in

a

word,

indicates

a

blank

character.

Industry

standards

used

The

PL/I

compiler

is

designed

according

to

the

specifications

of

the

following

industry

standards

as

understood

and

interpreted

by

IBM

as

of

December

1987:

v

American

National

Standard

Code

for

Information

Interchange

(ASCII),

X3.4

-

1977

v

American

National

Standard

Representation

of

Pocket

Select

Characters

in

Information

Interchange,

level

1,

X3.77

-

1980

(proposed

to

ISO,

March

1,

1979)

v

The

draft

proposed

American

National

Standard

Representation

of

Vertical

Carriage

Positioning

Characters

in

Information

Interchange,

level

1,

dpANS

X3.78

(also

proposed

to

ISO,

March

1,

1979)

v

Selected

features

of

the

American

National

Standard

PL/I

General

Purpose

Subset

(ANSI

X3.74-1987).

Enhancements

in

this

release

This

release

provides

the

following

functional

enhancements

described

in

this

and

the

other

IBM

PL/I

books.

Improved

performance

v

The

compiler

now

handles

even

more

conversions

by

generating

inline

code

which

means

these

conversions

will

be

done

much

faster

than

previously.

Also,

all

conversions

done

by

library

call

are

now

flagged

by

the

compiler.

About

this

book

4

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

v

The

compiler-generated

code

now

uses,

in

various

situations,

less

stack

storage.

v

The

compiler

now

generates

much

better

code

for

references

to

the

TRANSLATE

built-in

function.

v

The

compiler-generated

code

for

SUBSCRIPTRANGE

checking

is

now,

for

arrays

with

known

bounds,

twice

as

fast

as

before.

v

The

ARCH

and

TUNE

options

now

support

4

as

a

suboption,

thereby

allowing

exploitation

of

instructions

new

to

the

zSeries

machines.

v

ARCH(2),

FLOAT(AFP)

and

TUNE(3)

are

now

the

default.

Easier

migration

v

Compiler

defaults

have

been

changed

for

easier

migration

and

compatibility.

The

changed

defaults

are:

–

CSECT

–

CMPAT(V2)

–

LIMITS(EXTNAME(7))

–

NORENT
v

The

compiler

now

honors

the

NOMAP,

NOMAPIN

and

NOMAP

attributes

for

PROCs

and

ENTRYs

with

OPTIONS(COBOL).

v

The

compiler

now

supports

PROCs

with

ENTRY

statements

that

have

differing

RETURNS

attribute

in

the

same

manner

as

did

the

old

host

compiler.

v

The

compiler

will

now

assume

OPTIONS(RETCODE)

for

PROCs

and

ENTRYs

with

OPTIONS(COBOL).

v

The

SIZE

condition

is

no

longer

promoted

to

ERROR

if

unhandled.

v

Various

changes

have

been

made

to

reduce

compile

time

and

storage

requirements.

v

The

OFFSET

option

will

now

produce

a

statement

offset

table

much

like

the

ones

it

produced

under

the

older

PL/I

compilers.

v

The

FLAG

option

now

has

exactly

the

same

meaning

as

it

had

under

the

old

compilers,

while

the

new

MAXMSG

option

lets

you

decide

if

the

compiler

should

terminate

after

a

specified

number

of

messages

of

a

given

severity.

For

example,

with

FLAG(I)

MAXMSG(E,10),

you

can

now

ask

to

see

all

I-level

messages

while

terminating

the

compilation

after

10

E-level

messages.

v

The

AGGREGATE

listing

now

includes

structures

with

adjustable

extents.

v

The

STMT

option

is

now

supported

for

some

sections

of

the

listing.

v

The

maximum

value

allowed

for

LINESIZE

has

been

changed

to

32759

for

F-format

files

and

to

32751

for

V-format

files.

Improved

usability

v

The

defaults

for

compiler

options

may

now

be

changed

at

installation.

v

The

integrated

SQL

preprocessor

now

supports

DB2

Unicode.

v

The

compiler

now

generates

information

that

allows

Debug

Tool

to

support

Auto

Monitor,

whereby

immediately

before

each

statement

is

executed,

all

the

values

of

all

the

variables

used

in

the

statement

are

displayed.

v

The

new

NOWRITABLE

compiler

option

lets

you

specify

that

even

under

NORENT

and

at

the

expense

of

optimal

performance,

the

compiler

should

use

no

writable

static

when

generating

code

to

handle

FILEs

and

CONTROLLED.

v

The

new

USAGE

compiler

option

gives

you

full

control

over

the

IBM

or

ANS

behavior

of

the

ROUND

and

UNSPEC

built-in

function

without

the

other

effects

of

the

RULES(IBM|ANS)

option.

About

this

book

Chapter

1.

About

this

book

5

v

The

new

STDSYS

compiler

option

lets

you

specify

that

the

compiler

should

cause

the

SYSPRINT

file

to

be

equated

to

the

C

stdout

file.

v

The

new

COMPACT

compiler

option

lets

you

direct

the

compiler

to

favour

those

optimizations

which

tend

to

limit

the

growth

of

the

code.

v

The

LRECL

for

SYSPRINT

has

been

changed

to

137

to

match

that

of

the

C/C++

compiler.

v

POINTERs

are

now

allowed

in

PUT

LIST

and

PUT

EDIT

statements:

the

8-byte

hex

value

will

be

output.

v

If

specified

on

a

STATIC

variable,

the

ABNORMAL

attribute

will

cause

that

variable

to

be

retained

even

if

unused.

Enhancements

in

recent

releases

This

release

also

provides

all

of

the

functional

enhancements

offered

in

Enterprise

PL/I

V3R1,

including

the

following:

v

Support

for

Multithreading

on

z/OS

v

Support

for

IEEE

floating-point

on

z/OS

v

Support

for

the

ANSWER

statement

in

the

macro

prepreprocessor

v

SAX-style

XML

parsing

via

the

PLISAXA

and

PLISAXB

built-in

subroutines

v

Additional

built-in

functions:

–

CS

–

CDS

–

ISMAIN

–

LOWERCASE

–

UPPERCASE

This

release

also

provides

all

of

the

functional

enhancements

offered

in

VisualAge

PL/I

V2R2,

including

the

following:

v

Initial

UTF-16

support

via

the

WIDECHAR

attribute

There

is

currently

no

support

yet

for

–

WIDECHAR

characters

in

source

files

–

W

string

constants

–

use

of

WIDECHAR

expressions

in

stream

I/O

–

implicit

conversion

to/from

WIDECHAR

in

record

I/O

–

implicit

endianness

flags

in

record

I/O

If

you

create

a

WIDECHAR

file,

you

should

write

the

endianness

flag

(’fe_ff’wx)

as

the

first

two

bytes

of

the

file.
v

DESCRIPTORS

and

VALUE

options

supported

in

DEFAULT

statements

v

PUT

DATA

enhancements

–

POINTER,

OFFSET

and

other

non-computational

variables

supported

–

Type-3

DO

specifications

allowed

–

Subscripts

allowed
v

DEFINE

statement

enhancements

–

Unspecified

structure

definitions

–

CAST

and

RESPEC

type

functions
v

Additional

built-in

functions:

–

ACOSF

–

ASINF

–

ATANF

–

CHARVAL

–

COSF

About

this

book

6

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

–

EXPF

–

ISIGNED

–

IUNSIGNED

–

LOG10F

–

LOGF

–

ONWCHAR

–

ONWSOURCE

–

SINF

–

TANF

–

WCHAR

–

WCHARVAL

–

WHIGH

–

WIDECHAR

–

WLOW
v

Preprocessor

enhancements

–

Support

for

arrays

in

preprocessor

procedures

–

WHILE,

UNTIL

and

LOOP

keywords

supported

in

%DO

statements

–

%ITERATE

statement

supported

–

%LEAVE

statement

supported

–

%REPLACE

statement

supported

–

%SELECT

statement

supported

–

Additional

built-in

functions:

-

COLLATE

-

COMMENT

-

COMPILEDATE

-

COMPILETIME

-

COPY

-

COUNTER

-

DIMENSION

-

HBOUND

-

INDEX

-

LBOUND

-

LENGTH

-

MACCOL

-

MACLMAR

-

MACRMAR

-

MAX

-

MIN

-

PARMSET

-

QUOTE

-

REPEAT

-

SUBSTR

-

SYSPARM

-

SYSTEM

-

SYSVERSION

-

TRANSLATE

-

VERIFY

About

this

book

Chapter

1.

About

this

book

7

About

this

book

8

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Chapter

2.

Program

elements

Single-byte

character

set

.

.

.

.

.

.

.

.

.

. 9

Alphabetic

and

extralingual

characters

.

.

.

.

. 9

Decimal

digits

.

.

.

.

.

.

.

.

.

.

.

. 10

Binary

digits

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Hexadecimal

digits

.

.

.

.

.

.

.

.

.

.

. 11

Special

characters

.

.

.

.

.

.

.

.

.

.

. 11

Composite

symbols

.

.

.

.

.

.

.

.

.

.

. 12

Case

sensitivity

.

.

.

.

.

.

.

.

.

.

.

. 12

Statement

elements

for

SBCS

.

.

.

.

.

.

.

. 13

Identifiers

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Delimiters

and

operators

.

.

.

.

.

.

.

.

. 13

Statements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Simple

statements

.

.

.

.

.

.

.

.

.

.

. 17

Compound

statements

.

.

.

.

.

.

.

.

.

. 18

Groups

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

Double-byte

character

set

.

.

.

.

.

.

.

.

.

. 18

DBCS

identifiers

.

.

.

.

.

.

.

.

.

.

.

. 19

Statement

elements

for

DBCS

.

.

.

.

.

.

. 19

DBCS

continuation

rules

.

.

.

.

.

.

.

.

. 20

This

chapter

describes

the

basic

elements

that

are

used

to

write

a

PL/I

program.

The

elements

include

character

sets,

programmer-defined

identifiers,

keywords,

delimiters,

and

statements.

PL/I

supports

a

single-byte

character

set

(SBCS)

and

a

double-byte

character

set

(DBCS).

The

implementation

limits

for

PL/I’s

language

elements

are

listed

in

“Limits,”

on

page

531.

Single-byte

character

set

A

character

set

is

an

ordered

set

of

unique

representations

called

characters;

for

example,

the

set

of

symbols

in

Morse

code,

or

the

letters

of

the

Cyrillic

alphabet

are

character

sets.

PL/I

supports

all

PC

character

sets.

Character

set

0640

is

called

the

invariant

character

set

because

a

character

from

this

set

has

the

same

code

point

in

all

code

pages.

A

code

point

is

a

one-byte

code

representing

one

of

256

potential

characters;

a

code

page

is

an

assignment

of

graphic

characters

and

control

function

meanings

to

all

of

the

code

points.

PL/I

supports

all

code

pages

that

conform

to

character

set

0640;

however,

PL/I

assumes

code

page

0850

for

all

code

points,

except

for

those

characters

which

are

specified

by

the

programmer

using

the

CURRENCY,

NAMES,

OR,

or

NOT

compiler

options.

For

more

information

on

these

options,

refer

to

the

Programming

Guide.

Code

page

0850

contains

the

English

alphabet,

ten

decimal

digits,

special

characters,

and

other

national

language

and

control

characters.

Constants

and

comments

can

contain

any

SBCS

character

value.

PL/I

elements

(for

example,

statements,

keywords

and

delimiters)

are

limited

to

the

characters

described

in

the

following

sections.

Alphabetic

and

extralingual

characters

The

default

alphabet

for

PL/I

is

the

English

alphabet

plus

the

extralingual

characters.

Alphabetic

characters

There

are

26

base

alphabetic

characters

that

comprise

the

English

alphabet.

They

are

shown

in

Table

1

with

the

equivalent

ASCII

and

EBCDIC

values

in

hexadecimal

notation.

9

Table

1.

Alphabetic

equivalents

Character

EBCDIC

Uppercase

Hex

Value

EBCDIC

Lowercase

Hex

Value

ASCII

Uppercase

Hex

Value

ASCII

Lowercase

Hex

Value

A

C1

81

41

61

B

C2

82

42

62

C

C3

83

43

63

D

C4

84

44

64

E

C5

85

45

65

F

C6

86

46

66

G

C7

87

47

67

H

C8

88

48

68

I

C9

89

49

69

J

D1

91

4A

6A

K

D2

92

4B

6B

L

D3

93

4C

6C

M

D4

94

4D

6D

N

D5

95

4E

6E

O

D6

96

4F

6F

P

D7

97

50

70

Q

D8

98

51

71

R

D9

99

52

72

S

E2

A2

53

73

T

E3

A3

54

74

U

E4

A4

55

75

V

E5

A5

56

76

W

E6

A6

57

77

X

E7

A7

58

78

Y

E8

A8

59

79

Z

E9

A9

5A

7A

Extralingual

characters

The

default

extralingual

characters

are

the

number

sign

(#),

the

at

sign

(@),

and

the

currency

sign

($).

The

hexadecimal

values

for

these

characters

vary

across

code

pages.

You

can

use

the

NAMES

compiler

option

to

define

your

own

extralingual

characters.

For

more

information

on

defining

extralingual

characters,

refer

to

the

Programming

Guide.

Alphanumeric

characters

An

alphanumeric

character

is

either

an

alphabetic

or

extralingual

character,

or

a

digit.

Decimal

digits

PL/I

recognizes

the

ten

decimal

digits,

0

through

9.

They

are

also

known

simply

as

digits

and

are

used

to

write

decimal

constants

and

other

representations

and

values.

The

following

table

shows

the

digits

and

their

hexadecimal

values.

Table

2.

Decimal

digit

equivalents

Character

EBCDIC

Hex

Value

ASCII

Hex

Value

0

F0

30

Alphabetic

and

extralingual

characters

10

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Table

2.

Decimal

digit

equivalents

(continued)

Character

EBCDIC

Hex

Value

ASCII

Hex

Value

1

F1

31

2

F2

32

3

F3

33

4

F4

34

5

F5

35

6

F6

36

7

F7

37

8

F8

38

9

F9

39

Binary

digits

PL/I

recognizes

the

two

binary

digits,

0

and

1.

They

are

also

known

as

bits

and

are

used

to

write

binary

and

bit

constants.

Hexadecimal

digits

PL/I

recognizes

the

16

hexadecimal

digits,

0

through

9

and

A

through

F.

A

through

F

represent

the

decimal

values

10

through

15,

respectively.

They

are

also

known

as

hex

digits

or

just

hex

and

are

used

to

write

constants

in

hexadecimal

notation.

Special

characters

Table

3

shows

the

special

characters,

their

PL/I

meanings,

and

their

ASCII

and

EBCDIC

values

in

hexadecimal

notation.

Table

3.

Special

character

equivalents

Character

Meaning

Default

EBCDIC

Hex

Value

Default

ASCII

Hex

Value

b

Blank

40

20

=

Equal

sign

or

assignment

symbol

7E

3D

+

Plus

sign

4E

2B

−

Minus

sign

60

2D

*

Asterisk

or

multiply

symbol

5C

2A

/

Slash

or

divide

symbol

61

2F

(

Left

parenthesis

4D

28

)

Right

parenthesis

5D

29

,

Comma

6B

2C

.

Point

or

period

4B

2E

'

Single

quotation

mark

7D

27

"

Double

quotation

mark

7F

22

%

Percent

6C

25

;

Semicolon

5E

3B

:

Colon

7A

3A

¬

Not

symbol,

exclusive-or

symbol

Note

1

5F

5E

&

And

symbol

50

26

|

Or

symbol

(Note

1)

4F

7C

>

Greater

than

symbol

6E

3E

<

Less

than

symbol

4C

3C

Decimal

digits

Chapter

2.

Program

elements

11

Table

3.

Special

character

equivalents

(continued)

Character

Meaning

Default

EBCDIC

Hex

Value

Default

ASCII

Hex

Value

_

Break

character

(underscore)

6D

5F

?

Macro

trigger

character

6F

3F

Note

1:

The

or

(|)

and

the

not

(¬)

symbols

have

variant

code

points.

You

can

use

the

compiler

options

OR

and

NOT

to

define

alternate

symbols

to

represent

these

operators.

For

more

information

about

these

options,

refer

to

the

Programming

Guide.

Composite

symbols

You

can

combine

special

characters

to

create

composite

symbols.

The

following

table

describes

these

symbols

and

their

meanings.

Composite

symbols

cannot

contain

blanks.

Table

4.

Composite

symbol

description

Composite

Symbol

Meaning

\

Concatenation

**

Exponentiation

¬<

Not

less

than

¬>

Not

greater

than

¬=

Not

equal

to;

Evaluate,

exclusive-or

and

assign

<=

Less

than

or

equal

to

>=

Greater

than

or

equal

to

/*

Start

of

a

comment

*/

End

of

a

comment

–>

Locator

(pointers

and

offsets)

=>

Locator

(handles)

+=

Evaluate

expression,

add

and

assign

−=

Evaluate

expression,

subtract

and

assign

*=

Evaluate

expression,

multiply

and

assign

⁄=

Evaluate

expression,

divide

and

assign

|=

Evaluate

expression,

or

and

assign

&=

Evaluate

expression,

and,

and

assign

\=

Evaluate

expression,

concatenate

and

assign

**=

Evaluate

expression,

exponentiate

and

assign

Case

sensitivity

You

can

use

a

combination

of

lowercase

and

uppercase

characters

in

a

PL/I

program.

When

used

in

keywords

or

identifiers,

the

lowercase

characters

are

treated

as

the

corresponding

uppercase

characters.

This

is

true

even

if

you

entered

a

lowercase

character

as

a

DBCS

character.

When

used

in

a

comment

or

in

a

character,

mixed,

or

a

graphic

string

constant,

lowercase

characters

remain

lowercase.

Special

characters

12

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Statement

elements

for

SBCS

This

section

describes

the

elements

that

make

up

a

PL/I

program

when

using

SBCS.

A

PL/I

statement

consists

of

identifiers,

delimiters,

operators,

and

constants.

Constants

are

described

in

Chapter

3,

“Data

elements,”

on

page

21.

Identifiers

An

identifier

is

a

series

of

characters

that

are

not

contained

in

a

comment

or

a

constant.

Except

for

P,

PIC,

and

PICTURE,

identifiers

must

be

preceded

and

followed

by

a

delimiter.

(P,

PIC,

and

PICTURE

identifiers

can

be

followed

by

a

character

string.)

The

first

character

of

an

identifier

must

be

an

alphabetic

or

extralingual

character.

If

the

identifier

names

an

INTERNAL

symbol,

it

may

also

use

the

break

(_)

character

as

its

first

character.

Other

characters,

if

any,

can

be

alphabetic,

extralingual,

digit,

or

the

break

(_)

character.

External

user

names

must

not

start

with

IBM,

PLI,

CEE,

_IBM,

_PLI,

and

_CEE.

Identifiers

can

be

PL/I

keywords

or

programmer-defined

names.

Because

PL/I

can

determine

from

the

context

if

an

identifier

is

a

keyword,

you

can

use

any

identifier

as

a

programmer-defined

name.

There

are

no

reserved

words

in

PL/I.

PL/I

keywords

A

keyword

is

an

identifier

that

has

a

specific

meaning

in

PL/I.

Keywords

can

specify

such

things

as

the

action

to

be

taken

or

the

attributes

of

data.

For

example,

READ,

DECIMAL,

and

ENDFILE

are

keywords.

Some

keywords

can

be

abbreviated.

The

keywords

and

their

abbreviations

are

shown

in

uppercase

letters.

Programmer-defined

names

In

a

PL/I

program,

names

are

given

to

variables

and

program-control

data.

There

are

also

built-in

names,

condition

names,

and

generic

names.

Any

identifier

can

be

used

as

a

name.

A

name

can

have

only

one

meaning

in

a

program

block;

the

same

name

cannot

be

used

for

both

a

file

and

a

floating-point

variable

in

the

same

block.

To

improve

readability,

the

break

character

(_)

can

be

used

in

a

name,

such

as

Gross_Pay.

Examples

of

names

are:

A

Rate_of_pay

Record

Loop_3

Additional

requirements

for

programmer-defined

external

names

are

given

in

“INTERNAL

and

EXTERNAL

attributes”

on

page

153.

An

asterisk

(*)

can

be

used

as

an

identifier

name

in

situations

where

a

name

is

required

but

you

do

not

otherwise

refer

to

that

identifier.

For

an

example,

see

page

115.

Delimiters

and

operators

Delimiters

and

operators

are

used

to

separate

identifiers

and

constants.

Table

5

on

page

14

shows

delimiters

and

Table

6

on

page

14

shows

operators.

SBCS

Statement

elements

Chapter

2.

Program

elements

13

Table

5.

Delimiters

Name

Delimiter

Use

Comment

/*

*/

The

/*

and

*/

enclose

commentary

(the

comment

includes

the

/*

and

the

*/

and

any

characters

between

them)

Comma

,

Separates

elements

of

a

list;

precedes

the

BY

NAME

option

Period

.

Connects

elements

of

a

qualified

name;

decimal

or

binary

point

Semicolon

;

Terminates

a

statement

Equal

sign

=

Indicates

assignment

or,

in

a

conditional

expression,

equality

Colon

:

Connects

prefixes

to

statements;

connects

lower-bound

to

upper-bound

in

a

dimension

attribute;

used

in

RANGE

specification

of

DEFAULT

statement

Blank

b

Separates

elements

Parentheses

(

)

Enclose

lists,

expressions,

iteration

factors,

and

repetition

factors;

enclose

information

associated

with

various

keywords

Locator

–>

=>

Denotes

locator

qualification

(pointers

and

offsets)

Denotes

locator

qualification

(handles)

Percent

%

Indicates

%statements

and

%directives

Single

quote

'

Encloses

constants

(indicates

the

beginning

and

end

of

a

constant)

Double

quote

"

Encloses

constants

(indicates

the

beginning

and

end

of

a

constant)

Note:

Omitting

certain

symbols

can

cause

errors

that

are

difficult

to

trace.

Common

errors

are

unbalanced

quotes,

unmatched

parentheses,

unmatched

comment

delimiters,

and

missing

semicolons.

Table

6.

Operators

Operator

type

Character(s)

Description

Arithmetic

+

−

*

/

**

Addition

or

prefix

plus

Subtraction

or

prefix

minus

Multiplication

Division

Exponentiation

Comparison

=

¬=

<

¬<

>

¬>

<=

>=

Equal

to

Not

equal

to

Less

than

Not

less

than

Greater

than

Not

greater

than

Less

than

or

equal

to

Greater

than

or

equal

to

Logical

¬

&

|

Not,

Exclusive-or

And

Or

String

\

Concatenation

Delimiters

and

operators

14

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

The

characters

used

for

delimiters

can

be

used

in

other

contexts.

For

example,

the

period

is

a

delimiter

when

used

in

name

qualification

(for

example,

Weather.Temperature),

but

is

a

decimal

point

in

an

arithmetic

constant

(for

example,

3.14).

Blanks

You

can

surround

each

operator

or

delimiter

with

blanks

(b).

One

or

more

blanks

must

separate

identifiers

and

constants

that

are

not

separated

by

some

other

delimiter.

Any

number

of

blanks

can

appear

wherever

one

blank

is

allowed.

Blanks

cannot

occur

within

identifiers,

composite

symbols,

or

constants

(except

in

character,

mixed,

widechar

and

graphic

string

constants).

Some

examples

are:

ab+bc

is

equivalent

to

Ab

+

Bc

Table(10)

is

equivalent

to

TABLEb(b10bbb)

First,Second

is

equivalent

to

first,bsecond

AtoB

is

not

equivalent

to

AbtobB

Other

cases

that

require

or

allow

blanks

are

noted

where

those

language

features

are

discussed.

Comments

Comments

are

allowed

wherever

blanks

are

allowed

as

delimiters.

A

comment

is

treated

as

a

blank

and

used

as

a

delimiter.

Comments

are

ignored

and

do

not

affect

the

logic

of

a

program.

Use

the

following

syntax

when

for

comments.

��

/*

text

*/

��

/*

Specifies

the

beginning

of

a

comment.

text

Specifies

any

sequences

of

characters

except

the

*/

composite

symbol,

which

would

terminate

the

comment.

*/

Specifies

the

end

of

the

comment.

A

comment

can

be

entered

on

one

or

more

lines,

for

example:

A

=

/*

This

comment

is

on

one

line

*/

21;

/*

This

comment

spans

two

lines

*/

In

the

following

example,

what

appears

to

be

a

comment

is

actually

a

character

string

constant

because

it

is

enclosed

in

quotes.

A

=

’/*

This

is

a

constant,

not

a

comment

*/’

;

Statements

You

use

identifiers,

delimiters,

operators,

and

constants

to

construct

PL/I

statements.

Delimiters

and

operators

Chapter

2.

Program

elements

15

Although

your

source

program

consists

of

a

series

of

records

or

lines,

PL/I

views

the

program

as

a

continuous

stream

of

characters.

There

are

few

restrictions

in

the

format

of

PL/I

statements,

and

programs

can

be

written

without

considering

special

coding

rules

or

checking

to

see

that

each

statement

begins

in

a

specific

column.

A

statement

can

begin

in

the

next

position

after

the

previous

statement,

or

it

can

be

separated

by

any

number

of

blanks.

Some

statements

begin

with

a

%

symbol.

These

statements

are

either

%directives

that

direct

preprocessor

and

compiler

operations

(controlling

listings,

including

program

source

text

from

a

library,

and

so

on)

or

are

PL/I

macro

facility

%statements.

A

%directive

must

be

on

a

line

by

itself.

To

improve

program

readability

and

maintainability

and

to

avoid

unexpected

results

caused

by

loss

of

trailing

blanks

in

source

lines:

v

Do

not

split

a

language

element

across

lines.

If

a

string

constant

must

be

written

on

multiple

lines,

use

the

concatenation

operator

(\).

v

Do

not

write

more

than

one

statement

on

a

line.

v

Do

not

split

%directives

across

lines.

The

PL/I

statements,

macro

facility

%statements,

and

the

%directives

are

alphabetically

listed

in

Chapter

9,

“Statements

and

directives,”

on

page

187.

Syntax

for

a

PL/I

statement:

��

condition-prefix

label-prefix

statement

��

Syntax

for

a

%directive:

��

%

statement

��

Syntax

for

a

%statement:

��

�

%

label-prefix

statement

��

Syntax

for

a

macro

statement:

Statements

16

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

�

label-prefix

statement

��

Every

statement

must

be

contained

within

some

enclosing

group

or

block.

Macro

statements

must

be

contained

within

some

enclosing

macro

group

or

procedure.

condition-prefix

A

condition

prefix

specifies

the

enabling

or

disabling

of

a

PL/I

condition

(see

Chapter

16,

“Condition

handling,”

on

page

331).

label-prefix

A

label

prefix

is

one

or

more

statement

labels.

It

identifies

a

statement

so

that

it

can

be

referred

to

at

some

other

point

in

the

program.

Statement

labels

are

either

label

constants

(discussed

in

“Label

data

and

LABEL

attribute”

on

page

47),

entry

constants

(discussed

in

“Entry

data”

on

page

111),

or

format

constants

(discussed

in

“Format

data

and

FORMAT

attribute”

on

page

48).

Any

statement,

except

DECLARE,

DEFAULT,

WHEN,

OTHERWISE,

and

ON

statements,

can

have

a

label

prefix.

Use

the

following

syntax

for

a

label

prefix.

��

�

identifier

:

��

The

syntax

for

individual

statements

throughout

this

book

generally

does

not

show

the

condition

prefix

or

the

label

prefix.

statement

A

simple

or

a

compound

statement.

Simple

statements

The

types

of

simple

statements

are

keyword,

assignment,

and

null.

A

keyword

statement

is

a

statement

that

begins

with

a

keyword.

This

keyword

indicates

the

function

of

the

statement.

In

the

following

example,

READ

and

DECLARE

are

keywords.

read

file(In)

into(Input);

/*

keyword

statement

*/

%declare

Text

char;

/*

keyword

%statement

*/

The

assignment

statement

contains

one

or

more

identifiers

on

the

left

side

of

the

assignment

symbol

(=)

and

an

expression

on

the

right.

It

does

not

begin

with

a

keyword:

A

=

B

+

C;

/*

assignment

statement

*/

%Size

=

15;

/*

%

assignment

statement

*/

The

null

statement

consists

of

only

a

semicolon

and

is

a

nonoperational

statement.

;

/*

null

statement

*/

Label:;

/*

labeled

null

statement

*/

%

;

/*

%

null

statement

*/

Statements

Chapter

2.

Program

elements

17

Compound

statements

Compound

statements

are

all

keyword

statements.

Each

begins

with

a

keyword

which

indicates

the

purpose

of

the

statement.

A

compound

statement

contains

one

or

more

simple

or

compound

statements.

There

are

four

compound

statements:

IF,

ON,

WHEN,

and

OTHERWISE.

A

compound

statement

is

terminated

by

the

semicolon

that

also

terminates

the

final

statement

of

the

compound

statement.

The

following

are

examples

of

compound

statements:

on

conversion

onchar()

=

’0’;

if

Text

=

’stmt’

then

do;

select(Type);

when(’if’)

call

If_stmt;

when(’do’)

call

Do_stmt;

when(’’)

/*

do

nothing

*/

;

otherwise

call

Other_stmt;

end;

call

Print;

end;

end;

%if

Type

=

’AREA’

%then

%Size

=

Size

+

16;

%else;

Groups

Statements

can

be

contained

within

larger

program

units

called

groups.

A

group

is

either

a

do-group

or

a

select-group.

A

do-group

is

a

sequence

of

statements

delimited

by

a

DO

statement

and

a

corresponding

END

statement.

A

select-group

is

a

sequence

of

WHEN

statements

and

an

optional

OTHERWISE

statement

delimited

by

a

SELECT

statement

and

a

corresponding

END

statement.

The

delimiting

statements

are

considered

to

be

part

of

the

group.

When

a

group

is

used

in

a

compound

statement,

control

either

flows

into

the

group

or

bypasses

it,

effectively

treating

the

group

as

if

it

were

a

single

statement.

The

flow

of

control

within

a

group

is

discussed

for

do-groups

under

“DO

statement”

on

page

195

and

for

select-groups

under

“SELECT

statement”

on

page

216.

Every

group

must

be

contained

within

some

enclosing

group

or

block.

Groups

can

contain

none,

one,

or

more

statements,

groups,

or

blocks.

Double-byte

character

set

Each

character

in

the

double-byte

character

set

(DBCS)

is

stored

in

2

bytes.

When

the

GRAPHIC

compiler

option

is

in

effect,

some

source

language

elements

can

be

written

using

DBCS

and

SBCS

characters.

In

particular,

you

can

use

DBCS

characters

in

the

source

program

in

following

places:

v

inside

comments

v

as

part

of

statement

labels

and

identifiers

v

in

G

or

M

literals

Compound

statements

18

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

However

INCLUDE

file

names

and

the

TITLE

option

of

FETCH

statements

must

be

in

SBCS.

DBCS

identifiers

DBCS

identifiers

can

be

composed

of

single-byte

characters

in

DBCS

form,

double-byte

characters,

or

a

combination

of

both.

Single-byte

identifiers

in

DBCS

form

DBCS

identifiers

containing

only

single-byte

characters

must

conform

to

the

normal

PL/I

naming

conventions,

including

the

first-character

rule.

A

DBCS

identifier

containing

single-byte

characters

expressed

as

DBCS

equivalents

is

a

synonym

of

the

same

identifier

in

SBCS.

Notes:

1.

This

book

uses

the

symbol

“.”

(bold

period)

to

represent

the

first

byte

of

a

double-byte

character

that

can

also

be

represented

as

SBCS.

2.

This

book

uses

“kk”

to

represent

a

double-byte

character.

Example:

.I.B.M

=

3;

/*

is

the

same

as

IBM=3;

*/

DBCS

identifiers

containing

double-byte

characters

The

number

of

bytes

used

in

a

DBCS

name

cannot

exceed

the

value

specified

as

the

maximum

length

of

a

name

specified

in

the

compiler

LIMITS

option.

SBCS

characters

expressed

in

DBCS

form

within

a

DBCS

identifier

are

considered

to

be

SBCS,

for

example:

AkkB

Akk.B

.AkkB

/*

are

all

AkkB

(SBCS-DBCS-SBCS)

*/

Uses

for

double-byte

character

identifiers

A

DBCS

identifier

can

be

used

wherever

an

SBCS

identifier

is

allowed.

When

DBCS

identifiers

are

used

for

EXTERNAL

names

and

%INCLUDE

file

names,

you

must

ensure

that

the

identifiers

are

acceptable

to

the

operating

system,

or

are

made

acceptable

by

one

of

the

following:

v

The

EXTERNAL

attribute

with

an

environment-name

is

used.

v

The

TITLE

option

of

the

OPEN

statement

is

used.

Statement

elements

for

DBCS

This

section

provides

supplemental

information

about

writing

PL/I

language

elements

using

DBCS.

Definitions

of

the

language

elements

in

this

section

and

general

usage

rules

appear

in

corresponding

sections

in

“Statement

elements

for

SBCS”

on

page

13.

The

following

is

a

list

of

the

language

elements

that

may

be

coded

using

DBCS,

an

explanation

of

the

rules,

and

examples

of

usage.

Identifiers

Use

SBCS,

DBCS

or

both.

dcl

Eof

/*

in

SBCS,

is

the

same

as

*/

dcl

.E.o.f

/*

this

in

DBCS.

*/

dcl

kkkkX

/*

these

are

all

the

same,

where

*/

dcl

kkkk.X

/*

kk

is

a

valid

*/

dcl

kkkkx

/*

DBCS

character

*/

dcl

kkkk.x

/*

*/

DBCS

Chapter

2.

Program

elements

19

Comments

Use

SBCS,

DBCS

or

both.

/*

comment

*/

/*

all

SBCS

*/

/*

.T.y.p.e

kk

*/

/*

DBCS

text

*/

Comment

delimiters

must

be

specified

in

SBCS.

Mixed

Character

String

Constant

Enclose

in

SBCS

or

DBCS

quotes.

Data

can

be

expressed

in

SBCS

or

DBCS

or

both.

The

DBCS

portion

is

not

converted

to

SBCS.

’.a.b.c’M

stored

as

.a.b.c

6

bytes

’.I.B.M.’.S’M

stored

as

.I.B.M.’.S

10

bytes

’.I.B.M’’.S’M

stored

as

.I.B.M’.S

9

bytes

’IBMkk’M

stored

as

IBMkk

5

bytes

Graphic

Constant

Enclose

in

SBCS

or

DBCS

quotes.

’.a.b.c’G

/*

6

byte

graphic

constant

*/

’.I.B.M.’

.S’G

/*

10

byte

graphic

constant

.I.B.M.’.S

*/

G

literals

can

start

and

end

with

DBCS

quotes,

and

in

that

case,

the

G

itself

can

also

be

specified

in

DBCS

’.a.b.c’G

.’.a.b.c.’G

.’.a.b.c.’.G

DBCS

continuation

rules

If

a

string

literal

or

an

identifier

has

a

DBCS

character

that

is

separated

from

the

right

margin

by

a

single

SBCS

blank,

then

the

blank

is

ignored

and

the

statement

element

is

continued

at

the

left

margin

of

the

next

record.

DBCS

statement

elements

20

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Chapter

3.

Data

elements

Data

items

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Constants

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Using

quotation

marks

.

.

.

.

.

.

.

.

. 22

Punctuating

constants

.

.

.

.

.

.

.

.

.

. 22

Data

types

and

attributes

.

.

.

.

.

.

.

.

.

. 22

Data

attributes

.

.

.

.

.

.

.

.

.

.

.

. 23

Computational

data

types

and

attributes

.

.

.

. 26

Coded

arithmetic

data

and

attributes

.

.

.

.

. 26

String

data

and

attributes

.

.

.

.

.

.

.

.

. 33

This

chapter

introduces

the

kinds

of

data

you

can

use

in

PL/I

programs

and

the

attributes

you

use

to

describe

them.

The

discussion

covers:

A

review

of

data

items

A

review

of

variables

and

constants

The

types

of

data

that

are

available

and

the

attributes

that

define

them

For

information

on

how

to

declare

data,

refer

to

Chapter

8,

“Data

declarations,”

on

page

147.

Data

items

A

data

item

is

either

the

value

of

a

variable

or

a

constant.

(These

terms

are

not

exactly

the

same

as

in

general

mathematical

usage.

They

are

discussed

further

in

the

next

section.)

Data

items

can

be

single

items,

called

scalars,

or

they

can

be

a

collection

of

items

called

data

aggregates.

Data

aggregates

are

groups

of

data

items

that

can

be

referred

to

either

collectively

or

individually.

The

kinds

of

data

aggregates

are

arrays,

structures,

and

unions.

You

can

use

any

type

of

computational

or

program-control

data

to

form

a

data

aggregate.

Arrays

are

discussed

in

“Arrays”

on

page

167,

structures

in

“Structures”

on

page

170,

unions

in

“Unions”

on

page

172,

and

arrays

of

structures

and

unions

starting

in

“Combinations

of

arrays,

structures,

and

unions”

on

page

176.

Variables

A

variable

has

a

value

or

values

that

might

change

during

execution

of

a

program.

A

variable

is

introduced

by

a

declaration,

which

declares

the

name

and

certain

attributes

of

the

variable.

However,

a

variable

having

the

NONASSIGNABLE

attribute

is

assumed

not

to

change

during

execution.

(Refer

to

“ASSIGNABLE

and

NONASSIGNABLE

attributes”

on

page

242

for

more

information.)

A

variable

reference

is

one

of

the

following:

v

A

declared

variable

name

v

A

reference

derived

from

a

declared

name

through

one

or

more

of

the

following:

–

Pointer

qualification

–

Structure

qualification

–

Subscripting

(See

Chapter

4,

“Expressions

and

references,”

on

page

51.)

Constants

A

constant

has

a

value

that

cannot

change.

Constants

for

computational

data

are

referred

to

by

stating

the

value

of

the

constant

or

naming

the

constant

in

a

DECLARE

statement.

For

more

information

on

declaring

named

constants,

see

“Named

constants”

on

page

45.

21

Constants

for

program-control

data

are

referred

to

by

name.

Using

quotation

marks

String

constants,

hexadecimal

constants,

and

the

picture-specification

are

enclosed

in

either

single

or

double

quotation

marks.

The

following

rules

apply

to

quotation

marks

within

a

string:

v

If

the

included

quotation

marks

are

the

same

type

as

those

used

to

enclose

the

string,

you

must

enter

two

quotation

marks

(that

is,

''

or

"")

for

each

occurrence

to

be

included.

v

If

the

included

quotation

marks

are

the

type

not

used

to

enclose

the

string,

enter

only

one

quotation

mark

for

each

instance

to

be

included.

The

single

occurrence

is

treated

as

data.

Examples:

'Shakespeare''s

"Hamlet"'

is

identical

to

"Shakespeare's

""Hamlet"""

PICTURE

"99V9"

is

identical

to

PICTURE

’99V9’

Note:

The

syntax

diagrams

in

this

book

show

single

quotation

marks.

Double

quotation

marks

can

be

substituted

unless

otherwise

noted.

Punctuating

constants

To

improve

readability,

arithmetic,

bit,

and

hexadecimal

constants

can

use

the

break

character

(

_

).

’1100_1010’B

is

the

same

as

’11001010’B

1100_1010B

is

the

same

as

11001010B

’C_A’B4

is

the

same

as

’ca’b4

’C_A’XN

is

the

same

as

’ca’XN

16_777_216

is

the

same

as

16777216

Data

types

and

attributes

Data

used

in

a

PL/I

program

can

be

classified

as

either

computational

data

or

program-control

data:

Computational

data

Represents

values

that

are

used

in

computations

to

produce

a

desired

result.

Arithmetic

and

string

data

constitute

computational

data.

Arithmetic

data

is

either

coded

arithmetic

data

or

numeric

picture

data.

Coded

arithmetic

data

items

are

rational

numbers.

They

have

the

data

attributes

of

base

(BINARY

or

DECIMAL),

scale

(FLOAT

or

FIXED),

precision

(significant

digits

and

decimal-point

placement),

and

mode

(REAL

or

COMPLEX).

Numeric

picture

data

is

numeric

data

that

is

held

in

character

form

and

is

discussed

under

“Numeric

character

data”

on

page

41.

A

string

is

a

sequence

of

contiguous

characters,

bits,

widechars

or

graphics

that

are

treated

as

a

single

data

item.

Quotation

marks

22

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Program-control

data

Represents

values

that

are

used

to

control

execution

of

your

program.

It

consists

of

the

following

data

types—area,

entry,

label,

file,

format,

pointer,

and

offset.

For

example:

Area

=

(Radius**2)

*

3.1416;

Area

and

Radius

are

coded

arithmetic

variables

of

computational

data.

The

numbers

2

and

3.1416

are

coded

arithmetic

constants

of

computational

data.

If

the

number

3.1416

is

used

in

more

than

one

place

in

the

program,

or

if

it

requires

specific

data

or

precision

attributes,

you

should

declare

it

as

a

named

constant.

Thus,

the

above

statement

can

be

coded

as:

dcl

Pi

FIXED

DECIMAL

(5,4)

VALUE(3.1416);

area

=

(radius**2)

*

Pi;

Constants

for

program-control

data

have

a

value

that

is

determined

by

the

compiler.

In

the

following

example,

the

name

loop

represents

a

label

constant

of

program-control

data.

The

value

of

loop

is

the

address

of

the

statement

A=2*B;.

loop:

A=2*B;

C=B+6;

To

work

with

a

data

item,

PL/I

needs

to

know

the

type

of

data

and

how

to

process

it.

Attributes

provide

this

information.

The

kinds

of

attributes

are

data

attributes

and

nondata

attributes.

Data

attributes

Describe

computational

data,

program-control

data,

and

program

characteristics.

AREA

BINARY

BIT

CHARACTER

COMPLEX

DECIMAL

DIMENSION

ENTRY

FILE

FIXED

FLOAT

FORMAT

GRAPHIC

HANDLE

LABEL

NONVARYING

OFFSET

ORDINAL

PICTURE

POINTER

PRECISION

REAL

RETURNS

SIGNED

STRUCTURE

TASK

TYPE

UNSIGNED

UNION

VARYING

VARYINGZ

WIDECHAR

Nondata

attributes

Describe

nondata

elements

(for

example,

built-in

functions)

or

provide

additional

description

for

elements

that

have

other

data

attributes.

ABNORMAL

ALIGNED

ASSIGNABLE

AUTOMATIC

BASED

BIGENDIAN

BUFFERED

BUILTIN

BYADDR

BYVALUE

CONDITION

CONNECTED

CONTROLLED

DEFINED

DIRECT

ENVIRONMENT

EXCLUSIVE

EXTERNAL

GENERIC

HEXADEC

IEEE

INITIAL

INPUT

INTERNAL

KEYED

LIKE

LIST

LITTLEENDIAN

NONASSIGNABLE

NONCONNECTED

NORMAL

OPTIONAL

OPTIONS

OUTPUT

PARAMETER

POSITION

PRINT

RECORD

SEQUENTIAL

STATIC

STREAM

UNALIGNED

UNBUFFERED

UPDATE

VALUE

VARIABLE

Data

types

and

attributes

Chapter

3.

Data

elements

23

For

example,

the

keyword

CHARACTER

is

a

data

attribute

for

the

string

type

of

computational

data.

The

keyword

FILE

is

a

data

attribute

for

the

file

type

of

program-control

data.

The

INTERNAL

scope

attribute

specifies

that

the

data

item

is

known

only

within

its

declaring

block.

The

details

on

using

keywords

and

expressions

to

specify

the

attributes

are

in

Chapter

8,

“Data

declarations,”

on

page

147.

Briefly,

you

specify

attributes:

Explicitly,

using

a

DECLARE

statement

Contextually,

letting

PL/I

determine

them

By

using

programmer-defined

or

language-specified

defaults

Table

7

on

page

25

and

Table

8

on

page

26

help

you

correlate

PL/I’s

variety

of

attributes

with

its

variety

of

computational

and

program-control

data

types.

The

tables

show

that

the

constants

and

the

named

constants

can

only

have

the

indicated

data

and

scope

attributes

(Table

7

on

page

25).

Variables

can

specify

additional

attributes

(Table

8

on

page

26).

In

the

example,

Area

=

(Radius**2)*3.1416;

the

constant

3.1416

is

given

the

attributes:

DECIMAL

because

it

is

not

explicitly

a

binary

constant

FIXED

because

it

is

a

fixed-point

number

PRECISION(5,4)

(5

significant

digits

with

4

to

the

right

of

the

decimal

point)

REAL

because

it

does

not

have

an

imaginary

part

INTERNAL

and

ALIGNED

(See

the

“Coded

arithmetic”

row,

and

“Data

Attributes”

and

“Scope

Attributes”

columns

of

Table

7

on

page

25.)

The

constant

1.0

(a

decimal

fixed-point

constant)

is

different

from

the

constants

1

(another

decimal

fixed-point

constant),

'1'B

(a

bit

constant),

'1'

(a

character

constant),

1B

(binary

fixed-point

constant),

or

1E0

(a

decimal

floating-point

constant).

In

the

following

example,

the

variable

Pi

has

the

programmer-defined

data

attributes

of

FIXED

and

DECIMAL

with

a

PRECISION

of

five

digits,

four

to

the

right

of

the

decimal

point.

declare

Pi

fixed

decimal(5,4)

initial(3.1416);

Because

this

DECLARE

statement

contains

no

other

attributes

for

Pi,

PL/I

applies

the

defaults

for

the

remaining

attributes:

REAL

from

the

Data

Attributes

column

ALIGNED

from

the

Alignment

Attributes

column

INTERNAL

from

the

Scope

Attributes

column

AUTOMATIC

from

the

Storage

Attributes

column

SIGNED

from

the

Data

Attributes

column

(See

the

coded

arithmetic

row

of

Table

8

on

page

26.)

Nondata

attributes

24

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Table

7.

Classification

of

attributes

by

constant

types

Constant

Type

Data

Attributes

Notes

1

and

2

Scope

Attributes

Notes

1

and

2

Coded

arithmetic

REAL

|

imaginary

FLOAT

|

FIXED

BINARY

|

DECIMAL

PRECISION

SIGNED

internal

Named

coded

arithmetic

REAL

|

COMPLEX

FLOAT

|

FIXED

BINARY

|

DECIMAL

PRECISION

VALUE

SIGNED

|

UNSIGNED

internal

String

BIT

|

CHARACTER

|

GRAPHIC

|

WIDECHAR

(length)

internal

Named

string

BIT

|

CHARACTER

|

GRAPHIC

|

WIDECHAR

[(length)]

NONVARYING

VALUE

internal

Named

locator

POINTER

|

OFFSET

|

HANDLE

VALUE

internal

Named

picture

PICTURE

REAL

|

COMPLEX

VALUE

internal

FileNote

3

FILE

ENVIRONMENT

STREAM

|

RECORD

INPUT

|

OUTPUT

|

UPDATE

SEQUENTIAL

|

DIRECT

BUFFERED

|

UNBUFFEREDNote

4

KEYED

PRINT

INTERNAL

|

EXTERNAL

EntryNote

5

ENTRY

[RETURNS]

INTERNAL

|

EXTERNAL

FormatNote

5

FORMAT

internal

LabelNote

5

LABEL

internal

Notes:

1.

Attributes

in

this

table

that

appear

in

uppercase

can

be

explicitly

declared.

Attributes

that

are

in

lowercase

are

implicitly

given

to

the

data

type.

2.

Defaults

for

data

attributes

are

underlined.

Because

the

data

attributes

for

literal

constants

are

contextual,

defaults

are

not

applicable.

Named

constants

and

file

constants

have

selectable

attributes,

so

defaults

are

shown.

3.

File

Attributes

are

described

in

Chapter

11,

“Input

and

output,”

on

page

257.

4.

BUFFERED

is

the

default

for

SEQUENTIAL

files.

UNBUFFERED

is

the

default

for

DIRECT

files.

5.

Format

and

label

constants,

and

INTERNAL

entry

constants

cannot

be

declared

in

a

DECLARE

statement.

Nondata

attributes

Chapter

3.

Data

elements

25

Table

8.

Classification

of

attributes

by

variable

types

Variable

Type

Data

Attributes

Alignment

Attributes

Scope

Attributes

Storage

Attributes

Area

AREA(size)

ALIGNED

INTERNAL

|

EXTERNAL

(INTERNAL

is

mandatory

for

AUTOMATIC

BASED

DEFINED

PARAMETER)

AUTOMATIC

|

STATIC

|

BASED

|

CONTROLLED

(AUTOMATIC

is

the

default

for

INTERNAL;

STATIC

is

the

default

for

EXTERNAL)

Defined

variable:

DEFINED

[POSITION]

Parameter:

PARAMETER

[CONNECTED

|

NONCONNECTED]

[CONTROLLED]

[INITIAL

[CALL]]

[VARIABLE]

[NORMAL

|

ABNORMAL]

ASSIGNABLE

|

NONASSIGNABLE

Coded

arithmetic

Note

1

REAL

|

COMPLEX

FLOAT

|

FIXED

BINARY

|

DECIMAL

PRECISION

[SIGNED

|

UNSIGNED]

ALIGNED

|

UNALIGNED

Entry

ENTRY

[RETURNS]

[LIMITED]

File

FILE

Format

FORMAT

Label

LABEL

Locator

POINTER

|

HANDLE

|

{OFFSET

[(area-variable)]}

Ordinal

ORDINAL

Picture

PICTURE

REAL

|

COMPLEX

ALIGNED

|

UNALIGNED

String

BIT

|

CHARACTER

|

GRAPHIC

|

WIDECHAR

[(length)]

[

VARYING

|

VARYINGZ

|

NONVARYING]

Task

TASK

ALIGNED

|

UNALIGNED

Arrays:

DIMENSION

can

be

added

to

the

declaration

of

any

variable.

Refer

to

“Arrays”

on

page

167

for

more

information.

Structures

and

unions:

v

For

a

major

structure

or

union:

scope,

storage

(except

INITIAL),

alignment,

STRUCTURE

or

UNION,

and

the

LIKE

attributes

can

be

specified.

v

For

a

member

that

is

a

structure

or

a

union:

alignment,

STRUCTURE

or

UNION,

and

the

LIKE

attributes

can

be

specified.

v

Members

always

have

the

INTERNAL

scope

attribute.

Refer

to

“Structures”

on

page

170

and

“Unions”

on

page

172

for

more

information.

Notes:

1.

Undeclared

names,

or

names

declared

without

a

data

type,

default

to

coded

arithmetic

variables.

Default

attributes

are

described

in

“Defaults

for

attributes”

on

page

162.

Defaults

shown

are

IBM

defaults.

ANS

defaults

are

FIXED

and

BINARY

rather

than

FLOAT

and

DECIMAL.

2.

POSITION

can

be

used

only

with

string

overlay

defining.

Computational

data

types

and

attributes

This

section

describes

the

data

types

classified

as

computational

data

and

the

attributes

associated

with

them.

Coded

arithmetic

data

and

attributes

Refer

to

“Data

types

and

attributes”

on

page

22

for

general

information

about

coded

arithmetic

data.

Nondata

attributes

26

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Syntax

for

coded

arithmetic

data

is

shown

in

the

following

diagram:

��

float

sequence

fixed

sequence

REAL

precision

specification

COMPLEX

precision

specification

��

float

sequence:

FLOAT

precision

specification

DECIMAL

precision

specification

BINARY

precision

specification

fixed

sequence:

FIXED

precision

specification

�

�

DECIMAL

precision

specification

SIGNED

BINARY

precision

specification

UNSIGNED

precision

specification:

PRECISION

float

precision

fixed

precision

float

precision:

(number-of-digits)

fixed

precision:

(number-of-digits

)

,scaling-factor

Table

9.

Abbreviations

for

coded

arithmetic

data

attributes

Attribute

Abbreviation

BINARY

BIN

COMPLEX

CPLX

DECIMAL

DEC

PRECISION

PREC

Coded

arithmetic

data

and

attributes

Chapter

3.

Data

elements

27

BINARY

and

DECIMAL

attributes

The

base

of

a

coded

arithmetic

data

item

is

either

decimal

or

binary.

DECIMAL

is

the

default.

FIXED

and

FLOAT

attributes

The

scale

of

a

coded

arithmetic

data

item

is

either

fixed-point

or

floating-point.

A

fixed-point

data

item

is

a

rational

number

in

which

the

position

of

the

decimal

or

binary

point

is

specified,

either

by

its

appearance

in

a

constant

or

by

a

scaling

factor

declared

for

a

variable.

Floating-point

data

items

are

rational

numbers

in

the

form

of

a

fractional

part

and

an

exponent

part.

PRECISION

attribute

The

precision

of

a

coded

arithmetic

data

item

includes

the

number

of

digits

and

the

scaling

factor.

(The

scaling

factor

is

used

only

for

fixed-point

items).

number

of

digits

An

integer

that

specifies

how

many

digits

the

value

can

have.

For

fixed-point

items,

the

integer

is

the

number

of

significant

digits.

For

floating-point

items,

the

integer

is

the

number

of

significant

digits

to

be

maintained

excluding

the

decimal

point

(independent

of

its

position).

scaling

factor

An

optionally-signed

integer

that

specifies

the

assumed

position

of

the

decimal

or

binary

point,

relative

to

the

rightmost

digit

of

the

number.

If

no

scaling

factor

is

specified,

the

default

is

0.

The

precision

attribute

specification

is

often

represented

as

(p,q),

where

p

represents

the

number

of

digits

and

q

represents

the

scaling

factor.

A

negative

scaling

factor

(-q)

specifies

an

integer,

with

the

point

assumed

to

be

located

q

places

to

the

right

of

the

rightmost

actual

digit.

A

positive

scaling

factor

(q)

that

is

larger

than

the

number

of

digits

specifies

a

fraction,

with

the

point

assumed

to

be

located

q

places

to

the

left

of

the

rightmost

actual

digit.

In

either

case,

intervening

zeros

are

assumed,

but

they

are

not

stored;

only

the

specified

number

of

digits

is

actually

stored.

If

PRECISION

is

omitted,

the

precision

attribute

must

follow,

with

no

intervening

attribute

specifications,

the

scale

(FIXED

or

FLOAT),

base

(DECIMAL

or

BINARY),

or

mode

(REAL

or

COMPLEX)

attributes

at

the

same

factoring

level.

If

included,

PRECISION

can

appear

anywhere

in

the

declaration.

Integer

value

means

a

fixed-point

value

with

a

scaling

factor

of

zero.

REAL

and

COMPLEX

attributes

The

mode

of

an

arithmetic

data

item

(coded

arithmetic

or

numeric

character)

is

either

real

or

complex.

A

real

data

item

is

a

number

that

expresses

a

real

value.

A

complex

data

item

consists

of

two

parts—a

real

part

and

an

imaginary

part.

For

a

variable

representing

complex

data

items,

the

base,

scale,

and

precision

of

the

two

parts

are

identical.

BINARY

and

DECIMAL

28

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Arithmetic

variables

default

to

REAL.

An

imaginary

constant

is

written

as

a

real

constant

of

any

type

immediately

followed

by

the

letter

I.

Examples

are:

27I

3.968E10I

11011.01BI

Each

of

these

has

a

real

part

of

zero.

A

complex

value

with

a

nonzero

real

part

is

represented

by

an

expression

with

the

following

syntax:

��

real_constant

+

−

+

imaginary_constant

−

��

For

example,

38+27I.

Given

two

complex

numbers,

y

and

z:

y

=

complex(A,B);

z

=

complex(C,D);

x=y/z

is

calculated

by:

real(x)

=

(A*C

+

B*D)/(C**2

+

D**2);

imag(x)

=

(B*C

-

A*D)/(C**2

+

D**2);

x=y*z

is

calculated

as

follows:

real(x)

=

A*C

-

B*D;

imag(x)

=

B*C

+

A*D;

Computational

conditions

can

be

raised

during

these

calculations.

SIGNED

and

UNSIGNED

attributes

The

SIGNED

and

UNSIGNED

attributes

can

be

used

only

with

FIXED

BINARY

variables

and

ORDINAL

variables.

SIGNED

indicates

that

the

variable

can

assume

negative

values.

UNSIGNED

indicates

that

the

variable

can

assume

only

nonnegative

values.

UNSIGNED

has

the

following

effects

on

the

semantics

of

fixed-point

operations:

v

The

result

of

IAND,

IEOR,

INOT

and

IOR

is

UNSIGNED

if

all

the

operands

are

UNSIGNED.

v

The

result

of

ISLL

and

ISRL

is

UNSIGNED

if

the

first

operand

is

UNSIGNED.

v

The

result

of

REAL

or

IMAG

is

UNSIGNED

if

its

operand

is

UNSIGNED.

If

you

are

using

the

RULES(ANS)

compiler

option,

UNSIGNED

has

the

following

effect

on

the

semantics

of

fixed-

point

operations:

v

The

result

of

an

add,

multiply,

or

divide

operation

is

UNSIGNED

if

both

operands

are

UNSIGNED.

v

The

result

of

MAX

or

MIN

is

UNSIGNED

if

all

operands

are

UNSIGNED

v

The

result

of

REM

or

MOD

is

UNSIGNED

if

all

operands

are

UNSIGNED

REAL

and

COMPLEX

Chapter

3.

Data

elements

29

The

SIGNED

and

UNSIGNED

attributes

affect

storage

requirements,

as

shown

in

Table

10

and

Table

11.

Table

10.

FIXED

BINARY

SIGNED

data

storage

requirements

This

precision:

Occupies

this

amount

of

storage

(bytes):

precision

<=

7

1

7

<

precision

<=

15

2

15

<

precision

<=

31

4

31

<

precision

<=

63

8

Table

11.

FIXED

BINARY

UNSIGNED

data

storage

requirements

This

precision:

Occupies

this

amount

of

storage

(bytes):

precision

<=

8

1

8

<

precision

<=

16

2

16

<

precision

<=

32

4

32

<

precision

<=

64

8

Binary

fixed-point

data

The

data

attributes

for

declaring

binary

fixed-point

variables

are

BINARY

and

FIXED.

For

example:

declare

Factor

binary

fixed

(20,2);

Factor

is

declared

as

a

variable

that

can

represent

binary

fixed-point

data

of

20

data

bits,

two

of

which

are

to

the

right

of

the

binary

point.

Refer

to

“SIGNED

and

UNSIGNED

attributes”

on

page

29

for

information

on

how

much

storage

signed

and

unsigned

fixed-binary

data

occupy.

The

declared

number

of

data

bits

is

in

the

low-order

positions,

but

the

extra

high-order

bits

participate

in

any

operation

performed

upon

the

data

item.

Any

arithmetic

overflow

into

such

extra

high-order

bit

positions

can

be

detected

only

if

the

SIZE

condition

is

enabled.

Binary

fixed-point

constant

A

binary

fixed-point

constant

consists

of

one

or

more

bits

with

an

optional

binary

point,

followed

immediately

by

the

letter

B.

Binary

fixed-point

constants

have

a

precision

(p,q),

where

p

is

the

total

number

of

data

bits

in

the

constant,

and

q

is

the

number

of

bits

to

the

right

of

the

binary

point,

for

example:

Constant

Precision

1011_0B

(5,0)

1111_1B

(5,0)

101B

(3,0)

1011.111B

(7,3)

XN

(hex)

binary

fixed-point

constant

The

XN

constant

describes

a

SIGNED

REAL

FIXED

BINARY

constant

in

hexadecimal

notation.

If

the

constant

has

8

or

fewer

digits,

it

has

a

precision

of

31;

otherwise,

it

has

a

precision

of

63.

SIGNED

and

UNSIGNED

attributes

30

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

�

'

hex-digit

'XN

��

Consider

the

following

examples:

’100’XN

/*

same

as

’00000100’XN

with

value

256

*/

’8000’XN

/*

same

as

’00008000’XN

with

value

32,768

*/

’FFFF’XN

/*

same

as

’0000FFFF’XN

with

value

65,535

*/

"ffff_ffff"XN

/*

is

the

value

-1

*/

The

hexadecimal

value

for

the

XN

constant

is

the

value

specified

padded

on

the

left

with

hex

zeros

if

necessary.

XU

(hex)

binary

fixed-point

constant

The

XU

constant

describes

an

UNSIGNED

REAL

FIXED

BINARY

constant

in

hexadecimal

notation.

If

the

constant

has

8

or

fewer

digits,

it

has

a

precision

of

32;

otherwise,

it

has

a

precision

of

64.

��

�

'

hex-digit

'XU

��

Consider

the

following

examples:

’100’XU

/*

same

as

’00000100’XU

with

value

256

*/

’8000’XU

/*

same

as

’00008000’XU

with

value

32,768

*/

’FFFF’XU

/*

same

as

’0000FFFF’XU

with

value

65,535

*/

"ffff_ffff"XU

/*

is

the

value

2**32-1

*/

The

hexadecimal

value

for

the

XU

constant

is

the

value

specified

padded

on

the

left

with

hex

zeros

if

necessary.

Decimal

fixed-point

data

The

data

attributes

for

declaring

decimal

fixed-point

variables

are

DECIMAL

and

FIXED.

For

example:

declare

A

fixed

decimal

(5,4);

specifies

that

A

represents

decimal

fixed-point

data

of

5

digits,

4

of

which

are

to

the

right

of

the

decimal

point.

These

two

examples:

declare

B

fixed

(7,0)

decimal;

declare

B

fixed

decimal(7);

both

specify

that

B

represents

integers

of

7

digits.

This

example

declare

C

fixed

(7,-2)

decimal;

specifies

that

C

has

a

scaling

factor

of

-2.

This

means

that

C

holds

7

digits

that

range

from

-9999999*100

to

9999999*100,

in

increments

of

100.

XN

(hex)

binary

constant

Chapter

3.

Data

elements

31

This

example

declare

D

decimal

fixed

real(3,2);

specifies

that

D

represents

fixed-point

data

of

3

digits,

2

of

which

are

fractional.

Decimal

fixed-point

data

is

stored

two

digits

per

byte,

with

a

sign

indication

in

the

rightmost

4

bits

of

the

rightmost

byte.

Consequently,

a

decimal

fixed-point

data

item

is

always

stored

as

an

odd

number

of

digits,

even

though

the

declaration

of

the

variable

can

specify

the

number

of

digits,

p,

as

an

even

number.

When

the

declaration

specifies

an

even

number

of

digits,

the

extra

digit

place

is

in

the

high-order

position,

and

it

participates

in

any

operation

performed

upon

the

data

item,

such

as

in

a

comparison

operation.

Any

arithmetic

overflow

or

assignment

into

an

extra

high-order

digit

place

can

be

detected

only

if

the

SIZE

condition

is

enabled.

Decimal

fixed-point

constant

A

decimal

fixed-point

constant

consists

of

one

or

more

decimal

digits

with

an

optional

decimal

point.

Decimal

fixed-point

constants

have

a

precision

(p,q),

where

p

is

the

total

number

of

digits

in

the

constant

and

q

is

the

number

of

digits

specified

to

the

right

of

the

decimal

point.

Examples

are:

Constant

Precision

3.1416

(5,4)

455.3

(4,1)

732

(3,0)

1_200_300

(7,0)

003

(3,0)

5280

(4,0)

.0012

(4,4)

Binary

floating-point

data

The

data

attributes

for

declaring

binary

floating-point

variables

are

BINARY

and

FLOAT.

For

example:

declare

S

binary

float

(16);

S

represents

binary

floating-point

data

with

a

precision

of

16

binary

digits.

The

exponent

cannot

exceed

five

decimal

digits.

If

the

declared

precision

is

less

than

or

equal

to

(21),

short

floating-point

form

is

used.

If

the

declared

precision

is

greater

than

(21)

and

less

than

or

equal

to

(53),

long

floating-point

form

is

used.

If

the

declared

precision

is

greater

than

(53),

extended

floating-point

form

is

used.

Binary

floating-point

constant

A

binary

floating-point

constant

is

a

mantissa

followed

by

an

exponent

and

the

letter

B.

The

mantissa

is

a

binary

fixed-point

constant.

The

exponent

is

the

letter

E,

S,

D,

or

Q

followed

by

an

optionally-signed

decimal

integer

(meaning

2

to

the

power

of

this

integer).

Constants

using

E

have

a

precision

(p)

where

p

is

the

number

of

binary

digits

of

the

mantissa.

Constants

using

S,

D,

and

Q

always

have

maximum

single,

double,

and

extended

precisions,

respectively.

Examples

are:

Constant

Precision

101101E5B

(6)

101.101E2B

(6)

11101E-28B

(5)

11.01E+42B

(4)

1S0b

(21)

Decimal

fixed-point

data

32

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

1D0b

(53)

1Q0b

(64)(OS/2

and

Windows)

1Q0b

(106)(AIX)

1Q0b

(109)(z/OS)

Decimal

floating-point

data

The

data

attributes

for

declaring

decimal

floating-point

variables

are

DECIMAL

and

FLOAT.

Consider

this

example:

declare

Light_years

decimal

float(5);

The

value

for

Light_years

represents

decimal

floating-point

data

of

5

decimal

digits.

If

the

declared

precision

is

less

than

or

equal

to

(6),

short

floating-point

form

is

used.

If

the

declared

precision

is

greater

than

(6)

and

less

than

or

equal

to

(16),

long

floating-point

form

is

used.

If

the

declared

precision

is

greater

than

(16),

extended

floating-point

form

is

used.

Decimal

floating-point

constant

A

decimal

floating-point

constant

is

a

mantissa

followed

by

an

exponent.

The

mantissa

is

a

decimal

fixed-point

constant.

The

exponent

is

the

letter

E,

S,

D,

or

Q

followed

by

an

optionally-signed

decimal

integer

of

four

or

less

digits

(meaning

10

to

the

power

of

this

integer).

Constants

using

E

have

a

precision

(p)

where

p

is

the

number

of

digits

of

the

mantissa.

Constants

using

S,

D,

and

Q

always

represent

single,

double,

and

extended

precision

respectively.

Examples

are:

Constant

Precision

15E-23

(2)

15E23

(2)

4E-3

(1)

1.96E+07

(3)

438E0

(3)

3_141_593E-6

(7)

.003_141_593E3

(9)

1s0

(6)

1d0

(16)

1q0

(18)(OS/2

and

Windows)

1q0

(32)(AIX)

1q0

(33)(z/OS)

The

last

five

examples

represent

the

same

value

(although

with

different

precisions).

String

data

and

attributes

Refer

to

“Data

types

and

attributes”

on

page

22

for

general

information

about

strings.

BIT,

CHARACTER,

GRAPHIC

and

WIDECHAR

attributes

The

BIT

attribute

specifies

a

bit

variable.

The

CHARACTER

attribute

specifies

a

character

variable.

Character

strings

can

also

be

declared

using

the

PICTURE

attribute.

The

WIDECHAR

attribute

specifies

a

widechar

variable

which

will

hold

UTF-16

data.

Binary

floating-point

constant

Chapter

3.

Data

elements

33

The

GRAPHIC

attribute

specifies

a

graphic

variable.

The

syntax

for

the

BIT,

CHARACTER,

GRAPHIC

and

WIDECHAR

attributes

is:

��

BIT

CHARACTER

GRAPHIC

WIDECHAR

(length

)

REFER(variable)

(*)

NONVARYING

VARYING

VARYINGZ

��

Table

12.

Abbreviations

for

string

data

attributes

Attribute

Abbreviation

CHARACTER

CHAR

GRAPHIC

G

WIDECHAR

WCHAR

NONVARYING

NONVAR

VARYING

VAR

VARYINGZ

VARZ

length

Specifies

the

length

of

a

NONVARYING

string

or

the

maximum

length

of

a

VARYING

or

VARYINGZ

string.

The

length

is

in

bits,

characters,

widechars

or

graphics

(DBCS

characters),

as

appropriate.

You

can

specify

the

length

as

an

expression

or

as

an

asterisk.

If

the

length

is

not

specified,

the

default

is

1.

For

named

constants,

length

is

determined

from

the

length

of

the

value

expression.

For

a

parameter,

an

expression

is

valid

only

if

it

is

CONTROLLED.

An

asterisk

specification

for

a

parameter

indicates

that

the

length

is

taken

from

the

argument

that

is

passed.

If

the

length

specification

is

an

expression,

it

is

evaluated

and

converted

to

FIXED

BINARY(31,0),

which

must

be

positive,

when

storage

is

allocated

for

the

variable.

For

STATIC

data,

length

must

be

a

restricted

expression.

For

BASED

data,

length

must

be

a

restricted

expression,

unless

the

string

is

a

member

of

a

structure

or

a

union

and

the

REFER

option

is

used.

REFER

See

“REFER

option

(self-defining

data)”

on

page

235

for

the

description

of

the

REFER

option.

The

statement

below

declares

User

as

a

variable

that

can

represent

character

data

with

a

length

of

15:

declare

User

character

(15);

The

following

example

shows

the

declaration

of

a

bit

variable:

declare

Symptoms

bit

(64);

BIT,

CHARACTER,

GRAPHIC

and

WIDECHAR

34

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

VARYING,

VARYINGZ,

and

NONVARYING

attributes

The

VARYING

and

VARYINGZ

attributes

specify

that

a

variable

can

have

a

length

varying

from

0

to

the

declared

maximum

length.

NONVARYING

specifies

that

a

variable

always

has

a

length

equal

to

the

declared

length.

The

storage

allocated

for

VARYING

strings

is

2

bytes

longer

than

the

declared

length.

The

leftmost

2

bytes

hold

the

string’s

current

length.

The

storage

allocated

for

a

VARYINGZ

character

string

is

1

byte

longer

than

the

declared

length.

The

current

length

of

the

string

is

equal

to

the

number

of

bytes

before

the

first

'00'x

in

the

storage

allocated

to

it.

The

storage

allocated

for

a

VARYINGZ

GRAPHIC

string

is

2

bytes

longer

than

the

declared

length.

The

current

length

of

the

string

is

equal

to

half

the

number

of

bytes

before

the

first

'0000'gx

in

the

storage

allocated

to

it.

The

storage

allocated

for

a

VARYINGZ

WIDECHAR

string

is

2

bytes

longer

than

the

declared

length.

The

current

length

of

the

string

is

equal

to

half

the

number

of

bytes

before

the

first

'0000'wx

in

the

storage

allocated

to

it.

The

VARYINGZ

attribute

is

not

allowed

with

BIT

strings.

In

the

following

DECLARE

statements,

both

User

and

Zuser

represent

varying-length

character

data

with

a

maximum

length

of

15.

However,

unlike

User,

Zuser

is

null-terminated.

The

storage

allocated

is

17

bytes

for

User

and

16

bytes

for

Zuser.

declare

User

character

(15)

varying;

declare

Zuser

character

(15)

varyingz;

The

length

for

User

and

Zuser

at

any

time

is

the

length

of

the

data

item

assigned

to

it

at

that

time.

You

can

determine

the

declared

and

the

current

length

by

using

the

MAXLENGTH

and

LENGTH

built-in

functions,

respectively.

The

null

terminator

held

in

a

VARYINGZ

string

is

not

used

in

comparisons

or

assignments,

other

than

to

determine

the

length

of

the

string.

Consequently,

although

the

strings

in

the

following

declarations

have

the

same

internal

hex

representation,

they

do

not

compare

as

being

equal:

declare

A

char(4)

nonvarying

init(

('abc'

\

'00'x)

);

declare

B

char(3)

varyingz

init(

'abc'

);

To

the

contrary,

Z

and

C

in

this

example

do

compare

as

equal:

dcl

Z

char(3)

nonvarying

init(’abc’);

dcl

C

char(3)

varyingz

init(’abc’);

The

VARYING

and

VARYINGZ

strings

can

be

passed

and

received

as

parameters

with

*

length.

They

can

be

passed

without

a

descriptor

if

they

have

the

NONASSIGNABLE

attribute.

PICTURE

attribute

The

PICTURE

attribute

specifies

the

properties

of

a

character

data

item

by

associating

a

picture

character

with

each

position

of

the

data

item.

A

picture

character

specifies

a

category

of

characters

that

can

occupy

that

position.

VARYING,

VARYINGZ,

NONVARYING

attributes

Chapter

3.

Data

elements

35

��

PICTURE

'

picture-specification

'

��

Abbreviation

PIC

picture-specification

Describes

either

a

character

data

item

or

a

numeric

character

data

item.

Refer

to

“Picture

characters

for

character

data”

on

page

316

or

“Picture

characters

for

numeric

character

data”

on

page

317

for

the

valid

characters.

A

numeric

picture

specification

specifies

arithmetic

attributes

of

numeric

character

data

in

much

the

same

way

that

they

are

specified

by

the

appearance

of

a

constant.

Numeric

character

data

has

an

arithmetic

value

but

is

stored

in

character

form.

Numeric

character

data

is

converted

to

coded

arithmetic

before

arithmetic

operations

are

performed.

The

base

of

a

numeric

character

data

item

is

decimal.

Its

scale

is

either

fixed-point

or

floating-point

(the

K

or

E

picture

character

denotes

a

floating-point

scale).

The

precision

of

a

numeric

character

data

item

is

the

number

of

significant

digits

(excluding

the

exponent

in

the

case

of

floating-point).

Significant

digits

are

specified

by

the

picture

characters

for

digit

positions

and

conditional

digit

positions.

The

scaling

factor

of

a

numeric

character

data

item

is

derived

from

the

V

or

the

F

picture

character

or

the

combination

of

V

and

F.

Only

decimal

data

can

be

represented

by

picture

characters.

Complex

data

can

be

declared

by

specifying

the

COMPLEX

attribute

along

with

a

single

picture

specification

that

describes

either

a

fixed-point

or

a

floating-point

data

item.

For

more

information

on

numeric

character

data,

see

“Numeric

character

data”

on

page

41.

Character

data

Data

with

the

CHARACTER

attribute

can

contain

any

of

the

256

characters

supported

by

the

character

set.

Data

with

the

PICTURE

attribute

must

have

characters

that

match

the

picture-specification

characters.

Each

character

occupies

1

byte

of

storage.

Character

constant

A

character

constant

is

a

contiguous

sequence

of

characters

enclosed

in

single

or

double

quotation

marks.

Quotation

marks

included

in

the

constant

follow

the

rules

listed

in

“Using

quotation

marks”

on

page

22.

The

length

of

a

character

constant

is

the

number

of

characters

between

the

enclosing

quotation

marks

counting

any

doubled

quotation

marks

as

a

single

character.

A

null

character

constant

is

written

as

two

quotation

marks

with

no

intervening

blank.

The

syntax

for

a

character

constant

is:

PICTURE

36

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

�

'

'

character

��

Examples

of

character

constants

are:

Constant

Length

'Shakespeare''s

"Hamlet"'

22

"Shakespeare's

""Hamlet"""

22

"Page

5"

6

'/*

This

is

a

comment

*/'

27

''

0

(2)'Walla

'

12

In

the

last

example,

the

number

in

parentheses

is

a

string

repetition

factor,

which

indicates

repetition

of

the

characters

that

follow.

This

example

is

equivalent

to

the

constant

"Walla

Walla

".

The

string

repetition

factor

must

be

a

constant

and

enclosed

in

parentheses.

X

(hex)

character

constant

The

X

character

constant

is

a

contiguous

sequence

of

an

even

number

of

hex

digits

enclosed

in

single

or

double

quotation

marks

and

followed

immediately

by

the

letter

X.

Each

pair

of

hex

digits

represents

one

character.

The

length

of

an

X

constant

is

half

the

number

of

hex

digits

specified.

A

null

X

constant

is

written

as

two

quotation

marks

followed

by

the

X

suffix.

��

�

'

'X

hex-digit

hex-digit

��

Examples

of

X

constants

are:

Constant

Length

"0d0A"x

2

''X

0

Note:

The

use

of

X

constants

can

limit

the

portability

of

a

program.

Bit

data

Data

with

the

BIT

attribute

allows

manipulation

of

storage

in

terms

of

bits.

Each

byte

of

storage

is

composed

of

8

bits.

Bit

constant

A

bit

constant

is

a

contiguous

sequence

of

binary

digits

enclosed

in

single

or

double

quotation

marks

and

followed

immediately

by

the

letter

B.

Character

constant

Chapter

3.

Data

elements

37

��

�

'

'B

binary-digit

��

A

null

bit

constant

is

written

as

two

quotation

marks,

followed

by

B.

Examples

of

bit

constants

are:

Constant

Length

'1'B

1

"1100_1010_11"B

10

(64)'0'B

64

''B

0

'0'B

1

The

number

in

parentheses

in

the

third

example

is

a

string

repetition

factor

which

specifies

that

the

following

series

of

bits

is

repeated

the

specified

number

of

times.

The

example

shown

would

result

in

a

string

of

64

zero

bits.

(See

“Source-to-target

rules”

on

page

77

for

a

discussion

on

the

conversion

of

bit-to-character

data

and

character-to-bit

data.)

B4

(hex)

bit

constant

The

B4

bit

constant

is

a

contiguous

sequence

of

hex

digits

enclosed

in

single

or

double

quotation

marks

and

followed

immediately

by

B4.

Each

hex

digit

represents

four

bits.

BX

is

a

synonym

for

B4.

��

�

'

'

B4

hex-digit

BX

��

Some

examples

of

B4

constants

are:

’CA’B4

is

the

same

as

"1100_1010"B

’80’B4

is

the

same

as

’1000_0000’B

’1’B4

is

the

same

as

’0001’B

(2)’F’B4

is

the

same

as

’1111_1111’B

(2)’F’B4

is

the

same

as

’FF’BX

’’B4

is

the

same

as

""B

B3

(octal)

bit

constant

The

B3

bit

constant

is

a

contiguous

sequence

of

octal

digits

enclosed

in

single

or

double

quotation

marks

and

followed

immediately

by

B3.

Each

octal

digit

represents

three

bits.

Some

examples

of

B3

constants

are:

’22’B3

is

the

same

as

"010_010"B

Bit

constant

38

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

’40’B3

is

the

same

as

’100_000’B

’1’B3

is

the

same

as

’001’B

(2)’7’B3

is

the

same

as

’111_111’B

’’B3

is

the

same

as

""B

Graphic

data

GRAPHIC

data

can

contain

any

DBCS

character.

Each

DBCS

character

occupies

2

bytes

of

storage.

Graphic

constant

A

graphic

constant

is

a

contiguous

sequence

of

DBCS

characters

enclosed

in

single

or

double

quotation

marks.

Graphic

constants

take

up

2

bytes

of

storage

for

each

DBCS

character

in

the

constant.

G

literals

can

start

and

end

with

DBCS

quotes.

G

can

also

be

DBCS.

��

�

'

'G

kk

��

The

GRAPHIC

compiler

option

must

be

in

effect

for

graphic

constants

to

be

accepted.

If

the

GRAPHIC

ENVIRONMENT

option

is

not

specified

for

STREAM

I/O

files

that

include

graphic

constants,

the

CONVERSION

condition

is

raised.

GX

(hex)

graphic

constant

The

GX

graphic

constant

is

a

contiguous

sequence

of

hex

digits,

in

multiples

of

4,

enclosed

in

single

or

double

quotation

marks

and

followed

immediately

by

GX.

Each

group

of

4

hex

digits

represents

one

DBCS

character.

��

�

'

'GX

hex-digit

hex-digit

hex-digit

hex-digit

��

Examples:

’81a1’gx

represents

one

DBCS

character

""gX

is

the

same

as

’’g

Note:

The

use

of

GX

can

limit

the

portability

of

a

program.

Mixed

character

data

Mixed

character

data

can

contain

SBCS

and

DBCS

characters.

Mixed

data

is

represented

by

the

CHARACTER

data

type,

and

follows

the

processing

rules

for

CHARACTER

data.

The

CHARGRAPHIC

option

of

the

OPTIONS

attribute

and

the

MPSTR

built-in

function

can

be

used

to

assist

in

mixed

data

handling.

For

more

information

on

B3

(octal)

Chapter

3.

Data

elements

39

CHARGRAPHIC

see

“OPTIONS

option

and

attribute”

on

page

126;

for

information

on

MPSTR,

see

“MPSTR”

on

page

437.

M

(Mixed)

character

constant

An

M

constant

is

a

contiguous

sequence

of

DBCS

and/or

SBCS

characters

enclosed

in

quotation

marks

(single

or

double),

followed

immediately

by

the

letter

M.

Quotations

marks

included

in

the

constant

follow

the

rules

listed

in

“Using

quotation

marks”

on

page

22.

The

length

of

an

M

constant

is

the

number

of

SBCS

characters

between

the

enclosing

quotation

marks

counting

any

doubled

quotation

marks

as

a

single

character,

plus

twice

the

number

of

DBCS

characters

in

the

string.

A

null

M

constant

is

written

as

two

quotation

marks

followed

by

M.

��

�

'

'M

character

kk

��

Examples

of

mixed

character

constants

are:

Constant

Length

'IBM

kkkk'M

8

bytes

on

PS/2,

10

on

S/370

'.I.B.M'M

6

bytes

on

PS/2,

8

on

S/370

''M

0

The

GRAPHIC

compiler

option

must

be

in

effect

for

mixed

constants

to

be

accepted.

If

the

GRAPHIC

ENVIRONMENT

option

is

not

specified

for

STREAM

I/O

files

having

mixed

constants,

the

CONVERSION

condition

is

raised.

Note:

Because

of

the

use

of

shift-codes

on

some

computers,

the

use

of

mixed

data

and

M

constants

can

limit

program

portability.

Widechar

data

WIDECHAR

data

can

contain

any

UTF-16

character.

Each

widechar

occupies

2

bytes

of

storage.

There

is

currently

no

support

yet

for

v

WIDECHAR

characters

in

source

files

v

W

string

constants

v

use

of

WIDECHAR

expressions

in

stream

I/O

v

implicit

conversion

to/from

WIDECHAR

in

record

I/O

v

implicit

endianness

flags

in

record

I/O

If

you

create

a

WIDECHAR

file,

you

should

write

the

endianness

flag

(’fe_ff’wx)

as

the

first

two

bytes

of

the

file.

WX

(hex)

widechar

constant

The

WX

widechar

constant

is

a

contiguous

sequence

of

hex

digits,

in

multiples

of

4,

enclosed

in

single

or

double

quotation

marks

and

followed

immediately

by

WX.

Each

group

of

4

hex

digits

represents

one

UTF-16

character.

Mixed

character

data

40

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

�

'

'WX

hex-digit

hex-digit

hex-digit

hex-digit

��

Examples:

’0031’wx

represents

one

UTF-16

character

""wX

is

the

same

as

’’w

Note:

WX

constants

should

be

specified

in

bigendian

format

(even

if

the

program

will

run

in

littleendian

format).

So,

for

example,

the

widechar

value

for

the

character

’1’

should

always

be

specified

as

’0031’wx

(and

not

as

’3100’wx).

Note:

The

use

of

WX

can

limit

the

portability

of

a

program.

Numeric

character

data

A

numeric

character

data

item

is

the

value

of

a

variable

that

has

been

declared

with

the

PICTURE

attribute

with

a

numeric

picture

specification.

The

data

item

is

the

character

representation

of

a

decimal

fixed-point

or

floating-point

value.

Numeric

picture

specification

describes

a

character

string

that

can

be

assigned

only

data

that

can

be

converted

to

an

arithmetic

value.

For

example:

declare

Price

picture

’999V99’;

specifies

that

any

value

assigned

to

Price

is

maintained

as

a

character

string

of

five

decimal

digits,

with

an

assumed

decimal

point

preceding

the

rightmost

two

digits.

Data

assigned

to

Price

is

aligned

on

the

assumed

point

in

the

same

way

that

point

alignment

is

maintained

for

fixed-point

decimal

data.

Numeric

character

data

has

arithmetic

attributes,

but

it

is

not

stored

in

coded

arithmetic

form.

Numeric

character

data

is

stored

as

a

character

string.

Before

it

can

be

used

in

arithmetic

computations,

it

must

be

converted

either

to

decimal

fixed-point

or

to

decimal

floating-point

format.

Such

conversions

are

done

automatically,

but

they

require

extra

processing

time.

Although

numeric

character

data

is

in

character

form,

like

character

strings,

and

although

it

is

aligned

on

the

decimal

point

like

coded

arithmetic

data,

it

is

processed

differently

from

the

way

either

coded

arithmetic

items

or

character

strings

are

processed.

Editing

characters

can

be

specified

for

insertion

into

a

numeric

character

data

item,

and

such

characters

are

actually

stored

within

the

data

item.

Consequently,

when

the

item

is

printed

or

treated

as

a

character

string,

the

editing

characters

are

included

in

the

assignment

operation.

However,

if

a

numeric

character

item

is

assigned

to

another

numeric

character

or

arithmetic

variable,

the

editing

characters

are

not

included

in

the

assignment

operation—only

the

actual

digits,

signs,

and

the

location

of

the

assumed

decimal

point

are

assigned.

For

example:

declare

Price

picture

’$99V.99’,

Cost

character

(6),

Amount

fixed

decimal

(6,2);

Price

=

12.28;

Cost

=

’$12.28’;

WX

(hex)

widechar

Chapter

3.

Data

elements

41

In

the

picture

specification

for

PRICE,

the

currency

symbol

($)

and

the

decimal

point

(.)

are

editing

characters.

They

are

stored

as

characters

in

the

data

item.

However,

they

are

not

a

part

of

its

arithmetic

value.

After

both

assignment

statements

are

executed,

the

actual

internal

character

representation

of

Price

and

Cost

can

be

considered

identical.

If

they

were

printed,

they

would

print

exactly

the

same;

but

they

do

not

always

function

in

the

same

way.

For

example:

Amount

=

Price;

Cost

=

Price;

Amount

=

Cost;

Price

=

Cost;

After

the

first

two

assignment

statements

are

executed,

the

value

of

Amount

is

0012.28

and

the

value

of

Cost

is

'$12.28'.

In

the

assignment

of

Price

to

Amount,

the

currency

symbol

and

the

decimal

point

are

editing

characters,

and

they

are

not

part

of

the

assignment.

The

numeric

value

of

Price

is

converted

to

internal

coded

arithmetic

form.

In

the

assignment

of

Price

to

Cost,

however,

the

assignment

is

to

a

character

string,

and

the

editing

characters

of

a

numeric

picture

specification

always

participate

in

such

an

assignment.

No

conversion

is

necessary

because

Price

is

stored

in

character

form.

The

third

and

fourth

assignment

statements

would

raise

the

CONVERSION

condition.

The

value

of

Cost

cannot

be

assigned

to

Amount

because

the

currency

symbol

in

the

string

makes

it

invalid

as

an

arithmetic

constant.

The

value

of

Cost

cannot

be

assigned

to

Price

for

the

same

reason.

Only

values

that

are

of

arithmetic

type,

or

that

can

be

converted

to

arithmetic

type,

can

be

assigned

to

a

variable

declared

with

a

numeric

picture

specification.

Although

the

decimal

point

can

be

an

editing

character

or

an

actual

character

in

a

character

string,

it

does

not

raise

the

CONVERSION

condition

in

converting

to

arithmetic

form,

since

its

appearance

is

valid

in

an

arithmetic

constant.

The

same

is

true

for

a

valid

plus

or

minus

sign,

because

converting

to

arithmetic

form

provides

for

a

sign

preceding

an

arithmetic

constant.

Other

editing

characters,

including

zero

suppression

characters,

drifting

characters,

and

insertion

characters,

can

be

used

in

numeric

picture

specifications.

For

a

complete

discussion

of

picture

characters,

see

Chapter

15,

“Picture

specification

characters,”

on

page

315.

Date

attribute

Implicit

date

comparisons

and

conversions

are

made

by

the

compiler

if

the

two

operands

have

the

DATE

attribute.

The

DATE

attribute

specifies

that

a

variable

(or

argument

or

returned

value)

holds

a

date

with

a

specified

pattern.

��

DATE

(’pattern’)

��

pattern

One

of

the

supported

date

patterns.

If

you

do

not

specify

a

pattern,

YYMMDD

is

the

default.

The

DATE

attribute

is

valid

only

with

variables

having

one

of

the

following

sets

of

attributes:

v

CHAR(n)

NONVARYING

Numeric

character

data

42

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

v

PIC’(n)9’

REAL

v

FIXED

DEC(n,0)

REAL

The

length

or

precision

of

n

must

match

the

length

of

the

pattern.

When

you

specify

the

RESPECT

compile-time

option

(see

the

Programming

Guide

for

details),

the

following

occur:

v

The

compiler

knows

to

honor

the

DATE

attribute

v

The

DATE

built-in

function

returns

a

value

that

has

the

attribute

DATE(’YYMMDD’).

This

allows

DATE()

to

be

assigned

to

a

variable

with

the

attribute

DATE(’YYMMDD’)

without

an

error

message

being

generated.

If

DATE()

is

assigned

to

a

variable

not

having

the

DATE

attribute,

however,

an

error

message

is

generated.

Implicit

DATE

comparisons:

The

DATE

attribute

causes

implicit

commoning

when

two

variables

declared

with

the

DATE

attribute

are

compared.

Comparisons

where

only

one

variable

has

the

DATE

attribute

are

flagged,

and

the

other

comparand

is

generally

treated

as

if

it

had

the

same

DATE

attribute,

although

some

exceptions

apply

which

are

discussed

later.

Implicit

commoning

means

that

the

compiler

generates

code

to

convert

the

dates

to

a

common,

comparable

representation.

This

process

converts

2-digit

years

using

the

window

you

specify

in

the

WINDOW

compile-time

option.

In

the

following

code

fragment,

if

the

DATE

attribute

is

honored,

then

the

comparison

in

the

second

display

statement

is

’windowed’.

This

means

that

if

the

window

started

at

1900,

the

comparison

would

return

false.

However,

if

the

window

started

at

1950,

the

comparison

would

return

true.

dcl

a

pic’(6)9’

date;

dcl

b

pic’(6)9’

def(a);

dcl

c

pic’(6)9’

date;

dcl

d

pic’(6)9’

def(c);

b

=

’670101’;

d

=

’010101’;

display(

b

||

’

<

’

||

d

||

’

?’

);

display(

a

<

c

);

Date

comparisons

can

occur

in

the

following

places:

v

IF

and

SELECT

statements

v

WHILE

or

UNTIL

clauses

v

Implicit

comparisons

caused

by

a

TO

clause

Comparing

dates

with

like

patterns:

The

compiler

does

not

generate

any

special

code

to

compare

dates

with

identical

patterns

under

the

following

conditions:

v

The

comparison

operator

of

=

or

¬=

is

used

v

The

pattern

is

equal

to

YYYY,

YYYYMM,

YYYYDDD,

or

YYYYMMDD.

Comparing

dates

with

differing

patterns:

For

comparisons

involving

dates

with

unlike

patterns,

the

compiler

generates

code

to

convert

the

dates

to

a

common

comparable

representation.

Once

the

conversion

has

taken

place,

the

compiler

compares

the

two

values.

Date

attribute

Chapter

3.

Data

elements

43

Comparisons

involving

the

DATE

attribute

and

a

literal:

If

you

are

making

comparisons

in

which

one

comparand

has

the

DATE

attribute

and

the

other

is

a

literal,

the

compiler

issues

a

W-level

message.

Further

compiler

action

depends

on

the

value

of

the

literal

as

follows:

v

If

the

literal

appears

to

be

a

valid

date,

it

is

treated

as

if

it

had

the

same

date

pattern

and

window

as

the

comparand

with

the

DATE

attribute.

v

If

the

literal

does

not

appear

to

be

a

valid

date,

the

DATE

attribute

is

ignored

on

the

other

comparand.

dcl

start_date

char(6)

date;

if

start_date

>=

’’

then

/*

no

windowing

*/

...

if

start_date

>=

’851003’

then

/*

windowed

*/

...

Comparisons

involving

the

DATE

attribute

and

a

non-literal:

In

comparisons

where

one

comparand

has

the

DATE

attribute

and

the

other

is

not

a

date

and

not

a

literal,

the

compiler

issues

an

E-level

message.

The

non-date

value

is

treated

as

if

it

had

the

same

date

pattern

as

the

other

comparand

and

as

if

it

had

the

same

window.

dcl

start_date

char(6)

date;

dcl

non_date

char

(6);

if

start_date

>=

non_date

then

/*

windowed

*/

...

Implicit

DATE

assignments:

The

DATE

attribute

can

also

cause

implicit

conversions

to

occur

in

assignments

of

two

variables

declared

with

date

patterns.

v

If

the

source

and

target

have

the

same

DATE

and

data

attributes,

then

the

assignment

proceeds

as

if

neither

had

the

DATE

attribute.

v

If

the

source

and

target

have

differing

DATE

attributes,

then

the

compiler

generates

code

to

convert

the

source

date

before

making

the

assignment.

v

In

assignments

where

the

source

has

the

DATE

attribute

but

the

target

does

not,

the

compiler

issues

an

E-level

message

and

ignores

the

DATE

attribute.

v

In

assignments

where

the

target

has

the

DATE

attribute

but

the

source

does

not

(and

the

source

IS

NOT

a

literal),

the

compiler

issues

an

E-level

message

and

ignores

the

DATE

attribute.

v

In

assignments

where

the

target

has

the

DATE

attribute

but

the

source

does

not

(and

the

source

IS

a

literal),

the

compiler

issues

a

W-level

message

and

ignores

the

DATE

attribute.

dcl

start_date

char(6)

date;

start_date

=

’’;

...

v

If

the

source

holds

a

four-digit

year

and

the

target

holds

a

two-digit

year,

the

source

can

hold

a

year

that

is

not

in

the

target

window.

In

this

case,

the

ERROR

condition

is

raised.

dcl

x

char(6)

date;

dcl

y

char(8)

date(’YYYYMMDD’);

y

=

’20600101’;

x

=

y;

/*

raises

error

if

window

is

<=

1960

*/

v

The

DATE

attribute

is

ignored

in:

–

The

debugger

–

Assignments

performed

in

record

I/O

statements

–

Assignments

and

conversions

performed

in

stream

I/O

statements

(such

as

GET

DATA).

Date

attribute

44

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Even

if

you

do

not

choose

a

windowing

solution,

you

might

have

some

code

that

needs

to

manipulate

both

two-

and

four-digit

years.

You

can

use

multiple

date

patterns

to

help

you

in

these

situations:

dcl

old_date

char(6)

date(’YYMMDD’);

dcl

new_date

char(8)

date(’YYYYMMDD’);

new_date

=

old_date;

Date

diagnostics:

In

PL/I,

effective

assignments

occur

when

v

An

expression

is

passed

as

an

argument

to

an

entry

that

has

described

that

argument

v

An

expression

is

used

in

a

RETURN

statement.

The

following

uses

of

date

variables

are

flagged:

v

Assignments

(explicit

or

effective)

which

include

either

–

A

date

to

a

non-date

–

A

non-date

to

a

date
v

Any

arithmetic

operation

applied

to

a

date

v

Use

of

a

date

in

a

BY

clause

(since

this

implies

an

arithmetic

operation)

v

Use

of

a

date

in

any

mathematical

built-in

function

v

Use

of

a

date

in

any

arithmetic

built-in

function

except

BINARY,

DECIMAL,

FIXED,

FLOAT,

or

PRECISION.

v

Use

of

a

date

in

the

built-in

functions

SUM,

PROD,

or

POLY.

In

all

of

the

cases

listed

previously,

code

is

produced

but

no

windowing

occurs.

In

effect,

the

DATE

attribute

is

ignored.

Named

constants

A

named

constant

is

a

scalar

identifier

declared

with

the

VALUE

attribute

along

with

other

data

attributes.

All

references

to

the

name

are

logically

treated

as

a

reference

to

the

appropriate

constant

but

with

the

complete

set

of

attributes,

whether

explicitly

declared

or

defaulted.

Note:

The

effect

of

the

use

of

a

named

constant

might

not

be

exactly

the

same

as

the

use

of

an

unnamed

constant.

The

attributes

for

a

named

constant

are

taken

from

the

declaration

which

includes

explicit

and

default

attributes.

The

attributes

for

an

unnamed

constant

are

deduced

from

the

shape,

form,

and

size

of

the

constant.

For

string

data,

if

the

length

is

not

specified,

or

is

specified

with

an

asterisk,

the

length

is

determined

from

the

length

of

the

restricted

expression.

Named

constants

can

be

more

precise

to

use

in

an

application

program,

and

they

can

offer

more

predictable

results.

For

example,

if

the

named

constant

Unit

is

defined

as

FIXED

BINARY

VALUE(1),

it

has

the

attributes

FIXED

BINARY(15)

VALUE(1).

If

you

simply

use

the

digit

1,

its

attributes

are

FIXED

DECIMAL(1,0).

See

Figure

1

on

page

46

for

other

differences

that

can

occur.

In

addition,

named

constants

allow

you

to

parameterize

your

application,

which

makes

it

easier

to

debug

and

maintain.

Named

constants

can

be

declared

for

arithmetic

data,

string

data,

and

for

pointers

and

offsets.

For

arithmetic

and

string

data

and

their

attributes,

see

“String

data

and

attributes”

on

page

33

and

“Coded

arithmetic

data

and

attributes”

on

page

26,

respectively.

A

named

constant

must

be

declared

before

it

is

used.

Date

attribute

Chapter

3.

Data

elements

45

VALUE

attribute:

��

VALUE(restricted-expression)

��

restricted

expression

The

expression

must

evaluate

to

a

scalar

value.

For

information

on

restricted

expressions

see

“Restricted

expressions”

on

page

71.

Examples

of

named

constants:

Figure

1

shows

named

constants

and

the

differences

in

attributes

and

precisions

that

can

occur

between

named

and

unnamed

constants.

Named

constants

can

be

used

wherever

a

constant

is

required.

They

can

also

be

used

in

restricted

expressions

that

appear

later

in

the

program

allowing

evaluation

of

a

dependent

constant.

Dcl

A4

value(148)

fixed

bin,

C4

value(261)

fixed

bin,

Whole

value(800)

fixed

bin;

Dcl

Notes

(4)

static,

init(a4,

(Whole/4),

/*

148,

200

*/

c4,

(Whole*2));

/*

261,

1600

*/

/*

note

that

"Head"

gets

length

equal

to

length

of

VALUE

*/

Dcl

Head

char

VALUE(’Feel

the

Power

of

PL/I’);

/*

char(22)

*/

Dcl

Headsize

fixed

bin

value(length(Head));

/*

22

*/

Dcl

1

Head1

static,

2

*

char(Headsize)

initial(Head),

/*

char(22)

*/

2

*

char(20)

init(’’),

2

*

char(5)

init(’Page

’),

2

Page_number

pic

’zz9’,

2

*

char(0);

Dcl

TwoHeads

char(2*Headsize);

/*

char(44)

*/

Dcl

Page0

picture

’zz9’

value(0);

Dcl

MyNullPtr

ptr

value(ptrvalue(’ffff_ffff’xn));

/*

Differences

in

attributes/results

of

named

and

unnamed

constants

*/

Dcl

Pi

float

bin

value

(3.1416);

/*

is

FLOAT

BINARY(21)

but

...

*/

3.1416

/*

is

FIXED

DECIMAL(5,4)

*/

Dcl

Unit

fixed

bin

value(1);

/*

is

FIXED

BINARY(15)

but

...

*/

1

/*

is

FIXED

DECIMAL(1,0)

*/

1.0

/*

is

FIXED

DECIMAL(2,1)

*/

1B

/*

is

FIXED

BINARY(1)

*/

0000_0000_0000_001B

/*

is

FIXED

BINARY(15)

*/

Dcl

Title

char(20)

value(’SCIDS’);

/*

is

CHAR(20)

but

...

*/

Dcl

Title2

char

value(’SCIDS’);/*

is

CHAR(5)

*/

’SCIDS’

/*

is

CHAR(5)

*/

Figure

1.

Named

constants

Named

constants

46

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Program-control

data

types

and

attributes:

This

section

describes

program

control

data

and

associated

attributes.

Use

program-control

data

to

indicate

values

that

control

the

execution

of

your

program.

Label

data

and

LABEL

attribute:

A

label

is

a

label

constant

or

the

value

of

a

label

variable.

��

LABEL

��

A

label

constant

is

a

name

written

as

the

label

prefix

of

a

statement

(other

than

PROCEDURE,

ENTRY,

PACKAGE,

or

FORMAT)

so

that

during

execution,

program-control

can

be

transferred

to

that

statement

through

a

reference

to

it.

(“Statements”

on

page

15

discusses

the

syntax

of

the

label

prefix.)

In

the

following

line

of

code,

for

example,

Abcde

is

a

label

constant.

Abcde:

Miles

=

Speed*Hours;

The

labelled

statement

can

be

executed

either

by

normal

sequential

execution

of

instructions

or

by

using

the

GO

TO

statement

to

transfer

control

to

it

from

some

other

point

in

the

program.

A

label

variable

can

have

another

label

variable

or

a

label

constant

assigned

to

it.

When

such

an

assignment

is

made,

the

environment

of

the

source

label

is

assigned

to

the

target.

If

you

declare

a

static

array

of

labels

to

have

initial

values,

the

array

is

treated

as

nonassignable.

A

label

variable

used

in

a

GO

TO

statement

must

have

as

its

value

a

label

constant

that

is

used

in

a

block

that

is

active

at

the

time

the

GO

TO

is

executed.

Consider

the

following

example:

declare

Lbl_x

label;

Lbl_a:

statement;

...
Lbl_b:

statement;

...
Lbl_x

=

Lbl_a;

...
go

to

Lbl_x;

Lbl_a

and

Lbl_b

are

label

constants,

and

Lbl_x

is

a

label

variable.

By

assigning

Lbl_a

to

Lbl_x,

the

statement

GO

TO

Lbl_x

transfers

control

to

the

Lbl_a

statement.

Elsewhere,

the

program

can

contain

a

statement

assigning

Lbl_b

to

Lbl_x.

Then,

any

reference

to

Lbl_x

would

be

the

same

as

a

reference

to

Lbl_b.

This

value

of

Lbl_x

is

retained

until

another

value

is

assigned

to

it.

If

a

label

variable

has

an

invalid

value,

detection

of

such

an

error

is

not

guaranteed.

In

the

following

example,

transfer

is

made

to

a

particular

element

of

the

array

Z

based

on

the

value

of

I.

go

to

Z(I);

...
Z(1):

if

X

=

Y

then

return;

Program-control

data

Chapter

3.

Data

elements

47

...
Z(2):

A

=

A

+

B

+

C

*

D;

...
Z(3):

A

=

A

+

10;

If

Z(2)

is

omitted,

GO

TO

Z(I)

when

I=2

raises

the

ERROR

condition.

GO

TO

Z(I)

when

I

<

LBOUND(Z)

or

I

>

HBOUND(Z)

causes

unpredictable

results

if

the

SUBSCRIPTRANGE

condition

is

disabled.

Format

data

and

FORMAT

attribute:

A

format

data

item

is

a

format

constant

or

a

format

variable.

A

format

constant

is

a

name

written

as

the

label

prefix

of

a

FORMAT

statement.

The

FORMAT

attribute

specifies

that

the

name

being

declared

is

a

format

variable.

��

FORMAT

��

A

name

declared

with

the

FORMAT

attribute

can

have

another

format

variable

or

a

format

constant

assigned

to

it.

When

such

an

assignment

is

made,

the

environment

of

the

source

label

is

assigned

to

the

target.

To

maintain

compatability

between

other

PL/I

compilers,

format

variables

may

be

declared

as

label

variables.

Consider

the

following

example:

Prntexe:

format

(

column(20),A(15),

column(40),A(15),

column(60),A(15)

);

Prntstf:

format

(

column(20),A(10),

column(35),A(10),

column(50),A(10)

);

Prntexe

and

Prntstf

are

the

format

constants.

A

second

example

indicates

that

�4�

and

�5�

have

the

same

effect

as

�2�,

and

�6�

and

�7�

have

the

same

effect

as

�3�.

�1�

dcl

Print

format;

�2�

put

edit

(X,Y,Z)

(R(Prntexe)

);

�3�

put

edit

(X,Y,Z)

(R(Prntstf)

);

�4�

Print

=

Prntexe;

�5�

put

edit

(X,Y,Z)

(R(Print)

);

�6�

Print

=

Prntstf;

�7�

put

edit

(X,Y,Z)

(R(Print)

);

VARIABLE

attribute:

The

VARIABLE

attribute

establishes

the

name

as

a

variable

and

is

allowed

only

with

ENTRY,

FILE,

and

LABEL

attributes.

��

VARIABLE

��

The

VARIABLE

attribute

is

implied

if

the

name

is

a

member

of

a

structure

or

union,

or

if

any

of

the

following

attributes

are

specified:

Label

data

and

attribute

48

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Storage

class

attribute

DIMENSION

PARAMETER

Alignment

attribute

INITIAL

In

the

following

declaration,

Account1

and

Account2

are

file

variables

and

File1

and

File2

are

file

constants.

declare

Account1

file

variable,

Account2

file

automatic,

File1

file,

File2

file;

File1

and

File2

can

subsequently

be

assigned

to

Account1

or

to

Account2.

VARIABLE

Chapter

3.

Data

elements

49

50

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Chapter

4.

Expressions

and

references

Order

of

evaluation

.

.

.

.

.

.

.

.

.

.

.

. 54

Targets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

Pseudovariables

.

.

.

.

.

.

.

.

.

.

.

. 54

Intermediate

results

.

.

.

.

.

.

.

.

.

. 54

Operational

expressions

.

.

.

.

.

.

.

.

.

. 55

Pointer

Operations

.

.

.

.

.

.

.

.

.

.

. 56

Arithmetic

operations

.

.

.

.

.

.

.

.

.

. 56

Bit

operations

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Comparison

operations

.

.

.

.

.

.

.

.

. 64

Concatenation

operations

.

.

.

.

.

.

.

.

. 66

Combinations

of

operations

.

.

.

.

.

.

.

. 67

Array

expressions

.

.

.

.

.

.

.

.

.

.

.

. 69

Prefix

operators

and

arrays

.

.

.

.

.

.

.

. 69

Infix

operators

and

arrays

.

.

.

.

.

.

.

. 70

Structure

expressions

.

.

.

.

.

.

.

.

.

.

. 71

Restricted

expressions

.

.

.

.

.

.

.

.

.

.

. 71

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

This

chapter

discusses

the

various

types

of

expressions

and

references.

An

expression

is

a

representation

of

a

value.

An

expression

can

be

one

of

the

following:

v

A

single

constant,

variable,

or

function

reference

v

Any

combination

of

constants,

variables,

or

function

references,

including

operators

and

parentheses

used

in

the

combination.

An

expression

that

contains

operators

is

an

operational

expression.

The

constants

and

variables

of

an

operational

expression

are

called

operands.

See

“Operational

expressions”

on

page

55

for

more

information.

The

following

diagram

shows

the

syntax

for

expressions

and

references.

��

�

unary-expression

(1)

infix-operator

unary-expression

��

unary-expression:

�

(1)

prefix-operator

elementary-expression

elementary-expression:

(expression)

reference

constant

reference:

basic-reference

(2)

(3)

locator-qualifier

(

subscript-list

)

�

51

�

�

(4)

(

argument-list

)

locator-qualifier:

(2)

reference

−>

=>

.

basic-reference:

(6)

identifier

(5)

qualified-reference

subscript-list:

�

,

(3)

expression

*

argument-list:

�

,

(4)

expression

*

qualified-reference:

(5)

basic-reference

(

subscript-list

)

.

Notes:

1 Operators

are

shown

in

Table

6

on

page

14.

2 Locator-qualifier

is

described

under

“Locator

qualification”

on

page

231

and

“Typed

structure

qualification”

on

page

141.

3 Subscripts

are

described

under

“Arrays”

on

page

167.

4 Arguments

are

described

in

“Passing

arguments

to

procedures”

on

page

107.

5 Qualified-reference

is

described

under

“Structure/union

qualification”

on

page

173.

6 Identifiers

are

described

under

“Identifiers”

on

page

13.

Any

expression

can

be

classified

as

an

element

expression

(also

called

a

scalar

expression),

an

array

expression,

or

a

structure

expression.

Element

variables

and

array

variables

can

appear

in

the

same

expression.

Expressions

and

references

52

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

An

element

expression

represents

a

single

value.

This

definition

includes

an

elementary

name

within

a

structure

or

a

union

or

a

subscripted

name

that

specifies

a

single

element

of

an

array.

An

array

expression

represents

an

array

of

values.

This

definition

includes

a

member

of

a

structure

or

union

that

has

the

dimension

attribute.

A

structure

expression

represents

a

structured

set

of

values.

Given

the

following

example:

dcl

A(10,10)

bin

fixed(31),

B(10,10)

bin

fixed(31),

1

Rate,

2

Primary

dec

fixed(4,2),

2

Secondary

dec

fixed(4,2),

1

Cost(2),

2

Primary

dec

fixed(4,2),

2

Secondary

dec

fixed(4,2),

C

bin

fixed(15),

D

bin

fixed(15);

dcl

Pi

bin

float

value(3.1416);

These

are

element

expressions:

Pi

27

C

C

*

D

A(3,2)

+

B(4,8)

Rate.Primary

-

Cost.Primary(1)

A(4,4)

*

C

Rate.Secondary

/

4

A(4,6)

*

Cost.Secondary(2)

sum(A)

addr(Rate)

These

are

array

expressions:

A

A

+

B

A

*

C

-

D

B

/

10B

The

syntax

of

many

PL/I

statements

allows

expressions,

provided

the

result

of

the

expression

conforms

with

the

syntax

rules.

Unless

specifically

stated

in

the

text

following

the

syntax

specification,

the

unqualified

term

expression

or

reference

refers

to

a

scalar

expression.

For

expressions

other

than

a

scalar

expression,

the

type

of

expression

is

noted.

For

example,

the

term

array

expression

indicates

that

a

scalar

expression

is

not

valid.

An

example

of

a

structure

expression

is:

Rate

=

Rate*2

Expressions

and

references

Chapter

4.

Expressions

and

references

53

Order

of

evaluation

PL/I

statements

often

contain

more

than

one

expression

or

reference.

Except

as

described

for

specific

instances

(for

example,

the

assignment

statement),

evaluation

can

be

in

any

order,

or

(conceptually)

at

the

same

time.

For

example:

dcl

(X,Y,Z)

entry

returns(float),

(F,G,H)

float;

F

=

X(

Y(G,H),

Z(G,H)

);

The

functions

Y

and

Z

can

change

the

value

of

the

arguments

passed

to

them.

Hence,

the

value

returned

by

X

might

be

different

depending

on

which

function

is

invoked

first.

You

should

not

presume

that

the

first

parameter

is

evaluated

first.

In

some

situations,

it

is

more

optimal

to

evaluate

the

last

first.

Assuming

that

the

INC

function

increments

the

value

of

the

argument

passed

to

it

and

returns

the

updated

value,

the

example

that

follows

could

put

out

B(1,2)

or

B(2,1)

depending

on

which

subscript

is

evaluated

first.

You

should

not

presume

which

subscript

is

evaluated

first.

dcl

B(2,2);

I

=

0;

put

list

(

B(

INC(I),

INC(I)

)

);

Targets

The

results

of

an

expression

evaluation

or

of

a

conversion

are

assigned

to

a

target.

Targets

can

be

variables,

pseudovariables,

or

intermediate

results.

Variables

In

the

case

of

an

assignment,

such

as

the

statement:

A

=

B;

the

target

is

the

variable

on

the

left

of

the

assignment

symbol

(in

this

case

A).

Assignment

to

variables

can

also

occur

in

stream

I/O,

DO,

DISPLAY,

and

record

I/O

statements.

Pseudovariables

A

pseudovariable

represents

a

target

field,

for

example:

declare

A

character(10),

B

character(30);

substr(A,6,5)

=

substr(B,20,5);

In

this

assignment

statement,

the

SUBSTR

built-in

function

extracts

a

substring

of

length

5

from

the

string

B,

beginning

with

the

twentieth

character.

The

SUBSTR

pseudovariable

indicates

the

location,

within

string

A,

that

is

the

target.

Thus,

the

last

5

characters

of

A

are

replaced

by

characters

20

through

24

of

B.

The

first

5

characters

of

A

remain

unchanged.

Pseudovariables

are

discussed

in

Chapter

19,

“Built-in

functions,

pseudovariables,

and

subroutines.,”

on

page

365.

Intermediate

results

When

an

expression

is

evaluated,

the

target

attributes

usually

are

partly

derived

from

the

source,

partly

from

the

operation

being

performed,

and

partly

from

the

Order

of

evaluation

54

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

attributes

of

a

second

operand.

Some

defaults

may

be

used,

and

some

implementation

restrictions

(for

example,

maximum

precision)

and

conventions

exist.

An

intermediate

result

can

undergo

conversion

if

a

further

operation

is

performed.

After

an

expression

is

evaluated,

the

result

can

be

further

converted

for

assignment

to

a

variable

or

pseudovariable.

These

conversions

follow

the

same

rules

as

the

conversion

of

programmer-defined

data,

for

example:

declare

A

character(8),

B

fixed

decimal(3,2),

C

fixed

binary(10);

A

=

B

+

C;

During

the

evaluation

of

the

expression

B

+

C

and

during

the

assignment

of

that

result,

there

are

four

different

results:

1.

The

intermediate

result

to

which

the

converted

binary

equivalent

of

B

is

assigned

2.

The

intermediate

result

to

which

the

binary

result

of

the

addition

is

assigned

3.

The

intermediate

result

to

which

the

converted

decimal

fixed-point

equivalent

of

the

binary

result

is

assigned

4.

A,

the

final

destination

of

the

result,

to

which

the

converted

character

equivalent

of

the

decimal

fixed-point

representation

of

the

value

is

assigned

The

attributes

of

the

first

result

are

determined

from

the

attributes

of

the

source

B,

from

the

operator,

and

from

the

attributes

of

the

other

operand.

If

one

operand

of

an

arithmetic

infix

operator

is

binary,

the

other

is

converted

to

binary

before

evaluation.

The

attributes

of

the

second

result

are

determined

from

the

attributes

of

the

source

(C

and

the

converted

representation

of

B).

The

attributes

of

the

third

result

are

determined

in

part

from

the

source

(the

second

result)

and

in

part

from

the

attributes

of

the

eventual

target

A.

The

only

attribute

determined

from

the

eventual

target

is

DECIMAL

(a

binary

arithmetic

representation

must

be

converted

to

decimal

representation

before

it

can

be

converted

to

a

character

value).

The

attributes

of

A

are

known

from

the

DECLARE

statement.

Operational

expressions

An

operational

expression

consists

of

one

or

more

single

operations.

A

single

operation

is

either

a

prefix

operation

(an

operator

preceding

a

single

operand)

or

an

infix

operation

(an

operator

between

two

operands).

The

two

operands

of

any

infix

operation

normally

should

be

the

same

data

type

when

the

operation

is

performed.

The

operands

of

an

operation

in

a

PL/I

expression

are

converted,

if

necessary,

to

the

same

data

type

before

the

operation

is

performed.

Detailed

rules

for

conversion

can

be

found

in

Chapter

5,

“Data

conversion,”

on

page

73.

There

are

few

restrictions

on

the

use

of

different

data

types

in

an

expression.

However,

these

mixtures

imply

conversions.

If

conversions

take

place

at

run

time,

the

program

takes

longer

to

run.

Also,

conversion

can

result

in

loss

of

precision.

When

using

expressions

that

mix

data

types,

you

should

understand

the

relevant

conversion

rules.

Intermediate

results

Chapter

4.

Expressions

and

references

55

There

are

five

classes

of

operations—pointer,

arithmetic,

bit,

comparison,

and

concatenation.

Pointer

Operations

The

following

pointer

operations

can

be

used:

v

Add

an

expression

to

or

subtract

an

expression

from

a

pointer

expression.

The

expression

type

must

be

computational.

If

necessary,

the

nonpointer

operand

is

converted

to

FIXED

BINARY(31,0),

for

example:

Ptr1

=

Ptr1

-

16;

Ptr2

=

Ptr1

+

(I*J);

You

can

also

use

the

built-in

function,

POINTERADD,

to

perform

these

operations.

You

must

use

POINTERADD

if

the

result

is

used

as

a

locator

reference,

for

example:

(Ptr1

+

16)

->

Based_ptr

is

invalid

pointeradd(Ptr1,16)

->

Based_ptr

is

valid

v

Subtract

two

pointers

to

obtain

the

logical

difference.

The

result

is

a

FIXED

BINARY(31,0)

value.

Bin31

=

Ptr2

-

Ptr1;

v

Compare

pointer

expressions

using

infix

operators.

if

Ptr2

>

Ptr1

then

Bin31

=

Ptr2

-

Ptr1;

v

Use

pointer

expressions

in

arithmetic

contexts

using

the

built-in

function,

BINARYVALUE.

Bin31

=

Bin31

+

binaryvalue(Ptr1);

v

Use

computational

expressions

in

pointer

contexts

using

the

built-in

function,

POINTERVALUE.

dcl

1

Cvtprt

pointer

based(pointervalue(16));

dcl

1

Cvt

based(Cvtptr),

2

Cvt

...;

If

necessary,

the

expressions

are

converted

to

FIXED

BINARY(31,0).

A

PL/I

block

can

use

pointer

arithmetic

to

access

any

element

within

a

structure

or

an

array

variable.

However,

the

block

must

be

passed

the

containing

structure

or

array

variable,

or

have

the

referenced

aggregate

within

its

name

scope.

Arithmetic

operations

An

arithmetic

operation

is

specified

by

combining

operands

with

one

of

these

operators:

+

−

*

/

**

The

plus

sign

and

the

minus

sign

can

appear

as

prefix

operators

or

as

infix

operators.

All

other

arithmetic

operators

can

appear

only

as

infix

operators.

(Arithmetic

operations

can

also

be

specified

by

the

ADD,

SUBTRACT,

DIVIDE,

and

MULTIPLY

built-in

functions.)

Prefix

operators

can

precede

and

be

associated

with

any

of

the

operands

of

an

infix

operation.

For

example,

in

the

expression

A*-B,

the

minus

sign

indicates

that

the

value

of

A

is

multiplied

by

-1

times

the

value

of

B.

Operational

expressions

56

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

More

than

one

prefix

operator

can

precede

and

be

associated

with

a

single

variable.

More

than

one

positive

prefix

operator

has

no

cumulative

effect,

but

two

negative

prefix

operators

have

the

same

effect

as

a

single

positive

prefix

operator.

Data

conversion

in

arithmetic

operations

The

two

operands

of

an

arithmetic

operation

can

differ

in

type,

base,

mode,

precision,

and

scale.

When

they

differ,

conversion

takes

place

as

described

below.

(For

coded

arithmetic

operands,

you

can

also

determine

conversions

using

Table

13

on

page

58.

Each

operand

is

converted

to

the

type,

base,

and

mode

of

the

result.

It

is

not

necessarily

converted

to

the

result’s

precision

and

scale.)

Note:

Scaled

FIXED

BINARY

operands

are

converted

to

scaled

FIXED

DECIMAL

before

any

operations

on

them

are

performed.

Type:

Character

operands

are

converted

to

FIXED

DECIMAL(N,0).

Bit

operands

are

converted

to

FIXED

BINARY(M,0).

(Refer

to

“Limits,”

on

page

531

for

the

maximums.)

Numeric

character

operands

are

converted

to

DECIMAL

with

scale

and

precision

determined

by

the

picture-specification.

Graphic

and

widechar

variables

and

strings

are

allowed

in

all

computational

contexts.

If

conversion

is

necessary,

the

rules

followed

are

the

same

as

for

character.

The

result

of

an

arithmetic

operation

is

always

in

coded

arithmetic

form.

Type

conversion

is

the

only

conversion

that

can

take

place

in

an

arithmetic

prefix

operation.

Base:

If

the

bases

of

the

two

operands

differ,

the

decimal

operand

is

converted

to

binary.

Mode:

If

the

modes

of

the

two

operands

differ,

the

real

operand

is

converted

to

complex

mode

by

acquiring

an

imaginary

part

of

zero

with

the

same

base,

scale,

and

precision

as

the

real

part.

The

exception

to

this

is

in

the

case

of

exponentiation

when

the

second

operand

(the

exponent

of

the

operation)

is

fixed-point

real

with

a

scaling

factor

of

zero.

In

such

a

case,

conversion

is

not

necessary.

Precision:

If

only

precisions

and/or

scaling

factors

vary,

type

conversion

is

not

necessary.

Scale:

If

the

scales

of

the

two

operands

differ,

the

fixed-point

operand

is

converted

to

floating-point

scale.

The

exception

to

this

is

in

the

case

of

exponentiation

when

the

first

operand

is

of

floating-point

scale

and

the

second

operand

(the

exponent

of

the

operation)

is

fixed-point

with

a

scaling

factor

of

zero,

that

is,

an

integer

or

a

variable

that

has

been

declared

with

precision

(p,0).

In

such

a

case,

conversion

is

not

necessary,

but

the

result

is

floating-point.

If

both

operands

of

an

exponentiation

operation

are

fixed-point,

conversions

can

occur

in

one

of

the

following

ways:

v

Both

operands

are

converted

to

floating-point

if

the

exponent

has

a

precision

other

than

(p,0).

v

The

first

operand

is

converted

to

floating-point

unless

the

exponent

is

an

unsigned

integer.

v

The

first

operand

is

converted

to

floating-point

if

precisions

indicate

that

the

result

of

the

fixed-point

exponentiation

would

exceed

the

maximum

number

of

digits

allowed.

Arithmetic

operations

Chapter

4.

Expressions

and

references

57

Results

of

arithmetic

operations

After

any

necessary

conversion

of

the

operands

in

an

expression

has

been

carried

out,

the

arithmetic

operation

is

performed

and

a

result

is

obtained.

This

result

can

be

the

value

of

the

expression,

or

it

can

be

an

intermediate

result

upon

which

further

operations

are

to

be

performed,

or

a

condition

can

be

raised.

Table

13

and

Table

14

on

page

59

show

the

attributes

and

precisions

that

result

from

various

arithmetic

operations.

Table

18

on

page

63

shows

the

attributes

of

the

result

for

the

special

cases

of

exponentiation

noted

in

the

right-hand

columns

of

Table

13

and

Table

14

on

page

59.

Under

the

compiler

option

RULES(ANS),

if

one

operand

is

scaled

FIXED

DECIMAL

and

the

other

is

FIXED

BINARY,

the

FIXED

BINARY

value

is

converted

to

FIXED

DECIMAL.

Table

15

on

page

60

shows

the

attributes

and

precisions

that

result

for

this

case

under

compiler

option

RULES(ANS).

For

more

information

on

the

RULES

compiler

option,

see

the

Programming

Guide.

Table

13.

Results

of

arithmetic

operations

for

one

or

more

FLOAT

operands

1st

Operand

(p1,q1)

2nd

Operand

(p2,q2)

Attributes

of

the

Result

for

Addition,

Subtraction,

Multiplication,

or

Division

Addition

or

Subtraction

Precision

Multipli-

cation

Precision

Division

Precision

Attributes

of

the

Result

for

Exponentiation

FLOAT

DECIMAL

(p1)

FLOAT

DECIMAL

(p2)

FLOAT

DECIMAL

(p)

p

=

MAX(p1,p2)

FLOAT

DECIMAL

(p)

(unless

special

case

C

applies)

p

=

MAX(p1,p2)

FLOAT

DECIMAL

(p1)

FLOAT

DECIMAL

(p2,q2)

FIXED

DECIMAL

(p1,q1)

FLOAT

DECIMAL

(p2)

FLOAT

BINARY

(p1)

FLOAT

BINARY

(p2)

FLOAT

BINARY

(p)

FLOAT

BINARY

(p)

(unless

special

case

C

applies)

p

=

MAX(p1,p2)

FLOAT

BINARY

(p1)

FIXED

BINARY

(p2,q2)

FIXED

BINARY

(p1,q1)

FLOAT

BINARY

(p2,q2)

FIXED

DECIMAL

(p1,q1)

FLOAT

BINARY

(p2)

FLOAT

BINARY

(p)

p

=

MAX(

CEIL(p1*3.32),p2)

FLOAT

BINARY

(p)

(unless

special

case

A

or

C

applies)

p

=

MAX(

CEIL(p1*3.32),p2)

FLOAT

DECIMAL

(p1)

FLOAT

BINARY

(p1,q2)

FLOAT

DECIMAL

(p1)

FLOAT

BINARY

(p2)

Results

of

arithmetic

operations

58

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Table

13.

Results

of

arithmetic

operations

for

one

or

more

FLOAT

operands

(continued)

1st

Operand

(p1,q1)

2nd

Operand

(p2,q2)

Attributes

of

the

Result

for

Addition,

Subtraction,

Multiplication,

or

Division

Addition

or

Subtraction

Precision

Multipli-

cation

Precision

Division

Precision

Attributes

of

the

Result

for

Exponentiation

FIXED

BINARY

(p1,q1)

FLOAT

DECIMAL

(p2)

FLOAT

BINARY

(p)

p

=

MAX(p1,CEIL(p2*3.32))

FLOAT

BINARY

(p)

(unless

special

case

B

or

C

applies)

p

=

MAX(

p1,CEIL(p2*3.32))

FLOAT

BINARY

(p1)

FIXED

DECIMAL

(p2,q2)

FLOAT

BINARY

(p1)

FLOAT

DECIMAL

(p2)

Notes:

1.

Special

cases

of

exponentiation

are

described

in

Table

18

on

page

63.

2.

For

a

table

of

CEIL(N*3.32)

values,

see

Table

22

on

page

76.

Table

14.

Results

of

arithmetic

operations

between

two

unscaled

FIXED

operands

under

RULES(ANS)

1st

Operand

(p1,q1)

2nd

Operand

(p2,q2)

Attributes

of

the

Result

for

Addition,

Subtraction,

Multiplication,

or

Division

Addition

or

Subtraction

Precision

Multipli-

cation

Precision

Division

Precision

Attributes

of

the

Result

for

Exponentiation

FIXED

DECIMAL

(p1,0)

FIXED

DECIMAL

(p2,0)

FIXED

DECIMAL

(p,q)

p

=

1

+MAX(p1,p2)

q

=

0

p

=

1

+p1+p2

q

=

0

p

=

N

q

=

N−p1

FLOAT

DECIMAL

(p)

(unless

special

case

A

applies)

p

=

MAX(p1,p2)

FIXED

BINARY

(p1,0)

FIXED

BINARY

(p2,0)

FIXED

BINARY

(p,0)

p

=

1

+MAX(p1−q1,

p2−q2)

+q

q

=

0

p

=

1+p1

+p2

q

=

0

p

=

M

q

=

0

FLOAT

BINARY

(p)

(unless

special

case

B

applies)

p

=

MAX(p1,p2)

FIXED

DECIMAL

(p1,0)

FIXED

BINARY

(p2,0)

FIXED

BINARY

(p,0)

p

=

1

+MAX(r,p2)

q

=

0

p

=

1

+r+p2

q

=

0

p

=

M

q

=

0

FLOAT

BINARY

(p)

(unless

special

case

A

or

C

applies)

p

=

MAX(CEIL

(p1*3.32

),p2)

FIXED

BINARY

(p1,0)

FIXED

DECIMAL

(p2,0)

FIXED

BINARY

(p,0)

p

=

1

+MAX(p1,t)

q

=

0

p

=

1

+p1+t

q

=

0

p

=

M

q

=

0

FLOAT

BINARY

(p)

(unless

special

case

A

or

C

applies)

p

=

MAX(CEIL

(p1*3.32

),p2)

M

is

the

maximum

precision

for

FIXED

BINARY.

N

is

the

maximum

precision

for

FIXED

DECIMAL.

r

=

1

+

CEIL(p1*3.32)

s

=

CEIL(ABS(q1*3.32))

*

SIGN(q1)

t

=

1

+

CEIL(p2*3.32)

u

=

CEIL(ABS(q2*3.32))

*

SIGN(q2)

v

=

CEIL(p2/3.32)

w

=

CEIL(p1/3.32)

Results

of

arithmetic

operations

Chapter

4.

Expressions

and

references

59

Notes:

The

scaling

factor

must

be

in

the

range

−128

through

+127.

1.

Special

cases

of

exponentiation

are

described

in

Table

18

on

page

63.

2.

For

a

table

of

CEIL(N*3.32)

values,

see

Table

22

on

page

76.

3.

Under

RULES(ANS)

a

divide

with

unscaled

FIXED

operands

can

produce

a

scaled

result

only

if

both

operands

are

FIXED

DECIMAL.

Table

15.

Results

of

arithmetic

operations

between

two

scaled

FIXED

operands

under

RULES(ANS)

1st

Operand

(p1,q1)

2nd

Operand

(p2,q2)

Attributes

of

the

Result

for

Addition,

Subtraction,

Multiplication,

or

Division

Addition

or

Subtraction

Precision

Multipli-

cation

Precision

Division

Precision

Attributes

of

the

Result

for

Exponentiation

FIXED

DECIMAL

(p1,q1)

FIXED

DECIMAL

(p2,q2)

FIXED

DECIMAL

(p,q)

p

=

1

+

MAX(p1−q1,

p2−q2)

+q

q

=

MAX(q1,q2)

p

=

1

+p1+p2

q

=

q1+q2

p

=

N

q

=

N−p1+q1−q2

FLOAT

DECIMAL

(p)

(unless

special

case

A

applies)

p

=

MAX(p1,p2)

FIXED

DECIMAL

(p1,q1)

FIXED

BINARY

(p2,0)

FIXED

DECIMAL

(p,q)

p

=

1

+MAX(p1−

q1,v)

+q

q

=

q1

p

=

1

+p2+v

q

=

q1

p

=

N

q

=

N−q1

FLOAT

BINARY

(p)

(unless

special

case

A

or

C

applies)

p

=

MAX(CEIL

(p1*3.32

),p2)

FIXED

BINARY

(p1,0)

FIXED

DECIMAL

(p2,q2)

FIXED

DECIMAL

(p,q)

p

=

1

+MAX(p2−

q2,w)

+q

q

=

q2

p

=

1

+p2+w

q

=

q1

p

=

N

q

=

N−q2

FLOAT

BINARY

(p)

(unless

special

case

A

or

C

applies)

p

=

MAX(CEIL

(p1*3.32

),p2)

M

is

the

maximum

precision

for

FIXED

BINARY.

N

is

the

maximum

precision

for

FIXED

DECIMAL.

r

=

1

+

CEIL(p1*3.32)

s

=

CEIL(ABS(q1*3.32))

*

SIGN(q1)

t

=

1

+

CEIL(p2*3.32)

u

=

CEIL(ABS(q2*3.32))

*

SIGN(q2)

v

=

CEIL(p2/3.32)

w

=

CEIL(p1/3.32)

Notes:

The

scaling

factor

must

be

in

the

range

−128

through

+127.

1.

Special

cases

of

exponentiation

are

described

in

Table

18

on

page

63.

2.

For

a

table

of

CEIL(N*3.32)

values,

see

Table

22

on

page

76.

3.

Under

RULES(ANS),

scaled

FIXED

BINARY

is

not

allowed.

Results

of

arithmetic

operations

60

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Table

16.

Results

of

arithmetic

operations

between

two

FIXED

operands

under

RULES(IBM)

1st

Operand

(p1,q1)

2nd

Operand

(p2,q2)

Attributes

of

the

Result

for

Addition,

Subtraction,

Multiplication,

or

Division

Addition

or

Subtraction

Precision

Multipli-

cation

Precision

Division

Precision

Attributes

of

the

Result

for

Exponentiation

FIXED

DECIMAL

(p1,q1)

FIXED

DECIMAL

(p2,q2)

FIXED

DECIMAL

(p,q)

p

=

1

+MAX(p1−q1,

p2−q2)

+q

q

=

MAX(q1,q2)

p

=

1

+p1+p2

q

=

q1+q2

p

=

N

q

=

N−p1+q1−q2

FLOAT

DECIMAL

(p)

(unless

special

case

A

applies)

p

=

MAX(p1,p2)

FIXED

BINARY

(p1,q1)

FIXED

BINARY

(p2,q2)

FIXED

BINARY

(p,q)

p

=

1

+MAX(p1−q1,

p2−q2)

+q

q

=

MAX(q1,q2)

p

=

1

+p1+p2

q

=

q1+q2

p

=

M

q

=

M−p1

+q1−q2

FLOAT

BINARY

(p)

(unless

special

case

B

applies)

p

=

MAX(p1,p2)

FIXED

DECIMAL

(p1,q1)

FIXED

BINARY

(p2,q2)

FIXED

BINARY

(p,q)

p

=

1

+MAX(r−s,

p2−q2)+q

q

=

MAX(s,q2)

p

=

1+r

+p2

q

=

s+q2

p

=

M

q

=

M−r

+s−q2

FLOAT

BINARY

(p)

(unless

special

case

A

or

C

applies)

p

=MAX(

CEIL((p1*3.32

),p2)

FIXED

BINARY

(p1,q1)

FIXED

DECIMAL

(p2,q2)

FIXED

BINARY

(p,q)

p

=

1

+MAX(p1−

q1,t−u)

+q

q

=

MAX(s,q1,u)

p

=

1

+p1+t

q

=

q1+u

p

=

M

q

=

M−p1

+q1−u

FLOAT

BINARY

(p)

(unless

special

case

A

or

C

applies)

p

=

MAX(p1,

CEIL(p2*3.32))

M

is

the

maximum

precision

for

FIXED

BINARY.

N

is

the

maximum

precision

for

FIXED

DECIMAL.

r

=

1

+

CEIL(p1*3.32)

s

=

CEIL(ABS(q1*3.32))

*

SIGN(q1)

t

=

1

+

CEIL(p2*3.32)

u

=

CEIL(ABS(q2*3.32))

*

SIGN(q2)

v

=

CEIL(p2/3.32)

w

=

CEIL(p1/3.32)

Notes:

The

scaling

factor

must

be

in

the

range

−128

through

+127.

1.

Special

cases

of

exponentiation

are

described

in

Table

18

on

page

63.

2.

For

a

table

of

CEIL(N*3.32)

values,

see

Table

22

on

page

76.

Consider

the

expression:

A

*

B

+

C

The

operation

A

*

B

is

performed

first,

to

give

an

intermediate

result.

Then

the

value

of

the

expression

is

obtained

by

performing

the

operation

(intermediate

result)

+

C.

PL/I

gives

the

intermediate

result

attributes

the

same

way

it

gives

attributes

to

any

variable.

The

attributes

of

the

result

are

derived

from

the

attributes

of

the

two

operands

(or

the

single

operand

in

the

case

of

a

prefix

operation)

and

the

operator

involved.

The

way

the

attributes

of

the

result

are

derived

is

further

explained

under

“Targets”

on

page

54.

The

ADD,

SUBTRACT,

MULTIPLY,

and

DIVIDE

built-in

functions

allow

you

to

override

the

implementation

precision

rules

for

addition,

subtraction,

multiplication,

and

division

operations.

Results

of

arithmetic

operations

Chapter

4.

Expressions

and

references

61

FIXED

division:

FIXED

division

can

result

in

overflows

or

truncation.

For

example,

the

result

of

evaluating

the

expression:

25+1/3

is

undefined

and

the

FIXEDOVERFLOW

condition

is

raised

because

FIXED

division

results

in

a

value

of

maximum

implementation

defined

precision.

For

the

following

expression,

however:

25+01/3

The

result

is

25.3333333333333

(when

the

maximum

precision

is

15)

because

constants

have

the

precision

with

which

they

are

written.

The

results

of

the

two

evaluations

are

reached

as

shown

in

Table

17:

Table

17.

Comparison

of

FIXED

division

and

constant

expressions

Item

Precision

Result

1

3

1/3

25

25+1/3

(1,0)

(1,0)

(15,14)

(2,0)

(15,14)

1

3

0.33333333333333

25

undefined

(truncation

on

left;

FIXEDOVERFLOW

is

raised

when

the

maximum

precision

is

15)

01

3

01/3

25

25+01/3

(2,0)

(1,0)

(15,13)

(2,0)

(15,13)

01

3

00.3333333333333

25

25.3333333333333

The

PRECISION

built-in

function

can

also

be

used.

For

example:

25+prec(1/3,15,13)

Note:

Named

constants

are

recommended

for

situations

that

require

exact

precisions.

Results

of

arithmetic

operations

62

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Using

exponentiation

The

following

table

describes

how

exponentiation

is

handled

in

PL/I.

Table

18.

Special

cases

for

exponentiation

Case

First

Operand

Second

Operand

Attributes

of

Result

A

FIXED

DECIMAL

(p1,q1)

Integer

with

value

n

FIXED

DECIMAL

(p,q)

(provided

p

<=

N)

where

p

=

(p1

+

1)*n−1

and

q

=

q1*n

B

FIXED

BINARY

(p1,q1)

Integer

with

value

n

FIXED

BINARY

(p,q)

(provided

p

<=

M)

where

p

=

(p1

+

1)*n−1

and

q

=

p1*n

C

FLOAT

(p1)

FIXED

(p2,0)

FLOAT

(p1)

with

base

of

first

operand

Special

cases

of

x**y

in

real/complex

modes:

Real

mode:

Complex

mode:

If

x=0

and

y>0,

result

is

0.

If

x=0,

and

real

part

of

y>0

and

imaginary

part

of

y=0,

result

is

0.

If

x=0

and

y<=0,

ERROR

condition

is

raised.

If

x=0

and

real

part

of

y<=0

or

imaginary

part

of

y

¬=0,

ERROR

condition

is

raised.

If

x<0

and

y

not

FIXED

(p,0),

ERROR

condition

is

raised.

If

x¬=0

and

real

and

imaginary

parts

of

y=0,

result

is

1.

Bit

operations

A

bit

operation

is

specified

by

combining

operands

with

one

of

the

following

logical

operators:

¬

&

|

The

not/exclusive-or

symbol

(¬),

can

be

used

as

a

prefix

or

infix

operator.

The

and

(&)

symbol

and

the

or

(|)

symbol,

can

be

used

as

infix

operators

only.

(The

operators

have

the

same

function

as

in

Boolean

algebra.)

Operands

of

a

bit

operation

are

converted,

if

necessary,

to

bit

strings

before

the

operation

is

performed.

If

the

operands

of

an

infix

operation

do

not

have

the

same

length,

the

shorter

is

padded

on

the

right

with

'0'B.

The

result

of

a

bit

operation

is

a

bit

string

equal

in

length

to

the

length

of

the

operands.

Bit

operations

are

performed

on

a

bit-by-bit

basis.

Table

19

on

page

64

illustrates

the

result

for

each

bit

position

for

each

of

the

operators.

Table

20

on

page

64

shows

some

examples

of

bit

operations.

Results

of

arithmetic

operations

Chapter

4.

Expressions

and

references

63

Table

19.

Bit

operations

A

B

¬A

¬B

A&B

A|B

A¬B

1

1

0

0

1

1

0

1

0

0

1

0

1

1

0

1

1

0

0

1

1

0

0

1

1

0

0

0

Table

20.

Bit

operation

examples

For

these

operands

and

values

This

operation

Yields

this

result

A

=

'010111'B

B

=

'111111'B

C

=

'110'B

D

=

5

¬

A

'101000'B

¬

C

'001'B

C

&

B

'110000'B

A

|

B

'111111'B

A

¬

B

'’101000’'B

A

¬

C

'100111'B

C

|

B

'111111'B

A

|

(¬C)

'011111'B

¬((¬C)|(¬B))

'110111'B

SUBSTR(A,1,1)|(D=5)

'1'B

BOOL

built-in

function

In

addition

to

the

not,

exclusive-or,

and,

and

or

operations

using

the

operators

¬,

&,

and

|,

Boolean

operations

can

be

performed

using

the

BOOL

built-in

function

discussed

in

“BOOL”

on

page

390.

Comparison

operations

A

comparison

operation

is

specified

by

combining

operands

with

one

of

the

following

infix

operators:

<

¬<

<=

=

¬=

>=

>

¬>

The

result

of

a

comparison

operation

is

always

a

bit

string

of

length

1.

The

value

is

'1'B

if

the

relationship

is

true,

or

'0'B

if

the

relationship

is

false.

Comparisons

are

defined

as

follows:

Algebraic

is

the

comparison

of

signed

arithmetic

values

in

coded

arithmetic

form.

If

operands

differ

in

base,

scale,

precision,

or

mode,

they

are

converted

in

a

manner

analogous

to

arithmetic

operation

conversions.

Numeric

character

data

is

converted

to

coded

arithmetic

before

comparison.

Only

the

operators

=

and

¬=

are

valid

for

comparison

of

operands

that

are

complex

numbers.

Character

is

a

left-to-right,

character-by-character

comparison

of

characters

according

to

the

binary

value

of

the

bytes.

Bit

is

a

left-to-right,

bit-by-bit

comparison

of

binary

digits.

Bit

operations

64

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Graphic

is

a

left-to-right,

symbol-by-symbol

comparison

of

DBCS

characters.

The

comparison

is

based

on

the

binary

values

of

the

DBCS

characters.

Widechar

is

a

left-to-right,

widechar-by-widechar

comparison

of

characters

according

to

the

binary

value

of

the

byte-pairs.

Ordinal

data

is

a

comparison

of

ordinals

of

the

same

type

using

relational

operators.

Pointer

and

offset

data

is

a

comparison

of

pointer

and

offset

values

containing

any

relational

operators.

However,

the

only

conversion

that

can

take

place

is

offset

to

pointer.

Program-control

data

is

a

comparison

of

the

internal

coded

forms

of

the

operands.

Only

the

comparison

operators

=

and

¬=

are

allowed;

area

variables

cannot

be

compared.

No

type

conversion

can

take

place;

all

type

differences

between

operands

for

program-control

data

comparisons

are

in

error.

Comparisons

are

equal

for

the

following

operands:

Entry

In

a

comparison

operation,

it

is

not

an

error

to

specify

an

entry

variable

whose

value

is

an

entry

point

of

an

inactive

block.

Entry

names

on

the

same

PROCEDURE

or

ENTRY

statement

do

not

compare

equal.

Format

Format

labels

on

the

same

FORMAT

statement

compare

equal.

File

If

the

operands

represent

file

values,

all

of

whose

parts

are

equal.

Label

Labels

on

the

same

statement

compare

equal.

In

a

comparison

operation,

it

is

not

an

error

to

specify

a

label

variable

whose

value

is

a

label

constant

used

in

a

block

that

is

no

longer

active.

The

label

on

a

compound

statement

does

not

compare

equal

with

that

on

any

label

contained

in

the

body

of

the

compound

statement.

If

the

operands

of

a

computational

data

comparison

have

data

types

that

are

appropriate

to

different

types

of

comparison,

the

operand

of

the

lower

precedence

is

converted

to

conform

to

the

comparison

type

of

the

other.

The

precedence

of

comparison

types

is

(1)

algebraic

(highest),

(2)

widechar,

(3)

graphic,

(4)

character,

(5)

bit.

For

example,

if

a

bit

string

is

compared

with

a

fixed

decimal

value,

the

bit

string

is

converted

to

fixed

binary

for

algebraic

comparison

with

the

decimal

value.

The

decimal

value

is

also

converted

to

fixed

binary.

In

the

comparison

of

strings

of

unequal

lengths,

the

shorter

string

is

padded

on

the

right.

This

padding

consists

of:

v

Blanks

in

a

character

comparison

v

'0'B

in

a

bit

comparison

v

A

graphic

(DBCS)

blank

in

a

graphic

comparison.

v

A

widechar

blank

(’0020’wx)

in

a

widechar

comparison.

The

following

example

shows

a

comparison

operation

in

an

IF

statement:

Comparison

operations

Chapter

4.

Expressions

and

references

65

if

A

=

B

then

action-if-true;

else

action-if-false;

The

evaluation

of

the

expression

A

=

B

yields

either

'1'B,

for

true,

or

'0'B,

for

false.

In

the

following

assignment

statement:

X

=

A

<=

B;

the

value

'1'B

is

assigned

to

X

if

A

is

less

than

B;

otherwise,

the

value

'0'B

is

assigned.

In

the

following

assignment

statement:

X

=

A

=

B;

the

first

equal

symbol

is

the

assignment

symbol;

the

second

equal

symbol

is

the

comparison

operator.

The

value

'1'B

is

assigned

to

X

if

A

is

equal

to

B;

otherwise,

the

value

'0'B

is

assigned.

An

example

of

comparisons

in

an

arithmetic

expression

is:

(X<0)*A

+

(0<=X

&

X<=100)*B

+

(100<X)*C

The

value

of

the

expression

is

A,

B,

or

C

and

is

determined

by

the

value

of

X.

Concatenation

operations

A

concatenation

operation

is

specified

by

combining

operands

with

the

concatenation

infix

operator:

\

Concatenation

signifies

that

the

operands

are

to

be

joined

in

such

a

way

that

the

last

character,

bit,

graphic

or

widechar

of

the

operand

to

the

left

immediately

precedes

the

first

character,

bit,

graphic

or

widechar

of

the

operand

to

the

right,

with

nothing

intervening.

The

concatenation

operator

can

cause

conversion

to

a

string

type

because

concatenation

can

be

performed

only

upon

strings—either

character,

bit,

graphic

or

widechar.

The

results

differ

according

to

the

setting

of

the

RULES

compiler

option:

Results

under

RULES(IBM)

When

you

specify

RULES(IBM),

the

concatenation

operator

behaves

as

folows:

v

If

either

operand

is

widechar,

the

result

is

widechar.

v

Else,

if

either

operand

is

graphic,

the

result

is

graphic.

v

Else,

if

either

operand

is

bit

or

binary,

the

result

is

bit.

v

Otherwise

the

result

is

character.

For

example:

dcl

B

bin(4)

initial(4),

C

bit(1)

initial(’1’b);

put

skip

list

(B

\

C);

/*

Produces

’01001’

not

’bbb41’

*/

Results

under

RULES(ANS):

When

you

specify

RULES(ANS),

the

concatenation

operator

behaves

as

follows:

v

If

either

operand

is

widechar,

the

result

is

widechar.

Comparison

operations

66

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

v

Else,

if

either

operand

is

graphic,

the

result

is

graphic.

v

Else,

if

both

operands

are

bit,

the

result

is

bit.

v

Otherwise

the

result

is

character.

Consider

this

example:

dcl

B

bin(4)

initial(4),

C

bit(1)

initial(’1’b);

put

skip

list

(B

\

C);

/*

Produces

’bbb41’,

not

’01001’

*/

The

result

of

a

concatenation

operation

is

a

string

whose

length

is

equal

to

the

sum

of

the

lengths

of

the

two

operands,

and

whose

type

(that

is,

character,

bit,

graphic

or

widechar)

is

the

same

as

that

of

the

two

operands.

If

an

operand

requires

conversion

for

concatenation,

the

result

depends

upon

the

length

of

the

string

to

which

the

operand

is

converted.

For

these

operands

and

values

This

operation

Yields

this

result

A

=

'010111'B

B

=

'101'B

C

=

'xy,Z'

D

=

'aa/BB'

A

\

B

'010111_101'B

A

\

A

\

B

'010111_010111_101'B

C

\

D

'xy,Zaa/BB'

D

\

C

'aa/BBxy,Z'

B

\

D

'101aa/BB'

In

the

last

example,

the

bit

string

'101'B

is

converted

to

the

character

string

'101'

before

the

concatenation

is

performed.

The

result

is

a

character

string.

Combinations

of

operations

Different

types

of

operations

can

be

combined

within

the

same

operational

expression.

Any

combination

can

be

used.

For

example:

declare

Result

bit(3),

A

fixed

decimal(1),

B

fixed

binary

(3),

C

character(2),

D

bit(4);

Result

=

A

+

B

<

C

&

D;

Each

operation

within

the

expression

is

evaluated

according

to

the

rules

for

that

kind

of

operation,

with

necessary

data

conversions

taking

place

before

the

operation

is

performed,

as

follows:

v

The

decimal

value

of

A

is

converted

to

binary

base.

v

The

binary

addition

is

performed,

adding

A

and

B.

v

The

binary

result

is

compared

with

the

converted

binary

value

of

C.

v

The

bit

result

of

the

comparison

is

extended

to

the

length

of

the

bit

variable

D,

and

the

&

operation

is

performed.

v

The

result

of

the

&

operation,

a

bit

string

of

length

4,

is

assigned

to

Result

without

conversion,

but

with

truncation

on

the

right.

The

expression

in

this

example

is

evaluated

operation-by-operation,

from

left

to

right.

The

order

of

evaluation,

however,

depends

upon

the

priority

of

the

operators

appearing

in

the

expression.

Concatenation

operations

Chapter

4.

Expressions

and

references

67

Priority

of

operators

The

priority

of

the

operators

in

the

evaluation

of

expressions

is

shown

in

Table

21.

Table

21.

Priority

of

operations

and

guide

to

conversions

Priority

Operator

Type

of

Operation

Remarks

1

**

Arithmetic

Result

is

in

coded

arithmetic

form

prefix

+,

−

Arithmetic

No

conversion

is

required

if

operand

is

in

coded

arithmetic

form

Operand

is

converted

to

FIXED

DECIMAL

if

it

is

a

CHARACTER

string

or

numeric

character

(PICTURE)

representation

of

a

fixed-point

decimal

number

Operand

is

converted

to

FLOAT

DECIMAL

if

it

is

a

numeric

character

(PICTURE)

representation

of

a

floating-point

decimal

number

Operand

is

converted

to

FIXED

BINARY

if

it

is

a

BIT

string

prefix

¬

Bit

string

All

non-BIT

data

converted

to

BIT

2

*,

/

Arithmetic

Result

is

in

coded

arithmetic

form

3

infix

+,

−

Arithmetic

Result

is

in

coded

arithmetic

form

4

{

Concatenation

Refer

to

“Results

under

RULES(ANS)”

on

page

66

and

“Results

under

RULES(IBM)”

on

page

66

5

<,

¬<,

<=,

=,

¬=,

>=,

>,

¬>

Comparison

Result

is

always

either

'1'B

or

'0'B

6

&

Bit

string

All

non-BIT

data

converted

to

BIT

7

│

Bit

string

All

non-BIT

data

converted

to

BIT

infix

¬

Bit

string

All

non-BIT

data

converted

to

BIT

Notes:

1.

The

operators

are

listed

in

order

of

priority,

group

1

having

the

highest

priority

and

group

7

the

lowest.

All

operators

in

the

same

priority

group

have

the

same

priority.

For

example,

the

exponentiation

operator

**

has

the

same

priority

as

the

prefix

+

and

prefix

−

operators

and

the

not

operator

¬.

2.

For

priority

group

1,

if

two

or

more

operators

appear

in

an

expression,

the

order

of

priority

is

right

to

left

within

the

expression;

that

is,

the

rightmost

exponentiation

or

prefix

operator

has

the

highest

priority,

the

next

rightmost

the

next

highest,

and

so

on.

For

all

other

priority

groups,

if

two

or

more

operators

in

the

same

priority

group

appear

in

an

expression,

their

order

or

priority

is

their

order

left

to

right

within

the

expression.

The

order

of

evaluation

of

the

expression

A

+

B

<

C

&

D

is

the

same

as

if

the

elements

of

the

expression

were

parenthesized

as

(((A

+

B)

<

C)

&

D)

The

order

of

evaluation

(and,

consequently,

the

result)

of

an

expression

can

be

changed

through

the

use

of

parentheses.

Expressions

enclosed

in

parentheses

are

evaluated

first,

to

a

single

value,

before

they

are

considered

in

relation

to

surrounding

operators.

The

above

expression,

for

example,

might

be

changed

as

follows:

(A

+

B)

<

(C

&

D)

Priority

of

operators

68

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

The

value

of

A

converts

to

fixed-point

binary,

and

the

addition

is

performed,

yielding

a

fixed-point

binary

result

(result_1).

The

value

of

C

converts

to

a

bit

string

(if

valid

for

such

conversion)

and

the

and

operation

is

performed.

At

this

point,

the

expression

is

reduced

to:

Result_1

<

Result_2

Result_2

is

converted

to

binary,

and

the

algebraic

comparison

is

performed,

yielding

a

bit

string

of

length

1

for

the

entire

expression.

The

priority

of

operators

is

defined

only

within

operands

(or

sub-operands).

Consider

the

following

example:

A

+

(B

<

C)

&

(D

\

E

**

F)

In

this

case,

PL/I

specifies

only

that

the

exponentiation

occurs

before

the

concatenation.

It

does

not

specify

the

order

of

the

evaluation

of

(D\E

**

F)

in

relation

to

the

evaluation

of

the

other

operand

(A

+

(B

<

C)).

Any

operational

expression

(except

a

prefix

expression)

must

eventually

be

reduced

to

a

single

infix

operation.

The

operands

and

operator

of

that

operation

determine

the

attributes

of

the

result

of

the

entire

expression.

In

the

following

example,

the

&

operator

is

the

operator

of

the

final

infix

operation.

A

+

B

<

C

&

D

The

result

of

the

evaluation

is

a

bit

string

of

length

4.

In

the

next

example,

because

of

the

use

of

parentheses,

the

operator

of

the

final

infix

operation

is

the

comparison

operator:

(A

+

B)

<

(C

&

D)

The

evaluation

yields

a

bit

string

of

length

1.

Array

expressions

Array

expressions

are

allowed

as:

v

the

source

in

an

assignment

or

in

multiple

assignments

v

the

argument

to

the

ALL,

ANY,

POLY,

PROD

or

SUM

built-in

functions

v

an

argument

to

a

user

procedure

and

function,

as

long

as

the

associated

parameter

is

not

a

string

of

unknown

length

v

an

item

in

the

data-lists

of

PUT

LIST

and

PUT

EDIT

statements

Evaluation

of

an

array

expression

yields

an

array

result.

All

operations

performed

on

arrays

are

performed

element-by-element,

in

row-major

order.

Therefore,

all

arrays

referred

to

in

an

array

expression

must

have

the

same

number

of

dimensions,

and

each

dimension

must

be

of

identical

bounds.

Array

expressions

can

include

operators

(both

prefix

and

infix),

element

variables,

and

constants.

The

rules

for

combining

operations

and

for

data

conversion

of

operands

are

the

same

as

for

element

operations.

Prefix

operators

and

arrays

The

operation

of

a

prefix

operator

on

an

array

produces

an

array

of

identical

bounds.

Each

element

of

this

array

is

the

result

of

the

operation

performed

on

each

element

of

the

original

array.

For

example:

Priority

of

operators

Chapter

4.

Expressions

and

references

69

If

A

is

the

array

5

3

-9

1

2

7

6

3

-4

then

-A

is

the

array

-5

-3

9

-1

-2

-7

-6

-3

4

Infix

operators

and

arrays

Infix

operations

that

include

an

array

variable

as

one

operand

can

have

an

element

or

another

array

as

the

other

operand.

Array-and-element

operations

The

result

of

an

expression

with

an

element,

an

array,

and

an

infix

operator

is

an

array

with

bounds

identical

to

the

original

array.

Each

element

of

the

resulting

array

is

the

result

of

the

operation

between

each

corresponding

element

of

the

original

array

and

the

single

element.

For

example:

If

A

is

the

array

5

10

8

12

11

3

then

A*3

is

the

array

15

30

24

36

33

9

and

9

>

A

is

the

array

of

1

0

1

bit

strings

of

length

1

0

0

1

The

element

of

an

array-element

operation

can

be

an

element

of

the

same

array.

Consider

the

following

assignment

statement:

A

=

A

*

A(1,2);

Again,

using

the

above

values

for

A,

the

newly

assigned

value

of

A

would

be:

50

100

800

1200

1100

300

That

is,

the

value

of

A(1,2)

is

fetched

again.

Array-and-array

operations

If

the

two

operands

of

an

infix

operator

are

arrays,

the

arrays

must

have

the

same

number

of

dimensions,

and

corresponding

dimensions

must

have

identical

lower

bounds

and

identical

upper

bounds.

The

result

is

an

array

with

bounds

identical

to

those

of

the

original

arrays;

the

operation

is

performed

upon

the

corresponding

elements

of

the

two

original

arrays.

For

example:

If

A

is

the

array

2

4

3

6

1

7

4

8

2

and

if

B

is

the

array

1

5

7

8

3

4

6

3

1

then

A+B

is

the

array

3

9

10

14

4

11

10

11

3

and

A*B

is

the

array

2

20

21

48

3

28

24

24

2

and

A>B

is

the

array

of

1

0

0

bit

strings

of

length

1

0

0

1

0

1

1

Prefix

operators

and

arrays

70

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Structure

expressions

Structure

expressions,

unlike

structure

references,

are

allowed

only

in

assignments

and

as

arguments

to

procedures

or

functions,

as

long

as

the

associated

parameter

has

constant

extents.

All

structure

variables

appearing

in

a

structure

expression

must

have

identical

structuring,

which

means:

v

The

structures

must

have

the

same

minor

structuring

and

the

same

number

of

contained

elements

and

arrays.

v

The

positioning

of

the

elements

and

arrays

within

the

structure

(and

within

the

minor

structures,

if

any)

must

be

the

same.

v

Arrays

in

corresponding

positions

must

have

identical

bounds.

Restricted

expressions

Where

PL/I

requires

a

(possibly

signed)

constant,

a

restricted

expression

can

be

used.

A

restricted

expression

is

an

expression

whose

value

is

calculated

at

compile

time

and

used

as

a

constant.

For

example,

you

can

use

expressions

to

define

constants

required

for:

v

Extents

in

static,

parameter,

and

based

declarations

v

Extents

in

entry

descriptions

v

Values

and

iteration

factors

to

be

used

in

static

initialization

A

restricted

expression

is

identical

to

a

normal

expression

but

requires

that

each

operand

be:

v

A

constant

or

a

named

constant.

A

named

constant

must

be

declared

before

it

is

used.

v

A

built-in

function

applied

to

a

restricted

expression(s),

where

the

built-in

function

is

from

the

following

categories:

–

String-handling

–

Arithmetic

(except

RANDOM)

–

Mathematical

–

Floating-point

inquiry

–

Floating-point

manipulation

–

Integer

manipulation

–

Precision-handling

–

Array-handling

functions

DIMENSION,

LBOUND,

and

HBOUND

–

Storage-control

functions

BINARYVALUE,

LENGTH,

NULL,

OFFSETVALUE,

POINTERVALUE,

SIZE,

STORAGE,

and

SYSNULL
v

Type

functions

BIND,

CAST,

FIRST,

LAST,

RESPEC

and

SIZE

Examples

dcl

Max_names

fixed

bin

value

(1000),

Name_size

fixed

bin

value

(30),

Addr_size

fixed

bin

value

(20),

Addr_lines

fixed

bin

value

(4);

dcl

1

Name_addr(Max_names),

2

Name

char(Name_size),

2

*

union,

3

Address

char(Addr_lines*Addr_size),

/*

address

*/

3

addr(Addr_lines)

char(Addr_size),

2

*

char(0);

Structure

expressions

Chapter

4.

Expressions

and

references

71

dcl

One_Name_addr

char(size(Name_addr(1)));

/*

1

name/addr*/

dcl

Two_Name_addr

char(length(One_Name_addr)

*2);

/*

2

name/addrs

*/

dcl

Name_or_addr

char(max(Name_size,Addr_size))

based;

dcl

Ar(10)

pointer;

dcl

Ex

entry(

dim(lbound(Ar):hbound(Ar))

pointer);

dcl

Identical_to_Ar(

lbound(Ar):hbound(Ar)

)

pointer;

If

you

change

the

value

of

any

of

the

named

constants

in

the

example,

all

of

the

dependent

declarations

are

automatically

reevaluated.

Restricted

expressions

72

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Chapter

5.

Data

conversion

Built-in

functions

for

computational

data

conversion

74

Converting

string

lengths

.

.

.

.

.

.

.

.

.

. 75

Converting

arithmetic

precision

.

.

.

.

.

.

.

. 76

Converting

mode

.

.

.

.

.

.

.

.

.

.

.

. 76

Converting

other

data

attributes

.

.

.

.

.

.

. 76

Source-to-target

rules

.

.

.

.

.

.

.

.

.

.

. 77

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

DECIMAL

FIXED

to

BINARY

FIXED

with

fractions

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

Arithmetic

to

bit

string

.

.

.

.

.

.

.

.

. 85

Arithmetic

to

character

.

.

.

.

.

.

.

.

. 86

A

conversion

error

.

.

.

.

.

.

.

.

.

.

. 86

This

chapter

discusses

data

conversions

for

computational

data.

PL/I

converts

data

when

a

data

item

with

a

set

of

attributes

is

assigned

to

another

data

item

with

a

different

set

of

attributes.

In

this

chapter,

source

refers

to

the

data

item

to

be

converted,

and

target

refers

to

the

attributes

to

which

the

source

is

converted.

Topics

discussed

for

these

data

conversions

include:

Built-in

functions

String

lengths

Arithmetic

precision

Mode

Source-to-target

rules

Examples

of

data

conversion

are

included

at

the

end

of

the

chapter.

Data

conversion

for

locator

data

is

discussed

in

“Locator

conversion”

on

page

230.

Conversion

of

the

value

of

a

computational

data

item

can

change

its

internal

representation,

precision

or

mode

(for

arithmetic

values),

or

length

(for

string

values).

The

tables

that

follow

summarize

the

circumstances

that

can

cause

conversion

to

other

attributes.

Case

Target

Attributes

Assignment

Attributes

of

variable

on

left

of

assignment

symbol

Operand

in

an

expression

Determined

by

rules

for

evaluation

of

expressions

Stream

input

(GET

statement)

Attributes

of

receiving

field

Stream

output

(PUT

statement)

As

determined

by

format

list

if

stream

is

edit-directed,

otherwise

character-string

Argument

to

PROCEDURE

or

ENTRY

Attributes

of

corresponding

parameter

Argument

to

built-in

function

or

pseudovariable

Depends

on

the

function

or

pseudovariable

INITIAL

attribute

Other

attributes

of

variable

being

initialized

RETURN

statement

expression

Attributes

specified

in

PROCEDURE

statement

DO

statement,

BY,

TO,

or

REPEAT

option

Attributes

of

control

variable

The

following

can

cause

conversion

to

character

values:

Statement

Option

DISPLAY

Record

I/O

KEYFROMKEY

OPEN

TITLE

73

The

following

can

cause

conversion

to

a

BINARY

value:

Statement

Option/Attribute/Reference

DECLARE,

ALLOCATE,

DEFAULT

length,

size,

dimension,

bound,

repetition

factor

DELAY

milliseconds

FORMAT

(and

format

items

in

GET

and

PUT)

iteration

factorw,

d,

s,

p

OPEN

LINESIZE,

PAGESIZE

I/O

SKIP,

LINE,

IGNORE

Most

statements

subscript

All

attributes

for

source

and

target

data

items

(except

string

length)

must

be

specified

at

compile

time.

Conversion

can

raise

one

of

the

following

conditions:

CONVERSION,

OVERFLOW,

SIZE,

or

STRINGSIZE.

(Refer

to

Chapter

17,

“Conditions,”

on

page

339.)

Constants

can

be

converted

at

compile

time

as

well

as

at

run

time.

In

all

cases,

the

conversions

are

as

described

here.

More

than

one

conversion

might

be

required

for

a

particular

operation.

The

implementation

does

not

necessarily

go

through

more

than

one.

To

understand

the

conversion

rules,

it

is

convenient

to

consider

them

separately,

for

example:

dcl

A

fixed

dec(3,2)

init(1.23);

dcl

B

fixed

bin(15,5);

B

=

A;

In

this

example,

the

decimal

representation

of

1.23

is

first

converted

to

binary

(11,7),

as

1.0011101B.

Then

precision

conversion

is

performed,

resulting

in

a

binary

(15,5)

value

of

1.00111B.

Additional

examples

of

conversion

are

provided

at

the

end

of

this

chapter.

Built-in

functions

for

computational

data

conversion

Conversions

can

take

place

during

expression

evaluation,

I/O

GET

and

PUT

operations,

and

assignment

operations,

and

between

arguments

and

parameters.

Conversions

can

also

be

initiated

with

the

following

built-in

functions:

BINARY

BIT

CHAR

COMPLEX

DECIMAL

FIXED

FLOAT

GRAPHIC

IMAG

PRECISION

REAL

SIGNED

UNSIGNED

WIDECHAR

Each

is

discussed

in

Chapter

19,

“Built-in

functions,

pseudovariables,

and

subroutines.,”

on

page

365.

Each

function

returns

a

value

with

the

attribute

specified

by

the

function

name,

performing

any

required

conversions.

With

the

exception

of

the

conversions

performed

by

the

COMPLEX,

GRAPHIC,

and

IMAG

built-in

functions,

assignment

to

a

PL/I

variable

having

the

required

attributes

can

achieve

the

conversions

performed

by

these

built-in

functions.

Data

conversion

74

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

However,

you

might

find

it

easier

and

clearer

to

use

a

built-in

function

than

to

create

a

variable

solely

to

carry

out

a

conversion.

Converting

string

lengths

The

source

string

is

assigned

to

the

target

string

from

left

to

right.

If

the

source

string

is

longer

than

the

target,

excess

characters,

bits,

graphics

or

widechars

on

the

right

are

ignored,

and

the

STRINGSIZE

condition

is

raised.

For

fixed-length

targets,

if

the

target

is

longer

than

the

source,

the

target

is

padded

on

the

right.

If

STRINGSIZE

is

disabled,

and

the

length

of

the

source

and/or

the

target

is

determined

at

run

time,

and

the

target

is

too

short

to

contain

the

source,

unpredictable

results

can

occur.

Note:

If

you

use

SUBSTR

with

variables

as

the

parameters,

and

the

variables

specify

a

string

not

contained

in

the

target,

unpredictable

results

can

occur

if

the

STRINGRANGE

condition

is

not

enabled.

Character

strings

are

padded

with

blanks,

bit

strings

with

'0'B,

graphic

strings

with

DBCS

blanks,

and

widechar

strings

with

widechar

blanks.

declare

Subject

char(10);

Subject

=

’Transformations’;

'Transformations'

has

15

characters,

therefore,

when

PL/I

assigns

the

string

to

Subject,

it

truncates

five

characters

from

the

right

end

of

the

string.

This

is

equivalent

to

executing

the

following:

Subject

=

’Transforma’;

The

first

two

of

the

following

statements

assign

equivalent

values

to

Subject

and

the

last

two

assign

equivalent

values

to

Code:

Subject

=

’Physics’;

Subject

=

’Physics

’;

declare

Code

bit(10);

Code

=

’110011’B;

Code

=

’1100110000’B;

The

following

statements

do

not

assign

equivalent

values

to

Subject:

Subject

=

’110011’B;

Subject

=

’1100110000’B;

When

the

first

statement

is

executed,

the

bit

constant

on

the

right

is

first

converted

to

a

character

string

and

is

then

extended

on

the

right

with

blank

characters

rather

than

zero

characters.

This

statement

is

equivalent

to:

Subject

=

’110011bbbb’;

The

second

of

the

two

statements

requires

only

a

conversion

from

bit

to

character

type

and

is

equivalent

to:

Subject

=

’1100110000’;

A

string

value

is

not

extended

with

blank

characters

or

zero

bits

when

it

is

assigned

to

a

string

variable

that

has

the

VARYING

attribute.

Instead,

the

length

of

the

target

string

variable

is

set

to

the

length

of

the

assigned

string.

However,

truncation

will

occur

if

the

length

of

the

assigned

string

exceeds

the

maximum

length

declared

for

the

varying-length

string

variable.

Built-in

functions

for

computational

data

conversion

Chapter

5.

Data

conversion

75

Converting

arithmetic

precision

When

an

arithmetic

value

has

the

same

data

attributes

(except

for

precision)

as

the

target,

precision

conversion

is

required.

For

fixed-point

data

items,

decimal

or

binary

point

alignment

is

maintained

during

precision

conversion.

Therefore,

padding

or

truncation

can

occur

on

the

left

or

right.

If

nonzero

bits

or

digits

on

the

left

are

lost,

the

SIZE

condition

is

raised.

For

floating-point

data

items,

truncation

on

the

right,

or

padding

on

the

right

with

zeros,

can

occur.

Converting

mode

If

a

complex

value

is

converted

to

a

real

value,

the

imaginary

part

is

ignored.

If

a

real

value

is

converted

to

a

complex

value,

the

imaginary

part

is

zero.

Converting

other

data

attributes

Source-to-target

rules

are

given,

following

this

section,

for

converting

data

items

with

the

following

data

attributes:

v

Coded

arithmetic:

FIXED

BINARY

FIXED

DECIMAL

FLOAT

BINARY

FLOAT

DECIMAL
v

Arithmetic

character

PICTURE

v

CHARACTER

v

BIT

v

GRAPHIC

v

WIDECHAR

Changes

in

value

can

occur

in

converting

between

decimal

representations

and

binary

representation.

In

converting

between

binary

and

decimal,

the

factor

3.32

is

used

as

follows:

v

n

decimal

digits

convert

to

CEIL

(n*3.32)

binary

digits.

v

n

binary

digits

convert

to

CEIL

(n/3.32)

decimal

digits.

A

table

of

CEIL

values

is

provided

in

Table

22

to

calculate

these

conversions.

Table

22.

CEIL

(n*3.32)

and

CEIL

(n/3.32)

values

n

CEIL

(n*3.32)

n

CEIL

(n/3.32)

1

4

1-3

1

2

7

4-6

2

3

10

7-9

3

4

14

10-13

4

5

17

14-16

5

6

20

17-19

6

7

24

20-23

7

8

27

24-26

8

9

30

27-29

9

10

34

30-33

10

11

37

34-36

11

12

40

37-39

12

Converting

arithmetic

precision

76

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Table

22.

CEIL

(n*3.32)

and

CEIL

(n/3.32)

values

(continued)

n

CEIL

(n*3.32)

n

CEIL

(n/3.32)

13

44

40-43

13

14

47

44-46

14

15

50

47-49

15

16

531

50-53

16

17

57

54-56

17

18

60

57-59

18

19

64

60-63

19

20

67

64-66

20

21

70

67-69

21

22

74

70-73

22

23

77

74-76

23

24

80

77-79

24

25

83

80-83

25

26

87

84-86

26

27

90

87-89

27

28

93

90-92

28

29

97

93-96

29

30

100

97-99

30

31

103

100-102

31

32

107

103-106

32

33

110

107-109

33

110-112

34

113-116

35

Note

1:

While

ceil(16*3.32)

=

54,

the

value

53

is

used.

If

it

were

not,

a

float

decimal(16),

when

converted

to

binary,

would

have

to

be

converted

from

long

floating-point

to

extended

floating-point

(because

float

binary(54)

is

represented

as

extended

floating-point).

For

fixed-point

integer

values,

conversion

does

not

change

the

value.

For

fixed-point

fractional

values,

the

factor

3.32

provides

only

enough

digits

or

bits

so

that

the

converted

value

differs

from

the

original

value

by

less

than

1

digit

or

bit

in

the

rightmost

place.

For

example,

the

decimal

constant

.1,

with

attributes

FIXED

DECIMAL

(1,1),

converts

to

the

binary

value

.0001B,

converting

1/10

to

1/16.

The

decimal

constant

.10,

with

attributes

FIXED

DECIMAL

(2,2),

converts

to

the

binary

value

.0001100B,

converting

10/100

to

12/128.

Source-to-target

rules

Source:

FIXED

BINARY,

FIXED

DECIMAL,

FLOAT

BINARY,

and

FLOAT

DECIMAL

These

are

all

coded

arithmetic

data.

Rules

for

conversion

between

them

are

given

under

each

data

type

taken

as

a

target.

Arithmetic

character

PICTURE

Data

first

converts

to

decimal

with

scale

and

precision

determined

by

the

Target:

Coded

Arithmetic

Converting

other

data

attributes

Chapter

5.

Data

conversion

77

corresponding

PICTURE

specification.

The

decimal

value

then

converts

to

the

base,

scale,

mode,

and

precision

of

the

target.

See

the

specific

target

types

of

coded

arithmetic

data

using

FIXED

DECIMAL

or

FLOAT

DECIMAL

as

the

source.

CHARACTER

The

source

string

must

represent

a

valid

arithmetic

constant

or

complex

expression;

otherwise,

the

CONVERSION

condition

is

raised.

The

constant

can

be

preceded

by

a

sign

and

can

be

surrounded

by

blanks.

The

constant

cannot

contain

blanks

between

the

sign

and

the

constant,

or

between

the

end

of

the

real

part

and

the

sign

preceding

the

imaginary

part

of

a

complex

expression.

The

constant

has

base,

scale,

mode,

and

precision

attributes.

It

converts

to

the

attributes

of

the

target

when

they

are

independent

of

the

source

attributes,

as

in

the

case

of

assignment.

See

the

specific

target

types

of

coded

arithmetic

data

using

the

attributes

of

the

constant

as

the

source.

If

an

intermediate

result

is

necessary,

as

in

evaluation

of

an

operational

expression,

the

attributes

of

the

intermediate

result

are

the

same

as

if

a

decimal

fixed-point

value

of

precision

had

appeared

in

place

of

the

string.

(This

allows

the

compiler

to

generate

code

to

handle

all

cases,

regardless

of

the

attributes

of

the

contained

constant.)

Consequently,

any

fractional

portion

of

the

constant

might

be

lost.

See

the

specific

target

types

of

coded

arithmetic

data

using

FIXED

DECIMAL

as

the

source.

It

is

possible

that

during

the

initial

conversion

of

the

character

data

item

to

an

intermediate

fixed

decimal

number,

the

value

might

exceed

the

default

size

of

the

intermediate

result.

If

this

occurs,

the

SIZE

condition

is

raised

if

it

is

enabled.

If

a

character

string

representing

a

complex

number

is

assigned

to

a

real

target,

the

complex

part

of

the

string

is

not

checked

for

valid

arithmetic

characters

and

CONVERSION

cannot

be

raised,

since

only

the

real

part

of

the

string

is

assigned

to

the

target.

A

null

string

and

a

string

of

blanks

both

give

the

value

zero.

BIT

If

the

conversion

occurs

during

evaluation

of

an

operational

expression,

the

source

bit

string

is

converted

to

an

unsigned

value

that

is

FIXED

BINARY(M,0).

See

the

specific

target

types

of

coded

arithmetic

data

using

FIXED

BINARY

as

the

source.

If

the

source

string

is

longer

than

the

allowable

precision,

bits

on

the

left

are

ignored.

If

nonzero

bits

are

lost,

the

SIZE

condition

is

raised.

A

null

string

gives

the

value

zero.

GRAPHIC

Graphic

variables

and

strings

are

converted

to

CHARACTER,

and

then

follow

the

rules

for

character

source

described

WIDECHAR

Widechar

variables

and

strings

are

converted

to

CHARACTER,

and

then

follow

the

rules

for

character

source

described

in

78.

Source:

Target:

FIXED

BINARY

(p2,q2)

Source-to-target

rules

78

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

FIXED

DECIMAL

(p1,q1)

The

precision

of

the

result

is

p2

=

min(N,1+CEIL(p1*3.32))

and

q2=CEIL(ABS(q1*3.32))*SIGN(q1).

FLOAT

BINARY

(p1)

The

precision

conversion

is

as

described

under

“Converting

arithmetic

precision”

on

page

76

with

p1

as

declared

or

indicated

and

q1

as

indicated

by

the

binary

point

position

and

modified

by

the

value

of

the

exponent.

FLOAT

DECIMAL

(p1)

The

precision

conversion

is

the

same

as

for

FIXED

DECIMAL

to

FIXED

BINARY

with

p1

as

declared

or

indicated

and

q1

as

indicated

by

the

decimal

point

position

and

modified

by

the

value

of

the

exponent.

Arithmetic

character

PICTURE

See

“Target:

Coded

Arithmetic”

on

page

77.

CHARACTER

See

“Target:

Coded

Arithmetic”

on

page

77.

BIT

See

“Target:

Coded

Arithmetic”

on

page

77.

GRAPHIC

See

“Target:

Coded

Arithmetic”

on

page

77.

WIDECHAR

See

“Target:

Coded

Arithmetic”

on

page

77.

Source:

FIXED

BINARY

(p1,q1)

The

precision

of

the

result

is

p2=1+CEIL(p1/3.32)

and

q2=CEIL(ABS(q1/3.32))*SIGN(q1).

FLOAT

BINARY

(p1)

The

precision

conversion

is

the

same

as

for

FIXED

BINARY

to

FIXED

DECIMAL

with

p1

as

declared

or

indicated

and

q1

as

indicated

by

the

binary

point

position

and

modified

by

the

value

of

the

exponent.

FLOAT

DECIMAL

(p1)

The

precision

conversion

is

as

described

under

“Converting

arithmetic

precision”

on

page

76

with

p1

as

declared

or

indicated

and

q1

as

indicated

by

the

decimal

point

position

and

modified

by

the

value

of

the

exponent.

Arithmetic

character

PICTURE

See

“Target:

Coded

Arithmetic”

on

page

77.

CHARACTER

See

“Target:

Coded

Arithmetic”

on

page

77.

BIT

See

“Target:

Coded

Arithmetic”

on

page

77.

GRAPHIC

See

“Target:

Coded

Arithmetic”

on

page

77.

WIDECHAR

See

“Target:

Coded

Arithmetic”

on

page

77.

Target:

FIXED

DECIMAL

(p2,q2)

Source-to-target

rules

Chapter

5.

Data

conversion

79

Source:

FIXED

BINARY

(p1,q1)

The

precision

of

the

result

is

p2=p1.

The

exponent

indicates

any

fractional

part

of

the

value.

FIXED

DECIMAL

(p1,q1)

The

precision

of

the

result

is

p2=CEIL(p1*3.32).

The

exponent

indicates

any

fractional

part

of

the

value.

FLOAT

DECIMAL

(p1)

The

precision

of

the

result

is

p2=CEIL(p1*3.32).

Arithmetic

character

PICTURE

See

“Target:

Coded

Arithmetic”

on

page

77.

CHARACTER

See

“Target:

Coded

Arithmetic”

on

page

77.

BIT

See

“Target:

Coded

Arithmetic”

on

page

77.

GRAPHIC

See

“Target:

Coded

Arithmetic”

on

page

77.

WIDECHAR

See

“Target:

Coded

Arithmetic”

on

page

77.

Source:

FIXED

BINARY

(p1,q1)

The

precision

of

the

result

is

p2=CEIL(p1/3.32).

The

exponent

indicates

any

fractional

part

of

the

value.

FIXED

DECIMAL

(p1,q1)

The

precision

of

the

result

is

p2=p1.

The

exponent

indicates

any

fractional

part

of

the

value.

FLOAT

BINARY

(p1)

The

precision

of

the

result

is

p2=CEIL(p1/3.32).

Arithmetic

character

PICTURE

See

“Target:

Coded

Arithmetic”

on

page

77.

CHARACTER

See

“Target:

Coded

Arithmetic”

on

page

77.

BIT

See

“Target:

Coded

Arithmetic”

on

page

77.

GRAPHIC

See

“Target:

Coded

Arithmetic”

on

page

77.

Target:

FLOAT

BINARY

(p2)

Target:

FLOAT

DECIMAL

(p2)

Source-to-target

rules

80

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

WIDECHAR

See

“Target:

Coded

Arithmetic”

on

page

77.

The

arithmetic

character

PICTURE

data

item

is

the

character

representation

of

a

decimal

fixed-point

or

floating-point

value.

The

following

descriptions

for

source

to

arithmetic

character

PICTURE

target

show

those

target

attributes

that

allow

assignment

without

loss

of

leftmost

or

rightmost

digits.

Source:

FIXED

BINARY

(p1,q1)

The

target

must

imply:

fixed

decimal

(1+x+q-y,q)

or

float

decimal

(x)

where

x>=CEIL(p1/3.32),

y=CEIL(q1/3.32),

and

q>=y.

FIXED

DECIMAL

(p1,q1)

The

target

must

imply:

fixed

decimal

(x+q-q1,q)

or

float

decimal

(x)

where

x>=p1

and

q>=q1.

FLOAT

BINARY

(p1)

The

target

must

imply:

fixed

decimal

(p,q)

or

float

decimal

(p)

where

p>=CEIL(p1/3.32)

and

the

values

of

p

and

q

take

account

of

the

range

of

values

that

can

be

held

by

the

exponent

of

the

source.

FLOAT

DECIMAL

(p1)

The

target

must

imply:

fixed

decimal

(p,q)

or

float

decimal

(p)

where

p>=

p1

and

the

values

of

p

and

q

take

account

of

the

range

of

values

that

can

be

held

by

the

exponent

of

the

source.

Arithmetic

character

PICTURE

The

implied

attributes

of

the

source

will

be

either

FIXED

DECIMAL

or

FLOAT

DECIMAL.

See

the

respective

entries

for

this

target.

CHARACTER

See

“Target:

Coded

Arithmetic”

on

page

77.

BIT(n)

The

target

must

imply:

fixed

decimal

(1+x+q,q)

or

float

decimal

(x)

where

x>=ceil(n/3.32)

and

q>=0.

Target:

Arithmetic

character

PICTURE

Source-to-target

rules

Chapter

5.

Data

conversion

81

GRAPHIC

See

“Target:

Coded

Arithmetic”

on

page

77.

WIDECHAR

See

“Target:

Coded

Arithmetic”

on

page

77.

Source:

FIXED

BINARY,

FIXED

DECIMAL,

FLOAT

BINARY,

and

FLOAT

DECIMAL

The

coded

arithmetic

value

is

converted

to

a

decimal

constant

(preceded

by

a

minus

sign

if

it

is

negative)

as

described

below.

The

constant

is

inserted

into

an

intermediate

character

string

whose

length

is

derived

from

the

attributes

of

the

source.

The

intermediate

string

is

assigned

to

the

target

according

to

the

rules

for

string

assignment.

The

rules

for

coded-arithmetic-to-character-string

conversion

are

also

used

for

list-directed

and

data-directed

output,

and

for

evaluating

keys

(even

for

REGIONAL

files).

FIXED

BINARY

(p1,q1)

The

binary

precision

(p1,q1)

is

first

converted

to

the

equivalent

decimal

precision

(p,q),

where

p=1+CEIL(p1/3.32)

and

q=CEIL(ABS(q1/3.32))*SIGN(q1).

Thereafter,

the

rules

are

the

same

as

for

FIXED

DECIMAL

to

CHARACTER.

FIXED

DECIMAL

(p1,q1)

If

p1>=q1>=0

then:

v

The

constant

is

right

adjusted

in

a

field

of

width

p1+3.

(The

3

is

necessary

to

allow

for

the

possibility

of

a

minus

sign,

a

decimal

or

binary

point,

and

a

leading

zero

before

the

point.)

v

Leading

zeros

are

replaced

by

blanks,

except

for

a

single

zero

that

immediately

precedes

the

decimal

point

of

a

fractional

number.

A

single

zero

also

remains

when

the

value

of

the

source

is

zero.

v

A

minus

sign

precedes

the

first

digit

of

a

negative

number.

A

positive

value

is

unsigned.

v

If

q1=0,

no

decimal

point

appears;

if

q1>0,

a

decimal

point

appears

and

the

constant

has

q

fractional

digits.

If

p1<q1

or

q1<0,

a

scaling

factor

appends

to

the

right

of

the

constant;

the

constant

is

an

optionally-signed

integer.

The

scaling

factor

appears

even

if

the

value

of

the

item

is

zero

and

has

the

following

syntax:

F{+|-}nn

where

{+|-}nn

has

the

value

of

-q1.

The

length

of

the

intermediate

string

is

p1+k+3,

where

k

is

the

number

of

digits

necessary

to

hold

the

value

of

q1

(not

including

the

sign

or

the

letter

F).

If

the

arithmetic

value

is

complex,

the

intermediate

string

consists

of

the

imaginary

part

concatenated

to

the

real

part.

The

left-hand,

or

real,

part

is

generated

as

a

real

source.

The

right-hand,

or

imaginary,

part

is

always

signed,

Target:

CHARACTER

Source-to-target

rules

82

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

and

it

has

the

letter

I

appended.

The

generated

string

is

a

complex

expression

with

no

blanks

between

its

elements.

The

length

of

the

intermediate

string

is:

2*p1+7

for

p1>=q1>=0

2*(p1+k)+7

for

p1<q1

or

q1<0

The

following

examples

show

the

intermediate

strings

that

are

generated

from

several

real

and

complex

fixed-point

decimal

values:

Precision

Value

String

(5,0)

2947

'bbbb2947'

(4,1)

-121.7

'b-121.7'

(4,-3)

-3279000

'-3279F+3'

(2,1)

1.2+0.3I

'bbb1.2+0.3I'

FLOAT

BINARY

(p1)

The

floating-point

binary

precision

(p1)

first

converts

to

the

equivalent

floating-point

decimal

precision

(p),

where

p=CEIL(p1/3.32).

Thereafter,

the

rules

are

the

same

as

for

FLOAT

DECIMAL

to

CHARACTER.

FLOAT

DECIMAL

(p1)

A

decimal

floating-point

source

converts

as

if

it

were

transmitted

by

an

E-format

item

of

the

form

E(w,d,s)

where:

w,

the

length

of

the

intermediate

string,

is

p1+8.

d,

the

number

of

fractional

digits,

is

p1-1.

s,

the

number

of

significant

digits,

is

p1.

If

the

arithmetic

value

is

complex,

the

intermediate

string

consists

of

the

imaginary

part

concatenated

to

the

real

part.

The

left-hand,

or

real,

part

is

generated

as

a

real

source.

The

right-hand,

or

imaginary,

part

is

always

signed,

and

it

has

the

letter

I

appended.

The

generated

string

is

a

complex

expression

with

no

blanks

between

its

elements.

The

length

of

the

intermediate

string

is

2*p+17.

The

following

examples

show

the

intermediate

strings

that

are

generated

from

several

real

and

complex

floating-point

decimal

values:

Precision

Value

String

(5)

1735*10**5

'b1.7350E+0008'

(5)

-.001663

'-1.6630E-0003'

(3)

1

'b1.00E+0000'

(5)

17.3+1.5I

'b1.7300E+0001+1.5000E+0000I'

Arithmetic

character

PICTURE

A

real

arithmetic

character

field

is

interpreted

as

a

character

string

and

assigned

to

the

target

string

according

to

the

rules

for

converting

string

lengths.

If

the

arithmetic

character

field

is

complex,

the

real

and

imaginary

parts

are

concatenated

before

assignment

to

the

target

string.

Insertion

characters

are

included

in

the

target

string.

BIT

Bit

0

becomes

the

character

0

and

bit

1

becomes

the

character

1.

A

null

bit

string

becomes

a

null

character

string.

The

generated

character

string

is

assigned

to

the

target

string

according

to

the

rules

for

converting

string

lengths.

GRAPHIC

DBCS

to

SBCS

conversion

is

possible

only

if

there

is

a

corresponding

SBCS

character.

Otherwise,

the

CONVERSION

condition

is

raised.

Source-to-target

rules

Chapter

5.

Data

conversion

83

WIDECHAR

Conversion

from

widechar

to

character

is

performed

only

if

all

the

widechars

have

a

value

less

than

’0080’wx.

Otherwise,

the

CONVERSION

condition

is

raised.

Source:

FIXED

BINARY,

FIXED

DECIMAL,

FLOAT

BINARY,

and

FLOAT

DECIMAL

If

necessary,

the

arithmetic

value

converts

to

binary

and

both

the

sign

and

any

fractional

part

are

ignored.

(If

the

arithmetic

value

is

complex,

the

imaginary

part

is

also

ignored.)

The

resulting

binary

value

is

treated

as

a

bit

string.

It

is

assigned

to

the

target

according

to

the

rules

for

string

assignments.

FIXED

BINARY

(p1,q1)

The

length

of

the

intermediate

bit

string

is

given

by:

min(M,(p1-q1))

If

(p1-q1)

is

negative

or

zero,

the

result

is

a

null

bit

string.

The

following

examples

show

the

intermediate

strings

that

are

generated

from

several

fixed-point

binary

values:

Precision

Value

String

(1)

1

'1'B

(3)

-3

'011'B

(4,2)

1.25

'01'B

FIXED

DECIMAL

(p1,q1)

The

length

of

the

intermediate

bit

string

is

given

by:

min(M,CEIL((p1-q1)*3.32))

If

(p1-q1)

is

negative

or

zero,

the

result

is

a

null

bit

string.

The

following

examples

show

the

intermediate

strings

that

are

generated

from

several

fixed-point

decimal

values:

Precision

Value

String

(1)

1

'0001'B

(2,1)

1.1

'0001'B

FLOAT

BINARY

(p1)

The

length

of

the

intermediate

bit

string

is

given

by:

min(M,p1)

FLOAT

DECIMAL

(p1)

The

length

of

the

intermediate

bit

string

is

given

by:

min(M,ceil(p1*3.32))

Arithmetic

character

PICTURE

Data

is

first

interpreted

as

decimal

with

scale

and

precision

determined

by

the

corresponding

PICTURE

specification.

The

item

then

converts

according

to

the

rules

given

for

FIXED

DECIMAL

or

FLOAT

DECIMAL

to

BIT.

CHARACTER

Character

0

becomes

bit

0

and

character

1

becomes

bit

1.

Any

character

other

Target:

BIT

Source-to-target

rules

84

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

than

0

or

1

raises

the

CONVERSION

condition.

A

null

string

becomes

a

null

bit

string.

The

generated

bit

string,

which

has

the

same

length

as

the

source

character

string,

is

assigned

to

the

target

according

to

the

rules

for

string

assignment.

GRAPHIC

Graphic

0

becomes

bit

0

and

graphic

1

becomes

bit

1.

Any

graphic

other

than

0

or

1

raises

the

CONVERSION

condition.

A

null

string

becomes

a

null

bit

string.

The

generated

bit

string,

which

has

the

same

length

as

the

source

graphic

string,

is

then

assigned

to

the

target

according

to

the

rules

for

string

assignment.

WIDECHAR

Widechar

0

(’0030’wx)

becomes

bit

0

and

widechar

1

(

’0031’wx)

becomes

bit

1.

Any

widechar

other

than

0

or

1

raises

the

CONVERSION

condition.

A

null

string

becomes

a

null

bit

string.

The

generated

bit

string,

which

has

the

same

length

as

the

source

widechar

string,

is

then

assigned

to

the

target

according

to

the

rules

for

string

assignment.

Nongraphic

source

is

first

converted

to

character

according

to

the

rules

in

“Target:

Character”

on

page

82.

The

resultant

character

string

is

then

converted

to

a

DBCS

string.

Source

other

than

widechar

is

first

converted

to

character

according

to

the

rules

in

“Target:

Character”

on

page

82.

The

resultant

character

string

is

then

converted

to

a

widechar

string.

Examples

DECIMAL

FIXED

to

BINARY

FIXED

with

fractions

dcl

I

fixed

bin(31,5)

init(1);

I

=

I+.1;

The

value

of

I

is

now

1.0625.

This

is

because

.1

is

converted

to

FIXED

BINARY

(5,4),

so

that

the

nearest

binary

approximation

is

0.0001B

(no

rounding

occurs).

The

decimal

equivalent

of

this

is

.0625.

The

result

achieved

by

specifying

.1000

in

place

of

.1

would

be

different.

Arithmetic

to

bit

string

dcl

A

bit(1),

D

bit(5);

A=1;

/*

A

has

value

'0'B

*/

D=1;

/*

D

has

value

'00010'B

*/

D=’1’B;

/*

D

has

value

'10000'B

*/

if

A=1

then

go

to

Y;

else

go

to

X;

Target:

GRAPHIC

Target:

WIDECHAR

Source-to-target

rules

Chapter

5.

Data

conversion

85

The

branch

is

to

X,

because

the

assignment

to

A

resulted

in

the

following

sequence

of

actions:

1.

The

decimal

constant,

1,

has

the

attributes

FIXED

DECIMAL

(1,0)

and

is

assigned

to

temporary

storage

with

the

attributes

FIXED

BINARY(4,0)

and

the

value

0001B.

2.

This

value

now

converts

to

a

bit

string

of

length

(4),

so

that

it

becomes

'0001'B.

3.

The

bit

string

is

assigned

to

A.

Since

A

has

a

declared

length

of

1,

and

the

value

to

be

assigned

has

acquired

a

length

of

4,

truncation

occurs

at

the

right,

and

A

has

a

final

value

of

'0'B.

For

the

comparison

operation

in

the

IF

statement,

'0'B

and

1

convert

to

FIXED

BINARY

and

compare

arithmetically.

They

are

unequal,

giving

a

result

of

false

for

the

relationship

A=1.

In

the

first

assignment

to

D,

a

sequence

of

actions

similar

to

that

described

for

A

takes

place,

except

that

the

value

is

extended

at

the

right

with

a

zero,

because

D

has

a

declared

length

that

is

1

greater

than

that

of

the

assigned

value.

Arithmetic

to

character

In

the

following

example,

the

three

blanks

are

necessary

to

allow

for

the

possibility

of

a

minus

sign,

a

decimal

or

binary

point,

and

provision

for

a

single

leading

zero

before

the

point:

dcl

A

char(4),

B

char(7);

A=’0’;

/*A

has

value

’0bbb’*/

A=0;

/*A

has

value

’bbb0’*/

B=1234567;

/*B

has

value

’bbb1234’*/

A

conversion

error

dcl

Ctlno

char(8)

init(’0’);

do

I=1

to

100;

Ctlno=Ctlno+1;

...
end;

For

this

example,

FIXED

DECIMAL

precision

15

was

used

for

the

implementation

maximum.

The

example

raises

the

CONVERSION

condition

because

of

the

following

sequence

of

actions:

1.

The

initial

value

of

CTLNO,

that

is,

'0bbbbbbb'

converts

to

FIXED

DECIMAL(15,0).

2.

The

decimal

constant,

1,

with

attributes

FIXED

DECIMAL(1,0),

is

added;

in

accordance

with

the

rules

for

addition,

the

precision

of

the

result

is

(16,0).

3.

This

value

now

converts

to

a

character

string

of

length

18

in

preparation

for

the

assignment

back

to

CTLNO.

4.

Because

CTLNO

has

a

length

of

8,

the

assignment

causes

truncation

at

the

right;

thus,

CTLNO

has

a

final

value

that

consists

entirely

of

blanks.

This

value

cannot

be

successfully

converted

to

arithmetic

type

for

the

second

iteration

of

the

loop.

Examples

86

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Chapter

6.

Program

organization

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

Program

structure

.

.

.

.

.

.

.

.

.

.

. 87

Program

activation

.

.

.

.

.

.

.

.

.

.

. 88

Program

termination

.

.

.

.

.

.

.

.

.

. 88

Blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Block

activation

.

.

.

.

.

.

.

.

.

.

.

. 89

Block

termination

.

.

.

.

.

.

.

.

.

.

. 90

Packages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

Procedures

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

PROCEDURE

and

ENTRY

statements

.

.

.

. 93

ENTRY

statement

.

.

.

.

.

.

.

.

.

.

. 94

Parameter

attribute

.

.

.

.

.

.

.

.

.

.

. 95

Procedure

activation

.

.

.

.

.

.

.

.

.

. 98

Procedure

termination

.

.

.

.

.

.

.

.

.

. 99

Recursive

procedures

.

.

.

.

.

.

.

.

.

. 100

Dynamic

loading

of

an

external

procedure

.

. 101

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

Example

1

.

.

.

.

.

.

.

.

.

.

.

.

. 104

Example

2

.

.

.

.

.

.

.

.

.

.

.

.

. 105

Built-in

subroutines

.

.

.

.

.

.

.

.

.

.

. 105

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Built-in

functions

.

.

.

.

.

.

.

.

.

.

. 107

Passing

arguments

to

procedures

.

.

.

.

.

.

. 107

Using

BYVALUE

and

BYADDR

.

.

.

.

.

. 108

Dummy

arguments

.

.

.

.

.

.

.

.

.

. 108

Passing

arguments

to

the

MAIN

procedure

.

. 110

Begin-blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

BEGIN

statement

.

.

.

.

.

.

.

.

.

.

. 110

Begin-block

activation

.

.

.

.

.

.

.

.

. 110

Begin-block

termination

.

.

.

.

.

.

.

.

. 111

Entry

data

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Entry

constants

.

.

.

.

.

.

.

.

.

.

.

. 111

Entry

variables

.

.

.

.

.

.

.

.

.

.

.

. 112

ENTRY

attribute

.

.

.

.

.

.

.

.

.

.

. 113

OPTIONAL

attribute

.

.

.

.

.

.

.

.

.

. 116

LIST

attribute

.

.

.

.

.

.

.

.

.

.

.

. 117

LIMITED

attribute

.

.

.

.

.

.

.

.

.

.

. 120

Generic

entries

.

.

.

.

.

.

.

.

.

.

.

. 121

GENERIC

attribute

.

.

.

.

.

.

.

.

.

. 121

Entry

invocation

or

entry

value

.

.

.

.

.

.

. 124

CALL

statement

.

.

.

.

.

.

.

.

.

.

.

. 124

RETURN

statement

.

.

.

.

.

.

.

.

.

.

. 125

Return

from

a

subroutine

.

.

.

.

.

.

.

. 125

Return

from

a

function

.

.

.

.

.

.

.

.

. 125

OPTIONS

option

and

attribute

.

.

.

.

.

.

. 126

RETURNS

option

and

attribute

.

.

.

.

.

.

. 134

This

chapter

discusses

how

statements

can

be

organized

into

different

kinds

of

blocks

to

form

a

PL/I

program,

how

control

flows

among

blocks,

and

how

different

blocks

can

make

use

of

the

same

data.

Proper

division

of

a

program

into

blocks

simplifies

the

writing

and

testing

of

the

program,

particularly

when

many

programmers

are

writing

it.

Proper

division

can

also

result

in

more

efficient

use

of

storage,

since

automatic

storage

is

allocated

on

entry

to

the

block

in

which

it

is

declared

and

released

when

the

block

is

terminated.

Programs

Program

structure

PL/I

is

a

block-structured

language,

consisting

of

packages,

procedures,

begin-blocks,

statements,

expressions,

and

built-in

functions.

A

PL/I

application

consists

of

one

or

more

separately

loadable

entities,

known

as

a

load

module.

Each

load

module

can

consist

of

one

or

more

separately

compiled

entities,

known

as

a

compilation

unit

(CU).

Unless

otherwise

stated,

a

program

refers

to

a

PL/I

application

or

a

compilation

unit.

A

compilation

unit

is

a

PL/I

PACKAGE

or

an

external

PROCEDURE.

Each

package

can

contain

zero

or

more

procedures,

some

or

all

of

which

can

be

exported.

A

PL/I

external

or

internal

procedure

contains

zero

or

more

blocks.

A

PL/I

block

is

either

a

PROCEDURE

or

a

BEGIN

block,

which

contains

zero

or

more

statements

and/or

zero

or

more

blocks.

87

A

PL/I

block

allows

you

to

produce

highly-modular

applications,

because

blocks

can

contain

declarations

that

define

variable

names

and

storage

class.

Thus,

you

can

restrict

the

scope

of

a

variable

to

a

single

block

or

a

group

of

blocks,

or

can

make

it

known

throughout

the

compilation

unit

or

a

load

module.

By

giving

you

freedom

to

determine

the

degree

to

which

a

block

is

self-contained,

PL/I

makes

it

possible

to

produce

blocks

that

many

compilation

units

and

applications

can

share,

leading

to

code

reuse.

Figure

2

shows

an

application

structure.

Packages

are

discussed

in

“Packages”

on

page

90.

Procedures

are

discussed

in

“Procedures”

on

page

92.

Begin-blocks

are

discussed

in

“Begin-blocks”

on

page

110.

Program

activation

A

PL/I

program

becomes

active

when

a

calling

program

invokes

the

main

procedure.

This

calling

program

usually

is

the

operating

system,

although

it

could

be

another

program.

The

main

procedure

is

the

external

procedure

for

which

the

statement

has

the

OPTIONS(MAIN)

specification.

In

the

following

example,

Contrl

is

the

main

procedure

and

it

invokes

other

external

procedures

in

the

program.

The

main

procedure

remains

active

for

the

duration

of

the

program.

Contrl:

procedure

options(main);

call

A;

call

B;

call

C;

end

Contrl;

Program

termination

A

program

is

terminated

when

the

main

procedure

is

terminated.

Whether

termination

is

normal

or

abnormal,

control

returns

to

the

calling

program.

In

the

previous

example,

when

control

transfers

from

the

C

procedure

back

to

the

Contrl

procedure,

Contrl

terminates.

See

“Procedure

termination”

on

page

99

for

more

information.

┌─────────────┐

┌──────────────────┐

│

Package

│

│

External

│

┌─────────────────┐

│

│

│

Procedure

│

│

┌─────────────┐

│

│

┌─────────┐

│

│

┌────────────┐

│

┌───────────┐

│

│

Compilation

│

│�────┤

│Level-1

│

│�───┤

│

Internal

│

│

│Load

Module│

│

│

Unit

│

│

│

│Procedure│

│

│

│

Procedures

│

│

└───────────┘

│

└─────────────┘

│

│

└─────────┘

│

│

└────────────┘

│

│

│

│

│

│

�

│

│

│

│

│

│

�

│

│

┌─────────────┐

│

│

┌─────────┐

│

│

┌────────────┐

│

┌───────────┐

│

│

Compilation

│

│

│

│Level-1

│

│

│

│Begin-Blocks│

│

│Load

Module│�─────┤

│

Unit

│�┼─────┼─┤Procedure│

│

│

└────────────┘

│

└───────────┘

│

└─────────────┘

│

│

└─────────┘

│

│

�

│

└─────────────────┘

└─────────────┘

│

│

│

│

�

│

│

┌────────────┐

│

│

│

Other

│

│

│

│

Statements

│

│

│

└────────────┘

│

└──────────────────┘

Figure

2.

A

PL/I

application

structure

Program

structure

88

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Blocks

A

block

is

a

delimited

sequence

of

statements

that

does

the

following:

v

Establishes

the

scope

of

names

declared

within

it

v

Limits

the

allocation

of

automatic

variables

v

Determines

the

scope

of

DEFAULT

statements

(as

described

in

“Defaults

for

attributes”

on

page

162).

The

kinds

of

blocks

are:

v

Package

v

Procedure

v

Begin

These

blocks

can

contain

declarations

that

are

treated

as

local

definitions

of

names.

This

is

done

to

establish

the

scope

of

the

names

and

to

limit

the

allocation

of

automatic

variables.

These

declarations

are

not

known

outside

their

own

block,

and

the

names

cannot

be

referred

to

in

the

containing

block.

See

“Scope

of

declarations”

on

page

151

for

more

information.

Storage

is

allocated

to

automatic

variables

upon

entry

to

the

block

where

the

storage

is

declared,

and

is

freed

upon

exit

from

the

block.

See

“Scope

of

declarations”

on

page

151,

for

more

information.

Block

activation

Each

block

plays

the

same

role

in

the

allocation

and

freeing

of

storage

and

in

delimiting

the

scope

of

names.

How

activation

occurs

is

discussed

in

“Procedures”

on

page

92

and

“Begin-blocks”

on

page

110.

Packages

are

neither

activated

nor

terminated.

During

block

activation,

the

following

are

performed:

v

Expressions

that

appear

in

declare

statements

are

evaluated

for

extents

and

initial

values

(including

iteration

factors).

v

Storage

is

allocated

for

automatic

variables.

Their

initial

values

are

set

if

specified.

v

Storage

is

allocated

for

dummy

arguments

and

compiler-created

temporaries

that

might

be

created

in

this

block.

Initial

values

and

extents

for

automatic

variables

must

not

depend

on

the

values

or

extents

of

other

automatic

variables

declared

in

the

same

block.

For

example,

the

following

initialization

can

produce

incorrect

results

for

J

and

K:

dcl

I

init(10),J

init(K),K

init(I);

Declarations

of

data

items

must

not

be

mutually

interdependent.

For

example,

the

following

declarations

are

invalid:

dcl

A(B(1)),

B(A(1));

dcl

D(E(1)),

E(F(1)),

F(D(1));

Errors

can

occur

during

block

activation,

and

the

ERROR

condition

(or

other

conditions)

can

be

raised.

If

so,

the

environment

of

the

block

might

be

incomplete.

In

particular,

some

automatic

variables

might

not

have

been

allocated.

Statements

referencing

automatic

variables

executed

after

the

ERROR

condition

has

been

raised

may

reference

unallocated

storage.

The

results

of

referring

to

unallocated

storage

are

undefined.

Blocks

Chapter

6.

Program

organization

89

Block

termination

There

are

a

number

of

ways

a

block

can

be

terminated.

How

termination

occurs

is

discussed

in

“Procedures”

on

page

92

and

“Begin-blocks”

on

page

110.

Packages

are

neither

activated

nor

terminated.

During

block

termination:

v

The

ON-unit

environment

is

reestablished

as

it

existed

before

the

block

was

activated.

v

Storage

for

all

automatic

variables

allocated

in

the

block

is

released.

Packages

A

package

is

a

block

that

can

contain

only

declarations,

default

statements,

and

procedure

blocks.

The

package

forms

a

name

scope

that

is

shared

by

all

declarations

and

procedures

contained

in

the

package,

unless

the

names

are

declared

again.

Some

or

all

of

the

level-1

procedures

can

be

exported

and

made

known

outside

of

the

package

as

external

procedures.

A

package

can

be

used

for

implementing

multiple

entry

point

applications.

��

condition-prefix

:

package-name

:

PACKAGE

�

�

�

,

EXPORTS

(

procedure

)

*

�

�

�

,

RESERVES

(

variable

name

)

*

OPTIONS(options)

;

�

�

�

declare-statement

default-statement

procedure-statement

END

;

package-name

��

procedure:

procedure-name

EXTERNAL(environment-name)

condition-prefix

Condition

prefixes

specified

on

a

PACKAGE

statement

apply

to

all

procedures

Block

termination

90

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

contained

in

the

package

unless

overridden

on

the

PROCEDURE

statement.

For

more

information

on

condition

prefixes,

refer

to

“Condition

prefixes”

on

page

331.

package-name

The

name

of

the

package.

EXPORTS

Specifies

that

all

(EXPORTS(*))

or

the

named

procedures

are

to

be

exported

and

thus

made

externally

known

outside

of

the

package.

If

no

EXPORTS

option

is

specified,

EXPORTS(*)

is

assumed.

procedure

name

Is

the

name

of

a

level-1

procedure

within

the

package.

EXTERNAL

(environment

name)

Is

a

scope

attribute

discussed

in

“Scope

of

declarations”

on

page

151.

RESERVES

Specifies

that

this

package

reserves

the

storage

for

all

(RESERVES(*)),

or

only

for

the

named

variables

that

have

the

RESERVED

attribute,

see

“RESERVED

attribute”

on

page

158.

variable

name

Is

the

name

of

a

level-1

external

static

variable.

OPTIONS

option

For

OPTIONS

options

applicable

to

a

package

statement,

refer

to

“OPTIONS

option

and

attribute”

on

page

126.

declare

statement

All

variables

declared

within

a

package

but

outside

any

contained

level-1

procedure

must

have

the

storage

class

of

static,

based,

or

controlled.

Automatic

variables

are

not

allowed.

Default

storage

class

is

STATIC.

Refer

to

Chapter

8,

“Data

declarations,”

on

page

147.

default

statement

Refer

to

“Defaults

for

attributes”

on

page

162.

procedure

statement

Refer

to

“PROCEDURE

and

ENTRY

statements”

on

page

93.

An

example

of

the

package

statement

appears

in

Figure

3

on

page

92.

Packages

Chapter

6.

Program

organization

91

Procedures

A

procedure

is

a

sequence

of

statements

delimited

by

a

PROCEDURE

statement

and

a

corresponding

END

statement.

A

procedure

can

be

a

main

procedure,

a

subroutine,

or

a

function.

An

application

must

have

exactly

one

external

procedure

that

has

OPTIONS(MAIN).

In

the

following

example,

the

name

of

the

procedure

is

Name

and

represents

the

entry

point

of

the

procedure.

Name:

procedure;

end

Name;

The

ENTRY

statement

can

define

a

secondary

entry

point

to

a

procedure.

For

example,

Name:

procedure;

B:

entry;

end

Name;

B

defines

a

secondary

entry

point

to

the

Name

procedure.

The

ENTRY

statement

is

described

in

“ENTRY

attribute”

on

page

113.

A

procedure

must

have

a

name.

A

procedure

block

nested

within

another

procedure

or

begin-block

is

called

an

internal

procedure.

A

procedure

block

not

nested

within

another

procedure

or

begin-block

is

called

an

external

procedure.

Level-1

exported

procedures

from

a

package

also

become

external

procedures.

External

procedures

can

be

invoked

by

other

procedures

in

other

compilation

units.

Procedures

can

invoke

other

procedures.

*Process

S

A(F)

LANGLVL(SAA2)

LIMITS(EXTNAME(31))

NUMBER;

Package_Demo:

Package

exports

(Factorial);

/***/

/*

Common

Data

*/

/***/

dcl

N

fixed

bin(15);

dcl

Message

char(*)

value(’The

factorial

of

’);

/***/

/*

Main

Program

*/

/***/

Factorial:

proc

options

(main);

dcl

Result

fixed

bin(31);

put

skip

list(’Please

enter

a

number

whose

factorial

’

||

’must

be

computed

’);

get

list(N);

Result

=

Compute_factorial(n);

put

list(Message

||

trim(N)

||

’

is

’

||

trim(Result));

end

Factorial;

/***/

/*

Subroutine

*/

/***/

Compute_factorial:

proc

(Input)

recursive

returns

(fixed

bin(31));

dcl

Input

fixed

bin(15);

if

Input

<=

1

then

return(1);

else

return(

Input*Compute_factorial(Input-1)

);

end

Compute_factorial;

end

Package_Demo;

Figure

3.

Package

statement

Procedures

92

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

A

procedure

can

be

recursive,

which

means

that

it

can

be

reactivated

from

within

itself

or

from

within

another

active

procedure

while

it

is

already

active.

You

can

pass

arguments

when

invoking

a

procedure.

For

more

information

on

these

subjects,

see

the

following

sections:

v

“Scope

of

declarations”

on

page

151

v

“Subroutines”

on

page

104

v

“Functions”

on

page

105

v

“Passing

arguments

to

procedures”

on

page

107.

PROCEDURE

and

ENTRY

statements

A

procedure

(subroutine

or

function)

can

have

one

or

more

entry

points.

The

primary

entry

point

to

a

procedure

is

established

by

the

leftmost

label

of

the

procedure

statement.

Secondary

entry

points

to

a

procedure

are

established

by

additional

labels

on

the

PROCEDURE

statement

and

by

the

ENTRY

statement.

Each

entry

point

has

an

entry

name.

See

“INTERNAL

and

EXTERNAL

attributes”

on

page

153

for

a

discussion

of

the

rules

for

the

creation

of

an

external

name.

A

PROCEDURE

statement

identifies

the

procedure

as

a

main

procedure,

a

subroutine,

or

a

function.

Parameters

expected

by

the

procedure

and

other

characteristics

are

also

specified

on

the

PROCEDURE

statement.

��

�

entry-label:

PROCEDURE

�

,

(

parameter

)

returns-option

�

�

OPTIONS(options)

RECURSIVE

scope-attribute

;

�

�

�

statement

group

internal-procedure

begin-block

END

;

entry-label

��

Abbreviations:

PROC

for

PROCEDURE

entry-label

The

entry

point

to

the

procedure.

External

entries

are

explicitly

declared

in

the

invoking

procedure.

If

multiple

entry

labels

are

specified,

the

leftmost

name

is

the

primary

entry

point

and

is

the

name

returned

by

the

PROCNAME

and

ONLOC

built-in

functions.

For

more

information

on

entry

data,

refer

to

“Entry

data”

on

page

111.

parameter

Refer

to

“Parameter

attribute”

on

page

95

and

“Passing

arguments

to

procedures”

on

page

107.

Procedures

Chapter

6.

Program

organization

93

returns-option

Applies

only

to

function

procedures.

Refer

to

“Functions”

on

page

105

and

“RETURNS

option

and

attribute”

on

page

134.

OPTIONS

option

Refer

to

“OPTIONS

option

and

attribute”

on

page

126.

RECURSIVE

Refer

to

“Recursive

procedures”

on

page

100.

scope-attribute

Refer

to

“Scope

of

declarations”

on

page

151.

ENTRY

statement

The

ENTRY

statement

specifies

a

secondary

entry

point

of

a

procedure.

The

ENTRY

statement

must

be

internal

to

the

procedure

for

which

it

defines

a

secondary

entry

point.

It

cannot

be

within

a

do-group

that

specifies

repetitive

execution,

or

internal

to

a

ON-unit.

��

�

entry-label:

ENTRY

�

,

(

parameter

)

�

�

�

RETURNS(

attribute

)

OPTIONS(options)

;

��

entry-label

The

secondary

entry

point

to

the

procedure.

parameter

Refer

to

“Parameter

attribute”

on

page

95

and

“Passing

arguments

to

procedures”

on

page

107.

RETURNS

option

Refer

to

“RETURNS

option

and

attribute”

on

page

134.

OPTIONS

option

Refer

to

“OPTIONS

option

and

attribute”

on

page

126.

All

parameters

on

an

ENTRY

statement

must

be

BYADDR,

and

for

a

procedure

containing

ENTRY

statements,

all

non-pointer

parameters

to

that

procedure

must

be

BYADDR.

If

a

procedure

containing

ENTRY

statements

has

the

RETURNS

option

(or

if

any

of

its

contained

ENTRY

statements

have

the

RETURNS

option),

then

v

the

BYADDR

attribute

must

be

specified

(or

implied

by

the

compile-time

option

DEFAULT(RETURNS(BYADDR))

in

all

of

the

RETURNS

options

for

that

procedure

and

its

ENTRY

statements.

PROCEDURE

and

ENTRY

94

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

v

All

routines

that

call

one

of

these

entry

points

must

also

either

declare

the

entry

with

RETURNS(BYADDR)

or

be

compiled

with

the

DEFAULT(RETURNS(BYADDR))

compiler

option.

When

a

procedure

contains

ENTRY

statements

and

some,

but

not

all

of

its

entry

points

have

the

RETURNS

attribute,

the

ERROR

condition

is

detected

under

the

following

circumstances:

v

If

the

code

executes

a

RETURN

statement

with

an

expression

when

the

procedure

was

entered

at

an

entry

point

which

did

not

have

the

RETURNS

attribute.

v

If

the

code

executes

a

RETURN

statement

without

an

expression

when

the

procedure

was

entered

at

an

entry

point

that

has

the

RETURNS

attribute.

Parameter

attribute

A

parameter

is

contextually

declared

with

the

parameter

attribute

by

its

specification

in

a

PROCEDURE

or

ENTRY

statement.

The

parameter

should

be

explicitly

declared

with

appropriate

attributes.

The

PARAMETER

attribute

can

also

be

specified

in

the

declaration.

If

attributes

are

not

supplied

in

a

DECLARE

statement,

default

attributes

are

applied.

The

parameter

name

must

not

be

subscripted

or

qualified.

��

PARAMETER

��

Table

8

on

page

26,

and

the

following

discussion,

describe

the

attributes

that

can

be

declared

for

a

parameter.

A

parameter

always

has

the

INTERNAL

attribute.

If

the

parameter

is

a

structure

or

union,

it

must

specify

the

level-1

name.

A

parameter

cannot

have

any

storage

class

attributes

except

CONTROLLED.

A

controlled

parameter

must

have

a

controlled

argument,

and

can

also

have

the

INITIAL

attribute.

Parameters

used

in

record-oriented

input/output,

or

as

the

base

variable

for

DEFINED

items,

must

be

in

connected

storage.

The

CONNECTED

attribute

must

be

specified

both

in

the

declaration

in

the

procedure

and

in

the

descriptor

list

of

the

procedure

entry

declaration.

Simple

Parameter

Bounds,

Lengths,

and

Sizes

Bounds,

lengths,

and

sizes

of

simple

parameters

must

be

specified

either

by

asterisks

or

by

restricted

expressions.

When

the

actual

length,

bounds,

or

size

can

be

different

for

different

invocations,

each

can

be

specified

in

a

DECLARE

statement

by

an

asterisk.

When

an

asterisk

is

used,

the

length,

bounds,

or

size

are

taken

from

the

current

generation

of

the

associated

argument.

An

asterisk

is

not

allowed

as

the

length

specification

of

a

string

that

is

an

element

of

an

aggregate,

if

the

associated

argument

creates

a

dummy.

The

string

length

must

be

specified

as

an

integer.

ENTRY

Chapter

6.

Program

organization

95

Controlled

Parameter

Bounds,

Lengths,

and

Sizes

The

bounds,

length,

or

size

of

a

controlled

parameter

can

be

specified

in

a

DECLARE

statement

either

by

asterisks

or

by

element

expressions.

Asterisk

Notation:

When

asterisks

are

used,

length,

bounds,

or

size

of

the

controlled

parameter

are

taken

from

the

current

generation

of

the

associated

argument.

Any

subsequent

allocation

of

the

controlled

parameter

uses

these

same

bounds,

length,

or

size,

unless

they

are

overridden

by

a

different

length,

bounds,

or

size

specification

in

the

ALLOCATE

statement.

If

no

current

generation

of

the

argument

exists,

the

asterisks

determine

only

the

dimensionality

of

the

parameter,

and

an

ALLOCATE

statement

in

the

invoked

procedure

must

specify

bounds,

length,

or

size

for

the

controlled

parameter

before

other

references

to

the

parameter

can

be

made.

Expression

Notation:

Each

time

the

parameter

is

allocated,

the

expressions

are

evaluated

to

give

current

bounds,

lengths,

or

sizes

for

the

new

allocation.

However,

such

expressions

in

a

DECLARE

statement

can

be

overridden

by

a

bounds,

length,

or

size

specification

in

the

ALLOCATE

statement

itself.

Example

of

array

argument

with

parameters:

In

Figure

4

on

page

97,

when

Sub1

is

invoked,

A

and

B,

which

have

been

allocated,

are

passed.

Controlled

parameter

bounds,

lengths,

and

sizes

96

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

The

ALLOCATE

statement

in

Sub1

allocates

a

second

generation

of

A

and

B.

B

has

the

same

bounds

for

both

generations

while

A

has

different

bounds

for

the

second

generation.

On

returning

to

Main,

the

first

FREE

statement

frees

the

second

generation

of

A

and

B

(allocated

in

Sub1).

The

second

FREE

statement

frees

the

first

generation

of

A

and

B

(allocated

in

Main).

%process

or(’|’)

num

margins(1,72);

Package:package

exports(*);

Main:

procedure

options(main);

declare

(A(NA),

B(NB),

C(NC),

D(ND)

)

controlled;

declare

(NA

init(20),

NB

init(30),

NC

init(100),

ND

init(100)

)

fixed

bin(31);

declare

Sub1

entry((*)

controlled,

(*)

controlled);

declare

Sub2

entry

((*)

ctl,

(*)

ctl,

fixed

bin);

allocate

A,B;

/*

A(20),

B(30)

*/

display

(’Gen1:

DIM(A)=’

\

dim(A)

\

’,

’

\

"DIM(B)="

\

dim(B));

call

Sub1(A,B);

display

(’Gen2:

Allocn(A)=’

\

allocn(a)

\

’,

’

\

’Allocn(B)=’

\

allocn(B)

);

display

(’Gen2:

DIM(A)=’

\

dim(A)

\

’,

’

\

"DIM(B)="

\

dim(B));

free

A,B;

display

(’Gen1:

Allocn(A)=’

\

allocn(A)

\

’,

’

\

’Allocn(B)=’

\

allocn(B)

);

display

(’Gen1:

DIM(A)=’

\

dim(A)

\

’,

’

\

"DIM(B)="

\

dim(B));

free

A,B;

display

(’Gen0:

Allocn(A)=’

\

allocn(A)

\

’,

’

\

’Allocn(B)=’

\

allocn(B)

);

call

Sub2

(C,D,10);

display

(’Gen1:

Allocn(C)=’

\

allocn(C)

\

’,

’

\

’Allocn(D)=’

\

allocn(D)

);

display

(’Gen1:

DIM(C)=’

\

dim(C)

\

’,

’

\

"DIM(D)="

\

dim(D));

free

C,D;

display

(’Gen0:

Allocn(C)=’

\

allocn(c)

\

’,

’

\

’Allocn(D)=’

\

allocn(D)

);

end

Main;

Sub1:

procedure

(U,V);

dcl

(U(UB),

V(*))

controlled,

UB

fixed

bin(31);

display

(’Gen1:

Allocn(U)=’

\

allocn(U)

\

’,

’

\

’Allocn(V)=’

\

allocn(V)

);

display

(’Gen1:

DIM(U)=’

\

dim(U)

\

’,

’

\

"DIM(V)="

\

dim(V));

UB=200;

allocate

U,V;

/*

U(200),

V(30)

*/

display

(’Gen2:

Allocn(U)=’

\

allocn(U)

\

’,

’

\

’Allocn(V)=’

\

allocn(V)

);

display

(’Gen2:

DIM(U)=’

\

dim(U)

\

’,

’

\

"DIM(V)="

\

dim(V));

end

Sub1;

Sub2:

procedure

(X,Y,N);

dcl

(X(N),Y(N))

controlled,

N

fixed

bin;

display

(’Gen0:

Allocn(X)=’

\

allocn(X)

\

’,

’

\

’Allocn(Y)=’

\

allocn(Y)

);

allocate

X,Y;

/*

X(10),

Y(10)

*/

display

(’Gen1:

Allocn(X)=’

\

allocn(X)

\

’,

’

\

’Allocn(Y)=’

\

allocn(Y)

);

display

(’Gen1:

DIM(X)=’

\

dim(X)

\

’,

’

\

"DIM(Y)="

\

dim(Y));

end

Sub2;

end

Package;

Figure

4.

Array

argument

with

parameters

Controlled

parameter

bounds,

lengths,

and

sizes

Chapter

6.

Program

organization

97

In

Sub2,

X

and

Y

are

declared

with

bounds

that

depend

on

the

value

of

N.

When

X

and

Y

are

allocated,

their

values

determine

the

bounds

of

the

allocated

arrays.

On

returning

to

Main

from

Sub2,

the

FREE

statement

frees

the

only

generation

of

C

and

D

(allocated

in

Sub2).

Procedure

activation

Sequential

program

flow

passes

around

a

procedure,

from

the

statement

before

the

PROCEDURE

statement

to

the

statement

after

the

END

statement

for

that

procedure.

The

only

way

that

a

procedure

can

be

activated

is

by

a

procedure

reference.

(“Program

activation”

on

page

88

tells

how

to

activate

the

main

procedure.)

The

execution

of

the

invoking

procedure

is

suspended

until

the

invoked

procedure

returns

control

to

it.

A

procedure

reference

is

the

appearance

of

an

entry

expression

in

one

of

the

following

contexts:

v

Using

a

CALL

statement

to

invoke

a

subroutine,

as

described

in

“CALL

statement”

on

page

124

v

Invoking

a

function,

as

described

in

“Functions”

on

page

105

The

information

in

this

section

is

relevant

to

each

of

these

contexts.

However,

the

examples

in

this

chapter

use

CALL

statements.

When

a

procedure

reference

occurs,

the

procedure

containing

the

specified

entry

point

is

said

to

be

invoked.

The

point

at

which

the

procedure

reference

appears

is

called

the

point

of

invocation

and

the

block

in

which

the

reference

is

made

is

called

the

invoking

block.

An

invoking

block

remains

active

even

though

control

is

transferred

from

it

to

the

procedure

it

invokes.

When

a

procedure

is

invoked

at

its

primary

entry

point,

arguments

and

parameters

are

associated

and

execution

begins

with

the

first

statement

in

the

invoked

procedure.

When

a

procedure

is

invoked

at

a

secondary

entry

point

with

the

ENTRY

statement,

execution

begins

with

the

first

statement

following

the

ENTRY

statement.

The

environment

established

on

entry

to

a

block

at

the

primary

entry

point

is

identical

to

the

environment

established

when

the

same

block

is

invoked

at

a

secondary

entry

point.

Communication

between

two

procedures

is

by

means

of

arguments

passed

from

an

invoking

procedure

to

the

invoked

procedure,

by

a

value

returned

from

an

invoked

procedure,

and

by

names

known

within

both

procedures.

Therefore,

a

procedure

can

operate

upon

different

data

when

it

is

invoked

from

different

points.

For

example,

Readin:

procedure;

statement-1

statement-2

Errt:

entry;

statement-3

statement-4

end

Readin;

can

be

activated

by

any

of

these

entry

references:

call

Readin;

call

Errt;

The

statement

call

Readin

invokes

Readin

at

its

primary

entry

point

and

execution

begins

with

statement-1;

the

statement

call

Errt

invokes

the

Readin

procedure

at

Controlled

parameter

bounds,

lengths,

and

sizes

98

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

the

secondary

entry

point

Errt

and

execution

begins

with

statement-3.

The

entry

constant

(Readin)

can

also

be

assigned

to

an

entry

variable

that

is

used

in

a

procedure

reference.

For

example:

declare

Readin

entry,

Ent1

entry

variable;

Ent1

=

Readin;

call

Ent1;

call

Readin;

The

two

CALL

statements

have

the

same

effect.

Procedure

termination

A

procedure

is

terminated

when,

by

some

means

other

than

a

procedure

reference,

control

passes

back

to

the

invoking

program,

block,

or

to

some

other

active

block.

Procedures

terminate

normally

when:

v

Control

reaches

a

RETURN

statement

within

the

procedure.

The

execution

of

a

RETURN

statement

returns

control

to

the

point

of

invocation

in

the

invoking

procedure.

If

the

point

of

invocation

is

a

CALL

statement,

execution

in

the

invoking

procedure

resumes

with

the

statement

following

the

CALL.

If

the

point

of

invocation

is

a

function

reference,

execution

of

the

statement

containing

the

reference

is

resumed.

v

Control

reaches

the

END

statement

of

the

procedure.

Effectively,

this

is

equivalent

to

the

execution

of

a

RETURN

statement.

Procedures

terminate

abnormally

when:

v

Control

reaches

a

GO

TO

statement

that

transfers

control

out

of

the

procedure.

The

GO

TO

statement

can

specify

a

label

in

a

containing

block,

or

it

can

specify

a

parameter

that

has

been

associated

with

a

label

argument

passed

to

the

procedure.

A

STOP

statement

is

executed

in

the

current

thread

of

a

single-threaded

program

or

in

any

thread

of

a

multithreaded

program.

v

An

EXIT

statement

is

executed.

v

The

ERROR

condition

is

raised

and

there

is

no

established

ON-unit

for

ERROR

or

FINISH.

Also,

if

one

or

both

of

the

conditions

has

an

established

ON-unit,

ON-unit

exit

is

by

normal

return

rather

than

by

a

GO

TO

statement.

v

The

procedure

calls

or

invokes

another

procedure

that

terminates

abnormally.

Transferring

control

out

of

a

procedure

using

a

GO

TO

statement

can

sometimes

result

in

the

termination

of

several

procedures

and/or

begin-blocks.

Specifically,

if

the

transfer

point

specified

by

the

GO

TO

statement

is

contained

in

a

block

that

did

not

directly

activate

the

block

being

terminated,

all

intervening

blocks

in

the

activation

sequence

are

terminated.

In

the

following

example:

A:

procedure

options(main);

statement-1

statement-2

B:

begin;

statement-b1

statement-b2

call

C;

statement-b3

end

B;

statement-3

statement-4

C:

procedure;

statement-c1

statement-c2

statement-c3

Procedure

activation

Chapter

6.

Program

organization

99

D:

begin;

statement-d1

statement-d2

go

to

Lab;

statement-d3

end

D;

statement-c4

end

C;

statement-5

Lab:

statement-6

statement-7

end

A;

A

activates

B,

which

activates

C,

which

activates

D.

In

D,

the

statement

go

to

Lab

transfers

control

to

statement-6

in

A.

Since

this

statement

is

not

contained

in

D,

C,

or

B,

all

three

blocks

are

terminated;

A

remains

active.

Thus,

the

transfer

of

control

out

of

D

results

in

the

termination

of

intervening

blocks

B

and

C

as

well

as

the

termination

of

block

D.

Recursive

procedures

An

active

procedure

that

is

invoked

from

within

itself

or

from

within

another

active

procedure

is

a

recursive

procedure.

Such

an

invocation

is

called

recursion.

A

procedure

that

is

invoked

recursively

must

have

the

RECURSIVE

attribute

specified

in

the

PROCEDURE

statement.

��

RECURSIVE

��

The

environment

(that

is,

values

of

automatic

variables

and

the

like)

of

every

invocation

of

a

recursive

procedure

is

preserved

in

a

manner

analogous

to

the

stacking

of

allocations

of

a

controlled

variable

(see

“Controlled

storage

and

attribute”

on

page

224).

Think

of

an

environment

as

being

pushed

down

at

a

recursive

invocation,

and

popped

up

at

the

termination

of

that

invocation.

A

label

constant

in

the

current

block

is

always

a

reference

to

the

current

invocation

of

the

block

that

contains

the

label.

If

a

label

constant

is

assigned

to

a

label

variable

in

a

particular

invocation,

and

the

label

variable

is

not

declared

within

the

recursive

procedure,

a

GO

TO

statement

naming

that

variable

in

another

invocation

restores

the

environment

that

existed

when

the

assignment

was

performed,

terminating

the

current

and

any

intervening

procedures

and

begin-blocks.

The

environment

of

a

procedure

that

was

invoked

from

within

a

recursive

procedure

by

means

of

an

entry

variable

is

the

one

that

was

current

when

the

entry

constant

was

assigned

to

the

variable.

Consider

the

following

example:

I=1;

call

A;

/*

First

invocation

of

A

*/

A:

proc

recursive;

declare

Ev

entry

variable

static;

if

I=1

then

do;

I=2;

Ev=B;

call

A;

/*

2nd

invocation

of

A

*/

Procedure

termination

100

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

end;

else

call

Ev;

/*

Invokes

B

with

environment

*/

/*

of

first

invocation

of

A

*/

B:

proc;

go

to

Out;

end

B;

Out:

end

A;

The

GO

TO

statement

in

the

procedure

B

transfers

control

to

the

END

A

statement

in

the

first

invocation

of

A,

and

terminates

B

and

both

invocations

of

A.

Effect

of

recursion

on

automatic

variables

The

values

of

variables

allocated

in

one

activation

of

a

recursive

procedure

must

be

protected

from

change

by

other

activations.

This

is

arranged

by

stacking

the

variables.

A

stack

operates

on

a

last-in,

first-out

basis.

The

most

recent

generation

of

an

automatic

variable

is

the

only

one

that

can

be

referenced.

Static

variables

are

not

affected

by

recursion.

Thus,

they

are

useful

for

communication

across

recursive

invocations.

This

also

applies

to

automatic

variables

that

are

declared

in

a

procedure

that

contains

a

recursive

procedure

and

to

controlled

and

based

variables.

In

the

following

example:

A:

proc;

dcl

X;

...
B:

proc

recursive;

dcl

Z,Y

static;

call

B;

...
end

B;

end

A;

A

single

generation

of

the

variable

X

exists

throughout

invocations

of

procedure

B.

The

variable

Z

has

a

different

generation

for

each

invocation

of

procedure

B.

The

variable

Y

can

be

referred

to

only

in

procedure

B

and

is

not

reallocated

at

each

invocation.

(The

concept

of

stacking

variables

is

also

of

importance

in

the

discussion

of

controlled

variables

in

“Controlled

storage

and

attribute”

on

page

224.)

Dynamic

loading

of

an

external

procedure

A

DLL

can

be

dynamically

fetched

(loaded)

or

released

(deleted)

by

a

PL/I

program

using

FETCH

and

RELEASE

statements.

A

procedure

invoked

by

a

procedure

reference

usually

is

resident

in

main

storage

throughout

the

execution

of

the

program.

However,

a

procedure

can

be

loaded

into

main

storage

for

only

as

long

as

it

is

required.

The

invoked

procedure

can

be

dynamically

loaded

into,

and

dynamically

deleted

from,

main

storage

during

execution

of

the

calling

procedure.

Dynamic

loading

and

deletion

of

procedures

is

particularly

useful

when

a

called

procedure

is

not

necessarily

invoked

every

time

the

calling

procedure

is

executed,

and

when

conservation

of

main

storage

is

more

important

than

a

short

execution

time.

The

appearance

of

an

entry

constant

in

a

FETCH

statement

indicates

that

the

referenced

procedure

needs

to

be

loaded

into

main

storage

before

it

can

be

executed,

unless

a

copy

already

exists

in

main

storage.

Provided

the

name

is

referenced

in

a

FETCH

statement,

a

procedure

can

also

be

loaded

from

the

disk

by:

v

Execution

of

a

CALL

statement

or

the

CALL

option

of

an

INITIAL

attribute

Recursive

procedures

Chapter

6.

Program

organization

101

v

Execution

of

a

function

reference.

It

is

not

necessary

that

control

pass

through

a

FETCH

or

RELEASE

statement,

either

before

or

after

execution

of

the

CALL

or

function

reference.

Whichever

statement

loaded

the

procedure,

execution

of

the

CALL

statement

or

option

or

the

function

reference

invokes

the

procedure

in

the

normal

way.

It

is

not

an

error

if

the

procedure

has

already

been

loaded

into

main

storage.

The

fetched

procedure

can

remain

in

main

storage

until

execution

of

the

whole

program

is

completed.

Alternatively,

the

storage

it

occupies

can

be

freed

for

other

purposes

at

any

time

by

means

of

the

RELEASE

statement.

Rules

and

features

FETCH

and

RELEASE

have

the

following

rules

and

features:

v

Only

external

procedures

can

be

fetched.

v

EXTERNAL

files

and

CONDITION

conditions

are

shared

across

the

entire

application

(main

and

fetched

modules).

Other

external

variables

are

shared

only

within

a

single

module.

v

For

dynamically

loaded

(FETCHed)

DLLs,

you

can

set

the

STEPLIB

environment

variable

to

a

specified

search

path.

The

path

you

specify

in

STEPLIB

is

searched

before

the

path

specified

in

the

LIBPATH

environment

variable.

For

more

information

on

STEPLIB

and

LIBPATH,

see

the

Programming

Guide.

v

Storage

for

STATIC

variables

in

the

fetched

procedure

is

allocated

when

the

load

module

containing

the

procedure

is

loaded

into

memory.

Each

time

a

load

module

is

loaded

into

memory,

the

STATIC

variables

are

given

the

initial

values

indicated

by

their

declarations.

v

The

FETCH

and

RELEASE

statements

must

specify

entry

constants.

An

entry

constant

for

a

fetched

procedure

can

be

assigned

to

an

entry

variable

provided

the

procedure

has

been

fetched.

FETCH

statement

The

FETCH

statement

checks

main

storage

for

the

named

procedures.

Procedures

not

already

in

main

storage

are

loaded

from

the

disk.

��

FETCH

�

,

entry-constant

SET

(

ptr-ref

)

TITLE

(

char-expr

)

�

�

;

��

entry-constant

Specifies

the

name

by

which

the

procedure

to

be

fetched

is

known

to

the

operating

system.

Details

of

the

linking

considerations

for

fetchable

procedures

are

given

in

the

Programming

Guide.

Dynamic

loading

of

an

external

procedure

102

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

The

entry-constant

must

be

the

same

as

the

one

used

in

the

corresponding

CALL

statement,

CALL

option,

or

function

reference.

SET

Specifies

a

pointer

reference

(ptr-ref)

that

will

be

set

to

the

address

of

the

entry

point

of

the

loaded

module.

This

option

can

be

used

to

load

tables

(non-executable

load

modules).

It

can

also

be

used

for

entries

that

are

fetched

and

whose

addresses

need

to

be

passed

to

non-PL/I

procedures.

If

the

load

module

is

later

released

by

the

RELEASE

statement,

and

the

load

module

is

accessed

(through

the

pointer),

unpredictable

results

can

occur.

TITLE

For

TITLE,

char-expr

is

any

character

expression

or

an

expression

that

can

be

converted

to

a

character

expression.

If

TITLE

is

specified,

the

load

module

name

specified

is

searched

for

and

loaded.

If

it

is

not

specified,

the

load

module

name

used

is

the

environment

name

specified

in

the

EXTERNAL

attribute

for

the

variable

(if

present)

or

the

entry

constant

name

itself.

For

example:

dcl

A

entry;

dcl

B

entry

ext(’C’);

dcl

T

char(20)

varying;

T

=

’Y’;

fetch

A

title(’X’);

/*

X

is

loaded

*/

fetch

A;

/*

A

is

loaded

*/

fetch

B

title(’Y’);

/*

Y

is

loaded

*/

fetch

B;

/*

C

is

loaded

*/

fetch

B

title(T);

/*

Y

is

loaded

*/

For

more

detailed

information

on

title

strings,

refer

to

the

Programming

Guide.

RELEASE

statement

The

RELEASE

statement

frees

the

main

storage

occupied

by

procedures

identified

by

its

specified

entry

constants.

��

RELEASE

�

,

entry-constant

*

;

��

entry

constant

Must

be

the

same

as

the

one

used

in

the

corresponding

CALL

statement,

CALL

option,

function

reference,

and

FETCH

statements.

RELEASE

*

releases

all

previously

FETCHed

PL/I

modules.

It

must

not

be

executed

from

within

a

FETCHed

module.

Consider

the

following

example,

in

which

ProgA

and

ProgB

are

entry

names

of

procedures

resident

on

disk:

Prog:

procedure;

�1�

fetch

ProgA;

�2�

call

ProgA;

�3�

release

ProgA;

�4�

call

ProgB;

FETCH

Chapter

6.

Program

organization

103

go

to

Fin;

fetch

ProgB;

Fin:

end

Prog;

�1�

ProgA

is

loaded

into

main

storage

by

the

first

FETCH

statement.

�2�

ProgA

executes

when

the

first

CALL

statement

is

reached.

�3�

Storage

for

ProgA

is

released

when

the

RELEASE

statement

is

executed.

�4�

ProgB

is

loaded

and

executed

when

the

second

CALL

statement

is

reached,

even

though

the

FETCH

statement

referring

to

this

procedure

is

never

executed.

The

same

results

would

be

achieved

if

the

statement

FETCH

ProgA

were

omitted.

The

appearance

of

ProgA

in

a

RELEASE

statement

causes

the

statement

CALL

ProgA

to

load

the

procedure,

as

well

as

invoke

it.

The

fetched

procedure

is

compiled

and

linked

separately

from

the

calling

procedure.

You

must

ensure

that

the

entry

constant

specified

in

FETCH,

RELEASE,

and

CALL

statements;

CALL

options;

and

in

function

references

is

the

name

known

on

the

disk.

This

is

discussed

in

the

Programming

Guide.

Subroutines

A

subroutine

is

an

internal

or

external

procedure

that

is

invoked

by

a

CALL

statement.

For

the

syntax

of

a

subroutine,

see

“Procedures”

on

page

92.

The

arguments

of

the

CALL

statement

are

associated

with

the

parameters

of

the

invoked

procedure.

The

subroutine

is

activated,

and

execution

begins.

The

arguments

(zero

or

more)

can

be

input

only,

output

only,

or

both.

A

subroutine

is

normally

terminated

by

the

RETURN

or

the

END

statement.

Control

is

then

returned

to

the

invoking

block.

A

subroutine

can

be

abnormally

terminated

as

described

in

“Procedure

termination”

on

page

99.

A

subroutine

procedure

must:

v

Not

have

the

RETURNS

option

on

the

procedure

statement

v

Not

be

declared

as

an

entry

with

the

RETURNS

attribute

if

it

is

an

external

procedure

v

Be

invoked

using

the

CALL

statement,

not

a

function

reference

v

Not

return

a

result

value

using

the

RETURN

statement

The

following

examples

illustrate

the

invocation

of

subroutines

that

are

external

to

and

internal

to

the

invoking

block.

Example

1

Prmain:

procedure;

declare

Name

character

(20),

Item

bit(5),

�4�

Outsub

entry;

�1�

call

Outsub

(Name,

Item);

end

Prmain;

�2�

Outsub:

procedure

(A,B);

declare

A

character

(20),

B

bit(5);

�3�

put

list

(A,B);

end

Outsub;

RELEASE

104

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

�1�

The

CALL

statement

in

Prmain

invokes

the

procedure

Outsub

in

�2�

with

the

arguments

Name

and

Item.

�2�

Outsub

associates

Name

and

Item

passed

from

Prmain

with

its

parameters,

A

and

B.

When

Outsub

is

executed,

each

reference

to

A

is

treated

as

a

reference

to

Name.

Each

reference

to

B

is

treated

as

a

reference

to

Item.

�3�

The

put

list

(A,B)

statement

transmits

the

values

of

Name

and

Item

to

the

default

output

file,

SYSPRINT.

�4�

In

the

declaration

of

Outsub

as

an

entry

constant,

no

parameter

descriptor

has

to

be

given

with

the

ENTRY

attribute,

because

the

attributes

of

the

arguments

and

parameters

match.

Also

see

“ENTRY

attribute”

on

page

113.

Example

2

A:

procedure;

declare

Rate

float

(10),

Time

float(5),

Distance

float(15),

Master

file;

�1�

call

Readcm

(Rate,

Time,

Distance,

Master);

�3�

Readcm:

�2�

procedure

(W,X,Y,Z);

declare

W

float

(10),

X

float(5),

Y

float(15),

Z

file;

get

File

(Z)

list

(W,X,Y);

Y

=

W

*

X;

if

Y

>

0

then

return;

else

put

list(’ERROR

READCM’);

end

Readcm;

end

A;

�1�

The

arguments

Rate,

Time,

Distance,

and

Master

are

passed

to

the

procedure

Readcm

in

�3�

and

associated

with

the

parameters

W,

X,

Y,

and

Z.

�2�

A

reference

to

W

is

the

same

as

a

reference

to

Rate,

X

the

same

as

Time,

Y

the

same

as

Distance,

and

Z

the

same

as

Master.

�3�

Note

that

Readcm

is

not

explicitly

declared

in

A.

It

is

implicitly

declared

with

the

ENTRY

attribute

by

its

specification

on

the

PROCEDURE

statement.

Built-in

subroutines

You

can

use

built-in

subroutines,

which

provide

ready-made

programming

tasks.

Their

built-in

names

can

be

explicitly

declared

with

the

BUILTIN

attribute.

(For

more

information

on

the

BUILTIN

attribute

or

for

the

description

of

any

built-in

function,

see

Chapter

19,

“Built-in

functions,

pseudovariables,

and

subroutines.,”

on

page

365.)

Functions

A

function

is

a

procedure

that

has

zero

or

more

arguments

and

is

invoked

by

a

function

reference

in

an

expression.

The

function

reference

transfers

control

to

a

function

procedure;

the

function

procedure

returns

control

and

a

value,

which

replaces

the

function

reference

in

the

evaluation

of

the

expression.

Aggregates

Subroutines

Chapter

6.

Program

organization

105

cannot

be

returned;

ENTRY

variables

cannot

be

returned

unless

they

have

the

LIMITED

attribute.

The

evaluation

of

the

expression

then

continues.

A

function

procedure

must:

v

Have

the

RETURNS

option

on

the

procedure

statement.

v

Be

declared

as

an

entry

with

the

RETURNS

attribute,

if

it

is

an

external

procedure.

v

Be

invoked

using

a

function

reference.

The

CALL

statement

can

be

used

to

invoke

it

only

if

the

returned

value

has

the

OPTIONAL

attribute.

In

this

case,

the

returned

value

is

discarded

upon

return.

Using

END

instead

of

RETURN

can

cause

unpredictable

results.

v

Have

matching

attributes

in

the

RETURNS

option

and

in

the

RETURNS

attribute.

v

Use

the

RETURN

statement

to

return

control

and

the

result

value.

Whenever

a

function

is

invoked,

the

arguments

in

the

invoking

expression

are

associated

with

the

parameters

of

the

entry

point.

Control

is

then

passed

to

that

entry

point.

The

function

is

activated

and

execution

begins.

The

RETURN

statement

terminates

a

function

and

returns

the

value

specified

in

its

expression

to

the

invoking

expression.

See

“RETURN

statement”

on

page

125

for

more

information.

A

function

can

be

abnormally

terminated

as

described

in

“Procedure

termination”

on

page

99.

If

this

method

is

used,

evaluation

of

the

expression

that

invoked

the

function

is

not

completed,

and

control

goes

to

the

designated

statement.

In

some

instances,

a

function

can

be

defined

so

that

it

does

not

require

an

argument

list.

In

such

cases,

the

appearance

of

an

external

function

name

within

an

expression

is

recognized

as

a

function

reference

only

if

the

function

name

has

been

explicitly

declared

as

an

entry

name.

See

“Entry

invocation

or

entry

value”

on

page

124

for

additional

information.

Examples

The

following

examples

illustrate

the

invocation

of

functions

that

are

internal

to

and

external

to

the

invoking

block.

Example

1

In

the

following

example,

the

assignment

statement

contains

a

reference

to

the

Sprod

function:

Mainp:

procedure;

get

list

(A,

B,

C,

Y);

�1�

X

=

Y**3+Sprod(A,B,C);

�2�

Sprod:

procedure

(U,V,W)

returns

(bin

float(21));

dcl

(U,V,W)

bin

float(53);

if

U

>

V

+

W

then

�3�

return

(0);

else

�3�

return

(U*V*W);

end

Sprod;

�1�

When

Sprod

is

invoked,

the

arguments

A,

B,

and

C

are

associated

with

the

parameters

U,

V,

and

W

in

�2�,

respectively.

�2�

Sprod

is

a

function

because

RETURNS

appears

in

the

procedure

statement.

Functions

106

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

It

is

internal,

and

therefore

needs

no

explicit

entry

declaration.

If

Sprod

were

external,

Mainp

would

contain

an

entry

declaration

with

RETURNS

specified.

�3�

Sprod

returns

either

zero

or

the

value

represented

by

U*V*W,

along

with

control

to

the

expression

in

Mainp.

The

returned

value

is

taken

as

the

value

of

the

function

reference,

and

evaluation

of

the

expression

continues.

Example

2

Mainp:

procedure;

dcl

Tprod

entry

(bin

float(53),

bin

float(53),

bin

float(53),

label)

external

returns

(bin

float(21));

get

list

(A,B,C,Y);

�1�

X

=

Y**3+Tprod(A,B,C,Lab1);

Lab1:

call

Errt;

end

Mainp;

�1�

Tprod:

procedure

(U,V,W,Z)

returns

(bin

float(21));

dcl

(U,V,W)

bin

float(53);

declare

Z

label;

�2�

if

U

>

V

+

W

then

go

to

Z;

�3�

else

return

(U*V*W);

end

Tprod;

�1�

When

Tprod

is

invoked,

Lab1

is

associated

with

parameter

Z.

�2�

If

U

is

greater

than

V

+

W,

control

returns

to

Mainp

at

the

statement

labeled

Lab1.

Evaluation

of

the

assignment

in

�1�

is

discontinued.

�3�

If

U

is

not

greater

than

V

+

W,

U*V*W

is

calculated

and

returned

to

Mainp

in

the

normal

fashion.

Evaluation

of

the

assignment

in

�1�

continues.

Notice

that

Tprod

is

an

external

procedure.

It

has

an

explicit

entry

declaration

in

Mainp,

which

contains

RETURNS.

Built-in

functions

Besides

allowing

programmer-written

function

procedures,

PL/I

provides

a

set

of

built-in

functions.

Built-in

functions

include

commonly

used

arithmetic

functions,

as

well

as

functions

for

manipulating

strings

and

arrays,

using

storage,

and

others.

You

invoke

built-in

functions

the

same

way

that

you

invoke

programmer-defined

functions.

However,

many

built-in

functions

can

return

an

array

of

values,

whereas

a

programmer-defined

function

can

return

only

an

element

value.

The

built-in

names

for

built-in

functions

can

be

explicitly

declared

with

the

BUILTIN

attribute.

(For

more

information

on

the

BUILTIN

attribute

or

for

the

description

of

any

built-in

function,

see

Chapter

19,

“Built-in

functions,

pseudovariables,

and

subroutines.,”

on

page

365.)

Passing

arguments

to

procedures

When

a

function

or

a

subroutine

is

invoked,

parameters

are

associated,

from

left

to

right,

with

the

passed

arguments.

In

general:

Functions

Chapter

6.

Program

organization

107

v

Computational

data

arguments

can

be

passed

to

parameters

of

any

computational

data

type.

v

Program-control

data

arguments

must

be

passed

to

parameters

of

the

same

type,

with

these

exceptions.

–

Pointer

and

offset

can

be

passed

to

each

other.

–

LIMITED

ENTRY

can

be

passed

to

ENTRY,

but

ENTRY

cannot

be

passed

to

LIMITED

ENTRY.

–

An

array

of

label

constants

cannot

be

used

as

an

argument.

Arguments

that

require

aggregate

temporaries

derived

from

structures

are

not

allowed,

unless

the

structure

argument

is

declared

with

constant

extents.

Expressions

in

the

argument

list

are

evaluated

in

the

invoking

block

before

the

subroutine

or

function

is

invoked.

A

parameter

has

no

storage

associated

with

it.

It

is

merely

a

means

of

allowing

the

invoked

procedure

to

access

storage

allocated

in

the

invoking

procedure.

Using

BYVALUE

and

BYADDR

Unless

an

argument

is

passed

BYVALUE,

a

reference

to

an

argument,

not

its

value,

is

generally

passed

to

a

subroutine

or

function.

This

is

known

as

passing

arguments

by

reference,

or

BYADDR.

A

reference

to

a

parameter

in

a

procedure

is

a

reference

to

the

corresponding

argument.

Any

change

to

the

value

of

a

parameter

is

actually

a

change

to

the

value

of

the

corresponding

argument.

However,

this

is

not

always

possible

or

desirable.

Constants,

for

example,

should

not

be

altered

by

an

invoked

procedure.

For

arguments

that

should

not

change,

a

dummy

argument

containing

the

value

of

the

original

argument

is

passed.

Any

reference

to

the

parameter

then

is

a

reference

to

the

dummy

argument

and

not

to

the

original

argument.

When

you

specify

BYADDR,

the

compiler

puts

the

address

of

the

corresponding

argument

in

the

parameter

list.

When

you

specify

BYVALUE,

puts

the

value

of

the

argument

in

the

parameter

list.

When

you

specify

BYVALUE,

a

dummy

argument

is

notcreated;

however,

as

is

also

true

for

dummy

arguments,

any

change

to

the

corresponding

parameter

in

the

called

routine

will

not

be

visible

in

the

calling

routine.

BYVALUE

can

be

specified

only

for

scalar

arguments

and

parameters

that

have

lengths

and

sizes

known

at

compile

time.

Dummy

arguments

A

dummy

argument

is

created

when

the

argument

is

any

of

the

following:

v

A

constant

(unless

the

parameter

has

the

NONASSIGNABLE

attribute).

v

An

expression

with

operators,

parentheses,

or

function

references.

v

A

variable

whose

data

attributes,

alignment

attributes,

or

connected

attribute

are

different

from

the

attributes

declared

for

the

parameter.

This

does

not

apply

to

noncontrolled

parameters

when

only

bounds,

lengths,

or

size

differ

and

these

are

declared

with

asterisks,

nor

when

an

expression

other

than

a

constant

is

used

to

define

the

extents

of

a

controlled

parameter.

In

the

latter

case,

argument

and

parameter

extents

are

assumed

to

match.

In

the

case

of

an

argument

and

parameter

with

the

PICTURE

attribute,

a

dummy

argument

is

created

unless

the

picture

specifications

match

exactly,

after

Passing

arguments

to

procedures

108

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

any

repetition

factors

are

applied.

The

only

exception

is

that

an

argument

or

parameter

with

a

+

sign

in

a

scaling

factor

matches

a

parameter

or

argument

without

the

+

sign.

v

A

controlled

string

or

area

(because

an

ALLOCATE

statement

could

change

the

length

or

extent).

v

A

string

or

area

with

an

adjustable

length

or

size

that

is

associated

with

a

noncontrolled

parameter

whose

length

or

size

is

a

constant.

Deriving

dummy

argument

attributes

PL/I

derives

the

attributes

of

dummy

arguments

from:

v

The

attributes

declared

for

the

associated

parameter

in

an

internal

procedure.

v

The

attributes

specified

in

the

parameter

descriptor

for

the

associated

parameter

in

the

declaration

of

the

external

entry.

If

there

was

not

a

descriptor

for

this

parameter,

the

attributes

of

the

constant

or

expression

are

used.

v

The

extents

(when

specified

by

an

asterisk

in

a

declaration)

of

the

argument

for

the

bounds

of

an

array,

the

length

of

a

string,

or

the

size

of

an

area.

Rules

for

dummy

arguments

The

following

rules

apply

to

dummy

arguments:

v

If

a

parameter

is

an

element

(that

is,

a

variable

that

is

neither

a

structure

nor

an

array),

the

argument

must

be

an

element

expression.

v

When

a

VARYING

or

VARYINGZ

string

element

is

passed

to

a

NONVARYING

parameter,

whose

length

is

undefined

(that

is,

specified

by

an

asterisk),

a

dummy

argument

with

the

current

length

of

the

original

is

created.

v

Entry

variables

passed

as

arguments

are

assumed

to

be

aligned;

therefore,

no

dummy

argument

is

created

when

only

the

alignments

of

argument

and

parameter

differ.

See

“Generic

entries”

on

page

121,

for

a

description

of

generic

name

arguments

for

entry

parameters.

v

If

the

parameter

is

of

the

program-control

data

type

(except

locator),

the

argument

must

be

a

reference

of

the

same

data

type.

v

If

a

parameter

is

a

locator

(pointer

or

offset),

the

argument

must

be

a

locator.

If

the

types

differ,

a

dummy

argument

is

created.

The

parameter

descriptor

of

an

offset

parameter

must

not

specify

an

associated

area.

v

A

noncontrolled

parameter

can

be

associated

with

an

argument

of

any

storage

class.

However,

if

more

than

one

generation

of

the

argument

exists,

the

parameter

is

associated

only

with

that

generation

existing

at

the

time

of

invocation.

v

If

the

parameter

is

controlled,

you

must

explicitly

state

this

in

the

parameter

descriptor

for

the

ENTRY

declaration.

In

addition,

a

controlled

parameter

must

always

have

a

corresponding

controlled

argument

that:

–

is

not

subscripted

–

is

not

an

element

of

a

structure

–

does

not

cause

a

dummy

to

be

created

If

more

than

one

generation

of

the

argument

exists

at

the

time

of

invocation,

the

parameter

corresponds

to

the

entire

stack

of

generations

in

existence.

Consequently,

at

the

time

of

invocation,

a

controlled

parameter

represents

the

current

generation

of

the

corresponding

argument.

A

controlled

parameter

can

be

allocated

and

freed

in

the

invoked

procedure,

allowing

the

manipulation

of

the

allocation

stack

of

the

associated

argument.

If

the

extents

of

the

controlled

parameter

are

specified

as

asterisks

or

nonrestricted

expressions,

the

original

declaration

must

have

extents

declared

as

nonrestricted

expressions.

Dummy

arguments

Chapter

6.

Program

organization

109

Passing

arguments

to

the

MAIN

procedure

The

PROCEDURE

statement

for

the

main

procedure

can

have

a

parameter

list.

Such

parameters

require

no

special

considerations

in

PL/I.

However,

you

must

be

aware

of

any

requirements

of

the

invoking

program

(for

example,

when

not

to

use

such

a

parameter

as

the

target

of

an

assignment).

When

the

invoking

program

is

the

operating

system

and

when

compiled

with

the

SYSTEM(MVS)

compiler

option:

v

A

single

argument

is

passed

to

the

MAIN

procedure,

and

that

parameter

must

be

declared

as

CHARACTER

VARYING.

v

The

current

length

of

this

parameter

is

set

equal

to

the

argument

length

at

run-time.

So,

in

the

following

example:

Tom:

proc

(Param)

options

(main);

dcl

Param

char(100)

varying;

storage

is

allocated

only

for

the

current

length

of

the

argument.

v

The

contents

of

this

parameter

depend

on

a

second

option

that

may

be

specified

along

with

OPTIONS(MAIN):

–

If

you

specify

OPTIONS(MAIN

NOEXECOPS),

then

the

string

passed

by

the

operating

system

to

PL/I

is

passed

as

is

to

your

program.

NOEXECOPS

is

recommended.

–

If

you

specify

only

OPTIONS(MAIN),

then

the

string

passed

by

the

operating

system

to

PL/I

is

stripped

of

all

characters

up

to

and

including

the

first

’/’.

This

means

that

if

the

string

contains

no

’/’,

then

your

program

receives

a

null

string.

Begin-blocks

A

begin-block

is

a

sequence

of

statements

delimited

by

a

BEGIN

statement

and

a

corresponding

END

statement.

For

example:

B:

begin;

statement-1

statement-2

...
statement-n

end

B;

BEGIN

statement

The

BEGIN

statement

and

a

corresponding

END

statement

delimit

a

begin-block.

��

BEGIN

OPTIONS

(

options

)

;

��

OPTIONS

option

For

begin-block

options,

refer

to

“OPTIONS

option

and

attribute”

on

page

126.

Begin-block

activation

Begin-blocks

are

activated

through

sequential

flow

or

as

a

unit

in

an

IF,

ON,

WHEN,

or

OTHERWISE

statement.

You

can

transfer

control

to

a

labeled

BEGIN

statement

using

the

GO

TO

statement.

Passing

arguments

to

the

MAIN

procedure

110

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Begin-block

termination

A

begin-block

is

terminated

when

control

passes

to

another

active

block

by

some

means

other

than

a

procedure

reference.

These

means

are:

v

The

END

statement

for

the

begin-block

is

executed.

Control

continues

with

the

statement

physically

following

the

END,

except

when

the

block

is

an

ON-unit.

v

A

GO

TO

statement

within

the

begin-block

(or

within

any

block

internal

to

it)

is

executed,

transferring

control

to

the

point

outside

the

block.

v

A

STOP

or

an

EXIT

statement

is

executed.

v

Control

reaches

a

RETURN

statement

that

transfers

control

out

of

the

begin-block

and

out

of

its

containing

procedure.

A

GO

TO

statement

can

also

terminate

other

blocks

if

the

transfer

point

is

contained

in

a

block

that

did

not

directly

activate

the

block

being

terminated.

In

this

case,

all

intervening

blocks

in

the

activation

sequence

are

terminated.

For

an

example

of

this,

see

the

example

in

“Procedure

termination”

on

page

99.

Entry

data

The

entry

data

can

be

an

entry

constant

or

the

value

of

an

entry

variable.

An

entry

constant

is

a

name

prefixed

to

a

PROCEDURE

or

ENTRY

statement,

or

a

name

declared

with

the

ENTRY

attribute

and

not

the

VARIABLE

attribute.

It

can

be

assigned

to

an

entry

variable.

In

the

following

example,

P,

E1,

and

E2

are

entry

constants.

Ev

is

an

entry

variable.

P:

procedure;

declare

Ev

entry

variable,

(E1,E2)

entry;

Ev

=

E1;

call

Ev;

Ev

=

E2;

call

Ev;

The

first

CALL

statement

invokes

the

entry

point

E1.

The

second

CALL

invokes

the

entry

point

E2.

The

following

example

declares

F(5),

a

subscripted

entry

variable.

The

five

entries

A,

B,

C,

D,

and

E

are

each

invoked

with

the

parameters

X,

Y,

and

Z.

declare

(A,B,C,D,E)

entry,

declare

F(5)

entry

variable

initial

(A,B,C,D,E);

do

I

=

1

to

5;

call

F(I)

(X,Y,Z);

end;

When

an

entry

constant

that

is

an

entry

point

of

an

internal

procedure

is

assigned

to

an

entry

variable,

the

assigned

value

remains

valid

only

as

long

as

the

block

that

the

entry

constant

was

internal

to

remains

active

(and,

for

recursive

procedures,

remains

current).

Entry

constants

The

appearance

of

a

label

prefix

to

a

PROCEDURE

or

ENTRY

statement

explicitly

declares

an

entry

constant.

A

parameter-descriptor

list

is

obtained

from

the

parameter

declarations,

if

any,

and

by

defaults.

Begin-block

termination

Chapter

6.

Program

organization

111

External

entry

constants

must

be

explicitly

declared.

This

declaration:

v

Defines

an

entry

point

to

an

external

procedure.

v

Optionally

specifies

a

parameter-descriptor

list

(the

number

of

parameters

and

their

attributes),

if

any,

for

the

entry

point.

v

Specifies

the

attributes

of

the

value

that

is

returned

by

the

procedure

if

the

entry

is

a

function.

��

ENTRY

(parameter-descriptor-list)

RETURNS

attribute

�

�

OPTIONS(characteristic-list)

EXTERNAL

(environment-name)

��

The

attributes

can

appear

in

any

order.

ENTRY

attribute

For

complete

ENTRY

attribute

syntax,

refer

to

“ENTRY

attribute”

on

page

113.

OPTIONS

attribute

For

complete

OPTIONS

attribute

syntax,

refer

to

“OPTIONS

option

and

attribute”

on

page

126.

RETURNS

attribute

For

complete

RETURNS

attribute

syntax,

refer

to

“RETURNS

option

and

attribute”

on

page

134.

EXTERNAL

attribute

If

you

don’t

specify

an

environment-name,

the

name

is

the

same

as

the

declaration.

For

a

complete

description

of

the

EXTERNAL

attribute

refer

to

“INTERNAL

and

EXTERNAL

attributes”

on

page

153.

Entry

variables

An

entry

variable

can

contain

both

internal

and

external

entry

values.

It

can

be

part

of

an

aggregate.

For

structuring

and

array

dimension

attributes,

refer

to

“Arrays”

on

page

167

and

“Structures”

on

page

170.

��

ENTRY

(parameter-descriptor-list)

OPTIONS(characteristic-list)

�

�

VARIABLE

LIMITED

RETURNS

attribute

�

�

EXTERNAL

(environment-name)

��

The

options

can

appear

in

any

order.

ENTRY

attribute

Refer

to

“ENTRY

attribute”

on

page

113.

Entry

constants

112

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

OPTIONS

attribute

Refer

to

“OPTIONS

option

and

attribute”

on

page

126.

VARIABLE

attribute

The

VARIABLE

attribute

establishes

the

name

as

an

entry

variable.

This

variable

can

contain

entry

constants

and

variables.

Refer

to

“VARIABLE

attribute”

on

page

48

for

syntax

information.

LIMITED

attribute

Refer

to

“LIMITED

attribute”

on

page

120.

RETURNS

attribute

Refer

to

“RETURNS

option

and

attribute”

on

page

134.

EXTERNAL

attribute

Refer

to

“Scope

of

declarations”

on

page

151.

ENTRY

attribute

The

ENTRY

attribute

specifies

that

the

name

being

declared

is

either

an

external

entry

constant,

or

an

entry

variable.

It

also

describes

the

attributes

of

the

parameters

of

the

entry

point.

Entry

variables

Chapter

6.

Program

organization

113

��

ENTRY

�

,

(

parameter-descr

)

structure-union-descr

��

parameter-descr:

�

attribute

*

ALIGNED

OPTIONAL

UNALIGNED

ASSIGNABLE

NONASSIGNABLE

CONNECTED

NONCONNECTED

BYADDR

BYVALUE

structure-union-descr:

1

�

attribute

OPTIONAL

,

�

level

attribute

ENTRY

The

ENTRY

attribute,

without

a

parameter

descriptor

list,

is

implied

by

the

RETURNS

attribute.

parameter-descr

(parameter-descriptor)

A

parameter

descriptor

list

can

be

given

to

describe

the

attributes

of

the

parameters

of

the

associated

external

entry

constant

or

entry

variable.

It

is

used

for

argument

and

parameter

attribute

matching

and

the

creation

of

dummy

arguments.

If

no

parameter

descriptor

list

is

given,

the

default

is

for

the

argument

attributes

to

match

the

parameter

attributes.

Thus,

the

parameter

descriptor

list

must

be

supplied

if

argument

attributes

do

not

match

the

parameter

attributes.

Each

parameter

descriptor

corresponds

to

one

parameter

of

the

entry

point

invoked

and,

if

given,

specifies

the

attributes

of

that

parameter.

The

parameter

descriptors

must

appear

in

the

same

order

as

the

parameters

they

describe.

If

a

descriptor

is

absent,

the

default

is

for

the

argument

to

match

the

parameter.

If

a

descriptor

for

a

parameter

is

not

required,

the

absence

of

the

descriptor

must

be

indicated

by

an

asterisk.

For

example:

entry(character(10),*,*,fixed

dec)

Indicates

four

arguments.

ENTRY

114

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

entry(*)

Indicates

one

argument.

entry(

)

Specifies

that

the

entry

name

must

never

have

any

arguments.

entry

Specifies

that

it

can

have

any

number

of

arguments.

entry(float

binary,*)

Indicates

two

arguments.

attribute

The

allowed

attributes

are

any

of

the

data

attributes

listed

under

“Data

attributes”

on

page

23.

The

attributes

can

appear

in

any

order

in

a

parameter

descriptor.

For

an

array

parameter-descriptor,

the

dimension

attribute

must

be

the

first

one

specified.

*

An

asterisk

specifies

that,

for

that

parameter,

any

data

type

is

allowed.

The

only

attributes

which

are

valid

following

the

asterisk

are:

v

ALIGNED

or

UNALIGNED

v

ASSIGNABLE

or

NONASSIGNABLE

v

BYADDR

or

BYVALUE

v

CONNECTED

or

NONCONNECTED

v

OPTIONAL

No

conversions

are

done.

OPTIONAL

This

attribute

is

discussed

in

“OPTIONAL

attribute”

on

page

116.

structure-union-descr

(structure-union-descriptor)

For

a

structure-union

descriptor,

the

descriptor

level-numbers

need

not

be

the

same

as

those

of

the

parameter,

but

the

structuring

must

be

identical.

The

attributes

for

a

particular

level

can

appear

in

any

order.

Defaults

are

not

applied

if

an

asterisk

is

specified.

For

example,

in

the

following

declaration

defaults

are

applied

only

for

the

second

parameter.

dcl

X

entry(*

optional,

aligned);

/*

defaults

applied

for

2nd

parm

*/

Extents

(lengths,

sizes,

and

bounds)

in

parameter

descriptors

must

be

specified

as

constants

or

as

asterisks.

Controlled

parameters

must

have

asterisks.

RETURNS

attribute

implies

the

ENTRY

attribute.

For

example:

Example

parameter

descriptors

Declarations

for

example

descriptors

Test:

procedure

(A,B,C,D,E,F);

declare

A

fixed

decimal

(5),

B

float

binary

(21),

C

pointer,

1

D,

2

P,

2

Q,

3

R

fixed

decimal,

1

E,

2

X,

2

Y,

3

Z,

F(4)

character

(10);

end

Test;

declare

Test

entry

(decimal

fixed

(5),

binary

float

(21),

*,

1,

2,

2,

3

decimal

fixed,

*,

(4)

char(10));

ENTRY

Chapter

6.

Program

organization

115

In

the

previous

example,

the

parameter

C,

and

the

structure

parameter

E

do

not

have

descriptors.

OPTIONAL

attribute

OPTIONAL

can

be

specified

as

part

of

the

parameter-descriptor

list

or

as

an

attribute

in

the

parameter

declaration.

��

OPTIONAL

��

OPTIONAL

arguments

can

be

omitted

in

calls

and

function

references

by

specifying

an

asterisk

for

the

argument.

An

omitted

item

can

be

anywhere

in

the

argument

list,

including

at

the

end.

However,

the

omitted

item

is

counted

as

an

argument.

With

its

inclusion

in

an

entry,

the

number

of

arguments

must

not

exceed

the

maximum

number

allowed

for

the

entry.

Using

OPTIONAL

and

BYVALUE

for

the

same

item

is

invalid,

unless

the

item

is

a

LIMITED

ENTRY.

The

receiving

procedure

can

use

the

OMITTED

built-in

function

to

determine

if

an

OPTIONAL

parameter/argument

was

omitted

in

the

invocation

of

the

entry.

(For

more

information

on

the

OMITTED

built-in

function,

see

“OMITTED”

on

page

440.)

Figure

5

on

page

117

shows

both

valid

and

invalid

CALL

statements

for

the

procedure

Vrtn.

ENTRY

116

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Vrtn

determines

if

OPTIONAL

parameters

were

omitted,

and

takes

the

appropriate

action.

LIST

attribute

LIST

can

be

specified

on

the

last

parameter

in

a

parameter-descriptor

list

or

as

an

attribute

on

the

last

parameter

to

a

procedure.

��

LIST

��

When

the

LIST

attribute

is

specified

in

an

entry

declaration,

it

indicates

that

zero

or

more

additional

arguments

may

be

passed

to

that

entry.

For

example,

the

following

declare

specifies

that

vararg

must

be

invoked

with

one

character

varyingz

parameter

and

may

be

invoked

with

any

number

of

other

parameters.

dcl

vararg

external

entry(

list

byaddr

char(*)

varz

nonasgn

)

options(

nodescriptor

byvalue

);

When

the

LIST

attribute

is

specified

in

the

declaration

of

the

last

parameter

in

a

procedure,

it

indicates

that

zero

or

more

additional

arguments

may

have

been

passed

to

that

procedure.

When

the

LIST

attribute

is

specified,

no

descriptors

are

allowed.

Caller:

proc;

dcl

Vrtn

entry

(

fixed

bin,

ptr

optional,

float,

*

optional);

/*

The

following

calls

are

valid:

*/

call

Vrtn(10,

*,

15.5,

’abcd’);

call

Vrtn(10,

*,

15.5,

*);

call

Vrtn(10,

addr(x),

15.5,

*);

/*

The

following

calls

are

invalid:

*/

call

Vrtn(10,

addr(x),

15.5);

call

Vrtn(*,

addr(x));

call

Vrtn(10,addr(x));

call

Vrtn(10);

call

Vrtn;

end

Caller;

Vrtn:

proc

(Fb,

P,

Fl,

C1);

dcl

Fb

fixed

bin,

P

ptr

optional,

Fl

float,

C1

char(8)

optional;

if

¬omitted(C1)

then

display

(C1);

if

¬omitted(P)

then

P=P+10;

end;

Figure

5.

Valid

and

invalid

call

statements

OPTIONAL

Chapter

6.

Program

organization

117

The

address

of

the

first

of

these

additional

parameters

may

be

obtained

via

the

VARGLIST

built-in

function.

This

address

may

be

used

to

obtain

the

addresses

of

any

additional

parameters

as

follows:

v

if

the

additional

parameters

to

this

procedure

were

passed

byvalue,

successively

incrementing

this

initial

address

by

the

value

returned

by

the

VARGSIZE

built-in

function

will

return

the

addresses

of

any

additional

parameters

v

if

the

additional

parameters

to

this

procedure

were

passed

byaddr,

successively

incrementing

this

initial

address

by

the

size

of

a

pointer

will

return

the

addresses

of

any

additional

parameters

The

following

sample

program,

which

implements

a

simple

version

of

printf,

illustrates

how

to

use

the

LIST

attribute.

The

routine

varg1

illustrates

how

to

walk

a

variable

argument

list

with

byvalue

parameters,

while

varg2

illustrates

how

to

walk

such

a

list

with

byaddr

parameters.

*process

rules(ans)

dft(ans)

gn;

*process

langlvl(saa2);

vararg:

proc

options(main);

dcl

i1

fixed

bin(31)

init(1729);

dcl

i2

fixed

bin(31)

init(6);

dcl

d1

float

bin(53)

init(17.29);

call

varg1(

’test

byvalue’

);

call

varg1(

’test1

parm1=%i’,

i1

);

call

varg1(

’test2

parm1=%i

parm2=%i’,

i1,

i2

);

call

varg1(

’test3

parm1=%d’,

d1

);

call

varg2(

’test

byaddr’

);

call

varg2(

’test1

parm1=%i’,

i1

);

call

varg2(

’test2

parm1=%i

parm2=%i’,

i1,

i2

);

call

varg2(

’test3

parm1=%d’,

d1

);

end;

*process

;

varg1:

proc(

text

)

options(

nodescriptor

byvalue

);

dcl

text

list

byaddr

nonasgn

varz

char(*);

dcl

jx

fixed

bin;

dcl

iz

fixed

bin;

dcl

ltext

fixed

bin;

dcl

ptext

pointer;

dcl

p

pointer;

dcl

i

fixed

bin(31)

based;

dcl

d

float

bin(53)

based;

dcl

q

float

bin(64)

based;

dcl

chars

char(32767)

based;

dcl

ch

char(1)

based;

Figure

6.

Sample

program

illustrating

LIST

attribute

(Part

1

of

3)

LIST

118

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

ptext

=

addr(text);

ltext

=

length(text);

iz

=

index(

substr(ptext->chars,1,ltext),

’%’

);

p

=

varglist();

do

while(

iz

>

0

);

if

iz

=

1

then;

else

put

edit(

substr(ptext->chars,1,iz-1)

)(a);

ptext

+=

iz;

ltext

-=

iz;

select(

ptext->ch

);

when(

’i’

)

do;

put

edit(

trim(p->i)

)(a);

p

+=

vargsize(

p->i

);

end;

when(

’d’

)

do;

put

edit(

trim(p->d)

)(a);

p

+=

vargsize(

p->d

);

end;

end;

ptext

+=

1;

ltext

-=

1;

if

ltext

<=

0

then

leave;

iz

=

index(

substr(ptext->chars,1,ltext),

’%’

);

end;

if

ltext

=

0

then;

else

put

edit(

substr(ptext->chars,1,ltext)

)(a);

put

skip;

end;

Figure

6.

Sample

program

illustrating

LIST

attribute

(Part

2

of

3)

LIST

Chapter

6.

Program

organization

119

LIMITED

attribute

The

LIMITED

attribute

indicates

that

the

entry

variable

has

only

non-nested

entry

constants

as

values.

A

entry

variable

that

is

not

LIMITED

can

have

any

entry

constants

as

values.

*process

;

varg2:

proc(

text

)

options(

nodescriptor

byaddr

);

dcl

text

list

byaddr

nonasgn

varz

char(*);

dcl

jx

fixed

bin;

dcl

iz

fixed

bin;

dcl

ltext

fixed

bin;

dcl

ptext

pointer;

dcl

p

pointer;

dcl

p2

pointer

based;

dcl

i

fixed

bin(31)

based;

dcl

d

float

bin(53)

based;

dcl

q

float

bin(64)

based;

dcl

chars

char(32767)

based;

dcl

ch

char(1)

based;

ptext

=

addr(text);

ltext

=

length(text);

iz

=

index(

substr(ptext->chars,1,ltext),

’%’

);

p

=

varglist();

do

while(

iz

>

0

);

if

iz

=

1

then;

else

put

edit(

substr(ptext->chars,1,iz-1)

)(a);

ptext

+=

iz;

ltext

-=

iz;

select(

ptext->ch

);

when(

’i’

)

do;

put

edit(

trim(p->p2->i)

)(a);

p

+=

size(

p

);

end;

when(

’d’

)

do;

put

edit(

trim(p->p2->d)

)(a);

p

+=

size(

p

);

end;

end;

ptext

+=

1;

ltext

-=

1;

if

ltext

<=

0

then

leave;

iz

=

index(

substr(ptext->chars,1,ltext),

’%’

);

end;

if

ltext

=

0

then;

else

put

edit(

substr(ptext->chars,1,ltext)

)(a);

put

skip;

end;

Figure

6.

Sample

program

illustrating

LIST

attribute

(Part

3

of

3)

LIMITED

120

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

LIMITED

��

Example:

Example:

proc

options(reorder

reentrant);

dcl

(Read,

Write)

entry;

dcl

FuncRtn(2)

entry

limited

static

init

(Read,

Write);

dcl

(Prt1)

entry;

dcl

PrtRtn(2)

entry

variable

limited

static

init

(Prt1,

/*

legal

*/

Prt2);

/*

illegal

*/

Prt2:

proc;

...
end

Prt2;

end

Example;

A

LIMITED

static

entry

variable

can

be

initialized

with

the

value

of

a

non-nested

entry

constant,

thus

allowing

generation

of

more

efficient

code.

It

also

uses

less

storage

than

a

non-LIMITED

entry

variable.

Generic

entries

A

generic

entry

declaration

specifies

a

generic

name

for

a

set

of

entry

references

and

their

descriptors.

During

compilation,

invocation

of

the

generic

name

is

replaced

by

one

of

the

entries

in

the

set.

GENERIC

attribute

The

generic

name

must

be

explicitly

declared

with

the

GENERIC

attribute.

LIMITED

Chapter

6.

Program

organization

121

��

generic-name

GENERIC

(

references

,

entry-ref

OTHERWISE

�

�

)

;

generic-descriptor:

data-attributes

ALIGNED

UNALIGNED

�

�

ASSIGNABLE

(1)

NONASSIGNABLE

CONNECTED

(1)

NONCONNECTED

HEXADEC

IEEE

�

�

BIGENDIAN

LITTLEENDIAN

OPTIONAL

��

references

�

�

,

,

entry-ref

WHEN

(

)

generic-descriptor

*

Notes:

1 If

specified,

this

keyword

is

ignored.

Abbreviation:

OTHER

for

OTHERWISE

For

the

general

declaration

syntax,

see

“DECLARE

statement”

on

page

148.

entry-ref

Must

not

be

subscripted

or

defined.

The

same

entry

reference

can

appear

more

than

once

within

a

single

GENERIC

declaration

with

different

lists

of

descriptors.

generic-descriptor

Corresponds

to

a

single

argument.

It

specifies

an

attribute

that

the

corresponding

argument

must

have

so

that

the

associated

entry

reference

can

be

selected

for

replacement.

Structures

or

unions

cannot

be

specified.

Where

a

descriptor

is

not

required,

its

absence

must

be

indicated

by

an

asterisk.

The

descriptor

that

represents

the

absence

of

all

arguments

in

the

invoking

statement

is

expressed

by

omitting

the

generic

descriptor

in

the

WHEN

clause

of

the

entry.

It

has

the

form:

generic

(...

entry1

when(

)

...)

data-attributes

Listed

in

“Data

types

and

attributes”

on

page

22.

ALIGNED

and

UNALIGNED

Discussed

in

“ALIGNED

and

UNALIGNED

attributes”

on

page

159.

GENERIC

attribute

122

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

ASSIGNABLE

and

NONASSIGNABLE

Discussed

in

“ASSIGNABLE

and

NONASSIGNABLE

attributes”

on

page

242.

CONNECTED

and

NONCONNECTED

Discussed

in

“CONNECTED

and

NONCONNECTED

attributes”

on

page

244.

HEXADEC

and

IEEE

Discussed

in

“HEXADEC

and

IEEE

attributes”

on

page

244.

BIGENDIAN

and

LITTLEENDIAN

Discussed

in

“BIGENDIAN

and

LITTLEENDIAN

attributes”

on

page

243.

OPTIONAL

Discussed

in

“OPTIONAL

attribute”

on

page

116.

When

an

invocation

of

a

generic

name

is

encountered,

the

number

of

arguments

specified

in

the

invocation

and

their

attributes

are

compared

with

descriptor

list

of

each

entry

in

the

set.

The

first

entry

reference

for

which

the

descriptor

list

matches

the

arguments

both

in

number

and

attributes

replaces

the

generic

name.

In

the

following

example,

an

entry

reference

that

has

exactly

two

descriptors

with

the

attributes

DECIMAL

or

FLOAT,

and

BINARY

or

FIXED

is

searched

for.

declare

Calc

generic

(

Fxdcal

when

(fixed,fixed),

Flocal

when

(float,float),

Mixed

when

(float,fixed),

Error

otherwise);

Dcl

X

decimal

float

(6),

Y

binary

fixed

(15,0);

Z

=

X+Calc(X,Y);

If

an

entry

with

the

exact

number

of

descriptors

with

the

exact

attributes

is

not

found,

the

entry

with

the

OTHERWISE

clause

is

selected

if

present.

In

the

previous

example,

Mixed

is

selected

as

the

replacement.

In

a

similar

manner,

an

entry

can

be

selected

based

on

the

dimensionality

of

the

arguments.

dcl

D

generic

(D1

when

((*))),

D2

when((*,*))),

A(2),

B(3,5);

call

D(A);

/*

D1

selected

because

A

has

one

dimension

*/

call

D(B);

/*

D2

selected

because

B

has

two

dimensions

*/

If

all

of

the

descriptors

are

omitted

or

consist

of

an

asterisk,

the

first

entry

reference

with

the

correct

number

of

descriptors

is

selected.

An

entry

expression

used

as

an

argument

in

a

reference

to

a

generic

value

matches

only

a

descriptor

of

type

ENTRY.

If

there

is

no

such

description,

the

program

is

in

error.

GENERIC

attribute

Chapter

6.

Program

organization

123

Entry

invocation

or

entry

value

There

are

times

when

it

might

not

be

apparent

whether

an

entry

value

itself

will

be

used

or

the

value

returned

by

the

entry

invocation

will

be

used.

The

following

table

and

example

help

you

understand

which

happens

when.

If

the

entry

reference

.

.

.

It

is

.

.

.

Is

a

built-in

function

Invoked

Has

an

argument

list,

even

if

null

Invoked

Is

referenced

in

a

CALL

statement

Invoked

Has

no

argument

list

and

is

not

referenced

in

a

CALL

statement

Not

Invoked

In

the

following

example,

A

is

invoked,

B(C)

passes

C

as

an

entry

value,

and

D(

C()

)

invokes

C.

dcl

(

A,

B,

C

returns

(fixed

bin),

D)

entry;

call

A;

/*

A

is

invoked

*/

call

B(C);

/*

C

is

passed

as

an

entry

value

*/

call

D(

C()

);

/*

C

is

invoked

*/

In

the

following

example,

the

first

assignment

is

invalid

because

it

represents

an

attempt

to

assign

an

entry

constant

to

an

integer.

The

second

assignment

is

valid.

dcl

A

fixed

bin,

B

entry

returns

(

fixed

bin

);

A

=

B;

A

=

B();

CALL

statement

The

CALL

statement

invokes

a

subroutine.

��

CALL

entry-reference

generic-name

built-in-name

�

(

)

,

argument

*

;

��

entry-reference

Specifies

that

the

name

of

the

subroutine

to

be

invoked

is

declared

with

the

ENTRY

attribute

(discussed

in

“Entry

data”

on

page

111).

generic-name

Specifies

that

the

name

of

the

subroutine

to

be

invoked

is

declared

with

the

GENERIC

attribute

(discussed

in

“Generic

entries”

on

page

121).

built-in

name

Specifies

the

name

of

the

subroutine

to

be

invoked

is

declared

with

the

BUILTIN

attribute

(see

“BUILTIN

attribute”

on

page

368).

argument

Is

an

element,

an

element

expression,

or

an

aggregate

to

be

passed

to

the

invoked

subroutine.

See

“Passing

arguments

to

procedures”

on

page

107.

Entry

invocation

or

entry

value

124

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

References

and

expressions

in

the

CALL

statement

are

evaluated

in

the

block

in

which

the

call

is

executed.

This

includes

execution

of

any

ON-units

entered

as

the

result

of

the

evaluations.

RETURN

statement

The

RETURN

statement

terminates

execution

of

the

subroutine

or

function

procedure

that

contains

the

RETURN

statement

and

returns

control

to

the

invoking

procedure.

Control

is

returned

to

the

point

immediately

following

the

invocation

reference.

The

RETURN

statement

with

an

expression

should

not

be

used

within

a

procedure

with

OPTIONS(MAIN).

Return

from

a

subroutine

To

return

from

a

subroutine,

the

RETURN

statement

syntax

is:

��

RETURN

;

��

If

the

RETURN

statement

terminates

the

main

procedure,

the

FINISH

condition

is

raised

prior

to

program

termination.

Return

from

a

function

To

return

from

a

function,

the

RETURN

statement

syntax

is:

��

RETURN

(expression)

;

��

The

value

returned

to

the

function

reference

is

the

value

of

the

expression

specified,

converted

to

conform

to

the

attributes

specified

in

the

RETURNS

option

of

the

ENTRY

or

PROCEDURE

statement

at

which

the

function

was

entered.

For

example:

F:

procedure

returns(fixed

bin(15));

...
G:

entry

returns(fixed

dec(7,2));

...
dcl

D

fixed

bin(31);

...
return

(D);

If

this

function

was

entered

at

F,

then

D

is

converted

to

the

attributes

specified

in

the

RETURNS

option

for

the

procedure

F

(FIXED

BIN(15)).

But,

if

this

function

was

entered

at

G,

then

D

is

converted

to

the

attributes

specified

in

the

RETURNS

option

for

the

entry

G

(FIXED

DEC(7,2)).

You

cannot

specify

an

expression

for

the

RETURN

statement

in

a

begin-block.

CALL

Chapter

6.

Program

organization

125

OPTIONS

option

and

attribute

The

OPTIONS

option

can

be

specified

on

PACKAGE,

PROCEDURE,

ENTRY,

and

BEGIN

statements.

The

OPTIONS

attribute

can

be

specified

on

ENTRY

declarations.

It

is

used

to

specify

processing

characteristics

that

apply

to

the

block

and

the

invocation

of

a

procedure.

The

options

shown

in

the

following

syntax

diagrams

are

listed

alphabetically

and

discussed

starting

in

128.

BEGIN

statement

��

OPTIONS

�

ORDER

(

)

REORDER

NOCHARGRAPHIC

CHARGRAPHIC

NOINLINE

INLINE

��

ENTRY

declaration

��

OPTIONS

(

�

ASSEMBLER

RETCODE

COBOL

FORTRAN

FETCHABLE

BYADDR

BYVALUE

DESCRIPTOR

NODESCRIPTOR

LINKAGE

(

linkage

)

IRREDUCIBLE

REDUCIBLE

NOMAP

parameter-list

NOMAPIN

parameter-list

NOMAPOUT

parameter-list

)

��

OPTIONS

option

and

attribute

126

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

ENTRY

statement

��

OPTIONS

(

�

REENTRANT

ASSEMBLER

RETCODE

COBOL

FORTRAN

BYADDR

BYVALUE

DESCRIPTOR

NODESCRIPTOR

LINKAGE(linkage)

NOMAP

parameter-list

NOMAPIN

parameter-list

NOMAPOUT

parameter-list

IRREDUCIBLE

REDUCIBLE

)

��

PACKAGE

statement

��

OPTIONS

�

NOCHARGRAPHIC

(

)

CHARGRAPHIC

ORDER

REORDER

REENTRANT

��

OPTIONS

option

and

attribute

Chapter

6.

Program

organization

127

PROCEDURE

statement

��

OPTIONS

(

�

ASSEMBLER

COBOL

FORTRAN

MAIN

NOEXECOPS

BYADDR

BYVALUE

NOCHARGRAPHIC

CHARGRAPHIC

DESCRIPTOR

NODESCRIPTOR

FROMALIEN

LINKAGE(linkage)

NOMAP

parameter-list

NOMAPIN

parameter-list

NOMAPOUT

parameter-list

NOINLINE

INLINE

ORDER

REORDER

IRREDUCIBLE

REDUCIBLE

REENTRANT

RETCODE

WINMAIN

)

��

The

options

are

separated

by

blanks

or

commas.

They

can

appear

in

any

order.

ASSEMBLER

Abbreviation:

ASM

The

ASSEMBLER

option

has

the

same

effect

as

NODESCRIPTOR.

If

a

procedure

has

the

ASSEMBLER

option,

then

upon

exit

from

that

procedure,

the

PLIRETV()

value

will

be

used

as

the

return

value

for

the

procedure.

For

more

information,

refer

to

the

Programming

Guide.

OPTIONS

option

and

attribute

128

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

BYADDR

or

BYVALUE

These

specify

how

arguments

and

parameters

are

passed

and

received.

BYADDR

is

the

default.

BYVALUE

can

be

specified

only

for

scalar

arguments

and

parameters

that

have

known

lengths

and

sizes.

The

BYVALUE

and

BYADDR

attributes

can

also

be

specified

in

the

description

list

of

an

entry

declaration

and

in

the

attribute

list

of

a

parameter

declaration.

Specifying

BYVALUE

or

BYADDR

in

an

entry

or

a

parameter

declaration

overrides

the

option

specified

in

an

OPTIONS

statement.

The

following

examples

show

BYVALUE

and

BYADDR

in

both

entry

declarations

and

in

the

OPTIONS

statement.

The

examples

assume

that

the

compiler

option

DEFAULT(BYADDR)

is

in

effect.

Example

1

MAINPR:

proc

options(main);

dcl

D

entry

(fixed

bin

byaddr,

ptr,

char(4)

byvalue)

/*

byvalue

not

needed

*/

options(byvalue);

dcl

E2

entry;

/*

default(byaddr)

in

effect

*/

dcl

Length

fixed

bin,

P

pointer,

Name

char(4);

call

D(Length,

P,

Name);

/*

Length

is

passed

byaddr

*/

/*

P

is

passed

by

value

*/

/*

Name

is

passed

by

value

*/

call

E2(P);

/*

P

is

passed

by

address

*/

D:

proc(I,

Q,

C)

options(byvalue);

dcl

I

fixed

bin

byaddr,

Q

ptr,

C

char(4)

byvalue;

E2:

proc(Q);

dcl

Q

ptr;

Example

2

dcl

F

entry

(fixed

bin

byaddr,

/*

byaddr

not

needed

*/

ptr,

char(4)

byvalue)

options(byaddr);

dcl

E3

entry;

dcl

E4

entry

(fixed

bin

byvalue);

call

F(Length,

P,

Name);

/*

Length

is

passed

byaddr

*/

/*

P

is

passed

byaddr

*/

/*

Name

is

passed

by

value

*/

call

E3(Name);

/*

Name

is

passed

byaddr

*/

call

E4(Length);

/*

Length

is

passed

by

value

*/

OPTIONS

option

and

attribute

Chapter

6.

Program

organization

129

F:

proc(I,P,C)

options(byaddr);

dcl

I

fixed

bin

byaddr;

/*

byaddr

not

needed

*/

dcl

P

ptr

byaddr;

/*

byaddr

not

needed

*/

dcl

C

char(4)

byvalue;

/*

byvalue

needed

*/

E3:

proc(L);

dcl

L

char(4);

E4:

proc(N);

dcl

N

fixed

bin

byvalue;

CHARGRAPHIC

or

NOCHARGRAPHIC

Abbreviations:

CHARG,

NOCHARG

The

default

for

an

external

procedure

is

NOCHARG.

Internal

procedures

and

begin-blocks

inherit

their

defaults

from

the

containing

procedure.

When

CHARG

is

in

effect,

the

following

semantic

changes

occur:

v

All

character

string

assignments

are

considered

to

be

mixed

character

assignments.

v

STRINGSIZE

condition

causes

MPSTR

built-in

function

to

be

used.

STRINGSIZE

must

be

enabled

for

character

assignment

that

can

cause

truncation

and

intelligent

DBCS

truncation

is

required.

(For

information

on

the

MPSTR

BUILTIN

see

“MPSTR”

on

page

437.)

For

example:

Name:

procedure

options(chargraphic);

dcl

A

char(5);

dcl

B

char(8);

/*

the

following

statement...

*/

(stringsize):

A=B;

/*...is

logically

transformed

into...

*/

A=mpstr(B,’vs’,length(A));

When

NOCHARG

is

in

effect,

no

semantic

changes

occur.

COBOL

This

option

has

the

same

effects

as

NODESCRIPTOR

(see

below),

but

additionally

OPTIONS(COBOL)

v

implies

LINKAGE(SYSTEM)

unless

a

different

linkage

is

specified

on

the

entry

declaration

or

procedure

statement.

v

permits

the

use

of

the

NOMAP,

NOMAPIN

and

NOMAPOUT

options

v

implies,

if

specified

on

a

procedure

statement,

that

upon

exit

from

that

procedure,

the

PLIRETV()

value

will

be

used

as

the

return

value

for

the

procedure.

DESCRIPTOR

or

NODESCRIPTOR

These

indicate

whether

the

procedure

specified

in

the

entry

declaration

or

procedure

statement

will

be

passed

a

descriptor

list

when

it

is

invoked.

If

DESCRIPTOR

appears,

the

compiler

passes

descriptors,

if

necessary.

If

NODESCRIPTOR

appears,

the

compiler

does

not

pass

descriptors.

If

neither

appears,

DESCRIPTOR

is

assumed

only

when

one

of

the

invoked

procedure’s

parameters

is

a

string,

array,

area,

structure,

or

union.

OPTIONS

option

and

attribute

130

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

It

is

an

error

for

NODESCRIPTOR

to

appear

on

a

procedure

statement

or

entry

declaration

in

which

any

of

the

parameters

or

elements:

v

Use

the

asterisk

(

*

)

to

indicate

the

extents,

length,

or

size

v

If

any

parameter

is

NONCONNECTED

However,

NODESCRIPTOR

is

allowed

if

the

parameters

with

unspecified

extents

are

NONASSIGNABLE

VARYING

or

VARYINGZ

strings.

FETCHABLE

This

option

indicates

the

procedure

is

dynamically

fetched

if

necessary

before

invoking

it.

FORTRAN

This

option

causes

no

descriptors

to

be

passed

except

for

character

variables.

FROMALIEN

This

option

indicates

that

this

procedure

can

be

called

from

a

non-PL/I

routine.

FROMALIEN

can

be

specified

on

any

procedure;

however,

this

would

incur

unnecessary

overhead.

INLINE

or

NOINLINE

INLINE

and

NOINLINE

are

optimization

options

that

can

be

specified

for

begin-blocks

and

non-nested

level-one

procedures

in

a

package.

INLINE

indicates

that

whenever

the

begin-block

or

procedure

is

invoked

in

the

package

that

defines

it,

the

code

for

the

begin-block

or

procedure

should

be

executed

inline

at

the

point

of

its

invocation.

Even

if

INLINE

is

specified,

the

compiler

can

choose

not

to

inline

the

begin-block

or

procedure.

NOINLINE

indicates

that

the

begin-block

or

procedure

is

never

to

be

executed

inline.

OPTIONS(INLINE)

makes

it

easier

to

write

well-structured,

readable

code.

For

instance,

a

program

could

be

written

as

a

series

of

calls

to

a

set

of

procedures,

and

OPTIONS(INLINE)

could

be

used

to

eliminate

the

overhead

of

actually

calling

these

procedures

one

by

one.

If

a

procedure

or

begin-block

is

executed

inline,

the

values

returned

by

built-in

functions

like

ONLOC

return

the

name

of

the

procedure

into

which

it

is

inlined.

Similarly,

traceback

information

does

not

include

the

called

procedure.

Some

procedures

and

begin-blocks

are

never

inlined.

These

include,

but

are

not

limited

to:

v

Procedures

and

begin-blocks

in

packages

in

which

condition

enablement

varies

v

Procedures

and

begin-blocks

containing

ON

or

REVERT

statements

v

Procedures

and

begin-blocks

containing

data-directed

input/output

statements

v

Procedures

and

begin-blocks

containing

assignments

or

comparisons

of

ENTRY,

FORMAT,

or

LABEL

constants

If

a

non-nested

procedure

with

the

INLINE

option

is

not

external

and

not

referenced,

no

code

will

be

generated

for

it.

If

neither

INLINE

nor

NOINLINE

is

specified

for

a

procedure,

the

option

is

set

by

the

DEFAULT

compiler

option.

For

more

information

about

using

INLINE

and

NOINLINE,

refer

to

the

Programming

Guide.

OPTIONS

option

and

attribute

Chapter

6.

Program

organization

131

LINKAGE

This

option

specifies

the

calling

convention

used

and

may

be

specifid

on

PROCEDURE

statements

and

ENTRY

declarations.

CDECL

(INTEL

only)

This

option

specifies

the

CDECL

linkage

convention

used

by

32-bit

C

compilers.

OPTLINK

This

option

is

the

default,

and

is

the

fastest

linkage

convention.

It

is

not

standard

linkage

for

most

compilers.

STDCALL

(Windows

Only)

This

option

specifies

the

STDCALL

linkage

which

is

the

standard

linkage

convention

used

by

all

Windows

APIs.

SYSTEM

This

option

is

the

calling

convention

which

should

be

used

for

calls

to

the

operating

system.

Although

this

option

is

slower

than

OPTLINK,

it

is

standard

for

all

OS/2,

MVS,

and

AIX

applications

and

is

used

for

calling

OS/2

application

programming

interfaces.

For

more

information

about

calling

conventions,

refer

to

the

Programming

Guide.

MAIN

This

option

indicates

that

this

external

procedure

is

the

initial

procedure

of

a

PL/I

program.

MAIN

is

valid,

and

required,

only

on

one

external

procedure

per

program.

The

operating

system

control

program

invokes

it

as

the

first

step

in

the

execution

of

that

program.

A

PL/I

program

that

contains

more

than

one

procedure

with

OPTIONS(MAIN)

can

produce

unpredictable

results.

NOEXECOPS

The

NOEXECOPS

option

is

valid

only

with

the

MAIN

option.

It

specifies

that

the

run-time

options

will

not

be

specified

on

the

command

or

statement

that

invokes

the

program.

Only

parameters

for

the

main

procedure

will

be

specified.

NOMAP,

NOMAPIN,

NOMAPOUT

These

options

prevent

the

automatic

manipulation

of

data

aggregates

at

the

interface

between

either

COBOL

or

FORTRAN

and

PL/I.

Each

option

argument-list

may

specify

the

parameters

to

which

the

option

applies.

Parameters

may

appear

in

any

order

and

are

separated

by

commas

or

blanks.

If

there

is

no

argument-list

for

an

option,

the

default

list

is

all

the

parameters

of

the

entry

name.

NOMAP,

NOMAPIN

and

NOMAPOUT

may

all

appear

in

the

same

OPTIONS

specification.

This

specification

should

not

include

the

same

parameter

in

more

than

one

specified

or

default

argument

list.

These

options

are

accepted

but

ignored

unless

the

COBOL

option

applies.

ORDER

or

REORDER

ORDER

and

REORDER

are

optimization

options

that

are

specified

for

a

procedure

or

begin-block.

OPTIONS

option

and

attribute

132

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

ORDER

indicates

that

only

the

most

recently

assigned

values

of

variables

modified

in

the

block

are

available

for

ON-units

that

are

entered

because

of

computational

conditions

raised

during

statement

execution

and

expressions

in

the

block.

The

REORDER

option

allows

the

compiler

to

generate

optimized

code

to

produce

the

result

specified

by

the

source

program

when

error-free

execution

takes

place.

For

more

information

on

using

the

ORDER

and

REORDER

options,

refer

to

the

Programming

Guide.

If

neither

option

is

specified

for

the

external

procedure,

the

default

is

set

by

the

DEFAULT

compiler

option.

Internal

blocks

inherit

ORDER

or

REORDER

from

the

containing

block.

REDUCIBLE

or

IRREDUCIBLE

Abbreviations:

RED,

IRRED

REDUCIBLE

indicates

that

a

procedure

or

entry

need

not

be

invoked

multiple

times

if

the

argument(s)

stays

unchanged,

and

that

the

invocation

of

the

procedure

has

no

side

effects.

For

example,

a

user-written

function

that

computes

a

result

based

on

unchanging

data

should

be

declared

REDUCIBLE.

A

function

that

computes

a

result

based

on

changing

data,

such

as

a

random

number

or

time

of

day,

should

be

declared

IRREDUCIBLE.

REENTRANT

This

option

is

ignored.

On

the

Intel

and

AIX

platforms,

all

PL/I

programs

are

reentrant.

On

the

z/OS

platform,

all

programs

compiled

with

the

RENT

compiler

option

are

reentrant,

and

other

programs

are

reentrant

if

they

do

not

alter

any

static

variables

(which

may

require

use

of

the

NOWRITABLE

compiler

option).

RETCODE

This

option

specifies

that

if

the

ENTRY

point

also

has

the

ASM

or

COBOL

option,

then

the

ENTRY

will

return

a

value

that

will

be

saved,

after

the

ENTRY

is

invoked,

as

the

PL/I

return

code.

Essentially,

after

such

an

ENTRY

is

invoked,

its

return

value

will

be

passed

to

the

PLIRETC

subroutine.

WINMAIN

(Windows

only)

This

option

automatically

implies

LINKAGE(STDCALL)

and

EXT(’WinMain’).

The

associated

routine

should

contain

four

parameters:

1.

An

instance

handle

2.

A

previous

handle

3.

A

pointer

to

the

command

line

4.

An

integer

to

be

passed

to

ShowWindow.

These

are

the

same

four

parameters

expected

by

the

C

WinMain

and

the

calls

made

from

this

routine

are

the

same

as

those

expected

from

a

C

routine.

OPTIONS

option

and

attribute

Chapter

6.

Program

organization

133

RETURNS

option

and

attribute

If

a

procedure

is

a

function

procedure,

you

must

specify

the

RETURNS

option

on

the

procedure

statement.

Further,

in

the

invoking

procedure

or

package,

you

must

declare

such

a

procedure

as

an

entry

with

the

RETURNS

attribute.

The

RETURNS

option

and

the

RETURNS

attribute

are

used

to

specify

the

attributes

of

the

value

that

is

being

returned.

The

attributes

in

the

RETURNS

option

must

match

the

attributes

in

the

RETURNS

attribute.

Procedures

that

are

subroutines

(and

are

therefore

invoked

using

the

CALL

statement)

must

not

have

the

RETURNS

option

on

the

procedure

statement

and

their

entry

declaration

must

not

have

the

RETURNS

attribute.

��

RETURNS

(

�

attribute

)

��

If

more

than

one

attribute

is

specified,

they

must

be

separated

by

blanks

(except

attributes

such

as

precision

that

are

enclosed

in

parentheses).

The

attributes

are

specified

in

the

same

way

as

they

are

in

a

declare

statement.

Defaults

are

applied

in

the

normal

way.

The

attributes

that

can

be

specified

are

any

of

the

data

attributes

and

alignment

attributes

for

scalar

variables

(as

shown

in

Table

8

on

page

26).

ENTRY

variables

must

have

the

LIMITED

attribute.

In

addition,

you

can

specify

the

TYPE

attribute

to

name

user-defined

types,

ordinals,

and

typed

structures

and

unions.

String

lengths

and

area

sizes

must

be

specified

by

constants.

The

returned

value

has

the

specified

length

or

size.

BYADDR

and

BYVALUE

can

also

be

specified

in

the

list

of

attributes

for

RETURNS.

The

BYADDR

attribute

must

be

in

effect

if

a

procedure

contains

any

ENTRY

statements

and

the

procedure

or

any

of

its

secondary

entry

points

returns:

v

no

value,

or

v

an

aggregate

value

On

z/OS,

BYADDR

is

the

default

for

RETURNS.

If

a

C

function

is

called,

BYVALUE

must

be

specified

in

the

list

of

attributes

for

RETURNS.

For

a

discussion

of

these

attributes,

see

“Using

BYVALUE

and

BYADDR”

on

page

108.

RETURNS

134

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Chapter

7.

Type

definitions

User-defined

types

(aliases)

.

.

.

.

.

.

.

.

. 135

DEFINE

ALIAS

statement

.

.

.

.

.

.

.

. 135

Defining

ordinals

.

.

.

.

.

.

.

.

.

.

.

. 136

DEFINE

ORDINAL

statement

.

.

.

.

.

.

. 136

Defining

typed

structures

and

unions

.

.

.

.

. 138

HANDLE

attribute

.

.

.

.

.

.

.

.

.

. 139

Declaring

typed

variables

.

.

.

.

.

.

.

.

. 139

TYPE

attribute

.

.

.

.

.

.

.

.

.

.

.

. 139

ORDINAL

attribute

.

.

.

.

.

.

.

.

.

. 140

Typed

structure

qualification

.

.

.

.

.

.

.

. 141

Using

the

″.″

operator

.

.

.

.

.

.

.

.

. 141

Combinations

of

arrays

and

typed

structures

or

unions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

Using

handles

.

.

.

.

.

.

.

.

.

.

.

. 142

Using

ordinals

.

.

.

.

.

.

.

.

.

.

.

.

. 143

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 143

Type

functions

.

.

.

.

.

.

.

.

.

.

.

.

. 145

In

a

programming

language,

a

type

is

a

description

of

a

set

of

values

and

a

set

of

allowed

operations

on

those

values.

PL/I

has

many

built-in

data

types.

Each

type

can

specify

a

number

of

elementary

attributes.

Chapter

3,

“Data

elements,”

on

page

21

describes

these

built-in

data

types.

PL/I

allows

you

to

define

your

own

types

using

the

built-in

data

types.

This

chapter

discusses

user-defined

types

(aliases,

ordinals,

structures,

and

unions),

declarations

of

variables

with

these

types,

handles,

and

type

functions.

User-defined

types

(aliases)

An

alias

is

a

type

name

that

can

be

used

wherever

an

explicit

data

type

is

allowed.

Using

the

DEFINE

ALIAS

statement,

you

can

define

an

alias

for

a

collection

of

data

attributes.

In

this

way,

you

can

assign

meaningful

names

to

data

types

and

improve

the

understandability

of

a

program.

By

defining

an

alias,

you

can

also

provide

a

shorter

notation

for

a

set

of

data

attributes,

which

can

decrease

typographical

errors.

DEFINE

ALIAS

statement

The

DEFINE

ALIAS

statement

specifies

a

name

that

can

be

used

as

a

synonym

for

the

set

of

data

type

attributes

you

give

to

the

alias.

��

DEFINE

ALIAS

alias-name

�

,

attribute

;

��

alias-name

Specifies

the

name

that

can

be

used

wherever

the

explicit

data

type

defined

by

the

specified

attributes

is

allowed

attributes

The

attributes

that

can

be

specified

are

any

of

the

attributes

for

variables

that

can

be

returned

by

a

function

(for

example,

those

attributes

valid

in

the

RETURNS

option

and

attribute).

These

valid

attributes

are

listed

in

Table

8

on

page

26.

Therefore,

you

cannot

specify

an

alias

for

an

array

or

a

structured

attribute

list.

However,

you

can

specify

an

alias

for

a

type

that

is

defined

in

a

DEFINE

ORDINAL,

or

DEFINE

STRUCTURE

statement

(see

“DEFINE

ORDINAL

statement”

on

page

136

and

“Defining

typed

structures

and

unions”

on

page

138

135

on

page

140),

or

in

another

DEFINE

ALIAS

statement.

Also,

as

in

the

RETURNS

option

and

attribute,

any

string

lengths

or

area

sizes

must

be

restricted

expressions.

Missing

data

attributes

are

supplied

using

PL/I

defaults.

Example

define

alias

Name

char(31)

varying;

define

alias

Salary

fixed

dec(7);

/*

real

by

default

*/

define

alias

Zip

char(5)

/*

nonvarying

by

default

*/

Whenever

Name

is

used

in

a

DECLARE

statement,

it

has

the

attributes

char(31)

varying.

Defining

ordinals

An

ordinal

is

a

named

set

of

ordered

values.

Using

the

DEFINE

ORDINAL

statement,

you

can

define

an

ordinal

and

assign

meaningful

names

to

be

used

to

refer

to

that

set.

For

example,

you

can

define

an

ordinal

called

“color”.

The

“color”

ordinal

could

include

the

members

“red”,

“yellow”,

“blue”,

etc.

The

members

of

the

“color”

set

can

then

be

referred

to

by

these

names

instead

of

by

their

associated

fixed

binary

value,

making

code

much

more

self-documenting.

Furthermore,

a

variable

declared

with

the

ordinal

type

can

be

assigned

and

compared

only

with

an

ordinal

of

the

same

type,

or

with

a

member

of

that

ordinal

type.

This

automatic

checking

provides

for

better

program

reliability.

DEFINE

ORDINAL

statement

The

DEFINE

ORDINAL

statement

specifies

a

named

type

representing

a

set

of

named

ordered

values.

��

DEFINE

ORDINAL

ordinal-type-name

(

ordinal-value-list

)

�

�

PRECISION

(integer)

SIGNED

UNSIGNED

;

�

�

�

,

ordinal-value-list:

member

VALUE(integer)

��

ordinal-type-name

Ordinal-type-name

specifies

the

name

of

the

set

of

ordinal

values.

This

name

can

be

used

only

in

DECLARE

statements

with

the

ORDINAL

attribute.

Use

of

this

name

elsewhere

results

in

it

being

treated

as

any

other

nonordinal

name.

member

Specifies

the

name

of

a

member

within

the

set.

VALUE

The

VALUE

attribute

specifies

the

value

of

a

particular

member

within

the

set.

DEFINE

ALIAS

136

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

If

the

VALUE

attribute

is

omitted

for

the

first

member,

a

value

of

zero

is

used.

If

the

VALUE

attribute

is

omitted

for

any

other

member,

the

next

greater

integer

value

is

used.

The

value

in

the

given

(or

assumed)

VALUE

attribute

must

be

an

integer,

can

be

signed,

and

must

be

strictly

increasing.

The

value

in

the

given

(or

assumed)

VALUE

attributed

may

also

be

specified

as

an

XN

constant.

PRECISION

Abbreviation:

PREC

The

PRECISION

attribute

specifies

the

precision

of

a

particular

ordinal

value.

If

omitted,

the

precision

is

determined

by

the

range

of

ordinal

values.

The

maximum

precision

is

the

same

as

that

for

data

items

declared

FIXED

BINARY.

SIGNED

or

UNSIGNED

These

attributes

indicate

whether

ordinal

values

can

assume

negative

values.

If

omitted,

they

are

determined

by

the

range

of

ordinal

values.

For

example,

if

any

value

is

negative,

the

SIGNED

attribute

is

applied.

For

more

information

on

SIGNED

and

UNSIGNED,

refer

to

“SIGNED

and

UNSIGNED

attributes”

on

page

29.

In

the

following

example,

Red

has

the

value

0,

Orange

has

the

value

1,

etc.

But

Low

has

the

value

2

and

Medium

has

the

value

3.

Example

define

ordinal

Color

(

Red,

/*

is

0,

since

VALUE

is

omitted

*/

Orange,

Yellow,

Green,

Blue,

Indigo,

Violet

);

define

ordinal

Intensity

(

Low

value(2),

Medium,

High

value(5));

DEFINE

ORDINAL

Chapter

7.

Type

definitions

137

Defining

typed

structures

and

unions

The

DEFINE

STRUCTURE

statement

specifies

a

named

structure

or

union

type.

��

DEFINE

STRUCTURE

1

structure-type-name

UNION

,

�

�

�

,

level

minor-structure-name

attribute

;

��

structure-type-name

Specifies

the

name

given

to

this

structure

type

(see

“Structures”

on

page

170

for

more

information

on

major

structures).

This

name

cannot

have

dimensions,

although

substructures

can.

UNION

Is

discussed

in

“UNION

attribute”

on

page

172.

minor-structure-name

Specifies

the

name

given

to

a

deeper

level.

(see

“Structures”

on

page

170

for

more

information

on

minor

structures).

attributes

Specifies

attributes

for

the

minor-structure

name.

Only

data

attributes

are

allowed.

Any

string

lengths,

area

sizes,

or

array

dimensions

specified

in

a

DEFINE

STRUCTURE

statement

must

be

restricted

expressions.

Missing

data

attributes

are

supplied

using

PL/I

defaults.

The

DEFINE

STRUCTURE

statement

defines

a

“strong”

type.

In

other

words,

variables

declared

with

that

type

can

only

be

assigned

to

variables

(or

parameters)

having

the

same

type.

Typed

structures

can

not

be

used

in

data-directed

input/output

statements.

A

DEFINE

STRUCTURE

statement

that

merely

names

the

structure

to

be

defined

without

specifying

any

of

its

members

defines

an

″unspecified

structure″.

v

An

unspecified

structure

cannot

be

dereferenced,

but

it

may

be

used

to

declare

a

HANDLE

which,

of

course,

cannot

be

dereferenced

either.

v

An

unspecified

structure

may

also

be

the

subject

of

a

later

DEFINE

STRUCTURE

statement

which

does

specifies

its

members.

Unspecified

structure

definitions

are

useful

when

a

structure

definition

contains

is

a

handle

to

a

second

structure

which

also

contains

is

a

handle

to

the

first

structure.

For

instance,

in

the

following

example,

the

parent

structure

contains

a

handle

to

the

child

structure,

but

the

child

structure

also

contains

a

handle

to

the

parent

structure.

define

structure

1

child;

define

structure

Structure

types

138

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

1

parent,

2

first_child

handle

child,

2

parent_data

fixed

bin(31);

define

structure

1

child,

2

parent

handle

parent,

2

next_child

handle

child,

2

child_data

fixed

bin(31);

HANDLE

attribute

You

can

use

the

HANDLE

attribute

to

declare

a

variable

as

a

pointer

to

a

structure

type.

Such

a

variable

is

called

a

handle.

��

HANDLE

structure-type-name

(structure-type-name)

��

structure-type-name

Specifies

the

typed

structure

this

handle

points

to.

Like

defined

structures,

handles

are

strongly

typed:

they

can

only

be

assigned

to

or

compared

with

handles

for

the

same

structure

type.

No

arithmetic

operations

are

permitted

on

handles.

You

cannot

use

the

ADDR

built-in

function

to

assign

the

address

of

a

typed

structure

to

a

handle

because

the

ADDR

built-in

function

returns

a

pointer,

and

pointers

cannot

be

assigned

to

handles.

However,

the

HANDLE

built-in

function

takes

a

typed

structure

as

its

argument

and

returns

a

handle

to

that

type.

In

the

following

example,

using

the

tm

structure

type

defined

on

page

140,

a

handle

is

declared

which

locates

the

tm

type

and

the

address

of

Daterec

is

assigned

to

that

handle.

dcl

P_Daterec

handle

tm;

dcl

Daterec

type

tm;

P_Daterec

=

handle(Daterec);

You

can

convert

a

handle

to

a

pointer

using

the

POINTERVALUE

built-in

function.

Declaring

typed

variables

By

using

the

TYPE

attribute,

a

variable

can

be

declared

with

the

type

specified

in

a

DEFINE

ALIAS,

DEFINE

STRUCTURE

or

DEFINE

ORDINAL

statement.

TYPE

attribute

��

TYPE

defined-type-name

(defined-type-name)

��

defined-type-name

Specifies

the

name

of

a

previously

defined

alias,

defined

structure,

or

ordinal

type.

Structure

types

Chapter

7.

Type

definitions

139

Examples

define

alias

Name

char(31)

varying;

/*

Name

has

attributes

char(31)

varying

*/

dcl

Employee_Name

type

Name;

/*

Employee_Name

type

char(31)

varying

*/

define

alias

Rate

fixed

dec(3,2);

/*

Rate

has

attributes

fixed

dec

real

*/

define

structure

1

Payroll,

2

Name,

3

Last

type

Name,

3

First

type

Name,

2

Hours,

3

Regular

fixed

dec(5,2),

3

Overtime

fixed

dec(5,2),

2

Rate,

3

Regular

type

Rate,

3

Overtime

type

Rate;

dcl

Non_Exempt

type

Payroll;

/*

Has

Payroll

structure

type

*/

dcl

Exempt

type

Payroll;

/*

Has

Payroll

structure

type

*/

The

TYPE

attribute

can

be

used

in

a

DEFINE

ALIAS

statement

to

specify

an

alias

for

a

type

defined

in

a

previous

DEFINE

ALIAS

statement.

For

example:

define

alias

Word

fixed

bin(31);

define

alias

Short

type

word;

The

following

example

defines

several

named

types,

a

structure

type

(tm),

and

declares

the

C

function

that

gets

a

handle

to

this

typed

structure:

define

alias

int

fixed

bin(31);

define

alias

time_t

fixed

bin(31);

define

structure

1

tm

,2

tm_sec

type

int

/*

seconds

after

the

minute

(0-61)

*/

,2

tm_min

type

int

/*

minutes

after

the

hour

(0-59)

*/

,2

tm_hour

type

int

/*

hours

since

midnight

(0-23)

*/

,2

tm_mday

type

int

/*

day

of

the

month

(1-31)

*/

,2

tm_mon

type

int

/*

months

since

January

(0-11)

*/

,2

tm_year

type

int

/*

years

since

1900

*/

,2

tm_wday

type

int

/*

days

since

Sunday

(0-6)

*/

,2

tm_yday

type

int

/*

days

since

January

1

(0-365)

*/

,2

tm_isdst

type

int

/*

Daylight

Saving

Time

flag

*/

;

dcl

localtime

ext(’localtime’)

entry(

nonasgn

byaddr

type

time_t

)

returns(

byvalue

handle

tm

);

dcl

time

ext(’time’)

entry(

byvalue

pointer

)

returns(

byvalue

type

time_t

);

ORDINAL

attribute

By

using

the

TYPE

or

ORDINAL

attribute,

variables

can

be

declared

with

an

ordinal

type.

See

“TYPE

attribute”

on

page

139

for

the

syntax

for

the

TYPE

attribute.

Declaring

typed

variables

140

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

ORDINAL

ordinal-type-name

��

ordinal-type-name

Specifies

the

name

of

a

previously

defined

set

of

ordinal

values.

For

example:

dcl

Wall_color

ordinal

Color;

The

ORDINAL

attribute

conflicts

with

other

data

attributes

such

as

FIXED

or

SIGNED,

but

it

is

allowed

with

attributes

such

as

BASED

or

DIMENSION.

Typed

structure

qualification

You

reference

a

member

of

a

typed

structure

using

the

.

operator

or

a

handle

with

the

=>

operator.

Unlike

names

in

a

typical

untyped

structure,

the

names

in

a

typed

structure

form

their

own

“name

space”

and

cannot

be

referenced

by

themselves.

For

example,

given

the

following

declares

and

definitions

dcl

1

A,

2

B

fixed

bin,

2

C

fixed

bin;

define

structure

1

X,

2

Y

fixed

bin,

2

Z

fixed

bin;

dcl

S

type

X;

B

is

a

valid

reference,

but

Y

is

not.

Type

names

are

also

in

a

separate

name

space

from

declared

names.

Therefore,

you

can

use

the

name

of

a

type

as

a

variable

name

also.

define

alias

Hps

pointer;

declare

Hps

type

Hps;

Using

the

″.″

operator

The

syntax

for

referring

to

a

typed

structure

member

using

the

″.″

operator

is:

��

typed-structure-name

.

typed-structure-member

��

typed-structure-reference

Name

of

the

declared

typed

structure

typed-structure-member

Name

of

the

referenced

major

or

minor

structure

member

of

the

structure

type

For

example,

given

the

structure

type

tm

and

function

localtime

defined

as

in

the

example

on

page

140,

the

following

code

obtains

the

system

date

and

displays

the

time:

dcl

Daterec

type

tm;

dcl

ltime

type

time_t;

dcl

ptime

handle

tm;

ORDINAL

attribute

Chapter

7.

Type

definitions

141

ltime

=

time(

null()

);

ptime

=

localtime(

ltime

);

Daterec

=

ptime

=>

tm;

display

(

edit(Daterec.Hours,’99’)

\

’:’

\

edit(Daterec.Minutes,’99’)

\

’:’

\

edit(Daterec.Seconds,’99’));

Combinations

of

arrays

and

typed

structures

or

unions

As

described

in

“Combinations

of

arrays,

structures,

and

unions”

on

page

176,

given

this

untyped

structure:

dcl

1

a(3),

2

b(4)

fixed

bin,

2

c(5)

fixed

bin;

a(1).b(2),

a.b(1,2),

and

a(1,2).b

have

the

same

meaning.

However,

given

the

following

typed

structure:

define

structure

1

t,

2

b(4)

fixed

bin,

2

c(5)

fixed

bin;

dcl

x(3)

type

t;

only

x(1).b(2)

is

valid.

In

addition,

the

assignment

statement

x.b

=

0

is

invalid,

but

x(1).b

=

0;

is

valid.

Given

the

structure

type

t

defined

previously

and

the

following

function

f:

dcl

f

entry

returns(

type

t

);

display(

f().b(2)

)

is

valid.

Using

handles

Handles

access

members

of

a

typed

structure

with

the

=>

operator.

In

the

following

example,

given

the

tm

type

defined

on

page

140,

the

time

is

displayed

using

a

handle

to

that

type:

dcl

P_Daterec

handle

tm;

P_Daterec

=

handle(Daterec);

display

(

edit(P_Daterec=>tm_hours,’99’)

\

’:’

\

edit(P_Daterec=>tm_min,’99’)

\

’:’

\

edit(P_Daterec=>tm_sec,’99’)

);

Handles

can

locate

any

member

in

a

typed

structure,

including

the

level-1

name

(the

type

name

itself).

A

reference

by

a

handle

to

its

type

name

constitutes

a

reference

to

the

typed

structure

which

is

pointed

to

by

that

handle.

This

allows

reference

to

this

aggregate

data

by

its

handle.

For

example,

given

that

H1

and

H2

point

to

two

allocated

structures,

you

can

swap

two

structures

by:

define

structure

1

T,

2

U,

2

V,

2

W;

dcl

(H1,

H2)

handle

T;

dcl

Temp

type

T;

Temp

=

H1=>T;

H1=>T

=

H2=>T;

H2=>T

=

Temp;

Typed

structure

qualification

142

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Using

ordinals

When

using

ordinals,

keep

in

mind

the

following:

v

Ordinals

are

strongly-typed;

that

is,

an

ordinal

can

only

be

compared

with

or

assigned

to

another

ordinal

of

the

same

type.

The

ordinal

must

have

been

explicitly

declared

in

a

DECLARE

statement.

v

The

ordinal-type-name

in

a

DEFINE

ORDINAL

statement

cannot

used

in

comparisons

or

assignments.

v

Ordinals

can

be

passed/received

as

arguments/parameters

like

any

other

data

type.

v

Ordinals

are

invalid

as

arguments

for

all

built-in

functions

requiring

arguments

with

computational

types.

However,

in

support

of

ordinals,

built-in

functions

have

been

defined

and

BINARYVALUE

has

been

extended.

These

built-in

functions

are

listed

in

Table

23,

and

their

descriptions

can

be

found

in

Chapter

19,

“Built-in

functions,

pseudovariables,

and

subroutines.,”

on

page

365.

Each

of

the

built-in

functions

listed

takes

exactly

one

argument,

which

must

be

a

reference

having

type

ORDINAL.

Table

23.

Ordinal-handling

built-in

functions

Function

Description

BINARYVALUE

Converts

an

ordinal

to

a

binary

value

ORDINALPRED

Returns

the

next

lower

value

for

an

ordinal

ORDINALSUCC

Returns

the

next

higher

value

for

an

ordinal

ORDINALNAME

Returns

a

character

string

giving

an

ordinal’s

name

For

example,

in

the

following

sample

code,

the

first

DO

loop

below

would

list,

in

ascending

order,

the

members

of

the

Color

set;

the

second

DO

loop

would

list

them

in

descending

order.

The

example

uses

the

ordinal

definition

from

“Example”

on

page

137.

Example

dcl

Next_color

ordinal

Color;

do

Next_color

=

first

(:Color:)

repeat

ordinalsucc(

Next_color

)

until

(Next_color

=

last

(:Color:));

display(

ordinalname(

Next_color

)

);

end;

do

Next_color

=

last

(:Color:)

repeat

ordinalpred(

Next_color)

until

(Next_color

=

first(:Color:);

display(

ordinalname(

Next_color));

end;

The

sample

output

for

the

first

loop

would

be:

RED

ORANGE

YELLOW

GREEN

BLUE

INDIGO

VIOLET

Using

Ordinals

Chapter

7.

Type

definitions

143

An

ordinal

cannot

be

used

as

an

index

into

an

array

and

cannot

define

an

extent

for

a

variable,

including

the

lower

or

upper

bound

of

an

array.

However,

an

ordinal

can

be

converted

to

binary

using

the

BINARYVALUE

built-in

function.

The

value

which

is

returned

by

this

function

can

then

be

used

to

index

into

an

array

or

define

an

extent.

For

example,

the

following

package

defines

an

array

usage_count

to

hold

the

number

of

times

each

color

is

used,

a

procedure

Record_usage

to

update

this

array,

and

a

procedure

Show_usage

to

display

the

values

in

this

array.

Example

Usage:

package

exports(*);

define

ordinal

Color

(

Red,

Orange,

Yellow,

Green,

Blue,

Indigo,

Violet

);

dcl

Usage_count(

binvalue(

first(:Color:))

:

binvalue(

last(:Color:))

)

static

fixed

bin(31)

init(

(*)

0

);

/*

first(:Color:)

=

Red

*/

/*

last(:Color:)

=

Violet

*/

Record_usage:

proc

(Wall_color

);

dcl

Wall_color

type

Color

parm

byvalue;

Usage_count(

binvalue(Wall_color)

)

=

1

+

Usage_count(

binvalue(Wall_color)

);

end

Record_usage;

Show_usage:

proc;

dcl

Next_color

type

Color;

do

Next_color

=

Red

upthru

Violet;

put

skip

list(

ordinalname(

Next_color)

);

put

list(

Usage_count(

binvalue(Next_color)

));

end;

end

Show_usage;

end

Usage;

Ordinals

can

be

used

to

create

functions

that

are

easy

to

maintain

and

enhance,

but

which

are

as

efficient

as

table

look-ups.

In

the

following

example,

the

function

Is_mellow

returns

a

bit

indicating

whether

a

color

is

or

is

not

“mellow”.

If

more

colors

are

defined,

the

“mellow”

ones

can

be

added

to

the

list

of

colors

in

the

select-group.

In

a

select-group,

unlike

a

hand-built

table,

the

colors

do

not

have

to

be

in

the

same

order

as

in

the

DEFINE

statement,

or

in

any

particular

order

at

all.

However,

since

all

of

the

statements

inside

the

select-group

consist

of

RETURN

statements

that

return

constant

values,

the

compiler

will

convert

the

entire

select-group

into

a

simple

table

look-up.

Example

Is_mellow:

proc(

Test_color

)

returns(

bit(1)

aligned

);

dcl

Test_color

type

Color

parm

byvalue;

Using

Ordinals

144

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

select

(Test_color);

when(

Yellow,

Indigo)

return(

'1'b

);

otherwise

return(

'0'b

);

end;

end;

This

feature

can

also

be

used

to

define

your

own

version

of

the

ORDINALNAME

built-in

function.

Your

own

version

can

return

the

name

you

want

to

be

displayed

for

each

ordinal

value.

For

example,

the

following

function

Color_name

returns

the

color

name

associated

with

each

name

with

the

first

letter

capitalized:

Color_name:

proc(

Test_color

)

returns(

char(8)

varying

);

dcl

Test_color

type

Color

parm

byvalue;

select

(Test_color);

when

(

Blue

)

return(

'Blue');

when

(

Green

)

return(

'Green');

when

(

Orange

)

return(

'Orange');

when

(

Red

)

return(

'Red');

when

(

Yellow

)

return(

'Yellow');

otherwise

return

(");

end;

end;

Type

functions

Since

type

names

are

in

a

separate

name

space

from

declared

names,

they

cannot

be

used

where

variable

references

are

required,

in

particular

as

arguments

to

built-in

functions.

However,

type

names

can

be

used

as

arguments

to

type

functions.

(In

ANSI

terminology,

these

type

functions

are

known

as

enquiry

functions.)

These

type

functions

are

listed

in

Table

24.

Table

24.

Type

functions

Function

Description

BIND

Converts

a

pointer

to

a

handle

for

a

type

CAST

Converts

an

expression

to

a

specified

type

using

C

conversion

rules

FIRST

Returns

the

first

value

in

an

ordinal

set

LAST

Returns

the

last

value

in

an

ordinal

set

NEW

Acquires

storage

for

a

structure

type

and

returns

a

handle

to

the

acquired

storage

RESPEC

Changes

the

attributes

of

an

expression

to

a

specified

type

without

changing

the

bit

pattern

of

the

expression

SIZE

Returns

the

amount

of

storage

needed

to

represent

a

type

Descriptions

for

these

type

functions

can

be

found

in

Chapter

20,

“Type

Functions,”

on

page

493.

Using

Ordinals

Chapter

7.

Type

definitions

145

146

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Chapter

8.

Data

declarations

Explicit

declaration

.

.

.

.

.

.

.

.

.

.

. 147

DECLARE

statement

.

.

.

.

.

.

.

.

.

. 148

Factoring

attributes

.

.

.

.

.

.

.

.

.

. 149

Implicit

declaration

.

.

.

.

.

.

.

.

.

.

. 150

Scope

of

declarations

.

.

.

.

.

.

.

.

.

.

. 151

INTERNAL

and

EXTERNAL

attributes

.

.

.

. 153

RESERVED

attribute

.

.

.

.

.

.

.

.

.

.

. 158

Data

alignment

.

.

.

.

.

.

.

.

.

.

.

.

. 159

ALIGNED

and

UNALIGNED

attributes

.

.

. 159

Defaults

for

attributes

.

.

.

.

.

.

.

.

.

. 162

Language-specified

defaults

.

.

.

.

.

.

. 163

DEFAULT

statement

.

.

.

.

.

.

.

.

.

. 163

Restoring

language-specified

defaults

.

.

.

. 167

Arrays

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 167

DIMENSION

attribute

.

.

.

.

.

.

.

.

. 167

Examples

of

arrays

.

.

.

.

.

.

.

.

.

. 168

Subscripts

.

.

.

.

.

.

.

.

.

.

.

.

. 169

Cross

sections

of

arrays

.

.

.

.

.

.

.

.

. 170

Structures

.

.

.

.

.

.

.

.

.

.

.

.

.

. 170

Unions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 172

UNION

attribute

.

.

.

.

.

.

.

.

.

.

. 172

Structure/union

qualification

.

.

.

.

.

.

.

. 173

LIKE

attribute

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 175

Combinations

of

arrays,

structures,

and

unions

176

Cross

sections

of

arrays

of

structures

or

unions

177

Structure

and

union

operations

.

.

.

.

.

. 177

Structure

and

union

mapping

.

.

.

.

.

.

. 177

When

a

PL/I

program

is

executed,

it

can

manipulate

many

different

data

items

of

particular

data

types.

Each

data

item,

except

an

unnamed

arithmetic

or

string

constant,

is

referred

to

in

the

program

by

a

name.

Each

data

name

is

given

attributes

and

a

meaning

by

a

declaration

(explicit

or

implicit).

Most

attributes

of

data

items

are

known

at

the

time

the

program

is

compiled.

For

nonstatic

items,

attribute

values

(the

bounds

of

the

dimensions

of

arrays,

the

lengths

of

strings,

area

sizes,

initial

values)

and

some

file

attributes

can

be

determined

during

execution

of

the

program.

Refer

to

“Block

activation”

on

page

89

for

more

information.

Data

items,

types,

and

attributes

are

introduced

in

Chapter

3,

“Data

elements,”

on

page

21.

This

chapter

discusses

explicit

and

implicit

declarations,

scalar,

array,

structure,

and

union

declarations,

scope

of

names,

data

alignment,

and

default

attributes.

Explicit

declaration

A

name

is

explicitly

declared

if

it

appears:

v

In

a

DECLARE

statement.

The

DECLARE

statement

explicitly

declares

attributes

of

names.

v

As

an

entry

constant.

Labels

of

PROCEDURE

and

ENTRY

statements

constitute

declarations

of

the

entry

constants

within

the

containing

procedure.

v

As

a

label

constant.

A

label

constant

explicitly

declares

a

label.

v

As

a

format

constant.

A

label

on

a

FORMAT

statement

constitutes

an

explicit

declaration

of

the

label.

The

scope

of

an

explicit

declaration

of

a

name

is

the

block

containing

the

declaration.

This

includes

all

contained

blocks,

except

those

blocks

(and

any

blocks

contained

within

them)

to

which

another

explicit

declaration

of

the

same

name

is

internal.

In

the

following

diagram,

the

lines

indicate

the

scope

of

the

declaration

of

the

names.

147

B

and

B'

indicate

the

two

distinct

uses

of

the

name

B;

C

and

C'

indicate

the

two

uses

of

the

name

C.

For

more

information

about

scope,

refer

to

“Scope

of

declarations”

on

page

151.

DECLARE

statement

The

DECLARE

statement

specifies

some

or

all

of

the

attributes

of

a

name.

If

the

attributes

are

not

explicitly

declared

and

cannot

be

determined

by

context,

default

attributes

are

applied.

DECLARE

statements

can

be

an

important

part

of

the

documentation

of

a

program.

Consequently,

you

can

make

liberal

use

of

declarations,

even

when

default

attributes

suffice

or

when

an

implicit

declaration

is

possible.

Because

there

are

no

restrictions

on

the

number

of

DECLARE

statements,

you

can

use

different

DECLARE

statements

for

different

groups

of

names.

Any

number

of

names

can

be

declared

in

one

DECLARE

statement.

��

DECLARE

�

�

,

name

level

*

attributes

;

�

�

�

attributes:

data-attributes

alignment-attributes

scope-attributes

storage-attributes

complementary-attributes

��

Abbreviation:

DCL

For

more

information

about

declaring

arrays,

structures,

and

unions,

refer

to

“Arrays”

on

page

167,

“Structures”

on

page

170,

or

“Unions”

on

page

172.

P

A

B

B'

C

C'

D

Q

R

┌─

┌─

┌─

─┐

│

│

│

P:

PROC;

│

│

│

│

│

│

│

│

DCL

A,

B;

│

│

│

└─

┌─

─┐

│

─┐

│

│

│

Q:

PROC;

│

│

│

│

│

│

│

│

│

│

│

│

DCL

B,

C;

│

│

│

│

│

│

─┘

─┐

─┐

│

│

│

│

│

R:

PROC;

│

│

│

│

│

│

│

│

│

│

│

│

│

│

DCL

C,D;

│

│

│

│

│

│

│

│

│

│

│

│

│

│

END

R;

│

│

│

│

│

│

│

─┐

─┘

─┘

│

│

│

│

└─

END

Q;

│

│

│

│

│

┌─

─┘

│

─┘

│

│

│

END

P;

│

└─

└─

└─

─┘

Explicit

declaration

148

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

*

Cannot

be

used

as

the

name

of

an

INTERNAL

or

an

EXTERNAL

scalar

or

as

the

name

of

a

level-1

EXTERNAL

structure

or

union

unless

the

EXTERNAL

attribute

specifies

an

environment

name

(see

“INTERNAL

and

EXTERNAL

attributes”

on

page

153).

attributes

The

attributes

can

appear

in

any

order.

All

attributes

given

explicitly

for

the

name

must

be

declared

together

in

a

DECLARE

statement,

except

that:

Names

having

the

FILE

attribute

can

also

be

given

attributes

in

an

OPEN

statement

(or

have

attributes

implied

by

an

implicit

opening).

For

more

information

on

the

OPEN

statement,

see

“OPEN

statement”

on

page

265.

The

parameter

attribute

is

contextually

applied

by

the

appearance

of

the

name

in

a

parameter

list.

A

DECLARE

statement

internal

to

the

block

can

specify

additional

attributes.

Attributes

of

external

names,

in

separate

blocks

and

compilations,

must

be

consistent.

For

more

information

about

attributes

and

the

members

of

the

given

groups,

refer

to

“Data

types

and

attributes”

on

page

22.

level

A

nonzero

integer.

If

a

level-number

is

not

specified,

level

1

is

the

default

for

element

and

array

variables.

Level

1

must

be

specified

for

major

structure

and

union

names.

name

Each

level-1

name

must

be

unique

within

a

block.

For

more

information

on

level-1

names,

refer

to

“Structures”

on

page

170.

Condition

prefixes

and

labels

cannot

be

specified

on

a

DECLARE

statement.

Factoring

attributes

Attributes

common

to

several

names

can

be

factored

to

eliminate

repeated

specification

of

the

same

attributes.

Factoring

is

achieved

by

enclosing

the

names

in

parentheses

followed

by

the

set

of

attributes

which

apply

to

all

of

the

names.

Factoring

can

be

nested.

The

dimension

attribute

can

be

factored.

Factoring

can

also

be

used

on

elementary

names

within

structures

and

unions.

A

factored

level-number

must

precede

the

parenthesized

list.

Names

within

the

parenthesized

list

are

separated

by

commas.

No

factored

attribute

can

be

overridden

for

any

of

the

names,

but

any

name

within

the

list

can

be

given

other

attributes

as

long

as

there

is

no

conflict

with

the

factored

attributes.

The

following

examples

show

factoring.

The

last

declaration

in

the

set

of

examples

shows

nested

factoring.

declare

(A,B,C,D)

binary

fixed

(31);

declare

(E

decimal(6,5),

F

character(10))

static;

declare

1

A,

2(B,C,D)

(3,2)

binary

fixed

(15);

declare

((A,B)

fixed(10),C

float(5))

external;

DECLARE

Chapter

8.

Data

declarations

149

Implicit

declaration

If

a

name

appears

in

a

program

and

is

not

explicitly

declared,

it

is

implicitly

declared.

The

scope

of

an

implicit

declaration

is

determined

as

if

the

name

were

declared

in

a

DECLARE

statement

immediately

following

the

PROCEDURE

statement

of

the

external

procedure

in

which

the

name

is

used.

With

the

exception

of

files,

entries,

and

built-in

functions,

implicit

declaration

has

the

same

effect

as

if

the

name

were

declared

in

the

outermost

procedure.

For

files

and

built-in

functions,

implicit

declaration

has

the

same

effect

as

if

the

names

were

declared

in

the

logical

package

outside

any

procedures.

Note:

Using

implicit

declarations

for

anything

other

than

built-in

functions

and

the

files

SYSIN

and

SYSPRINT

is

in

violation

of

the

1987

ANSI

standard

and

should

be

avoided.

Some

attributes

for

a

name

declared

implicitly

can

be

determined

from

the

context

in

which

the

name

appears.

These

cases,

called

contextual

declarations,

are:

v

A

name

of

a

built-in

function.

v

A

name

that

appears

in

a

CALL

statement

or

the

CALL

option

of

INITIAL,

or

that

is

followed

by

an

argument

list,

is

given

the

ENTRY

and

EXTERNAL

attributes.

v

A

name

that

appears

in

the

parameter

list

of

a

PROCEDURE

or

ENTRY

statement

is

given

the

PARAMETER

attribute.

v

A

name

that

appears

in

a

FILE

or

COPY

option,

or

a

name

that

appears

in

an

ON,

SIGNAL,

or

REVERT

statement

for

a

condition

that

requires

a

file

name,

is

given

the

FILE

attribute.

v

A

name

that

appears

in

an

ON

CONDITION,

SIGNAL

CONDITION,

or

REVERT

CONDITION

statement

is

given

the

CONDITION

attribute.

v

A

name

that

appears

in

the

BASED

attribute,

in

a

SET

option,

or

on

the

left-hand

side

of

a

locator

qualification

symbol

is

given

the

POINTER

attribute.

v

A

name

that

appears

in

an

IN

option,

or

in

the

OFFSET

attribute,

is

given

the

AREA

attribute.

Examples

of

contextual

declaration

are:

read

file

(PREQ)

into

(Q);

allocate

X

in

(S);

In

these

statements,

PREQ

is

given

the

FILE

attribute,

and

S

is

given

the

AREA

attribute.

Implicit

declarations

that

are

not

contextual

declarations

acquire

all

attributes

by

default,

as

described

in

“Defaults

for

attributes”

on

page

162.

Because

a

contextual

declaration

cannot

exist

within

the

scope

of

an

explicit

declaration,

it

is

impossible

for

the

context

of

a

name

to

add

to

the

attributes

established

for

that

name

in

an

explicit

declaration.

Implicit

declaration

150

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Scope

of

declarations

The

part

of

the

program

to

which

a

name

applies

is

called

the

scope

of

the

declaration

of

that

name.

In

most

cases,

the

scope

of

the

declaration

of

a

name

is

determined

entirely

by

the

position

where

the

name

is

declared

within

the

program.

Implicit

declarations

are

treated

as

if

the

name

were

declared

in

a

DECLARE

statement

immediately

following

the

PROCEDURE

statement

of

the

external

procedure.

It

is

not

necessary

for

a

name

to

have

the

same

meaning

throughout

a

program.

A

name

explicitly

declared

within

a

block

has

a

meaning

only

within

that

block.

Outside

the

block,

the

name

is

unknown

unless

the

same

name

has

also

been

declared

in

the

outer

block.

Each

declaration

of

the

name

establishes

a

scope

and

in

this

case,

the

name

in

the

outer

block

refers

to

a

different

data

item.

This

enables

you

to

specify

local

definitions

and,

hence,

to

write

procedures

or

begin-blocks

without

knowing

all

the

names

used

in

other

parts

of

the

program.

In

the

following

example,

the

output

for

A

is

actually

C.A,

which

is

2.

The

output

for

B

is

1,

as

declared

in

procedure

X.

X:

proc

options(main);

dcl

(A,B)

char(1)

init(’1’);

call

Y;

return;

Y:

proc;

dcl

1

C,

3

A

char(1)

init(’2’);

put

data(A,B);

return;

end

Y;

end

X;

Thus,

for

nested

procedures,

PL/I

uses

the

variable

declared

within

the

current

block

before

using

any

variables

that

are

declared

in

containing

blocks.

In

order

to

understand

the

scope

of

the

declaration

of

a

name,

you

must

understand

the

terms

contained

in

and

internal

to.

All

of

the

text

of

a

block,

from

the

PACKAGE,

PROCEDURE,

or

BEGIN

statement

through

the

corresponding

END

statement

(including

condition

prefixes

of

BEGIN,

PACKAGE,

and

PROCEDURE

statements),

is

said

to

be

contained

in

that

block.

However,

the

labels

of

the

BEGIN

or

PROCEDURE

statement

heading

the

block,

as

well

as

the

labels

of

any

ENTRY

statements

that

apply

to

the

block,

are

not

contained

in

that

block.

Nested

blocks

are

contained

in

the

block

in

which

they

appear.

Text

that

is

contained

in

a

block,

but

not

contained

in

any

other

block

nested

within

it,

is

said

to

be

internal

to

that

block.

Entry

names

of

a

procedure

(and

labels

of

a

BEGIN

statement)

are

not

contained

in

that

block.

Consequently,

they

are

internal

to

the

containing

block.

Entry

names

of

an

external

procedure

are

treated

as

if

they

were

external

to

the

external

procedure.

Scope

of

declarations

Chapter

8.

Data

declarations

151

Table

25

illustrates

the

scopes

of

data

declarations.

Table

25.

Scopes

of

data

declarations

�1,2�

�2�

�3�

�3�

�4�

�5�

A_and_D:

package

exports(*);

dcl

X

static,

Y

based;

P

Q

Q'

R

R'

S

I

┌─

A:

procedure;

─┐

─┐

─┐

─┐

│

declare

P,

Q;

│

─┘

│

│

│

┌─

B:

Procedure;

│

─┐

│

│

│

│

declare

Q;

│

│

│

│

│

│

R

=

Q;

│

│

─┘

│

│

│

┌─

C:

begin;

│

│

─┐

│

│

│

│

declare

R;

│

│

│

│

│

│

│

do

I

=

1

to

10;

│

│

│

│

│

│

│

end;

│

│

│

│

│

│

└─

end

C;

│

│

─┘

│

│

└─

end

B;

│

─┘

│

│

┌─

D:

procedure;

│

─┐

─┐

─┐

│

│

│

declare

S;

│

│

│

│

│

│

└─

end

D;

│

│

│

─┘

│

└─

end

A;

─┘

─┘

─┘

─┘

end

A_and_D;

The

brackets

to

the

left

indicate

the

block

structure;

the

brackets

to

the

right

show

the

scope

of

each

declaration

of

a

name.

The

scopes

of

the

two

declarations

of

Q

and

R

are

shown

as

Q

and

Q'

and

R

and

R'.

Note

that

X

and

Y

are

visible

to

all

of

the

procedures

contained

in

the

package.

�1�

P

is

declared

in

the

block

A

and

known

throughout

A

because

it

is

not

redeclared.

�2�

Q

is

declared

in

block

A,

and

redeclared

in

block

B.

The

scope

of

the

first

declaration

of

Q

is

all

of

A

except

B;

the

scope

of

the

second

declaration

of

Q

is

block

B

only.

�3�

R

is

declared

in

block

C,

but

a

reference

to

R

is

also

made

in

block

B.

The

reference

to

R

in

block

B

results

in

an

implicit

declaration

of

R

in

A,

the

external

procedure.

Therefore,

two

separate

names

(R

and

R'

in

Table

25)

with

different

scopes

exist.

The

scope

of

the

explicitly

declared

R

is

block

C;

the

scope

of

the

implicitly

declared

R

in

block

B

is

all

of

A

except

block

C.

�4�

I

is

referred

to

in

block

C.

This

results

in

an

implicit

declaration

in

the

external

procedure

A.

As

a

result,

this

declaration

applies

to

all

of

A,

including

the

contained

procedures

B,

C,

and

D.

�5�

S

is

explicitly

declared

in

procedure

D

and

is

known

only

within

D.

Scope

of

declarations

152

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Table

26

illustrates

the

scopes

of

entry

constant

and

statement

label

declarations.

Table

26.

Scopes

of

entry

and

label

declarations

�1�

�2�

�3�

�4�

�6�

�5�

�3�

�3�

�4�

�2�

A_and_D:

package

exports(*);

L1

L1'

L2

A

B

C

D

E

┌─A:

procedure;

─┐

─┐

─┐

─┐

─┐

│

declare

E

entry;

│

│

│

│

│

│

L1:

P

=

Q;

│

│

│

│

│

│

┌─

B:

procedure;

│

─┐

│

│

─┐

│

│

│

│

L2:

call

C;

─┐

│

│

│

│

│

│

│

│

┌─

C:

procedure;

─┐

│

│

│

│

│

│

│

│

│

L1:

X

=

Y;

│

│

│

│

│

│

│

│

│

│

call

E:

│

│

│

│

│

│

│

│

│

└─

end

C;

─┘

│

│

│

│

│

│

│

│

go

to

L1;

─┐

│

│

│

│

│

│

│

└─

end

B;

│

─┘

│

│

─┘

│

│

│

┌─

D:

procedure;

│

│

│

│

│

│

└─

end

D;

│

│

│

│

│

│

call

B;

│

│

│

│

│

└─end

A;

─┘

─┘

─┘

─┘

─┘

┌─E:

procedure;

─┐

└─end

E;

─┘

end

A_and_D;

Table

26

shows

two

external

procedures,

A

and

E.

�1�

The

scope

of

the

declaration

of

the

name

A

is

only

all

of

the

block

A,

and

not

E.

�2�

E

is

explicitly

declared

in

A

as

an

external

entry

constant.

The

explicit

declaration

of

E

applies

throughout

block

A.

It

is

not

linked

to

the

explicit

declaration

of

E

that

applies

throughout

block

E.

The

scope

of

the

declaration

of

the

name

E

is

all

of

block

A

and

all

of

block

E.

�3�

The

label

L1

appears

with

statements

internal

to

A

and

to

C.

Two

separate

declarations

are

therefore

established;

the

first

applies

to

all

of

block

A

except

block

C,

the

second

applies

to

block

C

only.

Therefore,

when

the

GO

TO

statement

in

block

B

executes,

control

transfers

to

L1

in

block

A,

and

block

B

terminates.

�4�

D

and

B

are

explicitly

declared

in

block

A

and

can

be

referred

to

anywhere

within

A;

but

because

they

are

INTERNAL,

they

cannot

be

referred

to

in

block

E.

�5�

C

is

explicitly

declared

in

B

and

can

be

referred

to

from

within

B,

but

not

from

outside

B.

�6�

L2

is

declared

in

B

and

can

be

referred

to

in

block

B,

including

C,

which

is

contained

in

B,

but

not

from

outside

B.

INTERNAL

and

EXTERNAL

attributes

The

INTERNAL

and

EXTERNAL

attributes

define

the

scope

of

a

name.

Scope

of

declarations

Chapter

8.

Data

declarations

153

��

INTERNAL

EXTERNAL

(

environment-name

)

��

Abbreviations:

INT

for

INTERNAL,

EXT

for

EXTERNAL

environment-name

Specifies

the

name

by

which

the

procedure

or

variable

is

known

outside

of

the

compilation

unit.

When

so

specified,

the

name

being

declared

effectively

becomes

internal

and

is

not

known

outside

of

the

compilation

unit.

The

environment

name

is

known

instead.

The

environment

name

must

be

a

character

string

constant,

and

is

used

as

is

without

any

translation

to

uppercase.

For

example:

dcl

X

entry

external

(’koala’);

Environment

names

should

not

start

with

a

break

character

(_).

Names

starting

with

this

character

are

reserved

for

the

library.

On

platforms

where

the

linker

decorates

environment

names,

if

an

environment

name

is

specified

with

the

external

attribute,

it

will

still

be

decorated

if

it

differs

only

in

case

from

the

variable

name.

In

the

following

declaration:

dcl

abc

ext(’kLm’),

xyz

ext(’xYz’

);

The

name

for

xyz

is

decorated.

For

more

information

on

the

decoration

of

environment

names,

refer

to

the

VisualAge

PL/I

Programming

Guide.,

under

the

section

″Understanding

linkage

considerations″

in

the

″Calling

conventions″

chapter.

INTERNAL

is

the

default

for

entry

names

of

internal

procedures

and

for

variables

with

any

storage

class

except

controlled.

INTERNAL

specifies

that

the

name

can

be

known

only

in

the

declaring

block.

Any

other

explicit

declaration

of

that

name

refers

to

a

new

object

with

a

different

scope

that

does

not

overlap.

Note:

INTERNAL

may

be

specified

on

level-1

procedures

in

a

package.

If

the

package

is

declared

with

EXPORTS(*),

an

INTERNAL

procedure

is

not

visible

outside

the

package.

EXTERNAL

is

the

default

for

file

constants,

entry

constants,

programmer-defined

conditions,

and

controlled

variables.

A

name

with

the

EXTERNAL

attribute

can

be

declared

more

than

once,

either

in

different

external

procedures

or

within

blocks

contained

in

external

procedures.

All

declarations

of

the

same

name

with

the

EXTERNAL

attribute

refer

to

the

same

data.

The

scope

of

each

declaration

of

the

name

(with

the

EXTERNAL

attribute)

includes

the

scopes

of

all

the

declarations

of

that

name

(with

EXTERNAL)

within

the

application.

When

a

major

structure

or

union

name

is

declared

EXTERNAL

in

more

than

one

block,

the

attributes

of

the

members

must

be

the

same

in

each

case,

although

the

corresponding

member

names

need

not

be

identical.

In

the

following

example:

INTERNAL

and

EXTERNAL

154

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

ProcA:

procedure;

declare

1

A

external,

2

B,

2

C;

...

end

ProcA;

%process;

ProcB:

procedure;

declare

1

A

external,

2

B,

2

D;

...
end

ProcB;

If

A.B

is

changed

in

ProcA,

it

is

also

changed

for

ProcB,

and

vice

versa;

if

A.C

is

changed

in

ProcA,

A.D

is

changed

for

ProcB,

and

vice

versa.

Members

of

structures

and

unions

always

have

the

INTERNAL

attribute.

Because

external

declarations

for

the

same

name

all

refer

to

the

same

data,

they

must

all

result

in

the

same

set

of

attributes.

When

EXTERNAL

names

are

declared

in

different

external

procedures,

the

user

has

the

responsibility

to

ensure

that

the

attributes

are

matching.

Figure

7

on

page

156

illustrates

a

variety

of

declarations

and

their

scopes.

INTERNAL

and

EXTERNAL

Chapter

8.

Data

declarations

155

�1�

A

is

an

external

procedure

name.

Its

scope

is

all

of

block

A,

plus

any

other

blocks

where

A

is

declared

as

external.

�2�

S

is

explicitly

declared

in

block

A

and

block

C.

The

character

variable

declaration

applies

to

all

of

block

A

except

block

C.

The

fixed

binary

declaration

applies

only

within

block

C.

Notice

that

although

D

is

called

from

within

block

C,

the

reference

to

S

in

the

PUT

statement

in

D

is

to

the

character

variable

S,

and

not

to

the

S

declared

in

block

C.

Scope_Example:

package

exports(*);

�1�

A:

procedure;

�2�

declare

S

character

(20);

�7�

dcl

Set

entry(fixed

decimal(1)),

�7�

Out

entry(label);

call

Set

(3);

�9�

E:

get

list

(S,M,N);

�8�

B:

begin;

�4,5�

declare

X(M,N),

Y(M);

get

list

(X,Y);

call

C(X,Y);

�9,5�

C:

procedure

(P,Q);

declare

P(*,*),

Q(*),

�12,2�

S

binary

fixed

external;

S

=

0;

�6�

do

I

=

1

to

M;

if

sum

(P(I,*))

=

Q(I)

then

�8�

go

to

B;

S

=

S+1;

if

S

=

3

then

�9�

call

Out

(E);

Call

D(I);

�8�

B:

end;

end

C;

�9�

D:

procedure

(N);

put

list

(’Error

in

row

’,

�2,3�

N,

’Table

Name

’,

S);

end

D;

end

B;

go

to

E;

end

A;

�9�

Out:

procedure

(R);

Declare

R

Label,

�11�

(K

static

internal,

�11,7�

L

static

external)

init

(0),

�12�

S

binary

fixed

external,

Z

fixed

decimal(1);

K

=

K+1;

S=0;

if

K<L

then

stop;

�10�

else

go

to

R;

end;

Set:

procedure

(Z);

declare

Z

fixed

dec(1);

�7�

L=Z;

declare

L

external

init(0);

return;

end;

end

Scope_Example;

Figure

7.

Example

of

scopes

of

various

declarations

INTERNAL

and

EXTERNAL

156

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

�3�

N

appears

as

a

parameter

in

block

D,

but

is

also

used

outside

the

block.

Its

appearance

as

a

parameter

establishes

an

explicit

declaration

of

N

within

D.

The

references

outside

D

cause

an

implicit

declaration

of

N

in

block

A.

These

two

declarations

of

the

name

N

refer

to

different

objects,

although

in

this

case,

the

objects

have

the

same

data

attributes,

which

are,

by

default,

FIXED

BINARY(15,0)

and

INTERNAL.

Under

DEFAULT(ANS),

the

precision

is

(31,0).

�4�

X

and

Y

are

known

throughout

B

and

can

be

referred

to

in

block

C

or

D

within

B,

but

not

in

that

part

of

A

outside

B.

�5�

P

and

Q

are

parameters,

and

therefore

if

there

were

no

other

declaration

of

these

names

within

the

block,

their

appearance

in

the

parameter

list

would

be

sufficient

to

constitute

a

contextual

declaration.

However,

a

separate,

explicit

declaration

statement

is

required

in

order

to

specify

that

P

and

Q

are

arrays.

Although

the

arguments

X

and

Y

are

declared

as

arrays

and

are

known

in

block

C,

it

is

still

necessary

to

declare

P

and

Q

in

a

DECLARE

statement

to

establish

that

they,

too,

are

arrays.

(The

asterisk

notation

indicates

that

the

bounds

of

the

parameters

are

the

same

as

the

bounds

of

the

arguments.)

�6�

I

and

M

are

not

explicitly

declared

in

the

external

procedure

A.

Therefore,

they

are

implicitly

declared

and

are

known

throughout

A,

even

though

I

appears

only

within

block

C.

�7�

The

Out

and

Set

external

procedures

in

the

example

have

an

external

declaration

of

L

that

is

common

to

both.

They

also

must

be

declared

explicitly

with

the

ENTRY

attribute

in

procedure

A.

Because

ENTRY

implies

EXTERNAL,

the

two

entry

constants

Set

and

Out

are

known

throughout

the

two

external

procedures.

�8�

The

label

B

appears

twice

in

the

program—first

in

A,

as

the

label

of

a

begin-block,

which

is

an

explicit

declaration,

and

then

redeclared

as

a

label

within

block

C

by

its

appearance

as

a

prefix

to

an

END

statement.

The

go

to

B

statement

within

block

C,

therefore,

refers

to

the

label

of

the

END

statement

within

block

C.

Outside

block

C,

any

reference

to

B

is

to

the

label

of

the

begin-block.

�9�

Blocks

C

and

D

can

be

called

from

any

point

within

B

but

not

from

that

part

of

A

outside

B,

nor

from

another

external

procedure.

Similarly,

because

label

E

is

known

throughout

the

external

procedure

A,

a

transfer

to

E

can

be

made

from

any

point

within

A.

The

label

B

within

block

C,

however,

can

be

referred

to

only

from

within

C.

Transfers

out

of

a

block

by

a

GO

TO

statement

can

be

made;

but

such

transfers

into

a

nested

block

generally

cannot.

An

exception

is

shown

in

the

external

procedure

Out,

where

the

label

E

from

block

C

is

passed

as

an

argument

to

the

label

parameter

R.

Note

that,

with

no

files

specified

in

the

GET

and

PUT

statements,

SYSIN

and

SYSPRINT

are

implicitly

declared.

�10�

The

statement

else

go

to

R;

transfers

control

to

the

label

E,

even

though

E

is

declared

within

A,

and

not

known

within

Out.

�11�

The

variables

K

(INTERNAL)

and

L

(EXTERNAL)

are

declared

as

STATIC

within

the

Out

procedure

block;

their

values

are

preserved

between

calls

to

Out.

�12�

In

order

to

identify

the

S

in

the

procedure

Out

as

the

same

S

in

the

procedure

C,

both

are

declared

with

the

attribute

EXTERNAL.

INTERNAL

and

EXTERNAL

Chapter

8.

Data

declarations

157

RESERVED

attribute

The

RESERVED

attribute

implies

STATIC

EXTERNAL.

Moreover,

if

a

variable

has

the

RESERVED

attribute,

then

the

application

must

comply

with

the

following

conditions:

v

All

declarations

of

the

variable

must

specify

RESERVED.

v

The

variable

name

must

appear

in

the

RESERVES

option

of

exactly

one

package.

If

a

variable

has

the

RESERVED

attribute,

any

INITIAL

values

are

ignored

except

in

the

package

reserving

it.

��

RESERVED

(IMPORTED)

��

If

a

compilation

unit

has

a

variable

with

the

RESERVED

attribute

and

is

not

the

reserving

package

for

that

variable,

then

that

compilation

unit

either

must

be

part

of

the

load

module

containing

the

reserving

package

or

must

import

the

variable

from

another

load

module

containing

the

reserving

package.

In

the

latter

case,

the

declaration

must

specify

the

IMPORTED

option

of

the

RESERVED

attribute.

owns_x:

package

exports(*)

reserves(x);

dcl

x

char(256)

reserved

init(

...

);

dcl

y

char(256)

reserved

init(

...

);

dcl

z

char(256)

reserved(imported)

init(

...

);

end;

owns_y:

package

exports(*)

reserves(y);

dcl

x

char(256)

reserved

init(

...

);

dcl

y

char(256)

reserved

init(

...

);

dcl

z

char(256)

reserved(imported)

init(

...

);

end;

owns_z:

package

exports(*)

reserves(z);

dcl

z

char(256)

reserved(imported)

init(

...

);

end;

In

the

preceding

example,

the

package

owns_x

reserves

and

initializes

the

storage

for

the

variable

x.

It

must

be

linked

into

the

same

load

module

as

the

package

owns_y.

This

load

module

must

import

the

variable

z

from

the

load

module

into

which

package

owns_z

is

linked.

RESERVED

158

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Data

alignment

The

computer

holds

information

in

multiples

of

units

of

8

bits.

Each

8-bit

unit

of

information

is

called

a

byte.

The

computer

accesses

bytes

singly

or

as

halfwords,

words,

or

doublewords.

A

halfword

is

2

consecutive

bytes.

A

fullword

is

4

consecutive

bytes.

A

doubleword

is

8

consecutive

bytes.

Byte

locations

in

storage

are

consecutively

numbered

starting

with

0;

each

number

is

the

address

of

the

corresponding

byte.

Halfwords,

words,

and

doublewords

are

addressed

by

the

address

of

their

leftmost

byte.

Your

programs

can

execute

faster

if

halfwords,

words,

and

doublewords

are

located

in

main

storage

on

an

integral

boundary

for

that

unit

of

information.

That

is,

the

unit

of

information’s

address

is

a

multiple

of

the

number

of

bytes

in

the

unit,

as

can

be

seen

in

Table

27.

Table

27.

Alignment

on

integral

boundaries

of

halfwords,

words,

and

doublewords

ADDRESSES

IN

A

SECTION

OF

STORAGE

5000

5001

5002

5003

5004

5005

5006

5007

byte

byte

byte

byte

byte

byte

byte

byte

halfword

halfword

halfword

halfword

fullword

fullword

doubleword

PL/I

allows

data

alignment

on

integral

boundaries.

However,

unused

bytes

between

successive

data

elements

can

increase

storage

use.

For

example,

when

the

data

items

are

members

of

aggregates

used

to

create

a

data

set,

the

unused

bytes

increase

the

amount

of

auxiliary

storage

required.

The

ALIGNED

and

UNALIGNED

attributes

allow

you

to

choose

whether

or

not

to

align

data

on

the

appropriate

integral

boundary.

ALIGNED

and

UNALIGNED

attributes

ALIGNED

specifies

that

the

data

element

is

aligned

on

the

storage

boundary

corresponding

to

its

data-type

requirement.

UNALIGNED

specifies

that

each

data

element

is

mapped

on

the

next

byte

boundary,

except

for

fixed-length

bit

strings,

which

are

mapped

on

the

next

bit.

��

ALIGNED

UNALIGNED

��

Defaults

are

applied

at

element

level.

UNALIGNED

is

the

default

for

bit

data,

character

data,

graphic

data,

widechar

data

and

numeric

character

data.

ALIGNED

is

the

default

for

all

other

types

of

data.

Requirements

for

the

ALIGNED

attribute

are

shown

in

Table

28

on

page

160.

Data

alignment

Chapter

8.

Data

declarations

159

Table

28.

Alignment

requirements

Variable

Type

Stored

Internally

as:

Storage

Requirements

(Bytes)

Alignment

Requirements

ALIGNED

Data

UNALIGNEDData

Note:

Alignment

and

storage

requirements

for

program

control

data

can

vary

across

supported

systems.

Complex

data

requires

twice

as

much

storage

as

its

real

counterpart,

but

the

alignment

requirements

are

the

same.

BIT

(n)

ALIGNED:One

byte

for

each

group

of

8

bits

(or

part

thereof)

UNALIGNED:

As

many

bits

as

are

required,

regardless

of

byte

boundaries

ALIGNED:

CEIL(n/8)

UNALIGNED:

n

bits

Byte(Data

can

begin

on

any

byte,

0

through

7)

Bit(Data

can

begin

on

any

bit

in

any

byte,

0

through

7)

CHARACTER

(n)

One

byte

per

character

n

Byte(Data

can

begin

on

any

byte,

0

through

7)

Byte(Data

can

begin

on

any

byte,

0

through

7)

CHARACTER

(n)VARYINGZ

One

byte

per

character

plusone

byte

for

the

nullterminator

n+1

GRAPHIC

(n)

Two

bytes

per

graphic

2n

GRAPHIC

(n)VARYINGZ

Two

bytes

per

graphic

plustwo

bytes

for

the

nullterminator

2n+2

WIDECHAR

(n)

Two

bytes

per

widechar.

2n

WIDECHAR

(n)VARYINGZ

Two

bytes

per

widechar

plustwo

bytes

for

the

nullterminator

2n+2

PICTURE

One

byte

for

each

PICTURE

character

(except

V,

K,

and

the

F

scaling

factor

specification)

Number

of

PICTURE

characters

other

than

V,

K,

and

F

specification

DECIMAL

FIXED

(p,q)

Packed

decimal

format

(1/2

byte

per

digit,

plus

1/2

byte

for

sign)

CEIL((p+1)/2

BINARY

FIXED(p,q)

SIGNED

1

<=

p

<=

7

UNSIGNED

1

<=

p

<=

8

One

byte

1

ORDINAL

SIGNED

1

<=

p

<=

7

UNSIGNED

1

<=

p

<=

8

ALIGNED

and

UNALIGNED

attributes

160

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Table

28.

Alignment

requirements

(continued)

Variable

Type

Stored

Internally

as:

Storage

Requirements

(Bytes)

Alignment

Requirements

ALIGNED

Data

UNALIGNEDData

BIT(n)

VARYING

Two-byte

prefix

plus

1

byte

for

each

group

of

8

bits

(or

part

thereof)

of

the

declared

maximum

length

ALIGNED:2+CEIL(n/8)

UNALIGNED:

2

bytes+n

bits

Halfword

(Data

can

begin

on

byte

0,

2,

4,

or

6)

Byte(Data

can

begin

on

any

byte,

0

through

7)

CHARACTER(n)VARYING

Two-byte

prefix

plus

1

byte

per

character

of

the

declared

maximum

length

n+2

GRAPHIC(n)VARYING

Two-byte

prefix

plus

2

bytes

per

graphic

of

the

declared

maximum

length

2n+2

WIDECHAR(n)VARYING

Two-byte

prefix

plus

2

bytes

per

widechar

of

the

declared

maximum

length

2n+2

BINARY

FIXED(p,q)

SIGNED

8

<=

p

<=

15

UNSIGNED

9

<=

p

<=

16

Halfword

2

ORDINAL

SIGNED

8

<=

p

<=

15

UNSIGNED

9

<=

p

<=

16

BINARY

FIXED(p,q)

SIGNED

16

<=

p

<=

31

UNSIGNED

17

<=

p

<=

32

Fullword

4

Fullword

(Data

can

begin

on

byte

0

or

4)

Byte(Data

can

begin

on

any

byte,

0

through

7)

ORDINAL

SIGNED

16

<=

p

<=

31

UNSIGNED

17

<=

p

<=

32

BINARY

FLOAT(p)1<=p<=21

Short

floating-point

DECIMAL

FLOAT(p)1<=p<=6

POINTER

–

4

Fullword(Data

can

begin

on

byte

0

or

4)

Byte(Data

can

begin

on

any

byte,

0

through

7)

HANDLE

–

OFFSET

–

FILE

–

ENTRY

LIMITED

–

ENTRY

–

8

LABEL

or

FORMAT

–

TASK

–

16

ALIGNED

and

UNALIGNED

attributes

Chapter

8.

Data

declarations

161

Table

28.

Alignment

requirements

(continued)

Variable

Type

Stored

Internally

as:

Storage

Requirements

(Bytes)

Alignment

Requirements

ALIGNED

Data

UNALIGNEDData

AREA

–

16+size

Doubleword

(Data

can

begin

on

byte

0)

AREA

data

cannot

be

unaligned

BINARY

FIXED(p,q)

SIGNED

32

<=

p

<=

63

UNSIGNED

33

<=

p

<=

64

–

8

byte(Data

can

begin

on

any

byte,

0

through

7)

BINARY

FLOAT(p)

22

<=

p

<=

53

Long

floating-point

DECIMAL

FLOAT(p)

7

<=

p

<=

16

BINARY

FLOAT(p)

54<=p

Extended

floating-point

16

DECIMAL

FLOAT(p)

17<=p

ALIGNED

or

UNALIGNED

can

be

specified

for

element,

array,

structure,

or

union

variables.

The

application

of

either

attribute

to

a

structure

or

union

is

equivalent

to

applying

the

attribute

to

all

contained

elements

that

are

not

explicitly

declared

ALIGNED

or

UNALIGNED.

The

following

example

illustrates

the

effect

of

ALIGNED

and

UNALIGNED

declarations

for

a

structure

and

its

elements:

declare

1

S,

2

X

bit(2),

/*

unaligned

by

default

*/

2

A

aligned,

/*

aligned

explicitly

*/

3

B,

/*

aligned

from

A

*/

3

C

unaligned,

/*

unaligned

explicitly

*/

4

D,

/*

unaligned

from

C

*/

4

E

aligned,

/*

aligned

explicitly

*/

4

F,

/*

unaligned

from

C

*/

3

G,

/*

aligned

from

A

*/

2

H;

/*

aligned

by

default

*/

For

more

information

about

structures

and

unions,

refer

to

“Structures”

on

page

170

and

“Unions”

on

page

172.

Defaults

for

attributes

Every

name

in

a

PL/I

program

requires

a

complete

set

of

attributes.

Arguments

passed

to

a

procedure

must

have

attributes

matching

the

procedure’s

parameters.

Values

returned

by

functions

must

have

the

attributes

expected.

However,

the

attributes

that

you

specify

need

rarely

include

the

complete

set

of

attributes.

The

set

of

attributes

for:

v

Explicitly

declared

names

v

Implicitly

(including

contextually)

declared

names

v

Attributes

to

be

included

in

parameter

descriptors

v

Values

returned

from

function

procedures

can

be

completed

by

using

the

language-specified

defaults,

or

by

defaults

that

you

can

define

(using

the

DEFAULT

statement)

either

to

modify

the

language-specified

defaults

or

to

develop

a

completely

new

set

of

defaults.

ALIGNED

and

UNALIGNED

attributes

162

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Attributes

applied

by

default

cannot

override

attributes

applied

to

a

name

by

explicit

or

contextual

declaration.

Language-specified

defaults

When

a

variable

has

not

been

declared

with

any

data

attributes,

it

is

given

arithmetic

attributes

by

default.

If

mode,

scale,

and

base

are

not

specified

by

a

DECLARE

or

DEFAULT

statement,

the

DEFAULT

compiler

option

determines

its

attributes

as

follows:

v

If

DEFAULT(IBM)

is

in

effect,

variables

with

names

beginning

with

the

letters

I

through

N

are

given

the

attributes

REAL

FIXED

BINARY(15,0);

all

other

variables

are

given

the

attributes

REAL

FLOAT

DECIMAL(6).

v

If

DEFAULT(ANS)

is

in

effect,

all

variables

are

given

the

attributes

REAL

FIXED

BINARY(31,0).

If

a

scaling

factor

is

specified

in

the

precision

attribute,

the

attribute

FIXED

is

applied

before

any

other

attributes.

Therefore,

a

declaration

with

the

attributes

BINARY(p,q)

is

always

equivalent

to

a

declaration

with

the

attributes

FIXED

BINARY(p,q).

If

a

precision

is

not

specified

in

an

arithmetic

declaration,

the

DEFAULT

compiler

option

determines

the

precision

as

indicated

in

Table

29.

The

language-specified

defaults

for

scope,

storage

and

alignment

attributes

are

shown

in

Table

8

on

page

26

and

Table

7

on

page

25.

If

no

description

list

is

given

in

an

ENTRY

declaration,

the

attributes

for

the

argument

must

match

those

specified

for

the

corresponding

parameter

in

the

invoked

procedure.

For

example,

given

the

following

declaration:

dcl

X

entry;

call

X(

1

);

The

argument

has

the

attributes

REAL

FIXED

DECIMAL(1,0).

This

would

be

an

error

if

the

procedure

x

declared

its

parameter

with

other

attributes,

as

shown

in

the

following

example:

X:

proc(

Y

);

dcl

Y

fixed

bin(15);

This

potential

problem

can

be

easily

avoided

if

the

entry

declaration

specifies

the

attributes

for

all

of

its

parameters.

Table

29.

Default

arithmetic

precisions

Attributes

DEFAULT(IBM)

DEFAULT(ANS)

DECIMAL

FIXED

(5,0)

(10,0)

BINARY

FIXED

(15,0)

(31,0)

DECIMAL

FLOAT

(6)

(6)

BINARY

FLOAT

(21)

(21)

DEFAULT

statement

The

DEFAULT

statement

specifies

data-attribute

defaults

(when

attribute

sets

are

not

complete).

Any

attributes

not

applied

by

the

DEFAULT

statement

for

any

partially-complete

explicit

or

contextual

declarations,

and

for

implicit

declarations,

are

supplied

by

language-specified

defaults.

Defaults

for

attributes

Chapter

8.

Data

declarations

163

The

DEFAULT

statement

overrides

all

other

attribute

specifications,

except

that

a

name

declared

with

the

ENTRY

or

FILE

attribute,

but

none

of

the

attributes

that

would

imply

the

VARIABLE

attribute,

will

be

given

the

implicit

CONSTANT

attribute

by

PL/I

before

any

DEFAULT

statements

are

applied.

Consequently,

in

the

following

example,

PL/I

gives

Xtrn

the

CONSTANT

attribute

and

not

the

STATIC

attribute.

Sample:

proc;

default

range(*)

static;

dcl

Xtrn

entry;

end;

Structure

and

union

elements

are

given

default

attributes

according

to

the

name

of

the

element,

not

the

qualified

element

name.

The

DEFAULT

statement

cannot

be

used

to

create

a

structure

or

a

union.

��

DEFAULT

�

,

RANGE

(

identifiers

)

attribute-specification

;

�

�

�

,

identifiers:

identifier

:identifier

*

��

Abbreviation:

DFT

RANGE(

identifier

)

Specifies

that

the

defaults

apply

to

names

that

begin

with

the

same

letters

as

in

the

identifier

specified.

For

example:

RANGE

(ABC)

applies

to

these

names:

ABC

ABCD

ABCDE

but

not

to:

ABD

ACB

AB

A

Hence

a

one-letter

identifier

in

the

range-specification

applies

to

all

names

that

start

with

that

letter.

The

RANGE

identifier

may

be

specified

in

DBCS.

RANGE(

identifier

:

identifier

)

Specifies

that

the

defaults

apply

to

names

with

initial

letters

that

either

match

the

two

identifiers

specified

or

fall

between

the

two

in

alphabetic

sequence.

The

letters

may

be

in

DBCS,

but

in

determining

if

a

RANGE

specification

applies

to

a

name,

all

comparisons

are

based

solely

on

the

hex

values

of

the

letters

involved.

The

letters

given

in

the

specification

must

be

in

increasing

alphabetic

order.

For

example:

DEFAULT

164

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

RANGE(A:G,I:M,T:Z)

RANGE(*)

Specifies

all

names

in

the

scope

of

the

DEFAULT

statement.

For

example:

DFT

RANGE

(*)

PIC

’99999’;

This

statement

specifies

default

attributes

REAL

PICTURE

'99999'

for

all

names.

An

example

of

a

factored-specification

with

the

range

options

is:

DEFAULT

(RANGE(A)FIXED,

RANGE(B)

FLOAT)BINARY;

This

statement

specifies

default

attributes

FIXED

BINARY

for

names

with

the

initial

letter

A,

and

FLOAT

BINARY

for

those

with

the

initial

letter

B.

DESCRIPTORS

Specifies

that

the

attributes

are

included

in

any

parameter

descriptors

in

a

parameter

descriptor

list

of

an

explicit

entry

declaration,

provided

that:

v

The

inclusion

of

any

such

attributes

is

not

prohibited

by

the

presence

of

alternative

attributes

of

the

same

class.

v

At

least

one

attribute

is

already

present.

(The

DESCRIPTORS

default

attributes

are

not

applied

to

null

descriptors).

For

example:

DEFAULT

DESCRIPTORS

BINARY;

DCL

X

ENTRY

(FIXED,

FLOAT);

The

attribute

BINARY

is

added

to

each

parameter

descriptor

in

the

list,

producing

the

equivalent

list:

(FIXED

BINARY,

FLOAT

BINARY)

attribute-list

Specifies

a

list

of

attributes

from

which

selected

attributes

are

applied

to

names

in

the

specified

range.

Attributes

in

the

list

can

appear

in

any

order

and

must

be

separated

by

blanks.

Only

those

attributes

that

are

necessary

to

complete

the

declaration

of

a

data

item

are

taken

from

the

list

of

attributes.

If

FILE

is

used,

it

implies

the

attributes

VARIABLE

and

INTERNAL.

The

dimension

attribute

is

allowed,

but

only

as

the

first

item

in

an

attribute

specification.

The

bounds

can

be

specified

as

an

arithmetic

constant

or

an

expression

and

can

include

the

REFER

option.

For

example:

DFT

RANGE(J)

(5);

DFT

RANGE(J)

(5,5)

FIXED;

Although

the

DEFAULT

statement

can

specify

the

dimension

attribute

for

names

that

have

not

been

declared

explicitly,

a

subscripted

name

is

contextually

declared

with

the

attribute

BUILTIN.

Therefore,

the

dimension

attribute

can

be

applied

by

default

only

to

explicitly

declared

names.

The

INITIAL

attribute

can

be

specified.

Attributes

that

conflict,

when

applied

to

a

data

item,

do

not

necessarily

conflict

when

they

appear

in

an

attribute

specification.

For

example:

DEFAULT

RANGE(S)

BINARY

VARYING;

DEFAULT

Chapter

8.

Data

declarations

165

This

means

that

any

name

that

begins

with

the

letter

S

and

is

declared

explicitly

with

the

BIT,

CHARACTER,

or

GRAPHIC

attribute

receives

the

VARYING

attribute;

all

others

(that

are

not

declared

explicitly

or

contextually

as

other

than

arithmetic

data)

receive

the

BINARY

attribute.

VALUE

Can

appear

anywhere

within

an

attribute-specification

except

before

a

dimension

attribute.

VALUE

establishes

any

default

rules

for

an

area

size,

string

length,

and

precision.

The

size

of

AREA

data,

or

length

of

BIT,

CHARACTER,

or

GRAPHIC

data,

can

be

an

expression

or

an

integer

and

can

include

the

REFER

option,

or

can

be

specified

as

an

asterisk.

For

example:

DEFAULT

RANGE(A:C)

VALUE

(FIXED

DEC(10),

FLOAT

DEC(14),

AREA(2000));

DECLARE

B

FIXED

DECIMAL,

C

FLOAT

DECIMAL,

A

AREA;

These

statements

are

equivalent

to:

DECLARE

B

FIXED

DECIMAL(10),

C

FLOAT

DECIMAL(14),

A

AREA(2000);

The

base

and

scale

attributes

in

value-specification

must

be

present

to

identify

a

precision

specification

with

a

particular

attribute.

The

base

and

scale

attributes

can

be

factored

(see

“Factoring

attributes”

on

page

149).

The

only

attributes

that

the

VALUE

option

can

influence

are

area

size,

string

length,

and

precision.

Other

attributes

in

the

option,

such

as

CHARACTER

and

FIXED

BINARY

in

the

above

examples,

merely

indicate

which

attributes

the

value

is

to

be

associated

with.

Consider

the

following

example:

DEFAULT

RANGE(I)

VALUE(FIXED

DECIMAL(8,3));

I

=

1;

If

it

is

not

declared

explicitly,

I

is

given

the

language-specified

default

attributes

FIXED

BINARY(15,0).

It

is

not

influenced

by

the

default

statement,

because

this

statement

specifies

only

that

the

default

precision

for

FIXED

DECIMAL

names

is

to

be

(8,3).

For

example:

DFT

RANGE(*)

VALUE(FIXED

BINARY(31));

specifies

precision

for

identifiers

already

known

to

be

FIXED

BINARY,

while

DFT

RANGE(*)

FIXED

BINARY

VALUE(FIXED

BINARY(31));

specifies

both

the

FIXED

BINARY

attribute

as

a

default

and

the

precision.

There

can

be

more

than

one

DEFAULT

statement

within

a

block.

The

scope

of

a

DEFAULT

statement

is

the

block

in

which

it

occurs,

and

all

blocks

within

that

block

which

neither

include

another

DEFAULT

statement

with

the

same

range,

nor

are

contained

in

a

block

having

a

DEFAULT

statement

with

the

same

range.

DEFAULT

166

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

A

DEFAULT

statement

in

an

internal

block

affects

only

explicitly

declared

names.

This

is

because

the

scope

of

an

implicit

declaration

is

determined

as

if

the

names

were

declared

in

a

DECLARE

statement

immediately

following

the

PROCEDURE

statement

of

the

external

procedure

in

which

the

name

appears.

It

is

possible

for

a

containing

block

to

have

a

DEFAULT

statement

with

a

range

that

is

partly

covered

by

the

range

of

a

DEFAULT

statement

in

a

contained

block.

In

such

a

case,

the

range

of

the

DEFAULT

statement

in

the

containing

block

is

reduced

by

the

range

of

the

DEFAULT

statement

in

the

contained

block.

For

example:

P:

PROCEDURE;

L1:

DEFAULT

RANGE

(XY)

FIXED;

Q:

BEGIN;

L2:

DEFAULT

RANGE

(XYZ)

FLOAT;

END

P;

The

scope

of

DEFAULT

statement

L1

is

procedure

P

and

the

contained

block

Q.

The

range

of

DEFAULT

statement

L1

is

all

names

in

procedure

P

beginning

with

the

characters

XY,

together

with

all

names

in

begin-block

Q

beginning

with

the

characters

XY,

except

for

those

beginning

with

the

characters

XYZ.

Labels

can

be

prefixed

to

DEFAULT

statements.

A

branch

to

such

a

label

is

treated

as

a

branch

to

a

null

statement.

Condition

prefixes

cannot

be

attached

to

a

DEFAULT

statement.

Restoring

language-specified

defaults

The

following

statement:

dft

range(*)

system;

overrides,

for

all

names,

any

programmer-defined

default

rules

established

in

a

containing

block.

It

can

be

used

to

restore

language-specified

defaults

for

contained

blocks.

Arrays

An

array

is

an

n-dimensional

collection

of

elements

that

have

identical

attributes.

Only

the

array

itself

is

given

a

name.

An

individual

item

of

an

array

is

referred

to

by

giving

its

position

within

the

array.

You

indicate

that

a

name

is

an

array

variable

by

providing

the

dimension

attribute.

Every

array

must

have

at

least

one

element.

DIMENSION

attribute

The

dimension

attribute

specifies

the

number

of

dimensions

of

an

array

and

upper

and

lower

bounds

of

each.

Bounds

that

are

nonrestricted

expressions

are

evaluated

and

converted

to

FIXED

BINARY(31,0)

when

storage

is

allocated

for

the

array.

The

extent

is

the

number

of

integers

between,

and

including,

the

lower

and

upper

bounds.

DEFAULT

Chapter

8.

Data

declarations

167

��

DIMENSION

(

�

,

bound

)

bound:

lower-bound

:

*:

�

�

upper-bound

*

��

lower-bound:

1

expression

REFER(variable)

upper-bound:

expression

REFER(variable)

Abbreviation:

DIM

If

the

DIMENSION

keyword

is

omitted,

the

dimension

must

immediately

follow

the

name

(or

the

parenthesized

list

of

names)

in

the

declaration.

The

number

of

bounds

specifications

indicates

the

number

of

dimensions

in

the

array,

unless

the

declared

variable

is

in

an

array

of

structures

or

unions.

In

this

case

it

inherits

dimensions

from

the

containing

structure

or

union.

The

bounds

specification

indicates

the

bounds

as

follows:

v

If

only

the

upper

bound

is

given,

the

lower

bound

defaults

to

1.

v

The

lower

bound

must

be

less

than

or

equal

to

the

upper

bound.

v

An

asterisk

(*)

specifies

that

the

lower

and/or

the

upper

bound

is

taken

from

the

argument

associated

with

the

parameter.

Examples

of

arrays

Consider

the

following

declaration:

declare

List

fixed

decimal(3)

dimension(8);

List

is

declared

as

a

one-dimensional

array

of

eight

elements,

each

one

a

fixed-point

decimal

element

of

three

digits.

The

one

dimension

of

List

has

bounds

of

1

and

8,

and

its

extent

is

8.

In

the

example:

declare

Table

(4,2)

fixed

dec

(3);

DIMENSION

attribute

168

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Table

is

declared

as

a

two-dimensional

array

of

eight

fixed-point

decimal

elements.

The

two

dimensions

of

Table

have

bounds

of

1

and

4

and

1

and

2,

and

the

extents

are

4

and

2.

Other

examples

are:

declare

List_A

dimension(4:11);

declare

List_B

(-4:3);

In

the

first

example,

the

bounds

are

4

and

11;

in

the

second

they

are

-4

and

3.

The

extents

are

the

same

for

each,

8

integers

from

the

lower

bound

through

the

upper

bound.

In

the

manipulation

of

array

data

(discussed

in

“Array

expressions”

on

page

69)

involving

more

than

one

array,

the

bounds—not

merely

the

extents—must

be

identical.

Although

List,

List_A,

and

List_B

all

have

the

same

extent,

the

bounds

are

not

identical.

Subscripts

The

bounds

of

an

array

determine

the

way

elements

of

the

array

can

be

referred

to.

For

example,

when

the

following

data

items:

20

5

10

30

630

150

310

70

are

assigned

to

the

array

List,

as

declared

above,

the

different

elements

are

referred

to

as

follows:

Reference

Element

LIST

(1)

20

LIST

(2)

5

LIST

(3)

10

LIST

(4)

30

LIST

(5)

630

LIST

(6)

150

LIST

(7)

310

LIST

(8)

70

Each

of

the

parenthesized

numbers

following

LIST

is

a

subscript.

A

parenthesized

subscript

following

an

array

name

reference

identifies

a

particular

data

item

within

the

array.

A

reference

to

a

subscripted

name,

such

as

LIST(4),

refers

to

a

single

element

and

is

an

element

variable.

The

entire

array

can

be

referred

to

by

the

unsubscripted

name

of

the

array—for

example,

LIST.

The

same

data

can

be

assigned

to

List_A

and

List_B

declared

previously.

In

this

case

it

is

referenced

as

follows:

Reference

Element

Reference

LIST_A

(4)

20

LIST_B

(-4)

LIST_A

(5)

5

LIST_B

(-3)

LIST_A

(6)

10

LIST_B

(-2)

LIST_A

(7)

30

LIST_B

(-1)

LIST_A

(8)

630

LIST_B

(0)

LIST_A

(9)

150

LIST_B

(1)

LIST_A

(10)

310

LIST_B

(2)

LIST_A

(11)

70

LIST_B

(3)

Examples

of

arrays

Chapter

8.

Data

declarations

169

Assume

that

the

same

data

is

assigned

to

TABLE,

which

is

declared

as

a

two-dimensional

array.

TABLE

can

be

illustrated

as

a

matrix

of

four

rows

and

two

columns:

TABLE(m,n)

(m,1)

(m,2)

(1,n)

20

5

(2,n)

10

30

(3,n)

630

150

(4,n)

310

70

An

element

of

TABLE

is

referred

to

by

a

subscripted

name

with

two

parenthesized

subscripts,

separated

by

a

comma.

For

example,

TABLE

(2,1)

would

specify

the

first

item

in

the

second

row,

the

data

item

10.

The

use

of

a

matrix

to

illustrate

TABLE

is

purely

conceptual.

It

has

no

relationship

to

the

way

the

items

are

actually

organized

in

storage.

Data

items

are

assigned

to

an

array

in

row

major

order.

This

means

that

the

subscript

that

represents

columns

varies

most

rapidly.

For

example,

assignment

to

TABLE

would

be

to

TABLE(1,1),

TABLE(1,2),

TABLE(2,1),

TABLE(2,2),

and

so

forth.

A

subscripted

reference

to

an

array

must

contain

as

many

subscripts

as

there

are

dimensions

in

the

array.

Any

expression

that

yields

a

valid

arithmetic

value

can

be

used

for

a

subscript.

If

necessary,

the

value

is

converted

to

FIXED

BINARY(31,0).

Thus,

TABLE(I,J*K)

can

be

used

to

refer

to

the

different

elements

of

TABLE

by

varying

the

values

of

I,

J,

and

K.

Cross

sections

of

arrays

Cross

sections

of

arrays

can

be

referred

to

by

using

an

asterisk

for

a

subscript.

The

asterisk

specifies

that

the

entire

extent

is

used.

For

example,

TABLE(*,1)

refers

to

all

of

the

elements

in

the

first

column

of

TABLE.

It

specifies

the

cross

section

consisting

of

TABLE(1,1),

TABLE(2,1),

TABLE(3,1),

and

TABLE(4,1).

The

subscripted

name

TABLE(2,*)

refers

to

all

of

the

data

items

in

the

second

row

of

TABLE.

TABLE(*,*)

refers

to

the

entire

array,

as

does

TABLE.

A

subscripted

name

containing

asterisk

subscripts

represents

not

a

single

data

element,

but

an

array

with

as

many

dimensions

as

there

are

asterisks.

Consequently,

such

a

name

is

not

an

element

expression,

but

an

array

expression.

A

reference

to

a

cross

section

of

an

array

can

refer

to

two

or

more

elements

that

are

not

adjacent

in

storage.

The

storage

represented

by

such

a

cross

section

is

known

as

nonconnected

storage.

(See

“CONNECTED

and

NONCONNECTED

attributes”

on

page

244.)

The

rule

is

as

follows:

if

a

nonasterisk

bound

appears

to

the

right

of

the

leftmost

asterisk

bound,

the

array

cross

section

is

in

nonconnected

storage.

Thus

A(4,*,*)

is

in

connected

storage;

A(*,2,*)

is

not.

Structures

A

structure

is

a

collection

of

member

elements

that

can

be

structures,

unions,

elementary

variables

and

arrays.

The

structure

variable

is

a

name

that

can

be

used

to

refer

to

the

entire

aggregate

of

data.

Unlike

an

array,

however,

each

member

of

a

structure

also

has

a

name,

and

the

attributes

of

each

member

can

differ.

An

asterisk

can

be

used

as

the

name

of

a

Subscripts

170

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

structure

or

a

member

when

it

will

not

be

referred

to.

For

example,

reserved

or

filler

items

can

be

named

with

an

asterisk.

A

structure

has

different

levels.

The

name

at

level-1

is

called

a

major

structure.

Names

at

deeper

levels

can

be

minor

structures

or

unions.

Names

at

the

deepest

level

are

called

elementary

names,

which

can

represent

an

elementary

variable

or

an

array

variable.

Unions

are

described

in

“Unions”

on

page

172.

A

structure

is

described

in

a

DECLARE

statement

through

the

use

of

level-numbers

preceding

the

associated

names.

Level-numbers

must

be

integers.

A

major

structure

name

is

declared

with

the

level-number

1.

Minor

structures,

unions,

and

elementary

names

are

declared

with

level-numbers

greater

than

1.

A

delimiter

must

separate

the

level-number

and

its

associated

name.

For

example,

the

items

of

a

payroll

record

could

be

declared

as

follows:

declare

1

Payroll,

/*

major

structure

name

*/

2

Name,

/*

minor

structure

name

*/

3

Last

char(20),

/*

elementary

name

*/

3

First

char(15),

2

Hours,

3

Regular

fixed

dec(5,2),

3

Overtime

fixed

dec(5,2),

2

Rate,

3

Regular

fixed

dec(3,2),

3

Overtime

fixed

dec(3,2);

In

the

example,

Payroll

is

the

major

structure

and

all

other

names

are

members

of

this

structure.

Name,

Hours,

and

Rate

are

minor

structures,

and

all

other

members

are

elementary

variables.

You

can

refer

to

the

entire

structure

by

the

name

Payroll,

or

to

portions

of

the

structure

by

the

minor

structure

names.

You

can

refer

to

a

member

by

referring

to

the

member

name.

Indentation

is

only

for

readability.

The

statement

could

be

written

in

a

continuous

string

as:

Declare

1

Payroll,

2

Name,

3

Last

char(20),

.

.

.

The

level-numbers

you

choose

for

successively

deeper

levels

need

not

be

consecutive.

A

minor

structure

at

level

n

contains

all

the

names

with

level-numbers

greater

than

n

that

lie

between

that

minor

structure

name

and

the

next

name

with

a

level-number

less

than

or

equal

to

n.

For

example,

the

following

declaration

results

in

exactly

the

same

structure

as

the

declaration

in

the

previous

example.

Declare

1

Payroll,

4

Name,

5

Last

char(20),

5

First

char(15),

3

Hours,

6

Regular

fixed

dec(5,2),

5

Overtime

fixed

dec(5,2),

2

Rate,

9

Regular

fixed

dec(3,2),

9

Overtime

fixed

dec(3,2);

The

description

of

a

major

structure

is

usually

terminated

by

a

semicolon

terminating

the

DECLARE

statement.

It

can

also

be

terminated

by

comma,

followed

by

the

declaration

of

another

item.

Structures

Chapter

8.

Data

declarations

171

Unions

A

union

is

a

collection

of

member

elements

that

overlay

each

other,

occupying

the

same

storage.

The

members

can

be

structures,

unions,

elementary

variables,

and

arrays.

They

need

not

have

identical

attributes.

The

entire

union

is

given

a

name

that

can

be

used

to

refer

to

the

entire

aggregate

of

data.

Like

a

structure,

each

element

of

a

union

also

has

a

name.

An

asterisk

can

be

used

as

the

name

of

a

union

or

a

member,

when

it

will

not

be

referred

to.

For

example,

reserved

or

filler

items

can

be

named

asterisk.

Like

a

structure,

a

union

can

be

at

any

level

including

level

1.

All

elements

of

a

union

at

the

next

deeper

level

are

members

of

the

union

and

occupy

the

same

storage.

The

storage

occupied

by

the

union

is

equal

to

the

storage

required

by

the

largest

member.

Normally,

only

one

member

is

used

at

any

time

and

the

programmer

determines

which

member

is

used.

A

union,

like

a

structure,

is

declared

through

the

use

of

level-numbers

preceding

the

associated

names.

Unions

can

be

used

to

declare

variant

records

that

would

typically

contain

a

common

part,

a

selector

part,

and

variant

parts.

For

example,

records

in

a

client

file

can

be

declared

as

follows:

Declare

1

Client,

2

Number

pic

’999999’,

2

Type

bit(1),

2

*

bit(7),

2

Name

union,

3

Individual,

5

Last_Name

char(20),

5

First_Name

union,

7

First

char(15),

7

Initial

char(1),

3

Company

char(35),

2

*

char(0);

In

this

example,

Client

is

a

major

structure.

The

structure

Individual,

and

the

element

Company

are

members

of

the

union

Name.

One

of

these

members

is

active

depending

on

Type.

The

structure

Individual

contains

the

union

First_name

and

the

element

Last_name.

First_name

union

has

First

and

Initial

as

its

members,

both

of

which

are

active.

The

example

also

shows

the

use

of

asterisk

as

a

name.

The

description

of

a

union

is

terminated

by

the

semicolon

that

terminates

a

DECLARE

statement

or

by

a

comma,

followed

by

the

declaration

of

another

item.

UNION

attribute

The

UNION

attribute

allows

you

to

specify

that

a

variable

is

a

union

and

that

its

members

are

those

that

follow

it

and

are

at

the

next

logically

higher

level.

CELL

is

accepted

as

a

synonym

for

UNION.

Unions

172

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

UNION

��

Structure/union

qualification

A

member

of

a

structure

or

a

union

can

be

referred

to

by

its

name

alone

if

it

is

unique.

If

another

member

has

the

same

name,

whether

at

the

same

or

different

level,

ambiguity

occurs.

Where

ambiguity

occurs,

a

qualified

reference

is

required

to

uniquely

identify

the

correct

member.

A

qualified

reference

is

a

member

name

that

is

qualified

with

one

or

more

names

of

parent

members

connected

by

periods.

(See

the

qualified

reference

syntax

in

Chapter

4,

“Expressions

and

references,”

on

page

51.)

Blanks

can

appear

surrounding

the

period.

The

qualification

must

follow

the

order

of

levels.

That

is,

the

name

at

the

highest

level

must

appear

first,

with

the

name

at

the

deepest

level

appearing

last.

While

the

level-1

structure

or

union

name

must

be

unique

within

the

block

scope,

member

names

need

not

be

unique

as

long

as

they

do

not

appear

at

same

logical

level

within

their

most

immediate

parent.

A

qualified

name

must

be

used

only

so

far

as

necessary

to

make

a

reference

of

the

same

structure

unique

within

the

block

in

which

it

appears.

In

the

following

example,

the

value

of

x.y

(19)

is

displayed,

not

the

value

(17).

dcl

Y

fixed

init(17);

begin;

dcl

1

X,

2

Y

fixed

init(19);

display(

Y

);

end;

A

reference

is

always

taken

to

apply

to

the

declared

name

in

the

innermost

block

containing

the

reference.

The

following

examples

illustrate

both

ambiguous

and

unambiguous

references.

In

the

following

example,

A.C

refers

to

C

in

the

inner

block;

D.E

refers

to

E

in

the

outer

block.

declare

1

A,

2

C,

2

D,

3

E;

begin;

declare

1

A,

2

B,

3

C,

3

E;

A.C

=

D.E;

In

the

following

example,

D

has

been

declared

twice.

A

reference

to

A.D

refers

to

the

second

D,

because

A.D

is

a

complete

qualification

of

only

the

second

D.

The

first

D

is

referred

to

as

A.C.D.

declare

1

A,

2

B,

2

C,

3

D,

2

D;

In

the

following

example,

a

reference

to

A.C

is

ambiguous

because

neither

C

can

be

completely

qualified

by

this

reference.

UNION

attribute

Chapter

8.

Data

declarations

173

declare

1

A,

2

B,

3

C,

2

D,

3

C;

In

the

following

example,

a

reference

to

A

refers

to

the

first

A,

A.A

to

the

second

A,

and

A.A.A

to

the

third

A.

declare

1

A,

2

A,

3

A;

In

the

following

example,

a

reference

to

X

refers

to

the

first

DECLARE

statement.

A

reference

to

Y.Z

is

ambiguous.

Y.Y.Z

refers

to

the

second

Z,

and

Y.X.Z

refers

to

the

first

Z.

declare

X;

declare

1

Y,

2

X,

3

Z,

3

A,

2

Y,

3

Z,

3

A;

For

more

information

about

name

qualification,

refer

to

“Scope

of

declarations”

on

page

151.

LIKE

attribute

The

LIKE

attribute

specifies

that

the

name

being

declared

has

an

organization

that

is

logically

the

same

as

the

referenced

structure

or

union

(object

of

the

LIKE

attribute).

The

object

variable’s

member

names

and

their

attributes,

including

the

dimension

attribute,

are

effectively

copied

and

become

members

of

the

name

being

declared.

If

necessary,

the

level-numbers

of

the

copied

members

are

automatically

adjusted.

The

object

variable

name

and

its

attributes,

including

the

dimension

attribute,

are

ignored.

��

LIKE

object-variable

��

object-variable

Can

be

a

major

structure,

a

minor

structure,

or

a

union.

It

must

be

known

in

the

block

containing

the

LIKE

attribute

specification.

It

can

be

qualified

but

must

not

be

subscripted.

The

object

or

any

of

its

members

must

not

have

the

LIKE

attribute

or

the

REFER

option.

The

objects

in

all

LIKE

attributes

are

associated

with

declared

names

before

any

LIKE

attributes

are

expanded.

New

members

cannot

be

added

to

the

created

structure

or

union.

Any

level-number

that

immediately

follows

the

object

variable

in

the

LIKE

attribute

must

be

equal

to

or

less

than

the

level-number

of

the

name

with

the

LIKE

attribute.

The

following

declarations

yield

the

same

structure

for

X.

Structure/union

qualification

174

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

dcl

1

A(10)

aligned

static,

2

B

bit(4),

2

C

bit(4),

1

X

like

A;

dcl

1

X,

2

B

bit(4),

2

C

bit(4);

Notice

that

the

dimension

(DIM(10)),

ALIGNED,

and

STATIC

attributes

are

not

copied

as

part

of

the

LIKE

expansion.

The

LIKE

attribute

is

expanded

before

the

defaults

are

applied

and

before

the

ALIGNED

and

UNALIGNED

attributes

are

applied

to

the

contained

elements

of

the

LIKE

object

variable.

Examples

declare

1

A,

2

C,

3

E(3)

union,

5

E1,

5

E2,

3

F;

declare

1

B(10)

union,

2

C,

3

G,

3

H,

2

D;

begin;

declare

1

C

like

B;

declare

1

D(2),

5

BB

like

A.C;

end;

Declarations

C

and

D

have

the

results

shown

in

the

following

example.

dcl

1

C,

/*

DIM

and

UNION

not

copied.

*/

2

C,

3

G,

3

H,

2

D;

dcl

1

D(2),

5

BB,

6

E(3)

union,

/*

DIM(3)

and

UNION

copied.

*/

7

E1,

/*

Note

adjusted

level-numbers.

*/

7

E2,

6

F;

The

following

example

is

invalid

because

C.E

has

the

LIKE

attribute.

declare

1

A

like

C,

1

B,

2

C,

3

D,

3

E

like

X,

2

F,

1

X,

2

Y,

2

Z;

The

following

example

is

invalid

because

the

LIKE

attribute

of

A

specifies

a

substructure,

G.C,

of

a

structure,

G,

declared

with

the

LIKE

attribute.

LIKE

Chapter

8.

Data

declarations

175

declare

1

A

like

G.C,

1

B,

2

C,

3

D,

3

E,

2

F,

1

G

like

B;

The

following

example

is

invalid

because

the

LIKE

attribute

of

A

specifies

a

structure,

C,

within

a

structure,

B,

that

contains

a

substructure,

F,

having

the

LIKE

attribute.

declare

1

A

like

C,

1

B,

2

C,

3

D,

3

E,

2

F

like

X,

1

X,

2

Y,

2

Z;

Combinations

of

arrays,

structures,

and

unions

Specifying

the

dimension

attribute

on

a

structure

or

union

results

in

an

array

of

structures

or

an

array

of

unions,

respectively.

The

elements

of

such

an

array

are

structures

or

unions

having

identical

names,

levels,

and

members.

For

example,

if

a

structure

were

used

to

hold

meteorological

data

for

each

month

of

the

year

for

the

twentieth

and

the

twenty-first

centuries,

it

might

be

declared

as

follows:

Declare

1

Year(1901:2100),

3

Month(12),

5

Temperature,

7

High

decimal

fixed(4,1),

7

Low

decimal

fixed(4,1),

5

Wind_velocity,

7

High

decimal

fixed(3),

7

Low

decimal

fixed(3),

5

Precipitation,

7

Total

decimal

fixed(3,1),

7

Average

decimal

fixed(3,1),

3

*

char(0);

You

could

refer

to

the

weather

data

for

July

1991

by

specifying

Year(1991,7).

Portions

of

this

data

could

be

referred

to

by

Temperature(1991,7)

and

Wind_Velocity(1991,7).

Precipitation.Total(1991,7)

or

Total(1991,7)

would

both

refer

to

the

total

precipitation

during

July

1991.

Temperature.High(1991,3),

which

would

refer

to

the

high

temperature

in

March

1991,

is

a

subscripted

qualified

reference.

The

need

for

subscripted

qualified

references

becomes

apparent

when

an

array

of

structures

or

unions

contains

members

that

are

arrays.

In

the

following

example,

both

A

and

B

are

structures:

declare

1

A

(2,2),

(2

B

(2),

3

C,

3

D,

2

E)

fixed

bin;

To

refer

to

a

data

item,

it

might

be

necessary

to

use

as

many

as

three

names

and

three

subscripts.

For

example:

LIKE

176

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

A(1,1).B

refers

to

B,

an

array

of

structures.

A(1,1)

refers

to

a

structure.

A(1,1).B(1)

refers

to

a

structure.

A(1,1).B(2).C

refers

to

an

element.

As

long

as

the

order

of

subscripts

remains

unchanged,

subscripts

in

such

references

can

be

moved

to

names

at

a

lower

or

higher

level.

In

the

previous

example,

A.B.C(1,1,2)

and

A(1,1,2).B.C

have

the

same

meaning

as

A(1,1).B(2).C

for

the

above

array

of

structures.

Unless

all

of

the

subscripts

are

moved

to

the

lowest

level,

the

reference

is

said

to

have

interleaved

subscripts,

so

A.B(1,1,2).C

has

interleaved

subscripts.

Any

item

declared

within

an

array

of

structures

or

unions

inherits

dimensions

declared

in

the

parent.

In

the

previous

declaration

for

the

array

of

structures

A,

the

array

B

is

a

three-dimensional

structure,

because

it

inherits

the

two

dimensions

declared

for

A.

If

B

is

unique

and

requires

no

qualification,

any

reference

to

a

particular

B

would

require

three

subscripts,

two

to

identify

the

specific

A

and

one

to

identify

the

specific

B

within

that

A.

Cross

sections

of

arrays

of

structures

or

unions

A

reference

to

a

cross

section

of

an

array

of

structures

or

unions

is

not

allowed.

That

is,

the

asterisk

notation

cannot

be

used

in

a

reference

unless

all

of

the

subscripts

are

asterisks.

Structure

and

union

operations

Structures

can

be

referenced

in

most

contexts

that

any

elementary

variable

can

be

referenced.

For

example,

you

can

have

structure

references

in

assignments,

I/O

statements,

and

so

on.

References

to

unions

or

structures

that

contain

unions,

however,

are

limited

to

the

following:

v

Parameters

and

arguments

v

Storage

control

and

those

built-in

functions

and

subroutines

that

allow

structures.

Structure

and

union

mapping

Individual

members

of

a

union

are

mapped

the

same

way

as

members

of

the

structure.

That

is,

each

of

the

members,

if

not

a

union,

is

mapped

as

if

it

were

a

member

of

a

structure.

This

means

that

the

first

storage

locations

for

each

of

the

members

of

a

union

do

not

overlay

each

other

if

each

of

the

members

requires

different

alignment

and

therefore

different

padding

before

the

beginning

of

the

member.

Consider

the

following

union:

dcl

1

A

union,

2

B,

3

C

char(1),

3

D

fixed

bin(31),

2

E,

3

F

char(2),

3

G

fixed

bin(31);

Three

bytes

of

padding

are

added

between

A

and

B.

Two

bytes

are

added

between

A

and

E.

Combinations

of

arrays,

structures,

and

unions

Chapter

8.

Data

declarations

177

In

order

to

ensure

that

the

first

storage

location

of

each

of

the

members

of

a

union

is

the

same,

make

sure

that

the

first

member

of

each

has

the

same

alignment

requirement

and

it

is

the

same

as

the

highest

alignment

of

any

of

its

members

(or

its

member’s

members).

The

remainder

of

the

discussion

applies

to

members

of

a

structure

or

union,

which

can

be

minor

structures

or

elementary

variables.

For

any

major

or

minor

structure,

the

length,

alignment

requirement,

and

position

relative

to

an

8-byte

boundary

depend

on

the

lengths,

alignment

requirements,

and

relative

positions

of

its

members.

The

process

of

determining

these

requirements

for

each

level

and

for

the

complete

structure

is

known

as

structure

mapping.

You

can

use

structure

mapping

for

determining

the

record

length

required

for

a

structure

when

record-oriented

input/output

is

used,

and

determining

the

amount

of

padding

or

rearrangement

required

for

correct

alignment

of

a

structure

for

locate-mode

input/output.

The

structure

mapping

process

minimizes

the

amount

of

unused

storage

(padding)

between

members

of

the

structure.

It

completes

the

entire

process

before

the

structure

is

allocated,

according

(in

effect)

to

the

rules

discussed

in

the

following

paragraphs.

Structure

mapping

is

not

a

physical

process.

Terms

such

as

shifted

and

offset

are

used

purely

for

ease

of

discussion,

and

do

not

imply

actual

movement

in

storage.

When

the

structure

is

allocated,

the

relative

locations

are

already

known

as

a

result

of

the

mapping

process.

The

mapping

for

a

complete

structure

reduces

to

successively

combining

pairs

of

items

(elements,

or

minor

structures

whose

individual

mappings

have

already

been

determined).

Once

a

pair

has

been

combined,

it

becomes

a

unit

to

be

paired

with

another

unit,

and

so

on

until

the

complete

structure

is

mapped.

The

rules

for

the

process

are

categorized

as

follows:

v

Rules

for

determining

the

order

of

pairing

v

Rules

for

mapping

one

pair.

These

rules

are

described

below,

and

an

example

shows

an

application

of

the

rules

in

detail.

It

is

necessary

to

understand

the

difference

between

the

logical

level

and

the

level-number

of

structure

elements.

The

logical

levels

are

immediately

apparent

if

the

structure

declaration

is

written

with

consistent

level-numbers

or

suitable

indentation

(as

in

the

detailed

example

given

after

the

rules).

In

any

case,

you

can

determine

the

logical

level

of

each

item

in

the

structure

by

applying

the

following

rule

to

each

item

in

turn,

starting

at

the

beginning

of

the

structure

declaration:

Note:

The

logical

level

of

a

given

item

is

always

one

unit

deeper

than

that

of

its

immediate

containing

structure.

In

the

following

example,

the

lower

line

shows

the

logical

level

for

each

item

in

the

declaration.

dcl

1

A,

4

B,

5

C,

5

D,

3

E,

8

F,

7

G;

1

2

3

3

2

3

3

Rules

for

order

of

pairing

The

steps

in

determining

the

order

of

pairing

are

as

follows:

Structure

and

union

mapping

178

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

1.

Find

the

minor

structure

at

the

deepest

logical

level

(which

we

will

call

logical

level

n).

2.

If

more

than

one

minor

structure

has

the

logical

level

n,

take

the

first

one

that

appears

in

the

declaration.

3.

Pair

the

first

two

elements

appearing

in

this

minor

structure,

thus

forming

a

unit.

Use

the

rules

for

mapping

one

pair.

(See

“Rules

for

mapping

one

pair.”)

4.

Pair

this

unit

with

the

next

element

(if

any)

declared

in

the

minor

structure,

thus

forming

a

larger

unit.

5.

Repeat

step

4

until

all

the

elements

in

the

minor

structure

have

been

combined

into

one

unit.

This

completes

the

mapping

for

this

minor

structure.

its

alignment

requirement

and

length,

including

any

padding,

are

now

determined

and

will

not

change

(unless

you

change

the

structure

declaration).

Its

offset

from

a

doubleword

boundary

is

also

now

determined.

This

offset

is

significant

during

mapping

of

any

containing

structure,

and

it

can

change

as

a

result

of

such

mapping.

6.

Repeat

steps

3

through

5

for

the

next

minor

structure

(if

any)

appearing

at

logical

level

n

in

the

declaration.

7.

Repeat

step

6

until

all

minor

structures

at

logical

level

n

have

been

mapped.

Each

of

these

minor

structures

can

now

be

thought

of

as

an

element

for

structure

mapping

purposes.

8.

Repeat

the

pairing

process

for

minor

structures

at

the

next

higher

logical

level;

that

is,

make

n

equal

to

(n-1)

and

repeat

steps

2

through

7.

9.

Repeat

step

8

until

n

=

1;

then

repeat

steps

3

through

5

for

the

major

structure.

Rules

for

mapping

one

pair

For

purposes

of

this

explanation,

think

of

storage

as

contiguous

doublewords,

each

having

8

bytes,

numbered

0

through

7,

which

indicate

the

offset

from

a

doubleword

boundary.

Think

of

the

bytes

as

numbered

continuously

from

0

onward,

starting

at

any

byte,

so

that

lengths

and

offsets

from

the

start

of

the

structure

can

be

calculated.

1.

Begin

the

first

element

of

the

pair

on

a

doubleword

boundary;

or,

if

the

element

is

a

minor

structure

that

has

already

been

mapped,

offset

it

from

the

doubleword

boundary

by

the

amount

indicated.

2.

Begin

the

second

element

of

the

pair

at

the

first

valid

position

following

the

end

of

the

first

element.

This

position

depends

on

the

alignment

requirement

of

the

second

element.

(If

the

second

element

is

a

minor

structure,

its

alignment

requirement

will

have

already

been

determined.)

3.

Shift

the

first

element

towards

the

second

element

as

far

as

the

alignment

requirement

of

the

first

allows.

The

amount

of

shift

determines

the

offset

of

this

pair

from

a

doubleword

boundary.

After

this

process

has

been

completed,

any

padding

between

the

two

elements

has

been

minimized

and

does

not

change

throughout

the

rest

of

the

operation.

The

pair

is

now

a

unit

of

fixed

length

and

alignment

requirement;

its

length

is

the

sum

of

the

two

lengths

plus

padding,

and

its

alignment

requirement

is

the

higher

of

the

two

alignment

requirements

(if

they

differ).

Effect

of

UNALIGNED

attribute

The

example

of

structure

mapping

given

below

shows

the

rules

applied

to

a

structure

declared

ALIGNED.

Mapping

of

aligned

structures

is

more

complex

because

of

the

number

of

alignment

requirements.

The

effect

of

the

UNALIGNED

attribute

is

to

reduce

to

one

byte

the

alignment

requirements

for

halfwords,

Rules

for

order

of

pairing

Chapter

8.

Data

declarations

179

fullwords,

and

doublewords,

and

to

reduce

to

one

bit

the

alignment

requirement

for

bit

strings.

The

same

structure

mapping

rules

apply,

but

the

reduced

alignment

requirements

are

used.

The

only

unused

storage

will

be

bit

padding

within

a

byte

when

the

structure

contains

bit

strings.

AREA

data

cannot

be

unaligned.

If

a

structure

has

the

UNALIGNED

attribute

and

it

contains

an

element

that

cannot

be

unaligned,

UNALIGNED

is

ignored

for

that

element.

The

element

is

aligned

and

an

error

message

is

produced.

For

example,

in

a

program

with

the

following

declaration,

C

is

given

the

attribute

ALIGNED

because

the

inherited

attribute

UNALIGNED

conflicts

with

AREA.

declare

1

A

unaligned,

2

B,

2

C

area(100);

Example

of

structure

mapping

The

following

example

shows

the

application

of

the

structure

mapping

rules

for

a

structure

with

the

specified

declaration.

declare

1

A

aligned,

2

B

fixed

bin(31),

2

C,

3

D

float

decimal(14),

3

E,

4

F

entry,

4

G,

5

H

character(2),

5

I

float

decimal(13),

4

J

fixed

binary(31,0),

3

K

character(2),

3

L

fixed

binary(20,0),

2

M,

3

N,

4

P

fixed

binary(15),

4

Q

character(5),

4

R

float

decimal(2),

3

S,

4

T

float

decimal(15),

4

U

bit(3),

4

V

char(1),

3

W

fixed

bin(31),

2

X

picture

’$9V99’;

The

minor

structure

at

the

deepest

logical

level

is

G,

so

this

is

mapped

first.

Then

E

is

mapped,

followed

by

N,

S,

C,

and

M,

in

that

order.

For

each

minor

structure,

a

table

in

Figure

8

on

page

181

shows

the

steps

in

the

process,

and

a

diagram

in

Figure

9

on

page

181

shows

a

visual

interpretation

of

the

process.

Finally,

the

major

structure

A

is

mapped

as

shown

in

Figure

15

on

page

184.

At

the

end

of

the

example,

the

structure

map

for

A

is

set

out

in

the

form

of

a

table

(Figure

16

on

page

185)

showing

the

offset

of

each

member

from

the

start

of

A.

Effect

of

UNALIGNED

attribute

180

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

┌─────────┬─────────────┬────────┬───────────┬───────────┬──────────┐

│

│

│

│Offset

from│

│

│

│

│

│

│Doubleword

│

│Offset

│

│

Name

of

│

Alignment

│

├─────┬─────┤

Length

of

│from

Minor│

│

Element

│

Requirement

│

Length

│Begin│

End

│

Padding

│Structure

│

├─────────┼─────────────┼────────┼─────┼─────┼───────────┼──────────┤

Step

1

│

H

│

Byte

│

2

│

0

│

1

│

│

│

│

I

│

Doubleword

│

8

│

0

│

7

│

│

│

Step

2

│

*H

│

Byte

│

2

│

6

│

7

│

│

0

│

│

I

│

Doubleword

│

8

│

0

│

7

│

0

│

2

│

Minor

├─────────┼─────────────┼────────┼─────┼─────┼───────────┼──────────┤

Structure

│

G

│

Doubleword

│

10

│

6

│

7

│

│

│

├─────────┼─────────────┼────────┼─────┼─────┼───────────┼──────────┤

Step

1

│

F

│

Fullword

│

8

│

0

│

7

│

│

│

│

G

│

Doubleword

│

10

│

6

│

7

│

│

│

Step

2

│

*F

│

Fullword

│

8

│

4

│

3

│

│

0

│

│

G

│

Doubleword

│

10

│

6

│

7

│

2

│

10

│

Step

3

│

F

&

G

│

Doubleword

│

20

│

4

│

7

│

│

│

│

J

│

Fullword

│

4

│

0

│

3

│

0

│

20

│

Minor

├─────────┼─────────────┼────────┼─────┼─────┼───────────┼──────────┤

Structure

│

E

│

Doubleword

│

24

│

4

│

3

│

│

│

├─────────┼─────────────┼────────┼─────┼─────┼───────────┼──────────┤

Step

1

│

P

│

Halfword

│

2

│

0

│

1

│

│

0

│

│

Q

│

Byte

│

5

│

2

│

6

│

│

2

│

Step

2

│

P

&

Q

│

Halfword

│

7

│

0

│

6

│

│

│

│

R

│

Fullword

│

4

│

0

│

3

│

1

│

8

│

Minor

├─────────┼─────────────┼────────┼─────┼─────┼───────────┼──────────┤

Structure

│

N

│

Fullword

│

12

│

0

│

3

│

│

│

├─────────┼─────────────┼────────┼─────┼─────┼───────────┼──────────┤

Step

1

│

T

│

Doubleword

│

8

│

0

│

7

│

│

0

│

│

U

│

Byte

│

1

│

0

│

0

│

0

│

8

│

Step

2

│

T

&

U

│

Doubleword

│

9

│

0

│

0

│

│

│

│

V

│

Byte

│

1

│

1

│

1

│

0

│

9

│

Minor

├─────────┼─────────────┼────────┼─────┼─────┼───────────┼──────────┤

Structure

│

S

│

Doubleword

│

10

│

0

│

1

│

│

│

├─────────┼─────────────┼────────┼─────┼─────┼───────────┼──────────┤

Step

1

│

D

│

Doubleword

│

8

│

0

│

7

│

│

0

│

│

E

│

Doubleword

│

24

│

4

│

3

│

4

│

12

│

Step

2

│

D

.

E

│

Doubleword

│

36

│

0

│

3

│

│

│

│

K

│

Byte

│

2

│

4

│

5

│

0

│

36

│

Step

3

│D,

E,

&

K│

Doubleword

│

38

│

0

│

5

│

│

│

│

L

│

Fullword

│

4

│

0

│

3

│

2

│

40

│

Minor

├─────────┼─────────────┼────────┼─────┼─────┼───────────┼──────────┤

Structure

│

C

│

Doubleword

│

44

│

0

│

3

│

│

│

├─────────┼─────────────┼────────┼─────┼─────┼───────────┼──────────┤

Step

1

│

N

│

Fullword

│

12

│

0

│

3

│

│

│

│

S

│

Doubleword

│

10

│

0

│

1

│

│

│

Step

2

│

*N

│

Fullword

│

12

│

4

│

7

│

│

0

│

│

S

│

Doubleword

│

10

│

0

│

1

│

0

│

12

│

Step

3

│

N

&

S

│

Doubleword

│

22

│

4

│

1

│

│

│

│

W

│

Fullword

│

4

│

4

│

7

│

2

│

24

│

Minor

├─────────┼─────────────┼────────┼─────┼─────┼───────────┼──────────┤

Structure

│

M

│

Doubleword

│

28

│

4

│

7

│

│

│

└─────────┴─────────────┴────────┴─────┴─────┴───────────┴──────────┘

*First

item

shifted

right

Figure

8.

Mapping

of

example

structure

┌─H─┐

┌───────I───────┐

─┬─

Step

1

│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0

─┴─

│

│

│

│

│

│

│

│

│

│

│

│

│

│

┌─H─┬───────I───────┐

─┬─

Step

2

│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0

─┴─

│

│

│

│

│

│

│

│

│

│

│

│

│

│

└─────────G─────────┘

Figure

9.

Mapping

of

minor

structure

G

Structure

mapping

example

Chapter

8.

Data

declarations

181

┌───────F───────┐

┌─────────G─────────┐

─┬─

Step

1

│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0

─┴─

│

│

│

│

│

│

│

│

│

│

│

│

│

│

┌───────F───────┐

┌─────────G─────────┐

─┬─

Step

2

│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0

─┴─

│

│

│

│

│

│

│

│

│

│

│

│

│

│

┌───────F───────┐

┌─────────G─────────┬───J───┐

─┬─

Step

3

│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0

─┴─

│

│

│

│

│

│

│

│

│

│

│

│

│

│

└───────────────────────E───────────────────────┘

Figure

10.

Mapping

of

minor

structure

E

┌─P─┬────Q────┐

─┬─

Step

1

│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0

─┴─

│

│

│

│

│

│

│

│

│

│

│

│

│

│

┌─P─┬────Q────┐

┌───R───┐

─┬─

Step

2

│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0

─┴─

│

│

│

│

│

│

│

│

│

│

│

│

│

│

└───────────N───────────┘

Figure

11.

Mapping

of

minor

structure

N

┌───────T───────┬U┐

─┬─

Step

1

│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0

─┴─

│

│

│

│

│

│

│

│

│

│

│

│

│

│

┌───────T───────┬U┬V┐

─┬─

Step

2

│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0

─┴─

│

│

│

│

│

│

│

│

│

│

│

│

│

│

└─────────S─────────┘

Figure

12.

Mapping

of

minor

structure

S

Structure

mapping

example

182

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

┌───────D───────┐

┌─E

(length

24)─┐

─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬

┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─

Step

1

│0│1│2│3│4│5│6│7│0│1│2│3│4│5│

│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0

─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴

┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─

│

│

│

│

│

│

│

│

│

│

│

│

│

│

┌───────D───────┐

┌─E

(length

24)─┬─K─┐

─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬

┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─

Step

2

│0│1│2│3│4│5│6│7│0│1│2│3│4│5│

│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0

─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴

┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─

│

│

│

│

│

│

│

│

│

│

│

│

│

│

┌───────D───────┐

┌─E

(length

24)─┬─K─┐

┌───L───┐

─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬

┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─

Step

3

│0│1│2│3│4│5│6│7│0│1│2│3│4│5│

│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0

─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴

┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─

│

│

│

│

│

│

│

│

│

│

│

│

│

│

└──────────────────────────C────────────────────────────┘

Figure

13.

Mapping

of

minor

structure

C

┌───────────N───────────┐

┌─────────S─────────┐

─┬─

Step

1

│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0

─┴─

│

│

│

│

│

│

│

│

│

│

│

│

│

│

┌───────────N──────────┬──────────S─────────┐

─┬─

Step

2

│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0

─┴─

│

│

│

│

│

│

│

│

│

│

│

│

│

│

┌───────────N──────────┬──────────S─────────┐

┌───W───┐

─┬─

Step

3

│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0

─┴─

│

│

│

│

│

│

│

│

│

│

│

│

│

│

└───────────────────────────M───────────────────────────┘

Figure

14.

Mapping

of

minor

structure

M

Structure

mapping

example

Chapter

8.

Data

declarations

183

┌───────────┬────────────┬────────┬─────────────┬───────────┬────────┐

│

│

│

│

Offset

from

│

│

│

│

│

│

│

Doubleword

│

│

│

│

Name

of

│

Alignment

│

├─────────────┤

Length

of

│

Offset

│

│

Item

│

Required

│

Length

│

Begin

│

End

│

Padding

│

from

A

│

├───────────┼────────────┼────────┼───────┼─────┼───────────┼────────┤

Step

1

│

B

│

Fullword

│

4

│

0

│

3

│

│

│

│

C

│

Doubleword

│

44

│

0

│

3

│

│

│

│

│

│

│

│

│

│

│

Step

2

│

B*

│

Fullword

│

4

│

4

│

7

│

│

0

│

│

C

│

Doubleword

│

44

│

0

│

3

│

0

│

4

│

│

│

│

│

│

│

│

│

Step

3

│

B

&

C

│

Doubleword

│

48

│

4

│

3

│

│

│

│

M

│

Doubleword

│

28

│

4

│

7

│

0

│

48

│

│

│

│

│

│

│

│

│

Step

4

│

B,

C,

&

M

│

Doubleword

│

76

│

4

│

7

│

│

│

│

X

│

Byte

│

4

│

0

│

3

│

0

│

76

│

├───────────┼────────────┼────────┼───────┼─────┼───────────┼────────┤

│

A

│

Doubleword

│

80

│

4

│

3

│

│

│

└───────────┴────────────┴────────┴───────┴─────┴───────────┴────────┘

*

First

item

shifted

right

C

(length

44)

┌───B───┐

┌───┴───┐

─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬

┬─

Step

1

│0│1│2│3│4│5│6│7│0│1│

│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0

─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴

┴─

│

│

│

│

│

│

│

│

│

│

│

│

│

│

C

(length

44)

┌───B───┬───┴───┐

─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬

┬─

Step

2

│0│1│2│3│4│5│6│7│0│1│

│3│4│5│6│7│0│1│2│3│4│5│6│7│0│1│2│3│4│5│6│7│0

─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴

┴─

│

│

│

│

│

│

│

│

│

│

│

│

│

│

C

(length

44)

M

(length

28)

┌───B───┬───┴───┬───────────┴───────────┐

─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬

┬─┬─┬─┬─┬─┬─┬─┬

┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─

Step

3

│0│1│2│3│4│5│6│7│0│1│

│3│4│5│6│7│0│1│

│3│4│5│6│7│0│1│2│3│4│5│6│7│0

─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴

┴─┴─┴─┴─┴─┴─┴─┴

┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─

│

│

│

│

│

│

│

│

│

│

│

│

│

│

C

(length

44)

M

(length

28)

┌───B───┬───┴───┬───────────┴───────────┬───X───┐

─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬

┬─┬─┬─┬─┬─┬─┬─┬

┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─

Step

4

│0│1│2│3│4│5│6│7│0│1│

│3│4│5│6│7│0│1│

│3│4│5│6│7│0│1│2│3│4│5│6│7│0

─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴

┴─┴─┴─┴─┴─┴─┴─┴

┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─

│

│

│

│

│

│

│

│

│

│

│

│

│

│

└───────────────────────A───────────────────────┘

(length

80)

Figure

15.

Mapping

of

major

structure

A

Structure

mapping

example

184

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

┌────────────────────┬────────┬────────┬────────┬────────┐

│

A

│

│

│

│

From

A

│

│

B

│

│

│

│

0

│

│

C

│

│

│

From

C

│

4

│

│

D

│

│

│

0

│

4

│

│

padding

(4)

│

│

│

8

│

12

│

│

E

│

│

From

E

│

12

│

16

│

│

F

│

│

0

│

12

│

16

│

│

padding

(2)

│

│

8

│

20

│

24

│

│

G

│

From

G

│

10

│

22

│

26

│

│

H

│

0

│

10

│

22

│

26

│

│

I

│

2

│

12

│

24

│

28

│

│

J

│

│

20

│

32

│

36

│

│

K

│

│

│

36

│

40

│

│

padding

(2)

│

│

│

38

│

42

│

│

L

│

│

│

40

│

44

│

│

M

│

│

│

From

M

│

48

│

│

N

│

│

From

N

│

0

│

48

│

│

P

│

│

0

│

0

│

48

│

│

Q

│

│

2

│

2

│

50

│

│

padding

(1)

│

│

7

│

7

│

55

│

│

R

│

│

8

│

8

│

56

│

│

S

│

│

From

S

│

12

│

60

│

│

T

│

│

0

│

12

│

60

│

│

U

│

│

8

│

20

│

68

│

│

V

│

│

9

│

21

│

69

│

│

padding

(2)

│

│

│

22

│

70

│

│

W

│

│

│

24

│

72

│

│

X

│

│

│

│

76

│

└────────────────────┴────────┴────────┴────────┴────────┘

Figure

16.

Offsets

in

final

mapping

of

structure

A

Chapter

8.

Data

declarations

185

186

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Chapter

9.

Statements

and

directives

ALLOCATE

statement

.

.

.

.

.

.

.

.

.

. 187

Assignment

and

compound

assignment

statements

187

Assignment

statement

.

.

.

.

.

.

.

.

. 188

Compound

assignment

statement

.

.

.

.

. 188

Target

variables

.

.

.

.

.

.

.

.

.

.

. 189

How

assignments

are

performed

.

.

.

.

.

. 190

Multiple

assignments

.

.

.

.

.

.

.

.

.

. 192

Example

of

moving

internal

data

.

.

.

.

.

. 192

Example

of

assigning

expression

values

.

.

. 192

Example

of

assigning

a

structure

using

BY

NAME

.

.

.

.

.

.

.

.

.

.

.

.

.

. 192

ATTACH

statement

.

.

.

.

.

.

.

.

.

.

. 193

BEGIN

statement

.

.

.

.

.

.

.

.

.

.

.

. 193

CALL

statement

.

.

.

.

.

.

.

.

.

.

.

. 193

CLOSE

statement

.

.

.

.

.

.

.

.

.

.

.

. 193

DECLARE

statement

.

.

.

.

.

.

.

.

.

.

. 193

DEFINE

ALIAS

statement

.

.

.

.

.

.

.

.

. 193

DEFINE

ORDINAL

statement

.

.

.

.

.

.

.

. 193

DEFINE

STRUCTURE

statement

.

.

.

.

.

.

. 193

DEFAULT

statement

.

.

.

.

.

.

.

.

.

.

. 193

DELAY

statement

.

.

.

.

.

.

.

.

.

.

.

. 194

DELETE

statement

.

.

.

.

.

.

.

.

.

.

. 194

DETACH

statement

.

.

.

.

.

.

.

.

.

.

. 194

DISPLAY

statement

.

.

.

.

.

.

.

.

.

.

. 194

DO

statement

.

.

.

.

.

.

.

.

.

.

.

.

. 195

Type

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 195

Types

2

and

3

.

.

.

.

.

.

.

.

.

.

.

. 195

Type

4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

Examples

of

basic

repetitions

.

.

.

.

.

.

. 202

Example

of

DO

with

WHILE,

UNTIL

.

.

.

. 203

Example

of

DO

with

UPTHRU

and

DOWNTHRU

.

.

.

.

.

.

.

.

.

.

.

. 204

Example

of

REPEAT

.

.

.

.

.

.

.

.

.

. 205

END

statement

.

.

.

.

.

.

.

.

.

.

.

.

. 205

ENTRY

statement

.

.

.

.

.

.

.

.

.

.

.

. 206

EXIT

statement

.

.

.

.

.

.

.

.

.

.

.

.

. 206

FETCH

statement

.

.

.

.

.

.

.

.

.

.

.

. 206

FLUSH

statement

.

.

.

.

.

.

.

.

.

.

.

. 206

FORMAT

statement

.

.

.

.

.

.

.

.

.

.

. 206

FREE

statement

.

.

.

.

.

.

.

.

.

.

.

. 206

GET

statement

.

.

.

.

.

.

.

.

.

.

.

.

. 206

GO

TO

statement

.

.

.

.

.

.

.

.

.

.

.

. 207

IF

statement

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 208

%INCLUDE

directive

.

.

.

.

.

.

.

.

.

.

. 209

ITERATE

statement

.

.

.

.

.

.

.

.

.

.

. 209

LEAVE

statement

.

.

.

.

.

.

.

.

.

.

.

. 210

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

%LINE

directive

.

.

.

.

.

.

.

.

.

.

.

. 211

LOCATE

statement

.

.

.

.

.

.

.

.

.

.

. 211

%NOPRINT

directive

.

.

.

.

.

.

.

.

.

.

. 211

%NOTE

directive

.

.

.

.

.

.

.

.

.

.

.

. 211

null

statement

.

.

.

.

.

.

.

.

.

.

.

.

. 212

ON

statement

.

.

.

.

.

.

.

.

.

.

.

.

. 212

OPEN

statement

.

.

.

.

.

.

.

.

.

.

.

. 212

%OPTION

directive

.

.

.

.

.

.

.

.

.

.

. 212

OTHERWISE

statement

.

.

.

.

.

.

.

.

.

. 213

PACKAGE

statement

.

.

.

.

.

.

.

.

.

.

. 213

%PAGE

directive

.

.

.

.

.

.

.

.

.

.

.

. 213

%POP

directive

.

.

.

.

.

.

.

.

.

.

.

.

. 213

%PRINT

directive

.

.

.

.

.

.

.

.

.

.

.

. 214

PROCEDURE

statement

.

.

.

.

.

.

.

.

.

. 214

%PROCESS

directive

.

.

.

.

.

.

.

.

.

.

. 214

*PROCESS

directive

.

.

.

.

.

.

.

.

.

.

. 214

%PUSH

directive

.

.

.

.

.

.

.

.

.

.

.

. 214

PUT

statement

.

.

.

.

.

.

.

.

.

.

.

.

. 215

READ

statement

.

.

.

.

.

.

.

.

.

.

.

. 215

RELEASE

statement

.

.

.

.

.

.

.

.

.

.

. 215

RESIGNAL

statement

.

.

.

.

.

.

.

.

.

.

. 215

RETURN

statement

.

.

.

.

.

.

.

.

.

.

. 216

REVERT

statement

.

.

.

.

.

.

.

.

.

.

. 216

REWRITE

statement

.

.

.

.

.

.

.

.

.

.

. 216

SELECT

statement

.

.

.

.

.

.

.

.

.

.

.

. 216

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

SIGNAL

statement

.

.

.

.

.

.

.

.

.

.

. 218

%SKIP

directive

.

.

.

.

.

.

.

.

.

.

.

. 218

STOP

statement

.

.

.

.

.

.

.

.

.

.

.

. 218

UNLOCK

Statement

.

.

.

.

.

.

.

.

.

.

. 218

WAIT

statement

.

.

.

.

.

.

.

.

.

.

.

. 218

WHEN

statement

.

.

.

.

.

.

.

.

.

.

.

. 218

WRITE

statement

.

.

.

.

.

.

.

.

.

.

.

. 219

This

chapter

lists

all

of

the

PL/I

statements

and

%directives.

%Statements

and

macro

statements

are

described

in

chapters

Chapter

21,

“Preprocessor

Facilities,”

on

page

497.

ALLOCATE

statement

The

ALLOCATE

statement

is

described

in

Chapter

10,

“Storage

control,”

on

page

221

Assignment

and

compound

assignment

statements

The

assignment

statement

evaluates

an

expression

and

assigns

its

value

to

one

or

more

target

variables.

187

These

statements

are

used

for

internal

data

movement,

as

well

as

for

specifying

computations.

(The

GET

and

PUT

statements

with

the

STRING

option

can

also

be

used

for

internal

data

movement.

Additionally,

the

PUT

statement

can

specify

computations

to

be

done.

See

Chapter

13,

“Stream-oriented

data

transmission.”)

Because

the

attributes

of

the

target

variable

or

pseudovariable

can

differ

from

the

attributes

of

the

source

(a

variable,

a

constant,

or

the

result

of

an

expression),

the

assignment

statement

might

require

conversions

(see

Chapter

5,

“Data

conversion”).

Assignment

statement

Use

the

following

syntax

for

the

assignment

statement.

��

�

,

reference

=

expression

,BY

NAME

;

��

reference

Specifies

the

target

to

be

given

the

assignment

expression

Specifies

an

expression

that

is

evaluated

and

possibly

converted

BY

NAME

For

structure

assignments,

the

BY

NAME

option

specifies

the

assignment

follows

the

steps

outlined

on

191.

Compound

assignment

statement

Use

the

following

syntax

for

the

compound

assignment

statement.

��

�

,

reference

compound

assignment

operator

expression

;

��

reference

Specifies

the

target

to

be

given

the

assignment

compound

assignment

operator

Specifies

the

operator

that

is

applied

to

the

reference

and

the

evaluated

expression

before

the

assignment

is

made.

Table

30

on

page

189

lists

the

compound

assignment

operators

allowed

in

compound

assignments.

expression

Specifies

an

expression

that

is

evaluated

and

possibly

converted.

Assignment

188

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Area

assignment

is

described

in

“Area

data

and

attribute”

on

page

237.

Table

30.

Compound

assignment

operators

Compound

assignment

operator

Meaning

+=

Evaluate

expression,

add

and

assign

−=

Evaluate

expression,

subtract

and

assign

*=

Evaluate

expression,

multiply

and

assign

⁄=

Evaluate

expression,

divide

and

assign

|=

Evaluate

expression,

or

and

assign

&=

Evaluate

expression,

and

and

assign

\=

Evaluate

expression,

concatenate

and

assign

**=

Evaluate

expression,

exponentiate

and

assign

¬=

Evaluate

expression,

exclusive-or

and

assign

The

operator

is

applied

to

the

target

and

source

first,

and

then

what

results

is

assigned

to

the

target.

For

example:

X

+=

1

is

the

same

as

X

=

X+(1)

X

*=

Y+Z

is

the

same

as

X

=

X*(Y+Z)

but

X

*=

Y+Z

is

NOT

equivalent

to

X

=

X*Y+Z

In

a

compound

assignment,

any

subscripts

or

locator

expressions

specified

in

the

target

variable

are

evaluated

only

once.

If

f

is

a

function

and

X

is

an

array,

then:

X(f())

+=

1

is

NOT

equivalent

to

X(f())

=

X(f())+1

The

function

f

is

called

only

once.

The

remaining

text

discusses

the

following

topics:

:

v

The

requirements

for

target

variables

v

How

element

and

aggregate

assignments

are

performed

v

How

BY

NAME

assignments

are

performed

v

How

multiple

assignment

are

performed.

Examples

of

assignments

begin

in

“Example

of

moving

internal

data”

on

page

192.

Target

variables

The

target

variables

can

be

element,

array,

or

structure

variables;

or

pseudovariables.

Assignment

Chapter

9.

Statements

and

directives

189

Array

targets

For

array

assignments,

each

target

variable

must

be

an

array

of

scalars

or

structures.

The

source

must

be

a

scalar

or

an

expression

with

the

same

number

of

dimensions

and

the

same

bounds

for

all

dimensions

as

for

the

target.

Union

targets

Union

assignments

are

not

allowed.

Structure

targets

In

BY

NAME

structure

assignments,

each

target

variable

must

be

a

structure.

The

right-hand

side

must

be

a

structure

reference.

In

structure

assignments

not

using

BY

NAME,

each

target

variable

must

be

a

structure.

The

right-hand

side

must

be

a

scalar

or

a

structure

expression

with

the

same

structuring

as

the

target

structure:

v

The

structures

must

have

the

same

minor

structuring

and

the

same

number

of

contained

elements

and

arrays.

v

The

positioning

of

the

elements

and

arrays

within

the

structure

(and

within

the

minor

structures,

if

any)

must

be

the

same.

v

Arrays

in

corresponding

positions

must

have

identical

bounds.

In

structure

assignments

not

using

BY

NAME,

the

source

may

be

the

null

bit

string

(

’’b

)

even

if

the

target

structure

contains

non-computational

data.

In

this

case,

the

assignment

is

performed

as

if

1.

all

of

the

target

was

filled

with

’00’x

2.

all

the

numeric

target

fields

were

set

to

0

3.

all

the

nonvarying

character,

widechar

and

graphic

fields

were

filled

with

blanks

How

assignments

are

performed

Element

assignments

Element

assignments

are

performed

as

follows:

1.

First

to

be

evaluated

are

subscripts,

POSITION

attribute

expressions,

locator

qualifications

of

the

target

variables,

and

the

second

and

third

arguments

of

SUBSTR

pseudovariable

references.

2.

The

expression

on

the

right-hand

side

is

then

evaluated.

3.

For

each

target

variable

(in

left

to

right

order),

the

expression

is

converted

to

the

characteristics

of

the

target

variable

according

to

the

rules

for

data

conversion.

The

converted

value

is

then

assigned

to

the

target

variable.

Aggregate

assignments

Aggregate

assignments

(array

and

structure

assignments)

are

expanded

into

a

series

of

element

assignments

as

follows:

1.

The

label

prefix

of

the

original

statement

is

applied

to

a

null

statement

preceding

the

other

generated

statements.

2.

Array

and

structure

assignments,

when

there

are

more

than

one,

are

done

iteratively.

3.

Any

assignment

statement

can

be

generated

by

a

previous

array

or

structure

assignment.

The

first

target

variable

in

an

aggregate

assignment

is

known

as

the

master

variable.

(It

can

also

be

the

first

argument

of

a

pseudovariable).

If

the

master

variable

is

an

array,

an

array

expansion

is

performed;

otherwise,

a

structure

expansion

is

performed.

Array

targets

190

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

4.

If

an

aggregate

assignment

meets

a

certain

set

of

conditions,

it

can

be

done

as

a

whole

instead

of

being

expanded

into

a

series

of

element

assignments.

Two

conditions

are

if

the

arrays

are

not

interleaved,

or

if

the

structures

are

contiguous

and

have

the

same

format.

In

array

assignments,

all

array

operands

must

have

the

same

number

of

dimensions

and

identical

bounds.

The

array

assignment

is

expanded

into

a

loop

as

follows:

do

J1

=

lbound(Master-variable,1)

to

hbound(Master-variable,1);

do

J2

=

lbound(Master-variable,2)

to

hbound(Master-variable,2);

...

do

Jn

=

lbound(Master-variable,N)

to

hbound(Master-variable,N);

generated

assignment

statement

end;

In

this

expansion,

n

is

the

number

of

dimensions

of

the

master

variable

that

are

to

participate

in

the

assignment.

In

the

generated

assignment

statement,

all

array

operands

are

fully

subscripted,

using

(from

left

to

right)

the

dummy

variables

j1

to

jn.

If

an

array

operand

appears

with

no

subscripts,

it

has

only

the

subscripts

j1

to

jn.

If

cross-section

notation

is

used,

the

asterisks

are

replaced

by

j1

to

jn.

If

the

original

assignment

statement

has

a

condition

prefix,

the

generated

assignment

statement

is

given

this

condition

prefix.

If

the

generated

assignment

statement

is

a

structure

assignment,

it

is

expanded

as

described

next.

In

structure

assignments

where

the

BY

NAME

option

is

not

specified:

v

None

of

the

operands

can

be

arrays,

although

they

can

be

structures

that

contain

arrays.

v

All

of

the

structure

operands

must

have

the

same

number,

k,

of

immediately

contained

items.

v

The

assignment

statement

is

replaced

by

k

generated

assignment

statements.

–

The

ith

generated

assignment

statement

is

derived

from

the

original

assignment

statement

by

replacing

each

structure

operand

by

its

ith

contained

item;

such

generated

assignment

statements

can

require

further

expansion.

–

All

generated

assignment

statements

are

given

the

condition

prefix

of

the

original

statement.

In

structure

assignments

where

the

BY

NAME

option

is

given,

the

structure

assignment

is

expanded

according

to

the

steps

below,

which

can

generate

further

array

and

structure

assignments.

None

of

the

operands

can

be

arrays.

1.

The

first

item

immediately

contained

in

the

master

variable

is

considered.

2.

If

each

structure

operand

and

target

variable

has

an

immediately

contained

item

with

the

same

name,

an

assignment

statement

is

generated

as

follows:

a.

The

statement

is

derived

by

replacing

each

structure

operand

and

target

variable

with

its

immediately

contained

item

that

has

this

name.

If

any

structure

contains

no

such

name,

no

statement

is

generated.

b.

If

the

generated

assignment

is

a

structure

or

array-of-structures

assignment,

BY

NAME

is

appended.

Aggregate

assignments

Chapter

9.

Statements

and

directives

191

c.

All

generated

assignment

statements

are

given

the

condition

prefix

of

the

original

assignment

statement.

d.

A

target

structure

must

not

contain

unions.
3.

Step

2

is

repeated

for

each

of

the

items

immediately

contained

in

the

master

variable.

The

assignments

are

generated

in

the

order

of

the

items

contained

in

the

master

variable.

Multiple

assignments

Assignments

can

be

made

to

multiple

variables

in

a

single

assignment

statement,

for

example:

A,X

=

B

+

C;

The

value

of

B

+

C

is

assigned

to

both

A

and

X.

In

general,

it

has

the

same

effect

as

the

following

statements:

Temporary

=

B

+

C;

A

=

Temporary;

X

=

Temporary;

The

source

in

the

assignment

statement

must

be

a

scalar

or

an

array

of

scalars,

and

if

the

source

is

an

array,

all

the

targets

must

also

be

arrays.

If

the

source

is

a

constant,

it

is

assigned

to

each

of

the

targets

from

left

to

right.

If

the

source

is

not

a

constant,

it

is

assigned

to

a

temporary

variable,

which

is

then

assigned

to

each

of

the

targets

from

left

to

right.

The

target

can

be

any

reference

allowed

in

a

simple

assignment.

BY

NAME

is

not

allowed

in

multiple

assignments.

Example

of

moving

internal

data

The

following

example

of

the

assignment

statement

can

be

used

for

internal

data

movement.

The

value

of

the

expression

on

the

right

of

the

assignment

symbol

is

assigned

to

the

variable

on

the

left.

NTOT=TOT;

Example

of

assigning

expression

values

The

following

example

includes

an

expression

whose

value

is

to

be

assigned

to

the

variable

on

the

left

of

the

assignment

symbol:

Av=(Av*Num+Tav*Tnum)/(Num+Tnum);

Example

of

assigning

a

structure

using

BY

NAME

The

following

example

illustrates

structure

assignment

using

the

BY

NAME

option:

declare

declare

declare

1

One,

1

Two,

1

Three,

2

Part1,

2

Part1,

2

Part1,

3

Red,

3

Blue,

3

Red,

3

Orange,

3

Green,

3

Blue,

2

Part2,

3

Red,

3

Brown,

3

Yellow,

2

Part2,

2

Part2,

3

Blue,

3

Brown,

3

Yellow,

3

Green;

3

Yellow;

3

Green;

�1�

�2�

One

=

Two,

by

name;

One.Part1

=

Three.Part1,

by

name;

Aggregate

assignments

192

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

�1�

The

first

assignment

statement

is

the

same

as

the

following:

One.Part1.Red

=

Two.Part1.Red;

One.Part2.Yellow

=

Two.Part2.Yellow;

�2�

The

second

assignment

statement

is

the

same

as

the

following:

One.Part1.Red

=

Three.Part1.Red;

ATTACH

statement

The

ATTACH

statement

is

described

in

Chapter

18,

“Multithreading

facility,”

on

page

359.

BEGIN

statement

The

BEGIN

statement

is

described

in

Chapter

6,

“Program

organization,”

on

page

87.

CALL

statement

The

CALL

statement

is

described

in

“CALL

statement”

on

page

124.

CLOSE

statement

The

CLOSE

statement

is

described

in

Chapter

11,

“Input

and

output,”

on

page

257.

DECLARE

statement

The

DECLARE

statement

is

described

in

“DECLARE

statement”

on

page

148.

DEFINE

ALIAS

statement

The

DEFINE

ALIAS

statement

is

described

in

Chapter

7,

“Type

definitions,”

on

page

135.

DEFINE

ORDINAL

statement

The

DEFINE

ORDINAL

statement

is

described

in

Chapter

7,

“Type

definitions,”

on

page

135.

DEFINE

STRUCTURE

statement

The

DEFINE

STRUCTURE

statement

is

described

in

Chapter

7,

“Type

definitions,”

on

page

135.

DEFAULT

statement

The

DEFAULT

statement

is

described

in

“DEFAULT

statement”

on

page

163.

Assigning

a

structure

using

BY

NAME

Chapter

9.

Statements

and

directives

193

DELAY

statement

The

DELAY

statement

suspends

the

execution

of

the

next

statement

in

the

application

program

for

the

specified

period

of

time.

��

DELAY

(expression)

;

��

expression

Specifies

an

expression

that

is

evaluated

and

converted

to

FIXED

BINARY(31,0).

Execution

is

suspended

for

the

number

of

milliseconds

specified.

The

maximum

wait

time

is

23

hours

and

59

minutes.

For

example:

delay

(20);

suspends

execution

for

20

milliseconds.

delay

(10**3);

suspends

execution

for

one

second.

delay

(10*10**3);

suspends

execution

for

ten

seconds.

DELETE

statement

The

DELETE

statement

is

described

in

Chapter

12,

“Record-oriented

data

transmission,”

on

page

271.

DETACH

statement

The

DETACH

statement

is

described

in

Chapter

18,

“Multithreading

facility,”

on

page

359.

DISPLAY

statement

The

DISPLAY

statement

displays

a

message

on

the

user’s

screen

and

optionally

requests

the

user

to

enter

a

response

to

the

message.

��

DISPLAY

(expression)

REPLY

(char-ref)

;

��

expression

Is

converted,

where

necessary,

to

a

character

string.

This

character

string

is

displayed.

It

can

contain

mixed

character

data.

If

the

expression

has

the

GRAPHIC

attribute,

it

is

not

converted.

DELAY

194

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

REPLY

(char-ref)

Specifies

a

character

reference

that

receives

the

user

entered

response.

The

response

can

contain

CHARACTER,

GRAPHIC,

or

mixed

data.

The

REPLY

option

suspends

program

execution

until

the

user

enters

a

response.

If

GRAPHIC

data

is

entered

in

the

REPLY,

it

is

received

as

character

data

that

contains

mixed

data.

Such

character

data

can

be

converted

to

GRAPHIC

data

using

the

GRAPHIC

BUILTIN.

Example:

display

(’Communication

link

established.’);

displays

the

message

Communication

link

established.

DO

statement

The

DO

statement

and

its

corresponding

END

statement,

delimit

a

group

of

statements

collectively

called

a

do-group.

Note:

Condition

prefixes

are

invalid

on

DO

statements.

Type

1

��

DO

;

��

expn

An

abbreviation

for

expression

n.

Type

1

The

type

1

do-group

specifies

that

the

statements

in

the

group

are

executed.

It

does

not

provide

for

the

repetitive

execution

of

the

statements

within

the

group.

Types

2

and

3

Types

2

and

3

provide

for

the

repetitive

execution

of

the

statements

within

the

do-group.

WHILE

(exp4)

Specifies

that,

before

each

repetition

of

do-group,

exp4

is

evaluated

and,

if

necessary,

converted

to

a

bit

string.

If

any

bit

in

the

resulting

string

is

1,

the

do-group

is

executed.

If

all

bits

are

0,

or

the

string

is

null,

execution

of

the

Type

2

do-group

is

terminated.

For

Type

3,

only

the

execution

associated

with

the

specification

containing

the

WHILE

option

is

terminated.

Execution

for

the

next

specification,

if

one

exists,

then

begins.

UNTIL

(exp5)

Specifies

that,

after

each

repetition

of

do-group,

exp5

is

evaluated,

and,

if

necessary,

converted

to

a

bit

string.

If

all

the

bits

in

the

resulting

string

are

0,

or

the

string

is

null,

the

next

iteration

of

the

do-group

is

executed.

If

any

bit

is

1,

execution

of

the

Type

2

do-group

is

terminated.

For

Type

3,

only

the

execution

associated

with

the

specification

containing

the

UNTIL

option

is

terminated.

Execution

for

the

next

specification,

if

one

exists,

then

begins.

DISPLAY

Chapter

9.

Statements

and

directives

195

reference

The

only

pseudovariables

that

can

be

used

as

references

are

SUBSTR,

REAL,

IMAG

and

UNSPEC.

All

data

types

are

allowed.

The

generation,

g,

of

a

reference

is

established

once

at

the

beginning

of

the

do-group,

immediately

before

the

initial

value

expression

(exp1)

is

evaluated.

If

the

reference

generation

is

changed

to

h

in

the

do-group,

the

do-group

continues

to

execute

with

the

reference

derived

from

the

generation

g.

However,

any

reference

to

the

reference

inside

the

do-group

is

a

reference

to

generation

h.

It

is

an

error

to

free

generation

g

in

the

do-group.

If

a

reference

is

made

to

a

reference

after

the

last

iteration

is

completed,

the

value

of

the

variable

is

the

value

that

was

out

of

range

of

the

limit

set

in

the

specification.

The

preceding

is

true

if

the

following

conditions

apply

to

the

limit

set

in

the

application:

v

The

BY

value

is

positive

and

the

reference

is

greater

than

the

TO

value.

v

The

BY

value

is

negative

and

the

reference

is

less

than

the

TO

value.

If

reference

is

a

program-control

data

variable,

but

is

not

a

locator,

the

BY

and

TO

options

cannot

be

used

in

specification.

If

reference

is

a

program-control

variable,

but

is

not

a

locator

or

an

ordinal,

the

UPTHRU

and

DOWNTHRU

options

cannot

be

used

in

specification.

exp1

Specifies

the

initial

value

of

the

reference.

If

TO,

BY,

and

REPEAT

are

all

omitted

from

a

specification,

there

is

a

single

execution

of

the

do-group,

with

the

reference

having

the

value

of

exp1.

If

WHILE(exp4)

is

included,

the

single

execution

does

not

take

place

unless

exp4

is

true.

TO

exp2

exp2

is

evaluated

at

entry

to

the

specification

and

saved.

This

saved

value

specifies

the

terminating

value

of

the

reference.

Execution

of

the

statements

in

a

do-group

terminates

for

a

specification

as

soon

as

the

value

of

the

reference,

when

tested

at

the

beginning

of

the

do-group,

is

out

of

range.

Execution

of

the

next

specification,

if

one

exists,

then

begins.

If

TO

exp2

is

omitted

from

a

specification,

and

if

BY

exp3

is

specified,

repetitive

execution

continues

until

it

is

terminated

by

the

WHILE

or

UNTIL

option,

or

until

another

statement

transfers

control

out

of

the

do-group.

BY

exp3

exp3

is

evaluated

at

entry

to

the

specification

and

saved.

This

saved

value

specifies

the

increment

to

be

added

to

the

reference

after

each

execution

of

the

do-group.

If

BY

exp3

is

omitted

from

a

specification,

and

if

TO

exp2

is

specified,

exp3

defaults

to

1.

If

BY

0

is

specified,

the

execution

of

the

do-group

continues

indefinitely

unless

it

is

halted

by

a

WHILE

or

UNTIL

option,

or

control

is

transferred

to

a

point

outside

the

do-group.

UPTHRU

exp2

exp2

is

evaluated

at

entry

to

the

specification

and

saved.

This

saved

value

specifies

the

terminating

value

of

the

reference.

Execution

of

the

statements

in

a

do-group

terminates

for

a

specification

as

soon

as

the

value

of

the

reference,

when

tested

at

the

end

of

the

do-group,

is

out

of

range.

Execution

of

the

next

specification,

if

one

exists,

then

begins.

DO

196

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

If

UPTHRU

is

specified,

the

reference

is

compared

to

exp2

after

the

statements

in

the

loop

are

executed,

but

before

the

reference

is

updated

with

the

next

value

it

can

assume.

The

loop

is

executed

at

least

once.

UPTHRU

is

used

primarily

when

processing

ordinals

using

loops;

however,

it

can

also

be

used

for

a

reference

which

is

an

arithmetic

or

locator

control

variable.

If

the

reference

is

not

an

ordinal,

the

increment

to

be

added

to

the

reference

after

each

execution

of

the

do-group

is

assumed

to

be

+1.

DOWNTHRU

exp2

exp2

is

evaluated

at

entry

to

the

specification

and

saved.

This

saved

value

specifies

the

terminating

value

of

the

reference.

Execution

of

the

statements

in

a

do-group

terminates

for

a

specification

as

soon

as

the

value

of

the

reference,

when

tested

at

the

end

of

the

do-group,

is

out

of

range.

Execution

of

the

next

specification,

if

one

exists,

then

begins.

If

DOWNTHRU

is

specified,

the

reference

is

compared

to

exp2

after

the

statements

in

the

loop

are

executed,

but

before

the

reference

is

updated

with

the

next

value

it

could

assume.

The

loop

is

executed

at

least

once.

DOWNTHRU

is

used

primarily

when

processing

ordinals

using

loops;

however,

it

can

also

be

used

for

a

reference

which

is

an

arithmetic

or

locator

control

variable.

If

the

reference

is

not

an

ordinal,

the

increment

to

be

added

to

the

reference

after

each

execution

of

the

do-group

is

assumed

to

be

−1.

REPEAT

exp6

exp6

is

evaluated

and

assigned

to

the

reference

after

each

execution

of

the

do-group.

Repetitive

execution

continues

until

it

is

terminated

by

the

WHILE

or

UNTIL

option,

or

another

statement

transfers

control

out

of

the

do-group.

Control

can

transfer

into

a

do-group

from

outside

the

do-group

only

if

the

do-group

is

delimited

by

the

DO

statement

in

Type

1.

Consequently,

Type

2

and

3

do-groups

cannot

contain

ENTRY

statements.

Control

can

also

return

to

a

do-group

from

a

procedure

or

ON-unit

invoked

from

within

that

do-group.

The

following

sections

give

more

information

about

using

Type

2

and

Type

3

DO

groups.

Examples

of

DO

groups

begin

in

“Examples

of

basic

repetitions”

on

page

202.

Using

type

2

WHILE

and

UNTIL

If

a

Type

2

DO

specification

includes

both

the

WHILE

and

UNTIL

option,

the

DO

statement

provides

for

repetitive

execution

as

defined

by

the

following:

Label:

do

while

(Exp4)

until

(Exp5)

statement-1

...
statement-n

end;

Next:

statement

/*

Statement

following

the

do-group

*/

The

above

is

equivalent

to

the

following

expansion:

Label:

if

(Exp4)

then;

else

go

to

Next;

statement-1

...
statement-n

Label2:

if

(Exp5)

then;

DO

Chapter

9.

Statements

and

directives

197

else

go

to

Label;

Next:

statement

/*

Statement

following

the

do-group

*/

If

the

WHILE

option

is

omitted,

the

IF

statement

at

label

Label

is

replaced

by

a

null

statement.

Note

that

if

the

WHILE

option

is

omitted,

statements

1

through

n

are

executed

at

least

once.

If

the

UNTIL

option

is

omitted,

the

IF

statement

at

label

Label2

in

the

expansion

is

replaced

by

the

statement

GO

TO

Label.

Using

type

3

with

one

specification

The

following

sequence

of

events

summarizes

the

effect

of

executing

a

do-group

with

one

specification:

1.

If

reference

is

specified

and

BY,

TO,

UPTHRU,

or

DOWNTHRU

options

are

also

specified,

exp1,

exp2,

and

exp3

will

be

evaluated

prior

to

the

assignment

of

exp1

to

the

reference.

Then

the

initial

value

is

assigned

to

reference,

for

example:

do

Reference

=

Exp1

to

Exp2

by

Exp3;

For

a

variable

that

is

not

a

pseudovariable,

the

action

of

the

do-group

definition

in

the

preceding

example

is

equivalent

to

the

following

expansion:

E1=Exp1;

E2=Exp2;

E3=Exp3;

V=E1;

The

variable

V

is

a

compiler-created

based

variable

with

the

same

attributes

as

the

reference.

E1,

E2,

and

E3

are

compiler-created

variables.

2.

If

the

TO

option

is

present,

test

the

value

of

the

control

variable

against

the

previously-evaluated

expression

(E2)

in

the

TO

option.

3.

If

the

WHILE

option

is

specified,

evaluate

the

expression

in

the

WHILE

option.

If

it

is

false,

leave

the

do-group.

4.

Execute

the

statements

in

the

do-group.

5.

If

the

UNTIL

option

is

specified,

evaluate

the

expression

in

the

UNTIL

option.

If

it

is

true,

leave

the

do-group.

6.

If

the

UPTHRU

option

is

specified,

test

the

value

of

the

control

variable

against

the

previously

evaluated

expression

in

the

UPTHRU

expression.

7.

If

the

DOWNTHRU

option

is

specified,

test

the

value

of

the

control

variable

against

the

previously

evaluated

expression

in

the

DOWNTHRU

expression.

8.

If

there

is

a

reference:

a.

If

the

TO

or

BY

option

is

specified,

add

the

previously-evaluated

exp3

(E3)

to

the

reference.

b.

If

the

REPEAT

option

is

specified,

evaluate

the

exp6

and

assign

it

to

the

reference.

c.

If

the

TO,

BY,

and

REPEAT

options

are

all

absent,

leave

the

do-group.

d.

If

the

UPTHRU

option

is

specified

and

the

reference

is

an

ordinal,

assign

the

reference

the

successor

of

its

current

value.

Otherwise,

add

1

to

the

reference.

e.

If

the

DOWNTHRU

option

is

specified

and

the

reference

is

an

ordinal,

assign

it

the

predecessor

of

its

current

value.

Otherwise,

subtract

1

from

the

reference.

f.

If

the

TO,

BY,

UPTHRU,

DOWNTHRU,

and

REPEAT

options

are

all

absent,

leave

the

do-group.

DO

198

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

9.

Go

to

2

on

page

198.

Using

type

3

with

two

or

more

specifications

If

the

DO

statement

contains

more

than

one

specification,

the

second

expansion

is

analogous

to

the

first

expansion

in

every

respect.

However,

the

statements

in

the

do-group

are

not

actually

duplicated

in

the

program.

A

succeeding

specification

is

executed

only

after

the

preceding

specification

has

been

terminated.

When

execution

of

the

last

specification

terminates,

control

passes

to

the

statement

following

the

do-group.

Using

type

3

with

TO,

BY,

REPEAT

The

TO

and

BY

options

let

you

vary

the

reference

in

fixed

positive

or

negative

increments.

In

contrast,

the

REPEAT

option,

which

is

an

alternative

to

the

TO

and

BY

options,

lets

you

vary

the

control

variable

nonlinearly.

The

REPEAT

option

can

also

be

used

for

nonarithmetic

control

variables

(such

as

pointer).

If

the

Type

3

DO

specification

includes

the

TO

and

BY

options,

the

action

of

the

do-group

is

defined

by

the

following:

Label:

do

Variable=

Exp1

to

Exp2

by

Exp3

while

(Exp4)

until(Exp5);

statement-1

...
statement-m

Label1:

end;

Next:

statement

The

action

of

the

previous

do-group

definition

is

equivalent

to

the

following

expansion.

In

this

expansion,

V

is

a

compiler-created

variable

with

the

same

attributes

as

Variable;

and

E1,

E2,

and

E3

are

compiler-created

variables:

Label:

E1=Exp1;

E2=Exp2;

E3=Exp3;

V=E1;

Label2:

if

(E3>=0)&(V>E2)|(E3<0)&(V<E2)

then

go

to

Next;

if

(Exp4)

then;

else

go

to

Next;

statement-1

...
statement-m

Label1:

if

(Exp5)

then

go

to

Next;

Label3:

V=V+E3;

go

to

Label2;

Next:

statement

If

the

specification

includes

the

REPEAT

option,

the

action

of

the

do-group

is

defined

by

the

following:

Label:

do

Variable=

Exp1

repeat

Exp6

while

(Exp4)

until(Exp5);

statement-1

DO

Chapter

9.

Statements

and

directives

199

...
statement-m

Label1:

end;

Next:

statement

The

action

of

the

previous

do-group

definition

is

equivalent

to

the

following

expansion:

Label:

E1=Exp1;

V=E1;

Label2:

;

if

(Exp4)

then;

else

go

to

Next;

statement-1

...
statement-m

Label1:

if

(Exp5)

then

go

to

Next;

Label3:

V=Exp6;

go

to

Label2;

Next:

statement

Additional

rules

for

the

sample

expansions

are

as

follows:

1.

The

previous

expansion

shows

only

the

result

of

one

specification.

If

the

DO

statement

contains

more

than

one

specification,

the

statement

labeled

NEXT

is

the

first

statement

in

the

expansion

for

the

next

specification.

The

second

expansion

is

analogous

to

the

first

expansion

in

every

respect.

Statements

1

through

m,

however,

are

not

actually

duplicated

in

the

program.

2.

If

the

WHILE

clause

is

omitted,

the

IF

statement

immediately

preceding

statement-1

in

each

of

the

expansions

is

also

omitted.

3.

If

the

UNTIL

clause

is

omitted,

the

IF

statement

immediately

following

statement-m

in

each

of

the

expansions

is

also

omitted.

Using

type

3

with

UPTHRU

If

the

Type

3

DO

specification

includes

the

UPTHRU

option,

the

action

of

the

do-group

is

defined

by

the

following:

Label:

do

Variable

=

Exp1

upthru

Exp2

while

(Exp4)

until

(Exp5);

statement1

...
statementn

Label1:

end;

Next:

statement

The

action

of

the

previous

do-group

is

equivalent

to

the

following

expansion.

In

this

expansion,

V

is

a

compiler-generated

variable

with

the

same

attributes

as

Variable;

and

E1

and

E2

are

compiler-generated

variables:

Label:

E1

=

Exp1;

E2

=

Exp2;

V

=

E1;

Label2:

if

(Exp4)

then;

else

go

to

next;

statement1

...
statementn

Label1:

if

(Exp5)

then

go

to

Next;

if

V

≥

E2

then

DO

200

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

go

to

Next;

V

=

V

+

1;

go

to

Label2;

Next:

statement

If

the

reference

is

an

ordinal,

the

statement

V

=

V

+

1

is

replaced

by

V

=

ordinalsucc(V).

Using

type

3

with

DOWNTHRU

If

the

Type

3

DO

specification

includes

the

DOWNTHRU

option,

the

action

of

the

do-group

is

defined

by

the

following:

Label:

do

Variable

=

Exp1

downthru

Exp2

while

(Exp4)

until

(Exp5);

statement1

...
statementn

Label1:

end;

Next:

statement

The

action

of

the

previous

do-group

is

equivalent

to

the

following

expansion.

In

this

expansion,

V

is

a

compiler-generated

variable

with

the

same

attributes

as

Variable;

and

E1

and

E2

are

compiler-generated

variables:

Label:

E1

=

Exp1;

E2

=

Exp2;

V

=

E1;

Label2:

if

(Exp4)

then;

else

go

to

Next;

statement1

...
statementn

Label1:

if

(Exp5)

then

go

to

Next;

if

V

≤

E2

then

go

to

Next;

V

=

V

−

1;

go

to

Label2;

Next:

statement

If

the

reference

is

an

ordinal,

the

statement

V

=

V

−

1

is

replaced

by

V

=

ordinalpred(V).

Type

4

LOOP

Specifies

infinite

iteration.

FOREVER

is

a

synonym

of

LOOP.

For

example:

dcl

Payroll

file;

dcl

1

Payrec,

2

Type

char,

2

Subtype

char,

2

*

char(100);

Readfile:

do

loop;

read

file(Payroll)

into(Payrec);

If

Payrec.type

=

’E’

then

leave;

/*

like

goto

After_ReadFile

*/

DO

Chapter

9.

Statements

and

directives

201

If

Payrec.type

=

’1’

then

do;

/*

process

first

part

of

record

*/

If

Payrec.subtype

=

’S’

then

iterate

Readfile;

/*

like

goto

End_ReadFile

*/

/*

process

remainder

of

record

*/

end;

End_ReadFile:

end;

After_ReadFile:;

The

only

way

to

exit

this

loop

is

by

a

LEAVE

or

GO

TO,

or

by

terminating

a

procedure

or

the

program.

Examples

of

basic

repetitions

In

the

following

example,

the

do-group

is

executed

ten

times,

while

the

value

of

the

reference

I

progresses

from

1

through

10.

do

I

=

1

to

10;

...

end;

The

effect

of

this

DO

and

END

statement

is

equivalent

to

the

following:

I

=

1;

A:

if

I

>

10

then

go

to

B;

...

I

=

I

+1;

go

to

A;

B:

next

statement

The

following

DO

statement

executes

the

do-group

three

times—once

for

each

assignment

of

'Tom',

'Dick',

and

'Harry'

to

Name.

do

Name

=

'Tom',

'Dick',

'Harry';

The

following

statement

specifies

that

the

do-group

executes

thirteen

times—ten

times

with

the

value

of

I

equal

to

1

through

10,

and

three

times

with

the

value

of

I

equal

to

13

through

15:

do

I

=

1

to

10,

13

to

15;

Repetition

using

the

reference

as

a

subscript

The

reference

of

a

DO

statement

can

be

used

as

a

subscript

in

statements

within

the

do-group,

so

that

each

execution

deals

with

successive

elements

of

a

table

or

array.

In

the

following

example,

the

first

ten

elements

of

A

are

set

to

1

through

10

in

sequence:

do

I

=

1

to

10;

A(I)

=

I;

end;

Repetition

with

TO

and

BY

The

following

example

specifies

that

the

do-group

is

executed

five

times,

with

the

value

of

I

equal

to

2,

4,

6,

8,

and

10:

do

I

=

2

to

10

by

2;

DO

202

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

If

negative

increments

of

the

reference

are

required,

the

BY

option

must

be

used.

For

example,

the

following

is

executed

with

I

equal

to

10,

8,

6,

4,

2,

0,

and

-2:

do

I

=

10

to

-2

by

-2;

In

the

following

example,

the

do-group

is

executed

with

I

equal

to

1,

3,

5:

I=2;

do

I=1

to

I+3

by

I;

...
end;

The

preceding

example

is

equivalent

to:

do

I=1

to

5

by

2;

...
end;

Example

of

DO

with

WHILE,

UNTIL

The

WHILE

and

UNTIL

options

make

successive

executions

of

the

do-group

dependent

upon

a

specified

condition,

for

example:

do

while

(A=B);

...
end;

is

equivalent

to

the

following:

S:

if

A=B

then;

else

goto

R;

...
goto

S;

R:

next

statement

The

example:

do

until

(A=B);

...
end;

is

equivalent

to

the

following:

S:

...
if

(A=B)

then

goto

R;

goto

S;

R:

next

statement

In

the

absence

of

other

options,

a

do-group

headed

by

a

DO

UNTIL

statement

is

executed

at

least

once,

but

a

do-group

headed

by

a

DO

WHILE

statement

might

not

be

executed

at

all.

That

is,

the

statements

DO

WHILE

(A=B)

and

DO

UNTIL

(A¬=B)

are

not

equivalent.

In

the

following

example,

if

A¬=B

when

the

DO

statement

is

first

encountered,

the

do-group

is

not

executed

at

all.

do

while(A=B)

until(X=10);

However,

if

A=B,

the

do-group

is

executed.

If

X=10

after

an

execution

of

the

do-group,

no

further

executions

are

performed.

Otherwise,

a

further

execution

is

performed

provided

that

A

is

still

equal

to

B.

In

the

following

example,

the

do-group

is

executed

at

least

once,

with

I

equal

to

1:

do

I=1

to

10

until(Y=1);

DO

Chapter

9.

Statements

and

directives

203

If

Y=1

after

an

execution

of

the

do-group,

no

further

executions

are

performed.

Otherwise,

the

default

increment

(BY

1)

is

added

to

I,

and

the

new

value

of

I

is

compared

with

10.

If

I

is

greater

than

10,

no

further

executions

are

performed.

Otherwise,

a

new

execution

commences.

The

following

statement

specifies

that

the

do-group

executes

ten

times

while

C(I)

is

less

than

zero,

and

then

(provided

that

A

is

equal

to

B)

once

more:

do

I

=

1

to

10

while

(C(I)<0),

11

while

(A

=

B);

Example

of

DO

with

UPTHRU

and

DOWNTHRU

In

the

following

example,

the

do-group

executes

5

times

and

at

the

end

of

the

loop

i

has

the

value

5:

do

i

=

1

upthru

5;

...

end;

When

the

UPTHRU

option

is

used,

the

reference

is

compared

to

the

terminating

value

before

being

updated;

this

can

be

very

useful

when

there

is

no

value

after

the

terminating

value.

For

instance,

the

FIXEDOVERFLOW

condition

would

not

be

raised

by

the

following

loop:

do

i

=

2147483641

upthru

2147483647;

...

end;

Similarly,

the

following

loop

avoids

the

problem

of

decrementing

an

unsigned

value

equal

to

zero:

dcl

U

unsigned

fixed

bin;

do

U

=

17

downthru

0;

...

end;

UPTHRU

and

DOWNTHRU

are

particularly

useful

with

ordinals.

Consider

the

following

example:

define

ordinal

Color

(

Red

value

(1),

Orange,

Yellow,

Green,

Blue,

Indigo,

Violet);

dcl

C

ordinal

Color;

do

C

=

Red

upthru

Violet;

...

end;

do

C

=

Violet

downthru

Red;

...

end;

In

the

first

loop,

c

assumes

each

successive

color

in

ascending

order

from

red

to

violet.

In

the

second

loop,

c

assumes

each

successive

color

in

descending

order

from

violet

to

red.

DO

204

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Example

of

REPEAT

In

the

following

example,

the

do-group

is

executed

with

I

equal

to

1,

2,

4,

8,

16,

and

so

on:

do

I

=

1

repeat

2*I;

...
end;

The

preceding

example

is

equivalent

to:

I=1;

A:

...
I=2*I;

goto

A;

In

the

following

example,

the

first

execution

of

the

do-group

is

performed

with

I=1.

do

I=1

repeat

2*I

until(I=256);

After

this

and

each

subsequent

execution

of

the

do-group,

the

UNTIL

expression

is

tested.

If

I=256,

no

further

executions

are

performed.

Otherwise,

the

REPEAT

expression

is

evaluated

and

assigned

to

I,

and

a

new

execution

commences.

The

following

example

shows

a

DO

statement

used

to

locate

a

specific

item

in

a

chained

list:

do

P=Phead

repeat

P

->

Fwd

while(P¬=null())

until(P->Id=Id_to_be_found);

end;

The

value

Phead

is

assigned

to

P

for

the

first

execution

of

the

do-group.

Before

each

subsequent

execution,

the

value

P

->

Fwd

is

assigned

to

P.

The

value

of

P

is

tested

before

the

first

and

each

subsequent

execution

of

the

do-group.

If

it

is

null,

no

further

executions

are

performed.

The

following

statement

specifies

that

the

do-group

is

to

be

executed

nine

times,

with

the

value

of

I

equal

to

1

through

9;

then

successively

with

the

value

of

I

equal

to

10,

20,

40,

and

so

on.

Execution

ceases

when

the

do-group

has

been

executed

with

a

value

of

I

greater

than

10000.

do

I

=

1

to

9,

10

repeat

2*I

until

(I>10000);

...

end;

END

statement

The

END

statement

ends

one

or

more

blocks

or

groups.

Every

block

or

group

must

have

an

END

statement.

��

END

statement-label

;

��

statement-label

Cannot

be

subscripted.

If

a

statement-label

follows

END,

the

END

statement

DO

Chapter

9.

Statements

and

directives

205

closes

the

unclosed

group

or

block

headed

by

the

nearest

preceding

DO,

SELECT,

PACKAGE,

BEGIN,

or

PROCEDURE

statement

having

that

statement-label.

Every

block

with

a

DO,

SELECT,

PACKAGE,

BEGIN

or

PROCEDURE

statement

must

have

a

corresponding

END

statement.

If

a

statement-label

does

not

follow

END,

the

END

statement

closes

the

one

group

or

block

headed

by

the

nearest

preceding

DO,

SELECT,

PACKAGE,

BEGIN,

or

PROCEDURE

statement

for

which

there

is

no

other

corresponding

END

statement.

Execution

of

a

block

terminates

when

control

reaches

the

END

statement

for

the

block.

However,

it

is

not

the

only

means

of

terminating

a

block’s

execution,

even

though

each

block

must

have

an

END

statement.

(See

“Procedures”

on

page

92

and

“Begin-blocks”

on

page

110

for

more

details.)

If

control

reaches

an

END

statement

for

a

procedure,

it

is

treated

as

a

RETURN

statement.

Normal

termination

of

a

program

occurs

when

control

reaches

the

END

statement

of

the

main

procedure.

ENTRY

statement

The

ENTRY

statement

is

described

in

“ENTRY

attribute”

on

page

113.

EXIT

statement

The

EXIT

statement

stops

the

current

thread.

��

EXIT

;

��

FETCH

statement

The

FETCH

statement

is

described

in

“FETCH

statement”

on

page

102.

FLUSH

statement

The

FLUSH

statement

is

described

in

Chapter

11,

“Input

and

output,”

on

page

257.

FORMAT

statement

The

FORMAT

statement

is

described

in

Chapter

13,

“Stream-oriented

data

transmission,”

on

page

281.

FREE

statement

The

FREE

statement

is

described

in

Chapter

10,

“Storage

control,”

on

page

221.

GET

statement

The

GET

statement

is

described

in

Chapter

13,

“Stream-oriented

data

transmission,”

on

page

281.

END

206

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

GO

TO

statement

The

GO

TO

statement

transfers

control

to

the

statement

identified

by

the

specified

label

reference.

The

GO

TO

statement

is

an

unconditional

branch.

��

GO

TO

label

;

��

Abbreviation:

GOTO

label

Specifies

a

label

constant,

a

label

variable,

or

a

function

reference

that

returns

a

label

value.

Since

a

label

variable

can

have

different

values

at

each

execution

of

the

GO

TO

statement,

control

might

not

always

transfer

to

the

same

statement.

If

a

GO

TO

statement

transfers

control

from

within

a

block

to

a

point

not

contained

within

that

block,

the

block

is

terminated.

If

the

transfer

point

is

contained

in

a

block

that

did

not

directly

activate

the

block

being

terminated,

all

intervening

blocks

in

the

activation

sequence

are

also

terminated

(see

“Procedure

termination”

on

page

99).

When

a

GO

TO

statement

specifies

a

label

constant

contained

in

a

block

that

has

more

than

one

activation,

control

is

transferred

to

the

activation

current

when

the

GO

TO

is

executed

(see

“Recursive

procedures”

on

page

100).

A

GO

TO

statement

cannot

transfer

control:

v

To

an

inactive

block.

Detection

of

such

an

error

is

not

guaranteed.

v

From

outside

a

do-group

to

a

statement

inside

a

Type

2

or

Type

3

do-group,

unless

the

GO

TO

terminates

a

procedure

or

ON-unit

invoked

from

within

the

do-group.

v

To

a

FORMAT

statement.

If

the

destination

of

the

GO

TO

is

specified

by

a

label

variable,

it

can

then

be

used

as

a

switch

by

assigning

label

constants

to

the

label

variable.

If

the

label

variable

is

subscripted,

the

switch

can

be

controlled

by

varying

the

subscript.

By

using

label

variables

or

function

references,

quite

complex

switching

can

be

effected.

It

is

usually

true,

however,

that

simple

control

statements

are

the

most

efficient.

GOTO

operations

from

one

block

to

another

block

hinder

many

optimizations

in

the

target

block,

unless

the

target

label

is

the

last

statement

in

its

block.

IF

statement

The

IF

statement

evaluates

an

expression

and

controls

the

flow

of

execution

according

to

the

result

of

that

evaluation.

The

IF

statement

thus

provides

a

conditional

branch.

Note:

Condition

prefixes

are

invalid

on

ELSE

statements.

GO

TO

Chapter

9.

Statements

and

directives

207

��

IF

expression

THEN

unit1

ELSE

unit2

��

expression

The

expression

must

evaluate

to

a

bit,

not

a

bit

string,

unless

RULES(LAXIF)

is

used.

When

expressions

involve

the

use

of

the

&

and/or

|

operators,

they

are

evaluated

as

described

in

“Combinations

of

operations”

on

page

67.

unit

Either

a

valid

single

statement,

a

group,

or

a

begin-block.

All

single

statements

are

considered

valid

and

executable

except

DECLARE,

DEFAULT,

END,

ENTRY

FORMAT,

PROCEDURE,

or

a

%statement.

If

a

nonexecutable

statement

is

used,

the

result

can

be

unpredictable.

Each

unit

can

contain

statements

that

specify

a

transfer

of

control

(for

example,

GO

TO).

Hence,

the

normal

sequence

of

the

IF

statement

can

be

overridden.

Each

unit

can

be

labeled

and

can

have

condition

prefixes.

IF

is

a

compound

statement.

The

semicolon

terminating

the

last

unit

also

terminates

the

IF

statement.

If

any

bit

in

the

string

expression

has

the

value

'1'B,

unit1

is

executed

and

unit2,

if

present,

is

ignored.

If

all

bits

are

'0'B,

or

the

string

is

null,

unit1

is

ignored

and

unit2,

if

present,

is

executed.

IF

statements

can

be

nested.

That

is,

either

unit

can

itself

be

an

IF

statement,

or

both

can

be.

Since

each

ELSE

is

always

associated

with

the

innermost

unmatched

IF

in

the

same

block

or

do-group,

an

ELSE

with

a

null

statement

might

be

required

to

specify

a

desired

sequence

of

control.

For

example,

if

B

and

C

are

constants,

the

following

example:

if

A

=

B

then

...
else

if

A

=

C

then

...
else

...

is

equivalent

to

and

would

be

better

coded

as:

select(

A

);

when

(

B

)

...
when

(

C

)

......
end;

Examples

In

the

following

example,

if

the

comparison

is

true

(if

A

is

equal

to

B),

the

value

of

D

is

assigned

to

C,

and

the

ELSE

unit

is

not

executed.

if

A

=

B

then

C

=

D;

else

C

=

E;

IF

208

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

If

the

comparison

is

false

(A

is

not

equal

to

B),

the

THEN

unit

is

not

executed,

and

the

value

of

E

is

assigned

to

C.

Either

the

THEN

unit

or

the

ELSE

unit

can

contain

a

statement

that

transfers

control,

either

conditionally

or

unconditionally.

If

the

THEN

unit

ends

with

a

GO

TO

statement

there

is

no

need

to

specify

an

ELSE

unit,

for

example:

if

all(Array1

=

Array2)

then

go

to

LABEL_1;

next-statement

If

the

expression

is

true,

the

GO

TO

statement

of

the

THEN

unit

transfers

control

to

LABEL_1.

If

the

expression

is

not

true,

the

THEN

unit

is

not

executed

and

control

passes

to

the

next

statement.

%INCLUDE

directive

The

%INCLUDE

directive

is

used

to

incorporate

external

text

into

the

source

program.

��

%INCLUDE

�

,

member

ddname

(member)

;

��

The

included

member

can

specify

an

absolute

file

name.

Enclose

the

absolute

file

name

in

single

or

double

quotes.

For

example,

the

following

is

valid:

INTEL

%include

"\ibmpli\include\sqlcodes.inc"

AIX

and

z/OS

USS

%include

"/ibmpli/include/sqlcodes.inc"

ITERATE

statement

The

ITERATE

statement

transfers

control

to

the

END

statement

that

delimits

its

containing

iterative

do-group.

The

current

iteration

completes

and

the

next

iteration,

if

needed,

is

started.

The

ITERATE

statement

can

be

specified

inside

a

non-iterative

do-group

as

long

as

that

do-group

is

contained

by

an

iterative

do-group.

��

ITERATE

label-constant

;

��

label-constant

Must

be

the

label

of

a

containing

do-group.

If

omitted,

control

transfers

to

the

END

statement

of

the

most

recent

iterative

do-group

containing

the

ITERATE

statement.

IF

Chapter

9.

Statements

and

directives

209

For

an

example,

see

“Type

4”

on

page

201.

LEAVE

statement

When

contained

in

or

specifying

a

simple

do-group,

the

LEAVE

statement

terminates

the

group.

When

contained

in

or

specifying

an

iterative

do-group,

the

LEAVE

statement

terminates

all

iterations

of

the

group,

including

the

current

iteration.

The

flow

of

control

goes

to

the

same

point

it

would

normally

go

to

if

the

do-group

had

terminated

by

reaching

its

END

statement.

This

point

is

not

necessarily

the

statement

following

the

END

statement

of

the

do-group

(see

“Example”).

��

LEAVE

label-constant

;

��

label-constant

Must

be

a

label

of

a

containing

do-group.

The

do-group

that

is

left

is

the

do-group

that

has

the

specified

label.

If

label-constant

is

omitted,

the

do-group

that

is

left

is

the

group

that

contains

the

LEAVE

statement.

The

LEAVE

statement

and

the

referenced

or

implied

DO

statement

must

not

be

in

different

blocks.

In

addition

to

the

following

examples,

see

the

example

in

“Type

4”

on

page

201.

Example

In

the

following

example,

the

statement

leave

A;

transfers

control

to

C.

If

Time_to_process_X

then

A:

do

I

=

lbound(X,1)

to

hbound(X,1);

do

J

=

lbound(X,2)

to

hbound(X,2);

If

X(I,J)=0

then

leave

A;

/*

control

goes

to

C,

not

B

*/

else

do;

...

end;

end;

end;

Else

B:

do;

...

end;

C:

statement

after

group

A;

LEAVE

210

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

%LINE

directive

The

%LINE

directive

specifies

that

the

next

line

should

be

treated

in

messages

and

in

information

generated

for

debugging

as

if

it

came

from

the

specified

line

and

file.

��

%LINE

(

line-number,

file-specification

)

;

��

The

characters

'%LINE'

must

be

in

columns

1

through

5

of

the

input

line

for

the

directive

to

be

recognized

(and

conversely,

any

line

starting

with

these

five

characters

is

treated

as

a

%LINE

directive).

The

line-number

must

be

an

integral

value

of

seven

digits

or

less

and

the

file-specification

must

not

be

enclosed

in

quotes.

Any

characters

specified

after

the

semicolon

are

ignored.

LOCATE

statement

The

LOCATE

statement

is

described

in

Chapter

12,

“Record-oriented

data

transmission,”

on

page

271.

%NOPRINT

directive

The

%NOPRINT

directive

causes

printing

of

the

source

listings

to

be

suspended

until

a

%PRINT

directive

is

encountered

or

until

a

%POP

directive

is

encountered

that

restores

the

previous

%PRINT

directive.

��

%NOPRINT

;

��

For

an

example

of

the

%NOPRINT

directive,

refer

to

“%PUSH

directive”

on

page

214.

%NOTE

directive

The

%NOTE

directive

generates

a

diagnostic

message

of

specified

text

and

severity.

��

%NOTE

(

message

,code

)

;

��

message

A

character

expression

whose

value

is

the

required

diagnostic

message.

code

A

fixed

expression

whose

value

indicates

the

severity

of

the

message,

as

follows:

%LINE

Chapter

9.

Statements

and

directives

211

Code

Severity

0

I

4

W

8

E

12

S

16

U

If

code

is

omitted,

the

default

is

0.

If

code

has

a

value

other

than

those

listed

above,

a

diagnostic

message

is

produced;

the

resulting

system

action

is

undefined.

Generated

messages

are

filed

together

with

other

messages.

Whether

or

not

a

particular

message

is

subsequently

printed

depends

upon

its

severity

level

and

the

setting

of

the

compiler

FLAG

option

(as

described

in

the

Programming

Guide).

Generated

messages

of

severity

U

cause

immediate

termination

of

preprocessing

and

compilation.

Generated

messages

of

severity

S,

E,

or

W

might

cause

termination

of

compilation,

depending

upon

the

setting

of

various

compiler

options.

null

statement

The

null

statement

causes

no

operation

to

be

performed

and

does

not

modify

sequential

statement

execution.

It

is

often

used

to

denote

null

action

for

THEN

and

ELSE

clauses

and

for

WHEN

and

OTHERWISE

statements.

��

;

��

ON

statement

The

ON

statement

is

described

in

Chapter

16,

“Condition

handling,”

on

page

331.

OPEN

statement

The

OPEN

statement

is

described

in

Chapter

11,

“Input

and

output,”

on

page

257.

%OPTION

directive

The

%OPTION

directive

is

used

to

specify

one

of

a

selected

subset

of

compiler

options

for

a

segment

of

source

code.

The

specified

option

is

then

in

effect

until:

v

Another

%OPTION

directive

specifies

a

complementary

compiler

option

(thus

overriding

the

first),

or

v

A

saved

(via

a

%PUSH

directive)

compiler

option

is

restored

via

a

%POP

directive

%NOPRINT

212

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

%OPTION

compiler-option

;

��

compiler-option

Specifies

the

compiler

option

to

be

in

effect

For

the

allowed

compiler

options,

see

the

Programming

Guide.

For

an

example

of

%OPTION,

see

“%PUSH

directive”

on

page

214.

OTHERWISE

statement

The

OTHERWISE

statement

is

described

in

“SELECT

statement”

on

page

216.

PACKAGE

statement

The

PACKAGE

statement

is

described

in

Chapter

6,

“Program

organization,”

on

page

87.

%PAGE

directive

The

%PAGE

directive

allows

you

to

start

a

new

page

in

the

compiler

source

listings.

��

%PAGE

;

��

%POP

directive

The

%POP

directive

allows

you

to

restore

the

status

of

the

%PRINT,

%NOPRINT,

and

%OPTION

directives

saved

by

the

most

recent

%PUSH

directive.

The

most

common

use

of

the

%PUSH

and

%POP

directives

is

in

included

files

and

macros.

��

%POP

;

��

For

an

example,

see

“%PUSH

directive”

on

page

214.

%OPTION

Chapter

9.

Statements

and

directives

213

%PRINT

directive

The

%PRINT

directive

causes

printing

of

the

source

listings

to

be

resumed.

��

%PRINT

;

��

%PRINT

is

in

effect,

provided

that

the

relevant

compiler

options

are

specified.

For

an

example

of

the

%PRINT

directive,

refer

to

“%PUSH

directive.”

PROCEDURE

statement

The

PROCEDURE

statement

is

described

in

Chapter

6,

“Program

organization,”

on

page

87.

%PROCESS

directive

The

%PROCESS

directive

is

used

to

override

compiler

options.

��

�

%PROCESS

compiler-option

;

��

The

%

or

*

must

be

the

first

data

byte

of

a

source

record.

Any

number

of

%PROCESS

and

*PROCESS

directives

can

be

specified,

but

they

must

all

appear

before

the

first

language

element

appears.

Refer

to

the

Programming

Guide

for

more

information.

*PROCESS

directive

The

*PROCESS

directive

is

a

synonym

for

the

%PROCESS

directive.

For

information

on

the

%PROCESS

directive,

refer

to

“%PROCESS

directive.”

%PUSH

directive

The

%PUSH

directive

allows

you

to

save

the

current

status

of

the

%PRINT,

%NOPRINT,

and

%OPTION

directives

in

a

“push

down”

stack

on

a

last-in,

first-out

basis.

You

can

restore

this

saved

status

later,

also

on

a

last-in,

first-out

basis,

by

using

the

%POP

directive.

A

common

use

of

%PUSH

and

%POP

directives

is

in

included

files

and

macros.

%PRINT

214

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

%PUSH

;

��

In

the

following

example,

statements

1,

2,

3,

S4,

S5,

and

4

are

printed

in

the

listings.

All

others

are

not

printed.

Initially,

LANGLVL(SAA)

is

in

effect;

then,

LANGLVL(SAA2)

is

in

effect

for

the

entire

included

file

Second.

┌────────────Source

Program────────────────────────┐

│

│

│

*process

langlvl(saa);

│

│

│

│

statement

1;

│

│

statement

2;

│

│

%include

First;

/*

statement

3

*/

│

│

┌─────────────First─────────────────────────┐

│

│

│

%push;

/*

F1

*/

│

│

│

│

%noprint;

/*

F2

*/

│

│

│

│

dcl

A

entry

(ptr,fixed

bin);

/*

F3

*/

│

│

│

│

statement

F4;

│

│

│

│

%include

Second;

/*

stmt

F5

*/

│

│

│

│

┌────────Second─────────────────────┐

│

│

│

│

│

%push;

/*

S1

*/│

│

│

│

│

│

%print;

/*

S2

*/│

│

│

│

│

│

%option

langlvl(saa2);

/*

S3

*/│

│

│

│

│

│

dcl

B

entry

(ptr,fixed

bin)

│

│

│

│

│

│

options(byvalue);

/*

S4

*/│

│

│

│

│

│

statement

S5;

│

│

│

│

│

│

%pop;

│

│

│

│

│

└───────────────────────────────────┘

│

│

│

│

statement

F6;

│

│

│

│

%pop;

│

│

│

└───┘

│

│

statement

4;

│

│

│

└──┘

The

original

setting

is

restored

following

the

%POP

directive

in

Second.

PUT

statement

The

PUT

statement

is

described

in

Chapter

13,

“Stream-oriented

data

transmission,”

on

page

281.

READ

statement

The

READ

statement

is

described

in

Chapter

12,

“Record-oriented

data

transmission,”

on

page

271.

RELEASE

statement

The

RELEASE

statement

is

described

in

“FETCH

statement”

on

page

102.

RESIGNAL

statement

The

RESIGNAL

statement

is

described

in

Chapter

16,

“Condition

handling,”

on

page

331.

%PROCESS

Chapter

9.

Statements

and

directives

215

RETURN

statement

The

RETURN

statement

is

described

in

“RETURN

statement”

on

page

125.

REVERT

statement

The

REVERT

statement

is

described

in

Chapter

16,

“Condition

handling,”

on

page

331

REWRITE

statement

The

REWRITE

statement

is

described

in

Chapter

12,

“Record-oriented

data

transmission,”

on

page

271.

SELECT

statement

A

select-group

provides

a

multiple

path

conditional

branch.

A

select-group

contains

a

SELECT

statement,

optionally

one

or

more

WHEN

statements,

optionally

an

OTHERWISE

statement,

and

an

END

statement.

Note:

Condition

prefixes

are

invalid

on

OTHERWISE

statements.

��

SELECT

(exp1)

;

�

�

,

WHEN(

exp2

)unit;

�

�

OTHERWISE

unit

;

��

Abbreviation:

OTHER

for

OTHERWISE

SELECT

(exp1)

The

SELECT

statement

and

its

corresponding

END

statement,

delimit

a

group

of

statements

collectively

called

a

select-group.

The

expression

in

the

SELECT

statement

is

evaluated

and

its

value

is

saved.

WHEN

(exp2,

exp2,

...)

unit

Specifies

one

or

more

expressions

that

are

evaluated

and

compared

with

the

saved

value

from

the

SELECT

statement.

If

an

expression

is

found

that

is

equal

to

the

saved

value,

the

evaluation

of

expressions

in

WHEN

statements

is

terminated,

and

the

unit

of

the

associated

WHEN

statement

is

executed.

If

no

such

expression

is

found,

the

unit

of

the

OTHERWISE

statement

is

executed.

The

WHEN

statement

must

not

have

a

label.

OTHERWISE

unit

Specifies

the

unit

to

be

executed

when

every

test

of

the

preceding

WHEN

statements

fails.

PUT

216

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

If

the

OTHERWISE

statement

is

omitted

and

execution

of

the

select-group

does

not

result

in

the

selection

of

a

unit,

the

ERROR

condition

is

raised.

The

OTHERWISE

statement

must

not

have

a

label

or

condition

prefix.

unit

Each

unit

is

either

a

valid

single

statement,

a

group,

or

a

begin-block.

DECLARE,

DEFAULT,

END,

ENTRY

FORMAT,

PROCEDURE,

and

%statement

statements

are

not

valid.

Each

unit

can

contain

statements

that

specify

a

transfer

of

control

(for

example,

GO

TO).

Hence,

the

normal

sequence

of

the

SELECT

statement

can

be

overridden.

If

exp1

is

omitted,

each

exp2

is

evaluated

and

converted,

if

necessary,

to

a

bit

string.

If

any

bit

in

the

resulting

string

is

'1'B,

the

unit

of

the

associated

WHEN

statement

is

executed.

If

all

bits

are

0

or

the

string

is

null,

the

unit

of

the

OTHERWISE

statement

is

executed.

After

execution

of

a

unit

of

a

WHEN

or

OTHERWISE

statement,

control

passes

to

the

statement

following

the

select-group,

unless

the

normal

flow

of

control

is

altered

within

the

unit.

If

exp1

is

specified,

each

exp2

must

be

such

that

the

following

comparison

expression

has

a

scalar

bit

value:

(exp1)

=

(exp2)

Array,

structure,

and

union

operands

cannot

be

used

in

either

exp1

or

exp2.

Examples

In

the

following

example,

E,

E1,

and

so

on,

are

expressions.

When

control

reaches

the

SELECT

statement,

the

expression

E

is

evaluated

and

its

value

is

saved.

The

expressions

in

the

WHEN

statements

are

then

evaluated

in

turn

(in

the

order

in

which

they

appear),

and

each

value

is

compared

with

the

value

of

E.

If

a

value

is

found

that

is

equal

to

the

value

of

E,

the

action

following

the

corresponding

THEN

statement

is

performed;

no

further

WHEN

statement

expressions

are

evaluated.

If

none

of

the

expressions

in

the

WHEN

statements

are

equal

to

the

expression

in

the

SELECT

statement,

the

action

specified

after

the

OTHERWISE

statement

is

executed.

select

(E);

when

(E1,E2,E3)

action-1;

when

(E4,E5)

action-2;

otherwise

action-n;

end;

Nl:

next

statement;

An

example

of

exp1

being

omitted

is:

select;

when

(A>B)

call

Bigger;

when

(A=B)

call

Same;

otherwise

call

Smaller;

end;

If

a

select-group

contains

no

WHEN

statements,

the

action

in

the

OTHERWISE

statement

is

executed

unconditionally.

If

the

OTHERWISE

statement

is

omitted,

SELECT

Chapter

9.

Statements

and

directives

217

and

execution

of

the

select-group

does

not

result

in

the

selection

of

a

WHEN

statement,

the

ERROR

condition

is

raised.

SIGNAL

statement

The

SIGNAL

statement

is

described

in

Chapter

16,

“Condition

handling,”

on

page

331.

%SKIP

directive

The

%SKIP

directive

causes

the

specified

number

of

lines

to

be

left

blank

in

the

compiler

source

listings.

��

%SKIP

(n)

;

��

n

Specifies

the

number

of

lines

to

be

skipped.

It

must

be

an

integer

in

the

range

1

through

999.

If

n

is

omitted,

the

default

is

1.

If

n

is

greater

than

the

number

of

lines

remaining

on

the

page,

the

equivalent

of

a

%PAGE

directive

is

executed

in

place

of

the

%SKIP

directive.

STOP

statement

The

STOP

statement

stops

the

current

application.

��

STOP

;

��

UNLOCK

Statement

The

UNLOCK

statement

makes

the

specified

locked

record

available

to

other

MVS

tasks.

The

syntax

for

the

UNLOCK

statement

is:

��

UNLOCK

FILE

(

file-reference

)

KEY

(

expression

)

;

��

The

keywords

can

appear

in

any

order.

WAIT

statement

The

WAIT

statement

is

described

in

Chapter

18,

“Multithreading

facility,”

on

page

359.

WHEN

statement

The

WHEN

statement

is

described

in

“SELECT

statement”

on

page

216.

SELECT

218

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

WRITE

statement

The

WRITE

statement

is

described

in

Chapter

12,

“Record-oriented

data

transmission,”

on

page

271.

WHEN

Chapter

9.

Statements

and

directives

219

220

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Chapter

10.

Storage

control

Storage

classes,

allocation,

and

deallocation

.

.

. 221

Static

storage

and

attribute

.

.

.

.

.

.

.

.

. 222

Automatic

storage

and

attribute

.

.

.

.

.

.

. 223

Controlled

storage

and

attribute

.

.

.

.

.

.

. 224

ALLOCATE

statement

for

controlled

variables

225

FREE

statement

for

controlled

variables

.

.

. 227

Multiple

generations

of

controlled

variables

.

. 227

Asterisk

notation

.

.

.

.

.

.

.

.

.

.

. 227

Adjustable

extents

.

.

.

.

.

.

.

.

.

.

. 228

Built-in

functions

for

controlled

variables

.

.

. 228

Based

storage

and

attribute

.

.

.

.

.

.

.

.

. 228

Locator

data

.

.

.

.

.

.

.

.

.

.

.

.

. 230

POINTER

variable

and

attribute

.

.

.

.

.

. 232

Built-in

functions

for

based

variables

.

.

.

. 233

ALLOCATE

statement

for

based

variables

.

.

. 233

FREE

statement

for

based

variables

.

.

.

.

. 234

REFER

option

(self-defining

data)

.

.

.

.

. 235

Area

data

and

attribute

.

.

.

.

.

.

.

.

.

. 237

Offset

data

and

attribute

.

.

.

.

.

.

.

. 238

Built-in

functions

for

area

variables

.

.

.

.

. 239

Area

assignment

.

.

.

.

.

.

.

.

.

.

. 239

Input/output

of

areas

.

.

.

.

.

.

.

.

. 240

List

processing

.

.

.

.

.

.

.

.

.

.

.

.

. 240

ASSIGNABLE

and

NONASSIGNABLE

attributes

242

NORMAL

and

ABNORMAL

attributes

.

.

.

.

. 242

BIGENDIAN

and

LITTLEENDIAN

attributes

.

.

. 243

HEXADEC

and

IEEE

attributes

.

.

.

.

.

.

. 244

CONNECTED

and

NONCONNECTED

attributes

244

DEFINED

and

POSITION

attributes

.

.

.

.

.

. 245

Unconnected

Storage

.

.

.

.

.

.

.

.

.

. 247

Simple

Defining

.

.

.

.

.

.

.

.

.

.

. 247

iSUB

Defining

.

.

.

.

.

.

.

.

.

.

.

. 248

String

Overlay

Defining

.

.

.

.

.

.

.

.

. 249

POSITION

attribute

.

.

.

.

.

.

.

.

.

. 249

INITIAL

attribute

.

.

.

.

.

.

.

.

.

.

.

. 250

Initializing

array

variables

.

.

.

.

.

.

.

. 253

Initializing

unions

.

.

.

.

.

.

.

.

.

.

. 254

Initializing

static

variables

.

.

.

.

.

.

.

. 254

Initializing

automatic

variables

.

.

.

.

.

. 254

Initializing

based

and

controlled

variables

.

.

. 255

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 255

All

variables

require

storage.

The

attributes

specified

for

a

variable

describe

the

amount

of

storage

required

and

how

it

is

interpreted.

In

the

following

example

a

reference

to

X

is

a

reference

to

a

piece

of

storage

that

contains

a

value

to

be

interpreted

as

fixed-point

binary.

dcl

X

fixed

binary(31,0)

automatic;

Since

X

is

automatic,

the

storage

for

it

is

allocated

when

its

declaring

block

is

activated,

and

the

storage

remains

allocated

until

the

block

is

deactivated.

Storage

classes,

allocation,

and

deallocation

Storage

allocation

is

the

process

of

associating

an

area

of

storage

with

a

variable

so

that

the

data

item(s)

represented

by

the

variable

can

be

recorded

internally.

When

storage

is

associated

with

a

variable,

the

variable

is

allocated.

Allocation

for

a

given

variable

can

take

place

statically,

(before

the

execution

of

the

program)

or

dynamically

(during

execution).

A

variable

that

is

allocated

statically

remains

allocated

for

the

duration

of

the

application

program.

A

variable

that

is

allocated

dynamically

relinquishes

its

storage

either

upon

the

termination

of

the

block

containing

that

variable,

or

at

an

explicit

request

from

the

application.

The

storage

class

assigned

to

a

variable

determines

the

degree

of

storage

control

applied

to

it

and

the

manner

in

which

the

variable’s

storage

is

allocated

and

freed.

There

are

four

storage

classes:

automatic,

static,

controlled,

and

based.

You

assign

the

storage

class

using

its

corresponding

attribute

in

an

explicit,

implicit,

or

contextual

declaration:

v

AUTOMATIC

specifies

that

storage

is

allocated

upon

each

entry

to

the

block

that

contains

the

storage

declaration.

The

storage

is

released

when

the

block

is

exited.

If

the

block

is

a

procedure

that

is

invoked

recursively,

the

previously

allocated

storage

is

pushed

down

upon

entry;

the

latest

allocation

of

storage

is

221

popped

up

in

a

recursive

procedure

when

each

generation

terminates.

(For

a

discussion

of

push-down

and

pop-up

stacking,

see

“Recursive

procedures”

on

page

100.)

v

STATIC

specifies

that

storage

is

allocated

when

the

program

is

loaded.

The

storage

is

not

freed

until

program

execution

is

completed.

The

storage

for

a

fetched

procedure

is

not

freed

until

the

procedure

is

released.

v

CONTROLLED

specifies

that

you

use

the

ALLOCATE

and

FREE

statements

to

control

the

allocation

and

freeing

of

storage.

Multiple

allocations

of

the

same

controlled

variable

in

the

same

program,

without

intervening

freeing,

stacks

generations

of

the

variable.

You

can

access

earlier

generations

only

by

freeing

the

later

ones.

v

BASED,

like

CONTROLLED,

specifies

that

you

control

storage

allocation

and

freeing.

One

difference

is

that

multiple

allocations

are

not

stacked

but

are

available

at

any

time.

Each

allocation

can

be

identified

by

the

value

of

a

pointer

variable.

Another

difference

is

that

based

variables

can

be

associated

with

an

area

of

storage

and

identified

by

the

value

of

an

offset

variable.

Based

variables

outside

of

areas

can

be

allocated

and

freed

using

the

ALLOCATE

built-in

function

and

PLIFREE

built-in

subroutine

respectively.

They

can

also

be

allocated

using

the

AUTOMATIC

built-in

function;

such

allocated

variables

are

freed

automatically

when

the

block

in

which

they

are

allocated

terminates.

Storage

class

attributes

can

be

declared

explicitly

for

element,

array,

and

major

structure

and

union

variables.

For

array

and

major

structure

and

union

variables,

the

storage

class

declared

for

the

variable

applies

to

all

of

the

elements

in

the

array

or

structure

or

union.

Storage

class

attributes

cannot

be

specified

for:

v

CONDITION

conditions

v

Defined

data

items

v

Entry

constants

v

File

constants

v

Format

constants

v

Identifiers

defined

in

the

DEFINE

statement

v

Label

constants

v

Members

of

structures

and

unions

v

Named

constants

Allocation

of

storage

for

variables

is

managed

by

PL/I.

You

do

not

specify

where

in

storage

the

allocation

is

to

be

made.

You

can,

however,

specify

that

a

variable

be

allocated

in

an

existing

AREA.

For

more

information,

refer

to

“Area

data

and

attribute”

on

page

237.

Static

storage

and

attribute

Variables

declared

with

the

STATIC

attribute

are

allocated

prior

to

running

a

program.

They

remain

allocated

until

the

program

terminates.

The

program

has

no

control

over

the

allocation

of

static

variables

during

execution.

Storage

classes,

allocation,

and

deallocation

222

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

STATIC

��

STATIC

is

the

default

for

external

variables,

but

internal

variables

can

also

be

static.

It

is

also

the

default

for

variables

declared

in

a

package,

outside

of

any

procedure.

Static

variables

follow

the

normal

scope

rules

for

the

validity

of

references

to

them.

In

the

following

example,

the

variable

X

is

allocated

for

the

life

of

the

program,

but

it

can

be

referenced

only

within

procedure

B

or

any

block

contained

in

B.

The

variable

Y

gets

the

STATIC

attribute

and

is

also

allocated

for

the

life

of

the

program.

Package:

Package

exports

(*);

dcl

Y

char(10);

A:

proc

options(main);

B:

proc;

declare

X

static

internal;

end

B;

end

A;

C:

proc;

Y

=

’hello’;

end

C;

end

Package;

If

static

variables

are

initialized

using

the

INITIAL

attribute,

the

initial

values

must

be

restricted

expressions.

Extent

specifications

must

also

be

restricted

expressions.

Automatic

storage

and

attribute

Automatic

variables

are

allocated

on

entry

to

the

block

in

which

they

are

declared.

They

can

be

reallocated

many

times

during

the

execution

of

a

program.

You

control

their

allocation

by

your

design

of

the

block

structure.

��

AUTOMATIC

��

Abbreviation:

AUTO

AUTOMATIC

is

the

default.

Automatic

variables

are

always

internal.

In

the

following

example,

each

time

procedure

B

is

invoked,

the

variables

X

and

Y

are

allocated

storage.

When

B

terminates,

the

storage

is

released,

and

the

values

X

and

Y

contain

are

lost.

A:

proc;

...
call

B;

B:

proc;

declare

X,Y

auto;

...
end

B;

...
call

B;

Static

storage

and

attribute

Chapter

10.

Storage

control

223

The

storage

that

is

freed

is

available

for

allocation

to

other

variables.

Thus,

whenever

a

block

(procedure

or

begin)

is

active,

storage

is

allocated

for

all

variables

declared

automatic

within

that

block.

Whenever

a

block

is

inactive,

no

storage

is

allocated

for

the

automatic

variables

in

that

block.

Only

one

allocation

of

a

particular

automatic

variable

can

exist,

except

for

those

procedures

that

are

called

recursively

or

by

more

than

one

program.

Extents

for

automatic

variables

can

be

specified

as

expressions.

This

means

that

you

can

allocate

a

specific

amount

of

storage

when

you

need

it.

In

the

following

example,

the

character

string

STR

has

a

length

defined

by

the

value

of

the

variable

N

when

procedure

B

is

invoked.

A:

proc;

declare

N

fixed

bin;

...
B:

proc;

declare

STR

char(N);

If

the

declare

statements

are

located

in

the

same

block,

PL/I

requires

that

the

variable

N

be

initialized

either

to

a

restricted

expression

or

to

an

initialized

static

variable.

In

the

following

example,

the

length

allocated

is

correct

for

Str1,

but

not

for

Str2.

PL/I

does

not

resolve

this

type

of

declaration

dependency.

dcl

N

fixed

bin

(15)

init(10),

M

fixed

bin

(15)

init(N),

Str1

char(N),

Str2

char(M);

Controlled

storage

and

attribute

Variables

declared

as

CONTROLLED

are

allocated

only

when

you

specify

them

in

an

ALLOCATE

statement.

A

controlled

variable

remains

allocated

until

a

FREE

statement

that

names

the

variable

is

encountered

or

until

the

end

of

the

program.

Controlled

variables

are

partially

independent

of

the

program

block

structure,

but

not

completely.

The

scope

of

a

controlled

variable

can

be

internal

or

external.

When

it

is

declared

as

internal,

the

scope

of

the

variable

is

the

block

in

which

the

variable

is

declared

and

any

contained

blocks.

Any

reference

to

a

controlled

variable

that

is

not

allocated

is

in

error.

��

CONTROLLED

��

Abbreviation:

CTL

In

the

following

example,

the

variable

X

can

be

validly

referred

to

within

procedure

B

and

that

part

of

procedure

A

that

follows

execution

of

the

CALL

statement.

A:

proc;

dcl

X

controlled;

call

B;

...
B:

proc;

allocate

X;

Automatic

storage

and

attribute

224

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

...
end

B;

end

A;

Generally,

controlled

variables

are

useful

when

a

program

requires

large

data

aggregates

with

adjustable

extents.

Statements

in

the

following

example

allocate

the

exact

storage

required

depending

on

the

input

data

and

free

the

storage

when

it

is

no

longer

required.

dcl

A(M,N)

ctl;

get

list(M,N);

allocate

A;

get

list(A);

...

free

A;

This

method

is

more

efficient

than

the

alternative

of

setting

up

a

begin-block,

because

block

activation

and

termination

are

not

required.

ALLOCATE

statement

for

controlled

variables

The

ALLOCATE

statement

allocates

storage

for

controlled

variables,

independent

of

procedure

block

boundaries.

Controlled

parameters

can

also

be

allocated.

The

bounds

of

controlled

arrays,

the

lengths

of

controlled

strings,

and

the

size

of

controlled

areas,

as

well

as

their

initial

values,

can

be

specified

in

the

ALLOCATE

statement.

��

ALLOCATE

�

,

controlled-variable

level

attribute

;

�

�

�

�

attribute:

dimension

CHARACTER(length)

BIT(length)

GRAPHIC(length)

WIDECHAR(length)

AREA(size)

,

INITIAL(

item

)

INITIAL

CALL

entry-reference

,

(

argument

)

��

Abbreviation:

ALLOC

level

Indicates

a

level

number.

If

no

level

number

is

specified,

the

controlled-variable

named

must

be

a

level-1

variable.

controlled-variable

Specifies

a

controlled

variable

or

an

element

of

a

controlled

major

structure.

A

structure

element,

other

than

the

major

structure,

can

appear

only

if

the

relative

structuring

of

the

entire

major

structure

containing

the

element

appears

Controlled

storage

and

attribute

Chapter

10.

Storage

control

225

as

it

is

in

the

DECLARE

statement

for

that

structure.

In

this

case,

dimension

attributes

must

be

specified

for

all

names

that

are

declared

with

the

dimension

attribute.

Both

controlled

and

based

variables

can

be

allocated

in

the

same

statement.

For

the

syntax

of

based

variables,

refer

to

“ALLOCATE

statement

for

based

variables”

on

page

233.

Bounds

for

arrays,

lengths

of

strings,

and

sizes

of

areas

(extents)

are

evaluated

at

the

execution

of

an

ALLOCATE

statement:

v

Either

the

ALLOCATE

statement

or

a

DECLARE

or

DEFAULT

statement

must

specify

any

necessary

dimension,

size,

or

length

attributes

(extents)

for

a

variable.

Any

expression

taken

from

a

DECLARE

statement

is

evaluated

at

the

point

of

allocation

using

the

conditions

enabled

at

the

ALLOCATE

statement.

However,

names

in

the

expression

refer

to

those

variables

whose

scope

includes

the

DECLARE

or

DEFAULT

statement.

v

If

a

bound,

length,

or

size

is

explicitly

specified

in

an

ALLOCATE

statement,

it

overrides

that

given

in

the

DECLARE

statement

for

that

variable.

v

If

a

bound,

length,

or

size

is

specified

by

an

asterisk

in

an

ALLOCATE

statement,

that

extent

is

taken

from

the

current

generation.

If

no

generation

of

the

variable

exists,

the

extent

is

undefined

and

the

program

is

in

error.

v

If,

in

either

an

ALLOCATE

or

a

DECLARE

statement,

bounds,

lengths,

or

sizes

are

specified

by

expressions

that

contain

references

to

the

variable

being

allocated,

the

expressions

are

evaluated

using

the

value

of

the

most

recent

generation

of

the

variable.

For

example:

declare

X(N)

fixed

bin

ctl;

N

=

20;

allocate

X;

allocate

X(X(1));

In

the

first

allocation

of

X,

the

upper

bound

is

specified

by

the

declare

statement

and

N

=

20;.

In

the

second

allocation,

the

upper

bound

is

specified

by

the

value

of

the

first

element

of

the

first

generation

of

X.

The

dimension

attribute

must

specify

the

same

number

of

dimensions

as

declared.

The

dimension

attribute

can

appear

with

any

of

the

other

attributes

and

must

be

the

first

attribute

specified.

For

example:

declare

X(M)

char(N)

controlled;

M

=

20;

N

=

5;

allocate

X(25)

char(6);

The

BIT,

CHARACTER,

GRAPHIC,

WIDECHAR

and

AREA

attributes

can

appear

only

for

variables

having

the

same

attributes,

respectively.

Initial

values

are

assigned

to

a

variable

upon

allocation,

if

the

variable

has

an

INITIAL

attribute

in

either

the

DECLARE

or

ALLOCATE

statement.

Expressions

or

the

CALL

option

in

the

INITIAL

attribute

are

evaluated

at

the

point

of

allocation,

using

the

conditions

enabled

at

the

ALLOCATE

statement.

However,

the

names

are

interpreted

in

the

environment

of

the

declaration.

If

an

INITIAL

attribute

appears

in

both

DECLARE

and

ALLOCATE

statements,

the

INITIAL

attribute

in

the

ALLOCATE

statement

is

used.

If

initialization

involves

reference

to

the

variable

being

allocated,

the

reference

is

to

the

new

generation

of

the

variable.

For

more

information

on

initialization,

refer

to

“INITIAL

attribute”

on

page

250.

ALLOCATE

for

controlled

variables

226

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Any

evaluations

performed

at

the

time

the

ALLOCATE

statement

is

executed

(for

example,

evaluation

of

expressions

in

an

INITIAL

attribute)

must

not

be

interdependent.

If

storage

for

the

controlled

variable

is

not

available,

the

STORAGE

condition

is

raised.

FREE

statement

for

controlled

variables

The

FREE

statement

frees

the

storage

allocated

for

controlled

variables.

The

freed

storage

is

then

available

for

other

allocations.

The

previously

allocated

controlled

variable

is

made

available,

and

subsequent

references

refer

to

that

allocation.

��

FREE

�

,

controlled-variable

;

��

controlled-variable

A

level-1,

unsubscripted

variable.

Both

based

and

controlled

variables

can

be

freed

in

the

same

statement.

For

the

syntax

of

based

variables,

refer

to

“FREE

statement

for

based

variables”

on

page

234.

Implicit

freeing

A

controlled

variable

need

not

be

explicitly

freed

by

a

FREE

statement.

However,

it

is

a

good

practice

to

explicitly

FREE

controlled

variables.

All

controlled

storage

is

freed

at

the

termination

of

the

program.

Multiple

generations

of

controlled

variables

An

ALLOCATE

statement

for

a

variable

for

which

storage

was

previously

allocated

and

not

freed

pushes

down

or

stacks

storage

for

the

variable.

This

stacking

creates

a

new

generation

of

data

for

the

variable.

The

new

generation

becomes

the

current

generation.

The

previous

generation

cannot

be

directly

accessed

until

the

current

generation

has

been

freed.

When

storage

for

this

variable

is

freed,

using

the

FREE

statement

or

at

termination

of

the

program

in

which

the

storage

was

allocated,

storage

is

popped

up

or

removed

from

the

stack.

Asterisk

notation

In

an

ALLOCATE

statement,

values

are

inherited

from

the

most

recent

previous

generation

when

dimensions,

lengths,

or

sizes

are

indicated

by

asterisks.

For

arrays,

the

asterisk

must

be

used

for

every

dimension

of

the

array,

not

just

one

of

them.

For

example:

dcl

X(M,N)

char(A)

ctl;

M=10;

N=20;

A=5;

allocate

X;

allocate

X(10,10);

allocate

X(*,*);

ALLOCATE

for

controlled

variables

Chapter

10.

Storage

control

227

The

first

generation

of

X

has

bounds

(10,20);

the

second

and

third

generations

have

bounds

(10,10).

The

elements

of

each

generation

of

X

are

all

character

strings

of

length

5.

The

asterisk

notation

can

also

be

used

in

a

DECLARE

statement,

but

has

a

different

meaning

there.

For

example:

dcl

Y

char(*)

ctl,

N

fixed

bin;

N=20;

allocate

Y

char(N);

allocate

Y;

The

length

of

the

character

string

Y

is

taken

from

the

previous

generation

unless

it

is

specified

in

an

ALLOCATE

statement.

In

that

case,

Y

is

given

the

specified

length.

This

allows

you

to

defer

the

specification

of

the

string

length

until

the

actual

allocation

of

storage.

Adjustable

extents

Controlled

scalars,

arrays,

and

members

of

structures

and

unions

can

have

adjustable

array

extents,

string

lengths,

and

area

sizes.

In

the

following

example,

when

the

structure

is

allocated,

A.B

has

the

extent

1

to

10

and

A.C

is

a

varying

character

string

with

maximum

length

5.

dcl

1

A

ctl,

2

B(N:M),

2

C

char(*)

varying;

N

=

-10;

M

=

10;

alloc

1

A,

2

B(1:10),

2

C

char(5);

free

A;

Built-in

functions

for

controlled

variables

The

ALLOCATION

built-in

function

can

be

used

to

determine

the

number

of

generations

that

have

been

allocated

for

a

given

controlled

variable.

If

the

variable

is

not

allocated,

the

function

returns

the

value

zero.

Based

storage

and

attribute

A

declaration

of

a

based

variable

is

a

description

of

the

generation:

the

amount

of

storage

required

and

its

attributes.

(A

based

variable

does

not

identify

the

location

of

a

generation

in

main

storage.)

A

locator

value

identifies

the

location

of

the

generation.

Any

reference

to

a

based

variable

that

is

not

allocated

is

in

error.

��

BASED

(locator-reference)

��

locator-reference

Identifies

the

location

of

the

data.

Asterisk

notation

228

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

When

reference

is

made

to

a

based

variable,

the

data

and

alignment

attributes

used

are

those

of

the

based

variable,

while

the

qualifying

locator

variable

identifies

the

location

of

data.

A

based

variable

cannot

have

the

EXTERNAL

attribute,

but

a

locator

reference

for

a

based

variable

can

have

any

storage

class,

including

based.

A

based

structure

or

union

can

be

declared

to

contain

adjustable

area

sizes,

array-bounds,

and

string-length

specifications,

by

using

the

REFER

option.

See

“REFER

option

(self-defining

data)”

on

page

235.

The

maximum

length

of

a

based

VARYING

or

VARYINGZ

string

must

be

equal

to

the

maximum

length

of

any

string

upon

which

the

based

VARYING

or

VARYINGZ

string

is

overlaid.

For

example:

declare

A

char(50)

varying

based(Q),

B

char(50)

varying;

Q=addr(B);

A

based

VARYING

string

can

only

be

overlaid

on

a

VARYING

string;

a

based

VARYINGZ

string

can

only

be

overlaid

on

a

VARYINGZ

string.

Storage

for

a

based

variable

can

be

allocated

by

using

the

ALLOCATE

statement,

the

ALLOCATE

built-in

function,

the

AUTOMATIC

built-in

function,

or

the

LOCATE

statement.

A

based

variable

can

also

be

used

to

access

existing

data

by

using

the

READ

statement

(with

SET

option),

or

the

FETCH

statement

(with

SET

option),

or

the

ADDR

built-in

function.

Based

AREA

variables

can

be

allocated

using

the

ALLOCATE

statement;

PL/I

automatically

initializes

the

area

to

EMPTY

upon

allocation.

However,

if

you

obtain

storage

for

the

area

variable

using

the

ALLOCATE

or

the

AUTOMATIC

built-in

function,

you

must

assign

EMPTY

to

the

variable

after

obtaining

the

storage.

Because

a

locator

variable

identifies

the

location

of

any

generation,

you

can

refer

at

any

point

in

a

program

to

any

generation

of

a

based

variable

by

using

an

appropriate

locator

value.

The

following

example

declares

that

references

to

X,

except

when

the

reference

is

explicitly

qualified,

use

the

locator

variable

P

to

locate

the

storage

for

X.

dcl

X

fixed

bin

based(P);

The

association

of

a

locator

reference

in

this

way

is

not

permanent.

The

locator

reference

can

be

used

to

identify

locations

of

other

based

variables

and

other

locator

references

can

be

used

to

identify

other

generations

of

the

variable

X.

When

a

based

variable

is

declared

without

a

locator

reference,

any

reference

to

the

based

variable

must

always

be

explicitly

locator-qualified.

In

the

following

example,

the

arrays

A

and

C

refer

to

the

same

storage.

The

elements

B

and

C(2,1)

also

refer

to

the

same

storage.

dcl

A(3,2)

character(5)

based(P),

B

char(5)

based(Q),

C(3,2)

character(5);

P

=

addr(C);

Q

=

addr(A(2,1));

Note:

When

a

based

variable

is

overlaid

in

this

way,

no

new

storage

is

allocated.

The

based

variable

uses

the

same

storage

as

the

variable

on

which

it

is

overlaid

(C(3,2)

in

the

example).

Based

storage

and

attribute

Chapter

10.

Storage

control

229

You

can

also

use

the

DEFINED

and

UNION

attributes

to

overlay

variable

storage,

but

DEFINED

and

UNION

overlay

the

storage

permanently.

When

based

variables

are

overlaid

with

a

locator

reference,

the

association

can

be

changed

at

any

time

in

the

program

by

assigning

a

new

value

to

the

locator

variable.

For

more

information

on

the

DEFINED

and

UNION

attributes,

refer

to

“DEFINED

and

POSITION

attributes”

on

page

245,

and

“Unions”

on

page

172.

The

INITIAL

attribute

can

be

specified

for

a

based

variable.

The

initial

values

are

assigned

only

upon

explicit

allocation

of

the

based

variable

with

an

ALLOCATE

or

LOCATE

statement.

Locator

data

There

are

two

types

of

locator

data:

pointer

and

offset.

The

value

of

a

pointer

variable

is

an

address

of

a

location

in

storage.

It

can

be

used

to

qualify

a

reference

to

a

variable

with

allocated

storage

in

several

different

locations.

The

value

of

an

offset

variable

specifies

a

location

within

an

area

variable

and

remains

valid

when

the

area

is

assigned

to

a

different

part

of

storage.

A

locator

value

can

be

assigned

only

to

a

locator

variable.

When

an

offset

value

is

assigned

to

an

offset

variable,

the

area

variables

named

in

the

OFFSET

attributes

are

ignored.

Locator

conversion

Locator

data

cannot

be

converted

to

other

data

types,

except

as

follows:

v

To

and

from

REAL

FIXED

BINARY

(p,0)

by

using

the

BINARYVALUE,

POINTERVALUE,

and

OFFSETVALUE

built-in

functions

v

Between

pointer

and

offset

implicitly

or

explicitly

using

the

POINTER

and

OFFSET

built-in

functions.

When

an

offset

variable

is

used

in

a

reference,

it

is

implicitly

converted

to

a

pointer

value

by

using

the

address

of

the

area

variable

designated

in

the

OFFSET

attribute

and

the

offset

variable.

Explicit

conversion

of

an

offset

to

a

pointer

value

is

accomplished

using

the

POINTER

built-in

function.

For

example,

the

following

statement

assigns

a

pointer

value

to

P,

giving

the

location

of

a

based

variable,

identified

by

offset

O

in

area

B.

dcl

P

pointer,

O

offset(A),B

area;

P

=

pointer(O,B);

Because

the

area

variable

is

different

from

that

associated

with

the

offset

variable,

you

must

ensure

that

the

offset

value

is

valid

for

the

different

area.

It

is

valid,

for

example,

if

area

A

is

assigned

to

area

B

prior

to

the

invocation

of

the

function.

The

OFFSET

built-in

function,

in

contrast

to

the

POINTER

built-in

function,

returns

an

offset

value

derived

from

a

given

pointer

and

area.

The

given

pointer

value

must

identify

the

location

of

a

based

variable

in

the

given

area.

A

pointer

value

is

converted

to

offset

by

using

the

pointer

value

and

the

address

of

the

area.

This

conversion

is

limited

to

pointer

values

that

relate

to

addresses

within

the

area

named

in

the

OFFSET

attribute.

Based

storage

and

attribute

230

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Except

when

assigning

the

NULL

or

the

SYSNULL

built-in

function

value,

it

is

an

error

to

attempt

to

convert

from

or

to

an

offset

variable

that

is

not

associated

with

an

area.

There

is

no

implicit

locator

conversion

in

multiple

assignments.

Locator

reference

A

locator

reference

is

either

a

locator

variable

that

can

be

qualified

or

subscripted,

or

a

function

reference

that

returns

a

locator

value.

A

locator

reference

can

be

used

in

the

following

ways:

v

As

a

locator

qualifier,

in

association

with

a

declaration

of

a

based

variable

v

In

a

comparison

operation,

as

in

an

IF

statement

v

As

an

argument

in

a

procedure

reference.

Because

PL/I

implicitly

converts

an

offset

to

a

pointer

value,

offset

references

can

be

used

interchangeably

with

pointer

references.

Locator

qualification

Locator

qualification

is

the

association

of

one

or

more

locator

references

with

a

based

reference

to

identify

a

particular

generation

of

a

based

variable.

This

is

called

a

locator-qualified

reference.

The

composite

symbol

−>

represents

“qualified

by”

or

“points

to”.

The

following

syntax

diagram

is

for

an

explicit

qualified

reference.

��

locator-reference

−>

�

based-locator-reference

−>

�

�

based-variable

��

locator-reference

based-locator-reference

Identify

the

location

of

the

data.

In

the

following

example,

X

is

a

based

variable,

P

is

a

locator

variable,

and

Q

is

a

based

locator

variable.

P

->

Q

->

X

The

reference

means

that

it

is

that

generation

of

X

that

is

identified

by

the

based

locator

Q

that

is

also

identified

by

the

value

of

the

locator

P.

X

and

Q

are

said

to

be

explicitly

locator-qualified.

When

more

than

one

locator

qualifier

is

used,

they

are

evaluated

from

left

to

right.

Reference

to

a

based

variable

can

also

be

implicitly

qualified.

The

locator

reference

used

to

determine

the

generation

of

a

based

variable

that

is

implicitly

qualified

is

the

one

declared

with

the

based

variable.

In

the

following

example,

the

ALLOCATE

statement

sets

the

pointer

variable

P

so

that

the

reference

X

applies

to

allocated

storage.

Locator

Data

Chapter

10.

Storage

control

231

dcl

X

fixed

bin

based(P)

init(0);

allocate

X;

X

=

X

+

1;

The

references

to

X

in

the

assignment

statement

are

implicitly

locator-qualified

by

P.

References

to

X

can

also

be

explicitly

locator-qualified

as

shown

in

the

following

example.

P->X

=

P->X

+

1;

The

following

assignment

statements

have

the

same

effect

as

the

previous

example:

Q

=

P;

Q->X

=

Q->X

+

1;

Because

the

locator

declared

with

a

based

variable

can

also

be

based,

a

chain

of

locator

qualifiers

can

be

implied.

For

example,

the

following

pointer

and

based

variables

can

be

used:

declare

(P(10),Q)

pointer,

R

pointer

based

(Q),

V

based

(P(3)),

W

based

(R),

Y

based;

allocate

R,V,W;

Given

the

previous

declaration

and

allocation,

the

following

references

are

valid:

P(3)

->

V

V

Q

->

R

->

W

R

->

W

W

The

first

two

references

are

equivalent,

and

the

last

three

are

equivalent.

Any

reference

to

Y

must

include

a

qualifying

locator

variable.

Levels

of

locator

qualification

A

pointer

that

qualifies

a

based

variable

represents

one

level

of

locator

qualification.

An

offset

represents

two

levels

because

it

is

implicitly

qualified

within

an

area.

The

number

of

levels

is

not

affected

by

a

locator

being

subscripted

and/or

an

element

of

a

structure

or

union.

In

the

following

example,

the

references

X,

P

->

X,

and

Q

->

P

->

X

represent

three

levels

of

locator

qualification.

declare

X

based

(P),

P

pointer

based

(Q),

Q

offset

(A);

POINTER

variable

and

attribute

A

pointer

variable

is

declared

contextually

if

it

appears

in

the

declaration

of

a

based

variable,

as

a

locator

qualifier,

in

a

BASED

attribute,

or

in

the

SET

option

of

an

ALLOCATE,

LOCATE,

READ,

or

FETCH

statement.

It

can

also

be

declared

explicitly.

��

POINTER

��

Abbreviation:

PTR

Locator

Data

232

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

The

value

of

a

pointer

variable

that

no

longer

identifies

a

generation

of

a

based

variable

is

undefined

(for

example,

when

a

based

variable

has

been

freed).

Before

a

reference

is

made

to

a

pointer-qualified

variable,

the

pointer

must

have

a

value.

Built-in

functions

for

based

variables

The

ALLOCATE

built-in

function

can

be

used

to

obtain

storage

for

a

based

variable,

and

the

PLIFREE

built-in

subroutine

can

be

used

to

free

such

storage.

The

AUTOMATIC

built-in

function

can

also

be

used

to

obtain

storage

for

a

based

variable,

but

such

storage

must

not

be

explicitly

freed.

Storage

allocated

with

the

AUTOMATIC

built-in

function

is

automatically

freed

when

the

block

in

which

it

is

allocated

terminates.

The

ADDR

built-in

function

returns

a

pointer

value

that

identifies

the

first

byte

of

a

variable.

The

ENTRYADDR

built-in

function

returns

a

pointer

value

that

is

the

address

of

the

first

executed

instruction

if

the

entry

were

to

be

invoked.

The

NULL

and

SYSNULL

built-in

functions

return

the

PL/I

null

pointer

and

the

system

null

pointer

respectively.

Note:

The

NULL

and

SYSNULL

built-in

functions

can,

but

do

not

necessarily,

compare

equally.

Your

application

program

must

not

depend

on

the

functions’

equality.

ALLOCATE

statement

for

based

variables

The

ALLOCATE

statement

allocates

storage

for

based

variables

and

sets

a

locator

variable

that

can

be

used

to

identify

the

location,

independent

of

procedure

block

boundaries.

��

ALLOCATE

�

,

based-variable

location-reference

;

�

�

location-reference:

IN(area-variable)

SET(locator-variable)

��

Abbreviation:

ALLOC

based

variable

Is

a

level-1

unsubscripted

variable.

IN

Specifies

the

area

variable

in

which

the

storage

is

allocated.

For

more

information

on

areas,

refer

to

“Area

data

and

attribute”

on

page

237.

SET

Specifies

a

locator

variable

that

is

set

to

the

location

of

the

storage

allocated.

If

the

SET

option

is

not

specified,

the

locator

used

is

the

one

specified

in

the

declaration

of

the

based

variable.

For

syntax

information

about

declaring

based

variables,

refer

to

“Based

storage

and

attribute”

on

page

228

and

“Locator

data”

on

page

230.

POINTER

Chapter

10.

Storage

control

233

Both

based

and

controlled

variables

can

be

allocated

in

the

same

statement.

For

the

syntax

of

controlled

variables,

see

“ALLOCATE

statement

for

controlled

variables”

on

page

225.

Storage

is

allocated

in

an

area

when

the

IN

option

is

specified

or

the

SET

option

specifies

an

offset

variable.

These

options

can

appear

in

any

order.

For

allocations

in

areas:

v

If

sufficient

storage

for

the

based

variable

does

not

exist

within

the

area,

the

AREA

condition

is

raised.

v

If

the

IN

option

is

not

used

when

using

an

offset

variable,

the

declaration

of

the

offset

variable

must

specify

an

area

reference.

When

an

area

is

not

used,

the

locator

variable

must

be

a

pointer

variable.

If

storage

for

the

based

variable

is

not

available,

the

STORAGE

condition

is

raised.

The

amount

of

storage

allocated

for

a

based

variable

depends

on

its

attributes,

and

on

its

dimensions,

length,

or

size

specifications

if

these

are

applicable

at

the

time

of

allocation.

These

attributes

are

determined

from

the

declaration

of

the

based

variable.

A

based

structure

or

union

can

contain

adjustable

array

bounds

or

string

lengths

or

area

sizes

(see

“REFER

option

(self-defining

data)”

on

page

235).

The

asterisk

notation

for

extents

is

not

allowed

for

based

variables.

FREE

statement

for

based

variables

The

FREE

statement

frees

the

storage

allocated

for

based

and

controlled

variables.

��

FREE

�

,

option

;

option:

locator-reference

−>

�

�

based-variable

IN(area-variable)

��

locator-reference

->

Frees

a

particular

generation

of

a

based

variable.

The

composite

symbol

->

means

“qualified

by”

or

“points

to.”

If

the

based

variable

is

not

explicitly

locator-qualified,

the

locator

variable

declared

in

the

BASED

attribute

is

used

to

identify

the

generation

of

data

to

be

freed.

If

no

locator

has

been

declared,

the

statement

is

in

error.

based

variable

Must

be

a

level-1

unsubscripted

based

variable.

IN

Must

be

specified

or

the

based

variable

must

be

qualified

by

an

offset

declared

with

an

associated

area,

if

the

storage

to

be

freed

was

allocated

in

an

area.

The

IN

option

cannot

appear

if

the

based

variable

was

not

allocated

in

an

area.

Area

assignment

allocates

based

storage

in

the

target

area.

These

allocations

can

be

freed

by

the

IN

option

naming

the

target

area.

ALLOCATE

for

based

variables

234

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Both

based

and

controlled

variables

can

be

freed

in

the

same

statement.

For

the

syntax

of

controlled

variables,

see

“FREE

statement

for

controlled

variables”

on

page

227.

A

based

variable

can

be

used

to

free

storage

only

if

that

storage

has

been

allocated

for

a

based

variable

having

identical

data

attributes.

The

amount

of

storage

freed

depends

upon

the

attributes

of

the

based

variable,

including

bounds

and/or

lengths

at

the

time

the

storage

is

freed.

The

user

is

responsible

for

determining

that

this

amount

coincides

with

the

amount

allocated.

If

the

variable

has

not

been

allocated,

the

results

are

unpredictable.

Implicit

freeing

A

based

variable

need

not

be

explicitly

freed

by

a

FREE

statement,

but

it

is

a

good

practice

to

do

so.

All

based

storage

is

freed

at

the

termination

of

the

program.

REFER

option

(self-defining

data)

A

self-defining

structure

or

union

contains

information

about

its

own

fields,

such

as

the

length

of

a

string.

A

based

structure

or

union

can

be

declared

to

manipulate

this

data.

String

lengths,

array

bounds,

and

area

sizes

can

all

be

defined

by

variables,

known

as

the

refer

object,

declared

within

the

structure

or

union.

When

the

structure

or

union

is

allocated

(by

either

an

ALLOCATE

statement

or

a

LOCATE

statement),

the

value

of

an

expression

is

assigned

to

the

refer

object

variable.

For

any

other

reference

to

the

structure

or

union,

the

value

of

the

refer

object

is

used.

The

REFER

option

is

used

in

the

declaration

of

a

based

structure

or

union

to

specify

that,

on

allocation

of

the

structure

or

union,

the

value

of

an

expression

is

assigned

to

the

refer

object

and

represents

the

length,

bound,

or

size

of

another

variable

in

the

structure

or

union.

The

syntax

for

a

length,

bound,

or

size

with

a

REFER

option

is

shown

in

the

following

diagram.

��

expression

REFER

(member-variable)

��

expression

The

value

of

this

expression

defines

the

length,

bound,

or

size

of

the

member

when

the

structure

or

union

is

allocated

(using

ALLOCATE

or

LOCATE).

The

expression

is

evaluated

and

converted

to

FIXED

BINARY

(31,0).

Any

variables

used

as

operands

in

the

expression

must

not

belong

to

the

structure

or

union

containing

the

REFER

option.

Subsequent

references

to

the

structure

or

union

obtain

the

REFER

option

member’s

length,

bound,

or

size

from

the

current

value

of

member-variable

(refer

object).

member-variable

The

refer

object

must

conform

to

the

following

rules:

v

It

must

be

a

member

of

the

same

level-1

structure

or

union,

and

it

must

appear

before

any

member

that

names

it

in

a

REFER

option.

v

It

must

be

computational.

FREE

for

based

variables

Chapter

10.

Storage

control

235

v

It

cannot

be

locator-qualified

(see

“Locator

qualification”

on

page

231)

or

subscripted.

v

It

cannot

be

part

of

an

array.

In

the

following

example,

the

declaration

specifies

that

the

based

structure

STR

consists

of

an

array

Y

and

an

element

X.

declare

1

STR

based(P),

2

X

fixed

binary(31,0),

2

Y

(L

refer

(X)),

L

fixed

binary(31,0)

init(1000);

When

STR

is

allocated,

the

upper

bound

is

set

to

the

current

value

of

L

which

is

assigned

to

X.

For

any

other

reference

to

Y,

such

as

a

READ

statement

that

sets

P,

the

bound

value

is

taken

from

X.

If

the

INITIAL

attribute

is

specified

for

the

member

with

the

REFER

option,

initialization

of

the

member

occurs

after

the

refer

object

has

been

assigned

its

value.

Any

number

of

REFER

options

can

be

used

in

the

declaration

of

a

structure

or

union.

The

value

of

the

refer

object

should

not

be

changed

during

program

execution.

It

is

an

error

to

free

such

an

aggregate

if

the

value

of

the

refer

object

has

changed.

Note

also

that

any

variables

used

in

the

expression

defining

the

REFER

extent

should

be

declared

in

the

block

(or

one

of

its

parent

blocks)

containing

the

DECLARE

using

that

REFER.

If

one

of

the

variables

is

not

declared,

it

will

be

implicitly

declared

following

the

usual

rules

for

implicit

declaration,

i.e.

a

DECLARE

for

it

will

be

added

to

the

outermost

block

containing

the

DECLARE.

This

means

that

in

the

following

code,

the

declaration

of

and

assignment

to

the

variable

m

in

the

subroutine

inner_proc

will

have

no

effect

on

the

ALLOCATE

statement:

the

ALLOCATE

statement

will

use

the

implicitly

declared

and

uninitialized

m

from

the

main

block!

refertst:

proc

options(main);

dcl

1

a

based,

2

n

fixed

bin(31),

2

c

char(m

refer(n));

call

inner_proc;

inner_proc:

proc;

dcl

m

fixed

bin(31);

dcl

p

pointer;

m

=

15;

allocate

a

set(p);

end;

end;

REFER

236

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Area

data

and

attribute

Area

variables

describe

areas

of

storage

that

are

reserved

for

the

allocation

of

based

variables.

This

reserved

storage

can

be

allocated

to,

and

freed

from,

based

variables

by

the

ALLOCATE

and

FREE

statements.

Area

variables

can

have

any

storage

class

and

must

be

aligned.

When

a

based

variable

is

allocated

and

an

area

is

not

specified,

the

storage

is

obtained

from

wherever

it

is

available.

Consequently,

allocated

based

variables

can

be

scattered

widely

throughout

main

storage.

This

is

not

significant

for

internal

operations

because

items

are

readily

accessed

using

the

pointers.

However,

if

these

allocations

are

transmitted

to

a

data

set,

the

items

have

to

be

collected

together.

Items

allocated

within

an

area

variable

are

already

collected

and

can

be

transmitted

or

assigned

as

a

unit

while

still

retaining

their

separate

identities.

You

might

want

to

identify

the

locations

of

based

variables

within

an

area

variable

relative

to

the

start

of

the

area

variable.

Offset

variables

are

provided

for

this

purpose.

An

area

can

be

assigned

or

transmitted

complete

with

its

contained

allocations;

thus,

a

set

of

based

allocations

can

be

treated

as

one

unit

for

assignment

and

input/output

while

each

allocation

retains

its

individual

identity.

The

size

of

an

area

is

adjustable

in

the

same

way

as

a

string

length

or

an

array

bound

and

therefore

it

can

be

specified

by

an

expression

or

an

asterisk

(for

a

controlled

area

parameter)

or

by

a

REFER

option

(for

a

based

area).

A

variable

is

given

the

AREA

attribute

contextually

by

its

appearance

in

the

OFFSET

attribute

or

an

IN

option,

or

by

explicit

declaration.

��

AREA

(*)

(expression

)

REFER(variable)

��

expression

Specifies

the

size

of

the

area.

If

expression,

or

an

asterisk

is

not

specified,

the

default

is

1000.

*

An

asterisk

can

be

used

to

specify

the

size

if

the

area

variable

is

declared

is

a

parameter.

REFER

For

a

description

of

the

REFER

option,

refer

to

“REFER

option

(self-defining

data)”

on

page

235.

The

area

size

for

areas

that

have

the

storage

classes

AUTOMATIC

or

CONTROLLED

is

given

by

an

expression

whose

value

specifies

the

number

of

reserved

bytes.

If

an

area

has

the

BASED

attribute,

the

area

size

must

be

a

constant

unless

the

area

is

a

member

of

a

based

structure

or

union

and

the

REFER

option

is

used.

Area

data

and

attribute

Chapter

10.

Storage

control

237

The

size

for

areas

of

static

storage

class

must

be

specified

as

a

restricted

expression.

Examples

of

AREA

declarations

are:

declare

area1

area(2000),

area2

area;

In

addition

to

the

declared

size,

an

extra

16

bytes

of

control

information

precedes

the

reserved

size

of

an

area.

The

16

bytes

contain

such

details

as

the

amount

of

storage

in

use.

The

amount

of

reserved

storage

that

is

actually

in

use

is

known

as

the

extent

of

the

area.

When

an

area

variable

is

allocated,

it

is

empty,

that

is,

the

area

extent

is

zero.

The

maximum

extent

is

represented

by

the

area

size.

Based

variables

can

be

allocated

and

freed

within

an

area

at

any

time

during

execution,

thus

varying

the

extent

of

an

area.

When

a

based

variable

is

freed,

the

storage

it

occupied

is

available

for

other

allocations.

A

chain

of

available

storage

within

an

area

is

maintained;

the

head

of

the

chain

is

held

within

the

control

information.

Inevitably,

as

based

variables

with

different

storage

requirements

are

allocated

and

freed,

gaps

occur

in

the

area

when

allocations

do

not

fit

available

spaces.

These

gaps

are

included

in

the

extent

of

the

area.

No

operators,

including

comparison,

can

be

applied

to

area

variables.

Offset

data

and

attribute

Offset

data

is

used

exclusively

with

area

variables.

The

value

of

an

offset

variable

indicates

the

location

of

a

based

variable

within

an

area

variable

relative

to

the

start

of

the

area.

Because

the

based

variables

are

located

relatively,

if

the

area

variable

is

assigned

to

a

different

part

of

main

storage,

the

offset

values

remain

valid.

Offset

variables

do

not

preclude

the

use

of

pointer

variables

within

an

area.

��

OFFSET

(area-variable)

��

The

association

of

an

area

variable

with

an

offset

variable

is

not

permanent.

An

offset

variable

can

be

associated

with

any

area

variable

by

means

of

the

POINTER

built-in

function

(see

“Locator

conversion”

on

page

230).

The

advantage

of

making

such

an

association

in

a

declaration

is

that

a

reference

to

the

offset

variable

implies

reference

to

the

associated

area

variable.

If

no

area

variable

is

specified,

the

offset

can

be

used

as

a

locator

qualifier

only

through

use

of

the

POINTER

built-in

function.

Setting

offset

variables

The

value

of

an

offset

variable

can

be

set

in

any

one

of

the

following

ways:

v

By

an

ALLOCATE

statement

v

By

assignment

of

the

value

of

another

locator

variable,

or

a

locator

value

returned

by

a

user-defined

function

Area

data

and

attribute

238

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

v

The

NULL,

SYSNULL,

ADDR,

ENTRYADDR,

OFFSETADD,

OFFSETSUBTRACT,

OFFSETVALUE,

or

OFFSET

built-in

function

If

no

area

variable

is

specified,

the

offset

can

be

used

only

as

a

locator

qualifier

through

use

of

the

POINTER

built-in

function.

Examples

of

offset

variables

Consider

the

following

example:

dcl

X

based(O),

Y

based(P),

A

area,

O

offset(A);

allocate

X;

allocate

Y

in(A);

The

storage

class

of

area

A

and

offset

O

is

AUTOMATIC

by

default.

The

first

ALLOCATE

statement

is

equivalent

to:

allocate

x

in(A)

set(O);

The

second

ALLOCATE

statement

is

equivalent

to:

allocate

Y

in(A)

set(P);

The

following

example

shows

how

a

list

can

be

built

in

an

area

variable

using

offset

variables:

dcl

A

area,

(T,H)

offset(A),

1

STR

based(H),

2

P

offset(A),

2

data;

allocate

STR

in(A);

T=H;

do

loop;

allocate

STR

set(T->P);

T=T->P;

...

end;

Built-in

functions

for

area

variables

The

EMPTY

built-in

function

initializes

the

area

variable

to

empty,

freeing

all

allocations

it

might

have.

This

is

the

initial

state

of

an

area

variable

in

which

no

allocations

have

yet

been

made.

The

AVAILABLEAREA

built-in

function

returns

the

size

of

the

largest

allocation

that

can

be

made

in

the

area.

Area

assignment

The

value

of

an

area

reference

can

be

assigned

to

one

or

more

area

variables

by

an

assignment

statement.

Area-to-area

assignment

has

the

effect

of

freeing

all

allocations

in

the

target

area

and

then

assigning

the

extent

of

the

source

area

to

the

target

area,

so

that

all

offsets

for

the

source

area

are

valid

for

the

target

area.

In

the

following

example:

declare

X

based

(O(1)),

O(2)

offset

(A),

(A,B)

area;

alloc

X

in

(A);

Offset

data

and

attribute

Chapter

10.

Storage

control

239

X

=

1;

alloc

X

in

(A)

set

(O(2));

O(2)

->

X

=

2;

B

=

A;

Using

the

POINTER

built-in

function,

the

references

POINTER

(O(2),B)->X

and

O(2)->X

represent

the

same

value

allocated

in

areas

B

and

A,

respectively.

If

an

area

containing

no

allocations

is

assigned

to

a

target

area,

the

effect

is

to

free

all

allocations

in

the

target

area.

Area

assignment

can

be

used

to

expand

a

list

of

based

variables

beyond

the

bounds

of

the

original

area.

Attempting

to

allocate

a

based

variable

within

an

area

that

contains

insufficient

free

storage

to

accommodate

it,

or

attempting

to

assign

an

area

to

another

area

that

is

not

large

enough

raises

the

AREA

condition.

The

ON-unit

for

this

condition

can

be

used

to

change

the

value

of

a

pointer

qualifying

the

reference

to

the

inadequate

area,

so

that

it

points

to

a

different

area;

on

return

from

the

ON-unit,

the

allocation

is

attempted

again,

within

the

new

area.

Alternatively,

you

can

use

the

AVAILABLEAREA

built-in

function

to

determine

whether

the

allocation

you

are

about

to

make

can

be

done

in

the

area

without

raising

the

AREA

condition.

Also,

the

ON-unit

can

write

out

the

area

and

reset

it

to

EMPTY.

Input/output

of

areas

Areas

allow

input

and

output

of

complete

lists

of

based

variables

as

one

unit,

to

and

from

RECORD

files.

On

output,

the

area

extent,

together

with

the

16

bytes

of

control

information,

is

transmitted,

except

when

the

area

is

in

a

structure

or

union

and

is

not

the

last

item

in

it—then,

the

declared

size

is

transmitted.

Thus

the

unused

part

of

an

area

does

not

take

up

space

on

the

data

set.

Because

the

extents

of

areas

can

vary,

varying

length

records

should

be

used.

The

maximum

record

length

required

is

governed

by

the

area

length

(area

size

+

16).

List

processing

List

processing

is

the

name

for

a

number

of

techniques

to

help

manipulate

collections

of

data.

Although

arrays,

structures,

and

unions

are

also

used

for

manipulating

collections

of

data,

list

processing

techniques

are

more

flexible

since

they

allow

collections

of

data

to

be

indefinitely

reordered

and

extended

during

program

execution.

The

purpose

here

is

not

to

illustrate

these

techniques

but

is

to

show

how

based

variables

and

locator

variables

serve

as

a

basis

for

this

type

of

processing.

In

list

processing,

a

number

of

based

variables

with

many

generations

can

be

included

in

a

list.

Members

of

the

list

are

linked

together

by

one

or

more

pointers

in

one

member

identifying

the

location

of

other

members

or

lists.

The

allocation

of

a

based

variable

cannot

specify

where

in

main

storage

the

variable

is

to

be

allocated

(except

that

you

can

specify

the

area

in

which

you

want

it

allocated).

In

practice,

a

chain

of

items

can

be

scattered

throughout

main

storage,

but

by

accessing

each

pointer

the

next

member

is

found.

A

member

of

a

list

is

usually

a

structure

or

union

that

includes

a

pointer

variable.

The

following

example

creates

a

list

of

structures:

dcl

1

STR

based(H),

2

P

pointer,

2

data,

T

pointer;

Area

assignment

240

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

allocate

STR;

T=H;

do

loop;

allocate

STR

set(T->P);

T=T->P;

T->P=null;

...

end;

The

structures

are

generations

of

STR

and

are

linked

by

the

pointer

variable

P

in

each

generation.

The

pointer

variable

T

identifies

the

previous

generation

during

the

creation

of

the

list.

The

first

ALLOCATE

statement

sets

the

pointer

H

to

identify

it.

The

pointer

H

identifies

the

start,

or

head,

of

the

list.

The

second

ALLOCATE

statement

sets

the

pointer

P

in

the

previous

generation

to

identify

the

location

of

this

new

generation.

The

assignment

statement

T=T->P;

updates

pointer

T

to

identify

the

location

of

the

new

generation.

The

assignment

statement

T->P=NULL;

sets

the

pointer

in

the

last

generation

to

NULL,

giving

a

positive

indication

of

the

end

of

the

list.

Figure

17

shows

a

diagrammatic

representation

of

a

one-directional

chain.

Unless

the

value

of

P

in

each

generation

is

assigned

to

a

separate

pointer

variable

for

each

generation,

the

generations

of

STR

can

be

accessed

only

in

the

order

in

which

the

list

was

created.

For

the

above

example,

the

following

statements

can

be

used

to

access

each

generation

in

turn:

do

T=H

repeat(T->P)

while

(T¬=null);

...

T->data;

...
end;

The

foregoing

examples

show

a

simple

list

processing

technique,

the

creation

of

a

unidirectional

list.

More

complex

lists

can

be

formed

by

adding

other

pointer

variables

into

the

structure

or

union.

If

a

second

pointer

is

added,

it

can

be

made

to

point

to

the

previous

generation.

The

list

is

then

bidirectional;

from

any

item

in

the

list,

the

previous

and

next

items

can

be

accessed

by

using

the

appropriate

pointer

value.

Instead

of

setting

the

last

pointer

value

to

the

value

of

NULL,

it

can

be

set

to

point

to

the

first

item

in

the

list,

creating

a

ring

or

circular

list.

A

list

need

not

consist

only

of

generations

of

a

single

based

variable.

Generations

of

different

based

structure

or

unions

can

be

included

in

a

list

by

setting

the

ITEM

1

ITEM

2

ITEM

3

┌────────┐

┌──────────────────┐

┌─────────────────┐

┌─────────────┐

│

│

│

│

│

│

│

│

│

Head

├───�│

Forward

Pointer

├───�│

Forward

Pointer

├───�│

NULL

│

│

│

├──────────────────┤

├─────────────────┤

├─────────────┤

└────────┘

│

│

│

│

│

│

│

Data

1

│

│

Data

2

│

│

Data

3

│

│

│

│

│

│

│

└──────────────────┘

└─────────────────┘

└─────────────┘

Figure

17.

Example

of

one-directional

chain

List

processing

Chapter

10.

Storage

control

241

appropriate

pointer

values.

Items

can

be

added

and

deleted

from

a

list

by

manipulating

the

values

of

pointers.

A

list

can

be

restructured

by

manipulating

the

pointers

so

that

the

processing

of

data

in

the

list

can

be

simplified.

ASSIGNABLE

and

NONASSIGNABLE

attributes

The

ASSIGNABLE

and

NONASSIGNABLE

attributes

specify

whether

the

associated

variable

can

be

the

target

of

an

assignment.

��

ASSIGNABLE

NONASSIGNABLE

��

Abbreviations:

ASGN,

NONASGN

Default:

ASSIGNABLE

If

a

variable

has

the

NONASSIGNABLE

attribute,

the

variable

cannot

be

assigned.

If

an

entry

descriptor

has

the

NONASSIGNABLE

attribute,

the

argument

is

assumed

not

to

change

when

the

associated

ENTRY

is

invoked.

If

the

argument

is

a

constant,

no

dummy

argument

is

created.

The

ASSIGNABLE

and

NONASSIGNABLE

attributes

are

propagated

to

members

of

structures

or

unions.

NORMAL

and

ABNORMAL

attributes

The

NORMAL

and

ABNORMAL

attributes

specify

whether

the

associated

variable

is

subject

to

change

at

any

time.

The

ABNORMAL

attribute

specifies

that

the

value

of

the

variable

can

change

between

statements

or

within

a

statement.

An

abnormal

variable

is

fetched

from

or

stored

in

storage

each

time

it

is

needed

or

each

time

it

is

changed.

All

optimization

is

inhibited

for

an

abnormal

variable.

��

NORMAL

ABNORMAL

��

Default:

NORMAL

The

NORMAL

and

ABNORMAL

attributes

are

propagated

to

members

of

structures

or

unions.

If

the

ABNORMAL

attribute

applies

to

an

INTERNAL

STATIC

variable

with

an

INITIAL

value,

the

variable

(with

its

initial

value)

will

appear

in

the

generated

object

code

even

if

the

variable

is

otherwise

unused.

List

processing

242

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

BIGENDIAN

and

LITTLEENDIAN

attributes

The

BIGENDIAN

and

LITTLEENDIAN

attributes

specify

whether

the

associated

variable

is

stored

with

the

most

or

least

significant

digits

first.

The

BIGENDIAN

and

LITTLEENDIAN

attributes

are

ignored

except

for

FIXED

BINARY,

ORDINAL,

OFFSET,

POINTER,

and

AREA

variables

and

VARYING

string

variables.

��

BIGENDIAN

LITTLEENDIAN

��

Default:

BIGENDIAN

BIGENDIAN

indicates

that

the

variable

(for

varying

strings,

the

length

prefix

part

of

the

variable)

is

stored

with

its

most

significant

bytes

first.

This

format

is

the

native

style

for

S/370

and

RS/6000.

LITTLEENDIAN

indicates

that

the

variable

is

stored

in

the

opposite

format:

with

its

least

significant

bytes

first.

This

format

is

the

native

style

for

OS/2

and

Windows.

When

the

LITTLEENDIAN

or

BIGENDIAN

attribute

is

applied

to

an

AREA,

it

affects

only

the

format

in

which

the

control

values

managed

by

the

compiler

and

library

are

held.

It

has

no

effect

on

user

variables

stored

in

the

AREA

or

on

user

offset

variables

used

to

point

to

the

user

variables

in

the

AREA.

The

following

example

illustrates

how

BIGENDIAN

and

LITTLEENDIAN

variables

are

stored.

The

built-in

function

HEXIMAGE

shows

how

X

and

Y

are

actually

stored.

dcl

X

fixed

bin(15)

bigendian;

dcl

Y

fixed

bin(15)

littleendian;

X

=

258;

Y

=

258;

display(

heximage(

addr(X),

stg(X)

)

);

/*

displays

0102

*/

display(

heximage(

addr(Y),

stg(Y)

)

);

/*

displays

0201

*/

In

contrast,

the

HEX

built-in

function

would

show

for

X

and

Y

as

given

above:

display

(hex(X));

/*

displays

0102

*/

display

(hex(Y));

/*

displays

0102

*/

BIGENDIAN

and

LITTLEENDIAN

have

no

effect

on

the

semantics

of

any

operations,

or

on

the

storage

requirements

for

any

variables.

The

BIGENDIAN

and

LITTLEENDIAN

attributes

are

propagated

to

members

of

structures

or

unions.

For

more

information

on

using

BIGENDIAN

and

LITTLEENDIAN,

refer

to

the

Programming

Guide.

The

NATIVE

and

NONNATIVE

attributes

are

synonyms

for

BIGENDIAN

and

LITTLEENDIAN,

but

their

meanings

can

vary

across

different

systems:

BIGENDIAN

and

LITTLEENDIAN

Chapter

10.

Storage

control

243

v

On

z/OS

and

RS/600,

NATIVE

means

BIGENDIAN

v

On

OS/2

and

Windows,

NATIVE

means

LITTLEENDIAN

HEXADEC

and

IEEE

attributes

HEXADEC

and

IEEE

specify

whether

the

associated

variable

is

stored

using

the

same

format

as

on

S/370

or

using

the

OS/2,

Windows,

or

AIX

format.

The

HEXADEC

and

IEEE

attributes

are

ignored

except

for

floating-point

variables.

��

IEEE

HEXADEC

��

Default:

IEEE

HEXADEC

indicates

that

the

variable

is

stored

in

hexadecimal

(S/370)

format.

IEEE

indicates

that

the

variable

is

stored

using

the

IEEE

format.

All

computations

are

done

using

IEEE

floating-point;

variables

declared

HEXADEC

will

be

converted

as

necessary.

CONNECTED

and

NONCONNECTED

attributes

Elements,

arrays,

and

major

structure

or

unions

are

always

allocated

in

connected

storage.

References

to

unconnected

storage

arise

only

when

you

refer

to

an

aggregate

that

is

made

up

of

noncontiguous

items

from

a

larger

aggregate.

(See

“Cross

sections

of

arrays”

on

page

170.)

For

example,

in

the

following

structure

the

interleaved

arrays

A.B

and

A.C

are

both

in

unconnected

storage.

1

A(10),

2

B,

2

C;

��

NONCONNECTED

CONNECTED

��

Abbreviations:

CONN,

NONCONN

Default:

NONCONNECTED

The

CONNECTED

attribute

is

applicable

only

to

noncontrolled

aggregate

parameters

and

can

be

specified

only

on

level-1

names.

It

specifies

that

the

parameter

is

a

reference

to

connected

storage

only,

and

therefore,

allows

the

parameter

to

be

used

as

a

target

or

source

in

record-oriented

I/O,

or

as

a

base

in

string

overlay

defining.

When

the

parameter

is

connected

and

the

CONNECTED

attribute

is

used,

more

efficient

object

code

is

produced

for

references

to

the

connected

parameter.

BIGENDIAN

and

LITTLEENDIAN

244

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

NONCONNECTED

should

be

specified

if

a

parameter

occupies

noncontiguous

storage.

In

the

following

example

the

NONCONNECTED

attribute

specifies

that

the

sum_Slice

routine

handles

1-dimensional

arrays

in

which

the

elements

may

not

be

contiguous.

In

the

first

invocation,

sum_Slice

is

passed

the

first

row,

which

is

in

connected

storage.

In

the

second

invocation,

however,

sum_Slice

is

passed

the

first

column,

which

is

in

nonconnected

storage.

dcl

A(10,10)

fixed

bin(31);

display(

sum_Slice(

A(1,*)

)

);

/*

first

row

*/

display(

sum_Slice(

A(*,1)

)

);

/*

first

column

*/

sum_Slice:proc(X)

returns(fixed

bin(31));

dcl

X

(*)

fixed

bin(31)

nonconnected;

/*

default

*/

return(sum(X)

);

end;

DEFINED

and

POSITION

attributes

The

DEFINED

attribute

specifies

that

the

declared

variable

is

associated

with

some

or

all

of

the

storage

associated

with

the

designated

base

variable.

The

UNION

attribute

allows

you

to

achieve

the

same

end

in

a

much

cleaner

manner

and

also

allows

variables

with

different

attributes

and

precisions

to

be

overlaid.

Also,

while

the

DEFINED

attribute

guarantees

that

access

through

defined

or

base

variables

is

reflected

in

all

defined

variables,

in

a

union

only

one

member

of

the

union

is

valid

at

any

given

time.

For

syntax

information

on

the

UNION

attribute,

refer

to

“UNION

attribute”

on

page

172.

��

DEFINED

reference

(reference)

POSITION(expression)

��

Abbreviations:

DEF

for

DEFINED,

POS

for

POSITION

reference

To

the

variable

(the

base

variable)

whose

storage

is

associated

with

the

declared

variable;

the

latter

is

the

defined

variable.

The

base

variable

can

be

EXTERNAL

or

INTERNAL.

It

can

be

a

parameter

(in

string

overlay

defining,

the

parameter

must

refer

to

connected

storage).

It

cannot

be

BASED

or

DEFINED.

A

change

to

the

base

variable’s

value

is

a

corresponding

change

to

the

value

of

the

defined

variable,

and

vice

versa.

If

the

base

variable

is

a

data

aggregate,

a

defined

variable

can

comprise

all

the

data

or

only

a

specified

part

of

it.

The

defined

variable

does

not

inherit

any

attributes

from

the

base

variable.

The

defined

variable

must

be

INTERNAL

and

a

level-1

identifier.

It

can

have

the

dimension

attribute.

It

cannot

be

INITIAL,

AUTOMATIC,

BASED,

CONTROLLED,

STATIC,

or

a

parameter.

There

are

three

types

of

defining:

simple,

iSUB

and

string

overlay.

The

type

of

defining

in

effect

is

determined

as

follows:

CONNECTED

and

NONCONNECTED

Chapter

10.

Storage

control

245

1.

If

the

POSITION

attribute

is

specified,

string

overlay

defining

is

in

effect.

2.

If

the

subscripts

specified

in

the

base

variable

contain

references

to

iSUB

variables,

iSUB

defining

is

in

effect.

3.

If

neither

an

iSUB

variable

nor

the

POSITION

attribute

is

present

and

if

the

base

variable

and

defined

variable

match

according

to

the

criteria

given

below.

simple

defining

is

in

effect.

4.

Otherwise,

string

overlay

defining

is

in

effect.

If

the

POSITION

attribute

is

specified,

the

base

variable

must

not

contain

iSUB

references.

A

base

variable

and

a

defined

variable

match

if

the

base

variable

when

passed

as

an

argument

matches

a

parameter

which

has

the

attributes

of

the

defined

variable

(except

for

the

DEFINED

attribute).

For

this

purpose,

the

parameter

is

assumed

to

have

all

array

bounds,

string

lengths,

and

area

sizes

specified

by

asterisks.

For

simple

and

iSUB

defining,

a

PICTURE

attribute

can

only

be

matched

by

a

PICTURE

attribute

that

is

identical

except

for

repetition

factors.

For

a

reference

to

specify

a

valid

base

variable

in

string

overlay

defining,

the

reference

must

be

in

connected

storage.

You

can

override

the

matching

rule

completely,

but

this

can

cause

unwanted

side

effects

within

your

program.

The

values

specified

or

derived

for

any

array

bounds,

string

lengths,

or

area

sizes

in

a

defined

variable

do

not

always

have

to

match

those

of

the

base

variable.

However,

the

defined

variable

must

be

able

to

fit

into

the

corresponding

base

array,

string,

or

area.

In

references

to

defined

data,

the

STRINGRANGE,

SUBSCRIPTRANGE,

and

STRINGSIZE

conditions

are

raised

for

the

array

bounds

and

string

lengths

of

the

defined

variable,

not

the

base

variable.

The

determination

of

values

and

the

interpretation

of

names

occurs

in

the

following

sequence:

1.

The

array

bounds,

string

lengths,

and

area

sizes

of

a

defined

variable

are

evaluated

on

entry

to

the

block

that

declares

the

variable.

2.

A

reference

to

a

defined

variable

is

a

reference

to

the

current

generation

of

the

base

variable.

When

a

defined

variable

is

passed

as

an

argument

without

creation

of

a

dummy,

the

corresponding

parameter

refers

to

the

generation

of

the

base

variable

that

is

current

when

the

argument

is

passed.

This

remains

true

even

if

the

base

variable

is

reallocated

within

the

invoked

procedure.

3.

When

a

reference

is

made

to

the

defined

variable,

the

order

of

evaluation

of

the

subscripts

of

the

base

and

defined

variable

is

undefined.

If

the

defined

variable

has

the

BIT

attribute,

unpredictable

results

can

occur

under

the

following

conditions:

v

If

the

base

variable

is

not

on

a

byte

boundary

v

If

the

defined

variable

is

not

defined

on

the

first

position

of

the

base

variable

and

the

defined

variable

is

used

as:

–

A

parameter

in

a

subroutine

call

(that

is,

referenced

as

internally

stored

data)

–

An

argument

in

a

PUT

statement

–

An

argument

in

a

built-in

function

(library

call)

–

If

the

base

variable

is

controlled,

and

the

defined

variable

is

dimensioned

and

is

declared

with

variable

array

bounds

DEFINED

and

POSITION

246

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Unconnected

Storage

The

DEFINED

attribute

can

overlay

arrays.

This

allows

array

expressions

to

refer

to

array

elements

in

unconnected

storage

(array

elements

that

are

not

adjacent

in

storage).

It

is

possible

for

an

array

expression

involving

consecutive

elements

to

refer

to

unconnected

storage

in

the

following

case:

v

Where

a

string

array

is

defined

on

a

string

array

that

has

elements

of

greater

length.

Consecutive

elements

in

the

defined

array

are

separated

by

the

difference

between

the

lengths

of

the

elements

of

the

base

and

defined

arrays,

and

are

held

in

unconnected

storage.

An

array

overlay-defined

on

another

array

is

always

assumed

to

be

in

unconnected

storage.

Simple

Defining

Simple

defining

allows

you

to

refer

to

an

element,

array,

or

structure

variable

by

another

name.

The

defined

and

base

variables

can

comprise

any

data

type,

but

they

must

match,

as

described

earlier.

The

ALIGNED

and

UNALIGNED

attributes

must

match

for

each

element

in

the

defined

variable

and

the

corresponding

element

in

the

base

variable.

The

defined

variable

can

have

the

dimension

attribute.

In

simple

defining

of

an

array:

v

The

base

variable

can

be

a

cross-section

of

an

array.

v

The

number

of

dimensions

specified

for

the

defined

variable

must

be

equal

to

the

number

of

dimensions

specified

for

the

base

variable.

v

The

range

specified

by

a

bound

pair

of

the

defined

array

must

equal

or

be

contained

within

the

range

specified

by

the

corresponding

bound

pair

of

the

base

array.

In

simple

defining

of

a

string,

the

length

of

the

defined

string

must

be

less

than

or

equal

to

the

length

of

the

base

string.

In

simple

defining

of

an

area,

the

size

of

the

defined

area

must

be

equal

to

the

size

of

the

base

area.

A

base

variable

can

be,

or

can

contain,

a

varying

string,

provided

that

the

corresponding

part

of

the

defined

variable

is

a

varying

string

of

the

same

maximum

length.

Examples:

DCL

A(10,10,10),

X1(2,2,2)

DEF

A,

X2(10,10)

DEF

A(*,*,5),

X3

DEF

A(L,M,N);

X1

is

a

three-dimensional

array

that

consists

of

the

first

two

elements

of

each

row,

column

and

plane

of

A.

X2

is

a

two-dimensional

array

that

consists

of

the

fifth

plane

of

A.

X3

is

an

element

that

consists

of

the

element

identified

by

the

subscript

expressions

L,

M,

and

N.

DCL

B

CHAR(10),

Y

CHAR(5)

DEF

B;

DEFINED

and

POSITION

Chapter

10.

Storage

control

247

Y

is

a

character

string

that

consists

of

the

first

5

characters

of

B.

DCL

C

AREA(500),

Z

AREA(500)

DEF

C;

Z

is

an

area

defined

on

C.

DCL

1

D

UNALIGNED,

2

E,

2

F,

3

G

CHAR(10)

VAR,

3

H,

1

S

UNALIGNED

DEF

D,

2

T,

2

U,

3

V

CHAR(10)

VAR,

3

W;

S

is

a

structure

defined

on

D.

For

simple

defining,

the

organization

of

the

two

structures

must

be

identical.

A

reference

to

T

is

a

reference

to

E,

V

to

G,

and

so

on.

iSUB

Defining

With

iSUB

defining,

you

can

create

a

defined

array

that

consists

of

designated

elements

from

a

base

array.

The

defined

and

base

arrays

must

be

arrays

of

scalars,

may

comprise

any

data

types,

and

must

have

identical

attributes

(apart

from

the

dimension

attribute).

The

defined

variable

must

have

the

dimension

attribute.

In

the

declaration

of

the

defined

array,

the

base

array

must

be

subscripted,

and

the

subscript

positions

cannot

be

specified

as

asterisks.

A

iSUB

variable

is

a

reference,

in

the

subscript

list

for

the

base

array,

to

the

dimension

of

the

defined

array.

At

least

one

subscript

in

the

base

array’s

subscript-list

must

be

an

iSUB

expression

which,

on

evaluation,

gives

the

required

subscript

in

the

base

array.

The

value

of

i

ranges

from

1

to

n,

where

n

is

the

number

of

dimensions

in

the

defined

array.

The

number

of

subscripts

for

the

base

array

must

be

equal

to

the

number

of

dimensions

for

the

base

array.

If

a

reference

to

a

defined

array

does

not

specify

a

subscript

expression,

subscript

evaluation

occurs

during

the

evaluation

of

the

expression

or

assignment

in

which

the

reference

occurs.

The

value

of

i

is

specified

as

an

integer.

Within

an

iSUB

expression,

an

iSUB

variable

uis

treated

as

REAL

FIXED

BINARY(31,0)

variable.

A

subscript

in

a

reference

to

a

defined

variable

is

evaluated

even

if

there

is

no

corresponding

iSUB

in

the

base

variable’s

subscript

list.

An

iSUB-defined

variable

may

not

appear

in

the

data-list

of

a

GET

DATA

or

PUT

DATA

statement.

Examples:

DCL

A(10,10)

FIXED

BIN

X(10)

FIXED

BIN

DEF(

A(1SUB,1SUB)

);

X

is

a

one-dimensional

array

that

consists

of

the

diagonal

of

A:

X(i)

refers

to

the

same

storage

as

A(i,i).

DCL

B(5,10)

FIXED

BIN

Y(10,5)

FIXED

BIN

DEF(

A(2SUB,1SUB)

);

DEFINED

and

POSITION

248

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Y

is

a

two-dimensional

array

that

consists

of

the

elements

of

B

with

the

bounds

transposed:

Y(i,j)

refers

to

the

same

storage

as

X(j,i).

String

Overlay

Defining

String

overlay

defining

allows

you

to

associate

a

defined

variable

with

the

storage

for

a

base

variable.

Both

the

defined

and

the

base

variable

must

be

string

or

picture

data.

Neither

the

defined

nor

the

base

variable

can

have

the

ALIGNED

or

the

VARYING

attributes.

Both

the

defined

and

the

base

variables

must

belong

to:

v

The

bit

class,

consisting

of:

Fixed-length

bit

variables

Aggregates

of

fixed-length

bit

variables
v

The

character

class,

consisting

of:

Fixed-length

character

variables

Character

pictured

and

numeric

pictured

variables

Aggregates

of

the

two

above
v

The

graphic

class,

consisting

of:

Fixed-length

graphic

variables

Aggregates

of

fixed-length

graphic

variables
v

The

widechar

class,

consisting

of:

Fixed-length

widechar

variables

Aggregates

of

fixed-length

widechar

variables

Examples:

DCL

A

CHAR(100),

V(10,10)

CHAR(1)

DEF

A;

V

is

a

two-dimensional

array

that

consists

of

all

the

elements

in

the

character

string

A.

DCL

B(10)

CHAR(1),

W

CHAR(10)

DEF

B;

W

is

a

character

string

that

consists

of

all

the

elements

in

the

array

B.

POSITION

attribute

The

POSITION

attribute

can

be

used

only

with

string-overlay

defining

and

specifies

the

bit,

character,

graphic

or

widechar

within

the

base

variable

at

which

the

defined

variable

is

to

begin.

The

expression

in

the

POSITION

attribute

specifies

the

position

relative

to

the

start

of

the

base

variable.

The

value

specified

in

the

expression

can

range

from

1

to

n,

where

n

is

defined

as

n

=

N(b)

-

N(d)

+

1

where

N(b)

is

the

number

of

bits,

characters,

graphics

or

widechars

in

the

base

variable,

and

N(d)

is

the

number

of

bits,

characters,

graphics

or

widechars

in

the

defined

variable.

The

expression

is

evaluated

and

converted

to

an

integer

value

at

each

reference

to

the

defined

item.

DEFINED

and

POSITION

Chapter

10.

Storage

control

249

If

the

POSITION

attribute

is

omitted,

POSITION(1)

is

the

default.

When

the

defined

variable

is

a

bit

class

aggregate:

v

The

POSITION

attribute

can

contain

only

an

integer.

v

The

base

variable

must

not

be

subscripted.

The

base

variable

must

refer

to

data

in

connected

storage.

Examples:

DCL

C(10,10)

BIT(1),

X

BIT(40)

DEF

C

POS(20);

X

is

a

bit

string

that

consists

of

40

elements

of

C,

starting

at

the

20th

element.

DCL

E

PIC’99V.999’,

Z1(6)

CHAR(1)

DEF

(E),

Z2

CHAR(3)

DEF

(E)

POS(4),

Z3(4)

CHAR(1)

DEF

(E)

POS(2);

Z1

is

a

character

string

array

that

consists

of

all

the

elements

of

the

decimal

numeric

picture

E.

Z2

is

a

character

string

that

consists

of

the

elements

'999'

of

the

picture

E.

Z3

is

a

character-string

array

that

consists

of

the

elements

'9.99'

of

the

picture

E.

DCL

A(20)

CHAR(10),

B(10)

CHAR(5)

DEF

(A)

POSITION(1);

The

first

50

characters

of

B

consist

of

the

first

50

characters

of

A.

POSITION(1)

must

be

explicitly

specified.

Otherwise,

simple

defining

is

used

and

gives

different

results.

INITIAL

attribute

The

INITIAL

attribute

specifies

an

initial

value

or

values

assigned

to

a

variable

at

the

time

storage

is

allocated

for

it.

Only

one

initial

value

can

be

specified

for

an

element

variable.

More

than

one

can

be

specified

for

an

array

variable.

A

structure

or

union

variable

can

be

initialized

only

by

separate

initialization

of

its

elementary

names,

whether

they

are

element

or

array

variables.

The

INITIAL

attribute

cannot

be

given

to

constants,

defined

data,

noncontrolled

parameters,

and

non-LIMITED

static

entry

variables.

The

INITIAL

attribute

has

three

forms.

1.

The

first

form,

INITIAL,

specifies

an

initial

constant,

expression,

or

function

reference,

for

which

the

value

is

assigned

to

a

variable

when

storage

is

allocated

to

it.

2.

The

second

form,

INITIAL

CALL,

specifies

(with

the

CALL

option)

that

a

procedure

is

invoked

to

perform

initialization.

The

variable

is

initialized

by

assignment

during

the

execution

of

the

called

routine.

(The

routine

is

not

invoked

as

a

function

that

returns

a

value

to

the

point

of

invocation.)

3.

The

third

form,

INITIAL

TO,

specifies

that

the

pointer

(or

array

of

pointers)

is

initialized

with

the

address

of

the

character

string

specified

in

the

INITIAL

LIST.

The

string

also

has

the

attributes

indicated

by

the

TO

keyword.

DEFINED

and

POSITION

250

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

INITIAL

(

�

,

item

)

item:

*

initial-constant

reference

(expression)

iteration-specification

��

iteration-specification:

(

iteration-factor

)

*

iteration-item

iteration-item:

�

*

initial-constant

reference

,

(

item

)

initial-constant:

arithmetic-constant

+

−

bit-constant

character-constant

graphic-constant

entry-constant

file-constant

label-constant

real-constant

+

imaginary-constant

+

−

−

and

��

INITIAL

CALL

entry-reference

generic-name

built-in-name

�

,

(

argument

)

��

INITIAL

Chapter

10.

Storage

control

251

��

INITIAL

TO

(

varying

varyingz

nonvarying

)

(

�

,

item

)

�

�

item:

(see

description

under

INITIAL)

��

Abbreviations:

INIT,

INIT

CALL,

INIT

TO

*

Specifies

that

the

element

is

to

be

left

uninitialized,

except

when

the

element

is

used

as

an

iteration

factor.

iteration

factor

Specifies

the

number

of

times

the

iteration

item

is

to

be

repeated

in

the

initialization

of

elements

of

an

array.

The

iteration

factor

can

be

an

expression

or

an

asterisk.

v

An

expression

is

converted

to

FIXED

BINARY(31).

For

static

variables,

it

must

be

a

constant.

v

An

asterisk

indicates

that

the

remaining

elements

should

be

initialized

to

the

specified

value.

A

negative

or

zero

iteration

factor

specifies

no

initialization.

constant

reference

expression

These

specify

an

initial

value

to

be

assigned

to

the

initialized

variable.

INITIAL

CALL

For

INITIAL

CALL,

the

entry

reference

and

argument

list

passed

must

satisfy

the

condition

stated

for

block

activation

as

discussed

under

“Block

activation”

on

page

89.

INITIAL

CALL

cannot

be

used

to

initialize

static

data.

The

following

example

initializes

all

of

the

elements

of

A

to

X’00’

without

the

need

for

the

INITIAL

attribute

on

each

element:

dcl

1

A

automatic,

2

...,

2

...,

2

*

char(0)

initial

call

plifill(

addr(A),

’00’X,

stg(A)

);

An

AUTOMATIC

variable

that

has

an

INITIAL

CALL

attribute

will

be

retained

even

if

otherwise

unused

(in

case

the

logic

of

your

program

requires

that

the

call

to

be

executed).

If

the

procedure

invoked

by

the

INITIAL

CALL

statement

has

been

specified

in

a

FETCH

or

RELEASE

statement

and

it

is

not

present

in

main

storage,

the

INITIAL

CALL

statement

initiates

dynamic

loading

of

the

procedure.

(For

more

information

on

dynamic

loading,

refer

to

“Dynamic

loading

of

an

external

procedure”

on

page

101.)

INITIAL

TO

Use

only

with

static

native

pointers.

Specifies

that

the

pointer

(or

array

of

INITIAL

252

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

pointers)

is

initialized

with

the

address

of

the

character

string

specified

in

the

INITIAL

LIST.

Also

specifies

that

the

string

has

the

attributes

indicated

by

the

TO

keyword.

In

the

following

example,

pdays

is

initialized

with

the

addresses

of

character

varyingz

strings

containing

the

names

of

the

weekdays.

dcl

pdays(7)

static

ptr

init

to(varyingz)

(’Sunday’,

’Monday’,

’Tuesday’,

’Wednesday’,

’Thursday’,

’Friday’,

’Saturday’

);

You

should

not

change

a

value

identified

by

a

pointer

initialized

with

INITIAL

TO.

The

value

can

be

placed

in

read-only

storage

and

an

attempt

to

change

it

could

result

in

a

protection

exception.

Given

the

array

pdays

in

the

preceding

example,

then,

the

following

assignment

is

illegal:

dcl

x

char(30)

varz

based;

pdays(1)->x

=

’Sonntag’;

Initializing

array

variables

Initial

values

specified

for

an

array

are

assigned

to

successive

elements

of

the

array

in

row-major

order

(final

subscript

varying

most

rapidly).

If

too

many

initial

values

are

specified,

the

excess

values

are

ignored;

if

not

enough

are

specified,

the

remainder

of

the

array

is

not

initialized.

The

initialization

of

an

array

of

strings

can

include

both

string

repetition

and

iteration

factors.

Where

only

one

of

these

is

given,

it

is

taken

to

be

a

string

repetition

factor

unless

the

string

constant

is

placed

in

parentheses.

The

iteration

factor

can

be

specified

as

*,

which

means

that

all

of

the

remaining

elements

will

be

initialized

with

the

given

value.

The

following

examples

illustrate

the

use

of

(and

difference

between)

string

repetition

and

iteration

factors:

((2)'A')

is

equivalent

to

('AA')

((2)('A'))

is

equivalent

to

('A','A')

((2)(1)'A')

is

equivalent

to

('A','A')

((*)(1)'A')

is

equivalent

to

('A','A'...'A')

An

area

variable

is

initialized

with

the

value

of

the

EMPTY

built-in

function,

on

allocation.

Any

INITIAL

clause

for

an

area

variable

will

be

ignored.

If

the

attributes

of

an

item

in

the

INITIAL

attribute

differ

from

those

of

the

data

item

itself,

conversion

is

performed,

provided

the

attributes

are

compatible.

INITIAL

is

not

allowed

on

objects

of

REFER

clauses.

INITIAL

Chapter

10.

Storage

control

253

Initializing

unions

The

members

of

a

union

can

have

initial

values.

However,

if

the

union

is

static,

only

one

member

of

the

union

can

have

the

initial

attribute.

For

nonstatic

unions,

initial

attributes

are

applied

in

order

of

appearance.

Subsequent

initial

values

overwrite

previous

ones.

In

the

following

example,

the

declaration

for

NT1

would

be

invalid

if

it

had

the

static

storage

attribute.

dcl

1

NT1

union

automatic,

2

Numeric_translate_table1

char(256)

init(

(256)’00’X),

2

*,

3

*

char(240),

3

*

char(10)

init(’0123456789’),

2

*

char(0);

dcl

1

NT2

union

static,

2

Numeric_translate_table2

char(256),

2

*,

3

*

char(

rank(’0’)

)

init((1)(low(rank(’0’)))

),

3

*

char(10)

init(’0123456789’),

3

*

char(

(256-(rank(’0’))-10)

)

init((1)(low(

(256-(rank(’0’))-10)

))

),

The

declaration

for

NT2

is

valid

even

though

it

has

static

storage

class.

Furthermore,

the

NT2

declaration

is

portable

between

EBCDIC

and

ASCII

modes

of

execution.

Initializing

static

variables

For

a

variable

that

is

allocated

when

the

program

is

loaded,

that

is,

a

static

variable,

which

remains

allocated

throughout

execution

of

the

program,

any

value

specified

in

an

INITIAL

attribute

is

assigned

only

once.

(Static

storage

for

fetched

procedures

is

allocated

and

initialized

each

time

the

procedure

is

loaded.)

If

static

variables

are

initialized

using

the

INITIAL

attribute,

the

initial

values

must

be

specified

as

restricted

expressions.

Extent

specifications

must

be

restricted

expressions.

The

restrictions

on

initializing

static

variables

are

as

follows:

v

STATIC

ENTRY

variables

must

have

the

LIMITED

attribute

(see

“LIMITED

attribute”

on

page

120).

v

INITIAL

is

not

allowed

for

static

format

variables.

v

INITIAL

is

allowed

for

label

variables

that

are

not

part

of

structures

or

unions.

In

this

case,

the

label

variable

gets

the

CONSTANT

attribute.

v

INITIAL

is

not

valid

for

AREA

variables.

v

Only

one

member

of

a

static

union

can

specify

INITIAL.

v

If

a

STATIC

EXTERNAL

item

without

the

RESERVED

attribute

is

given

the

INITIAL

attribute

in

more

than

one

declaration,

the

value

specified

must

be

the

same

in

every

case.

Initializing

automatic

variables

For

automatic

variables,

which

are

allocated

at

each

activation

of

the

declaring

block,

any

specified

initial

value

is

assigned

with

each

allocation.

Initializing

unions

254

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Initializing

based

and

controlled

variables

For

based

and

controlled

variables

which

are

allocated

at

the

execution

of

ALLOCATE

statements

(also

LOCATE

statements

for

based

variables),

any

specified

initial

value

is

assigned

with

each

allocation.

When

storage

for

based

variables

is

allocated

using

the

ALLOCATE

or

the

AUTOMATIC

built-in

functions,

the

initial

values

are

not

assigned;

for

area

variables,

the

area

is

not

implicitly

initialized

to

EMPTY.

Examples

In

the

following

example,

when

storage

is

allocated

for

Name,

the

character

constant

'John

Doe'

(padded

on

the

right

to

10

characters)

is

assigned

to

it.

dcl

Name

char(10)

init(’John

Doe’);

In

the

following

example,

when

Pi

is

allocated,

it

is

initialized

to

the

value

3.1416.

dcl

Pi

fixed

dec(5,4)

init(3.1416);

The

following

example

specifies

that

A

is

to

be

initialized

with

the

value

of

the

expression

B*C:

declare

A

init((B*C));

The

following

example

results

in

each

of

the

first

920

elements

of

A

being

set

to

0.

The

next

80

elements

consist

of

20

repetitions

of

the

sequence

5,5,5,9.

declare

A

(100,10)

initial

((920)0,

(20)

((3)5,9));

In

the

following

example,

only

the

first,

third,

and

fourth

elements

of

A

are

initialized;

the

rest

of

the

array

is

not

initialized.

The

array

B

is

fully

initialized,

with

the

first

25

elements

initialized

to

0,

the

next

25

to

1,

and

the

remaining

elements

to

0.

In

the

structure

C,

where

the

dimension

(8)

has

been

inherited

by

D

and

E,

only

the

first

element

of

D

is

initialized.

All

the

elements

of

E

are

initialized.

declare

A(15)

character(13)

initial

(’John

Doe’,

*,

’Richard

Row’,

’Mary

Smith’),

B

(10,10)

decimal

fixed(5)

init((25)0,(25)1,(*)0),

1

C(8),

2

D

initial

(0),

2

E

initial((*)0);

When

an

array

of

structures

or

unions

is

declared

with

the

LIKE

attribute

to

obtain

the

same

structuring

as

a

structure

or

union

whose

elements

have

been

initialized,

only

the

first

structure

or

union

is

initialized.

In

the

following

example

only

J(1).H

and

J(1).I

are

initialized

in

the

array

of

structures.

declare

1

G,

2

H

initial(0),

2

I

initial(0),

1

J(8)

like

G;

Initializing

Automatic

Variables

Chapter

10.

Storage

control

255

Examples

256

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Chapter

11.

Input

and

output

Data

sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

Consecutive

.

.

.

.

.

.

.

.

.

.

.

.

. 258

Indexed

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

Relative

.

.

.

.

.

.

.

.

.

.

.

.

.

. 259

Regional

.

.

.

.

.

.

.

.

.

.

.

.

.

. 259

Files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 259

FILE

attribute

.

.

.

.

.

.

.

.

.

.

.

. 259

RECORD

and

STREAM

attributes

.

.

.

.

. 262

INPUT,

OUTPUT,

and

UPDATE

attributes

.

.

. 262

SEQUENTIAL

and

DIRECT

attributes

.

.

.

. 263

BUFFERED

and

UNBUFFERED

attributes

.

.

. 263

ENVIRONMENT

attribute

.

.

.

.

.

.

.

. 264

KEYED

attribute

.

.

.

.

.

.

.

.

.

.

. 264

PRINT

attribute

.

.

.

.

.

.

.

.

.

.

. 264

Opening

and

closing

files

.

.

.

.

.

.

.

.

. 264

OPEN

statement

.

.

.

.

.

.

.

.

.

.

. 265

Implicit

opening

.

.

.

.

.

.

.

.

.

.

. 266

CLOSE

statement

.

.

.

.

.

.

.

.

.

.

. 269

FLUSH

statement

.

.

.

.

.

.

.

.

.

.

. 269

SYSPRINT

and

SYSIN

.

.

.

.

.

.

.

.

.

. 269

PL/I

input

and

output

statements

(such

as

READ,

WRITE,

GET,

PUT)

let

you

transmit

data

between

the

main

and

auxiliary

storage

of

a

computer.

A

collection

of

data

external

to

a

program

is

called

a

data

set.

Transmission

of

data

from

a

data

set

to

a

program

is

called

input.

Transmission

of

data

from

a

program

to

a

data

set

is

called

output.

(If

you

are

using

a

terminal,

“data

set”

can

also

mean

your

terminal.)

PL/I

input

and

output

statements

are

concerned

with

the

logical

organization

of

a

data

set

and

not

with

its

physical

characteristics.

A

program

can

be

designed

without

specific

knowledge

of

the

input/output

devices

that

is

used

when

the

program

is

executed.

To

allow

a

source

program

to

deal

primarily

with

the

logical

aspects

of

data

rather

than

with

its

physical

organization

in

a

data

set,

PL/I

employs

models

of

data

sets,

called

files.

A

file

can

be

associated

with

different

data

sets

at

different

times

during

the

execution

of

a

program.

PL/I

uses

two

types

of

data

transmission:

stream

and

record.

In

stream-oriented

data

transmission,

the

organization

of

the

data

in

the

data

set

is

ignored

within

the

program,

and

the

data

is

treated

as

though

it

were

a

continuous

stream

of

individual

data

values

in

character

form.

Data

is

converted

from

character

form

to

internal

form

on

input,

and

from

internal

form

to

character

form

on

output.

For

more

information

on

stream-oriented

data

transmission,

refer

to

Chapter

13,

“Stream-oriented

data

transmission,”

on

page

281.

Stream-oriented

data

transmission

can

be

used

for

processing

input

data

prepared

in

character

form

and

for

producing

readable

output,

where

editing

is

required.

Stream-oriented

data

transmission

allows

synchronized

communication

with

the

program

at

run

time

from

a

terminal,

if

the

program

is

interactive.

Stream-oriented

data

transmission

is

more

versatile

than

record-oriented

data

transmission

in

its

data-formatting

abilities,

but

is

less

efficient

in

terms

of

run

time.

In

record-oriented

data

transmission,

the

data

set

is

a

collection

of

discrete

records.

The

record

on

the

external

medium

is

generally

an

exact

copy

of

the

record

as

it

exists

in

internal

storage.

No

data

conversion

takes

place

during

record-oriented

data

transmission.

On

input

the

data

is

transmitted

exactly

as

it

is

recorded

in

the

data

set,

and

on

output

it

is

transmitted

exactly

as

it

is

recorded

internally.

257

For

more

information

on

record-oriented

data

transmission,

refer

to

Chapter

12,

“Record-oriented

data

transmission,”

on

page

271.

Record-oriented

data

transmission

can

be

used

for

processing

files

that

contain

data

in

any

representation,

such

as

binary,

decimal,

or

character.

Record-oriented

data

transmission

is

more

versatile

than

stream-oriented

data

transmission,

in

both

the

manner

in

which

data

can

be

processed

and

the

types

of

data

sets

that

it

can

process.

Since

data

is

recorded

in

a

data

set

exactly

as

it

appears

in

main

storage,

any

data

type

is

acceptable.

No

conversions

occur,

but

you

must

have

a

greater

awareness

of

the

data

structure.

It

is

possible

for

the

same

data

set

to

be

processed

at

different

times

by

either

stream

or

record

data

transmission.

However,

all

items

in

the

data

set

must

be

in

character

form.

The

following

sections

in

this

chapter

discuss

the

kinds

of

data

sets,

the

attributes

for

describing

files,

and

how

you

open

and

close

files

in

order

to

transmit

data.

For

more

information

about

the

types

of

data

set

organizations

that

PL/I

recognizes,

refer

to

the

Programming

Guide.

Data

sets

In

addition

to

being

used

as

input

from

and

output

to

your

terminal,

data

sets

are

stored

on

a

variety

of

auxiliary

storage

media,

including

magnetic

tape

and

direct-access

storage

devices

(DASDs).

Despite

their

variety,

these

media

have

characteristics

that

allow

common

methods

of

collecting,

storing,

and

transmitting

data.

The

organization

of

a

data

set

determines

how

data

is

recorded

in

a

data

set

and

how

the

data

is

subsequently

retrieved

so

that

it

can

be

transmitted

to

the

program.

Records

are

stored

in

and

retrieved

from

a

data

set

either

sequentially

on

the

basis

of

successive

physical

or

logical

positions,

or

directly

by

the

use

of

keys

specified

in

data

transmission

statements.

PL/I

supports

the

following

types

of

data

set

organizations:

Consecutive

Indexed

Relative

Regional

The

data

set

organizations

differ

in

the

way

they

store

data

and

in

the

means

they

use

to

access

data.

Consecutive

In

the

consecutive

data

set

organization,

records

are

organized

solely

on

the

basis

of

their

successive

physical

positions.

When

the

data

set

is

created,

records

are

written

consecutively

in

the

order

in

which

they

are

presented.

The

records

can

be

retrieved

only

in

the

order

in

which

they

were

written.

Indexed

In

the

indexed

data

set

organization,

records

are

placed

in

a

logical

sequence

based

on

the

key

of

each

record.

An

indexed

data

set

must

reside

on

a

direct-access

device.

A

character

string

key

identifies

the

record

and

allows

direct

retrieval,

replacement,

addition,

and

deletion

of

records.

Sequential

processing

is

also

allowed.

Input

and

output

258

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Relative

In

the

relative

data

set

organization,

numbered

records

are

placed

in

a

position

relative

to

each

other.

The

records

are

numbered

in

succession,

beginning

with

one.

A

relative

data

set

must

reside

on

a

direct-access

device.

A

key

that

specifies

the

record

number

identifies

the

record

and

allows

direct

retrieval,

replacement,

addition,

and

deletion

of

records.

Sequential

processing

is

also

allowed.

Regional

The

regional

data

set

organization

is

divided

into

numbered

regions,

each

of

which

can

contain

one

record.

The

regions

are

numbered

in

succession,

beginning

with

zero.

A

region

can

be

accessed

by

specifying

its

region

number,

and

perhaps

a

key,

in

a

data

transmission

statement.

The

key

specifies

the

region

number

and

identifies

the

region

to

allow

optimized

direct

retrieval,

replacement,

addition,

and

deletion

of

records.

Files

To

allow

a

source

program

to

deal

primarily

with

the

logical

aspects

of

data

rather

than

with

its

physical

organization

in

a

data

set,

PL/I

employs

models

of

data

sets,

called

files.

These

models

determine

how

input

and

output

statements

access

and

process

the

associated

data

set.

Unlike

a

data

set,

a

file

data

item

has

significance

only

within

the

source

program

and

does

not

exist

as

a

physical

entity

external

to

the

program.

A

name

that

represents

a

file

has

the

FILE

attribute.

FILE

attribute

The

FILE

attribute

specifies

that

the

associated

name

is

a

file

constant

or

file

variable.

��

FILE

��

The

FILE

attribute

can

be

implied

for

a

file

constant

by

any

of

the

file

description

attributes.

A

name

can

be

contextually

declared

as

a

file

constant

through

its

appearance

in

the

FILE

option

of

any

input

or

output

statement,

or

in

an

ON

statement

for

any

input/output

condition.

File

constant

Each

data

set

processed

by

a

PL/I

program

must

be

associated

with

a

file

constant.

The

individual

characteristics

of

each

file

constant

are

described

with

file

description

attributes.

These

attributes

fall

into

two

categories:

alternative

attributes

and

additive

attributes.

An

alternative

attribute

is

one

that

is

chosen

from

a

group

of

attributes.

If

no

explicit

or

implied

attribute

is

given

for

one

of

the

alternatives

in

a

group

and

if

one

of

the

alternatives

is

required,

a

default

attribute

is

used.

Data

sets

Chapter

11.

Input

and

output

259

Table

31

lists

the

PL/I

alternative

file

attributes.

Table

31.

Alternative

file

attributes

Group

Type

Alternative

Attributes

Default

Attribute

Usage

STREAM

or

RECORD

STREAM

Function

INPUT

or

OUTPUT

or

UPDATE

INPUT

Access

SEQUENTIAL

or

DIRECT

SEQUENTIAL

Buffering

BUFFERED

or

UNBUFFERED

BUFFERED

(for

SEQUENTIAL

files);

UNBUFFERED

(for

DIRECT

files)

Scope

EXTERNAL

or

INTERNAL

EXTERNAL

An

additive

attribute

is

one

that

must

be

stated

explicitly

or

is

implied

by

another

explicitly

stated

attribute.

The

additive

attributes

are

ENVIRONMENT,

KEYED

and

PRINT.

The

additive

attribute

KEYED

is

implied

by

the

DIRECT

attribute.

The

additive

attribute

PRINT

can

be

implied

by

the

output

file

name

SYSPRINT.

Table

32

shows

the

attributes

that

apply

to

each

type

of

data

transmission.

Table

32.

Attributes

by

data

transmission

type

Type

of

transmission

Attribute

Stream-oriented

ENVIRONMENT

INPUT

and

OUTPUT

PRINT

STREAM

Record-oriented

BUFFERED

and

UNBUFFERED

DIRECT

and

SEQUENTIAL

ENVIRONMENT

INPUT,

OUTPUT,

and

UPDATE

KEYED

RECORD

Table

33

shows

the

valid

combinations

of

file

attributes.

Table

33.

Attributes

of

PL/I

file

declarations

File

Type

S

T

R

E

A

M

RECORD

Legend:

I

Must

be

specified

or

implied

D

Default

O

Optional

S

Must

be

specified

-

Invalid

SEQUENTIAL

DIRECT

Data

Set

Organization

C

o

n

s

e

c

u

t

i

v

e

C

o

n

s

e

c

u

t

i

v

e

R

e

l

a

t

i

v

e

I

n

d

e

x

e

d

R

e

l

a

t

i

v

e

I

n

d

e

x

e

d

File

Attributes

Attributes

Implied

File

constant

260

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

FILE

I

I

I

I

I

I

INPUT1

D

D

D

D

D

D

FILE

OUTPUT

O

O

O

O

O

O

FILE

ENVIRONMENT

O

O

O

O

O

O

FILE

STREAM

D

-

-

-

-

-

FILE

PRINT1

O

-

-

-

-

-

FILE

STREAM

OUTPUT

RECORD

-

I

I

I

I

I

FILE

UPDATE

-

O

O

O

O

O

FILE

RECORD

SEQUENTIAL

-

D

D

D

-

-

FILE

RECORD

KEYED2

-

-

O

O

I

I

FILE

RECORD

DIRECT

-

-

-

-

S

S

FILE

RECORD

KEYED

Notes:

1

A

file

with

the

INPUT

attribute

cannot

have

the

PRINT

attribute

2

KEYED

is

required

for

indexed

and

relative

output

Scope

is

discussed

in

“Scope

of

declarations”

on

page

151.

The

FILE

attribute

can

be

implied

for

a

file

constant

by

any

of

the

file

description

attributes

discussed

in

this

chapter.

A

name

can

be

contextually

declared

as

a

file

constant

through

its

appearance

in

the

FILE

option

of

any

input

or

output

statement,

or

in

an

ON

statement

for

any

input/output

condition.

In

the

following

example,

the

name

Master

is

declared

as

a

file

constant:

declare

Master

file;

File

variable

A

file

variable

has

the

attributes

FILE

and

VARIABLE.

It

cannot

have

any

of

the

file

constant

description

attributes.

File

constants

can

be

assigned

to

file

variables.

After

assignment,

a

reference

to

the

file

variable

has

the

same

significance

as

a

reference

to

the

assigned

file

constant.

The

value

of

a

file

variable

can

be

transmitted

by

record-oriented

transmission

statements.

The

value

of

the

file

variable

on

the

data

set

might

not

be

valid

after

transmission.

The

VARIABLE

attribute

is

implied

under

the

circumstances

described

in

“VARIABLE

attribute”

on

page

48.

In

the

following

declaration

Account

is

declared

as

a

file

variable,

and

Acct1

and

Acct2

are

declared

as

file

constants.

The

file

constants

can

subsequently

be

assigned

to

the

file

variable.

declare

Account

file

variable,

Acct1

file,

Acc2

file;

For

syntax

information,

refer

to

“VARIABLE

attribute”

on

page

48.

Specifying

a

file

reference

A

file

reference

can

be

a

file

constant,

a

file

variable,

or

a

function

reference

which

returns

a

value

with

the

FILE

attribute.

It

can

be

used

in

the

following

ways:

v

In

a

FILE

or

COPY

option

v

As

an

argument

to

be

passed

to

a

function

or

subroutine

v

To

qualify

an

input/output

condition

for

ON,

SIGNAL,

and

REVERT

statements

v

As

the

expression

in

a

RETURN

statement.

File

constant

Chapter

11.

Input

and

output

261

On-units

can

be

established

for

a

file

constant

through

a

file

variable

that

represents

its

value

(see

“ON-units

for

file

variables”

on

page

336).

In

the

following

example,

the

statements

labelled

L1

and

L2

both

specify

null

ON-units

for

the

same

file.

dcl

F

file,

G

file

variable;

G=F;

L1:

on

endfile(G);

L2:

on

endfile(F);

RECORD

and

STREAM

attributes

The

RECORD

and

STREAM

usage

attributes

specify

the

kind

of

data

transmission

used

for

the

file.

��

STREAM

RECORD

��

Default:

STREAM

RECORD

indicates

that

the

file

consists

of

a

collection

of

physically

separate

records,

each

of

which

consists

of

one

or

more

data

items

in

any

form.

Each

record

is

transmitted

as

an

entity

to

or

from

a

variable.

STREAM

indicates

that

the

data

of

the

file

is

a

continuous

stream

of

data

items,

in

character

form,

assigned

from

the

stream

to

variables,

or

from

expressions

into

the

stream.

A

file

with

the

STREAM

attribute

can

be

specified

only

in

the

FILE

option

of

the

OPEN,

CLOSE,

GET,

and

PUT

input/output

statements.

A

file

with

the

RECORD

attribute

can

be

specified

only

in

the

FILE

option

of

the

OPEN,

CLOSE,

READ,

WRITE,

REWRITE,

LOCATE,

and

DELETE

input/output

statements.

INPUT,

OUTPUT,

and

UPDATE

attributes

The

INPUT,

OUTPUT,

and

UPDATE

function

attributes

specify

the

direction

of

data

transmission

allowed

for

a

file.

INPUT

specifies

that

data

is

transmitted

from

a

data

set

to

the

program.

OUTPUT

specifies

that

data

is

transmitted

from

the

program

to

a

data

set,

either

to

create

a

new

data

set

or

to

extend

an

existing

one.

UPDATE,

which

applies

to

RECORD

files

only,

specifies

that

the

data

can

be

transmitted

in

either

direction.

A

declaration

of

UPDATE

for

a

SEQUENTIAL

file

indicates

the

update-in-place

mode.

File

variable

262

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

INPUT

OUTPUT

UPDATE

��

Default:

INPUT

SEQUENTIAL

and

DIRECT

attributes

The

SEQUENTIAL

and

DIRECT

access

attributes

apply

only

to

RECORD

files,

and

specify

how

the

records

in

the

file

are

accessed.

��

SEQUENTIAL

DIRECT

��

Abbreviation:

SEQL

for

SEQUENTIAL

Default:

SEQUENTIAL

The

DIRECT

attribute

specifies

that

records

in

a

data

set

are

directly

accessed.

The

location

of

the

record

in

the

data

set

is

determined

by

a

character-string

key.

Therefore,

the

DIRECT

attribute

implies

the

KEYED

attribute.

The

associated

data

set

must

be

on

a

direct-access

storage

device.

The

SEQUENTIAL

attribute

specifies

that

records

in

a

consecutive

or

relative

data

set

are

accessed

in

physical

sequence,

and

that

records

in

an

indexed

data

set

are

accessed

in

key

sequence

order.

For

certain

data

set

organizations,

a

file

with

the

SEQUENTIAL

attribute

can

also

be

used

for

direct

access

or

for

a

mixture

of

random

and

sequential

access.

In

this

case,

the

file

must

have

the

additive

attribute

KEYED.

Existing

records

of

a

data

set

in

a

SEQUENTIAL

UPDATE

file

can

be

modified,

ignored,

or,

if

the

data

set

is

indexed,

deleted.

BUFFERED

and

UNBUFFERED

attributes

The

buffering

attributes

apply

only

to

RECORD

files.

��

BUFFERED

UNBUFFERED

��

Abbreviations:

BUF

for

BUFFERED,

and

UNBUF

for

UNBUFFERED

Defaults:

BUFFERED

is

the

default

for

SEQUENTIAL

files.

UNBUFFERED

is

the

default

for

DIRECT

files.

INPUT,

OUTPUT,

and

UPDATE

Chapter

11.

Input

and

output

263

The

BUFFERED

attribute

specifies

that

during

transmission

to

and

from

a

data

set,

each

record

of

a

RECORD

file

must

pass

through

intermediate

storage

buffers.

This

allows

both

move

and

locate

mode

processing.

The

UNBUFFERED

attribute

indicates

that

a

record

in

a

data

set

need

not

pass

through

a

buffer

but

can

be

transmitted

directly

to

and

from

the

main

storage

associated

with

a

variable.

This

allows

only

move

mode

processing.

ENVIRONMENT

attribute

The

characteristic

list

of

the

ENVIRONMENT

attribute

specifies

various

data

set

characteristics

that

are

not

part

of

PL/I.

For

a

full

description

of

the

characteristics

and

their

uses,

refer

to

the

Programming

Guide.

Note:

Because

the

characteristics

are

not

part

of

the

PL/I

language,

using

them

in

a

file

declaration

can

limit

the

portability

of

your

application

program.

The

following

characteristics

can

be

specified

on

the

ENVIRONMENT

attribute.

For

descriptions

of

the

characteristics,

refer

to

the

Programming

Guide.

BKWD

CONSECUTIVE

CTLASA

GENKEY

GRAPHIC

KEYLENGTH

KEYLOC

ORGANIZATION

RECSIZE

REGIONAL(1)

SCALARVARYING

VSAM

KEYED

attribute

The

KEYED

attribute

applies

only

to

RECORD

files,

and

must

be

associated

with

indexed

and

relative

data

sets.

It

specifies

that

records

in

the

file

can

be

accessed

using

one

of

the

key

options

(KEY,

KEYTO,

or

KEYFROM)

of

record

I/O

statements.

��

KEYED

��

The

KEYED

attribute

need

not

be

specified

unless

one

of

the

key

options

is

used.

PRINT

attribute

The

PRINT

attribute

is

described

in

“PRINT

attribute”

on

page

300.

Opening

and

closing

files

Before

a

file

can

be

used

for

data

transmission,

by

input

or

output

statements,

it

must

be

associated

with

a

data

set.

Opening

a

file

associates

the

file

with

a

data

set

and

involves

checking

for

the

availability

of

external

media,

positioning

the

media,

and

allocating

required

operating

system

support.

When

processing

is

completed,

the

file

must

be

closed.

Closing

a

file

dissociates

the

file

from

the

data

set.

PL/I

provides

two

statements,

OPEN

and

CLOSE,

to

perform

these

functions.

However,

use

of

these

statements

is

optional.

If

an

OPEN

statement

is

not

executed

for

a

file,

the

file

is

opened

implicitly

during

the

execution

of

first

data

transmission

statement

for

that

file.

In

this

case,

the

file

opening

uses

information

BUFFERED

and

UNBUFFERED

264

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

about

the

file

as

specified

in

a

DECLARE

statement

(and

defaults

derived

from

the

transmission

statement).

Similarly,

if

a

file

has

not

been

closed

before

PL/I

termination,

PL/I

will

close

it

during

the

termination

process.

When

a

file

for

stream

input,

sequential

input,

or

sequential

update

is

opened,

the

associated

data

set

is

positioned

at

the

first

record.

OPEN

statement

The

OPEN

statement

associates

a

file

with

a

data

set.

It

merges

attributes

specified

on

the

OPEN

statement

with

those

specified

on

the

DECLARE

statement.

It

also

completes

the

specification

of

attributes

for

the

file,

if

a

complete

set

of

attributes

has

not

been

declared

for

the

file

being

opened.

��

OPEN

�

,

options-group

;

�

�

options-group:

FILE(file-reference)

STREAM

RECORD

INPUT

OUTPUT

UPDATE

�

�

BUFFERED

SEQUENTIAL

UNBUFFERED

UNBUFFERED

DIRECT

BUFFERED

KEYED

PRINT

�

�

TITLE(expression)

LINESIZE(expression)

PAGESIZE(expression)

��

The

options

of

the

OPEN

statement

can

appear

in

any

order.

FILE

Specifies

the

name

of

the

file

that

is

associated

with

a

data

set.

STREAM,

RECORD,

INPUT,

OUTPUT,

UPDATE,

DIRECT,

SEQUENTIAL,

BUFFERED,

UNBUFFERED,

Opening

and

closing

files

Chapter

11.

Input

and

output

265

KEYED,

and

PRINT

These

options

specify

attributes

that

augment

the

attributes

specified

in

the

file

declaration.

The

same

attributes

need

not

be

listed

in

both

OPEN

and

DECLARE

statements

for

the

same

file.

For

a

list

of

attributes

for

record

and

stream

input

and

output,

see

Table

32

on

page

260.

When

a

STREAM

file

is

opened,

the

first

GET

or

PUT

statement

can

specify,

with

a

statement

option

or

format

item,

the

first

record

to

be

accessed.

The

statement

option

or

format

item

indicates

that

n

lines

are

skipped

before

a

record

is

accessed.

The

file

is

then

positioned

at

the

start

of

the

nth

record.

If

no

statement

option

or

format

item

is

encountered,

the

initial

file

position

is

the

start

of

the

first

line

or

record.

If

the

file

has

the

PRINT

attribute,

it

is

physically

positioned

at

column

1

of

the

first

line

or

record.

Opening

a

file

that

is

already

open

does

not

affect

the

file.

TITLE

The

content

of

expression

determines

what

is

being

designated.

For

more

information

on

the

TITLE

attribute

refer

to

the

Programming

Guide.

LINESIZE

Converted

to

an

integer

value,

specifies

the

length

in

bytes

of

a

line

during

subsequent

operations

on

the

file.

New

lines

can

be

started

by

use

of

the

printing

and

control

format

items

or

by

options

in

a

GET

or

PUT

statement.

If

an

attempt

is

made

to

position

a

file

past

the

end

of

a

line

before

explicit

action

to

start

a

new

line

is

taken,

a

new

line

is

started,

and

the

file

is

positioned

to

the

start

of

this

new

line.

The

default

line

size

for

PRINT

file

is

120.

The

LINESIZE

option

can

be

specified

only

for

a

STREAM

OUTPUT

file.

The

line

size

taken

into

consideration

whenever

a

SKIP

option

appears

in

a

GET

statement

is

the

line

size

that

was

used

to

create

the

data

set.

Otherwise,

the

line

size

is

taken

as

the

current

length

of

the

logical

record

minus

control

bytes.

PAGESIZE

Is

evaluated

and

converted

to

an

integer

value,

and

specifies

the

number

of

lines

per

page.

The

first

attempt

to

exceed

this

limit

raises

the

ENDPAGE

condition.

During

subsequent

transmission

to

the

PRINT

file,

a

new

page

can

be

started

by

use

of

the

PAGE

format

item

or

by

the

PAGE

option

in

the

PUT

statement.

The

default

page

size

is

60.

The

PAGESIZE

option

can

be

specified

only

for

a

file

having

the

PRINT

attribute.

Implicit

opening

An

implicit

opening

of

a

file

occurs

when

a

GET,

PUT,

READ,

WRITE,

LOCATE,

REWRITE,

or

DELETE

statement

is

executed

for

a

file

for

which

an

OPEN

statement

has

not

already

been

executed.

If

a

GET

statement

contains

a

COPY

option,

execution

of

the

GET

statement

can

cause

implicit

opening

of

either

the

file

specified

in

the

COPY

option

or,

if

no

file

was

specified,

of

the

output

file

SYSPRINT.

Implicit

opening

of

the

file

specified

in

the

COPY

option

implies

the

STREAM

and

OUTPUT

attributes.

Table

34

on

page

267

shows

the

attributes

that

are

implied

when

a

given

statement

causes

the

file

to

be

implicitly

opened:

OPEN

266

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Table

34.

Attributes

implied

by

implicit

open

Statement

Implied

Attributes

GET

STREAM,

INPUT

PUT

STREAM,

OUTPUT

READ

RECORD,

INPUTNote

WRITE

RECORD,

OUTPUTNote

LOCATE

RECORD,

OUTPUT,

SEQUENTIAL

REWRITE

RECORD,

UPDATE

DELETE

RECORD,

UPDATE

Note:

INPUT

and

OUTPUT

are

default

attributes

for

READ

and

WRITE

statements

only

if

UPDATE

has

not

been

explicitly

declared.

When

one

of

the

statements

listed

in

Table

34

opens

a

file

implicitly,

it

is

functionally

equivalent

to

using

an

explicit

OPEN

statement

for

the

file

with

the

same

attributes

specified.

There

must

be

no

conflict

between

the

attributes

specified

in

a

file

declaration

and

the

attributes

implied

as

the

result

of

opening

the

file.

For

example,

the

attributes

INPUT

and

UPDATE

are

in

conflict,

as

are

the

attributes

UPDATE

and

STREAM.

The

implied

attributes

discussed

earlier

are

applied

before

the

default

attributes

listed

in

Table

34

are

applied.

Implied

attributes

can

also

cause

a

conflict.

If

a

conflict

in

attributes

exists

after

the

application

of

default

attributes,

the

UNDEFINEDFILE

condition

is

raised.

Table

35.

Merged

and

implied

attributes

Merged

Attributes

Implied

Attributes

UPDATE

RECORD

SEQUENTIAL

RECORD

DIRECT

RECORD,

KEYED

PRINT

OUTPUT,

STREAM

KEYED

RECORD

The

following

two

examples

illustrate

attribute

merging

for

an

explicit

opening

using

a

file

constant

and

a

file

variable:

Example

of

file

constant

declare

Listing

file

stream;

open

file(Listing)

print;

Attributes

after

merge

caused

by

execution

of

the

OPEN

statement

are

STREAM

and

PRINT.

Attributes

after

implication

are

STREAM,

PRINT,

and

OUTPUT.

Attributes

after

default

application

are

STREAM,

PRINT,

OUTPUT,

and

EXTERNAL.

Example

of

file

variable

declare

Account

file

variable,

(Acct1,Acct2)

file

output;

Implicit

opening

Chapter

11.

Input

and

output

267

Account

=

Acct1;

open

file(Account)

print;

Account

=

Acct2;

open

file(Account)

record

unbuf;

The

file

Acct1

is

opened

with

attributes

(explicit

and

implied)

STREAM,

EXTERNAL,

PRINT,

and

OUTPUT.

The

file

Acct2

is

opened

with

attributes

RECORD,

EXTERNAL,

and

OUTPUT.

Example

of

implicit

opening

declare

Master

file

keyed

internal;

read

file

(Master)

into

(Master_Record)

keyto(Master_Key);

Attributes

after

merge

(from

the

implicit

opening

caused

by

execution

of

the

READ

statement)

are

KEYED,

INTERNAL,

RECORD,

and

INPUT.

(No

additional

attributes

are

implied.)

Attributes

after

default

application

are

KEYED,

INTERNAL,

RECORD,

INPUT,

and

SEQUENTIAL.

Examples

of

declarations

of

file

constants

declare

File3

input

direct

environment(

regional(1)

)

This

declaration

specifies

three

file

attributes:

INPUT,

DIRECT,

and

ENVIRONMENT.

Other

implied

attributes

are

FILE

(implied

by

each

of

the

attributes)

and

RECORD

and

KEYED

(implied

by

DIRECT).

Scope

is

EXTERNAL,

by

default.

The

ENVIRONMENT

attributes

specifies

that

the

data

set

is

of

the

REGIONAL(1)

organization.

For

the

previous

declaration,

all

necessary

attributes

are

either

stated

or

implied

in

the

DECLARE

statement.

None

of

the

stated

attributes

can

be

changed

(or

overridden)

in

an

OPEN

statement.

If

the

declaration

is

written

as

shown

in

the

following

example,

invntry

can

be

opened

for

different

purposes.

declare

invntry

file;

In

the

following

example,

the

file

attributes

are

the

same

as

those

specified

(or

implied)

in

the

DECLARE

statement

in

the

previous

example.

open

file

(Invntry)

update

sequential;

The

file

might

be

opened

in

this

way,

then

closed,

and

then

later

opened

with

a

different

set

of

attributes.

For

example,

the

following

OPEN

statement

allows

records

to

be

read

with

either

the

KEYTO

or

the

KEY

option.

open

file

(Invntry)

input

sequential

keyed;

Because

the

file

is

SEQUENTIAL,

the

data

set

can

be

accessed

in

a

purely

sequential

manner.

It

can

also

be

accessed

directly

by

means

of

a

READ

statement

with

a

KEY

option.

A

READ

statement

with

a

KEY

option

for

a

file

of

this

description

obtains

a

specified

record.

Subsequent

READ

statements

without

a

KEY

option

access

records

sequentially,

beginning

with

the

next

record

in

KEY

sequence.

Implicit

opening

268

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

CLOSE

statement

The

CLOSE

statement

dissociates

an

opened

file

from

its

data

set.

��

CLOSE

�

,

FILE(file-reference)

FILE(*)

;

��

FILE

Specifies

the

name

of

the

file

that

is

dissociated

from

the

data

set.

CLOSE

FILE(*)

closes

all

open

files.

The

CLOSE

statement

also

dissociates

from

the

file

all

attributes

established

for

it

by

the

implicit

or

explicit

opening

process.

If

desired,

new

attributes

can

be

specified

for

the

file

in

a

subsequent

OPEN

statement.

However,

all

attributes

explicitly

given

to

the

file

constant

in

a

DECLARE

statement

remain

in

effect.

Closing

a

file

that

was

previously

closed

has

no

effect.

A

closed

file

can

be

reopened.

If

a

file

is

not

closed

by

a

CLOSE

statement,

it

is

closed

at

the

termination

of

the

program.

FLUSH

statement

The

FLUSH

statement

can

be

used

to

flush

one

or

all

files.

��

FLUSH

FILE(file-reference)

FILE(*)

;

��

FILE

Specifies

the

name

of

the

output

file.

The

FLUSH

statement

flushes

the

buffers

associated

with

an

open

output

file

(or

with

all

open

output

files

if

*

is

specified).

This

normally

happens

when

the

file

is

closed

or

the

program

ends,

but

the

FLUSH

statement

ensures

the

buffers

are

flushed

before

any

other

processing

occurs.

SYSPRINT

and

SYSIN

Two

files

are

provided

that

can

be

used

by

any

PL/I

program.

One

is

the

input

file

SYSIN,

and

the

other

is

the

output

file

SYSPRINT.

These

files

need

not

be

declared

or

opened

explicitly.

For

SYSIN,

the

default

attributes

are

STREAM

INPUT,

and

for

SYSPRINT

they

are

STREAM

OUTPUT

PRINT.

Both

file

names,

SYSIN

and

SYSPRINT,

have

the

default

attribute

EXTERNAL,

even

though

SYSPRINT

contains

more

than

7

characters.

The

compiler

does

not

reserve

the

names

SYSIN

and

SYSPRINT

for

the

specific

purposes

described

above.

They

can

be

used

for

other

purposes

besides

identifiying

SYSIN

and

SYSPRINT

files.

Other

attributes

can

be

applied

to

them,

CLOSE

Chapter

11.

Input

and

output

269

but

the

PRINT

attribute

is

applied

by

default

to

SYSPRINT

when

it

is

declared

or

opened

as

a

STREAM

OUTPUT

file

unless

the

INTERNAL

attribute

is

declared

for

it.

SYSPRINT

and

SYSIN

270

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Chapter

12.

Record-oriented

data

transmission

Data

transmitted

.

.

.

.

.

.

.

.

.

.

.

. 271

Unaligned

bit

strings

.

.

.

.

.

.

.

.

.

. 271

Varying

length

strings

.

.

.

.

.

.

.

.

. 272

Area

variables

.

.

.

.

.

.

.

.

.

.

.

. 272

Data

transmission

statements

.

.

.

.

.

.

.

. 272

READ

statement

.

.

.

.

.

.

.

.

.

.

. 272

WRITE

statement

.

.

.

.

.

.

.

.

.

.

. 273

REWRITE

statement

.

.

.

.

.

.

.

.

.

. 273

LOCATE

statement

.

.

.

.

.

.

.

.

.

. 274

DELETE

statement

.

.

.

.

.

.

.

.

.

. 274

Options

of

data

transmission

statements

.

.

.

. 274

FILE

option

.

.

.

.

.

.

.

.

.

.

.

.

. 274

FROM

option

.

.

.

.

.

.

.

.

.

.

.

. 275

IGNORE

option

.

.

.

.

.

.

.

.

.

.

. 275

INTO

option

.

.

.

.

.

.

.

.

.

.

.

. 275

KEY

option

.

.

.

.

.

.

.

.

.

.

.

.

. 276

KEYFROM

option

.

.

.

.

.

.

.

.

.

.

. 276

KEYTO

option

.

.

.

.

.

.

.

.

.

.

.

. 277

SET

option

.

.

.

.

.

.

.

.

.

.

.

.

. 277

Processing

modes

.

.

.

.

.

.

.

.

.

.

.

. 277

Move

mode

.

.

.

.

.

.

.

.

.

.

.

.

. 278

Locate

mode

.

.

.

.

.

.

.

.

.

.

.

. 278

This

chapter

describes

features

of

the

input

and

output

statements

used

in

record-oriented

data

transmission.

Those

features

of

PL/I

that

apply

generally

to

record-oriented

or

stream-oriented

data

transmission,

including

declaring

files,

file

attributes,

and

opening

and

closing

files,

are

described

in

Chapter

11,

“Input

and

output.”

For

syntax

information

about

the

ENVIRONMENT

attribute,

refer

to

“ENVIRONMENT

attribute”

on

page

264.

For

details

about

environment

characteristics

and

record

I/O

data

transmission

statements

for

each

data

set

organization,

refer

to

the

Programming

Guide.

In

record-oriented

data

transmission,

data

in

a

data

set

is

a

collection

of

records

recorded

in

any

format

acceptable

to

the

operating

system.

No

data

conversion

is

performed

during

record-oriented

data

transmission.

On

input,

the

READ

statement

either

transmits

a

single

record

to

a

program

variable

exactly

as

it

is

recorded

in

the

data

set,

or

sets

a

pointer

to

the

record.

On

output,

the

WRITE,

REWRITE,

or

LOCATE

statement

transmits

a

single

record

from

a

program

variable

exactly

as

it

is

recorded

internally.

If

the

information

transmitted

to

the

file

has

a

length

N

which

is

less

than

the

established

record

length

M,

the

resulting

value

of

the

last

M-N

bytes

of

the

record

is

undefined.

Data

transmitted

Most

variables,

including

parameters

and

DEFINED

variables,

can

be

transmitted

by

record-oriented

data

transmission

statements.

In

general,

the

information

given

in

this

chapter

can

be

applied

equally

to

all

variables.

Note:

A

data

aggregate

must

be

in

connected

storage.

If

a

graphic

string

is

specified

for

input

or

output,

the

SCALARVARYING

option

must

be

specified

for

the

file.

Other

data

considerations

are

described

in

the

following

sections.

Unaligned

bit

strings

The

following

cannot

be

transmitted:

v

BASED,

DEFINED,

parameter,

subscripted,

or

structure-base-element

variables

that

are

unaligned

nonvarying

bit

strings

v

Minor

structures

whose

first

or

last

base

elements

are

unaligned

nonvarying

bit

strings

(except

where

they

are

also

the

first

or

last

elements

of

the

containing

major

structure)

v

Major

structures

that

have

the

DEFINED

attribute

or

are

parameters,

and

that

have

unaligned

nonvarying

bit

strings

as

their

first

or

last

elements.

271

Varying

length

strings

A

locate

mode

output

statement

(see

“LOCATE

statement”

on

page

274)

specifying

a

varying

length

string

transmits

a

field

having

a

length

equal

to

the

maximum

length

of

the

string.

For

VARYINGZ

strings,

the

null

terminator

is

also

transmitted.

For

VARYING

strings,

a

2-byte

prefix

denoting

the

current

length

of

the

string

is

also

transmitted;

for

this,

the

SCALARVARYING

option

of

the

ENVIRONMENT

attribute

must

be

specified

for

the

file.

A

move

mode

output

statement

(see

“WRITE

statement”

on

page

273

and

“REWRITE

statement”

on

page

273)

specifying

a

varying

length

string

variable

transmits

only

the

current

length

of

the

string.

For

VARYINGZ

strings,

the

null

terminator

is

also

transmitted.

For

VARYING

strings,

a

2-byte

prefix

is

included

only

if

the

SCALARVARYING

option

of

the

ENVIRONMENT

attribute

is

specified

for

the

file.

Reading

and

writing

using

varying

length

strings

allows

you

to

access

records

that

can

have

undefined

or

unknown

lengths.

Area

variables

A

locate

mode

output

statement

specifying

an

area

variable

transmits

a

field

whose

length

is

the

declared

size

of

the

area,

plus

a

16-byte

prefix

containing

control

information.

A

move

mode

statement

specifying

an

element

area

variable

or

a

structure

whose

last

element

is

an

area

variable

transmits

only

the

current

extent

of

the

area

plus

a

16-byte

prefix.

Data

transmission

statements

The

data

transmission

statements

that

transmit

records

to

or

from

a

data

set

are

READ,

WRITE,

LOCATE,

and

REWRITE.

The

DELETE

statement

deletes

records

from

an

UPDATE

file.

The

attributes

of

the

file

determine

which

data

transmission

statements

can

be

used.

Statement

options

are

described

in

“Options

of

data

transmission

statements”

on

page

274.

For

information

about

variables

in

data

transmission

statements,

see

the

Programming

Guide.

READ

statement

The

READ

statement

can

be

used

with

any

INPUT

or

UPDATE

file.

It

either

transmits

a

record

from

the

data

set

to

the

program

variable

or

sets

a

pointer

to

the

record

in

storage.

Varying

length

strings

272

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

READ

FILE

(file-reference)

IGNORE

(expression)

INTO(ref)

KEY(expression)

KEYTO(reference)

SET(pointer-ref)

KEY(expression)

KEYTO(reference)

�

�

;

��

The

keywords

can

appear

in

any

order.

A

READ

statement

without

an

INTO,

SET,

or

IGNORE

option

is

equivalent

to

a

READ

with

an

IGNORE(1).

WRITE

statement

The

WRITE

statement

can

be

used

with

any

OUTPUT

file,

DIRECT

UPDATE

file,

or

SEQUENTIAL

UPDATE

file.

It

transmits

a

record

from

the

program

and

adds

it

to

the

data

set.

��

WRITE

FILE

(file-reference)

FROM

(reference)

�

�

KEYFROM(expression)

KEYTO(reference)

;

��

The

keywords

can

appear

in

any

order.

REWRITE

statement

The

REWRITE

statement

replaces

a

record

in

an

UPDATE

file.

For

SEQUENTIAL

UPDATE

files,

the

REWRITE

statement

specifies

that

the

last

record

read

from

the

file

is

rewritten;

consequently

a

record

must

be

read

before

it

can

be

rewritten.

For

DIRECT

UPDATE

files,

any

record

can

be

rewritten

whether

or

not

it

has

first

been

read.

��

REWRITE

FILE

(file-reference)

FROM

(reference)

�

�

KEY

(expression)

;

��

The

keywords

can

appear

in

any

order.

The

FROM

option

must

be

specified

for

UPDATE

files

with

the

DIRECT

attribute,

or

with

both

the

SEQUENTIAL

and

UNBUFFERED

attributes.

A

REWRITE

statement

that

does

not

specify

the

FROM

option

has

the

following

effect:

READ

Chapter

12.

Record-oriented

data

transmission

273

v

If

the

last

record

was

read

by

a

READ

statement

with

the

INTO

option,

REWRITE

without

FROM

has

no

effect

on

the

record

in

the

data

set.

v

If

the

last

record

was

read

by

a

READ

statement

with

the

SET

option,

the

record

is

updated

by

whatever

assignments

were

made

in

the

variable

identified

by

the

pointer

variable

in

the

SET

option.

LOCATE

statement

The

LOCATE

statement

can

be

used

only

with

an

OUTPUT

SEQUENTIAL

BUFFERED

file

for

locate

mode

processing.

It

allocates

storage

within

an

output

buffer

for

a

based

variable

and

sets

a

pointer

to

the

location

of

the

next

record.

For

further

description

of

locate

mode

processing,

see

“Locate

mode”

on

page

278.

��

LOCATE

based-variable

FILE

(file-reference)

�

�

SET

(pointer-reference)

KEYFROM

(expression)

;

��

The

keywords

can

appear

in

any

order.

based-variable

Must

be

an

unsubscripted

level-1

based

variable.

DELETE

statement

The

DELETE

statement

deletes

a

record

from

an

UPDATE

file.

��

DELETE

FILE

(file-reference)

KEY

(expression)

;

��

The

keywords

can

appear

in

any

order.

If

the

KEY

option

is

omitted,

the

record

to

be

deleted

is

the

last

record

that

is

read.

No

subsequent

DELETE

or

REWRITE

statement

without

a

KEY

is

allowed

until

another

READ

statement

is

processed.

If

the

KEY

option

is

included,

that

record

addressed

by

the

key

is

deleted

if

found.

Options

of

data

transmission

statements

Options

that

are

allowed

for

record-oriented

data

transmission

statements

differ

according

to

the

attributes

of

the

file

and

the

characteristics

of

the

associated

data

set.

FILE

option

The

FILE

option

must

appear

in

every

record-oriented

data

transmission

statement.

It

specifies

the

file

upon

which

the

operation

takes

place.

An

example

of

the

FILE

option

is

shown

in

each

of

the

statements

in

this

section.

If

the

file

specified

is

not

open

in

the

current

process,

it

is

opened

implicitly.

REWRITE

274

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

FROM

option

The

FROM

option

specifies

the

element

or

aggregate

variable

from

which

the

record

is

written.

The

FROM

option

must

be

used

in

the

WRITE

statement

for

any

OUTPUT

or

DIRECT

UPDATE

file.

It

can

also

be

used

in

the

REWRITE

statement

for

any

UPDATE

file.

If

the

variable

is

an

aggregate,

it

must

be

in

connected

storage.

Certain

uses

of

unaligned

nonvarying

bit

strings

are

disallowed

(for

details,

see

“Data

transmitted”

on

page

271).

The

FROM

variable

can

be

an

element

string

variable

of

varying

length.

When

using

a

WRITE

statement

with

the

FROM

option,

only

the

current

length

of

a

varying

length

string

is

transmitted

to

a

data

set.

For

a

VARYINGZ

string,

the

null

terminator

is

attached

and

also

transmitted.

For

a

VARYING

string,

a

2-byte

prefix

specifying

the

length

is

attached

only

if

the

SCALARVARYING

option

of

the

ENVIRONMENT

attribute

is

specified

for

the

file.

Records

are

transmitted

as

an

integral

number

of

bytes.

If

a

bit

string

(or

a

structure

that

starts

or

ends

with

a

bit

string)

that

is

not

aligned

on

a

byte

boundary

is

transmitted,

the

record

is

padded

with

bits

at

the

start

or

the

end

of

the

string,

and

the

result

might

be

incorrect.

The

FROM

option

can

be

omitted

from

a

REWRITE

statement

for

SEQUENTIAL

UPDATE

files.

If

the

last

record

was

read

by

a

READ

statement

with

the

INTO

option,

REWRITE

without

FROM

has

no

effect

on

the

record

in

the

data

set.

If

the

last

record

was

read

by

a

READ

statement

with

the

SET

option,

the

record

(updated

by

whatever

assignments

were

made)

is

copied

back

onto

the

data

set.

In

the

following

examples,

the

statements

specify

that

the

value

of

the

variable

Mas_Rec

is

written

into

the

output

file

Master.

write

file

(Master)

from

(Mas_Rec);

The

REWRITE

statement

specifies

that

Mas_Rec

replaces

the

last

record

read

from

an

UPDATE

file.

rewrite

file

(Master)

from

(Mas_Rec);

IGNORE

option

The

IGNORE

option

can

be

used

in

a

READ

statement

for

any

SEQUENTIAL

INPUT

or

SEQUENTIAL

UPDATE

file.

The

expression

in

the

IGNORE

option

is

evaluated

and

converted

to

an

integer

value

n.

If

n

is

greater

than

zero,

n

records

are

ignored.

A

subsequent

READ

statement

for

the

file

will

access

the

(n+1)th

record.

If

n

is

less

than

1,

the

READ

statement

has

no

effect.

The

following

example

specifies

that

the

next

three

records

in

the

file

are

to

be

ignored:

read

file

(In)

ignore

(3);

INTO

option

The

INTO

option

specifies

an

element

or

aggregate

variable

into

which

the

logical

record

is

read.

The

INTO

option

can

be

used

in

the

READ

statement

for

any

INPUT

or

UPDATE

file.

FROM

Chapter

12.

Record-oriented

data

transmission

275

If

the

variable

is

an

aggregate,

it

must

be

in

connected

storage.

Certain

uses

of

unaligned

nonvarying

bit

strings

are

disallowed

(for

details,

see

“Data

transmitted”

on

page

271).

The

INTO

variable

can

be

an

element

string

variable

of

varying

length.

For

VARYINGZ

strings,

each

record

contains

a

null

terminator.

For

VARYING

strings,

if

the

SCALARVARYING

option

of

the

ENVIRONMENT

attribute

was

specified

for

the

file,

each

record

contains

a

2-byte

prefix

that

specifies

the

length

of

the

string

data.

If

SCALARVARYING

was

not

declared

on

input,

the

string

length

is

calculated

from

the

record

length

and

attached

as

a

2-byte

prefix

(for

VARYING

strings).

For

VARYING

bit

strings,

this

calculation

rounds

up

the

length

to

a

multiple

of

8

and

therefore

the

calculated

length

might

be

greater

than

the

maximum

declared

length.

The

following

example

specifies

that

the

next

sequential

record

is

read

into

the

variable

RECORD_1:

read

file

(Detail)

into

(Record_1);

KEY

option

The

KEY

option

specifies

a

character,

graphic

or

widechar

key

that

identifies

a

record.

It

can

be

used

in

a

READ

statement

for

an

INPUT

or

UPDATE

file,

or

in

a

REWRITE

statement

for

a

DIRECT

UPDATE

file.

The

KEY

option

applies

only

to

KEYED

files.

The

KEY

option

is

required

if

the

file

has

the

DIRECT

attribute

and

optional

if

the

file

has

the

SEQUENTIAL

and

KEYED

attributes.

The

expression

in

the

KEY

option

is

evaluated

and,

if

not

character,

graphic

or

widechar,

is

converted

to

a

character

value

that

represents

a

key.

It

is

this

character,

graphic

or

widechar

value

that

determines

which

record

is

read.

The

following

example

specifies

that

the

record

identified

by

the

character

value

of

the

variable

Stkey

is

read

into

the

variable

Item:

read

file

(Stpck)

into

(Item)

key

(Stkey);

KEYFROM

option

The

KEYFROM

option

specifies

a

character,

graphic

or

widechar

key

that

identifies

the

record

on

the

data

set

to

which

the

record

is

transmitted.

It

can

be

used

in

a

WRITE

statement

for

any

KEYED

OUTPUT

or

DIRECT

UPDATE

file,

or

in

a

LOCATE

statement.

The

KEYFROM

option

applies

only

to

KEYED

files.

The

expression

is

evaluated

and,

if

not

character,

graphic

or

widechar,

is

converted

to

a

character

string

and

is

used

as

the

key

of

the

record

when

it

is

written.

Relative

data

sets

can

be

created

using

the

KEYFROM

option.

The

record

number

is

specified

as

the

key.

REGIONAL(1)

data

sets

can

be

created

using

the

KEYFROM

option.

The

region

number

is

specified

as

the

key.

For

indexed

data

sets,

KEYFROM

specifies

a

recorded

key

whose

length

must

be

equal

to

the

key

length

specified

for

the

data

set.

INTO

276

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

The

following

example

specifies

that

the

value

of

Loanrec

is

written

as

a

record

in

the

file

Loans,

and

that

the

character

string

value

of

Loanno

is

used

as

the

key

with

which

it

can

be

retrieved:

write

file

(Loans)

from

(Loanrec)

keyfrom

(Loanno);

KEYTO

option

The

KEYTO

option

specifies

the

character,

graphic

or

widechar

variable

to

which

the

key

of

a

record

is

assigned.

The

KEYTO

option

can

specify

any

string

pseudovariable

other

than

STRING.

It

cannot

specify

a

variable

declared

with

a

numeric

picture

specification.

The

KEYTO

option

can

be

used

in

a

READ

statement

for

a

SEQUENTIAL

INPUT

or

SEQUENTIAL

UPDATE

file.

The

KEYTO

option

applies

only

to

KEYED

files.

Assignment

to

the

KEYTO

variable

always

follows

assignment

to

the

INTO

variable.

If

an

incorrect

key

specification

is

detected,

the

KEY

condition

is

raised.

The

value

assigned

is

as

follows:

v

For

indexed

data

sets,

the

record

key

is

padded

or

truncated

on

the

right

to

the

declared

length

of

the

character

variable.

v

For

relative

data

sets,

a

record

number

is

converted

to

a

character

string

with

leading

zeros

suppressed,

truncated,

or

padded

on

the

left

to

the

declared

length

of

the

character

variable.

v

For

REGIONAL(1)

data

sets,

the

9-character

region-number,

padded

or

truncated

on

the

left

to

the

declared

length

of

the

character

variable.

If

the

character

variable

is

of

varying

length,

any

leading

zeros

in

the

region

number

are

truncated

and

the

string

length

is

set

to

the

number

of

significant

digits.

An

all-zero

region

number

is

truncated

to

a

single

zero.

The

KEY

condition

is

not

raised

for

this

type

of

padding

or

truncation.

The

following

example

specifies

that

the

next

record

in

the

file

Detail

is

read

into

the

variable

Invntry,

and

that

the

key

of

the

record

is

assigned

to

the

variable

Keyfld:

read

file

(Detail)

into

(Invntry)

keyto

(Keyfld);

SET

option

The

SET

option

can

be

used

with

a

READ

statement

or

a

LOCATE

statement.

For

the

READ

statement,

it

specifies

a

pointer

variable

that

is

set

to

point

to

the

record

read.

For

the

LOCATE

statement,

it

specifies

a

pointer

variable

that

is

set

to

point

to

the

next

record

for

output.

If

the

SET

option

is

omitted

for

the

LOCATE

statement,

the

pointer

declared

with

the

record

variable

is

set.

If

a

VARYING

string

is

transmitted,

the

SCALARVARYING

option

must

be

specified

for

the

file.

The

following

example

specifies

that

the

value

of

the

pointer

variable

P

is

set

to

the

location

in

the

buffer

of

the

next

sequential

record:

read

file

(X)

set

(P);

Processing

modes

Record-oriented

data

transmission

has

two

modes

of

handling

data:

Move

mode

processes

data

by

moving

it

into

or

out

of

the

variable.

KEYFROM

Chapter

12.

Record-oriented

data

transmission

277

Locate

mode

processes

data

while

it

remains

in

a

buffer.

The

execution

of

a

data

transmission

statement

assigns

a

pointer

variable

for

the

location

of

the

storage

allocated

to

a

record

in

the

buffer.

Locate

mode

is

applicable

only

to

BUFFERED

files.

The

data

transmission

statements

and

options

that

you

specify

determine

the

processing

mode

used.

Move

mode

In

move

mode,

a

READ

statement

transfers

a

record

from

the

data

set

to

the

variable

named

in

the

INTO

option.

A

WRITE

or

REWRITE

statement

transfers

a

record

from

the

variable

named

in

the

FROM

option

to

the

data

set.

The

variables

named

in

the

INTO

and

FROM

options

can

be

of

any

storage

class.

The

following

is

an

example

of

move

mode

input:

Eof_In

=

'0'b;

on

endfile(In)

Eof_In

=

'1'B;

read

file(In)

into(Data);

do

while

(¬Eof_In);

...

/*

process

record

*/

read

file(In)

into(Data);

end;

Locate

mode

Locate

mode

assigns

to

a

pointer

variable

the

location

of

the

buffer.

A

based

variable

described

the

record.

The

same

data

can

be

interpreted

in

different

ways

by

using

different

based

variables.

Locate

mode

can

also

be

used

to

read

self-defining

records,

in

which

information

in

one

part

of

the

record

is

used

to

indicate

the

structure

of

the

rest

of

the

record.

For

example,

this

information

could

be

an

array

bound

or

a

code

identifying

which

based

structure

should

be

used

for

the

attributes

of

the

data.

A

READ

statement

with

a

SET

option

sets

the

pointer

variable

in

the

SET

option

to

a

buffer

containing

the

record.

The

data

in

the

record

can

then

be

referenced

by

a

based

variable

qualified

with

the

pointer

variable.

The

pointer

value

is

valid

only

until

the

execution

of

the

next

READ

or

CLOSE

statement

that

refers

to

the

same

file.

The

pointer

variable

specified

in

the

SET

option

or,

if

SET

was

omitted,

the

pointer

variable

specified

in

the

declaration

of

the

based

variable,

is

used.

The

pointer

value

is

valid

only

until

the

execution

of

the

next

LOCATE,

WRITE,

or

CLOSE

statement

that

refers

to

the

same

file.

It

also

initializes

components

of

the

based

variable

that

have

been

specified

in

REFER

options.

The

LOCATE

statement

sets

a

pointer

variable

to

a

large

enough

area

where

the

next

record

can

be

built.

After

execution

of

the

LOCATE

statement,

values

can

be

assigned

directly

into

the

based

variables

qualified

by

the

pointer

variable

set

by

the

LOCATE

statement.

The

following

example

shows

locate

mode

input:

Processing

modes

278

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

dcl

1

Data

based(P),

2

...
;

on

endfile(In)

;

read

file(In)

set(P);

do

while

(¬endfile(In));

...

/*

process

record

*/

read

file(In)

set(P);

end;

The

following

example

shows

locate

mode

output:

dcl

1

Data

based(P);

2

...
;

do

while

(More_records_to_write);

locate

Data

file(Out);

...

/*

build

record

*/

end;

Locate

mode

Chapter

12.

Record-oriented

data

transmission

279

Locate

mode

280

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Chapter

13.

Stream-oriented

data

transmission

Data

transmission

statements

.

.

.

.

.

.

.

. 282

GET

statement

.

.

.

.

.

.

.

.

.

.

.

. 282

PUT

statement

.

.

.

.

.

.

.

.

.

.

.

. 282

Options

of

data

transmission

statements

.

.

.

. 283

COPY

option

.

.

.

.

.

.

.

.

.

.

.

. 283

Data

specification

options

.

.

.

.

.

.

.

. 284

FILE

option

.

.

.

.

.

.

.

.

.

.

.

.

. 286

LINE

option

.

.

.

.

.

.

.

.

.

.

.

.

. 286

PAGE

option

.

.

.

.

.

.

.

.

.

.

.

. 286

SKIP

option

.

.

.

.

.

.

.

.

.

.

.

.

. 286

STRING

option

.

.

.

.

.

.

.

.

.

.

.

. 287

Transmission

of

data-list

items

.

.

.

.

.

.

.

. 288

Data-directed

data

specification

.

.

.

.

.

.

. 289

Restrictions

on

data-directed

data

.

.

.

.

.

. 289

Syntax

of

data-directed

data

.

.

.

.

.

.

. 290

GET

data-directed

.

.

.

.

.

.

.

.

.

.

. 291

PUT

data-directed

.

.

.

.

.

.

.

.

.

.

. 292

Edit-directed

data

specification

.

.

.

.

.

.

. 293

GET

edit-directed

.

.

.

.

.

.

.

.

.

.

. 295

PUT

edit-directed

.

.

.

.

.

.

.

.

.

.

. 296

FORMAT

statement

.

.

.

.

.

.

.

.

.

. 297

List-directed

data

specification

.

.

.

.

.

.

. 297

Syntax

of

list-directed

data

.

.

.

.

.

.

.

. 298

GET

list-directed

.

.

.

.

.

.

.

.

.

.

. 298

PUT

list-directed

.

.

.

.

.

.

.

.

.

.

. 299

PRINT

attribute

.

.

.

.

.

.

.

.

.

.

.

. 300

DBCS

data

in

stream

I/O

.

.

.

.

.

.

.

.

. 301

This

chapter

describes

the

input

and

output

statements

used

in

stream-oriented

data

transmission.

Features

that

apply

to

stream-oriented

and

record-oriented

data

transmission,

including

files,

file

attributes,

and

opening

and

closing

files,

are

described

in

Chapter

11,

“Input

and

output,”

on

page

257.

Stream-oriented

data

transmission

treats

a

data

set

as

a

continuous

stream

of

data

values

in

character,

graphic,

or

mixed

character

data

form.

Within

a

program,

record

boundaries

are

generally

ignored.

However,

a

data

set

consists

of

a

series

of

lines

of

data,

and

each

data

set

created

or

accessed

by

stream-oriented

data

transmission

has

a

line

size

associated

with

it.

In

general,

a

line

is

equivalent

to

a

record

in

the

data

set,

but

the

line

size

does

not

necessarily

equal

the

record

size.

The

stream-oriented

data

transmission

statements

can

also

be

used

for

internal

data

movement,

by

specifying

the

STRING

option

instead

of

specifying

the

FILE

option.

Although

the

STRING

option

is

not

an

input/output

operation,

its

use

is

described

in

this

chapter.

Stream-oriented

data

transmission

can

be

list-directed,

data-directed,

or

edit-directed.

List-directed

data

transmission

transmits

the

values

of

data-list

items

without

your

having

to

specify

the

format

of

the

values

in

the

stream.

The

values

are

recorded

externally

as

a

list

of

constants,

separated

by

blanks

or

commas.

Data-directed

data

transmission

transmits

the

names

of

the

data-list

items,

as

well

as

their

values,

without

your

having

to

specify

the

format

of

the

values

in

the

stream.

The

GRAPHIC

option

of

the

ENVIRONMENT

attribute

must

be

specified

if

any

variable

name

contains

a

DBCS

character,

even

if

no

DBCS

data

is

present.

Edit-directed

data

transmission

transmits

the

values

of

data-list

items

and

requires

that

you

specify

the

format

of

the

values

in

the

stream.

The

values

are

recorded

externally

as

a

string

of

characters

or

graphics

to

be

treated

character

by

character

(or

graphic

by

graphic)

according

to

a

format

list.

281

The

following

sections

detail

the

data

transmission

statements

and

their

options,

and

how

to

specify

the

list-,

data-,

and

edit-directed

data.

How

to

accommodate

double-byte

characters

is

discussed

in

“DBCS

data

in

stream

I/O”

on

page

301.

Data

transmission

statements

Stream-oriented

data

transmission

uses

GET

and

PUT

statements.

Only

consecutive

files

can

be

processed

with

the

GET

and

PUT

statements.

The

variables

or

pseudovariables

to

which

data

values

are

assigned,

and

the

expressions

from

which

they

are

transmitted,

are

generally

specified

in

a

data-specification

with

each

GET

or

PUT

statement.

The

statements

can

also

include

options

that

specify

the

origin

or

destination

of

the

data

values

or

indicate

where

they

appear

in

the

stream

relative

to

the

preceding

data

values.

Options

for

the

stream-data

transmission

statements

are

described

in

“Options

of

data

transmission

statements”

on

page

283.

GET

statement

The

GET

statement

is

a

STREAM

input

data

transmission

statement

that

can

either:

v

Assign

data

values

from

a

data

set

to

one

or

more

variables

v

Assign

data

values

from

a

string

to

one

or

more

variables.

For

a

stream

input

file,

use

the

following

syntax

for

the

GET

statement.

��

GET

FILE

(expression)

data-specification

�

�

COPY

(file-reference)

SKIP

(expression)

;

��

The

keywords

can

appear

in

any

order.

The

data

specification

must

appear

unless

the

SKIP

option

is

specified.

For

transmission

from

a

string,

use

this

syntax

for

the

GET

statement.

��

GET

STRING

(expression)

data-specification

;

��

If

FILE

or

STRING

option

is

not

specified

FILE(SYSIN)

is

assumed

and

SYSIN

is

implicitly

declared

FILE

STREAM

INPUT

EXTERNAL.

PUT

statement

The

PUT

statement

is

a

STREAM

output

data

transmission

statement

that

can:

v

Transmit

values

to

a

stream

output

file

v

Assign

values

to

a

character

variable.

Stream-oriented

data

transmission

282

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Use

the

following

syntax

of

the

PUT

statement

when

dealing

with

stream

output

files.

��

PUT

FILE

(file-reference)

data-specification

�

�

PAGE

LINE

(expression)

SKIP

(expression)

LINE

(expression)

;

��

The

keywords

can

appear

in

any

order.

The

data

specification

can

be

omitted

only

if

one

of

the

control

options

(PAGE,

SKIP,

or

LINE)

appears.

For

transmission

to

a

character

string,

however,

use

this

syntax

of

the

PUT

statement.

��

PUT

STRING

(expression)

data-specification

;

��

Options

of

data

transmission

statements

COPY

option

The

COPY

option

specifies

that

the

source

data

stream

is

written

on

the

specified

STREAM

OUTPUT

file

without

alteration.

If

no

file

reference

is

given,

the

default

is

the

output

file

SYSPRINT.

Each

new

record

in

the

input

stream

starts

a

new

record

on

the

COPY

file.

For

example:

get

file(sysin)

data(A,B,C)

copy(DPL);

not

only

transmits

the

values

assigned

to

A,

B,

and

C

in

the

input

stream

to

the

variables

with

these

names,

but

also

writes

them

exactly

as

they

appear

in

the

input

stream,

on

the

file

DPL.

Data

values

that

are

skipped

on

input,

and

not

transmitted

to

internal

variables,

copy

intact

into

the

output

stream.

If

a

condition

is

raised

during

the

execution

of

a

GET

statement

with

a

COPY

option

and

an

ON-unit

is

entered

in

which

another

GET

statement

is

executed

for

the

same

file,

and

if

control

is

returned

from

the

ON-unit

to

the

first

GET

statement,

that

statement

executes

as

if

no

COPY

option

was

specified.

If,

in

the

ON-unit,

a

PUT

statement

is

executed

for

the

file

associated

with

the

COPY

option,

the

position

of

the

data

transmitted

might

not

immediately

follow

the

most

recently-transmitted

COPY

data

item.

If

the

COPY

option

file

is

not

open

in

the

current

program,

the

file

is

implicitly

opened

in

the

program

for

stream

output

transmission.

PUT

Chapter

13.

Stream-oriented

data

transmission

283

Data

specification

options

Data

specifications

in

GET

and

PUT

statements

specify

the

data

to

be

transmitted.

��

�

�

(

data-list

)

LIST

DATA

,

(

data-list-item

)

EDIT

(

data-list

)

(

format-list

)

��

data-list:

�

,

data-list

item

(

data-list

type-3-DO

)

format-list:

�

,

format-item

n

format-item

n

(format-list)

If

a

GET

or

PUT

statement

includes

a

data

list

that

is

not

preceded

by

one

of

the

keywords

LIST,

DATA,

or

EDIT,

LIST

is

the

default.

Important:

In

a

statement

without

LIST,

DATA,

or

EDIT

preceding

the

data

list,

the

data

list

must

immediately

follow

the

GET

or

PUT

keyword.

Any

options

required

must

be

specified

after

the

data

list.

DATA

Refer

to

“Data-directed

data

specification”

on

page

289.

EDIT

Refer

to

“Edit-directed

data

specification”

on

page

293.

LIST

Refer

to

“List-directed

data

specification”

on

page

297.

data-list

item

On

input,

a

data-list

item

for

edit-directed

and

list-directed

transmission

can

be

one

of

the

following:

an

element,

array,

or

structure

variable.

For

a

data-directed

data

specification,

a

data-list

item

can

be

an

element,

array,

or

structure

variable.

None

of

the

names

in

a

data-directed

data

list

can

be

subscripted

or

locator-qualified.

However,

qualified

(that

is,

structure-member)

or

string-overlay-defined

names

are

allowed.

On

output,

a

data

list

item

for

edit-directed

and

list-directed

data

specifications

can

be

an

element

expression,

an

array

expression,

or

a

structure

expression.

For

a

data-directed

data

specification,

a

data-list

item

Data

specification

284

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

can

be

an

element,

array,

or

structure

variable.

It

must

not

be

locator-qualified.

It

can

be

qualified

(that

is,

a

member

of

a

structure)

or

string-overlay-defined.

The

data

types

of

a

data-list

item

can

be

any

computational

data,

and

in

PUT

statements,

the

data

type

may

also

be

POINTER,

HANDLE,

OFFSET,

ENTRY,

FILE

or

LABEL.

If

the

data

type

is

one

of

these

non-computational

types,

then

the

contents

of

the

item

will

be

transmitted

via

its

heximage

(and

for

PUT

DATA,

the

heximage

will

be

enclosed

in

quotes

followed

by

a

suffix

of

BX).

An

array

or

structure

variable

in

a

data-list

is

equivalent

to

n

items

in

the

data

list,

where

n

is

the

number

of

element

items

in

the

array

or

structure.

For

edit-directed

transmission,

each

element

item

is

associated

with

a

separate

use

of

a

data-format

item.

data-list

type-3-DO

The

syntax

for

the

Type

3

DO

specification

is

described

under

“DO

statement”

on

page

195.

Data

list

items

with

Type

3

DO

specifications

are

not

allowed

in

data-directed

data

lists

for

GET

statements.

When

the

last

repetitive

specification

is

completed,

processing

continues

with

the

next

data-list

item.

Each

repetitive

specification

must

be

enclosed

in

parentheses,

as

shown

in

the

syntax

diagram.

If

a

data

specification

contains

only

a

repetitive

specification,

two

sets

of

outer

parentheses

are

required,

since

the

data

list

is

enclosed

in

parentheses

and

the

repetitive

specification

must

have

a

separate

set.

When

repetitive

specifications

are

nested,

the

rightmost

DO

is

at

the

outer

level

of

nesting.

For

example:

get

list

(((A(I,J)

do

I

=

1

to

2)

do

J

=

3

to

4));

There

are

three

sets

of

parentheses,

in

addition

to

the

set

used

to

delimit

the

subscripts.

The

outermost

set

is

the

set

required

by

the

data

specification.

The

next

set

is

that

required

by

the

outer

repetitive

specification.

The

third

set

of

parentheses

is

required

by

the

inner

repetitive

specification.

This

statement

is

equivalent

in

function

to

the

following

nested

do-groups:

do

J

=

3

to

4;

do

I

=

1

to

2;

get

list

(A

(I,J));

end;

end;

It

assigns

values

to

the

elements

of

the

array

A

in

the

following

order:

A(1,3),

A(2,3),

A(1,4),

A(2,4)

format

list

For

a

description

of

the

format

list,

see

“Edit-directed

data

specification”

on

page

293.

Data

specification

Chapter

13.

Stream-oriented

data

transmission

285

FILE

option

The

FILE

option

specifies

the

file

upon

which

the

operation

takes

place.

It

must

be

a

STREAM

file.

For

information

on

how

to

declare

a

file

type

data

item,

see

“Files”

on

page

259.

If

neither

the

FILE

option

nor

the

STRING

option

appears

in

a

GET

statement,

the

input

file

SYSIN

is

the

default;

if

neither

option

appears

in

a

PUT

statement,

the

output

file

SYSPRINT

is

the

default.

LINE

option

The

LINE

option

can

be

specified

only

for

PRINT

files.

The

LINE

option

defines

a

new

current

line

for

the

data

set.

The

expression

is

evaluated

and

converted

to

an

integer

value,

n.

The

new

current

line

is

the

nth

line

of

the

current

page.

If

at

least

n

lines

have

already

been

written

on

the

current

page

or

if

n

exceeds

the

limits

set

by

the

PAGESIZE

option

of

the

OPEN

statement,

the

ENDPAGE

condition

is

raised.

If

n

is

less

than

or

equal

to

zero,

a

value

of

1

is

used.

If

n

specifies

the

current

line,

ENDPAGE

is

raised

except

when

the

file

is

positioned

on

column

1,

in

which

case

the

effect

is

the

same

as

if

a

SKIP(0)

option

were

specified.

The

LINE

option

takes

effect

before

the

transmission

of

any

values

defined

by

the

data

specification

(if

any).

If

both

the

PAGE

option

and

the

LINE

option

appear

in

the

same

statement,

the

PAGE

option

is

applied

first.

For

example:

put

file(List)

data(P,Q,R)

line(34)

page;

prints

the

values

of

the

variables

P,

Q,

and

R

in

data-directed

format

on

a

new

page,

commencing

at

line

34.

For

the

effect

of

the

LINE

option

when

specified

in

the

first

GET

statement

following

the

opening

of

the

file,

see

“OPEN

statement”

on

page

265.

For

output

to

a

terminal

in

interactive

mode,

the

LINE

option

skips

three

lines.

PAGE

option

The

PAGE

option

can

be

specified

only

for

PRINT

files.

It

defines

a

new

current

page

within

the

data

set.

If

PAGE

and

LINE

appear

in

the

same

PUT

statement,

the

PAGE

option

is

applied

first.

The

PAGE

option

takes

effect

before

the

transmission

of

any

values

defined

by

the

data

specification

(if

any).

The

page

remains

current

until

the

execution

of

a

PUT

statement

with

the

PAGE

option,

until

a

PAGE

format

item

is

encountered,

or

until

the

ENDPAGE

condition

is

raised,

resulting

in

the

definition

of

a

new

page.

A

new

current

page

implies

line

one.

For

output

to

a

terminal

in

interactive

mode,

the

PAGE

option

skips

three

lines.

SKIP

option

The

SKIP

option

specifies

a

new

current

line

(or

record)

within

the

data

set.

The

expression

is

evaluated

and

converted

to

an

integer

value,

n.

The

data

set

is

positioned

to

the

start

of

the

nth

line

(record)

relative

to

the

current

line

(record).

If

expression

is

not

specified,

the

default

is

SKIP(1).

FILE

286

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

The

SKIP

option

takes

effect

before

the

transmission

of

values

defined

by

the

data

specification

(if

any).

For

example:

put

list(X,Y,Z)

skip(3);

prints

the

values

of

the

variables

X,

Y,

and

Z

on

the

output

file

SYSPRINT

commencing

on

the

third

line

after

the

current

line.

For

non-PRINT

files

and

input

files,

if

the

expression

in

the

SKIP

option

is

less

than

or

equal

to

zero,

a

value

of

1

is

used.

For

PRINT

files,

if

n

is

less

than

or

equal

to

zero,

the

positioning

is

to

the

start

of

the

current

line.

For

the

effect

of

the

SKIP

option

when

specified

in

the

first

GET

statement

following

the

opening

of

the

file,

see

“OPEN

statement”

on

page

265.

If

fewer

than

n

lines

remain

on

the

current

page

when

a

SKIP(n)

is

issued,

ENDPAGE

is

raised.

When

printing

at

a

terminal

in

conversational

mode,

SKIP(n)

with

n

greater

than

3

is

equivalent

to

SKIP(3).

No

more

than

three

lines

can

be

skipped.

STRING

option

The

STRING

option

in

GET

and

PUT

statements

transmits

data

between

main

storage

locations

rather

than

between

the

main

and

a

data

set.

DBCS

data

items

cannot

be

used

with

the

STRING

option.

The

GET

statement

with

the

STRING

option

specifies

that

data

values

assigned

to

the

data

list

items

are

obtained

from

the

expression,

after

conversion

to

character

string.

Each

GET

operation

using

this

option

always

begins

at

the

leftmost

character

position

of

the

string.

If

the

number

of

characters

in

this

string

is

less

than

the

total

number

of

characters

specified

by

the

data

specification,

the

ERROR

condition

is

raised.

The

PUT

statement

with

the

STRING

option

specifies

that

values

of

the

data-list

items

are

to

be

assigned

to

the

specified

character

variable

or

pseudovariable.

The

PUT

operation

begins

assigning

values

at

the

leftmost

character

position

of

the

string,

after

appropriate

conversions

are

performed.

Blanks

and

delimiters

are

inserted

as

in

normal

I/O

operations.

If

the

string

is

not

long

enough

to

accommodate

the

data,

the

ERROR

condition

is

raised.

The

NAME

condition

is

not

raised

for

a

GET

DATA

statement

with

the

STRING

option.

Instead,

the

ERROR

condition

is

raised

for

situations

that

raise

the

NAME

condition

for

a

GET

DATA

statement

with

the

FILE

option.

The

following

restrictions

apply

to

the

STRING

option:

v

The

COLUMN

control

format

option

cannot

be

used

with

the

STRING

option.

v

No

pseudovariables

are

allowed

in

the

STRING

option

of

a

PUT

statement.

The

STRING

option

is

most

useful

with

edit-directed

transmission.

It

allows

data

gathering

or

scattering

operations

performed

with

a

single

statement,

and

it

allows

stream-oriented

processing

of

character

strings

that

are

transmitted

by

record-oriented

statements.

For

example:

SKIP

Chapter

13.

Stream-oriented

data

transmission

287

read

file

(Inputr)

into

(Temp);

get

string(Temp)

edit

(Code)

(F(1));

If

Code

=

1

then

get

string

(Temp)

Edit

(X,Y,Z)

(X(1),

3

F(10,4));

The

READ

statement

reads

a

record

from

the

input

file

Inputr.

The

first

GET

statement

uses

the

STRING

option

to

extract

the

code

from

the

first

byte

of

the

record

and

assigns

it

to

Code.

If

the

code

is

1,

the

second

GET

statement

uses

the

STRING

option

to

assign

the

values

in

the

record

to

X,

Y,

and

Z.

The

second

GET

statement

specifies

that

the

first

character

in

the

string

Temp

is

ignored

(the

X(1)

format

item

in

the

format

list).

This

ignored

character

is

the

same

one

assigned

to

Code

by

the

first

GET

statement.

An

example

of

the

STRING

option

in

a

PUT

statement

is:

put

string

(Record)

edit

(Name)

(X(1),

A(12))

(Pay#)

(X(10),

A(7))

(Hours*Rate)

(X(10),

P’$999V.99’);

write

file

(Outprt)

from

(Record);

The

PUT

statement

specifies,

by

the

X(1)

spacing

format

item,

that

the

first

character

assigned

to

the

character

variable

is

a

single

blank,

which

is

the

ANS

vertical

carriage

positioning

character

that

specifies

a

single

space

before

printing.

Following

that,

the

values

of

the

variables

Name

and

Pay#

and

of

the

expression

Hours*Rate

are

assigned.

The

WRITE

statement

specifies

that

record

transmission

is

used

to

write

the

record

into

the

file

Outprt.

The

variable

referenced

in

the

STRING

option

should

not

be

referenced

by

name

or

by

alias

in

the

data

list.

For

example:

declare

S

char(8)

init(’YYMMDD’);

put

string

(S)

edit

(substr

(S,

3,

2),

’/’,

substr

(S,

5,

2),

’/’,

substr

(S,

1,

2))

(A);

The

value

of

S

after

the

PUT

statement

is

'MM/bb/MM'

and

not

'MM/DD/YY'

because

S

is

blanked

after

the

first

data

item

is

transmitted.

The

same

effect

is

obtained

if

the

data

list

contains

a

variable

based

or

defined

on

the

variable

specified

in

the

STRING

option.

Transmission

of

data-list

items

If

a

data-list

item

is

of

complex

mode,

the

real

part

is

transmitted

before

the

imaginary

part.

If

a

data-list

item

is

an

array

expression,

the

elements

of

the

array

are

transmitted

in

row-major

order;

that

is,

with

the

rightmost

subscript

of

the

array

varying

most

frequently.

If

a

data-list

item

is

a

structure

expression,

the

elements

of

the

structure

are

transmitted

in

the

order

specified

in

the

structure

declaration.

For

example,

the

statements

STRING

288

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

declare

1

A

(10),

2

B,

2

C;

put

file(X)

list(A);

result

in

the

output

being

ordered

as

follows:

A.B(1)

A.C(1)

A.B(2)

A.C(2)

A.B(3)

A.C(3)...

If,

however,

the

declaration

is:

declare

1

A,

2

B(10),

2

C(10);

the

same

PUT

statement

results

in

the

output

ordered

as

follows:

A.B(1)

A.B(2)

A.B(3)

...

A.B(10)

A.C(1)

A.C(2)

A.C(3)

...

A.C(10)

If

an

input

statement

for

list-

or

edit-directed

transmission

assigns

a

value

to

a

variable

in

a

data

list,

the

assigned

value

is

used

if

the

variable

appears

in

a

later

reference

in

the

data

list.

For

example:

get

list

(N,(X(I)

do

I=1

to

N),J,K,);

substr

(Name,

J,K));

When

this

statement

is

executed,

values

are

transmitted

and

assigned

in

the

following

order:

1.

A

new

value

is

assigned

to

N.

2.

Elements

are

assigned

to

the

array

X

as

specified

in

the

repetitive

specification

in

the

order

X(1),X(2),...X(N),

with

the

new

value

of

N

specifying

the

number

of

assigned

items.

3.

A

new

value

is

assigned

to

J.

4.

A

new

value

is

assigned

to

K.

Data-directed

data

specification

For

a

description

of

the

syntax

of

the

DATA

data

specification,

refer

to

“Data

specification

options”

on

page

284.

Names

of

structure

elements

in

the

data-list

item

need

only

have

enough

qualification

to

resolve

any

ambiguity.

Full

qualification

is

not

required.

Omission

of

the

data

list

results

in

a

default

data

list

that

contains

all

computational

variables

that

could

be

named

in

a

data-directed

statement.

On

output,

all

items

in

the

data

list

are

transmitted.

Restrictions

on

data-directed

data

Subscripted

variables

are

not

allowed

in

data-directed

input.

References

to

based

variables

in

a

data-list

for

data-directed

input/output

cannot

be

explicitly

locator

qualified.

For

example:

dcl

Y

based(Q),

Z

based;

put

data(Y);

Transmission

of

data-list

items

Chapter

13.

Stream-oriented

data

transmission

289

The

variable

Z

cannot

be

transmitted

since

it

must

be

explicitly

qualified

by

a

locator.

A

based

variable

in

the

data-list

has

the

following

restrictions:

v

The

variable

must

not

be

based

on

an

OFFSET

variable.

v

The

pointer

on

which

the

variable

is

based

must

not

be

in

DEFINED

storage.

v

If

the

pointer

on

which

the

variable

is

based

is

itself

BASED,

then

the

chain

of

basing

pointers

must

end

with

a

pointer

that

is

neither

BASED

nor

DEFINED.

A

defined

variable

in

the

data-list

must:

v

Be

a

picture

or

character

variable

v

Not

be

defined

on

a

controlled

variable

v

Not

be

defined

on

an

element

or

cross

section

of

an

array

v

Not

be

defined

with

a

nonconstant

POSITION

attribute

Typed

structures

can

not

be

used

in

data-directed

input/output

statements.

Syntax

of

data-directed

data

The

stream

associated

with

data-directed

data

transmission

is

in

the

form

of

a

list

of

element

assignments.

The

element

assignments

that

have

optionally

signed

constants,

like

variable

names

and

equal

signs,

are

in

character

or

graphic

form.

��

�

�

,

b

element-variable

=

data-value

;

��

On

input,

the

element

assignments

can

be

separated

by

either

a

blank

or

a

comma.

Blanks

can

surround

periods

in

qualified

names,

subscripts,

subscript

parentheses,

and

the

assignment

symbols.

On

output,

the

assignments

are

separated

by

a

blank.

For

PRINT

files,

items

are

separated

according

to

program

tab

settings.

Each

data-value

in

the

stream

has

one

of

the

syntaxes

described

for

list-directed

transmission.

For

a

description

of

list-directed

transmission

syntax,

refer

to

“Syntax

of

list-directed

data”

on

page

298.

The

length

of

the

data

value

in

the

stream

is

a

function

of

the

attributes

declared

for

the

variable

and,

because

the

name

is

also

included,

the

length

of

the

fully

qualified

subscripted

name.

The

length

for

output

items

converted

from

coded

arithmetic

data,

numeric

character

data,

and

bit-string

data

is

the

same

as

that

for

list-directed

output

data,

and

is

governed

by

the

rules

for

data

conversion

to

character

type

as

described

in

Chapter

5,

“Data

conversion.”

Qualified

names

in

the

input

stream

must

be

fully

qualified.

Interleaved

subscripts

cannot

appear

in

qualified

names

in

the

stream.

For

example,

assume

that

Y

is

declared

as

follows:

Data-directed

data

specification

290

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

declare

1

Y(5,5),

2

A(10),

3

B,

3

C,

3

D;

An

element

name

has

to

appear

in

the

stream

as

follows:

Y.A.B(2,3,8)=

8.72

GET

data-directed

For

more

information

about

the

GET

statement,

see

“GET

statement”

on

page

282.

If

a

data

list

is

used,

each

data-list

item

must

be

an

element,

array,

or

structure

variable.

Names

cannot

be

subscripted,

but

qualified

names

are

allowed

in

the

data

list.

All

names

in

the

stream

should

appear

in

the

data

list;

however,

the

order

of

the

names

need

not

be

the

same,

and

the

data

list

can

include

names

that

do

not

appear

in

the

stream.

If

the

data

list

contains

a

name

that

is

not

included

in

the

stream,

the

value

of

the

named

variable

remains

unchanged.

If

the

stream

contains

an

unrecognizable

element-variable

or

a

name

that

does

not

have

a

counterpart

in

the

data

list,

the

NAME

condition

is

raised.

Transmission

ends

when

a

semicolon

that

is

not

enclosed

in

quotation

marks

or

an

end-of-file

is

reached.

The

recognition

of

the

semicolon

or

end-of-file

determines

the

number

of

element

assignments

that

are

actually

transmitted

by

a

particular

statement,

whether

or

not

a

data

list

is

specified.

For

example,

consider

the

following

data

list,

where

A,

B,

C,

and

D

are

names

of

element

variables:

Data

(B,

A,

C,

D)

This

data

list

can

be

associated

with

the

following

input

data

stream:

A=

2.5,

B=

.0047,

D=

125,

Z=

’ABC’;

Because

C

appears

in

the

data

list

but

not

in

the

stream,

its

value

remains

unaltered.

Z,

which

is

not

in

the

data

list,

raises

the

NAME

condition.

If

the

data

list

includes

the

name

of

an

array,

subscripted

references

to

that

array

can

appear

in

the

stream

although

subscripted

names

cannot

appear

in

the

data

list.

The

entire

array

need

not

appear

in

the

stream;

only

those

elements

that

actually

appear

in

the

stream

are

assigned.

If

a

subscript

is

out

of

range,

or

is

missing,

the

NAME

condition

is

raised.

For

example:

declare

X

(2,3);

Consider

the

following

data

list

and

input

data

stream:

Data

Specification

Input

Data

Stream

data

(X)

X(1,1)=

7.95,

X(1,2)=

8085,

X(1,3)=

73;

Syntax

of

data-directed

data

Chapter

13.

Stream-oriented

data

transmission

291

Although

the

data

list

has

only

the

name

of

the

array,

the

input

stream

can

contain

values

for

individual

elements

of

the

array.

In

this

case,

only

three

elements

are

assigned;

the

remainder

of

the

array

is

unchanged.

If

the

data

list

includes

the

names

of

structures,

minor

structures,

or

structure

elements,

fully

qualified

names

must

appear

in

the

stream,

although

full

qualification

is

not

required

in

the

data

list.

For

example:

dcl

1

In,

2

Partno,

2

Descrp,

2

Price,

3

Retail,

3

Whsl;

If

it

is

desired

to

read

a

value

for

In.Price.Retail,

the

input

data

stream

must

have

the

following

form:

In.Price.Retail=1.23;

The

data

specification

can

be

any

of:

data(In)

data(Price)

data(In.Price)

data(Retail)

data(Price.Retail)

data(In.Retail)

data(In.Price.Retail)

PUT

data-directed

For

more

information

about

the

PUT

statement,

see

“PUT

statement”

on

page

282.

A

data-list

item

can

be

an

element,

array,

or

structure

variable,

or

a

repetitive

specification.

The

names

appearing

in

the

data

list,

together

with

their

values,

are

transmitted

in

the

form

of

a

list

of

element

assignments

separated

by

blanks

and

terminated

by

a

semicolon.

For

PRINT

files,

items

are

separated

according

to

program

tab

settings;

see

“PRINT

attribute”

on

page

300.

A

semicolon

is

written

into

the

stream

after

the

last

data

item

transmitted

by

each

PUT

statement.

Names

are

transmitted

as

a

mixed

string,

which

can

contain

SBCS

and/or

DBCS

characters.

Any

SBCS

characters

expressed

in

DBCS

form

are

first

translated

to

SBCS.

For

example:

put

data

(.AB.Ckk);

would

be

transmitted

as:

ABCkk=value-of-variable

Note:

In

the

previous

example,

.AB.Ckk

is

a

scalar

variable.

Data-directed

output

is

not

valid

for

subsequent

data-directed

input

when

the

character-string

value

of

a

numeric

character

variable

does

not

represent

a

valid

optionally

signed

arithmetic

constant,

or

a

complex

expression.

For

character

data,

the

contents

of

the

character

string

are

written

out

enclosed

in

quotation

marks.

Each

quotation

mark

contained

within

the

character

string

is

represented

by

two

successive

quotation

marks.

GET

data-directed

292

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

The

following

example

shows

data-directed

transmission

(both

input

and

output):

declare

(A(6),

B(7))

fixed;

get

file

(X)

data

(B);

do

I

=

1

to

6;

A

(I)

=

B

(I+1)

+

B

(I);

end;

put

file

(Y)

data

(A);

input

stream:

B(1)=1,

B(2)=2,

B(3)=3,

B(4)=1,

B(5)=2,

B(6)=3,

B(7)=4;

output

stream:

A(1)=

3

A(2)=

5

A(3)=

4

A(4)=

3

A(5)=

5

A(6)=

7;

In

the

following

example:

dcl

1

A,

2

B

FIXED,

2

C,

3

D

FIXED;

A.B

=

2;

A.D

=

17;

put

data

(A);

The

data

fields

in

the

output

stream

are

as

follows:

A.B=

2

A.C.D=

17;

Edit-directed

data

specification

For

information

on

the

syntax

of

the

EDIT

data

specification,

refer

to

“Data

specification

options”

on

page

284.

��

�

,

format-item

n

format-item

n

(format-list)

��

n

Specifies

an

iteration

factor,

which

is

either

an

expression

enclosed

in

parentheses

or

an

integer.

If

it

is

the

latter,

a

blank

must

separate

the

integer

and

the

following

format

item.

The

iteration

factor

specifies

that

the

associated

format

item

or

format

list

is

used

n

successive

times.

A

zero

or

negative

iteration

factor

specifies

that

the

associated

format

item

or

format

list

is

skipped

and

not

used

(the

data-list

item

is

associated

with

the

next

data-format

item).

If

an

expression

is

used

to

represent

the

iteration

factor,

it

is

evaluated

and

converted

to

an

integer,

once

for

each

set

of

iterations.

The

associated

format

item

or

format

list

is

that

item

or

list

of

items

immediately

to

the

right

of

the

iteration

factor.

PUT

data-directed

Chapter

13.

Stream-oriented

data

transmission

293

format

item

Specifies

either

a

data-format

item,

a

control-format

item,

or

the

remote

format

item.

Syntax

and

detailed

discussions

of

the

format

items

appear

in

Chapter

14,

“Edit-directed

format

items.”

Data-format

items

describe

the

character

or

graphic

representation

of

a

single

data

item.

They

are:

A

character

B

bit

C

complex

E

floating

point

F

fixed

point

G

graphic

L

line

P

picture

Control-format

items

specify

the

layout

of

the

data

set

associated

with

a

file.

They

are:

COLUMN

LINE

PAGE

SKIP

X

Remote-format

item

specifies

a

label

reference

whose

value

is

the

label

constant

of

a

FORMAT

statement

located

elsewhere.

The

FORMAT

statement

contains

the

remotely

situated

format

items.

The

label

reference

item

is:

R(label-reference)

Where

label

is

the

label

constant

name

of

the

FORMAT

statement.

For

information

on

specifying

the

R-format

item,

see

“R-format

item”

on

page

312.

The

first

data-format

item

is

associated

with

the

first

data-list

item,

the

second

data-format

item

with

the

second

data-list

item,

and

so

on.

If

a

format

list

contains

fewer

data-format

items

than

there

are

items

in

the

associated

data

list,

the

format

list

is

reused.

If

there

are

excessive

format

items,

they

are

ignored.

Suppose

a

format

list

contains

five

data-format

items

and

its

associated

data

list

specifies

ten

items

to

be

transmitted.

The

sixth

item

in

the

data

list

is

associated

with

the

first

data-format

item,

and

so

forth.

Suppose

a

format

list

contains

ten

data-format

items

and

its

associated

data

list

specifies

only

five

items.

The

sixth

through

the

tenth

format

items

are

ignored.

If

a

control-format

item

is

encountered,

the

control

action

is

executed.

The

PAGE

and

LINE

control-format

items

can

be

used

only

with

PRINT

files

and,

consequently,

can

appear

only

in

PUT

statements.

The

SKIP,

COLUMN,

and

X-format

items

apply

to

both

input

and

output.

The

PAGE,

SKIP,

and

LINE

format

items

have

the

same

effect

as

the

corresponding

options

of

the

PUT

statement

(and

of

the

GET

statement,

in

the

case

of

SKIP),

except

that

the

format

items

take

effect

when

they

are

encountered

in

the

format

list,

while

the

options

take

effect

before

any

data

is

transmitted.

Edit-directed

data

specification

294

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

The

COLUMN

format

item

cannot

be

used

in

a

GET

STRING

or

PUT

STRING

statement.

For

the

effects

of

control-format

items

when

specified

in

the

first

GET

or

PUT

statement

following

the

opening

of

a

file,

see

“OPEN

statement”

on

page

265.

A

value

read

into

a

variable

can

be

used

in

a

format

item

that

is

associated

with

another

variable

later

in

the

data

list.

get

edit

(M,String_A,I,String_B)(F(2),A(M),X(M),F(2),A(I));

In

this

example,

the

first

two

characters

are

assigned

to

M.

The

value

of

M

specifies

the

number

of

characters

assigned

to

String_A

and

the

number

of

characters

being

ignored

before

two

characters

are

assigned

to

I,

whose

value

is

used

to

specify

the

number

of

characters

assigned

to

String_B.

The

value

assigned

to

a

variable

during

an

input

operation

can

be

used

in

an

expression

in

a

format

item

that

is

associated

with

a

later

data

item.

An

expression

in

a

format

item

is

evaluated

and

converted

to

an

integer

each

time

the

format

item

is

used.

The

transmission

is

complete

when

the

last

data-list

item

has

been

processed.

Subsequent

format

items,

including

control-format

items,

are

ignored.

GET

edit-directed

For

more

information

about

the

GET

statement,

see

“GET

statement”

on

page

282.

Data

in

the

stream

is

a

continuous

string

of

characters

and

graphics

with

no

delimiters

between

successive

values.

The

number

of

characters

for

each

data

value

is

specified

by

a

format

item

in

the

format

list.

The

characters

are

interpreted

according

to

the

associated

format

item.

When

the

data

list

has

been

processed,

execution

of

the

GET

statement

stops

and

any

remaining

format

items

are

not

processed.

Each

data-format

item

specifies

the

number

of

characters

or

graphics

to

be

associated

with

the

data-list

item

and

how

to

interpret

the

data

value.

The

data

value

is

assigned

to

the

associated

data-list

item,

with

any

necessary

conversion.

Fixed-point

binary

and

floating-point

binary

data

values

must

always

be

represented

in

the

input

stream

with

their

values

expressed

in

decimal

digits.

The

F-,

P-,

and

E-format

items

can

then

be

used

to

access

them,

and

the

values

are

converted

to

binary

representation

upon

assignment.

All

blanks

and

quotation

marks

are

treated

as

characters

in

the

stream.

Strings

should

not

be

enclosed

in

quotation

marks.

Quotation

marks

should

not

be

doubled.

The

letter

B

should

not

be

used

to

identify

bit

strings

or

G

to

identify

graphic

strings.

If

characters

in

the

stream

cannot

be

interpreted

in

the

manner

specified,

the

CONVERSION

condition

is

raised.

Example:

get

edit

(Name,

Data,

Salary)(A(N),

X(2),

A(6),

F(6,2));

This

example

specifies

the

following:

v

The

first

N

characters

in

the

stream

are

treated

as

a

character

string

and

assigned

to

Name.

v

The

next

two

characters

are

skipped.

Edit-directed

data

specification

Chapter

13.

Stream-oriented

data

transmission

295

v

The

next

six

characters

are

assigned

to

Data

in

character

format.

v

The

next

six

characters

are

considered

an

optionally

signed

decimal

fixed-point

constant

and

assigned

to

Salary.

PUT

edit-directed

For

more

information

about

the

PUT

statement,

see

“PUT

statement”

on

page

282.

The

value

of

each

data-list

item

is

converted

to

the

character

or

graphic

representation

specified

by

the

associated

data-format

item

and

placed

in

the

stream

in

a

field

whose

width

also

is

specified

by

the

format

item.

When

the

data

list

has

been

processed,

execution

of

the

PUT

statement

stops

and

any

remaining

format

items

are

not

processed.

On

output,

binary

items

are

converted

to

decimal

values

and

the

associated

F-

or

E-format

items

must

state

the

field

width

and

point

placement

in

terms

of

the

converted

decimal

number.

For

the

P-format

these

are

specified

by

the

picture

specification.

On

output,

blanks

are

not

inserted

to

separate

data

values

in

the

output

stream.

String

data

is

left-adjusted

in

the

field

to

the

width

specified.

Arithmetic

data

is

right-adjusted.

Because

of

the

rules

for

conversion

of

arithmetic

data

to

character

type

which

can

cause

up

to

3

leading

blanks

to

be

inserted

(in

addition

to

any

blanks

that

replace

leading

zeros),

generally

there

is

at

least

1

blank

preceding

an

arithmetic

item

in

the

converted

field.

Leading

blanks

do

not

appear

in

the

stream,

however,

unless

the

specified

field

width

allows

for

them.

Truncation,

due

to

inadequate

field-width

specification,

is

on

the

left

for

arithmetic

items,

and

on

the

right

for

string

items.

SIZE

or

STRINGSIZE

is

raised

if

truncation

occurs.

Example

1

put

edit(’Inventory=’\Inum,Invcode)(A,F(5));

This

example

specifies

that

the

character

string

’Inventory=’

is

concatenated

with

the

value

of

Inum

and

placed

in

the

stream

in

a

field

whose

width

is

the

length

of

the

resultant

string.

Then

the

value

of

Invcode

is

converted

to

character,

as

described

by

the

F-format

item,

and

placed

in

the

stream

right-adjusted

in

a

field

with

a

width

of

five

characters

(leading

characters

can

be

blanks).

Example

2

The

following

example

shows

the

use

of

the

COLUMN,

LINE,

PAGE,

and

SKIP

format

items

in

combination

with

one

another:

put

edit

(’Quarterly

Statement’)

(page,

line(2),

A(19))(Acct#,

Bought,

Sold,

Payment,

Balance)

(skip(3),

A(6),

column(14),

F(7,2),

column(30),

F(7,2),

column(45),

F(7,2),

column(60),

F(7,2));

This

PUT

statement

specifies

the

following:

1.

The

heading

Quarterly

Statement

is

written

on

line

two

of

a

new

page

in

the

output

file

SYSPRINT.

2.

Two

lines

are

skipped.

The

next

line

in

the

output

is

the

third

line

following

the

heading,

or

the

fifth

line

of

the

report.

3.

The

following

values

are

written:

Acct#,

beginning

at

character

position

1

Bought,

beginning

at

character

position

14

Sold,

beginning

at

character

position

30

Payment,

beginning

at

character

position

45

GET

edit-directed

296

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Balance

at

character

position

60.

Example

3

In

the

following

example,

the

value

of

Name

is

inserted

in

the

stream

as

a

character

string

left-adjusted

in

a

field

of

N

characters.

put

edit

(Name,Number,City)

(A(N),A(N-4),A(10));

Number

is

left-adjusted

in

a

field

of

N-4

characters;

and

City

is

left-adjusted

in

a

field

of

10

characters.

FORMAT

statement

The

FORMAT

statement

specifies

a

format

list

that

can

be

used

by

edit-directed

data

transmission

statements

to

control

the

format

of

the

data

being

transmitted.

��

�

label:

FORMAT

(format-list)

;

��

label

Same

as

the

label-reference

of

the

remote-format

item,

R,

discussed

in

“R-format

item”

on

page

312.

format

list

Specified

as

described

under

“Edit-directed

data

specification”

on

page

293.

A

GET

or

PUT

EDIT

statement

can

include

an

R-format

item

in

its

format-list

option.

That

portion

of

the

format

list

represented

by

the

R-format

item

is

supplied

by

the

identified

FORMAT

statement.

A

condition

prefix

associated

with

a

FORMAT

statement

is

not

allowed.

List-directed

data

specification

For

information

on

the

syntax

of

the

LIST

data

specification,

refer

to

“Data

specification

options”

on

page

284.

Examples

of

list-directed

data

specifications

are:

list

(Card_Rate,

Dynamic_Flow)

list

((Thickness(Distance)

do

Distance

=

1

to

1000))

list

(P,

Z,

M,

R)

list

(A*B/C,

(X+Y)**2)

The

specification

in

the

last

example

can

be

used

only

for

output,

since

it

contains

expressions.

These

expressions

are

evaluated

when

the

statement

is

executed,

and

the

result

is

placed

in

the

stream.

PUT

edit-directed

Chapter

13.

Stream-oriented

data

transmission

297

Syntax

of

list-directed

data

Data

values

in

the

stream,

either

input

or

output,

are

character

or

graphic

representations.

��

arithmetic-constant

+

−

real-constant

+

imaginary-constant

+

−

−

character-constant

bit-constant

graphic-constant

��

String

repetition

factors

are

not

allowed.

A

blank

must

not

follow

a

sign

preceding

a

real

constant,

and

must

not

precede

or

follow

the

central

positive

(+)

or

negative

(−)

symbol

in

complex

expressions.

The

length

of

the

data

value

in

the

stream

is

a

function

of

the

attributes

of

the

data

value,

including

precision

and

length.

Detailed

discussions

of

the

conversion

rules

and

their

effect

upon

precision

are

listed

in

the

descriptions

of

conversion

to

character

type

in

Chapter

5,

“Data

conversion,”

on

page

73.

GET

list-directed

For

information

about

the

GET

statement,

see

“GET

statement”

on

page

282.

On

input,

data

values

in

the

stream

must

be

separated

either

by

a

blank

or

by

a

comma.

This

separator

can

be

surrounded

by

one

or

more

blanks.

A

null

field

in

the

stream

is

indicated

either

by

the

first

nonblank

character

in

the

data

stream

being

a

comma,

or

by

two

commas

separated

by

an

arbitrary

number

of

blanks.

A

null

field

specifies

that

the

value

of

the

associated

data-list

item

remains

unchanged.

Transmission

of

the

list

of

constants

or

complex

expressions

on

input

is

terminated

by

expiration

of

the

list

or

at

the

end-of-file.

For

transmission

of

constants,

the

file

is

positioned

in

the

stream

ready

for

the

next

GET

statement.

If

the

items

are

separated

by

a

comma,

the

first

character

scanned

when

the

next

GET

statement

is

executed

is

the

one

immediately

following

the

comma:

Xbb,bbbXX

—

If

the

items

are

separated

by

blanks

only,

the

first

item

scanned

is

the

next

nonblank

character:

XbbbbXXX

—

unless

the

end-of-record

is

encountered,

in

which

case

the

file

is

positioned

at

the

end

of

the

record:

Xbb–bbXXX

—

Syntax

of

list-directed

data

298

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

However,

if

the

end-of-record

immediately

follows

a

nonblank

character

(other

than

a

comma),

and

the

following

record

begins

with

blanks,

the

file

is

positioned

at

the

first

nonblank

character

in

the

following

record:

X–bbbXXX

—

If

the

record

does

terminate

with

a

comma,

the

next

record

is

not

read

until

the

next

GET

statement

requires

it.

If

the

data

is

a

character

constant,

the

surrounding

quotation

marks

are

removed,

and

the

enclosed

characters

are

interpreted

as

a

character

string.

A

double

quotation

mark

is

treated

as

a

single

quotation

mark.

If

the

data

is

a

bit

constant,

the

enclosing

quotation

marks

and

the

trailing

character

B

are

removed,

and

the

enclosed

characters

are

interpreted

as

a

bit

string.

If

the

data

is

a

hexadecimal

constant

(X,

BX,

B4,

GX),

the

enclosing

quotation

marks

and

the

suffix

are

removed,

and

the

enclosed

characters

are

interpreted

as

a

hexadecimal

representation

of

a

character,

bit,

or

graphic

string.

If

the

data

is

a

mixed

constant,

the

enclosing

quotation

marks

and

the

suffix

M

are

removed,

and

the

enclosed

constant

is

interpreted

as

a

character

string.

If

the

data

is

a

graphic

constant,

the

enclosing

quotation

marks

and

the

trailing

character

G

are

removed,

and

the

enclosed

graphics

are

interpreted

as

a

graphic

string.

If

the

data

is

an

arithmetic

constant

or

complex

expression,

it

is

interpreted

as

coded

arithmetic

data

with

the

base,

scale,

mode,

and

precision

implied

by

the

constant

or

by

the

rules

for

expression

evaluation.

PUT

list-directed

For

more

information

about

the

PUT

statement,

see

“PUT

statement”

on

page

282.

The

values

of

the

data-list

items

are

converted

to

character

representations

(except

for

graphics)

and

transmitted

to

the

data

stream.

A

blank

separates

successive

data

values

transmitted.

For

PRINT

files,

items

are

separated

according

to

program

tab

settings

(see

“PRINT

attribute”

on

page

300).

Arithmetic

values

are

converted

to

character.

Binary

data

values

are

converted

to

decimal

notation

before

being

placed

in

the

stream.

For

numeric

character

values,

the

character

value

is

transmitted.

Bit

strings

are

converted

to

character

strings.

The

character

string

is

enclosed

in

quotation

marks

and

followed

by

the

letter

B.

Character

strings

are

written

out

as

follows:

v

If

the

file

does

not

have

the

attribute

PRINT,

enclosing

quotation

marks

are

supplied,

and

contained

single

quotation

marks

or

apostrophes

are

replaced

by

two

quotation

marks.

The

field

width

is

the

current

length

of

the

string

plus

the

number

of

added

quotation

marks.

GET

list-directed

Chapter

13.

Stream-oriented

data

transmission

299

v

If

the

file

has

the

attribute

PRINT,

enclosing

quotation

marks

are

not

supplied,

and

contained

single

quotation

marks

or

apostrophes

are

unmodified.

The

field

width

is

the

current

length

of

the

string.

Mixed

strings

are

written

out

as

follows:

v

If

the

file

does

not

have

the

attribute

PRINT,

SBCS

quotation

marks

and

the

letter

M

are

supplied.

Contained

SBCS

quotes

are

replaced

by

two

quotes.

v

If

the

file

has

the

attribute

PRINT,

the

enclosing

quotation

marks

and

letter

M

are

not

supplied,

and

contained

single

quotation

marks

are

unmodified.

Graphic

strings

are

written

out

as

follows:

v

If

the

file

does

not

have

the

attribute

PRINT,

SBCS

quotation

marks,

and

the

letter

G

are

supplied.

Because

the

enclosing

quotation

marks

are

SBCS,

contained

graphic

quotation

marks

are

represented

by

a

single

graphic

quotation

mark

(unmodified).

v

If

the

file

has

the

attribute

PRINT,

the

enclosing

quotation

marks

and

letter

G

are

not

supplied,

and

graphic

quotation

marks

are

represented

by

a

single

graphic

quotation

mark

(unmodified).

PRINT

attribute

The

PRINT

attribute

applies

to

files

with

the

STREAM

and

OUTPUT

attributes.

It

indicates

that

the

file

is

intended

to

be

printed;

that

is,

the

data

associated

with

the

file

is

to

appear

on

printed

pages,

although

it

can

first

be

written

on

some

other

medium.

��

PRINT

��

When

PRINT

is

specified,

the

first

data

byte

of

each

record

of

a

PRINT

file

is

reserved

for

an

American

National

Standard

(ANS)

printer

control

character.

The

control

characters

are

inserted

by

PL/I.

Data

values

transmitted

by

list-

and

data-directed

data

transmission

are

automatically

aligned

on

the

left

margin

and

on

implementation-defined

preset

tab

positions.

The

layout

of

a

PRINT

file

can

be

controlled

by

the

use

of

the

options

and

format

items

listed

in

Table

36.

Table

36.

Options

and

format

items

for

PRINT

files

Statement

Statement

Option

Edit

directed

format

item

Effect

OPEN

LINESIZE(n)

–

Established

line

width

OPEN

PAGESIZE(n)

–

Establishes

page

length

PUT

PAGE

PAGE

Skip

to

new

page

PUT

LINE(n)

LINE(n)

Skip

to

specified

line

PUT

SKIP[(n)]

SKIP[(n)]

Skip

specified

number

of

lines

PUT

–

COLUMN(n)

Skip

to

specified

character

position

in

line

PUT

list-directed

300

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Table

36.

Options

and

format

items

for

PRINT

files

(continued)

Statement

Statement

Option

Edit

directed

format

item

Effect

PUT

–

X(n)

Places

blank

characters

in

line

to

establish

position.

LINESIZE

and

PAGESIZE

establish

the

dimensions

of

the

printed

area

of

the

page,

excluding

footings.

The

LINESIZE

option

specifies

the

maximum

number

of

characters

included

in

each

printed

line.

If

it

is

not

specified

for

a

PRINT

file,

a

default

value

of

120

characters

is

used.

There

is

no

default

for

a

non-PRINT

file.

The

PAGESIZE

option

specifies

the

maximum

number

of

lines

in

each

printed

page;

if

it

is

not

specified,

a

default

value

of

60

lines

is

used.

For

example:

open

file(Report)

output

stream

print

PAGESIZE(55)

LINESIZE(110);

on

endpage(Report)

begin;

put

file(Report)

skip

list

(Footing);

Pageno

=

Pageno

+

1;

put

file(Report)

page

list

(’Page

’||Pageno);

put

file(Report)

skip

(3);

end;

The

OPEN

statement

opens

the

file

Report

as

a

PRINT

file.

The

specification

PAGESIZE(55)

indicates

that

each

page

contains

a

maximum

of

55

lines.

An

attempt

to

write

on

a

page

after

55

lines

have

already

been

written

(or

skipped)

raises

the

ENDPAGE

condition.

The

implicit

action

for

the

ENDPAGE

condition

is

to

skip

to

a

new

page,

but

you

can

establish

your

own

action

through

use

of

the

ON

statement,

as

shown

in

the

example.

LINESIZE(110)

indicates

that

each

line

on

the

page

can

contain

a

maximum

of

110

characters.

An

attempt

to

write

a

line

greater

than

110

characters

places

the

excess

characters

on

the

next

line.

When

an

attempt

is

made

to

write

on

line

56

(or

to

skip

beyond

line

55),

the

ENDPAGE

condition

is

raised,

and

the

begin-block

shown

here

is

executed.

The

ENDPAGE

condition

is

raised

only

once

per

page.

Consequently,

printing

can

be

continued

beyond

the

specified

PAGESIZE

after

the

ENDPAGE

condition

has

been

raised.

This

can

be

useful,

for

example,

if

you

want

to

write

a

footing

at

the

bottom

of

each

page.

The

first

PUT

statement

specifies

that

a

line

is

skipped,

and

the

value

of

Footing,

presumably

a

character

string,

is

printed

on

line

57

(when

ENDPAGE

is

raised,

the

current

line

is

always

PAGESIZE+1).

The

page

number,

Pageno,

is

incremented,

the

file

Report

is

set

to

the

next

page,

and

the

character

constant

'Page'

is

concatenated

with

the

new

page

number

and

printed.

The

final

PUT

statement

skips

three

lines,

so

that

the

next

printing

is

on

line

4.

Control

returns

from

the

begin-block

to

the

PUT

statement

that

raised

the

ENDPAGE

condition.

However,

any

SKIP

or

LINE

option

specified

in

that

statement

has

no

further

effect.

DBCS

data

in

stream

I/O

If

DBCS

data

is

used

in

list-directed

or

data-directed

transmission,

the

GRAPHIC

option

of

the

ENVIRONMENT

attribute

must

be

specified

for

that

file.

It

also

must

be

specified

if

data-directed

transmission

uses

DBCS

names

even

though

no

DBCS

data

is

present.

DBCS

continuation

rules

are

applied

and

are

the

same

rules

as

PRINT

Chapter

13.

Stream-oriented

data

transmission

301

those

described

in

“DBCS

continuation

rules”

on

page

20.

For

information

on

how

graphics

are

handled

for

edit-directed

transmission,

see

“Edit-directed

data

specification”

on

page

293.

DBCS

data

in

stream

I/O

302

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Chapter

14.

Edit-directed

format

items

A-format

item

.

.

.

.

.

.

.

.

.

.

.

.

. 303

B-format

item

.

.

.

.

.

.

.

.

.

.

.

.

. 304

C-format

item

.

.

.

.

.

.

.

.

.

.

.

.

. 304

COLUMN

format

item

.

.

.

.

.

.

.

.

.

. 305

E-format

item

.

.

.

.

.

.

.

.

.

.

.

.

. 306

F-format

item

.

.

.

.

.

.

.

.

.

.

.

.

. 308

G-format

item

.

.

.

.

.

.

.

.

.

.

.

.

. 310

L-format

item

.

.

.

.

.

.

.

.

.

.

.

.

. 310

LINE

format

item

.

.

.

.

.

.

.

.

.

.

.

. 311

P-format

item

.

.

.

.

.

.

.

.

.

.

.

.

. 311

PAGE

format

item

.

.

.

.

.

.

.

.

.

.

.

. 312

R-format

item

.

.

.

.

.

.

.

.

.

.

.

.

. 312

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 312

SKIP

format

item

.

.

.

.

.

.

.

.

.

.

.

. 313

X-format

item

.

.

.

.

.

.

.

.

.

.

.

.

. 313

This

chapter

describes

each

of

the

edit-directed

format

items

that

can

appear

in

the

format

list

of

a

GET,

PUT,

or

FORMAT

statement.

(See

also

“Edit-directed

data

specification”

on

page

293.)

The

format

items

are

described

in

alphabetic

order.

A-format

item

The

character

(or

A)

format

item

describes

the

representation

of

a

character

value.

��

A

(field-width)

��

field-width

Specifies

the

number

of

character

positions

in

the

data

stream

that

contain

(or

will

contain)

the

string.

It

is

an

expression

that

is

evaluated

and

converted

to

an

integer

value,

which

must

be

nonnegative,

each

time

the

format

item

is

used.

If

an

A-format

item

is

specified

without

a

length

in

a

GET

EDIT

statement,

the

compiler

issues

a

warning

message

and

treats

it

as

an

L-format

item

(rather

than

issuing

an

error

message

and

assigning

it

a

length

of

1).

On

input,

the

specified

number

of

characters

is

obtained

from

the

data

stream

and

assigned,

with

any

necessary

conversion,

truncation,

or

padding,

to

the

data-list

item.

The

field

width

is

always

required

on

input

and,

if

it

is

zero,

a

null

string

is

obtained.

If

quotation

marks

appear

in

the

stream,

they

are

treated

as

characters

in

the

string.

Consider

the

following

example:

get

file

(Infile)

edit

(Item)

(A(20));

The

GET

statement

assigns

the

next

20

characters

in

Infile

to

Item.

The

value

is

converted

from

its

character

representation

specified

by

the

format

item

A(20),

to

the

representation

specified

by

the

attributes

declared

for

Item.

On

output,

the

data-list

item

is

converted,

if

necessary,

to

a

character

string

and

is

truncated

or

extended

with

blanks

on

the

right

to

the

specified

field-width

before

being

placed

into

the

data

stream.

If

the

field-width

is

zero,

no

characters

are

placed

into

the

data

stream.

Enclosing

quotation

marks

are

never

inserted,

nor

are

contained

quotation

marks

doubled.

If

the

field

width

is

not

specified,

the

default

303

is

equal

to

the

character-string

length

of

the

data-list

item

(after

conversion,

if

necessary,

according

to

the

rules

given

in

Chapter

5,

“Data

conversion”).

B-format

item

The

bit

(or

B)

format

item

describes

the

character

representation

of

a

bit

value.

Each

bit

is

represented

by

the

character

zero

or

one.

��

B

(field-width)

��

field-width

Specifies

the

number

of

data-stream

character

positions

that

contain

(or

will

contain)

the

bit

string.

It

is

an

expression

that

is

evaluated

and

converted

to

an

integer

value,

which

must

be

nonnegative,

each

time

the

format

item

is

used.

On

input,

the

character

representation

of

the

bit

string

can

occur

anywhere

within

the

specified

field.

Blanks,

which

can

appear

before

and

after

the

bit

string

in

the

field,

are

ignored.

Any

necessary

conversion

occurs

when

the

bit

string

is

assigned

to

the

data-list

item.

The

field

width

is

always

required

on

input,

and

if

it

is

zero,

a

null

string

is

obtained.

Any

character

other

than

0

or

1

in

the

string,

including

embedded

blanks,

quotation

marks,

or

the

letter

B,

raises

the

CONVERSION

condition.

On

output,

the

character

representation

of

the

bit

string

is

left-adjusted

in

the

specified

field,

and

necessary

truncation

or

extension

with

blanks

occurs

on

the

right.

Any

necessary

conversion

to

bit-string

is

performed.

No

quotation

marks

are

inserted,

nor

is

the

identifying

letter

B.

If

the

field

width

is

zero,

no

characters

are

placed

into

the

data

stream.

If

the

field

width

is

not

specified,

the

default

is

equal

to

the

bit-string

length

of

the

data-list

item

(after

conversion,

if

necessary,

according

to

the

rules

given

in

Chapter

5,

“Data

conversion”).

In

the

example:

declare

Mask

bit(25);

put

file(Maskfle)

edit

(Mask)

(B);

The

PUT

statement

writes

the

value

of

Mask

in

Maskfle

as

a

string

of

25

characters

consisting

of

zeros

and

ones.

C-format

item

The

complex

(or

C)

format

item

describes

the

character

representation

of

a

complex

data

value.

You

use

one

real-format-item

to

describe

both

the

real

and

imaginary

parts

of

the

complex

data

value

in

the

data

stream.

��

C

(real-format-item)

��

real-format-item

Specified

by

one

of

the

F-,

E-,

or

P-format

items.

The

P-format

item

must

describe

numeric

character

data.

A-format

304

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

On

input,

the

letter

I

in

the

input

raises

the

CONVERSION

condition.

On

output,

the

letter

I

is

never

appended

to

the

imaginary

part.

If

the

second

real

format

item

(or

the

first,

if

only

one

appears)

is

an

F

or

E

item,

the

sign

is

transmitted

only

if

the

value

of

the

imaginary

part

is

less

than

zero.

If

the

real

format

item

is

a

P

item,

the

sign

is

transmitted

only

if

the

S

or

-

or

+

picture

character

is

specified.

If

you

require

an

I

to

be

appended,

it

must

be

specified

as

a

separate

data

item

in

the

data

list,

immediately

following

the

variable

that

specifies

the

complex

item.

The

I,

then,

must

have

a

corresponding

format

item

(either

A

or

P).

If

a

second

real

format

item

is

specified,

it

is

ignored.

COLUMN

format

item

The

COLUMN

format

item

positions

the

file

to

a

specified

character

position

within

the

current

or

following

line.

��

COLUMN

(character-position)

��

character-position

Specifies

an

expression

which

is

evaluated

and

converted

to

an

integer

value,

which

must

be

nonnegative,

each

time

the

format

item

is

used.

The

file

is

positioned

to

the

specified

character

position

in

the

current

line,

provided

it

has

not

already

passed

this

position.

If

the

file

is

already

positioned

after

the

specified

character

position,

the

current

line

is

completed

and

a

new

line

is

started;

the

format

item

is

then

applied

to

the

following

line.

Then,

if

the

specified

character

position

lies

beyond

the

rightmost

character

position

of

the

current

line,

or

if

the

value

of

the

expression

for

the

character

position

is

less

than

one,

the

default

character

position

is

one.

The

rightmost

character

position

is

determined

as

follows:

v

For

output

files,

it

is

determined

by

the

line

size.

v

For

input

files,

it

is

determined

using

the

length

of

the

current

logical

record

to

determine

the

line

size

and,

hence,

the

rightmost

character

position.

COLUMN

must

not

be

used

in

a

GET

STRING

or

PUT

STRING

statement.

COLUMN

cannot

be

used

with

input

or

output

lines

that

contain

graphics

or

widechars.

On

input,

intervening

character

positions

are

ignored.

On

output,

intervening

character

positions

are

filled

with

blanks.

C-format

Chapter

14.

Edit-directed

format

items

305

E-format

item

The

floating-point

(or

E)

format

item

describes

the

character

representation

of

a

real

floating-point

decimal

arithmetic

data

value.

��

E

(

field-width,fractional-digits

,significant-digits

)

��

field-width

Specifies

the

total

number

of

characters

in

the

field.

It

is

evaluated

and

converted

to

an

integer

value

w

each

time

the

format

item

is

used.

fractional-digits

Specifies

the

number

of

digits

in

the

mantissa

that

follow

the

decimal

point.

It

is

evaluated

and

converted

to

an

integer

value

d

each

time

the

format

item

is

used.

significant-digits

Specifies

the

number

of

digits

that

must

appear

in

the

mantissa.

It

is

evaluated

and

converted

to

an

integer

value

s

each

time

the

format

item

is

used.

The

following

must

be

true:

w

>=

s

=

d+1

or

w

=

0

When

w

¬=

0

s

>

0,

d

>=

0

The

values

for

w,

d,

and

s

are

field-width,

fractional-digits,

and

significant-digits,

respectively.

On

input,

either

the

data

value

in

the

data

stream

is

an

optionally

signed

real

decimal

floating-point

or

fixed-point

constant

located

anywhere

within

the

specified

field

or

the

CONVERSION

condition

is

raised.

(For

convenience,

the

E

preceding

a

signed

exponent

can

be

omitted.)

The

field

width

includes

leading

and

trailing

blanks,

the

exponent

position,

the

positions

for

the

optional

plus

or

minus

signs,

the

position

for

the

optional

letter

E,

and

the

position

for

the

optional

decimal

point

in

the

mantissa.

The

data

value

can

appear

anywhere

within

the

specified

field;

blanks

can

appear

before

and

after

the

data

value

in

the

field

and

are

ignored.

If

the

entire

field

is

blank,

the

CONVERSION

condition

is

raised.

When

no

decimal

point

appears,

fractional-digits

specifies

the

number

of

character

positions

in

the

mantissa

to

the

right

of

the

assumed

decimal

point.

If

a

decimal

point

does

appear

in

the

number,

it

overrides

the

specification

of

fractional-digits.

If

field-width

is

0,

there

is

no

assignment

to

the

data-list

item.

The

statement:

get

file(A)

edit

(Cost)

(E(10,6));

E-format

306

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

obtains

the

next

10

characters

from

A

and

interprets

them

as

a

floating-point

decimal

number.

A

decimal

point

is

assumed

before

the

rightmost

6

digits

of

the

mantissa.

The

value

of

the

number

is

converted

to

the

attributes

of

COST

and

assigned

to

this

variable.

On

output,

the

data-list

item

is

converted

to

floating-point

and

rounded

if

necessary.

The

rounding

of

data

is

as

follows:

if

truncation

causes

a

digit

to

be

lost

from

the

right,

and

this

digit

is

greater

than

or

equal

to

5,

1

is

added

to

the

digit

to

the

left

of

the

truncated

digit.

This

addition

might

cause

adjustment

of

the

exponent.

The

character

string

written

in

the

stream

for

output

has

one

of

the

following

syntaxes:

Note:

Blanks

are

not

allowed

between

the

elements

of

the

character

strings.

v

For

d=0

��

�

s-digits

E

+

exponent

−

−

��

w

must

be

>=s+6

for

positive

values,

or

>=s+7

for

negative

values.

When

the

value

is

nonzero,

the

exponent

is

adjusted

so

that

the

leading

digit

of

the

mantissa

is

nonzero.

When

the

value

is

zero,

zero

suppression

is

applied

to

all

digit

positions

(except

the

rightmost)

of

the

mantissa.

v

For

0<d<s

��

−

�

s−d-digits

.

�

d-digits

E

+

−

�

�

exponent

��

w

must

be

>=s+7

for

positive

values,

or

>=s+8

for

negative

values.

When

the

value

is

nonzero,

the

exponent

is

adjusted

so

that

the

leading

digit

of

the

mantissa

is

nonzero.

When

the

value

is

zero,

zero

suppression

is

applied

to

all

digit

positions

(except

the

first)

to

the

left

of

the

decimal

point.

All

other

digit

positions

contain

zero.

v

For

d=s

E-format

Chapter

14.

Edit-directed

format

items

307

��

�

0.

d-digits

E

+

exponent

−

−

��

w

must

be

>=d+8

for

positive

values,

or

>=d+9

for

negative

values.

When

the

value

is

nonzero,

the

exponent

is

adjusted

so

that

the

first

fractional

digit

is

nonzero.

When

the

value

is

zero,

each

digit

position

contains

zero.

The

exponent

is

a

4-digit

integer,

which

can

be

4

zeros.

If

the

field

width

is

such

that

significant

digits

or

the

sign

are

lost,

the

SIZE

condition

is

raised.

If

the

character

string

does

not

fill

the

specified

field

on

output,

the

character

string

is

right-adjusted

and

extended

on

the

left

with

blanks.

F-format

item

The

fixed-point

(or

F)

format

item

describes

the

character

representation

of

a

real

fixed-point

decimal

arithmetic

value.

��

F

(

field-width

,fractional-digits

,scaling-factor

)

��

field-width

Specifies

the

total

number

of

characters

in

the

field.

It

is

evaluated

and

converted

to

an

integer

value

w

each

time

the

format

item

is

used.

The

converted

value

must

be

nonnegative.

fractional-digits

Specifies

the

number

of

digits

in

the

mantissa

that

follow

the

decimal

point.

It

is

evaluated

and

converted

to

an

integer

value

d

each

time

the

format

item

is

used.

The

converted

value

must

be

nonnegative.

If

fractional-digits

is

not

specified,

the

default

value

is

0.

scaling-factor

Specifies

the

number

of

digits

that

must

appear

in

the

mantissa.

It

is

evaluated

and

converted

to

an

integer

value

p

each

time

the

format

item

is

used.

On

input,

either

the

data

value

in

the

data

stream

is

an

optionally

signed

real

decimal

fixed-point

constant

located

anywhere

within

the

specified

field

or

the

CONVERSION

condition

is

raised.

Blanks

can

appear

before

and

after

the

data

value

in

the

field

and

are

ignored.

If

the

entire

field

is

blank,

it

is

interpreted

as

zero.

If

no

scaling-factor

is

specified

and

no

decimal

point

appears

in

the

field,

the

expression

for

fractional-digits

specifies

the

number

of

digits

in

the

data

value

to

the

right

of

the

assumed

decimal

point.

If

a

decimal

point

does

appear

in

the

data

value,

it

overrides

the

expression

for

fractional-digits.

E-format

308

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

If

a

scaling-factor

is

specified,

it

effectively

multiplies

the

data

value

in

the

data

stream

by

10

raised

to

the

integer

value

(p)

of

the

scaling-factor.

Thus,

if

p

is

positive,

the

data

value

is

treated

as

though

the

decimal

point

appeared

p

places

to

the

right

of

its

given

position.

If

p

is

negative,

the

data

value

is

treated

as

though

the

decimal

point

appeared

p

places

to

the

left

of

its

given

position.

The

given

position

of

the

decimal

point

is

that

indicated

either

by

an

actual

point,

if

it

appears,

or

by

the

expression

for

fractional-digits,

in

the

absence

of

an

actual

point.

If

the

field-width

is

0,

there

is

no

assignment

to

the

data-list

item.

On

output,

the

data-list

item

is

converted,

if

necessary,

to

fixed-point.

Floating

point

data

converts

to

FIXED

DECIMAL

(N,q)

where

q

is

the

fractional-digits

specified.

The

data

value

in

the

stream

is

the

character

representation

of

a

real

decimal

fixed-point

number,

rounded

if

necessary,

and

right-adjusted

in

the

specified

field.

The

conversion

from

decimal

fixed-point

type

to

character

type

is

performed

according

to

the

normal

rules

for

conversion.

Extra

characters

can

appear

as

blanks

preceding

the

number

in

the

converted

string.

And,

since

leading

zeros

are

converted

to

blanks

(except

for

a

0

immediately

to

the

left

of

the

point),

additional

blanks

can

precede

the

number.

If

a

decimal

point

or

a

minus

sign

appears,

either

will

cause

one

leading

blank

to

be

replaced.

If

only

the

field-width

is

specified,

only

the

integer

portion

of

the

number

is

written;

no

decimal

point

appears.

If

both

the

field-width

and

fractional-digits

are

specified,

both

the

integer

and

fractional

portions

of

the

number

are

written.

If

the

value

(d)

of

fractional-digits

is

greater

than

0,

a

decimal

point

is

inserted

before

the

rightmost

d

digits.

Trailing

zeros

are

supplied

when

fractional-digits

is

less

than

d

(the

value

d

must

be

less

than

field-width).

If

the

absolute

value

of

the

item

is

less

than

1,

a

0

precedes

the

decimal

point.

Suppression

of

leading

zeros

is

applied

to

all

digit

positions

(except

the

first)

to

the

left

of

the

decimal

point.

The

rounding

of

the

data

value

is

as

follows:

if

truncation

causes

a

digit

to

be

lost

from

the

right,

and

this

digit

is

greater

than

or

equal

to

5,

1

is

added

to

the

digit

to

the

left

of

the

truncated

digit.

On

output,

if

the

data-list

item

is

less

than

0,

a

minus

sign

is

prefixed

to

the

character

representation;

if

it

is

greater

than

or

equal

to

0,

no

sign

appears.

Therefore,

for

negative

values,

the

field-width

might

need

to

include

provision

for

the

sign,

a

decimal

point,

and

a

0

before

the

point.

If

the

field-width

is

such

that

any

character

is

lost,

the

SIZE

condition

is

raised.

In

the

example:

declare

Total

fixed(4,2);

put

edit

(Total)

(F(6,2));

The

PUT

statement

specifies

that

the

value

of

Total

is

converted

to

the

character

representation

of

a

fixed-point

number

and

written

into

the

output

file

SYSPRINT.

A

decimal

point

is

inserted

before

the

last

two

numeric

characters,

and

the

number

is

right-adjusted

in

a

field

of

six

characters.

Leading

zeros

are

changed

to

blanks

(except

for

a

zero

immediately

to

the

left

of

the

point),

and,

if

necessary,

a

minus

sign

is

placed

to

the

left

of

the

first

numeric

character.

F-format

Chapter

14.

Edit-directed

format

items

309

G-format

item

For

the

compiler,

the

graphic

(or

G)

format

item

describes

the

representation

of

a

graphic

string.

��

G

(field-width)

��

field-width

Specifies

the

number

of

2-byte

positions

in

the

data

stream

that

contain

(or

will

contain)

the

graphic

string.

It

is

an

expression

that

is

evaluated

and

converted

to

an

integer

value,

which

must

be

nonnegative,

each

time

the

format

item

is

used.

End-of-line

must

not

occur

between

the

2

bytes

of

a

graphic.

On

input,

the

specified

number

of

graphics

is

obtained

from

the

data

stream

and

assigned,

with

any

necessary

truncation

or

padding,

to

the

data-list

item.

The

field-width

is

always

required

on

input,

and

if

it

is

zero,

a

null

string

is

obtained.

On

output,

the

data-list

item

is

truncated

or

extended

(with

the

padding

graphic)

on

the

right

to

the

specified

field-width

before

being

placed

into

the

data

stream.

No

enclosing

quotation

marks

are

inserted,

nor

is

the

identifying

suffix,

G,

inserted.

If

the

field-width

is

zero,

no

graphics

are

placed

into

the

data

stream.

If

the

field-width

is

not

specified,

it

defaults

to

be

equal

to

the

graphic-string

length

of

the

data-list

item.

In

the

following

example,

if

file

OUT

has

the

GRAPHIC

option,

six

bytes

are

transmitted.

declare

A

graphic(3);

put

file(Out)

edit

(A)

(G(3));

L-format

item

On

input,

L

indicates

that

all

data

up

to

the

end

of

the

line

is

assigned

to

the

data

item.

��

L

��

On

output,

L

indicates

that

the

data

item,

padded

on

the

right

with

blanks,

if

necessary,

is

to

fill

the

remainder

of

the

output

line.

G-format

310

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

LINE

format

item

The

LINE

format

item

specifies

the

line

on

the

current

page

of

a

PRINT

file

upon

which

the

next

data-list

item

will

be

printed,

or

it

raises

the

ENDPAGE

condition.

��

LINE

(line-number)

��

line-number

Can

be

represented

by

an

expression,

which

is

evaluated

and

converted

to

an

integer

value,

which

must

be

nonnegative,

each

time

the

format

item

is

used.

Blank

lines

are

inserted,

if

necessary.

If

the

specified

line-number

is

less

than

or

equal

to

the

current

line

number,

or

if

the

specified

line

is

beyond

the

limits

set

by

the

PAGESIZE

option

of

the

OPEN

statement

(or

by

default),

the

ENDPAGE

condition

is

raised.

An

exception

is

that

if

the

specified

line-number

is

equal

to

the

current

line

number,

and

the

column

1

character

has

not

yet

been

transmitted,

the

effect

is

as

for

a

SKIP(0)

item,

that

is,

a

carriage

return

with

no

line

spacing.

If

line-number

is

zero,

it

defaults

to

one

(1).

P-format

item

The

picture

(or

P)

format

item

describes

the

character

representation

of

real

numeric

character

values

and

of

character

values.

The

picture

specification

of

the

P-format

item,

on

input,

describes

the

form

of

the

data

item

expected

in

the

data

stream

and,

in

the

case

of

a

numeric

character

specification,

how

the

item’s

arithmetic

value

is

interpreted.

If

the

indicated

character

does

not

appear

in

the

stream,

the

CONVERSION

condition

is

raised.

On

output,

the

value

of

the

associated

element

in

the

data

list

is

converted

to

the

form

specified

by

the

picture

specification

before

it

is

written

into

the

data

stream.

��

P

'picture-specification'

��

picture-specification

Is

discussed

in

detail

in

Chapter

15,

“Picture

specification

characters,”

on

page

315.

For

example:

get

edit

(Name,

Total)

(P’AAAAA’,P’9999’);

When

this

statement

is

executed,

the

input

file

SYSIN

is

the

default.

The

next

five

characters

input

from

SYSIN

must

be

alphabetic

or

blank

and

they

are

assigned

to

Name.

The

next

four

characters

must

be

digits

and

they

are

assigned

to

Total.

LINE

format

Chapter

14.

Edit-directed

format

items

311

PAGE

format

item

The

PAGE

format

item

specifies

that

a

new

page

is

established.

It

can

be

used

only

with

PRINT

files.

��

PAGE

��

Starting

a

new

page

positions

the

file

to

the

first

line

of

the

next

page.

R-format

item

The

remote

(or

R)

format

item

specifies

that

the

format

list

in

a

FORMAT

statement

is

to

be

used

(as

described

under

“FORMAT

statement”

on

page

297).

��

R

(label-reference)

��

label-reference

Has

as

its

value

the

label

constant

of

a

FORMAT

statement.

The

R-format

item

and

the

specified

FORMAT

statement

must

be

internal

to

the

same

block,

and

they

must

be

in

the

same

invocation

of

that

block.

A

remote

FORMAT

statement

cannot

contain

an

R-format

item

that

references

itself

as

a

label

reference,

nor

can

it

reference

another

remote

FORMAT

statement

that

leads

to

the

referencing

of

the

original

FORMAT

statement.

Conditions

enabled

for

the

GET

or

PUT

statement

must

also

be

enabled

for

the

remote

FORMAT

statement(s)

that

are

referred

to.

If

the

GET

or

PUT

statement

is

the

single

statement

of

an

ON-unit,

that

statement

is

a

block,

and

it

cannot

contain

a

remote

format

item.

Example

declare

Switch

label;

get

file(In)

list(Code);

if

Code

=

1

then

Switch

=

L1;

else

Switch

=

L2;

get

file(In)

edit

(W,X,Y,Z)

(R(Switch));

L1:

format

(4

F(8,3));

L2:

format

(4

E(12,6));

Switch

has

been

declared

a

label

variable.

The

second

GET

statement

can

be

made

to

operate

with

either

of

the

two

FORMAT

statements.

PAGE

format

312

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

SKIP

format

item

The

SKIP

format

item

specifies

that

a

new

line

is

to

be

defined

as

the

current

line.

��

SKIP

(relative-line)

��

relative-line

Specifies

an

expression,

which

is

evaluated

and

converted

to

an

integer

value,

n,

each

time

the

format

item

is

used.

The

converted

value

must

be

nonnegative

and

less

than

32,768.

It

must

be

greater

than

zero

for

non-PRINT

files.

If

it

is

zero,

or

if

it

is

omitted,

the

default

is

1.

The

new

line

is

the

nth

line

after

the

present

line.

If

n

is

greater

than

one,

one

or

more

lines

are

ignored

on

input;

on

output,

one

or

more

blank

lines

are

inserted.

The

value

n

can

be

zero

for

PRINT

files

only,

in

which

case

the

positioning

is

at

the

start

of

the

current

line.

Characters

previously

written

can

be

overprinted.

For

PRINT

files,

if

the

specified

relative-line

is

beyond

the

limit

set

by

the

PAGESIZE

option

of

the

OPEN

statement

(or

the

default),

the

ENDPAGE

condition

is

raised.

If

the

SKIP

format

item

is

the

first

item

to

be

executed

after

a

file

has

been

opened,

output

commences

on

the

nth

line

of

the

first

page.

If

n

is

zero

or

1,

it

commences

on

the

first

line

of

the

first

page.

For

example:

get

file(In)

edit(Man,Overtime)

(skip(1),

A(6),

COL(60),

F(4,2));

This

statement

positions

the

data

set

associated

with

file

In

to

a

new

line.

The

first

6

characters

on

the

line

are

assigned

to

Man,

and

the

4

characters

beginning

at

character

position

60

are

assigned

to

Overtime.

X-format

item

The

spacing

(or

X)

format

item

specifies

the

relative

spacing

of

data

values

in

the

data

stream.

��

X

(field-width)

��

field-width

Specifies

an

expression

that

is

evaluated

and

converted

to

an

integer

value,

which

must

be

nonnegative,

each

time

the

format

item

is

used.

The

integer

value

specifies

the

number

of

characters

before

the

next

field

of

the

data

stream,

relative

to

the

current

position

in

the

stream.

SKIP

format

Chapter

14.

Edit-directed

format

items

313

On

input,

the

specified

number

of

characters

are

spaced

over

in

the

data

stream

and

not

transmitted

to

the

program.

For

example:

get

edit

(Number,

Rebate)

(A(5),

X(5),

A(5));

The

next

15

characters

from

the

input

file,

SYSIN,

are

treated

as

follows:

the

first

five

characters

are

assigned

to

Number,

the

next

five

characters

are

ignored,

and

the

remaining

five

characters

are

assigned

to

Rebate.

On

output,

the

specified

number

of

blank

characters

are

inserted

into

the

stream.

In

the

example:

put

file(Out)

edit

(Part,

Count)

(A(4),

X(2),

F(5));

Four

characters

that

represent

the

value

of

Part,

then

two

blank

characters,

and

finally

five

characters

that

represent

the

fixed-point

value

of

Count,

are

placed

in

the

file

named

Out.

X-format

314

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Chapter

15.

Picture

specification

characters

Picture

repetition

factor

.

.

.

.

.

.

.

.

.

. 316

Picture

characters

for

character

data

.

.

.

.

.

. 316

Picture

characters

for

numeric

character

data

.

.

. 317

Digits

and

decimal

points

.

.

.

.

.

.

.

. 318

Zero

suppression

.

.

.

.

.

.

.

.

.

.

. 320

Insertion

characters

.

.

.

.

.

.

.

.

.

. 321

Defining

currency

symbols

.

.

.

.

.

.

.

. 322

Signs

and

currency

symbols

.

.

.

.

.

.

. 324

Credit,

debit,

overpunched,

and

zero

replacement

characters

.

.

.

.

.

.

.

.

. 326

Exponent

characters

.

.

.

.

.

.

.

.

.

. 328

Scaling

factor

.

.

.

.

.

.

.

.

.

.

.

. 328

A

picture

specification

consists

of

a

sequence

of

picture

characters

enclosed

in

single

or

double

quotation

marks.

The

characters

describe

the

contents

of

each

position

of

the

character

or

numeric

character

data

item,

and

the

contents

of

the

output.

The

specification

can

be

made

in

two

ways:

v

As

part

of

the

PICTURE

attribute

in

a

declaration

v

As

part

of

the

P-format

item

(described

in

“P-format

item”

on

page

311)

for

edit-directed

input

and

output.

A

picture

specification

describes

either

a

character

data

item

or

a

numeric

character

data

item.

The

presence

of

an

A

or

X

picture

character

defines

a

picture

specification

as

a

character

picture

specification;

otherwise,

it

is

a

numeric

character

picture

specification.

A

character

pictured

item

can

consist

of

alphabetic

characters,

decimal

digits,

blanks,

currency

and

punctuation

characters.

A

numeric

character

pictured

item

can

consist

only

of

decimal

digits,

an

optional

decimal

point,

an

optional

letter

E,

and,

optionally,

one

or

two

plus

or

minus

signs.

Other

characters

generally

associated

with

arithmetic

data,

such

as

currency

symbols,

can

also

be

specified,

but

they

are

not

part

of

the

arithmetic

value

of

the

numeric

character

variable,

although

the

characters

are

stored

with

the

digits

and

are

part

of

the

character

value

of

the

variable.

Figures

in

this

section

illustrate

how

different

picture

specifications

affect

the

representation

of

values

when

assigned

to

a

pictured

variable

or

when

printed

using

the

P-format

item.

Each

figure

shows

the

original

value

of

the

data,

the

attributes

of

the

variable

from

which

it

is

assigned

(or

written),

the

picture

specification,

and

the

character

value

of

the

numeric

character

or

pictured

character

variable.

The

concepts

of

the

two

types

of

picture

specifications

are

described

separately

in

the

sections

that

follow.

315

Picture

repetition

factor

A

picture

repetition

factor

specifies

the

number

of

repetitions

of

the

next

picture

character

in

the

specification.

��

(n)

��

n

An

integer.

No

blanks

are

allowed

within

the

parentheses.

If

n

is

0,

the

picture

character

is

ignored.

For

example,

the

following

picture

specifications

result

in

the

same

description:

’999V99’

’(3)9V(2)9’

Picture

characters

for

character

data

A

character

picture

specification

describes

a

nonvarying

character

data

item.

You

can

specify

that

any

position

in

the

data

item

can

contain

only

characters

from

certain

subsets

of

the

complete

set

of

available

characters.

The

data

can

consist

of

alphabetic

characters,

decimal

digits,

and

blanks.

The

only

valid

characters

in

a

character

picture

specification

are

X,

A,

and

9.

Each

of

these

specifies

the

presence

of

one

character

position

in

the

character

value,

which

can

contain

the

following:

X

Any

character

of

the

256

possible

bit

combinations

represented

by

the

8-bit

byte.

A

Any

alphabetic

or

extralingual

(#,

@,

$)

character,

or

blank.

9

Any

digit,

or

blank.

(Note

that

the

9

picture

specification

character

allows

blanks

only

for

character

data.)

When

a

character

value

is

assigned,

or

transferred,

to

a

picture

character

data

item,

the

particular

character

in

each

position

is

validated

according

to

the

corresponding

picture

specification

character.

If

the

character

data

does

not

match

the

specification

for

that

position,

the

CONVERSION

condition

is

raised

for

the

invalid

character.

(However,

if

you

change

the

value

by

record-oriented

transmission

or

by

using

an

alias,

there

is

no

checking.)

For

example:

declare

Part#

picture

’AAA99X’;

put

edit

(Part#)

(P’AAA99X’);

The

following

values

are

valid

for

Part#:

’ABC12M’

’bbb09/’

’XYZb13’

The

following

values

are

not

valid

for

Part#

(the

invalid

characters

are

underscored):

’AB123M’

’ABC1/2’

’Mb#A5;’

Picture

repetition

factor

316

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Table

37

shows

examples

of

character

picture

specifications.

Table

37.

Character

picture

specification

examples

Source

Attributes

Source

Data

(in

constant

form)

Picture

Specification

Character

Value

CHARACTER(5)

CHARACTER(5)

CHARACTER(5)

'9B/2L'

'9B/2L'

'9B/2L'

XXXXX

XXX

XXXXXXX

9B/2L

9B/

9B/2Lbb

CHARACTER(5)

CHARACTER(5)

CHARACTER(5)

'ABCDE'

'ABCDE'

'ABCDE'

AAAAA

AAAAAA

AAA

ABCDE

ABCDEb

ABC

CHARACTER(5)

CHARACTER(5)

'12/34'

'L26.7'

99X99

A99X9

12/34

L26.7

Picture

characters

for

numeric

character

data

Numeric

character

data

represents

numeric

values.

The

picture

specification

cannot

contain

the

character

data

picture

characters

X

or

A.

The

picture

characters

for

numeric

character

data

can

also

specify

editing

of

the

data.

A

numeric

character

variable

can

have

two

values,

depending

upon

how

the

variable

is

used.

The

types

of

values

are

as

follows:

Arithmetic

The

arithmetic

value

is

the

value

expressed

by

the

decimal

digits

of

the

data

item,

the

assumed

location

of

a

decimal

point,

possibly

a

sign,

and

an

optionally-signed

exponent

or

scaling

factor.

The

arithmetic

value

of

a

numeric

character

variable

is

used

in

the

following

situations:

v

Whenever

the

variable

appears

in

an

expression

that

results

in

a

coded

arithmetic

value

or

bit

value

(this

includes

expressions

with

the

¬,

&,

|,

and

comparison

operators;

even

comparison

with

a

character

string

uses

the

arithmetic

value

of

a

numeric

character

variable)

v

Whenever

the

variable

is

assigned

to

a

coded

arithmetic,

numeric

character,

or

bit

variable

v

When

used

with

the

C,

E,

F,

B,

and

P

(numeric)

format

items

in

edit-directed

I/O.

The

arithmetic

value

of

the

numeric

character

variable

is

converted

to

internal

coded

arithmetic

representation.

Character

value

The

character

value

is

the

value

expressed

by

the

decimal

digits

of

the

data

item,

as

well

as

all

of

the

editing

and

insertion

characters

appearing

in

the

picture

specification.

The

character

value

does

not,

however,

include

the

assumed

location

of

a

decimal

point,

as

specified

by

the

picture

characters

V,

K,

or

F.

The

character

value

of

a

numeric

character

variable

is

used:

v

Whenever

the

variable

appears

in

a

character

expression

v

In

an

assignment

to

a

character

variable

v

Whenever

the

data

is

printed

using

list-directed

or

data-directed

output

v

Whenever

a

reference

is

made

to

a

character

variable

that

is

defined

or

based

on

the

numeric

character

variable

v

Whenever

the

variable

is

printed

using

edit-directed

output

with

the

A

or

P

(character)

format

items.

Picture

characters

for

character

data

Chapter

15.

Picture

specification

characters

317

No

data

conversion

is

necessary.

Numeric

character

data

can

contain

only

decimal

digits,

an

optional

decimal

point,

an

optional

letter

E,

and

one

or

two

plus

or

minus

signs.

Other

characters

generally

associated

with

arithmetic

data,

such

as

currency

symbols,

can

also

be

specified,

but

they

are

not

a

part

of

the

arithmetic

value

of

the

numeric

character

variable,

although

the

characters

are

stored

with

the

digits

and

are

part

of

the

character

value

of

the

variable.

A

numeric

character

specification

consists

of

one

or

more

fields,

each

field

describing

a

fixed-point

number.

A

floating-point

specification

has

two

fields—one

for

the

mantissa

and

one

for

the

exponent.

The

first

field

can

be

divided

into

subfields

by

inserting

a

V

picture

specification

character.

The

data

preceding

the

V

(if

any)

and

that

following

it

(if

any)

are

subfields

of

the

specification.

A

requirement

of

the

picture

specification

for

numeric

character

data

is

that

each

field

must

contain

at

least

one

picture

character

that

specifies

a

digit

position.

This

picture

character,

however,

need

not

be

the

digit

character

9.

Other

picture

characters,

such

as

the

zero

suppression

characters

(Z

or

*),

also

specify

digit

positions.

Note:

All

characters

except

K,

V,

and

F

specify

the

occurrence

of

a

character

in

the

character

representation.

The

picture

characters

for

numeric

character

specifications

are

discussed

in

the

following

sections:

v

“Digits

and

decimal

points”

describes

data

specified

with

the

picture

characters

9

and

V.

v

“Zero

suppression”

on

page

320

describes

picture

data

specified

with

the

picture

characters

Z

and

asterisk

(*).

v

“Insertion

characters”

on

page

321

discusses

the

use

of

the

insertion

characters

(point,

comma,

slash,

and

B).

v

“Insertion

and

decimal

point

characters”

on

page

321

describes

the

use

of

the

decimal

point

and

insertion

characters

with

the

V

picture

character.

v

“Defining

currency

symbols”

on

page

322

describes

how

to

define

your

own

character(s)

as

a

currency

symbol,

and

“Signs

and

currency

symbols”

on

page

324

describes

the

use

of

signs

and

currency

symbols.

v

“Credit,

debit,

overpunched,

and

zero

replacement

characters”

on

page

326

discusses

the

picture

characters

CR,

DB,

T,

I,

R,

and

Y

used

for

credit,

debit,

overpunched,

and

zero

replacement

functions.

v

“Exponent

characters”

on

page

328

discusses

the

picture

characters

K

and

E

used

for

exponents.

v

“Scaling

factor”

on

page

328

describes

the

picture

character

F

used

for

scaling

factors.

v

“Picture

repetition

factor”

on

page

316

describes

the

picture

repetition

character.

Digits

and

decimal

points

The

picture

characters

9

and

V

are

used

in

numeric

character

specifications

that

represent

fixed-point

decimal

values.

9

Specifies

that

the

associated

position

in

the

data

item

contains

a

decimal

digit.

(Note

that

the

9

picture

specification

character

for

numeric

character

data

is

different

from

the

specification

for

character

data

because

the

corresponding

character

cannot

be

a

blank

for

character

data.)

Picture

characters

for

numeric

character

data

318

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

A

string

of

n

9

picture

characters

specifies

that

the

item

is

a

nonvarying

character-string

of

length

n,

each

of

which

is

a

digit

(0

through

9).

For

example:

dcl

digit

picture’9’,

Count

picture’999’,

XYZ

picture

’(10)9’;

An

example

of

use

is:

dcl

1

Record,

2

Data

char(72),

2

Identification

char(3),

2

Sequence

pic’99999’;

dcl

Count

fixed

dec(5);

...

Count=Count+1;

Sequence=Count;

write

file(Output)

from(Record);

V

Specifies

that

a

decimal

point

is

assumed

at

this

position

in

the

associated

data

item.

However,

it

does

not

specify

that

an

actual

decimal

point

or

decimal

comma

is

inserted.

The

integer

value

and

fractional

value

of

the

assigned

value,

after

modification

by

the

optional

scaling

factor

F(±x),

are

aligned

on

the

V

character.

Therefore,

an

assigned

value

can

be

truncated

or

extended

with

zero

digits

at

either

end.

(If

significant

digits

are

truncated

on

the

left,

the

result

is

undefined

and

the

SIZE

condition

is

raised

if

enabled.)

If

no

V

character

appears

in

the

picture

specification

of

a

fixed-point

decimal

value

(or

in

the

first

field

of

a

picture

specification

of

a

floating-point

decimal

value),

a

V

is

assumed

at

the

right

end

of

the

field

specification.

This

can

cause

the

assigned

value

to

be

truncated,

if

necessary,

to

an

integer.

The

V

character

cannot

appear

more

than

once

in

a

picture

specification.

For

example:

dcl

Value

picture

’Z9V999’;

Value

=

12.345;

dcl

Cvalue

char(5);

Cvalue

=

Value;

Cvalue,

after

assignment

of

Value,

contains

'12345'.

Table

38

shows

examples

of

digit

and

decimal

point

characters.

Table

38.

Examples

of

digit

and

decimal

point

characters

Source

Attributes

Source

Data

(in

constant

form)

Picture

Specification

Character

Value

FIXED(5)

FIXED(5)

FIXED(5)

12345

12345

12345

99999

99999V

999V99

12345

12345

undefined

FIXED(5)

FIXED(7)

FIXED(3)

12345

1234567

123

V99999

99999

99999

undefined

undefined

00123

FIXED(5,2)

FIXED(7,2)

FIXED(5,2)

123.45

12345.67

123.45

999V99

9V9

99999

12345

undefined

00123

Note:

When

the

character

value

is

undefined,

the

SIZE

condition

is

raised.

Digits

and

decimal

points

Chapter

15.

Picture

specification

characters

319

Zero

suppression

The

picture

characters

Z

and

asterisk

(*)

specify

conditional

digit

positions

in

the

character

value

and

can

cause

leading

zeros

to

be

replaced

by

asterisks

or

blanks.

Leading

zeros

are

those

that

occur

in

the

leftmost

digit

positions

of

fixed-point

numbers

or

in

the

leftmost

digit

positions

of

the

two

parts

of

floating-point

numbers,

that

are

to

the

left

of

the

assumed

position

of

a

decimal

point,

and

that

are

not

preceded

by

any

of

the

digits

1

through

9.

The

leftmost

nonzero

digit

in

a

number

and

all

digits,

zeros

or

not,

to

the

right

of

it

represent

significant

digits.

Z

Specifies

a

conditional

digit

position

and

causes

a

leading

zero

in

the

associated

data

position

to

be

replaced

by

a

blank.

Otherwise,

the

digit

in

the

position

is

unchanged.

The

picture

character

Z

cannot

appear

in

the

same

field

as

the

picture

character

*

or

a

drifting

character,

nor

can

it

appear

to

the

right

of

any

of

the

picture

characters

in

a

field.

*

Specifies

a

conditional

digit

position.

It

is

used

the

way

the

picture

character

Z

is

used,

except

that

leading

zeros

are

replaced

by

asterisks.

The

picture

character

asterisk

cannot

appear

in

the

same

field

as

the

picture

character

Z

or

a

drifting

character,

nor

can

it

appear

to

the

right

of

any

of

the

picture

characters

in

a

field.

Table

39

shows

examples

of

zero

suppression

characters.

Table

39.

Examples

of

zero

suppression

characters

Source

Attributes

Source

Data

(in

constant

form)

Picture

Specification

Character

Value

FIXED(5)

FIXED(5)

FIXED(5)

12345

00100

00100

ZZZ99

ZZZ99

ZZZZZ

12345

bb100

bb100

FIXED(5)

FIXED(5,2)

FIXED(5,2)

00000

123.45

001.23

ZZZZZ

ZZZ99

ZZZV99

bbbbb

bb123

bb123

FIXED(5)

FIXED(5,2)

FIXED(5,2)

12345

000.08

000.00

ZZZV99

ZZZVZZ

ZZZVZZ

undefined

bbb08

bbbbb

FIXED(5)

FIXED(5)

FIXED(5,2)

00100

00000

000.01

***V**

**100

***01

FIXED(5,2)

FIXED(5,2)

95

12350

$**9.99

$**9.99

$**0.95

$123.50

Note:

When

the

character

value

is

undefined,

the

SIZE

condition

is

raised.

If

one

of

the

picture

characters

Z

or

asterisk

appears

to

the

right

of

the

picture

character

V,

all

fractional

digit

positions

in

the

specification,

as

well

as

all

integer

digit

positions,

must

use

the

Z

or

asterisk

picture

character,

respectively.

When

all

digit

positions

to

the

right

of

the

picture

character

V

contain

zero

suppression

picture

characters,

fractional

zeros

of

the

value

are

suppressed

only

if

all

positions

in

the

fractional

part

contain

zeros

and

all

integer

positions

have

been

suppressed.

The

character

value

of

the

data

item

will

then

consist

of

blanks

or

asterisks.

No

digits

in

the

fractional

part

are

replaced

by

blanks

or

asterisks

if

the

fractional

part

contains

any

significant

digit.

Zero

suppression

320

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Insertion

characters

The

picture

characters

comma

(,),

point

(.),

slash

(/),

and

blank

(B)

cause

the

specified

character

to

be

inserted

into

the

associated

position

of

the

numeric

character

data.

They

do

not

indicate

digit

or

character

positions,

but

are

inserted

between

digits

or

characters.

Each

does,

however,

actually

represent

a

character

position

in

the

character

value,

whether

or

not

the

character

is

suppressed.

The

comma,

point,

and

slash

are

conditional

insertion

characters

and

can

be

suppressed

within

a

sequence

of

zero

suppression

characters.

The

blank

is

an

unconditional

insertion

character,

and

always

specifies

that

a

blank

appears

in

the

associated

position.

Insertion

characters

are

applicable

only

to

the

character

value.

They

specify

nothing

about

the

arithmetic

value

of

the

data

item.

They

never

cause

decimal

point

or

decimal

comma

alignment

in

the

picture

specifications

of

a

fixed-point

decimal

number

and

are

not

a

part

of

the

arithmetic

value

of

the

data

item.

Decimal

alignment

is

controlled

by

the

picture

characters

V

and

F.

Comma

(,),

point

(.),

or

slash

(/)

Inserts

a

character

into

the

associated

position

of

the

numeric

character

data

when

no

zero

suppression

occurs.

If

zero

suppression

does

occur,

the

character

is

inserted

only

under

the

following

conditions:

v

When

an

unsuppressed

digit

appears

to

the

left

of

the

character’s

position

v

When

a

V

appears

immediately

to

the

left

of

the

character

and

the

fractional

part

of

the

data

item

contains

any

significant

digits

v

When

the

character

is

at

the

start

of

the

picture

specification

v

When

the

character

is

preceded

only

by

characters

that

do

not

specify

digit

positions.

In

all

other

cases

where

zero

suppression

occurs,

a

comma,

point,

or

slash

insertion

character

is

treated

as

a

zero

suppression

character

identical

to

the

preceding

character.

B

Specifies

that

a

blank

character

be

inserted

into

the

associated

position

of

the

character

value

of

the

numeric

character

data.

Insertion

and

decimal

point

characters

The

point,

comma,

or

slash

can

be

used

in

conjunction

with

the

V

to

cause

insertion

of

the

point

(or

comma

or

slash)

in

the

position

that

delimits

the

end

of

the

integer

portion

in

and

the

beginning

of

the

fractional

portion

of

a

fixed-point

(or

floating-point)

number,

as

might

be

desired

in

printing,

since

the

V

does

not

cause

printing

of

a

point.

The

point

must

immediately

precede

or

immediately

follow

the

V.

If

the

point

precedes

the

V,

it

is

inserted

only

if

an

unsuppressed

digit

appears

to

the

left

of

the

V,

even

if

all

fractional

digits

are

significant.

If

the

point

immediately

follows

the

V,

it

is

suppressed

if

all

digits

to

the

right

of

the

V

are

suppressed,

but

it

appears

if

there

are

any

unsuppressed

fractional

digits

(along

with

any

intervening

zeros).

The

following

example

shows

decimal

conventions

that

are

used

in

different

countries.

declare

A

picture

’Z,ZZZ,ZZZV.99’,

B

picture

’Z.ZZZ.ZZZV,99’,

C

picture

’ZBZZZBZZZV,99’;

A,B,C

=

1234;

A,B,C

=

1234.00;

A,

B,

and

C

represent

nine-digit

numbers

with

a

decimal

point

or

decimal

comma

assumed

between

the

seventh

and

eighth

digits.

The

actual

point

specified

by

the

Insertion

characters

Chapter

15.

Picture

specification

characters

321

decimal

point

insertion

character

is

not

a

part

of

the

arithmetic

value.

It

is,

however,

part

of

its

character

value.

The

two

assignment

statements

assign

the

same

character

value

to

A,

B,

and

C

as

follows:

1,234.00

/*

value

of

A

*/

1.234,00

/*

value

of

B

*/

1

234,00

/*

value

of

C

*/

In

the

following

example,

decimal

point

alignment

during

assignment

occurs

on

the

character

V.

If

Rate

is

printed,

it

appears

as

'762.00',

but

its

arithmetic

value

is

7.6200.

declare

Rate

picture

’9V99.99’;

Rate

=

7.62;

Table

40

shows

examples

of

insertion

characters.

Table

40.

Examples

of

insertion

characters

Source

Attributes

Source

Data

(in

constant

form)

Picture

Specification

Character

Value

FIXED(4)

FIXED(6,2)

FIXED(4,2)

1234

1234.56

12.34

9,999

9,999V.99

ZZ.VZZ

1,234

1,234.56

12.34

FIXED(4,2)

FIXED(4,2)

FIXED(4,2)

00.03

00.03

12.34

ZZ.VZZ

ZZV.ZZ

ZZV.ZZ

bbb03

bb.03

12.34

FIXED(4,2)

FIXED(9,2)

FIXED(7,2)

00.00

1234567.89

12345.67

ZZV.ZZ

9,999,999.V99

**,999V.99

bbbbb

1,234,567.89

12,345.67

FIXED(7,2)

FIXED(9,2)

FIXED(6)

FIXED(6)

00123.45

1234567.89

123456

101288

**,999V.99

9.999.999V,99

99/99/99

99-99-99

***123.45

1.234.567,89

12/34/56

10-12-88

FIXED(6)

FIXED(6)

FIXED(6)

123456

001234

000012

99.9/99.9

ZZ/ZZ/ZZ

ZZ/ZZ/ZZ

12.3/45.6

bbb12/34

bbbbbb12

FIXED(6)

FIXED(6)

FIXED(6)

000000

000000

000000

ZZ/ZZ/ZZ

//**

BB**

bbbbbbbb

bb**

FIXED(6)

FIXED(3)

FIXED(2)

123456

123

12

99B99B99

9BB9BB9

9BB/9BB

12b34b56

1bb2bb3

1bb/2bb

Defining

currency

symbols

A

currency

symbol

can

be

used

as

a

picture

character

denoting

a

character

value

of

numeric

character

data.

This

symbol

can

be

the

dollar

sign

($)

or

any

symbol

you

choose.

The

symbol

can

be

any

sequence

of

characters

enclosed

in

<

and

>

characters.

Insertion

characters

and

decimal

points

322

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

<

�

char

>

��

<

Indicates

the

start

of

the

currency

symbol.

It

acts

as

an

escape

character.

If

you

want

to

use

the

character

<,

you

must

specify

<<.

char

Is

any

character

that

will

be

part

of

your

currency

symbol(s).

>

indicates

the

end

of

the

currency

symbol.

If

you

want

to

use

the

character

>,

you

must

specify

<>.

More

than

one

>

indicates

a

drifting

string

(discussed

in

325).

Examples

of

general

insertion

strings

include

the

following:

<DM>

represents

the

Deutschemark

<Fr>

represents

the

French

Franc

<K$>

represents

the

Khalistan

Dollar

<Sur.f>

represents

the

Surinam

Guilder

<$>

represents

the

dollar

sign

If

the

character

<

or

>

must

be

included

in

the

sequence,

it

must

be

preceded

by

another

<.

Therefore,

<

acts

as

an

escape

character

also.

The

entire

sequence

enclosed

in

<

>

represents

one

″symbol″

and

therefore

represents

the

character

value

for

one

numeric

character.

If

the

symbol

needs

to

be

represented

as

a

drifting

picture

character,

you

specify

>

following

the

″<

>″

to

represent

each

occurrence.

For

example:

Pic

’<DM>>>.>>9,V99’

represents

a

10

character

numeric

picture,

yielding

11

characters

after

assignment.

Pic

’<Sur.f>999,V99’

represents

a

7

character

numeric

picture,

yielding

11

characters

after

assignment.

Pic

’<K$>>>,>>9.V99’

represents

a

10

character

numeric

picture,

yielding

11

characters

after

assignment.

Pic

’<$>>>,>>9.V99’

represents

a

10

character

numeric

picture,

yielding

10

characters

after

assignment.

Pic

’$$$,$$9.V99’

has

the

same

value

as

the

previous

picture

specification.

More

examples

of

currency

symbol

definition

include

the

following:

dcl

P

pic’<DM>9.999,V99’;

P

=

1234.40;

/*

Yields

’DM1.234,40’

*/

dcl

P

pic’<DM>9.999,V99’;

Currency

symbols

Chapter

15.

Picture

specification

characters

323

P

=

34.40;

/*

Yields

’DM

34,40’

*/

dcl

P

pic’<DM>>.>>9,V99’;

P

=

1234.40;

/*

Yields

’DM1.234,40’

*/

dcl

P

pic’<DM>>.>>9,V99’;

P

=

34.40;

/*

Yields

’

DM34,40’

*/

dcl

P

pic’9.999,V99<K$>’;

P

=

1234.40;

/*

Yields

’1.234,40K$’

*/

In

this

chapter,

the

term

currency

symbol

and

the

$

symbol

refer

to

the

dollar

sign

or

any

user-defined

currency

symbol.

Signs

and

currency

symbols

The

picture

characters

S,

+,

and

–

specify

signs

in

numeric

character

data.

The

picture

character

$

(or

the

currency

symbol)

specifies

a

currency

symbol

in

the

character

value

of

numeric

character

data.

Only

one

type

of

sign

character

can

appear

in

each

field.

currency

symbol

Specifies

the

currency

symbol.

In

the

following

example:

dcl

Price

picture

’$99V.99’;

Price

=

12.45;

The

character

value

of

Price

is

'$12.45'.

Its

arithmetic

value

is

12.45.

For

information

on

specifying

a

character

as

a

currency

symbol,

refer

to

“Defining

currency

symbols”

on

page

322.

S

Specifies

the

plus

sign

character

(+)

if

the

data

value

is

>=0;

otherwise,

it

specifies

the

minus

sign

character

(−).

The

rules

are

identical

to

those

for

the

currency

symbol.

Consider

the

following

example:

dcl

Root

picture

’S999’;

The

value

50

is

held

as

'+050',

the

value

0

as

'+000'

and

the

value

-243

as

'-243'.

+

Specifies

the

plus

sign

character

(+)

if

the

data

value

is

>=0;

otherwise,

it

specifies

a

blank.

The

rules

are

identical

to

those

for

the

currency

symbol.

−

Specifies

the

minus

sign

character

(−)

if

the

data

value

is

<0;

otherwise,

it

specifies

a

blank.

The

rules

are

identical

to

those

for

the

currency

symbol.

Signs

and

currency

symbols

can

be

used

in

either

a

static

or

a

drifting

manner.

Static

use

Static

use

specifies

that

a

sign,

a

currency

symbol,

or

a

blank

appears

in

the

associated

position.

An

S,

+,

or

−

used

as

a

static

character

can

appear

to

the

right

or

left

of

all

digits

in

the

mantissa

and

exponent

fields

of

a

floating-point

specification,

and

to

the

right

or

left

of

all

digit

positions

of

a

fixed-point

specification.

Currency

symbols

324

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Drifting

use

Drifting

use

specifies

that

leading

zeros

are

to

be

suppressed.

In

this

case,

the

rightmost

suppressed

position

associated

with

the

picture

character

will

contain

a

sign,

a

blank,

or

a

currency

symbol

(except

that

where

all

digit

positions

are

occupied

by

drifting

characters

and

the

value

of

the

data

item

is

zero,

the

drifting

character

is

not

inserted).

A

drifting

character

is

specified

by

multiple

use

of

that

character

in

a

picture

field.

The

drifting

character

must

be

specified

in

each

digit

position

through

which

it

can

drift.

Drifting

characters

must

appear

in

a

sequence

of

the

same

drifting

character,

optionally

containing

a

V

and

one

of

the

insertion

characters

comma,

point,

slash,

or

B.

Any

of

the

insertion

characters

slash,

comma,

or

point

within

or

immediately

following

the

string

is

part

of

the

drifting

string.

The

character

B

always

causes

insertion

of

a

blank,

wherever

it

appears.

A

V

terminates

the

drifting

string,

except

when

the

arithmetic

value

of

the

data

item

is

zero;

in

that

case,

the

V

is

ignored.

A

field

of

a

picture

specification

can

contain

only

one

drifting

string.

A

drifting

string

cannot

be

preceded

by

a

digit

position

nor

can

it

occur

in

the

same

field

as

the

picture

characters

*

and

Z.

The

position

in

the

data

associated

with

the

characters

slash,

comma,

and

point

appearing

in

a

string

of

drifting

characters

contains

one

of

the

following:

v

Slash,

comma,

or

point

if

a

significant

digit

appears

to

the

left

v

The

drifting

symbol,

if

the

next

position

to

the

right

contains

the

leftmost

significant

digit

of

the

field

v

Blank,

if

the

leftmost

significant

digit

of

the

field

is

more

than

one

position

to

the

right.

If

a

drifting

string

contains

the

drifting

character

n

times,

the

string

is

associated

with

n-1

conditional

digit

positions.

The

position

associated

with

the

leftmost

drifting

character

can

contain

only

the

drifting

character

or

blank,

never

a

digit.

Two

different

picture

characters

cannot

be

used

in

a

drifting

manner

in

the

same

field.

If

a

drifting

string

contains

a

V

within

it,

the

V

delimits

the

preceding

portion

as

a

subfield,

and

all

digit

positions

of

the

subfield

following

the

V

must

also

be

part

of

the

drifting

string

that

commences

the

second

subfield.

In

the

case

in

which

all

digit

positions

after

the

V

contain

drifting

characters,

suppression

in

the

subfield

occurs

only

if

all

of

the

integer

and

fractional

digits

are

zero.

The

resulting

edited

data

item

is

then

all

blanks

(except

for

any

insertion

characters

at

the

start

of

the

field).

If

there

are

any

nonzero

fractional

digits,

the

entire

fractional

portion

appears

unsuppressed.

If,

during

or

before

assignment

to

a

picture,

the

fractional

digits

of

a

decimal

number

are

truncated

so

that

the

resulting

value

is

zero,

the

sign

inserted

in

the

picture

corresponds

to

the

value

of

the

decimal

number

prior

to

its

truncation.

Thus,

the

sign

in

the

picture

depends

on

how

the

decimal

value

was

calculated.

Signs

and

currency

symbols

Chapter

15.

Picture

specification

characters

325

Table

41

on

page

326

shows

examples

of

signs

and

currency

symbol

characters.

Table

41.

Examples

of

signs

and

currency

characters

Source

Attributes

Source

Data

(in

constant

form)

Picture

Specification

Character

Value

FIXED(5,2)

FIXED(5,2)

FIXED(5,2)

123.45

012.00

001.23

$999V.99

99$

$ZZZV.99

$123.45

12$

$bb1.23

FIXED(5,2)

FIXED(1)

FIXED(5,2)

000.00

0

123.45

$ZZZV.ZZ

$$$.$$

$$$9V.99

bbbbbbb

bbbbbb

$123.45

FIXED(5,2)

FIXED(2)

FIXED(4)

001.23

12

1234

$$$9V.99

$$$,999

$$$,999

bb$1.23

bbb$012

b$1,234

FIXED(5,2)

FIXED(5)

FIXED(5)

2.45

214

−4

SZZZV.99

SS,SS9

SS,SS9

+bb2.45

bb+214

bbbb−4

FIXED(5,2)

FIXED(5,2)

FIXED(5,2)

−123.45

−123.45

123.45

+999V.99

−999V.99

999V.99S

b123.45

−123.45

123.45+

FIXED(5,2)

FIXED(5,2)

FIXED(5,2)

001.23

001.23

−001.23

++B+9V.99

−

−

−9V.99

SSS9V.99

bbb+1.23

bbb1.23

bb−1.23

Credit,

debit,

overpunched,

and

zero

replacement

characters

The

picture

characters

CR,

DB,

T,

I,

and

R

cannot

be

used

with

any

other

sign

characters

in

the

same

field.

Credit

and

debit

The

character

pairs

CR

(credit)

and

DB

(debit)

specify

the

signs

of

real

numeric

character

data

items.

CR

Specifies

that

the

associated

positions

contain

the

letters

CR

if

the

value

of

the

data

is

<0.

Otherwise,

the

positions

will

contain

two

blanks.

The

characters

CR

can

appear

only

to

the

right

of

all

digit

positions

of

a

field.

DB

Specifies

that

the

associated

positions

contain

the

letters

DB

if

the

value

of

the

data

is

<0.

Otherwise,

the

positions

will

contain

two

blanks.

The

characters

DB

can

appear

only

to

the

right

of

all

digit

positions

of

a

field.

Overpunch

Any

of

the

picture

characters

T,

I,

or

R

(known

as

overpunch

characters)

specifies

that

a

character

represents

the

corresponding

digit

and

the

sign

of

the

data

item.

A

floating-point

specification

can

contain

two—one

in

the

mantissa

field

and

one

in

the

exponent

field.

The

overpunch

character

can

be

specified

for

any

digit

position

within

a

field.

The

T,

I,

and

R

picture

characters

specify

how

the

input

characters

are

interpreted,

as

shown

in

Table

42.

Table

42.

Interpretation

of

the

T,

I,

and

R

picture

characters

T

or

I

T

or

R

Digit

Digit

with

+

Digit

with

−

Character

Character

Signs

and

currency

symbols

326

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Table

42.

Interpretation

of

the

T,

I,

and

R

picture

characters

(continued)

{

A

B

C

D

E

F

G

H

I

}

J

K

L

M

N

O

P

Q

R

0

1

2

3

4

5

6

7

8

9

T,

I,

and

R

specify

the

following

values:

T

On

input,

T

specifies

that

the

characters

{

through

|

and

the

digits

0

through

9

represent

positive

values,

and

that

the

characters

}

through

R

represent

negative

values.

On

output,

T

specifies

that

the

associated

position

contains

one

of

the

characters

{

through

|

if

the

input

data

represents

positive

values,

and

one

of

the

characters

}

through

R

if

the

input

data

represents

negative

values.

The

T

can

appear

anywhere

a

'9'

picture

specification

character

occurs.

For

example:

dcl

Credit

picture

’ZZV9T’;

The

character

representation

is

4

characters;

+21.05

is

held

as

'210E',

−0.07

is

held

as

'bb0P'.

I

On

input,

I

specifies

that

the

characters

{

through

|

and

the

digits

0

through

9

represent

positive

values.

On

output,

I

specifies

that

the

associated

position

contains

one

of

the

characters

{

through

|

if

the

input

data

represents

positive

values;

otherwise,

it

contains

one

of

the

digits,

0

through

9.

R

On

input,

R

specifies

that

the

characters

}

through

R

represent

negative

values

and

the

digits

0

through

9

represent

positive

values.

On

output,

R

specifies

that

the

associated

position

contains

one

of

the

characters

}

through

R

if

the

input

data

represents

negative

values;

otherwise,

it

contains

one

of

the

digits

0

through

9.

For

example:

dcl

X

fixed

decimal(3);

get

edit

(x)

(P’R99’);

sets

X

to

132

on

finding

'132'

in

the

next

three

positions

of

the

input

stream,

but

sets

X

to

−132

on

finding

'J32'.

Zero

replacement

Y

Specifies

that

a

zero

in

the

specified

digit

position

is

replaced

unconditionally

by

the

blank

character.

Table

43

on

page

328

shows

examples

of

credit,

debit,

overpunched,

and

zero

replacement

characters.

Credit,

debit,

overpunched

and

zero

replacement

Chapter

15.

Picture

specification

characters

327

Table

43.

Examples

of

credit,

debit,

overpunched,

and

zero

replacement

characters

Source

Attributes

Source

Data

(in

constant

form)

Picture

Specification

Character

Value

FIXED(3)

FIXED(4,2)

FIXED(4,2)

−123

12.34

−12.34

$Z.99CR

$ZZV.99CR

$ZZV.99DB

$1.23CR

$12.34bb

$12.34DB

FIXED(4,2)

FIXED(4)

FIXED(4)

12.34

1021

−1021

$ZZV.99DB

999I

Z99R

$12.34bb

102A

102J

FIXED(4)

FIXED(5)

FIXED(5)

1021

00100

10203

99T9

YYYYY

9Y9Y9

10B1

bb1bb

1b2b3

FIXED(5,2)

000.04

YYYVY9

bbbb4

Exponent

characters

The

picture

characters

K

and

E

delimit

the

exponent

field

of

a

numeric

character

specification

that

describes

floating-point

decimal

numbers.

The

exponent

field

is

the

last

field

of

a

numeric

character

floating-point

picture

specification.

The

picture

characters

K

and

E

cannot

appear

in

the

same

specification.

K

Specifies

that

the

exponent

field

appears

to

the

right

of

the

associated

position.

It

does

not

specify

a

character

in

the

numeric

character

data

item.

E

Specifies

that

the

associated

position

contains

the

letter

E,

which

indicates

the

start

of

the

exponent

field.

The

value

of

the

exponent

is

adjusted

in

the

character

value

so

that

the

first

significant

digit

of

the

first

field

(the

mantissa)

appears

in

the

position

associated

with

the

first

digit

specifier

of

the

specification

(even

if

it

is

a

zero

suppression

character).

Table

44

shows

examples

of

exponent

characters.

Table

44.

Examples

of

exponent

characters

Source

Attributes

Source

Data

(in

constant

form)

Picture

Specification

Character

Value

FLOAT(5)

FLOAT(5)

FLOAT(5)

.12345E06

.12345E−06

.12345E+06

V.99999E99

V.99999ES99

V.99999KS99

.12345E06

.12345E−06

.12345+06

FLOAT(5)

FLOAT(5)

FLOAT(5)

−123.45E+12

001.23E−01

001.23E+04

S999V.99ES99

SSS9.V99ESS9

ZZZV.99KS99

−123.45E+12

+123.00Eb−3

123.00+02

FLOAT(5)

FLOAT(5)

001.23E+04

001.23E+04

SZ99V.99ES99

SSSSV.99E−99

+123.00E+02

+123.00Eb02

Scaling

factor

The

picture

character

F

specifies

a

picture

scaling

factor

for

fixed-point

decimal

numbers.

It

can

appear

only

once

at

the

right

end

of

the

picture

specification.

Credit,

debit,

overpunched

and

zero

replacement

328

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

F

(

integer)

+

−

��

F

Specifies

the

picture

scaling

factor.

The

picture

scaling

factor

specifies

that

the

decimal

point

in

the

arithmetic

value

of

the

variable

is

that

number

of

places

to

the

right

(if

the

picture

scaling

factor

is

positive)

or

to

the

left

(if

negative)

of

its

assumed

position

in

the

character

value.

The

number

of

digits

following

the

V

picture

character

minus

the

integer

specified

with

F

must

be

between

-128

and

127.

Table

45

shows

examples

of

the

picture

scaling

factor

character.

Table

45.

Examples

of

scaling

factor

characters

Source

Attributes

Source

Data

(in

constant

form)

Picture

Specification

Character

Value

FIXED(4,0)

FIXED(7,0)

FIXED(5,5)

1200

−1234500

.00012

99F(2)

S999V99F(4)

99F(−5)

12

−12345

12

FIXED(6,6)

.012345

999V99F(−4)

12345

Scaling

factor

Chapter

15.

Picture

specification

characters

329

Scaling

factor

330

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Chapter

16.

Condition

handling

Condition

prefixes

.

.

.

.

.

.

.

.

.

.

.

. 331

Scope

of

the

condition

prefix

.

.

.

.

.

.

. 333

Raising

conditions

with

OPTIMIZATION

.

.

. 333

On-units

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

ON

statement

.

.

.

.

.

.

.

.

.

.

.

. 334

Null

ON-unit

.

.

.

.

.

.

.

.

.

.

.

. 335

Scope

of

the

ON-unit

.

.

.

.

.

.

.

.

.

. 335

Dynamically

descendent

ON-units

.

.

.

.

. 335

ON-units

for

file

variables

.

.

.

.

.

.

.

. 336

REVERT

statement

.

.

.

.

.

.

.

.

.

.

. 337

SIGNAL

statement

.

.

.

.

.

.

.

.

.

.

. 337

RESIGNAL

statement

.

.

.

.

.

.

.

.

.

.

. 338

Multiple

conditions

.

.

.

.

.

.

.

.

.

.

. 338

CONDITION

attribute

.

.

.

.

.

.

.

.

.

. 338

While

a

PL/I

program

is

running,

certain

events

can

occur

for

which

you

can

do

some

testing,

issue

a

response,

or

take

recovery

action.

These

events

are

called

conditions,

and

are

raised

when

detected.

Conditions

can

be

unexpected

errors

(e.g.

overflow,

input/output

transmission

error)

or

expected

errors

(e.g.

end

of

an

input

file).

Conditions

can

be

raised

directly

in

a

program

through

the

use

of

the

SIGNAL

statement

(this

can

be

very

useful

during

testing).

Application

control

over

conditions

is

accomplished

through

the

enablement

of

conditions

and

the

establishment

of

actions

to

be

performed

when

an

enabled

condition

is

raised.

When

a

condition

is

disabled,

its

raising

causes

no

action;

the

program

is

unaware

that

the

event

was

raised.

The

established

action

can

be

an

ON-unit

or

the

implicit

action

defined

for

the

condition.

When

an

ON-unit

is

invoked,

it

is

treated

as

a

procedure

without

parameters.

To

assist

you

in

making

use

of

ON-units,

built-in

functions

and

pseudovariables

are

provided

that

you

can

use

to

inquire

about

the

cause

of

a

condition.

Pseudovariables

are

often

used

for

error

correction

and

recovery.

Built-in

functions

and

pseudovariables

are

listed

in

Chapter

19,

“Built-in

functions,

pseudovariables,

and

subroutines.,”

on

page

365

The

implicit

action

for

many

conditions

is

to

raise

the

ERROR

condition.

This

provides

a

common

condition

that

can

be

used

to

check

for

a

number

of

different

conditions,

rather

than

checking

each

condition

separately.

The

ONCODE

built-in

function

is

particularly

useful

here,

as

it

can

be

used

to

identify

the

specific

circumstances

that

raised

the

conditions.

Codes

corresponding

to

the

conditions

and

errors

detected

are

listed

in

Messages

and

Codes.

Condition

prefixes

You

can

specify

whether

or

not

some

conditions

are

enabled

or

disabled.

If

a

condtion

is

enabled,

the

compiler

generates

any

extra

code

needed

in

order

to

detect

the

condition.

If

a

condition

is

disabled,

the

compiler

generates

no

extra

code

to

detect

it.

Disabling

a

condition

is

equivalent

to

asserting

that

the

condition

cannot

occur;

if

it

does,

your

program

is

in

error.

For

instance,

if

the

SUBSCRIPTRANGE

condition

is

enabled,

the

compiler

generates

extra

code

to

ensure

that

any

array

index

is

within

the

bounds

of

its

array.

If

the

SUBSCRIPTRANGE

condition

is

disabled,

the

extra

code

is

not

generated

and

using

an

invalid

array

index

leads

to

unpredictable

results.

If

a

condition

is

detected

by

hardware,

disabling

the

condition

has

no

effect.

331

Enabling

and

disabling

can

be

specified

for

the

eligible

conditions

by

a

condition

prefix.

��

�

�

,

(

condition

)

:

statement

;

��

condition

Some

conditions

are

always

enabled,

and

cannot

be

disabled.

Some

are

enabled

unless

you

disable

them,

and

some

are

disabled

unless

you

enable

them.

The

conditions

are

listed

in

Chapter

17,

“Conditions,”

on

page

339.

statement

Condition

prefixes

are

not

valid

for

DECLARE,

DEFAULT,

FORMAT,

OTHERWISE,

END,

ELSE,

ENTRY,

and

%statements.

For

information

on

the

scope

of

condition

prefixes,

refer

to

“Scope

of

the

condition

prefix”

on

page

333.

In

the

following

example

(size):

is

the

condition

prefix.

The

conditional

prefix

indicates

that

the

corresponding

condition

is

enabled

within

the

scope

of

the

prefix.

(size):

L1:

X=(I**N)

/

(M+L);

Conditions

can

be

enabled

using

the

condition

prefix

specifying

the

condition

name.

They

can

be

disabled

using

the

condition

prefix

specifying

the

condition

name

preceded

by

NO

without

intervening

blanks.

Types

and

status

of

conditions

are

shown

in

Table

46.

Table

46.

Classes

and

status

of

conditions

Class

and

conditions

Status

Computational

(for

data

handling,

expression

evaluation,

and

computation)

CONVERSION

Enabled

by

default

FIXEDOVERFLOW

Enabled

by

default

INVALIDOP

Enabled

by

default

OVERFLOW

Enabled

by

default

UNDERFLOW

Always

enabled

ZERODIVIDE

Enabled

by

default

Input/Output

ENDFILE

Always

enabled

ENDPAGE

Always

enabled

KEY

Always

enabled

NAME

Always

enabled

RECORD

Always

enabled

TRANSMIT

Always

enabled

UNDEFINEDFILE

Always

enabled

Program

checkout

(useful

for

developing/debugging

a

program)

SIZE

Disabled

by

default

STRINGRANGE

Disabled

by

default

STRINGSIZE

Disabled

by

default

Condition

prefixes

332

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Table

46.

Classes

and

status

of

conditions

(continued)

Class

and

conditions

Status

SUBSCRIPTRANGE

Disabled

by

default

Miscellaneous

ANYCONDITION

Always

enabled

AREA

Always

enabled

ATTENTION

Always

enabled

CONDITION

Always

enabled

ERROR

Always

enabled

FINISH

Always

enabled

STORAGE

Always

enabled

For

information

about

the

performance

effects

of

enabling

and

disabling

conditions,

refer

to

the

Programming

Guide.

Scope

of

the

condition

prefix

The

scope

of

a

condition

prefix

(the

part

of

the

program

to

which

it

applies)

is

the

statement

or

block

to

which

the

prefix

is

attached.

The

prefix

does

not

necessarily

apply

to

any

procedures

or

ON-units

that

can

be

invoked

in

the

execution

of

the

statement.

A

condition

prefix

attached

to

a

PACKAGE,

PROCEDURE,

or

BEGIN

statement

applies

to

all

the

statements

up

to

and

including

the

corresponding

END

statement.

This

includes

other

PROCEDURE

or

BEGIN

statements

nested

within

that

block.

Condition

status

can

be

redefined

within

a

block

by

attaching

a

prefix

to

statements

within

the

block,

including

PROCEDURE

and

BEGIN

statements

(thus

redefining

the

enabling

or

disabling

of

the

condition

within

nested

blocks).

The

redefinition

applies

only

to

the

execution

of

the

statement

to

which

the

prefix

is

attached.

In

the

case

of

a

nested

PROCEDURE

or

BEGIN

statement,

it

applies

only

to

the

block

the

statement

defines,

as

well

as

any

blocks

contained

within

that

block.

Raising

conditions

with

OPTIMIZATION

When

OPTIMIZATION

is

in

effect,

conditions

for

the

same

expression

that

appear

multiple

times

can

be

raised

only

once.

In

the

following

example,

SUBSCRIPTRANGE

for

IX

can

be

raised

only

once:

call

P

(55);

(subscriptrange):

P:

proc

(IX);

dcl

(Ar,

Br,

Cr)

(10);

Ar(IX)

=

Ar(IX)

+

Br(IX);

T

=

Cr(IX);

End

P;

On-units

An

implicit

action

exists

for

every

condition.

When

an

enabled

condition

is

raised,

the

implicit

action

is

executed

unless

an

ON-unit

for

the

enabled

condition

is

established.

Condition

prefixes

Chapter

16.

Condition

handling

333

ON

statement

The

ON

statement

establishes

the

action

to

be

executed

for

any

subsequent

raising

of

an

enabled

condition

in

the

scope

of

the

established

condition.

��

ON

�

,

condition

SNAP

SYSTEM;

ON-unit

��

condition

Is

any

one

of

those

described

in

Chapter

17,

“Conditions,”

on

page

339

or

defined

with

the

CONDITION

attribute.

SNAP

Specifies

that

when

the

enabled

condition

is

raised,

diagnostic

information

relating

to

the

condition

is

printed.

The

action

of

the

SNAP

option

precedes

the

action

of

the

ON-unit.

If

SNAP

and

SYSTEM

are

specified,

the

implicit

action

is

followed

immediately

by

SNAP

information.

SYSTEM

Specifies

that

the

implicit

action

is

taken.

The

implicit

action

is

not

the

same

for

every

condition,

although

for

most

conditions

a

message

is

printed

and

the

ERROR

condition

is

raised.

The

implicit

action

for

each

condition

is

given

in

Chapter

17,

“Conditions,”

on

page

339.

ON-unit

Specifies

the

action

to

be

executed

when

the

condition

is

raised

and

is

enabled.

The

action

is

defined

by

the

statement

or

statements

in

the

ON-unit

itself.

When

the

ON

statement

is

executed,

the

ON-unit

is

said

to

be

established

for

the

specified

condition.

The

ON-unit

is

not

executed

at

the

time

the

ON

statement

is

executed;

it

is

executed

only

when

the

specified

enabled

condition

is

raised.

The

ON-unit

can

be

either

a

single

unlabeled

simple

statement

or

an

unlabeled

begin-block.

If

it

is

a

simple

statement,

it

can

be

any

statement

except

BEGIN,

DECLARE,

DEFAULT,

DO,

END,

ENTRY,

FORMAT,

ITERATE,

LEAVE,

OTHERWISE,

PROCEDURE,

RETURN,

SELECT,

WHEN,

or

%statements.

If

the

ON-unit

is

a

begin-block,

a

RETURN

statement

can

appear

only

within

a

procedure

nested

within

the

begin-block;

a

LEAVE

statement

can

appear

only

within

a

do-group

nested

within

the

begin-block.

Except

for

ON-units

consisting

only

of

either

a

semicolon

(;)

or

the

RESIGNAL

statement,

an

ON-unit

is

treated

as

a

procedure

(without

parameters)

that

is

internal

to

the

block

in

which

it

appears.

Any

names

referenced

in

an

ON-unit

are

those

known

in

the

environment

in

which

the

ON

statement

for

that

ON-unit

was

executed,

rather

than

the

environment

in

which

the

condition

was

raised.

When

execution

of

the

ON-unit

is

complete,

control

generally

returns

to

the

block

from

which

the

ON-unit

was

entered.

Just

as

with

a

procedure,

control

can

be

transferred

out

of

an

ON-unit

by

a

GO

TO

statement.

In

this

case,

control

is

transferred

to

the

point

specified

in

the

GO

TO,

and

a

normal

return

does

not

occur.

ON

Statement

334

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

The

specific

point

to

which

control

returns

from

an

ON-unit

varies

for

different

conditions.

Normal

return

for

each

condition

is

described

in

Chapter

17,

“Conditions,”

on

page

339.

Null

ON-unit

The

effect

of

a

null

statement

ON-unit

is

to

execute

normal

return

from

the

condition.

Use

of

the

null

ON-unit

is

different

from

disabling

a

condition

for

two

reasons:

v

A

null

ON-unit

can

be

specified

for

any

condition,

but

not

all

conditions

can

be

disabled.

v

Disabling

a

condition,

if

possible,

can

save

time

by

avoiding

any

checking

for

this

condition.

(If

a

null

ON-unit

is

specified,

the

PL/I

must

still

check

for

the

raising

of

the

condition.)

Scope

of

the

ON-unit

The

execution

of

an

ON

statement

establishes

an

action

specification

for

a

condition.

Once

this

action

is

established,

it

remains

established

throughout

that

block

and

throughout

all

dynamically

descendent

blocks

until

it

is

overridden

by

the

execution

of

another

ON

statement

or

a

REVERT

statement

or

until

termination

of

the

block

in

which

the

ON

statement

is

executed.

(For

information

on

dynamically

descendent

ON-units,

refer

to

“Dynamically

descendent

ON-units.”)

When

another

ON

statement

specifies

the

same

conditions:

v

If

a

later

ON

statement

specifies

the

same

condition

as

a

prior

ON

statement

and

this

later

ON

statement

is

executed

in

a

block

which

is

a

dynamic

descendant

of

the

block

containing

the

prior

ON

statement,

the

action

specification

of

the

prior

ON

statement

is

temporarily

suspended,

or

stacked.

It

can

be

restored

either

by

the

execution

of

a

REVERT

statement,

or

by

the

termination

of

the

block

containing

the

later

ON

statement.

When

control

returns

from

a

block,

all

established

actions

that

existed

at

the

time

of

its

activation

are

reestablished.

This

makes

it

impossible

for

a

subroutine

to

alter

the

action

established

for

the

block

that

invoked

the

subroutine.

v

If

the

later

ON

statement

and

the

prior

ON

statement

are

internal

to

the

same

invocation

of

the

same

block,

the

effect

of

the

prior

ON

statement

is

logically

nullified.

No

reestablishment

is

possible,

except

through

execution

of

another

ON

statement

(or

re-execution

of

an

overridden

ON

statement).

Dynamically

descendent

ON-units

It

is

possible

to

raise

a

condition

during

execution

of

an

ON-unit

that

specifies

another

ON-unit.

An

ON-unit

entered

because

a

condition

is

either

raised

or

signalled

in

another

ON-unit

is

a

dynamically

descendent

ON-unit.

A

normal

return

from

a

dynamically

descendent

ON-unit

reestablishes

the

environment

of

the

ON-unit

in

which

the

condition

was

raised.

A

loop

can

occur

if

an

ERROR

condition

raised

in

an

ERROR

ON-unit

executes

the

same

ERROR

ON-unit,

raising

the

ERROR

condition

again.

In

any

situation

where

a

loop

can

cause

the

maximum

nesting

level

to

be

exceeded,

a

message

is

printed

and

the

application

is

terminated.

To

avoid

a

loop

caused

by

this

situation,

use

the

following

technique:

ON

Statement

Chapter

16.

Condition

handling

335

on

error

begin;

on

error

system;

...
end;

ON-units

for

file

variables

An

ON

statement

that

specifies

a

file

variable

refers

to

the

file

constant

that

is

the

current

value

of

the

variable

when

the

ON-unit

is

established.

Example

1

dcl

F

file,

G

file

variable;

G

=

F;

L1:

on

endfile(G);

L2:

on

endfile(F);

The

statements

labeled

L1

and

L2

are

equivalent.

Example

2

declare

FV

file

variable,

FC1

file,

FC2

file;

FV

=

FC1;

on

endfile(FV)

go

to

Fin;

...
FV

=

FC2;

read

file(FC1)

into

(X1);

read

file(FV)

into

(X2);

An

ENDFILE

condition

raised

during

the

first

READ

statement

causes

the

ON-unit

to

be

entered,

because

the

ON-unit

refers

to

file

FC1.

If

the

condition

is

raised

in

the

second

READ

statement,

however,

the

ON-unit

is

not

entered,

because

this

READ

refers

to

file

FC2.

Example

3

E:

procedure;

declare

F1

file;

on

endfile

(F1)

goto

L1;

call

E1

(F1);

...
E1:

procedure

(F2);

declare

F2

file;

on

endfile

(F2)

go

to

L2;

read

file

(F1);

read

file

(F2);

end

E1;

An

end-of-file

encountered

for

F1

in

E1

causes

the

ON-unit

for

F2

in

E1

to

be

entered.

If

the

ON-unit

in

E1

was

not

specified,

an

ENDFILE

condition

encountered

for

either

F1

or

F2

would

cause

entry

to

the

ON-unit

for

F1

in

E.

Example

4

declare

FV

file

variable,

FC1

file,

FC2

file;

do

FV=FC1,FC2;

on

endfile(FV)

go

to

Fin;

end;

Dynamically

descendent

ON-units

336

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

If

an

ON

statement

specifying

a

file

variable

is

executed

more

than

once,

and

the

variable

has

a

different

value

each

time,

a

different

ON-unit

is

established

at

each

execution.

REVERT

statement

Execution

of

the

REVERT

statement

in

a

given

block

cancels

the

ON-unit

for

the

condition

that

executed

in

that

block.

The

ON-unit

that

was

established

at

the

time

the

block

was

activated

is

then

reestablished.

REVERT

affects

only

ON

statements

that

are

internal

to

the

block

in

which

the

REVERT

statement

occurs

and

that

have

been

executed

in

the

same

invocation

of

that

block.

��

REVERT

�

,

condition

;

��

condition

Is

any

one

of

those

described

in

Chapter

17,

“Conditions,”

on

page

339

or

defined

with

the

CONDITION

attribute.

The

REVERT

statement

cancels

an

ON-unit

only

if

both

of

the

following

conditions

are

true:

1.

An

ON

statement

that

is

eligible

for

reversion,

and

that

specifies

a

condition

listed

in

the

REVERT

statement,

was

executed

after

the

block

was

activated.

2.

A

REVERT

statement

with

the

specified

condition

was

not

previously

executed

in

the

same

block.

If

either

of

these

two

conditions

is

not

met,

the

REVERT

statement

is

treated

as

a

null

statement.

SIGNAL

statement

You

can

raise

a

condition

by

means

of

the

SIGNAL

statement.

This

statement

can

be

used

in

program

testing

to

verify

the

action

of

an

ON-unit

and

to

determine

whether

the

correct

action

is

associated

with

the

condition.

The

established

action

is

taken

unless

the

condition

is

disabled.

If

the

specified

condition

is

disabled,

the

SIGNAL

statement

becomes

equivalent

to

a

null

statement.

��

SIGNAL

condition

;

��

condition

Is

any

condition

described

in

Chapter

17,

“Conditions,”

on

page

339

or

defined

with

the

CONDITION

attribute.

ON-units

for

file

variables

Chapter

16.

Condition

handling

337

RESIGNAL

statement

The

RESIGNAL

statement

terminates

the

current

ON-unit

and

allows

another

ON-unit

for

the

same

condition

to

get

control.

The

processing

continues

as

if

the

ON-unit

executing

the

RESIGNAL

did

not

exist

and

was

never

given

control.

It

allows

multiple

ON-units

to

get

control

for

the

same

condition.

��

RESIGNAL

;

��

RESIGNAL

is

valid

only

within

an

ON-unit

or

its

dynamic

descendants.

Multiple

conditions

A

multiple

condition

is

the

simultaneous

raising

of

two

or

more

conditions.

The

conditions

for

which

a

multiple

condition

can

occur

are:

RECORD,

discussed

in

“RECORD

condition”

on

page

350

TRANSMIT,

discussed

in

“TRANSMIT

condition”

on

page

355

The

TRANSMIT

condition

is

always

processed

first.

The

RECORD

condition

is

ignored

unless

there

is

a

normal

return

from

the

TRANSMIT

ON-unit.

Multiple

conditions

are

processed

successively.

When

one

of

the

following

events

occurs,

no

subsequent

conditions

are

processed:

v

Condition

processing

terminates

the

program,

through

implicit

action

for

the

condition,

normal

return

from

an

ON-unit,

or

abnormal

termination

in

the

ON-unit.

v

A

GO

TO

statement

transfers

control

from

an

ON-unit,

so

that

a

normal

return

is

prevented.

CONDITION

attribute

The

CONDITION

attribute

specifies

that

the

declared

name

identifies

a

programmer-defined

condition.

��

CONDITION

��

A

name

that

appears

with

the

CONDITION

condition

in

an

ON,

SIGNAL,

or

REVERT

statement

is

contextually

declared

to

be

a

condition

name.

The

default

scope

is

EXTERNAL.

An

example

of

the

CONDITION

condition

appears

in

342.

RESIGNAL

statement

338

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Chapter

17.

Conditions

ANYCONDITION

condition

.

.

.

.

.

.

.

. 339

AREA

condition

.

.

.

.

.

.

.

.

.

.

.

. 340

ATTENTION

condition

.

.

.

.

.

.

.

.

.

. 341

CONDITION

condition

.

.

.

.

.

.

.

.

.

. 342

CONVERSION

condition

.

.

.

.

.

.

.

.

. 343

ENDFILE

condition

.

.

.

.

.

.

.

.

.

.

. 344

ENDPAGE

condition

.

.

.

.

.

.

.

.

.

.

. 345

ERROR

condition

.

.

.

.

.

.

.

.

.

.

.

. 346

FINISH

condition

.

.

.

.

.

.

.

.

.

.

.

. 347

FIXEDOVERFLOW

condition

.

.

.

.

.

.

.

. 347

INVALIDOP

condition

.

.

.

.

.

.

.

.

.

. 348

KEY

condition

.

.

.

.

.

.

.

.

.

.

.

.

. 348

NAME

condition

.

.

.

.

.

.

.

.

.

.

.

. 349

OVERFLOW

condition

.

.

.

.

.

.

.

.

.

. 350

RECORD

condition

.

.

.

.

.

.

.

.

.

.

. 350

SIZE

condition

.

.

.

.

.

.

.

.

.

.

.

.

. 351

STORAGE

condition

.

.

.

.

.

.

.

.

.

.

. 352

STRINGRANGE

condition

.

.

.

.

.

.

.

.

. 353

STRINGSIZE

condition

.

.

.

.

.

.

.

.

.

. 354

SUBSCRIPTRANGE

condition

.

.

.

.

.

.

.

. 354

TRANSMIT

condition

.

.

.

.

.

.

.

.

.

. 355

UNDEFINEDFILE

condition

.

.

.

.

.

.

.

. 356

UNDERFLOW

condition

.

.

.

.

.

.

.

.

. 357

ZERODIVIDE

condition

.

.

.

.

.

.

.

.

.

. 357

This

chapter

describes

conditions

in

alphabetic

order.

In

general,

the

following

information

is

given

for

each

condition:

v

Status—an

indication

of

the

enabled/disabled

status

of

the

condition

at

the

start

of

the

program,

and

how

the

condition

can

be

disabled

(if

possible)

or

enabled.

Table

46

on

page

332

classifies

the

conditions

into

types,

shows

their

status,

and

lists

the

conditions

for

disabling

an

enabled

one.

v

Result—the

result

of

the

operation

that

raised

the

condition.

This

applies

when

the

condition

is

disabled

as

well

as

when

it

is

enabled.

In

some

cases,

the

result

is

undefined.

v

Cause

and

syntax—a

discussion

of

the

condition,

including

the

circumstances

under

which

the

condition

can

be

raised.

Raising

conditions

with

the

SIGNAL

statement

is

discussed

in

“SIGNAL

statement”

on

page

337.

v

Implicit

action—the

action

taken

when

an

enabled

condition

is

raised

and

no

ON-unit

is

currently

established

for

the

condition.

v

Normal

return—the

point

to

which

control

is

returned

as

a

result

of

the

normal

termination

of

the

ON-unit.

A

GO

TO

statement

that

transfers

control

out

of

an

ON-unit

is

an

abnormal

ON-unit

termination.

If

a

condition

(except

the

ERROR

condition)

has

been

raised

by

the

SIGNAL

statement,

the

normal

return

is

always

to

the

statement

immediately

following

SIGNAL.

v

Condition

codes—the

codes

corresponding

to

the

conditions

and

errors

for

which

the

program

is

checked.

An

explanation

for

each

code

is

given

in

the

“Condition

codes”

chapter

of

the

Messages

and

Codes.

ANYCONDITION

condition

Status

ANYCONDITION

is

always

enabled.

Result

The

result

is

the

same

as

for

the

underlying

condition.

Cause

and

syntax

SIGNAL

ANYCONDITION

is

not

allowed.

ANYCONDITION

can

be

used

only

in

ON

(and

REVERT)

statements

to

establish

(and

cancel)

an

ON-unit

which

will

trap

any

condition,

including

the

CONDITION

condition,

that

occurs

in

a

block

and

which

is

not

trapped

by

some

other

eligible

ON-unit

in

that

block.

339

In

the

following

example,

all

ERROR

conditions

would

be

handled

in

the

begin-block,

the

FINISH

condition

would

be

handled

by

the

system,

and

all

other

conditions

would

be

handled

by

the

call

to

the

routine

named

handle_All_Others.

on

error

begin;

...
end;

on

finish

system;

on

anycondition

call

Handle_all_others;

Note:

To

avoid

infinite

loops,

the

use

of

ON

FINISH

(as

in

the

previous

example)

may

be

necessary

when

ON

ANYCONDITION

is

used.

Note

that

when

a

condition

is

raised,

the

call

stack

will

be

walked

(backwards)

to

search

for

a

block

that

has

an

ON-unit

for

that

condition.

The

search

will

stop

when

the

first

block

with

such

an

ON-unit

or

with

an

ON

ANYCONDITION

ON-unit

is

found.

If

no

such

ON-units

are

found

and

the

implicit

action

for

the

condition

is

to

promote

it

to

ERROR,

the

stack

will

then

(and

only

then)

be

walked

again

to

search

for

an

ON

ERROR

ON-unit.

You

can

use

the

ONCONDID

built-in

function

in

an

ANYCONDITION

ON-unit

to

determine

what

condition

is

being

handled,

and

the

ONCONDCOND

built-in

function

to

determine

the

name

of

the

CONDITION

condition.

Other

ON

built-in

functions,

such

as

ONFILE,

can

be

used

to

determine

the

exact

cause

and

other

related

information.

These

built-in

functions

are

listed

in

Chapter

19,

“Built-in

functions,

pseudovariables,

and

subroutines.,”

on

page

365.

��

ANYCONDITION

��

Abbreviation

ANYCOND

Implicit

action

The

implicit

action

is

that

of

the

underlying

condition.

Normal

return

Normal

return

is

the

same

as

for

the

underlying

condition.

Condition

codes

There

are

no

condition

codes

unique

to

the

ANYCONDITION.

AREA

condition

Status

AREA

is

always

enabled.

Result

An

attempted

allocation

or

assignment

that

raises

the

AREA

condition

has

no

effect.

Cause

and

syntax

The

AREA

condition

is

raised

in

either

of

the

following

circumstances:

ANYCONDITION

340

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

v

When

an

attempt

is

made

to

allocate

a

based

variable

within

an

area

that

contains

insufficient

free

storage

for

the

allocation

to

be

made.

v

When

an

attempt

is

made

to

perform

an

area

assignment,

and

the

target

area

contains

insufficient

storage

to

accommodate

the

allocations

in

the

source

area

��

AREA

��

Implicit

action

A

message

is

printed

and

the

ERROR

condition

is

raised.

Normal

return

On

normal

return

from

the

ON-unit,

the

action

is

as

follows:

v

If

the

condition

was

raised

by

an

allocation

and

the

ON-unit

is

a

null

ON-unit,

the

allocation

is

not

attempted

again.

v

If

the

condition

was

raised

by

an

allocation,

the

allocation

is

attempted

again.

Before

the

attempt

is

made,

the

area

reference

is

reevaluated.

Thus,

if

the

ON-unit

has

changed

the

value

of

a

pointer

qualifying

the

reference

to

the

inadequate

area

so

that

it

points

to

another

area,

the

allocation

is

attempted

again

within

the

new

area.

v

If

the

condition

was

raised

by

an

area

assignment,

or

by

a

SIGNAL

statement,

execution

continues

from

the

point

at

which

the

condition

was

raised.

Condition

codes

360,

361,

362

ATTENTION

condition

Status

ATTENTION

is

always

enabled.

Result

Raising

the

condition

causes

an

ATTENTION

ON-unit

to

be

entered.

If

there

is

no

ATTENTION

ON-unit,

the

application

is

terminated.

Cause

and

syntax

The

ATTENTION

condition

is

raised

when

the

user

hits

a

specific

key

combination

to

interrupt

an

application.

The

specific

key

is

determined

by

the

operating

system

as

follows:

v

On

Windows,

CTRL-BRK

and

CTRL-C.

No

ATTENTION

ON-units

will

be

driven

on

Windows

as

a

result

of

the

user

entering

CTRL-BRK

or

CTRL-C

key

combinations.

The

implicit

action

will

be

taken.

v

On

the

host,

the

ATTN

key,

if

available.

The

condition

can

also

be

raised

by

a

SIGNAL

ATTENTION

statement.

AREA

Chapter

17.

Conditions

341

��

ATTENTION

��

Abbreviation

ATTN

Implicit

action

The

application

is

terminated.

Normal

return

On

return

from

an

ATTENTION

ON-unit,

processing

is

resumed

at

a

point

in

the

program

immediately

following

the

point

at

which

the

condition

was

raised.

Condition

code

400

CONDITION

condition

Status

CONDITION

is

always

enabled.

Result

The

CONDITION

condition

allows

you

to

establish

an

ON-unit

that

will

be

executed

whenever

a

SIGNAL

statement

for

the

appropriate

CONDITION

condition

is

executed.

As

a

debugging

aid,

the

CONDITION

condition

can

be

used

to

establish

an

ON-unit

that

prints

information

about

the

current

status

of

the

program.

Cause

and

syntax

The

CONDITION

condition

is

raised

by

a

SIGNAL

statement.

The

name

specified

in

the

SIGNAL

statement

determines

which

CONDITION

condition

is

raised.

The

ON-unit

can

be

executed

from

any

point

in

the

program

through

placement

of

a

SIGNAL

statement.

Normal

rules

of

name

scope

apply.

A

condition

name

is

external

by

default,

but

can

be

declared

INTERNAL.

The

following

example

shows

the

use

of

the

CONDITION

condition.

dcl

Test

condition;

on

condition

(Test)

begin;

...
end;

The

begin-block

is

executed

whenever

the

following

statement

is

executed:

signal

condition

(Test);

��

CONDITION

(name)

��

Abbreviation

COND

ATTENTION

342

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Implicit

action

A

message

is

printed

and

execution

continues

with

the

statement

following

SIGNAL.

Normal

return

Execution

continues

with

the

statement

following

the

SIGNAL

statement.

Condition

code

500

CONVERSION

condition

Status

CONVERSION

is

enabled

throughout

the

program,

except

within

the

scope

of

the

NOCONVERSION

condition

prefix.

You

can

use

the

ONSOURCE,

ONCHAR,

ONGSORCE

and

ONWSOURCE

pseudovariables

in

CONVERSION

ON-units

to

correct

conversion

errors.

Result

When

CONVERSION

is

raised,

the

contents

of

the

entire

result

field

are

undefined.

Cause

and

syntax

The

CONVERSION

computational

condition

is

raised

whenever

an

invalid

conversion

is

attempted

on

character,

widechar

or

graphic

data.

This

attempt

can

be

made

internally

or

during

an

input/output

operation.

For

example,

the

condition

is

raised

when:

v

A

character

other

than

0

or

1

exists

in

character

data

being

converted

to

bit

data.

v

A

character

value

being

converted

to

a

numeric

character

field,

or

to

a

coded

arithmetic

value,

contains

characters

which

are

not

the

representation

of

an

optionally

signed

arithmetic

constant,

or

an

expression

to

represent

a

complex

constant.

v

A

graphic

(DBCS)

string

being

converted

to

character

contains

a

graphic

which

cannot

be

converted

to

SBCS.

v

A

value

being

converted

to

a

character

pictured

item

contains

characters

not

allowed

by

the

picture

specification.

All

conversions

of

character

data

are

carried

out

character-by-character

in

a

left-to-right

sequence.

The

condition

is

raised

for

each

invalid

character.

The

condition

is

also

raised

if

all

the

characters

are

blank,

with

the

following

exceptions:

v

For

input

with

the

F-format

item,

a

value

of

zero

is

assumed

v

For

input

with

the

E-format

item,

be

aware

that

sometimes

the

ON-unit

will

be

repeatedly

entered.

When

an

invalid

character

is

encountered,

the

current

action

specification

for

the

condition

is

executed

(provided

that

CONVERSION

is

not

disabled).

If

the

action

specification

is

an

ON-unit,

the

invalid

character

can

be

replaced

within

the

unit.

v

For

character

source

data,

use

the

ONSOURCE

or

ONCHAR

pseudovariables.

v

For

widechar

source

data,

use

the

ONWSOURCE

or

ONWCHAR

pseudovariables.

v

For

graphic

source

data,

use

the

ONGSOURCE

pseudovariable.

CONDITION

Chapter

17.

Conditions

343

If

the

CONVERSION

condition

is

raised

and

it

is

disabled,

the

program

is

in

error.

If

the

CONVERSION

condition

is

raised

during

conversion

from

graphic

data

to

nongraphic

data,

the

ONCHAR

and

ONSOURCE

built-in

functions

do

not

contain

valid

source

data.

The

ONGSOURCE

built-in

function

contains

the

original

graphic

source

data.

The

graphic

conversion

is

retried

if

the

ONGSOURCE

pseudovariable

is

used

in

the

CONVERSION

ON-unit

to

attempt

to

fix

the

graphic

data

that

raised

the

CONVERSION

condition.

If

the

ONGSOURCE

pseudovariable

is

not

used

in

the

CONVERSION

ON-unit,

the

ERROR

condition

is

raised.

��

CONVERSION

��

Abbreviation

CONV

Implicit

action

A

message

is

printed

and

the

ERROR

condition

is

raised.

Normal

return

If

CONVERSION

was

raised

on

a

character

string

source

(not

graphic

source)

and

either

ONSOURCE

or

ONCHAR

pseudovariables

are

used

in

the

ON-unit,

the

program

retries

the

conversion

on

return

from

the

ON-unit.

If

CONVERSION

was

raised

on

a

graphic

source

and

the

ONGSOURCE

pseudovariable

is

used

in

the

ON-unit,

the

program

retries

the

conversion

on

return

from

the

ON-unit.

If

CONVERSION

was

raised

on

a

widechar

source

and

the

ONWSOURCE

pseudovariable

is

used

in

the

ON-unit,

the

program

retries

the

conversion

on

return

from

the

ON-unit.

If

the

conversion

error

is

not

corrected

using

these

pseudovariables,

the

program

loops.

Condition

codes

600-672

ENDFILE

condition

Status

The

ENDFILE

condition

is

always

enabled.

Result

If

the

specified

file

is

not

closed

after

the

condition

is

raised,

subsequent

GET

or

READ

statements

to

the

file

are

unsuccessful

and

cause

additional

ENDFILE

conditions

to

be

raised.

Cause

and

syntax

The

ENDFILE

input/output

condition

can

be

raised

during

an

operation

by

an

attempt

to

read

past

the

end

of

the

file

specified

in

the

GET

or

READ

statement.

It

applies

only

to

SEQUENTIAL

INPUT,

SEQUENTIAL

UPDATE,

and

STREAM

INPUT

files.

In

record-oriented

data

transmission,

ENDFILE

is

raised

whenever

an

end

of

file

is

encountered

during

the

execution

of

a

READ

statement.

CONVERSION

344

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

In

stream-oriented

data

transmission,

ENDFILE

is

raised

during

the

execution

of

a

GET

statement

if

an

end

of

file

is

encountered

either

before

any

items

in

the

GET

statement

data

list

have

been

transmitted

or

between

transmission

of

two

of

the

data

items.

If

an

end

of

file

is

encountered

while

a

data

item

is

being

processed,

or

if

it

is

encountered

while

an

X-format

item

is

being

processed,

the

ERROR

condition

is

raised.

��

ENDFILE

(file-reference)

��

Implicit

action

A

message

is

printed

and

the

ERROR

condition

is

raised.

Normal

return

Execution

continues

with

the

statement

immediately

following

the

GET

or

READ

statement

that

raised

the

ENDFILE.

If

a

file

is

closed

in

an

ON-unit

for

this

condition,

the

results

of

normal

return

are

undefined.

Exit

from

the

ON-unit

with

the

closed

file

must

be

achieved

with

a

GO

TO

statement.

Condition

code

70

ENDPAGE

condition

Status

ENDPAGE

is

always

enabled.

Result

When

ENDPAGE

is

raised,

the

current

line

number

is

one

greater

than

that

specified

by

the

PAGESIZE

option

(default

is

61)

so

that

it

is

possible

to

continue

writing

on

the

same

page.

The

ON-unit

can

start

a

new

page

by

execution

of

a

PAGE

option

or

a

PAGE

format

item,

which

sets

the

current

line

to

one.

If

the

ON-unit

does

not

start

a

new

page,

the

current

line

number

can

increase

indefinitely.

If

a

subsequent

LINE

option

or

LINE

format

item

specifies

a

line

number

that

is

less

than

or

equal

to

the

current

line

number,

ENDPAGE

is

not

raised,

but

a

new

page

is

started

with

the

current

line

set

to

one.

An

exception

is

that

if

the

current

line

number

is

equal

to

the

specified

line

number,

and

the

file

is

positioned

on

column

one

of

the

line,

ENDPAGE

is

not

raised.

If

ENDPAGE

is

raised

during

data

transmission,

on

return

from

the

ON-unit,

the

data

is

written

on

the

current

line,

which

might

have

been

changed

by

the

ON-unit.

If

ENDPAGE

results

from

a

LINE

or

SKIP

option,

on

return

from

the

ON-unit,

the

action

specified

by

LINE

or

SKIP

is

ignored.

Cause

and

syntax

The

ENDPAGE

input/output

condition

is

raised

when

a

PUT

statement

results

in

an

attempt

to

start

a

new

line

beyond

the

limit

specified

for

the

current

page.

This

limit

can

be

specified

by

the

PAGESIZE

option

in

an

OPEN

statement;

if

PAGESIZE

has

not

been

specified,

a

default

limit

of

60

is

applied.

The

attempt

to

exceed

the

limit

can

be

made

during

data

transmission

(including

associated

format

items,

if

the

PUT

statement

is

edit-directed),

by

the

LINE

option,

or

by

the

SKIP

option.

ENDPAGE

can

also

be

raised

by

a

LINE

option

or

LINE

format

item

that

specified

a

line

number

less

than

the

ENDFILE

Chapter

17.

Conditions

345

current

line

number.

ENDPAGE

is

raised

only

once

per

page,

except

when

it

is

raised

by

the

SIGNAL

statement.

��

ENDPAGE

(file-reference)

��

Implicit

action

A

new

page

is

started.

If

the

condition

is

signalled,

execution

is

unaffected

and

continues

with

the

statement

following

the

SIGNAL

statement.

Normal

return

Execution

of

the

PUT

statement

continues

in

the

manner

described

above.

Condition

code

90

ERROR

condition

Status

ERROR

is

always

enabled.

Result

An

error

message

is

issued

if

no

ON-unit

is

active

when

the

ERROR

condition

arises

or

if

the

ON-unit

does

not

use

a

GOTO

(to

exit

the

block)

to

recover

from

the

condition.

Cause

and

syntax

The

ERROR

condition

is

the

implicit

action

for

many

conditions.

This

provides

a

common

condition

that

can

be

used

to

check

for

a

number

of

different

conditions,

rather

than

checking

each

condition

separately.

The

ERROR

condition

is

raised

under

the

following

circumstances:

v

As

a

result

of

the

implicit

action

for

a

condition,

which

is

to

raise

the

ERROR

condition

v

As

a

result

of

the

normal

return

action

for

some

conditions,

such

as

SUBSCRIPTRANGE

CONVERSION

or

when

no

retry

is

attempted

v

As

a

result

of

an

error

(for

which

there

is

no

other

PL/I-defined

condition)

during

program

execution

v

As

a

result

of

a

SIGNAL

ERROR

statement

��

ERROR

��

Implicit

action

The

message

is

printed

and

the

FINISH

condition

is

raised.

Normal

return

The

implicit

action

is

taken.

Condition

codes

All

codes

1000

and

above

are

ERROR

conditions.

ENDPAGE

346

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

FINISH

condition

Status

FINISH

is

always

enabled.

Result

Control

passes

to

the

FINISH

ON-unit

and

processing

continues.

Cause

and

syntax

The

FINISH

condition

is

raised

during

execution

of

a

statement

that

would

terminate

the

procedures.

The

following

actions

take

place:

v

If

the

termination

is

normal—the

FINISH

ON-unit,

if

established,

is

given

control

only

if

the

main

procedure

is

PL/I.

v

If

the

termination

is

abnormal—the

FINISH

ON-unit,

if

established

in

an

active

block,

is

given

control.

��

FINISH

��

Implicit

action

v

If

the

condition

is

raised

in

the

major

task,

no

action

is

taken

and

processing

continues

from

the

point

where

the

condition

was

raised.

v

If

the

condition

is

raised

as

part

of

the

implicit

action

for

another

condition,

the

program

is

terminated.

Normal

return

Processing

resumes

at

the

point

where

the

condition

was

raised.

This

point

is

the

statement

following

the

SIGNAL

statement

if

the

conditions

was

signalled.

Condition

code

4

FIXEDOVERFLOW

condition

Status

FIXEDOVERFLOW

is

enabled

throughout

the

program,

except

within

the

scope

of

the

NOFIXEDOVERFLOW

condition

prefix.

Result

The

result

of

the

invalid

FIXED

DECIMAL

operation

is

undefined.

Cause

and

syntax

The

FIXEDOVERFLOW

computational

condition

is

raised

when

the

length

of

the

result

of

a

FIXED

DECIMAL

arithmetic

operation

exceeds

the

maximum

length

allowed

by

the

implementation.

The

FIXEDOVERFLOW

condition

is

not

raised

for

FIXED

BINARY

operations.

The

FIXEDOVERFLOW

condition

differs

from

the

SIZE

condition

in

that

SIZE

is

raised

when

a

result

exceeds

the

declared

size

of

a

variable,

while

FIXEDOVERFLOW

is

raised

when

a

result

exceeds

the

maximum

allowed

by

the

computer.

If

the

FIXEDOVERFLOW

condition

is

raised

and

it

is

disabled,

the

program

is

in

error.

FINISH

Chapter

17.

Conditions

347

��

FIXEDOVERFLOW

��

Abbreviation

FOFL

Implicit

action

A

message

is

printed

and

the

ERROR

condition

is

raised.

Normal

return

Control

returns

to

the

point

immediately

following

the

point

at

which

the

condition

was

raised.

Condition

code

310

Note:

If

the

SIZE

condition

is

disabled,

an

attempt

to

assign

an

oversize

number

to

a

fixed

decimal

variable

can

raise

the

FIXEDOVERFLOW

condition.

INVALIDOP

condition

Status

INVALIDOP

is

enabled

throughout

the

program,

except

within

the

scope

of

the

NOINVALIDOP

condition

prefix.

Result

The

result

of

the

invalid

operation

is

undefined.

Cause

and

syntax

The

INVALIDOP

computational

condition

is

raised

when

any

of

the

following

are

detected

during

the

evaluation

of

IEEE

floating-point

expressions.

v

Subtraction

of

two

infinities

v

Multiplication

of

infinity

by

0

v

Division

of

two

infinities

v

Division

of

zero

by

zero

v

Invalid

floating-point

data

��

INVALIDOP

��

Implicit

action

The

ERROR

condition

is

raised.

Normal

return

A

message

is

printed

and

the

ERROR

condition

is

raised.

Condition

code

290

KEY

condition

Status

KEY

is

always

enabled.

FIXEDOVERFLOW

348

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Result

The

keyed

record

is

undefined,

and

the

statement

in

which

it

appears

is

ignored.

Cause

and

syntax

The

KEY

input/output

condition

is

raised

when

a

record

with

a

specified

key

cannot

be

found.

The

condition

can

be

raised

only

during

operations

on

keyed

records.

It

is

raised

for

the

condition

codes

listed

below.

When

a

LOCATE

statement

is

used

for

the

data

set,

the

KEY

condition

for

this

LOCATE

statement

is

not

raised

until

the

next

WRITE

or

LOCATE

statement

for

the

file,

or

when

the

file

is

closed.

��

KEY

(file-reference)

��

Implicit

action

A

message

is

printed

and

the

ERROR

condition

is

raised.

Normal

return

Control

passes

to

the

statement

immediately

following

the

statement

that

raised

KEY.

If

a

file

is

closed

in

an

ON-unit

for

this

condition,

the

results

of

normal

return

are

undefined.

Exit

from

the

ON-unit

with

the

closed

file

must

be

achieved

with

a

GO

TO

statement.

Condition

codes

50-58

NAME

condition

Status

NAME

is

always

enabled.

Result

The

named

data

is

undefined.

Cause

and

syntax

The

NAME

input/output

condition

can

be

raised

only

during

execution

of

a

data-directed

GET

statement

with

the

FILE

option.

It

is

raised

in

any

of

the

following

situations:

v

The

syntax

is

not

correct,

as

described

under

“Syntax

of

data-directed

data”

on

page

290.

v

The

name

is

missing

or

invalid,

for

example:

–

No

counterpart

is

found

in

the

data

list.

–

If

there

is

no

data

list,

the

name

is

not

known

in

the

block.

–

A

qualified

name

is

not

fully

qualified.

–

DBCS

contains

a

byte

outside

the

valid

range

X’41’

to

X’FE’.
v

A

subscript

list

is

missing

or

invalid,

for

example.

–

A

subscript

is

missing.

–

The

number

of

subscripts

is

incorrect.

–

More

than

10

digits

are

in

a

subscript

(leading

zeros

ignored).

–

A

subscript

is

outside

the

allowed

range

of

the

current

allocation

of

the

variable.

KEY

Chapter

17.

Conditions

349

You

can

retrieve

the

incorrect

data

field

by

using

the

built-in

function

DATAFIELD

in

the

ON-unit.

��

NAME

(file-reference)

��

Implicit

action

The

incorrect

data

field

is

ignored,

a

message

is

printed,

and

execution

of

the

GET

statement

continues.

Normal

return

The

execution

of

the

GET

statement

continues

with

the

next

name

in

the

stream.

Condition

code

10

OVERFLOW

condition

Status

OVERFLOW

is

enabled

throughout

the

program,

except

within

the

scope

of

the

NOOVERFLOW

condition

prefix.

Result

The

value

of

such

an

invalid

floating-point

number

is

undefined.

Cause

and

syntax

The

OVERFLOW

computational

condition

is

raised

when

the

magnitude

of

a

floating-point

number

exceeds

the

maximum

allowed.

The

OVERFLOW

condition

differs

from

the

SIZE

condition

in

that

SIZE

is

raised

when

a

result

exceeds

the

declared

size

of

a

variable,

while

OVERFLOW

is

raised

when

a

result

exceeds

the

maximum

allowed

by

the

computer.

If

the

OVERFLOW

condition

is

raised

and

it

is

disabled,

the

program

is

in

error.

��

OVERFLOW

��

Abbreviation

OFL

Implicit

action

A

message

is

printed

and

the

ERROR

condition

is

raised.

Normal

return

The

ERROR

condition

is

raised.

Condition

code

300

RECORD

condition

Status

RECORD

is

always

enabled.

NAME

350

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Result

The

length

prefix

for

the

specified

file

can

be

inaccurately

transmitted.

Cause

and

syntax

The

RECORD

input/output

condition

is

raised

if

the

specified

record

is

truncated.

The

condition

can

be

raised

only

during

a

READ,

WRITE,

LOCATE,

or

REWRITE

operation.

If

the

SCALARVARYING

option

is

applied

to

the

file

(it

must

be

applied

to

a

file

using

locate

mode

to

transmit

varying-length

strings),

a

2-byte

length

prefix

is

transmitted

with

an

element

varying-length

string.

The

length

prefix

is

not

reset

if

the

RECORD

condition

is

raised.

If

the

SCALARVARYING

option

is

not

applied

to

the

file,

the

length

prefix

is

not

transmitted.

On

input,

the

current

length

of

a

varying-length

string

is

set

to

the

shorter

of

the

record

length

and

the

maximum

length

of

the

string.

��

RECORD

(file-reference)

��

Implicit

action

A

message

is

printed

and

the

ERROR

condition

is

raised.

Normal

return

Execution

continues

with

the

statement

immediately

following

the

one

for

which

RECORD

was

raised.

If

a

file

is

closed

in

an

ON-unit

for

this

condition,

the

results

of

normal

return

are

undefined.

Exit

from

the

ON-unit

with

the

closed

file

must

be

achieved

with

a

GO

TO

statement.

Condition

codes

20-24

SIZE

condition

Status

SIZE

is

disabled

throughout

the

program,

except

within

the

scope

of

the

SIZE

condition

prefix.

Result

The

result

of

the

assignment

is

undefined.

Cause

and

syntax

The

SIZE

computational

condition

is

raised

only

when

high-order

(that

is,

leftmost)

significant

binary

or

decimal

digits

are

lost

in

an

attempted

assignment

to

a

variable

or

an

intermediate

result

or

in

an

input/output

operation.

This

loss

can

result

from

a

conversion

involving

different

data

types,

different

bases,

different

scales,

or

different

precisions.

Even

if

the

SIZE

condition

is

disabled,

any

conversion

that

is

not

done

inline

may

cause

the

condition

to

be

raised.

SIZE

is

raised

when

the

size

of

the

value

being

assigned

to

a

data

item

exceeds

the

declared

(or

default)

size

of

the

data

item,

even

if

this

is

not

the

actual

size

of

the

storage

that

the

item

occupies.

For

example,

a

fixed

binary

item

of

precision

(20)

occupies

a

fullword

in

storage,

but

SIZE

is

raised

if

a

value

whose

size

exceeds

FIXED

BINARY(20)

is

assigned

to

it.

RECORD

Chapter

17.

Conditions

351

Because

checking

sizes

requires

substantial

overhead

in

both

storage

space

and

run

time,

the

SIZE

condition

is

primarily

used

for

program

testing.

It

can

be

removed

from

production

programs.

For

more

information

on

test

and

production

application

programs,

refer

to

the

Programming

Guide.

The

SIZE

condition

differs

from

the

FIXEDOVERFLOW

condition

in

that

FIXEDOVERFLOW

is

raised

when

the

size

of

a

calculated

fixed-point

value

exceeds

the

maximum

allowed

by

the

implementation.

SIZE

can

be

raised

on

assignment

of

a

value

regardless

of

whether

or

not

FIXEDOVERFLOW

was

raised

in

the

calculation

of

that

value.

If

the

SIZE

condition

is

raised

and

it

is

disabled,

the

program

is

in

error.

��

SIZE

��

Implicit

action

A

message

is

printed

and

the

ERROR

condition

is

raised.

Normal

return

Control

returns

to

the

point

immediately

following

the

point

at

which

the

condition

was

raised.

Condition

codes

340,

341

STORAGE

condition

Status

STORAGE

is

always

enabled.

Result

The

result

depends

on

the

type

of

variable

for

which

attempted

storage

allocation

raised

the

condition.

v

After

an

ALLOCATE

statement

for

a

controlled

variable,

that

variable’s

generation

is

not

allocated.

A

reference

to

that

controlled

variable

results

in

accessing

the

generation

(if

any)

before

the

ALLOCATE

statement.

v

After

an

ALLOCATE

statement

for

a

based

variable,

the

variable

is

not

allocated

and

its

associated

pointer

is

undefined.

v

After

an

ALLOCATE

built-in

function

for

a

based

variable,

the

variable

is

not

allocated

and

the

use

of

the

associated

pointer

is

undefined.

Cause

and

syntax

The

STORAGE

condition

allows

the

program

to

gain

control

for

the

failure

of

an

ALLOCATE

built-in

function

or

ALLOCATE

statement

that

attempted

to

allocate

BASED

or

CONTROLLED

storage

outside

of

an

AREA.

Failure

of

an

ALLOCATE

statement

in

an

AREA

raises

the

AREA

condition.

Failure

of

the

AUTOMATIC

built-in

function

does

not

raise

the

STORAGE

condition.

The

ON-unit

for

the

STORAGE

condition

can

attempt

to

free

allocated

storage.

If

the

ON-unit

is

unable

to

free

sufficient

storage,

it

can

provide

the

necessary

steps

to

terminate

the

program

without

losing

diagnostic

information.

SIZE

352

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

STORAGE

��

Implicit

action

The

ERROR

condition

is

raised.

Normal

return

The

ERROR

condition

is

raised.

Condition

codes

450,

451

STRINGRANGE

condition

Status

STRINGRANGE

is

disabled

throughout

the

program,

except

within

the

scope

of

the

STRINGRANGE

condition

prefix.

Result

The

value

of

the

specified

SUBSTR

is

altered.

Cause

and

syntax

The

STRINGRANGE

program-checkout

condition

is

raised

whenever

the

values

of

the

arguments

to

a

SUBSTR

reference

fail

to

comply

with

the

rules

described

for

the

SUBSTR

built-in

function.

It

is

raised

for

each

reference

to

an

invalid

argument.

��

STRINGRANGE

��

Abbreviation

STRG

Implicit

action

A

message

is

printed

and

processing

continues

as

described

for

normal

return.

Normal

return

Execution

continues

with

a

revised

SUBSTR

reference

for

which

the

value

is

defined

as

follows:

Assuming

that

the

length

of

the

source

string

(after

execution

of

the

ON-unit,

if

specified)

is

k,

the

starting

point

is

i,

and

the

length

of

the

substring

is

j:

v

If

i

is

greater

than

k,

the

value

is

the

null

string.

v

If

i

is

less

than

or

equal

to

k,

the

value

is

that

substring

beginning

at

the

mth

character,

bit,

widechar

or

graphic

of

the

source

string

and

extending

n

characters,

bits,

widechars

or

graphics,

where

m

and

n

are

defined

by:

M

=

max(

I,1

)

N

=

max(

0,min(

J

+

min(I,1)

-

1,K

-

M

+

1

))

if

J

is

specified.

N

=

K

-

M

+

1

if

J

is

not

specified.

This

means

that

the

new

arguments

are

forced

within

the

limits.

STORAGE

Chapter

17.

Conditions

353

The

values

of

i

and

j

are

established

before

entry

to

the

ON-unit.

They

are

not

reevaluated

on

return

from

the

ON-unit.

The

value

of

k

might

change

in

the

ON-unit

if

the

first

argument

of

SUBSTR

is

a

varying-length

string.

The

value

n

is

computed

on

return

from

the

ON-unit

using

any

new

value

of

k.

Condition

code

350

STRINGSIZE

condition

Status

STRINGSIZE

is

disabled

throughout

the

program,

except

within

the

scope

of

the

STRINGSIZE

condition

prefix.

Result

After

the

condition

action,

the

truncated

string

is

assigned

to

its

target

string.

The

right-hand

characters,

bits,

widechars

or

graphics

of

the

source

string

are

truncated

so

that

the

target

string

can

accommodate

the

source

string.

Cause

and

syntax

The

STRINGSIZE

program-checkout

condition

is

raised

when

you

attempt

to

assign

a

string

to

a

target

with

a

shorter

maximum

length.

��

STRINGSIZE

��

Abbreviation

STRZ

Implicit

action

A

message

is

printed

and

processing

continues.

Normal

return

Execution

continues

from

the

point

at

which

the

condition

was

raised.

Condition

codes

150,

151

SUBSCRIPTRANGE

condition

Status

SUBSCRIPTRANGE

is

disabled

throughout

the

program,

except

within

the

scope

of

the

SUBSCRIPTRANGE

condition

prefix.

Result

When

SUBSCRIPTRANGE

has

been

raised,

the

value

of

the

invalid

subscript

is

undefined,

and,

hence,

the

reference

is

also

undefined.

Cause

and

syntax

The

SUBSCRIPTRANGE

program-checkout

condition

is

raised

whenever

a

subscript

is

evaluated

and

found

to

lie

outside

its

specified

bounds.

The

order

of

raising

SUBSCRIPTRANGE

relative

to

evaluation

of

other

subscripts

is

undefined.

STRINGRANGE

354

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

SUBSCRIPTRANGE

��

Abbreviation

SUBRG

Implicit

action

A

message

is

printed

and

the

ERROR

condition

is

raised.

Normal

return

Normal

return

from

a

SUBSCRIPTRANGE

ON-unit

raises

the

ERROR

condition.

Condition

codes

520

TRANSMIT

condition

Status

TRANSMIT

is

always

enabled.

Result

Raising

the

TRANSMIT

condition

indicates

that

any

data

transmitted

is

potentially

incorrect.

Cause

and

syntax

The

TRANSMIT

input/output

condition

can

be

raised

during

any

input/output

operation.

It

is

raised

by

an

uncorrectable

transmission

error

of

a

record

(or

of

a

block,

if

records

are

blocked),

which

is

an

input/output

error

that

could

not

be

corrected

during

execution.

It

can

be

caused

by

a

damaged

recording

medium,

or

by

incorrect

specification

or

setup.

During

input,

TRANSMIT

is

raised

after

transmission

of

the

potentially

incorrect

record.

If

records

are

blocked,

TRANSMIT

is

raised

for

each

subsequent

record

in

the

block.

During

output,

TRANSMIT

is

raised

after

transmission.

If

records

are

blocked,

transmission

occurs

when

the

block

is

complete

rather

than

after

each

output

statement.

When

a

spanned

record

is

being

updated,

the

TRANSMIT

condition

is

raised

on

the

last

segment

of

a

record

only.

It

is

not

raised

for

any

subsequent

records

in

the

same

block,

although

the

integrity

of

these

records

cannot

be

assumed.

��

TRANSMIT

(file-reference)

��

Implicit

action

A

message

is

printed

and

the

ERROR

condition

is

raised.

Normal

return

Processing

continues

as

though

no

error

had

occurred,

allowing

another

condition

(for

example,

RECORD)

to

be

raised

by

the

statement

or

data

item

that

raised

the

TRANSMIT

condition.

If

a

file

is

closed

in

an

ON-unit

for

this

condition,

the

results

of

normal

return

are

undefined.

Exit

from

the

ON-unit

with

the

closed

file

must

be

achieved

with

a

GO

TO

statement.

SUBSCRIPTRANGE

Chapter

17.

Conditions

355

Condition

codes

40-46

UNDEFINEDFILE

condition

Status

UNDEFINEDFILE

is

always

enabled.

Result

Specified

files

are

undefined

to

the

application

program.

Cause

and

syntax

The

UNDEFINEDFILE

input/output

condition

is

raised

whenever

an

unsuccessful

attempt

to

open

a

file

is

made.

If

the

attempt

is

made

by

means

of

an

OPEN

statement

that

specifies

more

than

one

file,

the

condition

is

raised

after

attempts

to

open

all

specified

files.

If

UNDEFINEDFILE

is

raised

for

more

than

one

file

in

the

same

OPEN

statement,

ON-units

are

executed

according

to

the

order

of

appearance

(taken

from

left

to

right)

of

the

file

names

in

that

OPEN

statement.

If

UNDEFINEDFILE

is

raised

by

an

implicit

file

opening

in

a

data

transmission

statement,

upon

normal

return

from

the

ON-unit,

processing

continues

with

the

remainder

of

the

data

transmission

statement.

If

the

file

was

not

opened

in

the

ON-unit,

the

statement

cannot

continue

and

the

ERROR

condition

is

raised.

The

UNDEFINEDFILE

condition

is

raised

not

only

by

conflicting

attributes

(such

as

DIRECT

with

PRINT),

but

also

by

the

following:

v

Block

size

smaller

than

record

size

(except

when

records

are

spanned)

v

LINESIZE

exceeding

the

maximum

allowed

v

KEYLENGTH

zero

or

not

specified

for

creation

of

INDEXED

data

sets

v

Specifying

a

KEYLOC

option,

for

an

INDEXED

data

set,

with

a

value

resulting

in

KEYLENGTH

+

KEYLOC

exceeding

the

record

length

v

Specifying

a

V-format

logical

record

length

of

less

than

18

bytes

for

STREAM

data

sets

v

Specifying

a

block

size

that

is

not

an

integral

multiple

of

the

record

size

for

FB-format

records

v

Specifying

a

logical

record

length

that

is

not

at

least

4

bytes

smaller

than

the

specified

block

size

for

VB-format

records.

��

UNDEFINEDFILE

(file-reference)

��

Abbreviation

UNDF

Implicit

action

A

message

is

printed

and

the

ERROR

condition

is

raised.

Normal

return

Upon

the

normal

completion

of

the

final

ON-unit,

control

is

given

to

the

statement

immediately

following

the

statement

that

raised

the

condition.

Condition

codes

80-89,

91-95

TRANSMIT

356

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

UNDERFLOW

condition

Status

UNDERFLOW

is

enabled

throughout

the

program,

except

within

the

scope

of

the

NOUNDERFLOW

condition

prefix.

Result

The

invalid

floating-point

value

is

set

to

0.

Cause

and

syntax

The

UNDERFLOW

computational

condition

is

raised

when

the

magnitude

of

a

floating-point

number

is

smaller

than

the

minimum

allowed.

save

UNDERFLOW

is

not

raised

when

equal

numbers

are

subtracted

(often

called

significance

error).

The

expression

X(-Y)

(where

Y>0)

can

be

evaluated

by

taking

the

reciprocal

of

XY;

hence,

the

OVERFLOW

condition

might

be

raised

instead

of

the

UNDERFLOW

condition.

��

UNDERFLOW

��

Abbreviation

UFL

Implicit

action

Unless

running

under

IEEE

on

z/OS,

a

message

is

printed,

and

execution

continues

from

the

point

at

which

the

condition

was

raised;

under

IEEE

on

z/OS,

a

message

is

printed

and

the

ERROR

condition

is

raised.

Normal

return

Unless

running

under

IEEE

on

z/OS,

control

returns

to

the

point

immediately

following

the

point

at

which

the

condition

was

raised;

under

IEEE

on

z/OS,

the

ERROR

condition

is

raised.

Condition

code

330

ZERODIVIDE

condition

Status

ZERODIVIDE

is

enabled

throughout

the

program,

except

within

the

scope

of

the

NOZERODIVIDE

condition

prefix.

Result

The

result

of

a

division

by

zero

is

undefined.

Cause

and

syntax

The

ZERODIVIDE

computational

condition

is

raised

when

an

attempt

is

made

to

divide

by

zero.

This

condition

is

raised

for

fixed-point

and

floating-point

division.

If

the

numerator

of

a

floating-point

divide

is

also

zero,

INVALIDOP

is

raised.

If

the

ZERODIVIDE

condition

is

raised

and

it

is

disabled,

the

program

is

in

error.

UNDERFLOW

Chapter

17.

Conditions

357

��

ZERODIVIDE

��

Abbreviation

ZDIV

Implicit

action

A

message

is

printed

and

the

ERROR

condition

is

raised.

Normal

return

The

ERROR

condition

is

raised.

Condition

code

320

ZERODIVIDE

358

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Chapter

18.

Multithreading

facility

Creating

a

thread

.

.

.

.

.

.

.

.

.

.

.

. 360

ATTACH

statement

.

.

.

.

.

.

.

.

.

.

. 360

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 361

Terminating

a

thread

.

.

.

.

.

.

.

.

.

.

. 361

Waiting

for

a

thread

to

complete

.

.

.

.

.

.

. 361

Detaching

a

thread

.

.

.

.

.

.

.

.

.

.

. 362

Condition

handling

.

.

.

.

.

.

.

.

.

.

. 362

Task

data

and

attribute

.

.

.

.

.

.

.

.

.

. 362

THREADID

built-in

function

.

.

.

.

.

.

. 363

Sharing

data

between

threads

.

.

.

.

.

.

.

. 363

Sharing

files

between

threads

.

.

.

.

.

.

.

. 363

A

PL/I

program

is

a

set

of

one

or

more

procedures.

The

program

normally

executes

as

a

single

execution

unit,

or

as

part

of

a

single

execution

unit.

When

a

procedure

invokes

another

procedure,

control

is

passed

to

the

invoked

procedure,

and

execution

of

the

invoking

procedure

is

suspended

until

the

invoked

procedure

passes

control

back.

This

execution

with

a

single

flow

of

control

is

synchronous

flow.

When

using

the

PL/I

multithreading

facility,

the

invoking

procedure

does

not

relinquish

control

to

the

invoked

procedure.

Instead,

an

additional

flow

of

control

is

established

so

that

both

procedures

are

executed

concurrently.

The

execution

of

such

concurrent

procedures

is

called

asynchronous

flow.

The

PL/I

multithreading

facility

allows

the

execution

of

parts

of

a

PL/I

program

asynchronously

in

multiple

threads.

A

thread

is

a

unit

of

work

that

competes

for

the

resources

of

the

computing

system.

A

thread

is

not

the

equivalent

of

a

task

in

OS

PL/I.

Except

for

the

main

thread

in

a

program,

a

thread

is

always

independent

of

and

unrelated

to

other

threads

in

the

program.

When

a

procedure

invokes

another

procedure

as

a

thread,

this

action

is

known

as

attaching,

or

creating

the

thread.

Execution

of

one

or

more

threads

occurs

in

a

process,

which

can

be

thought

of

as

a

PL/I

program.

PL/I

does

not

provide

the

capabilities

to

create

and

manage

multiple

processes

or

tasks,

but

it

does

allow

creation

and

management

of

multiple

threads

in

a

single

program

(process).

There

is

normally

one

application

thread

per

process.

Multiple

threads

can

be

attached

(created)

to:

v

Perform

a

piece

of

work

in

a

shorter

elapsed

time.

Such

applications

can

be

batch

applications

that

are

not

interacting

with

the

user.

For

example,

one

procedure

could

attach

a

thread

which

would

compile

a

PL/I

program.

v

Perform

high

response

parts

of

a

program

in

one

thread

and

I/O

parts

in

another

thread,

and

typical

response

parts

in

a

third.

v

Use

computing

system

resources

that

might

be

idle.

These

resources

can

include

I/O

devices

as

well

as

the

CPUs.

v

Implement

real-time

multi-user

applications

where

the

response

time

is

critical.

v

Isolate

independent

pieces

of

work

for

reliability.

That

is,

the

failure

of

a

part

of

a

job

can

be

isolated

while

other

independent

parts

are

processed.

Note:

Operating

system

services

must

not

be

directly

used

when

PL/I

provides

the

appropriate

function.

359

Creating

a

thread

A

thread:

v

Is

an

independent

unit

of

work

v

Executes

concurrently

and

independently

of

other

threads

in

the

process

and

system

v

Can

attach

other

threads

v

Can

wait

for

a

thread

to

complete

v

Can

stop

itself

or

another

thread

Any

procedures

or

functions

synchronously

invoked

by

the

thread

become

part

of

the

thread’s

execution.

ATTACH

statement

A

thread

is

attached

(or

created)

by

the

execution

of

the

ATTACH

statement.

You

can

specify

explicit

characteristics

for

the

thread

if

the

defaults

are

not

desired.

��

ATTACH

entry-reference

THREAD

(task-reference)

�

�

ENVIRONMENT

(

)

TSTACK(expression)

;

��

entry

Specifies

the

name

of

a

limited

entry

variable,

or

the

name

of

an

external

entry

or

level-1

procedure.

It

cannot

be

the

name

of

an

internal

procedure

or

a

fetchable

procedure.

The

ATTACHed

entry

must

be

declared

as

having

no

parameters

or

as

having

exactly

one

BYVALUE

POINTER

parameter.

However,

you

can

fetch

a

procedure,

assign

it

to

a

limited

entry

variable,

and

then

attach

the

entry

variable

as

a

thread.

Arguments

can

be

passed

to

the

new

thread

just

as

you

would

pass

arguments

to

a

synchronous

entry

in

a

CALL

statement.

THREAD

(task

reference)

Specifies

the

name

of

a

task

variable

that

becomes

associated

with

the

thread.

The

task

variable

can

then

be

used

to

refer

to

the

thread.

Unless

explicitly

declared,

the

named

variable

is

given

a

contextual

declaration.

If

the

THREAD

option

is

not

specified,

the

attached

thread

cannot

be

stopped

or

waited

upon

by

another

thread.

If

a

thread

is

attached

with

the

THREAD

option,

it

should

be

detached

using

the

DETACH

statement

(see

“Detaching

a

thread”

on

page

362)

to

free

all

the

system

resources

associated

with

the

thread.

Operating

system

services

must

not

be

used

directly

to

create

a

thread.

ENVIRONMENT

(abbrev:

ENV)

Specifies

environmental

characteristics

and

is

usually

operating

system

dependent.

Creating

a

thread

360

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

TSTACK

(expression)

On

Intel,

specifies

the

size

of

the

stack

to

be

used

for

the

attached

thread.

The

expression

should

be

FIXED

BINARY(31,0).

If

the

stack

size

is

not

specified,

the

run-time

default

will

be

used.

On

z/OS,

TSTACK

is

ignored,

and

the

size

of

the

stack

is

determined

by

LE.

Examples

attach

input

(File1);

attach

input

(File2)

thread

(T2);

An

attached

procedure

may

have

any

supported

linkage.

Terminating

a

thread

A

thread

is

terminated

when

any

of

the

following

occurs:

v

The

END

statement

corresponding

to

the

first

procedure

(the

initial

procedure

in

the

thread)

is

reached.

v

The

ERROR

condition

is

raised

and

either

there

is

no

ERROR

ON-unit

or

the

ERROR

ON-unit

terminates

normally

(reaches

the

END

statement

for

the

ON-unit

or

executes

a

RESIGNAL

statement).

v

The

EXIT

statement

is

executed

in

any

procedure

within

the

thread.

v

The

initial

thread

in

the

program

terminates.

v

The

STOP

statement

is

executed

in

any

thread

within

the

program.

This

stops

the

entire

program,

causing

all

threads,

including

the

main

thread,

to

be

terminated.

The

FINISH

condition

is

raised

only

in

the

thread

initiating

program

termination.

Any

ON-units

established

within

the

thread

are

given

control

before

the

thread

actually

terminates.

Except

as

noted

above,

when

a

thread

terminates,

no

other

threads

are

terminated,

unless

the

thread

being

terminated

is

the

main

thread.

In

that

case,

all

other

threads

are

stopped

and

terminated

before

the

main

thread

is

terminated.

When

a

thread

terminates,

only

its

stack

space

is

released.

All

other

resources

such

as

allocated

storage,

open

files,

etc.

remain

intact.

The

user

must

ensure

that

any

resources

a

thread

has

acquired

are

released

and

open

files

are

closed,

unless

they

are

needed

by

other

threads

that

are

still

active.

When

the

main

thread

terminates,

all

resources

are

released

and

files

are

closed.

Waiting

for

a

thread

to

complete

To

wait

for

a

thread,

use

the

WAIT

statement.

��

WAIT

THREAD

(task-reference)

;

��

THREAD

(task-reference)

The

THREAD

option

specifies

the

thread

upon

which

the

process

is

waiting.

ATTACH

statement

Chapter

18.

Multithreading

facility

361

The

current

thread

is

suspended

until

the

specified

thread

terminates.

As

soon

as

the

specified

thread

has

terminated,

the

current

thread

resumes.

WAIT

THREAD

(TI1);

Detaching

a

thread

The

DETACH

statement

should

be

used

to

free

the

system

resources

associated

with

a

thread

that

was

attached

with

the

THREAD

option.

��

DETACH

THREAD

(task-reference)

;

��

THREAD

(task-reference)

The

THREAD

option

specifies

the

thread

to

be

detached.

Normally,

this

statement

would

be

executed

immediately

after

the

WAIT

statement

for

the

terminating

thread.

Condition

handling

When

a

new

thread

is

created,

no

ON-units

are

assumed

to

be

established.

The

ON-units

which

are

in

effect

at

the

time

a

thread

is

created

are

not

inherited

by

the

new

attached

thread.

Conditions

that

occur

within

a

thread

are

handled

within

the

thread

and

are

not

handled

across

thread

boundaries.

For

example,

assume

that

thread

A

opens

file

F;

then,

A

creates

thread

T.

T

then

causes

the

ENDFILE

condition

to

be

raised.

If

an

ON

ENDFILE

condition,

is

not

established

in

thread

T

itself,

the

ERROR

condition

is

raised

in

T

and

the

usual

condition

handling

takes

place

all

within

thread

T.

Whether

or

not

A

has

established

ON-units

for

ENDFILE

or

ERROR

does

not

affect

the

execution

of

thread

T.

A

thread

must

establish

ON-units

for

appropriate

conditions

if

it

wishes

to

handle

them.

There

is

no

mechanism

to

signal

conditions

across

threads.

If

CTRL-BREAK

is

used

to

raise

the

ATTENTION

condition,

the

ATTENTION

condition

is

raised

only

in

the

main

thread,

not

in

any

threads

created

by

ATTACH

statements.

Task

data

and

attribute

Task

variables

hold

thread

related

information,

such

as

thread

identification,

service

category,

and

dispatching

priority.

A

variable

is

given

the

TASK

attribute

by

explicit

declaration,

or

implicitly

by

appearing

in

a

THREAD

option.

Waiting

for

a

thread

362

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

TASK

��

A

task

variable

is

associated

with

a

thread

by

the

task

reference

in

the

THREAD

option

of

the

ATTACH

statement

creating

the

thread.

A

task

variable

is

active

if

it

is

associated

with

a

thread

that

is

active.

A

task

variable

must

be

allocated

before

it

is

associated

with

a

thread

and

must

not

be

freed

while

it

is

active.

An

active

task

variable

cannot

be

associated

with

another

thread.

THREADID

built-in

function

THREADID

(short

for

thread

identifier)

returns

a

FIXED

BINARY(31,0)

value

that

is

the

operating

system

thread

identifier

for

an

attached

thread.

The

value

used

by

this

built-in

function

can

be

used

as

a

parameter

to

system

functions

such

as

DosSetPriority,

but

it

should

not

be

used

as

a

parameter

to

DosKillThread.

��

THREADID

(

x

)

��

x

Task

reference.

x

must

be

a

reference

for

a

thread

which

is

currently

attached.

Sharing

data

between

threads

All

static

and

controlled

data

is

shared

between

threads.

All

other

data

can

also

be

shared

via

arguments/parameters

and

via

based

references,

as

long

as

the

data

is

allocated

and

is

not

freed

until

all

of

the

threads

have

finished

using

the

data.

For

example,

if

automatic

variables

in

the

attaching

thread

are

shared

with

the

attached

thread,

the

attaching

block

must

not

terminate

until

the

attached

thread

has

finished

using

the

shared

variables.

Serialization

of

data

is

the

responsibility

of

the

user.

If

new

generations

of

controlled

data

are

allocated

or

if

existing

generations

are

freed,

it

is

possible

to

have

certain

threads

still

accessing

an

older

generation

or

a

generation

that

no

longer

exists.

This

can

lead

to

unpredictable

results.

All

allocated

storage,

unless

freed

explicitly,

is

not

freed

until

program

termination.

PL/I

does

not

serialize

either

ALLOCATEs

or

FREEs

in

AREA

variables.

Sharing

files

between

threads

All

files

are

shared

between

threads.

If

a

thread

opens

a

file,

it

is

not

closed

until

it

is

explicitly

closed

or

the

program

terminates.

Serialization

is

the

responsibility

of

the

user.

Refer

to

“Sharing

data

between

threads.”

The

message

file

and

the

display

statement

are

automatically

serialized

by

PL/I.

Task

data

and

attribute

Chapter

18.

Multithreading

facility

363

364

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

Declaring

and

invoking

built-in

functions,

pseudovariables,

and

built-in

subroutines

.

.

.

. 368

BUILTIN

attribute

.

.

.

.

.

.

.

.

.

.

. 368

Invoking

built-in

functions

and

pseudovariables

369

Invoking

built-in

subroutines

.

.

.

.

.

.

. 369

Specifying

arguments

for

built-in

functions,

pseudovariables,

and

built-in

subroutines

.

.

.

. 369

Aggregate

arguments

.

.

.

.

.

.

.

.

.

. 369

Null

and

optional

arguments

.

.

.

.

.

.

. 370

Accuracy

of

mathematical

functions

.

.

.

.

.

. 370

Categories

of

built-in

functions

.

.

.

.

.

.

. 370

Arithmetic

built-in

functions

.

.

.

.

.

.

. 370

Array-handling

built-in

functions

.

.

.

.

.

. 371

Buffer-management

built-in

functions

.

.

.

. 371

Condition-handling

built-in

functions

.

.

.

. 372

Date/time

built-in

functions

.

.

.

.

.

.

. 373

Floating-point

inquiry

built-in

functions

.

.

. 374

Floating-point

manipulation

built-in

functions

375

Input/output

built-in

functions

.

.

.

.

.

. 375

Integer

manipulation

built-in

functions

.

.

.

. 376

Mathematical

built-in

functions

.

.

.

.

.

. 376

Miscellaneous

built-in

functions

.

.

.

.

.

. 377

Ordinal-handling

built-in

functions

.

.

.

.

. 378

Precision-handling

built-in

functions

.

.

.

. 378

Pseudovariables

.

.

.

.

.

.

.

.

.

.

. 378

Storage

control

built-in

functions

.

.

.

.

.

. 379

String-handling

built-in

functions

.

.

.

.

.

. 380

Subroutines

.

.

.

.

.

.

.

.

.

.

.

.

. 382

ABS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 382

ACOS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 383

ACOSF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 383

ADD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 383

ADDR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 384

ADDRDATA

.

.

.

.

.

.

.

.

.

.

.

.

. 384

ALL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 385

ALLOCATE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 385

ALLOCATION

.

.

.

.

.

.

.

.

.

.

.

.

. 385

ALLOCSIZE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 385

ANY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 386

ASIN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 386

ASINF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 386

ATAN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 387

ATAND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 387

ATANF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 388

ATANH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 388

AUTOMATIC

.

.

.

.

.

.

.

.

.

.

.

.

. 388

AVAILABLEAREA

.

.

.

.

.

.

.

.

.

.

. 388

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 389

BINARY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 389

BINARYVALUE

.

.

.

.

.

.

.

.

.

.

.

. 389

BIT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 390

BITLOCATION

.

.

.

.

.

.

.

.

.

.

.

.

. 390

BOOL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 390

BYTE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 391

CDS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 391

CEIL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 391

CENTERLEFT

.

.

.

.

.

.

.

.

.

.

.

.

. 392

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 392

CENTRELEFT

.

.

.

.

.

.

.

.

.

.

.

.

. 392

CENTERRIGHT

.

.

.

.

.

.

.

.

.

.

.

. 392

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 393

CENTRERIGHT

.

.

.

.

.

.

.

.

.

.

.

. 393

CHARACTER

.

.

.

.

.

.

.

.

.

.

.

.

. 393

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 394

CHARGRAPHIC

.

.

.

.

.

.

.

.

.

.

.

. 394

Example

1

.

.

.

.

.

.

.

.

.

.

.

.

. 394

Example

2

.

.

.

.

.

.

.

.

.

.

.

.

. 394

CHARVAL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 395

CHECKSTG

.

.

.

.

.

.

.

.

.

.

.

.

.

. 395

COLLATE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 396

COMPARE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 396

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 396

COMPLEX

.

.

.

.

.

.

.

.

.

.

.

.

.

. 397

CONJG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 397

COPY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 397

COS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 398

COSD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 398

COSF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 398

COSH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 399

COUNT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 399

CS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 399

CURRENTSIZE

.

.

.

.

.

.

.

.

.

.

.

.

. 401

CURRENTSTORAGE

.

.

.

.

.

.

.

.

.

.

. 401

DATAFIELD

.

.

.

.

.

.

.

.

.

.

.

.

.

. 402

DATE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 402

DATETIME

.

.

.

.

.

.

.

.

.

.

.

.

.

. 402

DAYS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 403

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 403

DAYSTODATE

.

.

.

.

.

.

.

.

.

.

.

.

. 404

DAYSTOSECS

.

.

.

.

.

.

.

.

.

.

.

.

. 404

DECIMAL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 405

DIMENSION

.

.

.

.

.

.

.

.

.

.

.

.

. 405

DIVIDE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 406

EDIT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 406

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 406

EMPTY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 407

ENDFILE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 407

ENTRYADDR

.

.

.

.

.

.

.

.

.

.

.

.

. 407

ENTRYADDR

pseudovariable

.

.

.

.

.

.

.

. 408

EPSILON

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 408

ERF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 408

ERFC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 408

EXP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 409

EXPF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 409

EXPONENT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 409

FILEDDINT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 410

FILEDDTEST

.

.

.

.

.

.

.

.

.

.

.

.

. 410

FILEDDWORD

.

.

.

.

.

.

.

.

.

.

.

.

. 411

365

FILEID

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 411

FILEOPEN

.

.

.

.

.

.

.

.

.

.

.

.

.

. 412

FILEREAD

.

.

.

.

.

.

.

.

.

.

.

.

.

. 412

FILESEEK

.

.

.

.

.

.

.

.

.

.

.

.

.

. 412

FILETELL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 413

FILEWRITE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 413

FIXED

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 413

FLOAT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

FLOOR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

GAMMA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

GETENV

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 415

GRAPHIC

.

.

.

.

.

.

.

.

.

.

.

.

.

. 415

Example

1

.

.

.

.

.

.

.

.

.

.

.

.

. 415

Example

2

.

.

.

.

.

.

.

.

.

.

.

.

. 416

HANDLE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 416

HBOUND

.

.

.

.

.

.

.

.

.

.

.

.

.

. 416

HEX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 417

Example

1

.

.

.

.

.

.

.

.

.

.

.

.

. 417

Example

2

.

.

.

.

.

.

.

.

.

.

.

.

. 417

HEXIMAGE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 418

HIGH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 418

HUGE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 418

IAND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 419

IEOR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 419

IMAG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 420

IMAG

pseudovariable

.

.

.

.

.

.

.

.

.

. 420

INDEX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 420

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 420

INOT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 421

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 421

IOR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 421

ISIGNED

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 422

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 422

ISLL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 422

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 422

ISMAIN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 423

ISRL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 423

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 423

IUNSIGNED

.

.

.

.

.

.

.

.

.

.

.

.

. 423

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 424

LBOUND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 424

LEFT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 424

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 424

LENGTH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 425

LINENO

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 425

LOCATION

.

.

.

.

.

.

.

.

.

.

.

.

.

. 425

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 426

LOG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 426

LOGF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 426

LOGGAMMA

.

.

.

.

.

.

.

.

.

.

.

.

. 427

LOG2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 427

LOG10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 427

LOG10F

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 427

LOW

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 428

LOWERCASE

.

.

.

.

.

.

.

.

.

.

.

.

. 428

LOWER2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 428

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 429

MAX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 429

MAXEXP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 429

Example

(Intel

Values)

.

.

.

.

.

.

.

.

. 430

Example

(AIX

Values)

.

.

.

.

.

.

.

.

. 430

Example

(z/OS

Hexdecimal

Values)

.

.

.

.

. 430

Example

(z/OS

IEEE

Values)

.

.

.

.

.

.

. 430

MAXLENGTH

.

.

.

.

.

.

.

.

.

.

.

.

. 430

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 430

MEMINDEX

.

.

.

.

.

.

.

.

.

.

.

.

.

. 431

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 432

MEMSEARCH

.

.

.

.

.

.

.

.

.

.

.

.

. 432

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 432

MESEARCHR

.

.

.

.

.

.

.

.

.

.

.

.

. 433

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 433

MEMVERIFY

.

.

.

.

.

.

.

.

.

.

.

.

. 433

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 434

MEMVERIFYR

.

.

.

.

.

.

.

.

.

.

.

.

. 434

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 435

MIN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 435

MINEXP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 435

Example

(Intel

Values)

.

.

.

.

.

.

.

.

. 435

Example

(AIX

Values)

.

.

.

.

.

.

.

.

. 436

Example

(z/OS

Hexadecimal

Values)

.

.

.

. 436

Example

(z/OS

IEEE

Values)

.

.

.

.

.

.

. 436

MOD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 436

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 437

MPSTR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 437

MULTIPLY

.

.

.

.

.

.

.

.

.

.

.

.

.

. 438

NULL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 438

OFFSET

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 438

OFFSETADD

.

.

.

.

.

.

.

.

.

.

.

.

. 439

OFFSETDIFF

.

.

.

.

.

.

.

.

.

.

.

.

. 439

OFFSETSUBTRACT

.

.

.

.

.

.

.

.

.

.

. 439

OFFSETVALUE

.

.

.

.

.

.

.

.

.

.

.

.

. 439

OMITTED

.

.

.

.

.

.

.

.

.

.

.

.

.

. 440

ONCHAR

.

.

.

.

.

.

.

.

.

.

.

.

.

. 440

ONCHAR

pseudovariable

.

.

.

.

.

.

.

.

. 440

ONCODE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 440

ONCONDCOND

.

.

.

.

.

.

.

.

.

.

.

. 441

ONCONDID

.

.

.

.

.

.

.

.

.

.

.

.

. 441

ONCOUNT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 442

ONFILE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 442

ONGSOURCE

.

.

.

.

.

.

.

.

.

.

.

.

. 442

ONGSOURCE

pseudovariable

.

.

.

.

.

.

.

. 443

ONKEY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 443

ONLOC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 444

ONSOURCE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 444

ONSOURCE

pseudovariable

.

.

.

.

.

.

.

. 444

ONSUBCODE

.

.

.

.

.

.

.

.

.

.

.

.

. 445

ONWCHAR

.

.

.

.

.

.

.

.

.

.

.

.

.

. 445

ONWCHAR

pseudovariable

.

.

.

.

.

.

.

. 445

ONWSOURCE

.

.

.

.

.

.

.

.

.

.

.

.

. 446

ONWSOURCE

pseudovariable

.

.

.

.

.

.

. 446

ORDINALNAME

.

.

.

.

.

.

.

.

.

.

.

. 446

ORDINALPRED

.

.

.

.

.

.

.

.

.

.

.

. 447

ORDINALSUCC

.

.

.

.

.

.

.

.

.

.

.

. 447

PACKAGENAME

.

.

.

.

.

.

.

.

.

.

.

. 447

PAGENO

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 447

PLACES

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 448

Example

(Intel

Values)

.

.

.

.

.

.

.

.

. 448

Example

(AIX

Values)

.

.

.

.

.

.

.

.

. 448

Example

(z/OS

Hexadecimal

Values)

.

.

.

. 448

Example

(z/OS

IEEE

Values)

.

.

.

.

.

.

. 448

PLIASCII

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 448

PLICANC

.

.

.

.

.

.

.

.

.

.

.

.

.

. 449

Built-in

functions,

pseudovariables,

and

subroutines

366

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

PLICKPT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 449

PLIDELETE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 449

PLIDUMP

.

.

.

.

.

.

.

.

.

.

.

.

.

. 450

PLIEBCDIC

.

.

.

.

.

.

.

.

.

.

.

.

.

. 450

PLIFILL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 450

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 450

PLIFREE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 451

PLIMOVE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 451

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 451

PLIOVER

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 452

PLIREST

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 452

PLIRETC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 452

PLIRETV

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 453

PLISAXA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 453

PLISAXB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 453

PLISRTA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 454

PLISRTB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 454

PLISRTC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 454

PLISRTD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 454

POINTER

.

.

.

.

.

.

.

.

.

.

.

.

.

. 455

POINTERADD

.

.

.

.

.

.

.

.

.

.

.

.

. 455

POINTERDIFF

.

.

.

.

.

.

.

.

.

.

.

.

. 456

POINTERSUBTRACT

.

.

.

.

.

.

.

.

.

.

. 456

POINTERVALUE

.

.

.

.

.

.

.

.

.

.

.

. 456

POLY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 457

PRECISION

.

.

.

.

.

.

.

.

.

.

.

.

.

. 457

PRED

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 458

PRESENT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 458

PROCEDURENAME

.

.

.

.

.

.

.

.

.

.

. 458

PROD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 458

PUTENV

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 459

RADIX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 459

RAISE2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 459

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 459

RANDOM

.

.

.

.

.

.

.

.

.

.

.

.

.

. 460

RANK

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 460

REAL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 460

REAL

pseudovariable

.

.

.

.

.

.

.

.

.

. 461

REM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 461

REPATTERN

.

.

.

.

.

.

.

.

.

.

.

.

. 461

REPEAT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 462

REVERSE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 462

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 462

RIGHT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 462

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 463

ROUND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 463

Results

under

compiler

option

USAGE(

ROUND(ANS)

)

.

.

.

.

.

.

.

.

.

.

. 463

Results

under

compiler

option

USAGE(

ROUND(IBM)

)

.

.

.

.

.

.

.

.

.

.

.

. 464

SAMEKEY

.

.

.

.

.

.

.

.

.

.

.

.

.

. 464

SCALE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 464

SEARCH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 465

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 465

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 465

SEARCHR

.

.

.

.

.

.

.

.

.

.

.

.

.

. 466

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 466

SECS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 466

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 467

SECSTODATE

.

.

.

.

.

.

.

.

.

.

.

.

. 467

SECSTODAYS

.

.

.

.

.

.

.

.

.

.

.

.

. 468

SIGN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 468

SIGNED

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 468

SIN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 469

SIND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 469

SINF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 469

SINH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 469

SIZE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 470

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 470

SOURCEFILE

.

.

.

.

.

.

.

.

.

.

.

.

. 471

SOURCELINE

.

.

.

.

.

.

.

.

.

.

.

.

. 471

SQRT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 471

SQRTF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 471

STORAGE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 472

STRING

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 472

STRING

pseudovariable

.

.

.

.

.

.

.

.

.

. 473

SUBSTR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 473

SUBSTR

pseudovariable

.

.

.

.

.

.

.

.

.

. 473

SUBTRACT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 474

SUCC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 474

SUM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 475

SYSNULL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 475

SYSTEM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 475

TALLY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 476

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 476

TAN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 476

TAND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 476

TANF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 476

TANH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 477

THREADID

.

.

.

.

.

.

.

.

.

.

.

.

.

. 477

TIME

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 478

TINY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 478

TRANSLATE

.

.

.

.

.

.

.

.

.

.

.

.

. 478

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 478

TRIM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 479

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 479

TRUNC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 479

TYPE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 480

TYPE

pseudovariable

.

.

.

.

.

.

.

.

.

.

. 480

UNALLOCATED

.

.

.

.

.

.

.

.

.

.

.

. 480

UNSIGNED

.

.

.

.

.

.

.

.

.

.

.

.

.

. 481

UNSPEC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 481

UNSPEC

pseudovariable

.

.

.

.

.

.

.

.

. 483

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 483

UPPERCASE

.

.

.

.

.

.

.

.

.

.

.

.

. 483

VALID

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 484

VALIDDATE

.

.

.

.

.

.

.

.

.

.

.

.

. 484

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 484

VARGLIST

.

.

.

.

.

.

.

.

.

.

.

.

.

. 485

VARGSIZE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 485

VERIFY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 485

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 486

VERIFYR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 486

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 487

WCHARVAL

.

.

.

.

.

.

.

.

.

.

.

.

. 487

WEEKDAY

.

.

.

.

.

.

.

.

.

.

.

.

.

. 487

WHIGH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 488

WIDECHAR

.

.

.

.

.

.

.

.

.

.

.

.

.

. 488

WLOW

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 488

XMLCHAR

.

.

.

.

.

.

.

.

.

.

.

.

.

. 489

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 489

Y4DATE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 490

Built-in

functions,

pseudovariables,

and

subroutines

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

367

Y4JULIAN

.

.

.

.

.

.

.

.

.

.

.

.

.

. 491

Y4YEAR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 491

A

large

number

of

common

tasks

are

available

in

the

form

of

built-in

functions,

subroutines,

and

pseudovariables.

When

you

use

them,

you

can

write

less

code

more

quickly

with

greater

reliability.

The

built-in

functions,

subroutines,

and

pseudovariables

are

listed

in

alphabetic

order

in

this

chapter.

In

general,

each

description

has

the

following

format:

v

A

heading

showing

the

syntax

of

the

reference

v

A

description

of

the

value

returned

or,

for

a

pseudovariable,

the

value

set

v

A

description

of

any

arguments

v

Any

other

qualifications

on

using

the

function

or

pseudovariable

The

abbreviations

for

built-in

functions

have

separate

declarations

(explicit

or

contextual)

and

name

scopes.

In

the

following

example:

dcl

(Dim,

Dimension)

builtin;

is

not

a

multiple

declaration,

and

dcl

Binary

file;

X

=

Bin

(var,

6,3);

is

valid

even

though

Bin

is

an

abbreviation

of

the

Binary

built-in

function.

Declaring

and

invoking

built-in

functions,

pseudovariables,

and

built-in

subroutines

Built-in

functions,

pseudovariables,

and

subroutines

can

be

contextually

or

explicitly

declared.

BUILTIN

attribute

The

BUILTIN

attribute

specifies

that

the

name

is

a

built-in

function,

pseudovariable,

or

a

subroutine.

��

BUILTIN

��

Built-in

names

can

be

used

as

programmer-defined

names.

BUILTIN

can

be

declared

for

a

built-in

name

in

any

block

that

has

inherited,

from

a

containing

block,

a

programmer-defined

declaration

or

use

of

the

same

name.

The

following

example

shows

built-in

names

with

the

BUILTIN

attribute.

Example

1

�1�

A:

procedure;

declare

Sqrt

float

binary;

�2�

X

=

Sqrt;

�3�

B:

Begin;

Declare

Sqrt

builtin;

Z

=

Sqrt(P);

end

B;

end

A;

Built-in

functions,

pseudovariables,

and

subroutines

368

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

In

this

example:

�1�

Sqrt

is

a

programmer-defined

name.

�2�

The

assignment

to

the

variable

X

is

a

reference

to

the

programmer-defined

name

Sqrt.

�3�

Sqrt

is

declared

with

the

BUILTIN

attribute

so

that

any

reference

to

Sqrt

within

B

is

recognized

as

a

reference

to

the

built-in

function

and

not

to

the

programmer-defined

name

Sqrt

declared

in

1.

Invoking

built-in

functions

and

pseudovariables

The

following

syntax

is

used

to

invoke

built-in

functions

and

pseudovariables.

��

�

name

,

(

)

argument

��

Invoking

built-in

subroutines

The

following

syntax

is

used

to

invoke

built-in

subroutines.

��

CALL

name

�

(

)

,

argument

;

��

Specifying

arguments

for

built-in

functions,

pseudovariables,

and

built-in

subroutines

Arguments,

which

can

be

expressions,

are

evaluated

and

converted

to

a

data

type

suitable

for

the

built-in

function

according

to

the

rules

for

data

conversion.

Aggregate

arguments

All

built-in

functions

and

pseudovariables

that

can

have

arguments

can

have

array

arguments

(if

more

than

one

is

an

array,

the

bounds

must

be

identical).

v

ADDR,

ALLOCATION,

CURRENTSIZE,

SIZE,

STRING,

and

the

array-handling

functions

return

an

element

value.

v

Under

the

compiler

option

USAGE(UNSPEC(ANS)),

UNSPEC

returns

an

element

value;

Under

USAGE(UNSPEC(IBM))

returns

an

array

of

values.

v

All

other

functions

return

an

array

of

values.

Specifying

an

array

argument

is

equivalent

to

placing

the

function

reference

or

pseudovariable

in

a

do-group

where

one

or

more

arguments

is

a

subscripted

array

reference

that

is

modified

by

the

control

variable.

BUILTIN

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

369

For

example:

dcl

A(2)

char(2)

varying;

dcl

B(2)

char(2)

init(’AB’,’CD’);

dcl

C(2)

fixed

bin

init(1,2);

A=substr(B,1,C);

results

in

A(1)

having

the

value

A

and

A(2)

having

the

value

CD.

The

built-in

functions

and

pseudovariables

that

can

accept

structure

or

union

arguments

are

ADDR,

ALLOCATION,

CURRENTSIZE,

SIZE,

STRING,

and

UNSPEC.

UNSPEC

may

be

applied

to

a

structure

or

union

only

if

the

compiler

option

USAGE(UNSPEC((ANS))

is

in

effect.

Null

and

optional

arguments

Some

built-ins

do

not

require

arguments.

You

must

either

explicitly

declare

these

with

the

BUILTIN

attribute

or

contextually

declare

them

by

including

a

null

argument

list

in

the

reference—for

example,

ONCHAR().

Otherwise,

the

name

is

not

recognized

as

a

built-in.

Accuracy

of

mathematical

functions

The

accuracy

of

a

result

is

influenced

by

two

factors:

v

The

accuracy

of

the

argument

v

The

accuracy

of

the

algorithm

Most

arguments

contain

errors.

An

error

in

a

given

argument

can

accumulate

over

several

steps

before

the

evaluation

of

a

function.

Even

data

fresh

from

input

conversion

can

contain

errors.

The

effect

of

argument

error

on

the

accuracy

of

a

result

depends

entirely

on

the

nature

of

the

mathematical

function,

and

not

on

the

algorithm

that

computes

the

result.

This

book

does

not

discuss

argument

errors

of

this

type.

The

mathematical

built-in

functions

that

are

implemented

using

inline

machine

instructions

produce

results

of

different

accuracy.

Categories

of

built-in

functions

The

following

sections

list

built-in

functions,

subroutines,

and

pseudovariables.

Only

full

function

names

are

listed

in

these

tables.

Existing

abbreviations

are

provided

in

the

sections

that

describe

each

built-in

function,

subroutine,

and

pseudovariable.

Arithmetic

built-in

functions

The

arithmetic

built-in

functions

allow

you

to

do

the

following:

v

Determine

properties

of

arithmetic

values.

For

example,

the

SIGN

function

indicates

the

sign

of

an

arithmetic

variable.

v

Perform

routine

arithmetic

operations.

Table

47

on

page

371

lists

the

arithmetic

built-in

functions

and

a

short

description

of

each.

Aggregate

arguments

370

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Some

of

the

arithmetic

functions

derive

the

data

type

of

their

results

from

one

or

more

arguments.

When

the

data

types

of

the

arguments

differ,

they

are

converted

as

described

in

Chapter

5,

“Data

conversion,”

on

page

73.

Table

47.

Arithmetic

built-in

functions

Function

Description

ABS

Calculates

the

absolute

value

of

a

value

CEIL

Calculates

the

smallest

integer

value

greater

than

or

equal

to

a

value

COMPLEX

Returns

the

complex

number

with

given

real

and

imaginary

parts

CONJG

Returns

the

complex

conjugate

of

a

value

FLOOR

Calculates

the

largest

integer

value

less

than

or

equal

to

a

value

IMAG

Returns

the

imaginary

part

of

a

complex

number

MAX

Calculates

the

maximum

of

2

or

more

values

MIN

Calculates

the

minimum

of

2

or

more

values

MOD

Returns

the

modular

equivalent

of

the

remainder

of

one

value

divided

by

another

RANDOM

Returns

a

pseudo-random

value

REAL

Returns

the

real

part

of

a

complex

number

REM

Calculates

the

remainder

of

one

value

divided

by

another

ROUND

Rounds

a

value

at

a

specified

digit

SIGN

Returns

a

-1,

0

or

1

if

a

value

is

negative,

zero,

or

positive,

respectively

TRUNC

Calculates

the

nearest

integer

for

value

rounded

towards

zero

Array-handling

built-in

functions

The

array-handling

built-in

functions

operate

on

array

arguments

and

return

an

element

value.

Any

conversion

of

arguments

required

for

these

functions

is

noted

in

the

function

description.

Table

48

on

page

371

lists

the

array-handling

built-in

functions.

Table

48.

Array-handling

built-in

functions

Function

Description

ALL

Calculates

the

bitwise

“and”

of

all

the

elements

of

an

array

ANY

Calculates

the

bitwise

“or”

of

all

the

elements

of

an

array

DIMENSION

Returns

the

number

of

elements

in

a

dimension

of

an

array

HBOUND

Returns

the

upper

bound

for

a

dimension

of

an

array

LBOUND

Returns

the

lower

bound

for

a

dimension

of

an

array

POLY

Returns

floating-point

approximate

of

two

arrays

PROD

Calculates

the

product

of

all

the

elements

of

an

array

SUM

Calculates

the

sum

of

all

the

elements

of

an

array

Buffer-management

built-in

functions

The

buffer-management

built-in

functions

operate

on

a

″buffer″,

which

is

an

area

of

storage

specified

by

an

address

and

a

number

of

bytes.

The

PLIFILL,

PLIMOVE

and

PLIOVER

built-in

subroutines

are

also

useful

in

managing

buffers.Table

49

on

page

372

lists

the

buffer-management

built-in

functions.

Arithmetic

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

371

Table

49.

Buffer-management

built-in

functions

Function

Description

COMPARE

Compares

two

buffers

HEXIMAGE

Returns

a

character

string

that

is

the

hex

representation

of

a

buffer

MEMINDEX

Finds

the

location

of

one

string

or

buffer

within

a

buffer

MEMSEARCH

Searches

for

the

first

occurrence

of

any

one

of

the

elements

of

a

string

within

a

buffer

MEMSEARCHR

Searches

for

the

first

occurrence

of

any

one

of

the

elements

of

a

string

within

a

buffer,

but

the

search

starts

from

the

right

MEMVERIFY

Searches

for

the

first

nonoccurrence

of

any

one

of

the

elements

of

a

string

within

a

buffer

MEMVERIFYR

Searches

for

the

first

occurrence

of

any

one

of

the

elements

of

a

string

within

a

buffer,

but

the

search

starts

from

the

right

XMLCHAR

Writes

XML

corresponding

to

a

structure

to

a

buffer

Condition-handling

built-in

functions

The

condition-handling

built-in

functions

enable

you

to

determine

the

cause

of

a

condition

that

has

occurred.

Use

of

these

functions

is

valid

only

within

the

scope

of

an

ON-unit

or

dynamic

descendant

for:

v

the

condition

specific

to

the

built-in

function

v

the

ERROR

or

FINISH

condition

when

raised

as

an

implicit

action

All

other

uses

are

out

of

context.

Table

50.

Condition-handling

built-in

functions

Function

Description

DATAFIELD

Returns

the

value

of

a

string

that

raised

the

NAME

condition

ONCHAR

Returns

the

value

of

a

character

that

caused

a

conversion

condition

ONCODE

Returns

the

condition

code

value

ONCONDCOND

Returns

the

name

of

CONDITION

condition

being

processed

ONCONDID

Returns

a

number

which

identifies

a

particular

condition

ONCOUNT

Returns

the

number

of

outstanding

conditions

ONFILE

Returns

the

name

of

a

file

for

which

a

condition

is

raised

ONGSOURCE

Returns

the

value

of

a

graphic

string

that

caused

a

conversion

condition

ONKEY

Returns

the

key

of

a

record

that

raised

a

condition

ONLOC

Returns

the

name

of

the

procedure

in

which

a

condition

occurred

ONSOURCE

Returns

the

value

of

a

string

that

caused

a

conversion

condition

ONSUBCODE

Returns

an

integer

value

that

gives

additional

information

about

certain

I/O

errors

ONWCHAR

Returns

the

value

of

a

widechar

that

caused

a

conversion

condition

ONWSOURCE

Returns

the

value

of

a

widechar

string

that

caused

a

conversion

condition

Array-handling

372

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Date/time

built-in

functions

These

built-in

functions

return

or

manipulate

date

and

time

information

in

terms

of

days,

seconds,

and

character

date/time

stamps.

Some

of

these

built-in

functions

allow

you

to

specify

the

date/time

patterns

to

be

used.

Table

51

lists

the

supported

date/time

built-in

functions.

Table

52

on

page

374

lists

the

supported

date/time

patterns.

The

time

zone

and

accuracy

for

these

functions

are

system

dependent.

Lilian

format:

The

Lilian

format,

named

in

honor

of

Luigi

Lilio,

the

creator

of

the

Gregorian

calendar,

represents

a

date

as

the

number

of

days

or

seconds

from

the

beginning

of

the

Gregorian

calendar.

This

format

is

useful

for

performing

calculations

involving

elapsed

time.

The

Lilian

format

counts

days

that

have

elapsed

since

October

14,

1582;

day

one

is

Friday,

October

15,

1582.

For

example,

16

May

1988

is

148138

Lilian

days.

The

valid

range

of

Lilian

days

is

1

to

3,074,324

(15

October

1582

to

31

December

9999).

For

the

number

of

elapsed

seconds,

the

Lilian

format

counts

elapsed

seconds

starting

at

00:00:00

14

October

1582.

For

example,

00:00:01

on

15

October

1582

is

86,401

(24*60*60+1)

Lilian

seconds,

and

19:01:01

16

May

1988

is

12,799,191,661

Lilian

seconds.

The

valid

range

of

Lilian

seconds

is

86,400

to

265,621,679,999.999

(23:59:59:999

31

December

9999)

seconds.

Table

51.

Date/time

built-in

functions

Function

Description

DATE

Returns

the

current

date

in

the

pattern

YYMMDD

DATETIME

Returns

the

current

date

and

time

in

the

user-specified

pattern

or

in

the

default

pattern

YYYYMMDDHHMISS999

DAYS

Returns

the

number

of

days

corresponding

to

a

date/time

pattern

string,

or

the

number

of

days

for

today’s

date

DAYSTODATE

Converts

a

number

of

days

to

a

date/time

pattern

string

DAYSTOSECS

Converts

a

number

of

days

to

a

number

of

seconds

REPATTERN

Takes

a

value

holding

a

date

in

one

pattern

and

returns

that

value

converted

to

a

date

in

a

second

pattern

SECS

Returns

the

number

of

seconds

corresponding

to

a

date/time

pattern

string,

or

the

number

of

seconds

for

today’s

date

SECSTODATE

Converts

a

number

of

seconds

to

a

date/time

pattern

string

SECSTODAYS

Converts

a

number

of

seconds

to

a

number

of

days

TIME

Returns

the

current

time

in

the

pattern

HHMISS999

VALIDDATE

Indicates

if

a

string

holds

a

valid

date

WEEKDAY

Returns

the

day

of

the

week

corresponding

to

the

current

day

or

specified

DAYS

value

Y4DATE

Takes

a

date

value

with

the

pattern

’YYMMDD’

and

returns

the

date

value

with

the

two-digit

year

widened

to

a

four-digit

year

Y4JULIAN

Takes

a

date

value

with

the

pattern

’YYDDD’

and

returns

the

date

value

with

the

two-digit

year

widened

to

a

four-digit

year

Y4YEAR

Takes

a

date

value

with

the

pattern

’YY’

and

returns

the

date

value

with

the

two-digit

year

widened

to

a

four-digit

year

Date/time

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

373

Table

52

uses

the

following

formats:

YYYY

Four-digit

year

YY

Two-digit

year

MM

Two-digit

month

MMM

Three-letter

month

(Ex:

DEC)

Mmm

Three-letter

month

(Ex:

Dec)

DD

Two-digit

day

within

a

given

month

DDD

Number

of

days

within

a

given

year

HH

Number

of

hours

within

a

given

day

MI

Number

of

minutes

within

a

given

hour

SS

Number

of

seconds

within

a

given

minute

999

Number

of

milliseconds

within

a

given

second

Note:

For

the

three-letter

month

patterns,

the

uppercase/lowercase

characters

must

correspond

exactly.

The

only

supported

pattern

using

any

of

HH,

MI,

SS

or

999

is

the

pattern

’YYYYMMDDHHMISS999’.

Table

52.

Date/time

patterns

Four-digit

years

Two-digit

years

Year

first

YYYYMMDDHHMISS999

YYYYMMDD

YYYYMMMDD

YYYYMmmDD

YYYYDDD

YYYYMM

YYYYMMM

YYYYMmm

YYYY

YYMMDD

YYMMMDD

YYMmmDD

YYDDD

YYMM

YYMMM

YYMmm

YY

Month

first

MMDDYYYY

MMMDDYYYY

MmmDDYYYY

MMYYYY

MMMYYYY

MmmYYYY

MMDDYY

MMMDDYY

MmmDDYY

MMYY

MMMYY

MmmYY

Day

first

DDMMYYYY

DDMMMYYYY

DDMmmYYYY

DDDYYYY

DDMMYY

DDMMMYY

DDMmmYY

DDDYY

When

the

day

is

omitted

from

a

pattern,

it

is

assumed

to

have

the

value

1.

If

the

month

and

day

are

both

omitted,

they

are

also

assumed

to

have

the

value

1.

When

using

MMM,

the

date

must

be

written

in

three

uppercase

letters;

when

using

Mmm,

the

date

must

be

written

with

the

first

letter

in

uppercase,

and

the

letters

following

in

lowercase.

Floating-point

inquiry

built-in

functions

The

floating-point

inquiry

built-in

functions

return

information

about

the

floating-point

variable

arguments

that

you

specify.

Date/time

374

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Table

53.

Floating-point

inquiry

built-in

functions

Function

Description

EPSILON

Returns

the

spacing

around

1

HUGE

Returns

the

largest

positive

finite

value

that

a

floating-point

variable

can

hold

MAXEXP

Returns

the

maximum

value

for

an

exponent

MINEXP

Returns

the

minimum

value

for

an

exponent

PLACES

Returns

the

model

precision

for

a

floating

point

value

RADIX

Returns

the

model

base

for

a

floating

point

value

TINY

Returns

the

smallest

positive

value

that

a

floating-point

variable

can

hold

Floating-point

manipulation

built-in

functions

The

floating-point

manipulation

built-in

functions

perform

mathematical

operations

on

floating-point

variables

that

you

specify

and

return

the

result

of

the

operation.

Table

54.

Floating-point

manipulation

built-in

functions

Function

Description

EXPONENT

Returns

the

exponent

part

of

a

floating

point

value

PRED

Returns

the

next

representable

value

before

a

floating-point

value

SCALE

Multiplies

a

floating-point

number

by

an

integral

power

of

the

radix

SUCC

Returns

the

next

representable

value

after

a

floating-point

value

Input/output

built-in

functions

The

input

and

output

built-in

functions

allow

you

to

determine

the

current

state

of

a

file.

Table

55.

Input/output

built-in

functions

Function

Description

COUNT

Returns

the

number

of

data

items

transmitted

during

the

last

GET

or

PUT

ENDFILE

Indicates

if

a

file

is

open

and

end-of-file

has

been

reached

for

it

FILEID

Returns

a

system

token

value

for

a

PL/I

file

constant

or

variable

FILEOPEN

Indicates

if

a

file

is

open

FILEREAD

Reads

from

a

file

FILESEEK

Changes

the

current

file

position

to

a

new

location

FILETELL

Returns

a

value

indicating

the

current

position

of

a

file

FILEWRITE

Writes

to

a

file

LINENO

Returns

the

current

line

number

associated

with

a

print

file

PAGENO

Returns

the

current

page

number

associated

with

a

print

file

SAMEKEY

Indicates

if

a

record

is

followed

by

another

with

the

same

key

Floating-point

inquiry

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

375

Integer

manipulation

built-in

functions

The

integer

manipulation

built-in

functions

perform

operations

on

integer

variables

and

return

the

result

of

the

operation.

Table

56.

Integer

manipulation

built-in

functions

Function

Description

IAND

Calculates

the

bitwise

“and”

of

2

or

more

fixed

binary

values

IEOR

Calculates

the

bitwise

“exclusive-or”

of

2

fixed

binary

values

INOT

Calculates

the

bitwise

“not”

of

a

fixed

binary

value

IOR

Calculates

the

bitwise

“or”

of

2

or

more

fixed

binary

values

ISIGNED

Casts

an

integer

to

a

signed

integer

without

changing

its

bit

pattern

ISLL

Shifts

a

fixed

binary

value

“logically”

to

the

left

ISRL

Shifts

a

fixed

binary

value

“logically”

to

the

right

IUNSIGNED

Casts

an

integer

to

an

unsigned

integer

without

changing

its

bit

pattern

LOWER2

Divides

a

fixed

binary

value

by

an

integral

power

of

2

RAISE2

Multiplies

a

fixed

binary

value

by

an

integral

power

of

2

Mathematical

built-in

functions

All

of

these

functions

operate

on

floating-point

values

to

produce

a

floating-point

result.

Any

argument

that

is

not

floating-point

is

converted.

The

accuracy

of

these

functions

is

discussed

in

“Accuracy

of

mathematical

functions”

on

page

370.

Table

57

lists

the

mathematical

built-in

functions.

Table

57.

Mathematical

built-in

functions

Function

Description

ACOS

Calculates

the

arc

cosine

ACOSF

Calculates

ACOS

inline

if

hardware

architecture

permits

ASIN

Calculates

the

arc

sine

ASINF

Calculates

ASIN

inline

if

hardware

architecture

permits

ATAN

Calculates

the

arc

tangent

ATAND

Calculates

the

arc

tangent

in

degrees

ATANF

Calculates

ATAN

inline

if

hardware

architecture

permits

ATANH

Calculates

the

hyperbolic

arc

tangent

COS

Calculates

the

cosine

COSD

Calculates

the

cosine

for

a

value

in

degrees

COSF

Calculates

COS

inline

if

hardware

architecture

permits

COSH

Calculates

the

hyperbolic

cosine

ERF

Calculates

the

error

function

ERFC

Calculates

the

complement

of

the

error

function

EXP

Calculates

e

to

a

power

EXPF

Calculates

EXP

inline

if

hardware

architecture

permits

GAMMA

Calculates

the

gamma

function

LOG

Calculates

the

natural

logarithm

LOGF

Calculates

LOG

inline

if

hardware

architecture

permits

Integer

manipulation

376

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Table

57.

Mathematical

built-in

functions

(continued)

Function

Description

LOG10

Calculates

the

base

10

logarithm

LOG10F

Calculates

LOG10

inline

if

hardware

architecture

permits

LOG2

Calculates

the

base

2

logarithm

LOGGAMMA

Calculates

the

log

of

the

gamma

function

SIN

Calculates

the

sine

SIND

Calculates

the

sine

for

a

value

in

degrees

SINF

Calculates

SIN

inline

if

hardware

architecture

permits

SINH

Calculates

the

hyperbolic

sine

SQRT

Calculates

the

square

root

SQRTF

Calculates

SQRT

inline

if

hardware

architecture

permits

TAN

Calculates

the

tangent

TAND

Calculates

the

tangent

for

a

value

in

degrees

TANF

Calculates

TAN

inline

if

hardware

architecture

permits

TANH

Calculates

the

hyperbolic

tangent

Miscellaneous

built-in

functions

The

built-in

functions

do

not

fit

into

any

of

the

previous

categories

are

those

listed

in

Table

58.

Table

58.

Miscellaneous

built-in

functions

Function

Description

BYTE

Synonym

for

CHARVAL

CDS

Returns

a

FIXED

BINARY(31)

value

that

indicates

if

the

old

and

current

values

in

a

compare

double

and

swap

were

equal.

CHARVAL

Returns

the

character

value

corresponding

to

an

integer

COLLATE

Returns

a

character(256)

string

specifying

the

collating

order

CS

Returns

a

FIXED

BINARY(31)

value

that

indicates

if

the

old

and

current

values

in

a

compare

and

swap

were

equal.

GETENV

Returns

a

value

representing

a

specified

environment

variable

HEX

Returns

a

character

string

that

is

the

hex

representation

of

a

value

ISMAIN

Indicates

if

the

current

procedure

is

main

OMITTED

Indicates

if

a

parameter

was

not

supplied

on

a

call

PACKAGENAME

Returns

the

name

of

the

containing

package

PLIRETV

Returns

the

PL/I

return

code

value

PRESENT

Indicates

if

a

parameter

was

supplied

on

a

call

PROCEDURENAME

Returns

the

name

of

the

most

closely

nested

procedure

PUTENV

Adds

new

environment

variables

or

modifies

the

values

of

existing

environment

variables

RANK

Returns

the

integer

value

corresponding

to

a

character

or

widechar

SOURCEFILE

Returns

the

name

of

the

containing

file

SOURCELINE

Returns

the

number

of

the

containing

line

Mathematical

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

377

Table

58.

Miscellaneous

built-in

functions

(continued)

Function

Description

STRING

Returns

a

string

that

is

the

concatenation

of

all

the

elements

of

a

string

aggregate

SYSTEM

Returns

the

value

returned

by

a

command

UNSPEC

Returns

a

bit

string

that

is

the

internal

representation

of

a

value

VALID

Indicates

if

the

contents

of

a

variable

are

valid

for

its

declaration

WCHARVAL

Returns

the

widechar

value

corresponding

to

an

integer.

Ordinal-handling

built-in

functions

The

ordinal-handling

built-in

functions

return

information

about

a

specified

ordinal.

Table

59.

Ordinal-handling

built-in

functions

Function

Description

ORDINALNAME

Returns

a

character

string

giving

an

ordinal’s

name

ORDINALPRED

Returns

the

next

lower

value

for

an

ordinal

ORDINALSUCC

Returns

the

next

higher

value

for

an

ordinal

Precision-handling

built-in

functions

The

precision-handling

built-in

functions

allow

you

to

manipulate

variables

with

specified

precisions,

and

they

return

the

value

resulting

from

the

operation.

Table

60.

Precision-handling

built-in

functions

Function

Description

ADD

Adds,

with

a

specified

precision,

two

values

BINARY

Converts

a

value

to

binary

DECIMAL

Converts

a

value

to

decimal

DIVIDE

Divides,

with

a

specified

precision,

two

values

FIXED

Converts

a

value

to

fixed

FLOAT

Converts

a

value

to

float

MULTIPLY

Multiplies,

with

a

specified

precision,

two

values

PRECISION

Converts

a

value

to

specified

precision

SIGNED

Converts

a

value

to

signed

fixed

binary

SUBTRACT

Subtracts,

with

a

specified

precision,

two

values

UNSIGNED

Converts

a

value

to

unsigned

fixed

binary

Pseudovariables

Pseudovariables

represent

receiving

fields.

They

cannot

be

nested.

For

example,

the

following

is

invalid:

unspec(substr(A,1,2))

=

’00’B;

A

pseudovariable

can

appear

only:

v

on

the

left

side

of

an

assignment

statement

Miscellaneous

378

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

v

as

the

target

in

a

DO-specification

and

then

only

if

it

is

one

of

SUBSTR,

REAL,

IMAG

or

UNSPEC

v

in

the

data

list

of

a

GET

statement

or

in

the

STRING

option

of

a

PUT

statement

v

as

the

string

name

in

a

KEYTO

or

REPLY

option

The

pseudovariables

are:

Table

61.

Built-in

pseudovariables

Function

Description

ENTRYADDR

Sets

an

entry

variable

with

the

address

of

the

entry

to

be

invoked

IMAG

Assigns

the

imaginary

part

of

a

complex

number

ONCHAR

Sets

the

value

of

a

character

that

caused

a

conversion

condition

ONGSOURCE

Sets

the

value

of

a

graphic

string

that

caused

a

conversion

condition

ONSOURCE

Sets

the

value

of

a

string

that

caused

a

conversion

condition

REAL

Assigns

the

real

part

of

a

complex

number

STRING

Assigns

a

string

that

is

the

concatenation

of

all

the

elements

of

a

string

aggregate

SUBSTR

Assigns

a

substring

of

a

string

ONWCHAR

Sets

the

value

of

a

widechar

that

caused

a

conversion

condition

ONWSOURCE

Sets

the

value

of

a

widechar

string

that

caused

a

conversion

condition

TYPE

Assigns

a

typed

structure

or

union

to

storage

located

by

a

handle

UNSPEC

Assigns

a

bit

string

that

is

the

internal

representation

of

a

value

Storage

control

built-in

functions

The

storage

control

built-in

functions

allow

you

to

determine

the

storage

requirements

and

location

of

variables,

to

assign

special

values

to

area

and

locator

variables,

to

perform

conversion

between

offset

and

pointer

values,

to

obtain

the

number

of

generations

of

a

controlled

variable,

and

to

reference

data

and

methods

of

objects

and

classes.

Table

62

lists

the

storage

control

built-in

functions.

Table

62.

Storage

control

built-in

functions

Function

Description

ADDR

Returns

the

address

of

a

variable

ADDRDATA

Returns

the

address

of

the

first

data

byte

of

a

string

when

applied

to

a

varying

string

ALLOCATE

Allocates

storage

of

the

specified

size

in

the

heap

ALLOCATION

Returns

the

current

number

of

generations

of

a

controlled

variable

ALLOCSIZE

Returns

a

FIXED

BIN(N,0)

value

giving

the

amount

of

storage

allocated

with

a

specific

pointer

AUTOMATIC

Allocates

storage

of

the

specified

size

in

the

stack

AVAILABLEAREA

Returns

the

size

of

the

largest

single

allocation

that

can

be

made

in

an

area

BINARYVALUE

Converts

a

pointer,

offset,

or

ordinal

to

an

integer

BITLOCATION

Returns

the

bit

offset

of

a

variable

within

a

byte

CHECKSTG

Returns

a

bit(1)

value

determining

whether

allocated

storage

is

uncorrupted

Pseudovariables

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

379

Table

62.

Storage

control

built-in

functions

(continued)

Function

Description

CURRENTSIZE

Returns

the

current

size

of

a

variable

CURRENTSTORAGE

Synonym

for

CURRENTSIZE

EMPTY

Returns

an

“empty”

area

ENTRYADDR

Returns

the

address

of

the

routine

associated

with

an

entry

HANDLE

Returns

a

handle

to

a

typed

structure

or

union

LOCATION

Returns

the

byte

offset

of

a

variable

within

a

structure

NULL

Returns

a

null

pointer

value

OFFSET

Converts

a

pointer

to

an

offset

OFFSETADD

Adds

an

integer

to

an

offset

OFFSETDIFF

Subtracts

two

offsets

OFFSETSUBTRACT

Subtracts

an

integer

from

an

offset

OFFSETVALUE

Converts

an

integer

to

an

offset

POINTER

Converts

an

offset

to

a

pointer

POINTERADD

Adds

an

integer

to

a

pointer

POINTERDIFF

Subtracts

two

pointers

POINTERSUBTRACT

Subtracts

an

integer

from

a

pointer

POINTERVALUE

Converts

an

integer

or

handle

to

a

pointer

SIZE

Returns

the

maximum

size

of

a

variable

STORAGE

Synonym

for

SIZE

SYSNULL

Returns

a

system

null

pointer

value

TYPE

Returns

the

typed

structure

or

union

located

by

a

handle

UNALLOCATED

Returns

a

bit(1)

value

indicating

if

a

specified

pointer

value

is

the

start

of

allocated

storage

VARGLIST

Returns

the

address

of

the

first

optional

parameter

passed

to

a

procedure

VARGSIZE

Returns

the

number

of

bytes

occupied

by

a

byvalue

parameter

String-handling

built-in

functions

The

string-handling

built-in

functions

simplify

the

processing

of

bit,

character,

graphic

and

widechar

strings.

The

string

arguments

can

be

represented

by

an

arithmetic

expression

that

will

be

converted

to

string

either

according

to

data

conversion

rules

or

according

to

the

rules

given

in

the

function

description.

Note:

Some

of

these

functions,

such

as

LOWERCASE,

TRANSLATE,

TRIM

and

UPPERCASE,

support

only

CHARACTER

data.

Table

63.

String-handling

built-in

functions

Function

Description

BIT

Converts

a

value

to

bit

BOOL

Performs

Boolean

operation

on

2

bit

strings

CENTERLEFT

Returns

a

string

with

a

value

centered

(to

the

left)

in

it

CENTERRIGHT

Returns

a

string

with

a

value

centered

(to

the

right)

in

it

Storage

control

380

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Table

63.

String-handling

built-in

functions

(continued)

Function

Description

CENTRELEFT

Synonym

for

CENTERLEFT

CENTRERIGHT

Synonym

for

CENTERRIGHT

CHARACTER

Converts

a

value

to

a

character

string

CHARGRAPHIC

Converts

a

GRAPHIC

string

to

a

mixed

character

string

COPY

Returns

a

string

consisting

of

n

copies

of

a

string

EDIT

Returns

a

string

consisting

of

a

value

converted

to

a

given

picture

specification

GRAPHIC

Converts

a

value

to

graphic

HIGH

Returns

a

character

string

consisting

of

n

copies

of

the

highest

character

in

the

collating

sequence

INDEX

Finds

the

location

of

one

string

within

another

LEFT

Returns

a

string

with

a

value

left-justified

in

it

LENGTH

Returns

the

current

length

of

a

string

LOW

Returns

a

character

string

consisting

of

n

copies

of

the

lowest

character

in

the

collating

sequence

LOWERCASE

Returns

a

character

string

with

all

the

characters

from

A

to

Z

converted

to

their

corresponding

lowercase

character.

MAXLENGTH

Returns

the

maximum

length

of

a

string

MPSTR

Truncates

a

string

at

a

logical

boundary

and

returns

a

mixed

character

string

REPEAT

Returns

a

string

consisting

of

n+1

copies

of

a

string

REVERSE

Returns

a

reversed

image

of

a

string

RIGHT

Returns

a

string

with

a

value

right-justified

in

it

SEARCH

Searches

for

the

first

occurrence

of

any

one

of

the

elements

of

a

string

within

another

string

SEARCHR

Searches

for

the

first

occurrence

of

any

one

of

the

elements

of

a

string

within

another

string

but

the

search

starts

from

the

right

SUBSTR

Assigns

a

substring

of

a

string

TALLY

Returns

the

number

of

times

one

string

occurs

in

another

TRANSLATE

Translates

a

string

based

on

two

translation

strings

TRIM

Trims

specified

characters

from

the

left

and

right

sides

of

a

string

UPPERCASE

Returns

a

character

string

with

all

the

characters

from

a

to

z

converted

to

their

corresponding

uppercase

character.

VERIFY

Searches

for

first

nonoccurrence

of

any

one

of

the

elements

of

a

string

within

another

string

VERIFYR

Searches

for

first

nonoccurrence

of

any

one

of

the

elements

of

a

string

within

another

string

but

the

search

starts

from

the

right

WHIGH

Returns

a

widechar

string

consisting

of

n

copies

of

the

highest

widechar

(’ffff’wx).

WIDECHAR

Converts

a

value

to

a

widechar

string

WLOW

Returns

a

widechar

string

consisting

of

n

copies

of

the

lowest

widechar

(’0000’wx).

String-handling

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

381

Subroutines

Built-in

subroutines

perform

miscellaneous

operations

that

do

not

necessarily

return

a

result

as

built-in

functions

do.

Table

64.

Built-in

subroutines

Function

Description

PLIASCII

Converts

from

EBCDIC

to

ASCII

PLIDELETE

Frees

the

storage

associated

with

a

handle

PLICANC

Cancels

the

automatic

restart

facility

(z/OS

only)

PLICKPT

Takes

a

checkpoint

for

later

restart

(z/OS

only)

PLIDUMP

Dumps

information

about

currently

open

files,

the

calling

path

to

the

current

location,

etc.

PLIEBCDIC

Converts

from

ASCII

to

EBCDIC

PLIFILL

Fills

n

bytes

at

an

address

with

a

specified

byte

value

PLIFREE

Frees

the

storage

associated

with

a

pointer

to

heap

storage

PLIMOVE

Moves

n

bytes

from

one

address

to

another

PLIOVER

Moves

n

bytes

from

one

address

to

another,

compensating

for

possible

overlap

of

the

source

and

target

PLIREST

Restarts

program

execution

(z/OS

only)

PLIRETC

Sets

the

PL/I

return

code

value

PLISAXA

Allows

you

to

perform

SAX-style

parsing

of

an

XML

document

residing

in

a

buffer

in

your

program

PLISAXB

Allows

you

to

perform

SAX-style

parsing

of

an

XML

document

residing

in

a

file

PLISRTA

Allows

the

use

of

DFSORT

to

sort

an

input

file

to

produce

a

sorted

output

file

PLISRTB

Allows

the

use

of

DFSORT

to

sort

input

records

provided

by

an

E15

PL/I

exit

procedure

to

produce

a

sorted

output

file

PLISRTC

Allows

the

use

of

DFSORT

to

sort

an

input

file

to

produce

sorted

records

that

are

processed

by

an

E35

PL/I

exit

procedure

PLISRTD

Allows

the

use

of

DFSORT

to

sort

input

records

provided

by

an

E15

PL/I

exit

procedure

to

produce

sorted

records

that

are

processed

by

an

E35

PL/I

exit

procedure

ABS

ABS

returns

the

absolute

value

of

x.

It

is

the

positive

value

of

x.

��

ABS(x)

��

x

Expression.

The

mode

of

the

result

is

REAL.

The

result

has

the

base,

scale,

and

precision

of

x,

except

when

x

is

COMPLEX

FIXED(p,q).

In

the

latter

case,

the

result

is

REAL

FIXED(min(n,p+1),q)

where

n

is

N

for

DECIMAL

and

M

for

BINARY.

Subroutines

382

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

ACOS

ACOS

returns

a

real

floating-point

value

that

is

an

approximation

of

the

inverse

(arc)

cosine

in

radians

of

x.

��

ACOS(x)

��

x

Real

expression,

where

ABS(x)

<=

1.

The

result

is

in

the

range:

0

≤

ACOS(x)

≤

π

and

has

the

base

and

precision

of

x.

ACOSF

ACOSF

is

exactly

like

ACOS

except

that:

v

ACOSF

calculates

its

result

inline

if

hardware

architecture

permits.

v

Invalid

arguments

may

raise

the

INVALIDOP

condition,

generate

some

other

hardware

exception

or

cause

some

other

unpredictable

result.

v

The

accuracy

of

the

result

is

set

by

the

hardware.

For

the

definition

and

syntax,

see

“ACOS.”

ADD

ADD

returns

the

sum

of

x

and

y

with

a

precision

specified

by

p

and

q.

The

base,

scale,

and

mode

of

the

result

are

determined

by

the

rules

for

expression

evaluation.

��

ADD(x,y,p

)

,q

��

x

and

y

Expressions.

p

Restricted

expression.

It

specifies

the

number

of

digits

to

be

maintained

throughout

the

operation.

q

Restricted

expression

specifying

the

scaling

factor

of

the

result.

For

a

fixed-point

result,

if

q

is

omitted,

a

scaling

factor

of

zero

is

the

default.

For

a

floating-point

result,

q

must

be

omitted.

ADD

can

be

used

for

subtraction

by

prefixing

a

minus

sign

to

the

operand

to

be

subtracted.

ACOS

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

383

ADDR

ADDR

returns

the

pointer

value

that

identifies

the

generation

of

x.

��

ADDR(x)

��

x

Reference.

It

refers

to

a

variable

of

any

data

type,

data

organization,

alignment,

and

storage

class

except:

v

A

subscripted

reference

to

a

variable

that

is

an

unaligned

fixed-length

bit

string

v

A

reference

to

a

DEFINED

or

BASED

variable

or

simple

parameter,

which

is

an

unaligned

fixed-length

bit

string

v

A

minor

structure

or

union

whose

first

base

element

is

an

unaligned

fixed-length

bit

string

(except

where

it

is

also

the

first

element

of

the

containing

major

structure

or

union)

v

A

major

structure

or

union

that

has

the

DEFINED

attribute

or

is

a

parameter,

and

that

has

an

unaligned

fixed-length

bit

string

as

its

first

element

v

A

reference

that

is

not

to

connected

storage

If

x

is

a

reference

to:

v

An

aggregate

parameter,

it

must

have

the

CONNECTED

attribute

v

An

aggregate,

the

returned

value

identifies

the

first

element

v

A

component

or

cross

section

of

an

aggregate,

the

returned

value

takes

into

account

subscripting

and

structure

or

union

qualification

v

A

varying

string,

the

returned

value

identifies

the

2-byte

prefix

v

An

area,

the

returned

value

identifies

the

control

information

v

A

controlled

variable

that

is

not

allocated

in

the

current

program,

the

null

pointer

value

is

returned

v

A

based

variable,

the

result

is

the

value

of

the

pointer

explicitly

qualifying

x

(if

it

appears),

or

associated

with

x

in

its

declaration

(if

it

exists),

or

a

null

pointer

v

A

parameter,

and

a

dummy

argument

has

been

created,

the

returned

value

identifies

the

dummy

argument

ADDRDATA

ADDRDATA

returns

the

pointer

value

that

identifies

the

generation

of

x.

��

ADDRDATA(x)

��

x

Reference.

ADDRDATA

behaves

the

same

as

the

ADDR

built-in

function

except

in

the

following

instance:

v

When

applied

to

a

varying

string,

ADDRDATA

returns

the

address

of

the

first

data

byte

of

the

string

(rather

than

of

the

length

field).

ADDR

384

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

ALL

ALL

returns

a

bit

string

in

which

each

bit

is

1

if

the

corresponding

bit

in

each

element

of

x

exists

and

is

1.

The

length

of

the

result

is

equal

to

that

of

the

longest

element.

��

ALL(x)

��

x

Computational

array

expression.

If

x

is

not

a

bit

string

array,

then

x

is

converted

to

a

bit

string.

ALLOCATE

ALLOCATE

allocates

storage

of

size

n

in

heap

storage

and

returns

the

pointer

to

the

allocated

storage.

��

ALLOCATE(n)

��

Abbreviation:

ALLOC

n

Expression.

n

must

be

nonnegative.

If

necessary,

n

is

converted

to

REAL

FIXED

BINARY(31,0).

If

the

requested

amount

of

storage

is

not

available,

the

STORAGE

condition

is

raised.

ALLOCATION

ALLOCATION

returns

a

FIXED

BINARY(31,0)

specifying

the

number

of

generations

that

can

be

accessed

in

the

current

program

for

x.

��

ALLOCATION(x)

��

Abbreviation:

ALLOCN

x

Level-1

unsubscripted

controlled

variable.

If

x

is

not

allocated

in

the

current

program,

the

result

is

zero.

ALLOCSIZE

ALLOCSIZE

returns

a

FIXED

BIN(31,0)

value

giving

the

amount

of

storage

allocated

with

a

specified

pointer.

To

use

this

built-in

function,

you

must

also

specify

the

CHECK(STORAGE)

compile-time

option.

ALL

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

385

��

ALLOCSIZE(p)

��

p

Pointer

expression.

ALLOCSIZE

returns

0

if

the

pointer

does

not

point

to

the

start

of

a

piece

of

allocated

storage.

ANY

ANY

returns

a

bit

string

in

which

each

bit

is

1

if

the

corresponding

bit

in

any

element

of

x

exists

and

is

1.

The

length

of

the

result

is

equal

to

that

of

the

longest

element.

��

ANY(x)

��

x

Computational

array

expression.

If

x

is

not

a

bit

string

array,

then

x

is

converted

to

a

bit

string.

ASIN

ASIN

returns

a

real

floating-point

value

that

is

an

approximation

of

the

inverse

(arc)

sine

in

radians

of

x.

��

ASIN(x)

��

x

Real

expression,

where

ABS(x)

<=

1.

The

result

is

in

the

range:

-π/2

≤

ASIN(x)

≤

π/2

and

has

the

base

and

precision

of

x.

ASINF

ASINF

is

exactly

like

ASIN

except

that:

v

ASINF

calculates

its

result

inline

if

hardware

architecture

permits.

v

Invalid

arguments

may

raise

the

INVALIDOP

condition,

generate

some

other

hardware

exception

or

cause

some

other

unpredictable

result.

v

The

accuracy

of

the

result

is

set

by

the

hardware.

For

the

definition

and

syntax,

see

“ASIN.”

ALLOCSIZE

386

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

ATAN

ATAN

returns

a

floating-point

value

that

is

an

approximation

of

the

inverse

(arc)

tangent

in

radians

of

x

or

of

a

ratio

x/y.

��

ATAN(x

)

,y

��

x

and

y

Expressions.

If

x

alone

is

specified,

the

result

has

the

base

and

precision

of

x,

and

is

in

the

range:

-π/2

<

ATAN(x)

<

π/2

If

x

and

y

are

specified,

each

must

be

real.

An

error

exists

if

x

and

y

are

both

zero.

The

result

for

all

other

values

of

x

and

y

has

the

precision

of

the

longer

argument,

a

base

determined

by

the

rules

for

expressions,

and

a

value

given

by:

ATAN(x/y)

for

y>0

π/2

for

y=0

and

x>0

-π/2

for

y=0

and

x<0

π

+

ATAN(x/y)

for

y<0

and

x>=0

-π

+

ATAN(x/y)

for

y<0

and

x<0

ATAND

ATAND

returns

a

real

floating-point

value

that

is

an

approximation

of

the

inverse

(arc)

tangent

in

degrees

of

x

or

of

a

ratio

x/y.

��

ATAND(x

)

,y

��

x

and

y

Expressions.

If

x

alone

is

specified

it

must

be

real.

The

result

has

the

base

and

precision

of

x,

and

is

in

the

range:

-90

<

ATAND(x)

<

90

If

x

and

y

are

specified,

each

must

be

real.

The

value

of

the

result

is

given

by:

(180/π)

*

ATAN(x,y)

For

argument

requirements

and

attributes

of

the

result

see

“ATAN.”

ATAN

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

387

ATANF

ATANF

is

exactly

like

ATAN

except

that:

v

ATANF

calculates

its

result

inline

if

hardware

architecture

permits.

v

Only

one

real

argument

is

allowed.

v

Invalid

arguments

may

raise

the

INVALIDOP

condition,

generate

some

other

hardware

exception

or

cause

some

other

unpredictable

result.

v

The

accuracy

of

the

result

is

set

by

the

hardware.

For

the

definition

and

syntax,

see

“ATAN”

on

page

387.

ATANH

ATANH

returns

a

floating-point

value

that

has

the

base,

mode,

and

precision

of

x,

and

is

an

approximation

of

the

inverse

(arc)

hyperbolic

tangent

of

x.

��

ATANH(x)

��

x

Expression.

ABS(x)<1.

The

result

has

a

value

given

by:

LOG((1

+

x)/(1

-

x))/2

AUTOMATIC

AUTOMATIC

allocates

storage

of

size

n

automatic

storage

and

returns

the

pointer

to

the

allocated

storage.

��

AUTOMATIC(n)

��

Abbreviation:

AUTO

n

Expression.

n

must

be

nonnegative.

If

necessary,

n

is

converted

to

REAL

FIXED

BINARY(31,0).

The

storage

acquired

cannot

be

explicitly

freed;

the

storage

is

automatically

freed

when

the

block

terminates.

AVAILABLEAREA

AVAILABLEAREA

returns

a

FIXED

BINARY(31,0)

value.

The

value

returned

by

AVAILABLEAREA

is

the

size

of

the

largest

single

allocation

that

can

be

obtained

from

the

area

x.

ATANF

388

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

AVAILABLEAREA(x)

��

x

A

reference

with

the

AREA

attribute.

Example

dcl

Uarea

area(1000);

dcl

Pz

ptr;

dcl

C99z

char(99)

varyingz

based(Pz);

dcl

(SizeBefore,

SizeAfter)

fixed

bin(31);

SizeBefore

=

availablearea(Uarea);

/*

returns

1000

*/

Alloc

C99z

in(Uarea);

SizeAfter

=

availablearea(Uarea);

/*

returns

896

*/

dcl

C9

char(896)

based(Pz);

Alloc

C9

in(Uarea);

BINARY

BINARY

returns

the

binary

value

of

x,

with

a

precision

specified

by

p

and

q.

The

result

has

the

mode

and

scale

of

x.

��

BINARY(x

)

,p

,q

��

Abbreviation:

BIN

x

Expression.

p

Restricted

expression.

Specifies

the

number

of

digits

to

be

maintained

throughout

the

operation;

it

must

not

exceed

the

implementation

limit.

q

Restricted

expression.

It

specifies

the

scaling

factor

of

the

result.

For

a

fixed-point

result,

if

p

is

given

and

q

is

omitted,

a

scaling

factor

of

zero

is

the

default.

For

a

floating-point

result,

q

must

be

omitted.

If

both

p

and

q

are

omitted,

the

precision

of

the

result

is

determined

from

the

rules

for

base

conversion.

BINARYVALUE

BINARYVALUE

returns

a

FIXED

BINARY(31,0)

value

that

is

the

converted

value

of

x;

x

can

be

a

pointer,

offset,

or

ordinal.

��

BINARYVALUE(x)

��

Abbreviation:

BINVALUE

x

Expression.

AVAILABLEAREA

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

389

BIT

BIT

returns

a

result

that

is

the

bit

value

of

x,

and

has

a

length

specified

by

y.

��

BIT(x

)

,y

��

x

Expression.

y

Expression.

If

necessary,

y

is

converted

to

a

real

fixed-point

binary

value.

If

y

is

omitted,

the

length

is

determined

by

the

rules

for

type

conversion.

If

y

=

0,

the

result

is

the

null

bit

string.

y

must

not

be

negative.

BITLOCATION

BITLOCATION

returns

a

FIXED

BINARY(31,0)

result

that

is

the

location

of

bit

x

within

the

byte

that

contains

x.

The

value

returned

is

always

between

0

and

7

(0

≤

value

≤

7).

��

BITLOCATION(x)

��

Abbreviation:

BITLOC

x

Reference

of

type

unaligned

bit.

If

x

does

not

have

type

unaligned

bit,

a

value

of

0

is

returned.

x

must

not

be

subscripted.

BITLOCATION

can

be

used

in

restricted

expressions,

with

the

following

limitations.

If

BITLOC(x)

is

used

to

set:

v

The

extent

of

a

variable

y

that

must

have

constant

extents,

or

v

The

value

of

a

variable

y

that

must

have

a

constant

value,

then

x

must

be

declared

before

y.

For

examples,

see

“LOCATION”

on

page

425.

BOOL

BOOL

returns

a

bit

string

that

is

the

result

of

the

Boolean

operation

z,

on

x

and

y.

The

length

of

the

result

is

equal

to

that

of

the

longer

operand,

x

or

y.

��

BOOL(x,y,z)

��

x

and

y

Expressions.

x

and

y

are

converted

to

bit

strings,

if

necessary.

If

x

and

y

are

of

different

lengths,

the

shorter

is

padded

on

the

right

with

zeros

to

match

the

longer.

BIT

390

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

z

Expression.

z

is

converted

to

a

bit

string

of

length

4,

if

necessary.

When

a

bit

from

x

is

matched

with

a

bit

from

y,

the

corresponding

bit

of

the

result

is

specified

by

a

selected

bit

of

z,

as

follows:

x

y

Result

0

0

bit

1

of

z

0

1

bit

2

of

z

1

0

bit

3

of

z

1

1

bit

4

of

z

BYTE

BYTE

is

a

synonym

for

CHARVAL.

For

more

information,

refer

to

“CHARVAL”

on

page

395.

CDS

CDS

returns

a

FIXED

BINARY(31)

value

that

indicates

if

the

old

and

current

values

in

a

compare

double

and

swap

were

equal.

��

CDS(p,q,x)

��

p

Address

of

the

old

FIXED

BINARY(63)

value.

q

Address

of

the

current

FIXED

BINARY(63)

value.

x

The

new

FIXED

BINARY(63)

value.

CDS

compares

the

″current″

and

″old″

values.

If

they

are

equal,

the

″new″

value

is

copied

over

the

″current″,

and

a

value

of

0

is

returned.

If

they

are

unequal,

the

″current″

value

is

copied

over

the

″old″,

and

a

value

of

1

is

returned.

On

z/OS,

the

CDS

built-in

function

implements

the

CDS

instruction.

For

a

detailed

description

of

this

function,

read

the

appendices

in

the

Principles

of

Operations

manual.

On

Intel,

the

CDS

built-in

function

uses

the

Intel

cmpxchg8

instruction

in

the

same

manner

that

the

CS

built-in

function

uses

the

cmpxchg4

instruction.

CEIL

CEIL

determines

the

smallest

integer

value

greater

than

or

equal

to

x,

and

assigns

this

value

to

the

result.

��

CEIL(x)

��

x

Real

expression.

The

result

has

the

mode,

base,

scale,

and

precision

of

x,

except

when

x

is

fixed-point

with

precision

(p,q).

The

precision

of

the

result

is

then

given

by:

BOOL

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

391

(min(N,max(p-q+1,1)),0)

where

N

is

the

maximum

number

of

digits

allowed.

CENTERLEFT

CENTERLEFT

returns

a

string

that

is

the

result

of

inserting

string

x

in

the

center

(or

one

position

to

the

left

of

center)

of

a

string

with

length

y

and

padded

on

the

left

and

on

the

right

with

the

character

z

as

needed.

Specifying

a

value

for

z

is

optional.

��

CENTERLEFT

CENTRELEFT

(x,y

)

,z

��

Abbreviation:

CENTER

x

Expression

that

is

converted

to

character.

y

Expression

that

is

converted

to

FIXED

BINARY(31,0).

z

Optional

expression.

If

specified,

z

must

be

CHARACTER(1)

NONVARYING

type.

Example

dcl

Source

char

value(’Feel

the

Power’);

dcl

Target20

char(20);

dcl

Target21

char(21);

Target20

=

center

(Source,

length(Target20),

’*’);

/*

’***Feel

the

Power***’

-

exactly

centered

*/

Target21

=

center

(Source,

length(Target21),

’*’);

/*

’***Feel

the

Power****’

-

leaning

left!

*/

If

z

is

omitted,

a

blank

is

used

as

the

padding

character.

CENTRELEFT

Abbreviation:

CENTRE

CENTRELEFT

is

a

synonym

for

CENTERLEFT.

CENTERRIGHT

CENTERRIGHT

returns

a

string

that

is

the

result

of

inserting

string

x

in

the

center

(or

one

position

to

the

right

of

center)

of

a

string

with

length

y

and

padded

on

the

left

and

on

the

right

with

the

character

z

as

needed.

Specifying

a

value

for

z

is

optional.

CEIL

392

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

CENTERRIGHT

CENTRERIGHT

(x,y

)

,z

��

x

Expression

that

is

converted

to

character.

y

Expression

that

is

converted

to

FIXED

BINARY(31,0).

z

Optional

expression.

If

specified,

z

must

be

CHARACTER(1)

NONVARYING

type.

Example

dcl

Source

char

value(’Feel

the

Power’);

dcl

Target20

char(20);

dcl

Target21

char(21);

Target20

=

centerright

(Source,

length(Target20),

’*’);

/*

’***Feel

the

Power***’

-

exactly

centered

*/

Target21

=

centerright

(Source,

length(Target21),

’*’);

/*

’****Feel

the

Power***’

-

leaning

right!

*/

If

z

is

omitted,

a

blank

is

used

as

the

padding

character.

CENTRERIGHT

CENTRERIGHT

is

a

synonym

for

CENTERRIGHT.

CHARACTER

CHARACTER

returns

the

character

value

of

x,

with

a

length

specified

by

y.

CHARACTER

also

supports

conversion

from

graphic

to

character

type.

��

CHARACTER(x

)

,y

��

Abbreviation:

CHAR

x

Expression.

x

must

have

a

computational

type.

When

x

is

nongraphic,

CHARACTER

returns

x

converted

to

character.

When

x

is

GRAPHIC,

CHARACTER

returns

x

converted

to

SBCS

characters.

If

a

DBCS

character

cannot

be

translated

to

an

SBCS

equivalent,

the

CONVERSION

condition

is

raised.

The

values

of

x

are

not

checked.

y

Expression.

If

necessary,

y

is

converted

to

a

real

fixed-point

binary

value.

If

y

is

omitted,

the

length

is

determined

by

the

rules

for

type

conversion.

y

cannot

be

negative.

If

y

=

0,

the

result

is

the

null

character

string.

CENTERRIGHT

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

393

Example

Conversion

from

graphic

to

character:

dcl

X

graphic(6);

dcl

A

char

(6);

A

=

char(X);

For

X

with

value

Intermediate

Result

A

is

assigned

.A.B.C.D.E.F

ABCDEF

ABCDEF

CHARGRAPHIC

CHARGRAPHIC

converts

a

GRAPHIC

(DBCS)

string

x

to

a

mixed

character

string

with

a

length

specified

by

y.

��

CHARGRAPHIC(x

)

,y

��

Abbreviation:

CHARG

x

Expression.

x

must

be

a

GRAPHIC

string.

CHARACTER

returns

x

converted

to

a

mixed

character

string.

y

Expression.

If

necessary,

y

is

converted

to

a

real

fixed-point

binary

value.

If

y

is

omitted,

the

length

is

determined

by

the

rules

for

type

conversion.

y

cannot

be

negative.

If

y

=

0,

the

result

is

the

null

character

string.

The

following

rules

apply:

v

If

y

=

1,

the

result

is

a

character

string

of

1

blank.

v

If

y

is

greater

than

the

length

needed

to

contain

the

character

string,

the

result

is

padded

with

SBCS

blanks.

v

If

y

is

less

than

the

length

needed

to

contain

the

character

string,

the

result

is

truncated.

The

integrity

is

preserved

by

truncating

after

a

graphic,

and

appending

an

SBCS

blank

if

necessary,

to

complete

the

length

of

the

string.

Example

1

Conversion

from

graphic

to

character,

where

y

is

long

enough

to

contain

the

result:

dcl

X

graphic(6);

dcl

A

char

(12);

A

=

char(X,12);

For

X

with

value

Intermediate

Result

A

is

assigned

.A.B.C.D.E.F

.A.B.C.D.E.F

.A.B.C.D.E.F

Example

2

Conversion

from

graphic

to

character,

where

y

is

too

short

to

contain

the

result:

CHARACTER

394

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

dcl

X

graphic(6);

dcl

A

char

(12);

A

=

char(X,11);

For

X

with

value

Intermediate

Result

A

is

assigned

.A.B.C.D.E.F

.A.B.C.D.E.F

.A.B.C.D.Eb

CHARVAL

CHARVAL

returns

the

CHARACTER(1)

value

corresponding

to

an

integer.

��

CHARVAL

(

n

)

��

n

Expression

converted

to

UNSIGNED

FIXED

BIN(8)

if

necessary.

CHARVAL(n)

has

the

same

bit

value

as

n

(that

is,

UNSPEC(CHARVAL(n))

is

equal

to

UNSPEC(n)),

but

it

has

the

attributes

CHARACTER(1).

CHARVAL

is

the

inverse

of

RANK

(when

applied

to

character).

CHECKSTG

CHECKSTG

returns

a

bit(1)

value

which

indicates

whether

a

specified

pointer

value

is

the

start

of

a

piece

of

uncorrupted

allocated

storage.

If

no

pointer

value

is

supplied,

CHECKSTG

determines

whether

all

allocated

storage

is

uncorrupted.

To

use

this

built-in

function,

you

must

also

specify

the

CHECK(STORAGE)

compile-time

option.

��

CHECKSTG(

)

p

��

p

Pointer

expression.

When

an

allocation

is

made,

it

is

followed

by

eight

extra

bytes

which

are

set

to

’ff’x.

The

allocation

is

considered

uncorrupted

if

those

bytes

have

not

been

altered.

The

pointer

expression

must

point

to

storage

allocated

for

a

BASED

variable.

CHARGRAPHIC

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

395

COLLATE

COLLATE

returns

a

CHARACTER(256)

string

comprising

the

256

possible

CHARACTER(1)

values

one

time

each

in

the

collating

order.

��

COLLATE

()

��

COMPARE

COMPARE

returns

a

FIXED

BINARY(31,0)

value

that

is:

v

Zero,

if

the

z

bytes

at

the

addresses

x

and

y

are

identical

v

Negative,

if

the

z

bytes

at

x

are

less

than

those

at

y

v

Positive,

if

the

z

bytes

at

x

are

greater

than

those

at

y

��

COMPARE(x,y,z)

��

x

and

y

Expressions.

Both

must

have

the

POINTER

or

OFFSET

type.

If

OFFSET,

the

expression

must

be

declared

with

the

AREA

qualification.

z

Expression

that

is

converted

to

FIXED

BINARY(31,0).

Example

dcl

Result

fixed

bin;

dcl

1

Str1,

2

B

fixed

bin(31),

2

C

pointer,

2

*

union,

3

D

char(4),

3

E

fixed

bin(31),

3

*,

4

*

char(3),

4

F

fixed

bin(8)

unsigned,

2

*

char(0);

dcl

1

Template

nonasgn

static,

2

*

fixed

bin(31)

init(16),

/*

’’X

*/

2

*

pointer

init(null()),

2

*

char(4)

init(’’),

2

*

char(0);

call

plimove(addr(Str1),

addr(Template),

stg(Str1));

Result

=

compare(addr(Str1),

addr(Template),

stg(Str1));

/*

0

*/

D

=

’DSA

’;

Result

=

compare(addr(Str1),

addr(Template),

stg(Str1));

/*

1

*/

B

=

15;

/*

’00000F00’X

*/

D

=

’DSA

’;

Result

=

compare(addr(Str1),

addr(Template),

stg(Str1));

/*

−1

*/

COLLATE

396

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

COMPLEX

COMPLEX

returns

the

complex

value

x

+

yI.

��

COMPLEX(x,y)

��

Abbreviation:

CPLX

x

and

y

Real

expressions.

If

x

and

y

differ

in

base,

the

decimal

argument

is

converted

to

binary.

If

they

differ

in

scale,

the

fixed-point

argument

is

converted

to

floating-point.

The

result

has

the

common

base

and

scale.

If

fixed-point,

the

precision

of

the

result

is

given

by

the

following:

(min(N,max(p1-q1,p2-q2)+max(q1,q2)),max(q1,q2))

In

this

example,

(p1,q1)

and

(p2,q2)

are

the

precisions

of

x

and

y,

respectively,

and

N

is

the

maximum

number

of

digits

allowed.

After

any

necessary

conversions

have

been

performed,

if

the

arguments

are

floating-point,

the

result

has

the

precision

of

the

longer

argument.

CONJG

CONJG

returns

the

conjugate

of

x,

that

is,

the

value

of

the

expression

with

the

sign

of

the

imaginary

part

reversed.

��

CONJG(x)

��

x

Expression.

If

x

is

real,

it

is

converted

to

complex.

The

result

has

the

base,

scale,

mode,

and

precision

of

x.

COPY

COPY

returns

a

string

consisting

of

y

concatenated

copies

of

the

string

x.

��

COPY(x,y)

��

x

Expression.

x

must

have

a

computational

type

and

should

have

a

string

type.

If

not,

it

is

converted

to

character.

COMPLEX

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

397

y

An

integer

expression

with

a

nonnegative

value.

It

specifies

the

number

of

repetitions.

It

must

have

a

computational

type

and

is

converted

to

FIXED

BINARY(31,0).

If

y

is

zero,

the

result

is

a

null

string.

Considering

the

following

code:

copy(’Walla

’,1)

/*

returns

’Walla

’

*/

repeat(’Walla

’,1)

/*

returns

’Walla

Walla

’

*/

In

the

preceding

example,

repeat(x,n)

is

equivalent

to

copy(x,n+1).

COS

COS

returns

a

floating-point

value

that

has

the

base,

precision,

and

mode

of

x,

and

is

an

approximation

of

the

cosine

of

x.

��

COS(x)

��

x

Expression

with

a

value

in

radians.

COSD

COSD

returns

a

real

floating-point

value

that

has

the

base

and

precision

of

x,

and

is

an

approximation

of

the

cosine

of

x.

��

COSD(x)

��

x

Real

expression

with

a

value

in

degrees.

COSF

COSF

is

exactly

like

COS

except

that:

v

COSF

calculates

its

result

inline

if

hardware

architecture

permits.

v

The

argument

must

be

a

real

expression.

v

The

maximum

supported

absolute

value

of

the

argument

is

set

by

the

hardware.

v

Invalid

arguments

may

raise

the

INVALIDOP

condition,

generate

some

other

hardware

exception

or

cause

some

other

unpredictable

result.

v

The

accuracy

of

the

result

is

set

by

the

hardware.

For

the

definition

and

syntax,

see

“COS.”

COPY

398

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

COSH

COSH

returns

a

floating-point

value

that

has

the

base,

precision,

and

mode

of

x,

and

is

an

approximation

of

the

hyperbolic

cosine

of

x.

��

COSH(x)

��

x

Expression.

COUNT

COUNT

returns

an

unscaled

REAL

FIXED

BINARY

value

specifying

the

number

of

data

items

transmitted

during

the

last

GET

or

PUT

operation

on

x.

��

COUNT(x)

��

x

File-reference.

The

file

must

be

open

and

have

the

STREAM

attribute.

The

count

of

transmitted

items

for

a

GET

or

PUT

operation

on

x

is

initialized

to

zero

before

the

first

data

item

is

transmitted,

and

is

incremented

by

one

after

the

transmission

of

each

data

item

in

the

list.

If

x

is

not

open

in

the

current

program,

a

value

of

zero

is

returned.

If

an

ON-unit

or

procedure

is

entered

during

a

GET

or

PUT

operation,

and

within

that

ON-unit

or

procedure,

a

GET

or

PUT

operation

is

executed

for

x,

the

value

of

COUNT

is

reset

for

the

new

operation.

It

is

restored

when

the

original

GET

or

PUT

is

continued.

The

BIFPREC

compiler

option

determines

the

precision

of

the

result

returned.

CS

CS

returns

a

FIXED

BINARY(31)

value

that

indicates

if

the

old

and

current

values

in

a

compare

and

swap

were

equal.

��

CS(p,q,x)

��

p

Address

of

the

old

FIXED

BINARY(31)

value.

q

Address

of

the

current

FIXED

BINARY(31)

value.

x

The

new

FIXED

BINARY(31)

value.

CS

compares

the

″current″

and

″old″

values.

If

they

are

equal,

the

″new″

value

is

copied

over

the

″current″,

and

a

value

of

0

is

returned.

If

they

are

unequal,

the

″current″

value

is

copied

over

the

″old″,

and

a

value

of

1

is

returned.

COSH

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

399

So,

CS

could

be

implemented

as

the

following

PL/I

function,

but

then

it

would

not

be

atomic

at

all.

:

cs:

proc(

old_Addr,

current_Addr,

new

)

returns(

fixed

bin(31)

byvalue

)

options(

byvalue

);

dcl

old_Addr

pointer;

dcl

current_Addr

pointer;

dcl

new

fixed

bin(31);

dcl

old

fixed

bin(31)

based(old_addr);

dcl

current

fixed

bin(31)

based(current_addr);

if

current

=

old

then

do;

current

=

new;

return(

0

);

end;

else

do;

old

=

current;

return(

1

);

end;

end;

On

z/OS,

the

CS

built-in

function

implements

the

CS

instruction.

For

a

detailed

description

of

this

function,

read

the

appendices

in

the

Principles

of

Operations

manual.

On

Intel,

the

CDS

built-in

function

uses

the

Intel

cmpxchg4

instruction.

The

cmpxchg4

instruction

takes

the

address

of

a

″current″

value,

a

″new″

value

and

an

″old″

value.

It

returns

the

original

″current″

value

and

updates

it

with

the

″new″

value

only

if

it

equaled

the

″old″

value.

So,

on

Intel,

the

CS

built-in

function

is

implemented

via

the

following

inline

function:

cs:

proc(

old_Addr,

current_Addr,

new

)

returns(

fixed

bin(31)

byvalue

)

options(

byvalue

);

dcl

old_Addr

pointer;

dcl

current_Addr

pointer;

dcl

new

fixed

bin(31);

dcl

old

fixed

bin(31)

based(old_addr);

dcl

current

fixed

bin(31)

based(current_addr);

if

cmpxchg4(

current_Addr,

new,

old

)

=

old

then

do;

return(

0

);

end;

else

do;

old

=

current;

return(

1

);

end;

end;

CS

400

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

CURRENTSIZE

CURRENTSIZE

returns

a

FIXED

BINARY(31,0)

value

giving

the

implementation-defined

storage,

in

bytes,

required

by

x.

��

CURRENTSIZE(x)

��

x

A

variable

of

any

data

type,

data

organization,

and

storage

class

except:

v

A

BASED,

DEFINED,

parameter,

subscripted,

or

structure

or

union

base-element

variable

that

is

an

unaligned

fixed-length

bit

string

v

A

minor

structure

or

union

whose

first

or

last

base

element

is

an

unaligned

fixed-length

bit

string

(except

where

it

is

also

the

first

or

last

element

of

the

containing

major

structure

or

union)

v

A

major

structure

or

union

that

has

the

BASED,

DEFINED,

or

parameter

attribute,

and

which

has

an

unaligned

fixed-length

bit

string

as

its

first

or

last

element

v

A

variable

not

in

connected

storage

The

value

returned

by

CURRENTSIZE(x)

is

defined

as

the

number

of

bytes

that

would

be

transmitted

in

the

following

circumstances:

declare

F

file

record

output

environment(scalarvarying);

write

file(F)

from(S);

If

x

is

a

scalar

varying-length

string,

the

returned

value

includes

the

length-prefix

of

the

string

and

the

number

of

currently-used

bytes.

It

does

not

include

any

unused

bytes

in

the

string.

If

x

is

a

scalar

area,

the

returned

value

includes

the

area

control

bytes

and

the

current

extent

of

the

area.

It

does

not

include

any

unused

bytes

at

the

end

of

the

area.

If

x

is

an

aggregate

containing

areas

or

varying-length

strings,

the

returned

value

includes

the

area

control

bytes,

the

maximum

sizes

of

the

areas,

the

length

prefixes

of

the

strings,

and

the

number

of

bytes

in

the

maximum

lengths

of

the

strings.

The

exception

to

this

rule

is:

If

x

is

a

structure

or

union

whose

last

element

is

a

nondimensioned

area,

the

returned

value

includes

that

area’s

control

bytes

and

the

current

extent

of

that

area.

It

does

not

include

any

unused

bytes

at

the

end

of

that

area.

The

CURRENTSIZE

built-in

function

must

not

be

used

on

a

BASED

variable

with

adjustable

extents

if

that

variable

has

not

been

allocated.

For

examples

of

the

CURRENTSIZE

built-in

function,

refer

to

the

“SIZE”

on

page

470.

CURRENTSTORAGE

Abbreviation:

CSTG

CURRENTSTORAGE

is

a

synonym

for

CURRENTSIZE.

For

more

information,

refer

to

“CURRENTSIZE.”

CURRENTSIZE

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

401

DATAFIELD

DATAFIELD

is

in

context

in

a

NAME

condition

ON-unit

(or

any

of

its

dynamic

descendants).

It

returns

a

character

string

whose

value

is

the

contents

of

the

field

that

raised

the

condition.

It

is

also

in

context

in

an

ON-unit

(or

any

of

its

dynamic

descendants)

for

an

ERROR

or

FINISH

condition

raised

as

part

of

the

implicit

action

for

the

NAME

condition.

��

DATAFIELD

()

��

If

the

string

that

raised

the

condition

contains

DBCS

identifiers,

GRAPHIC

data,

or

mixed

character

data,

DATAFIELD

returns

a

mixed

character

string.

If

DATAFIELD

is

used

out

of

context,

a

null

string

is

returned.

DATE

DATE

returns

a

nonvarying

character(6)

string

containing

the

date

in

the

format,

YYMMDD.

��

DATE

()

��

DATETIME

DATETIME

returns

a

character

string

timestamp

of

today’s

date

in

either

the

default

or

a

user-specified

format.

��

DATETIME

(

)

y

��

y

Expression

If

present,

it

specifies

the

date/time

pattern

in

which

the

date

is

returned.

If

y

is

missing,

it

is

assumed

to

be

the

default

date/time

pattern

’YYYYMMDDHHMISS999’.

Refer

to

Table

52

on

page

374

for

the

allowed

patterns.

y

must

have

computational

type

and

should

have

character

type.

If

not,

it

is

converted

to

character.

See

“DAYS”

on

page

403

for

an

example

of

using

DATETIME.

DATAFIELD

402

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

DAYS

DAYS

returns

a

FIXED

BINARY(31,0)

value

which

is

the

number

of

days

(in

Lilian

format)

corresponding

to

the

date

d.

��

DAYS

(

)

d

,p

,w

��

d

String

expression

representing

a

date.

If

omitted,

it

is

assumed

to

be

the

value

returned

by

DATETIME().

The

value

for

d

must

have

computational

type

and

should

have

character

type.

If

not,

d

is

converted

to

character.

p

One

of

the

supported

date/time

patterns.

If

omitted,

it

is

assumed

to

be

the

value

'YYYYMMDDHHMISS9999'.

p

must

have

computational

type

and

should

have

character

type.

If

not,

it

is

converted

to

character.

w

An

integer

expression

that

defines

a

century

window

to

be

used

to

handle

any

two-digit

year

formats.

v

If

the

value

is

positive,

such

as

1950,

it

is

treated

as

a

year.

v

If

negative

or

zero,

the

value

specifies

an

offset

to

be

subtracted

from

the

current,

system-supplied

year.

v

If

omitted,

w

defaults

to

the

value

specified

in

the

WINDOW

compile-time

option.

Example

dcl

Date_format

value

(’MMDDYYYY’)

char;

dcl

Todays_date

char(length(Date_format));

dcl

Sep2_1993

char(length(Date_format));

dcl

Days_of_July4_1993

fixed

bin(31);

dcl

Msg

char(100)

varying;

dcl

Date_due

char(length(Date_format));

Todays_date

=

datetime(date_format);

/*

e.g.

06161993

*/

Days_of_July4_1993

=

days(’07041993’,’MMDDYYYY’);

Sep2_1993

=

daystodate(days_of_July4_1993

+

60,

Date_format);

/*

09021993

*/

Date_due

=

daystodate(days()

+

60,

Date_format);

/*

assuming

today

is

July

4,

1993,

this

would

be

Sept.

2,

1993

*/

Msg

=

’Please

pay

amount

due

on

or

before

’

\

substr(Date_due,

1,

2)

\

’/’

\

substr(Date_due,

3,2)

\

’/’

\

substr(Date_due,

5);

The

allowed

patterns

are

listed

in

Table

52

on

page

374.

For

an

explanation

of

Lilian

format,

see

“Date/time

built-in

functions”

on

page

373.

DAYS

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

403

DAYSTODATE

DAYSTODATE

returns

a

nonvarying

character

string

containing

the

date

in

the

form

p

that

corresponds

to

d

days

(in

Lilian

format).

��

DAYSTODATE

(

d

)

,p

,w

��

d

The

number

of

days

(in

Lilian

format).

d

must

have

a

computational

type

and

is

converted

to

FIXED

BINARY(31,0)

if

necessary.

p

One

of

the

supported

date/time

patterns.

If

omitted,

p

is

assumed

to

be

the

default

date/time

pattern

'YYYYMMDDHHMISS999'

(same

as

the

default

format

returned

by

DATETIME).

w

An

integer

expression

that

defines

a

century

window

to

be

used

to

handle

any

two-digit

year

formats.

v

If

the

value

is

positive,

such

as

1950,

it

is

treated

as

a

year.

v

If

negative

or

zero,

the

value

specifies

an

offset

to

be

subtracted

from

the

current,

system-supplied

year.

v

If

omitted,

w

defaults

to

the

value

specified

in

the

WINDOW

compile-time

option.

The

allowed

patterns

are

listed

in

Table

52

on

page

374.

For

an

explanation

of

Lilian

format,

see

“Date/time

built-in

functions”

on

page

373.

See

“DAYS”

on

page

403

for

an

example

using

DAYSTODATE.

DAYSTOSECS

DAYSTOSECS

returns

a

FLOAT

BINARY(53)

value

that

is

the

number

of

seconds

corresponding

to

the

number

of

days

x.

��

DAYSTOSECS(x)

��

x

Expression.

x

must

have

a

computational

type

and

is

converted

to

FIXED

BINARY(31,0)

if

necessary.

DAYSTOSECS(x)

is

the

same

as

x*(24*60*60).

DAYSTODATE

404

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

DECIMAL

DECIMAL

returns

the

decimal

value

of

x,

with

a

precision

specified

by

p

and

q.

The

result

has

the

mode

and

scale

of

x.

��

DECIMAL(x

)

,p

,q

��

Abbreviation:

DEC

x

Reference.

p

Restricted

expression

specifying

the

number

of

digits

to

be

maintained

throughout

the

operation.

q

Restricted

expression

specifying

the

scaling

factor

of

the

result.

For

a

fixed-point

result,

if

p

is

given

and

q

is

omitted,

a

scaling

factor

of

zero

is

assumed.

For

a

floating-point

result,

q

must

be

omitted.

If

both

p

and

q

are

omitted,

the

precision

of

the

result

is

determined

from

the

rules

for

base

conversion.

DIMENSION

DIMENSION

returns

a

FIXED

BINARY(31,0)

value

specifying

the

current

extent

of

dimension

y

of

x.

��

DIMENSION(x

)

,y

��

Abbreviation:

DIM

x

Array

reference.

x

must

not

have

less

than

y

dimensions.

y

Expression

specifying

a

particular

dimension

of

x.

If

necessary,

y

is

converted

to

a

FIXED

BINARY(31,0).

y

must

be

greater

than

or

equal

to

1.

If

y

is

not

supplied,

it

defaults

to

1.

y

can

be

omitted

only

if

the

array

is

one-dimensional.

If

y

exceeds

the

number

of

dimensions

of

x,

the

DIMENSION

function

returns

an

undefined

value.

Using

LBOUND

and

HBOUND

instead

of

DIMENSION

is

recommended.

DECIMAL

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

405

DIVIDE

DIVIDE

returns

the

quotient

of

x/y

with

a

precision

specified

by

p

and

q.

The

base,

scale,

and

mode

of

the

result

follow

the

rules

for

expression

evaluation.

��

DIVIDE(x,y,p

)

,q

��

x

Expression.

y

Expression.

If

y

=

0,

the

ZERODIVIDE

condition

is

raised.

p

Restricted

expression

specifying

the

number

of

digits

to

be

maintained

throughout

the

operation.

q

Restricted

expression

specifying

the

scaling

factor

of

the

result.

For

a

fixed-point

result,

if

q

is

omitted,

a

scaling

factor

of

zero

is

the

default.

For

a

floating-point

result,

q

must

be

omitted.

EDIT

EDIT

returns

a

character

string

of

length

LENGTH(y).

Its

value

is

equivalent

to

what

would

result

if

x

were

assigned

to

a

variable

declared

with

the

picture

specification

given

by

y.

For

the

valid

picture

characters,

refer

to

Chapter

15,

“Picture

specification

characters,”

on

page

315.

��

EDIT(x,y)

��

x

Expression

x

must

have

computational

type.

y

String

expression.

y

must

have

character

type

and

must

contain

picture

characters

that

are

valid

for

a

PICTURE

data

item.

If

y

does

not

contain

a

valid

picture

specification,

the

ERROR

condition

is

raised.

Example

dcl

pic1

char(9)

init

(’ZZZZZZZZ9’);

dcl

pic2

char(5)

init

(’ZZ9V.99’);

dcl

num

fixed

dec

(9)

init

(123456789);

z

=

edit

(num,

pic1);

/*

’123456789’

*/

z

=

edit

(num,

pic2);

/*

’789.00’

*/

z

=

edit

(num,

substr(pic1,8));

/*

’89’

*/

z

=

edit

(num,

substr(pic2,1,4));

/*

’789.’

*/

z

=

edit

(num,

substr(pic1,7,3));

/*

’789’

*/

z

=

edit

(num,

substr(pic2,3,4));

/*

’9.00’

*/

z

=

edit

(’1’,

substr(pic1,7,3));

/*

’

1’

*/

z

=

edit

(’PL/I’,

’AAXA’);

/*

’PL/I’

*/

z

=

edit

(’PL/I’,

’AAAA’);

/*

raises

conversion

*/

DIVIDE

406

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

If

x

cannot

be

edited

into

the

picture

specification

given

by

y,

the

conditions

raised

are

those

that

would

be

raised

if

x

were

assigned

to

a

PICTURE

data

item

which

has

the

same

picture

specification

contained

in

y.

EMPTY

EMPTY

returns

an

area

of

zero

extent.

It

can

be

used

to

free

all

allocations

in

an

area.

��

EMPTY

()

��

The

value

of

this

function

is

assigned

to

an

area

variable

when

the

variable

is

allocated.

Consider

this

example:

declare

A

area,

I

based

(P),

J

based

(Q);

allocate

I

in(A),

J

in

(A);

A

=

empty();

/*

Equivalent

to:

free

I

in

(A),

J

in

(A);

*/

ENDFILE

ENDFILE

returns

a

'1'B

when

the

end

of

the

file

is

reached;

'0'B

if

the

end

is

not

reached.

If

the

file

is

not

open,

the

ERROR

condition

is

raised.

��

ENDFILE(x)

��

x

File

reference.

ENDFILE

can

be

used

to

detect

the

end-of-file

condition

for

bytestream

files;

for

example,

files

that

require

the

use

of

the

FILEREAD

built-in

function.

ENTRYADDR

ENTRYADDR

returns

a

pointer

value

that

is

the

address

of

the

first

executed

instruction

if

the

entry

x

is

invoked.

The

entry

x

must

represent

a

non-nested

procedure.

��

ENTRYADDR(x)

��

x

Entry

reference.

If

x

is

a

fetchable

entry

constant,

it

must

be

fetched

before

ENTRYADDR

is

executed.

EDIT

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

407

ENTRYADDR

pseudovariable

The

ENTRYADDR

pseudovariable

initializes

an

entry

variable,

x,

with

the

address

of

the

entry

to

be

invoked.

��

ENTRYADDR(x)

��

x

Entry

reference.

Note:

If

the

address

supplied

to

the

ENTRYADDR

variable

is

the

address

of

an

internal

procedure,

the

results

are

unpredictable.

EPSILON

EPSILON

returns

a

floating-point

value

that

is

the

spacing

between

x

and

the

next

positive

number

when

x

is

1.

It

has

the

base,

mode,

and

precision

of

x.

��

EPSILON(x)

��

x

REAL

FLOAT

expression.

EPSILON(x)

is

a

constant

and

can

be

used

in

restricted

expressions.

ERF

ERF

returns

a

real

floating-point

value

that

is

an

approximation

of

the

error

function

of

x.

��

ERF(x)

��

x

Real

expression.

The

result

has

the

base

and

precision

of

x,

and

a

value

given

by:

(2/

'(π)

)

∫x0

EXP(-(t2

))dt

ERFC

ERFC

returns

a

real

floating-point

value

that

is

an

approximation

of

the

complement

of

the

error

function

of

x.

��

ERFC(x)

��

x

Real

expression.

ENTRYADDR

pseudovariable

408

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

The

result

has

the

base

and

precision

of

x,

and

a

value

given

by:

1

-

ERF(x)

EXP

EXP

returns

a

floating-point

value

that

is

an

approximation

of

the

base,

e,

of

the

natural

logarithm

system

raised

to

the

power

x.

��

EXP(x)

��

x

Expression.

The

result

has

the

base,

mode,

and

precision

of

x.

EXPF

EXPF

is

exactly

like

EXP

except

that:

v

EXPF

calculates

its

result

inline

if

hardware

architecture

permits.

v

The

argument

must

be

a

real

expression.

v

Invalid

arguments

may

raise

the

INVALIDOP

condition,

generate

some

other

hardware

exception

or

cause

some

other

unpredictable

result.

v

The

accuracy

of

the

result

is

set

by

the

hardware.

For

the

definition

and

syntax,

see

“EXP.”

EXPONENT

EXPONENT

returns

a

FIXED

BINARY(31,0)

value

that

is

the

exponent

part

of

x.

��

EXPONENT(x)

��

x

Expression.

x

must

be

declared

as

REAL

FLOAT.

EXPONENT(x)

is

not

the

“mathematical”

exponent

of

x.

If

x

=

0,

EXPONENT(x)

=

0.

For

other

values

of

x,

EXPONENT(x)

is

the

unique

number

e

such

that:

(e-1)

e

radix(x)

<=

abs(x)

<

radix(x)

Consequently,

EXPONENT(1e0)

equals

1

and

not

0.

ERFC

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

409

FILEDDINT

FILEDDINT

returns

a

FIXED

BIN(31)

value

that

is

attribute

c

pertaining

to

file

x.

��

FILEDDINT(x,c)

��

x

File

reference.

c

Character

string

that

holds

the

attribute

to

be

queried.

When

using

FILEDDINT,

the

following

are

valid

values

for

c:

bufsize

delay

filesize

keylen

keyloc

recsize

retry

The

ERROR

condition

with

oncode

1010

is

raised

when

the

attribute

is

invalid

for

the

file

being

queried.

FILEDDTEST

FILEDDTEST

returns

a

FIXED

BIN(31)

value

that

holds

the

value

1

if

the

attribute

c

applies

to

file

x.

Otherwise,

a

value

of

0

is

returned.

��

FILEDDTEST(x,c)

��

x

File

reference.

c

Character

string

that

holds

the

attribute

to

be

queried.

When

using

FILEDDTEST,

the

following

are

valid

values

for

c:

append

bkwd

ctlasa

delimit

descendkey

genkey

graphic

lrmskip

print

prompt

scalarvarying

skip0

The

ERROR

condition

with

oncode

1010

is

raised

when

the

attribute

is

invalid

for

the

file

being

queried.

FILEDDINT

410

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

FILEDDWORD

FILEDDWORD

returns

a

character

string

that

is

the

value

of

attribute

c

pertaining

to

file

x.

��

FILEDDWORD(x,c)

��

x

File

reference.

c

Character

string

that

holds

the

attribute

to

be

queried.

When

using

FILEDDWORD,

the

following

are

valid

values

for

c:

access

amthd

action

charset

filename

organization

putpage

share

type

typef

When

you

specify

the

filename

option,

the

compiler

returns

the

fully-qualified

path

name

of

the

file.

v

ACCESS

returns

SEQUENTIAL

or

DIRECT.

v

ACTION

returns

INPUT,

OUTPUT,

or

UPDATE.

v

ORGANIZATION

returns

CONSECUTIVE,

RELATIVE,

REGIONAL(1)

or

INDEXED.

v

TYPE

returns

RECORD

or

STREAM.

v

TYPEF

returns

the

type

of

the

native

file.

The

ERROR

condition

with

oncode

1010

is

raised

when

the

attribute

is

invalid

for

the

file

being

queried.

FILEID

FILEID

returns

a

FIXED

BIN(31)

value

that

is

the

system

token

for

a

PL/I

file

constant

or

variable.

��

FILEID(x)

��

x

PL/I

file

constant

or

variable.

This

token

should

not

be

used

for

any

purpose

which

could

be

accomplished

by

a

PL/I

statement.

FILEDDWORD

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

411

FILEOPEN

FILEOPEN

returns

'1'B

if

the

file

x

is

open

and

'0'B

if

the

file

is

not

open.

��

FILEOPEN(x)

��

x

File

reference.

FILEREAD

FILEREAD

attempts

to

read

z

storage

units

(bytes)

from

file

x

into

location

y.

It

returns

the

number

of

storage

units

actually

read.

��

FILEREAD(x,y,z)

��

x

Reference

with

type

FILE.

y

Expression

with

type

POINTER

or

OFFSET.

If

the

type

is

OFFSET,

the

expression

must

be

an

OFFSET

variable

declared

with

the

AREA

attribute.

z

Expression

with

computational

type

that

is

converted

to

FIXED

BIN(31,0).

FILEREAD

can

read

only

TYPE(U)

files.

FILESEEK

FILESEEK

changes

the

current

file

position

associated

with

file

x

to

a

new

location

within

the

file.

The

next

operation

on

the

file

takes

place

at

the

new

location.

FILESEEK

is

equivalent

to

the

fseek

function

in

C.

��

FILESEEK(x,y,z)

��

x

Reference

with

type

FILE.

y

A

FIXED

BINARY(31)

value

that

indicates

the

number

of

positions

the

file

pointer

is

to

be

moved

relative

to

z.

z

A

FIXED

BINARY(31)

value

that

indicates

the

origin

from

which

the

file

pointer

is

to

be

moved.

The

following

values

are

valid:

-1

Beginning

of

the

file

0

Current

position

of

the

file

pointer

1

End

of

the

file.

FILESEEK

can

be

used

only

on

TYPE(U)

files.

FILEOPEN

412

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

FILETELL

FILETELL

returns

a

FIXED

BINARY(31)

value

indicating

the

current

position

of

the

file

x.

The

value

returned

is

an

offset

relative

to

the

beginning

of

the

file.

FILETELL

is

equivalent

to

the

ftell

function

in

C.

��

FILETELL(x)

��

x

Reference

with

type

FILE.

FILETELL

can

be

used

only

on

TYPE(U)

files.

FILEWRITE

FILEWRITE

attempts

to

write

z

storage

units

(bytes)

to

file

x

from

location

y

It

returns

the

number

of

storage

units

actually

written.

��

FILEWRITE(x,y,z)

��

x

Reference

with

type

FILE.

y

Expression

with

type

POINTER

or

OFFSET.

If

the

type

is

OFFSET,

the

expression

must

be

an

OFFSET

variable

declared

with

the

AREA

attribute.

z

Expression

with

computational

type

that

is

converted

to

FIXED

BIN(31,0).

FILEWRITE

can

write

only

to

TYPE(U)

files.

FIXED

FIXED

returns

the

fixed-point

value

of

x,

with

a

precision

specified

by

p

and

q.

The

result

has

the

base

and

mode

of

x.

��

FIXED(x

)

,p

,q

��

x

Expression.

p

Restricted

expression

that

specifies

the

total

number

of

digits

in

the

result.

It

must

not

exceed

the

implementation

limit.

q

Restricted

expression

that

specifies

the

scaling

factor

of

the

result.

If

q

is

omitted,

a

scaling

factor

of

zero

is

assumed.

If

both

p

and

q

are

omitted,

the

precision

of

the

result

is

determined

from

the

rules

for

base

conversion.

FILETELL

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

413

FLOAT

FLOAT

returns

the

approximate

floating-point

value

of

x,

with

a

precision

specified

by

p.

The

result

has

the

base

and

mode

of

x.

��

FLOAT(x

)

,p

��

x

Expression.

p

Restricted

expression

that

specifies

the

minimum

number

of

digits

in

the

result.

If

p

is

omitted,

the

precision

of

the

result

is

determined

from

the

rules

for

base

conversion.

FLOOR

FLOOR

determines

the

largest

integer

value

less

than

or

equal

to

x,

and

assigns

this

value

to

the

result.

��

FLOOR(x)

��

x

Real

expression.

The

mode,

base,

scale,

and

precision

of

the

result

match

the

argument.

Except

when

x

is

fixed-point

with

precision

(p,q),

the

precision

of

the

result

is

given

by:

(min(n,max(p-q+1,1)),0)

where

n

is

the

maximum

number

of

digits

allowed

and

is

N

for

FIXED

DECIMAL

or

M

for

FIXED

BINARY.

GAMMA

GAMMA

is

an

approximation

of

the

gamma

of

x,

as

given

by

the

following

equation:

gamma(x)

=

∫∞0

(ux-1)(e-x)du

GAMMA

returns

a

floating-point

value

that

has

the

base,

mode,

and

precision

of

x.

��

GAMMA(x)

��

x

Real

expression.

The

value

of

x

must

be

greater

than

zero.

FLOAT

414

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

GETENV

GETENV

returns

a

character

value

representing

a

specified

environment

variable.

��

GETENV(x)

��

x

Expression

naming

an

environment

variable.

GRAPHIC

GRAPHIC

can

be

used

to

explicitly

convert

character

(or

mixed

character)

data

to

GRAPHIC

data.

All

other

data

first

converts

to

character,

and

then

to

the

GRAPHIC

data

type.

GRAPHIC

returns

the

graphic

value

of

x,

with

a

length

in

graphic

symbols

specified

by

y.

Characters

convert

to

graphics.

The

content

of

x

is

checked

for

validity

during

conversion,

using

the

same

rules

as

for

checking

graphic

and

mixed

character

constants.

��

GRAPHIC(x

)

,y

��

x

Expression.

When

x

is

GRAPHIC,

it

is

subject

to

a

length

change,

with

applicable

padding

or

truncation.

When

x

is

nongraphic,

it

is

converted

to

character,

if

necessary.

SBCS

characters

are

converted

to

equivalent

DBCS

characters.

y

Expression.

If

necessary,

y

is

converted

to

a

real

fixed-point

binary

value.

If

y

is

omitted,

the

length

is

determined

by

the

rules

for

type

conversion.

y

must

not

be

negative.

If

y

=

0,

the

result

is

the

null

graphic

string.

The

following

rules

apply:

v

If

y

is

greater

than

the

length

needed

to

contain

the

graphic

string,

the

result

is

padded

with

graphic

blanks.

v

If

y

is

less

than

the

length

needed

to

contain

the

graphic

string,

the

result

is

truncated.

Example

1

Conversion

from

CHARACTER

to

GRAPHIC,

where

the

target

is

long

enough

to

contain

the

result:

dcl

X

char

(11)

varying;

dcl

A

graphic

(11);

A

=

graphic(X,8);

GETENV

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

415

For

X

with

values

Intermediate

Result

A

is

assigned

ABCDEFGHIJ

123

123A.B.C

.A.B.C.D.E.F.G.H.I.J

.1.2.3

.1.2.3.A.B.C

.A.B.C.D.E.F.G.H.b.b.b

.1.2.3.b.b.b.b.b.b.b.b

.1.2.3.A.B.C.b.b.b.b.b

where

.b

is

a

DBCS

blank.

Example

2

Conversion

from

CHARACTER

to

GRAPHIC,

where

the

target

is

too

short

to

contain

the

result:

dcl

X

char

(10)

varying;

dcl

A

graphic

(8);

A

=

graphic(X);

For

X

with

value

Intermediate

Result

A

is

assigned

ABCDEFGHIJ

.A.B.C.D.E.F.G.H.I.J

.A.B.C.D.E.F.G.H

HANDLE

HANDLE

returns

a

handle

to

the

typed

structure

x.

��

HANDLE(x)

��

x

Typed

structure.

HBOUND

HBOUND

returns

a

FIXED

BINARY(31,0)

value

specifying

the

current

upper

bound

of

dimension

y

of

x.

��

HBOUND(x

)

,y

��

x

Array

reference.

x

must

not

have

less

than

y

dimensions.

y

Expression

specifying

a

particular

dimension

of

x.

If

necessary,

y

is

converted

to

FIXED

BINARY(31,0).

y

must

be

greater

than

or

equal

to

1.

If

y

is

not

supplied,

it

defaults

to

1.

y

can

be

omitted

only

if

the

array

is

one-dimensional.

GRAPHIC

416

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

HEX

HEX

returns

a

character

string

that

is

the

hexadecimal

representation

of

the

storage

that

contains

x.

��

HEX(x

)

,z

��

HEX(x)

returns

a

character

string

of

length

2

*

size(x).

HEX(x,z)

returns

a

character

string

that

contains

x

with

the

character

z

inserted

between

every

set

of

eight

characters

in

the

output

string.

Its

length

is

2

*

size(x)

+

((size(x)

-

1)/4).

x

Expression

that

represents

any

variable.

The

whole

number

of

bytes

that

contain

x

is

converted

to

hexadecimal.

z

Expression.

If

specified,

z

must

have

the

type

CHARACTER(1)

NONVARYING.

Example

1

dcl

Sweet

char(5)

init(’Sweet’);

dcl

Sixteen

fixed

bin(31)

init(16);

dcl

XSweet

char(size(Sweet)*2+(size(Sweet)-1)/4);

dcl

XSixteen

char(size(Sixteen)*2+(size(Sixteen)-1)/4);

XSweet

=

hex(Sweet,’-’);

/*

’53776565-74’

*/

XSweet

=

heximage(addr(Sweet),length(Sweet),’-’);

/*

’53776565-74’

*/

XSixteen

=

hex(Sixteen,’-’);

/*

’10000000’

-

bytes

NOT

reversed

*/

XSixteen

=

heximage(addr(Sixteen),stg(Sixteen),’-’);

/*

’00000010’

-

bytes

reversed

*/

Example

2

dcl

X

fixed

bin(15)

littleendian;

dcl

Y

fixed

bin(15)

bigendian;

X

=

258;

/*

stored

as

’0201’B4

*/

Y

=

258;

/*

stored

as

’0102’B4

*/

display

(hex(X));

/*

displays

0102

*/

display

(hex(Y));

/*

displays

0102

*/

display

(heximage(

addr(X),

stg(X)

));

/*

displays

0201

*/

display

(heximage(

addr(Y),

stg(Y)

));

/*

displays

0102

*/

Note:

This

function

does

not

return

an

exact

image

of

x

in

storage.

If

an

exact

image

is

required,

use

the

HEXIMAGE

built-in

function.

HEX

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

417

HEXIMAGE

HEXIMAGE

returns

a

character

string

that

is

the

hexadecimal

representation

of

the

storage

at

a

specified

location.

��

HEXIMAGE(p,n

)

,z

��

HEXIMAGE(p,n)

returns

a

character

string

that

is

the

hexadecimal

representation

of

n

bytes

of

storage

at

location

p.

Its

length

is

2

*

n..

HEXIMAGE(p,n,z)

returns

a

character

string

that

is

the

hexadecimal

representation

of

n

bytes

of

storage

at

location

p

with

character

z

inserted

between

every

set

of

eight

characters

in

the

output

string.

Its

length

is

(2

*

n)

+

((n

-

1)/4).

p

Restricted

expression

that

must

have

a

locator

type

(POINTER

or

OFFSET).

If

p

is

OFFSET,

it

must

have

the

AREA

attribute.

n

Expression.

n

must

have

a

computational

type

and

is

converted

to

FIXED

BINARY(31,0).

z

If

specified,

z

must

have

the

type

CHARACTER(1)

NONVARYING.

For

examples

of

the

HEXIMAGE

built-in

function,

see

“HEX”

on

page

417.

HIGH

HIGH

returns

a

character

string

of

length

x,

where

each

character

is

the

highest

character

in

the

collating

sequence

(hexadecimal

FF).

��

HIGH(x)

��

x

Expression.

If

necessary,

x

is

converted

to

a

positive

real

fixed-point

binary

value.

If

x

=

0,

the

result

is

the

null

character

string.

HUGE

HUGE

returns

a

floating-point

value

that

is

the

largest

positive

value

x

can

assume.

It

has

the

base,

mode,

and

precision

of

x.

��

HUGE(x)

��

x

Expression.

x

must

have

the

attributes

REAL

FLOAT.

HUGE(x)

is

a

constant

and

can

be

used

in

restricted

expressions.

HEXIMAGE

418

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

IAND

IAND

returns

the

logical

AND

of

its

arguments

��

�

,

IAND(

x,

y

)

��

x

and

y

Expressions

that

must

have

a

computational

type.

If

any

argument

is

not

REAL

FIXED

BIN(p,0),

then

it

is

converted

to

SIGNED

REAL

FIXED

BIN(M,0).

If

any

argument

is

SIGNED,

then

any

UNSIGNED

arguments

are

converted

to

SIGNED.

The

result

is

REAL

FIXED

BIN(

max(p1,p2,...),

0

).

It

is

UNSIGNED

if

all

the

arguments

are

UNSIGNED.

IEOR

IEOR

returns

the

logical

exclusive-OR

of

x

and

y.

The

result

is

unsigned

if

all

arguments

are

unsigned.

��

IEOR(x,y)

��

x

and

y

Expressions

that

must

have

a

computational

type.

If

any

argument

is

not

REAL

FIXED

BIN(p,0),

then

it

is

converted

to

SIGNED

REAL

FIXED

BIN(M,0).

If

any

argument

is

SIGNED,

then

any

UNSIGNED

arguments

are

converted

to

SIGNED.

The

result

is

REAL

FIXED

BIN(

max(p1,p2,...),

0

).

It

is

UNSIGNED

if

all

the

arguments

are

UNSIGNED.

IAND

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

419

IMAG

IMAG

returns

the

coefficient

of

the

imaginary

part

of

x.

The

mode

of

the

result

is

real

and

has

the

base,

scale,

and

precision

of

x.

��

IMAG(x)

��

x

Expression.

If

x

is

real,

it

is

converted

to

complex.

IMAG

pseudovariable

The

IMAG

pseudovariable

assigns

a

real

value

or

the

real

part

of

a

complex

value

to

the

coefficient

of

the

imaginary

part

of

x.

��

IMAG(x)

��

x

Complex

reference.

INDEX

INDEX

returns

an

unscaled

REAL

FIXED

BINARY

value

indicating

the

starting

position

within

x

of

a

substring

identical

to

y.

You

can

also

specify

the

location

within

x

where

processing

begins.

��

INDEX(x,y

)

,n

��

x

String-expression

to

be

searched.

y

Target

string-expression

of

the

search.

n

n

specifies

the

location

within

x

at

which

to

begin

processing.

It

must

have

a

computational

type

and

is

converted

to

FIXED

BINARY(31,0).

If

y

does

not

occur

in

x,

or

if

either

x

or

y

have

zero

length,

the

value

zero

is

returned.

If

n

is

less

than

1

or

if

n

is

greater

than

1

+

length(x),

the

STRINGRANGE

condition

will

be

raised,

and

the

result

will

be

0.

The

BIFPREC

compiler

option

determines

the

precision

of

the

result

returned.

Example

dcl

tractatus

char

value(

’Wovon

man

nicht

sprechen

kann,

’

\

’darueber

muss

man

schweigen.’

);

dcl

pos

fixed

bin

init(1);

IMAG

420

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

pos

=

index(

tractatus,

’man’,

pos+1

);

/*

pos

=

07

*/

pos

=

index(

tractatus,

’man’,

pos+1

);

/*

pos

=

46

*/

pos

=

index(

tractatus,

’man’,

pos+1

);

/*

pos

=

00

*/

INOT

INOT

returns

the

logical

NOT

of

x.

��

INOT(x)

��

x

Expression.

x

must

have

a

computational

type.

If

x

is

REAL

FIXED

BIN(p,0),

then

the

result

is

REAL

FIXED

BIN(p,0)

and

it

is

UNSIGNED

if

x

is

UNSIGNED.

Otherwise,

x

is

converted

to

SIGNED

REAL

FIXED

BIN(M,0)

and

the

result

has

the

same

attributes.

Although

INOT(x)

has

the

opposite

sign

of

x,

INOT(x)

is

not

the

same

as

−x.

Examples

inot(0)

/*

produces

−1

*/

inot(−1)

/*

produces

0

*/

inot(+1)

/*

produces

−2

*/

IOR

IOR

returns

the

logical

OR

of

its

arguments.

��

�

,

IOR(

x,

y

)

��

x

and

y

Expressions

that

must

have

a

computational

type.

If

any

argument

is

not

REAL

FIXED

BIN(p,0),

then

it

is

converted

to

SIGNED

REAL

FIXED

BIN(M,0).

If

any

argument

is

SIGNED,

then

any

UNSIGNED

arguments

are

converted

to

SIGNED.

The

result

is

REAL

FIXED

BIN(

max(p1,p2,...),

0

).

It

is

UNSIGNED

if

all

the

arguments

are

UNSIGNED.

INDEX

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

421

ISIGNED

ISIGNED(x)

returns

the

result

of

casting

x

to

a

signed

integer

value

without

changing

its

bit

pattern.

��

ISIGNED(x)

��

x

Expression.

x

must

have

a

computational

type.

If

x

is

not

an

integer,

i.e.

if

x

is

not

REAL

FIXED

BIN

with

zero

scale

factor,

then

it

is

converted

to

REAL

FIXED

BIN(M,0).

ISIGNED(

x

)

returns,

for

integer

x,

a

value

with

the

same

bit

pattern

as

x

but

the

attributes

SIGNED

FIXED

BIN(p).

If

x

is

UNSIGNED,

p

is

given

by:

If

precision(x)

=

8,

16,

32

or

64,

then

p

=

precision(x)

-

1

else

p

=

precision(x)

If

x

is

SIGNED,

p

is

equal

to

the

precision

of

x.

Examples

ISIGNED(’ff_ff_ff_ff’xu)

equals

the

SIGNED

FIXED

BIN(31)

value

-1.

ISLL

ISLL(x,n)

returns

the

result

of

logically

shifting

x

to

the

left

by

n

places,

and

padding

on

the

right

with

zeroes.

��

ISLL(x,n)

��

x

Expression.

x

must

have

a

computational

type.

n

Expression.

n

must

have

a

computational

type.

If

x

is

REAL

FIXED

BIN(p,0)

and:

v

x

is

SIGNED,

then

the

result

is

SIGNED

REAL

FIXED

BIN(M,0).

v

x

is

UNSIGNED,

the

result

is

UNSIGNED

REAL

FIXED

BIN(M+1,0).

Otherwise,

x

is

converted

to

SIGNED

REAL

FIXED

BIN(M,0)

and

the

result

has

the

same

attributes.

The

result

is

undefined

if

n

is

negative

or

if

n

is

greater

than

M.

Note:

Unlike

RAISE2(x,n),

ISLL(x,n)

can

have

a

different

sign

than

x

does.

Examples

isll(+6,1)

/*

produces

12

*/

isll(2147483645,1)

/*

produces

−6

*/

ISIGNED

422

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

ISMAIN

ISMAIN())

returns

a

'1'B

if

the

procedure

in

which

it

is

invoked

has

the

OPTIONS(MAIN)

attribute.

Otherwise

it

returns

a

'0'B.

��

ISMAIN

(

)

��

ISRL

ISRL(x,n)

returns

the

result

of

logically

shifting

x

to

the

right

by

n

places,

and

padding

on

the

left

with

zeroes.

��

ISRL(x,n)

��

x

Expression.

x

must

have

a

computational

type.

n

Expression.

n

must

have

a

computational

type.

If

x

is

REAL

FIXED

BIN(p,0)

and:

v

x

is

SIGNED,

then

the

result

is

SIGNED

REAL

FIXED

BIN(p,0).

v

x

is

UNSIGNED,

the

result

is

UNSIGNED

REAL

FIXED

BIN(p,0).

Otherwise,

x

is

converted

to

SIGNED

REAL

FIXED

BIN(M,0)

and

the

result

has

the

same

attributes.

The

result

is

undefined

if

n

is

negative

or

if

n

is

greater

than

M.

If

x

is

nonnegative,

ISRL(x,n)

is

equivalent

to

LOWER2(x,n);

if

x

is

negative,

ISRL(x,n)

is

positive,

unless

n=0.

Examples

isrl(+6,1)

/*

produces

3

*/

isrl(−6,1)

/*

produces

2147483645

*/

IUNSIGNED

IUNSIGNED(x)

returns

the

result

of

casting

x

to

an

unsigned

integer

value

without

changing

its

bit

pattern.

��

IUNSIGNED(x)

��

x

Expression.

x

must

have

a

computational

type.

If

x

is

not

an

integer,

i.e.

if

x

is

not

REAL

FIXED

BIN

with

zero

scale

factor,

then

it

is

converted

to

REAL

FIXED

BIN(M,0).

ISMAIN

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

423

IUNSIGNED(

x

)

returns,

for

integer

x,

a

value

with

the

same

bit

pattern

as

x

but

the

attributes

UNSIGNED

FIXED

BIN(p).

If

x

is

SIGNED,

p

is

given

by:

If

precision(x)

=

7,

15,

31

or

63,

then

p

=

precision(x)

+

1

else

p

=

precision(x)

If

x

is

UNSIGNED,

p

is

equal

to

the

precision

of

x.

Examples

IUNSIGNED(’ff_ff_ff_ff’xn)

equals

the

largest

UNSIGNED

FIXED

BIN(32)

value.

LBOUND

LBOUND

returns

a

FIXED

BINARY

(31,0)

value

specifying

the

current

lower

bound

of

dimension

y

of

x.

��

LBOUND(x

)

,y

��

x

Array

reference.

x

must

not

have

less

than

y

dimensions.

y

Expression

specifying

a

particular

dimension

of

x.

If

necessary,

y

is

converted

to

FIXED

BINARY(31,0).

The

value

for

y

must

be

greater

than

or

equal

to

1.

and

if

y

is

not

supplied,

it

defaults

to

1.

The

value

for

y

can

be

omitted

only

if

the

array

is

one-dimensional.

LEFT

LEFT

returns

a

string

that

is

the

result

of

inserting

string

x

at

the

left

end

of

a

string

with

length

n

and

padded

on

the

right

with

the

character

z

as

needed.

��

LEFT(x,n

)

,z

��

x

Expression.

x

must

have

a

computational

type

and

should

have

a

character

type.

If

not,

it

is

converted

to

CHARACTER.

n

Expression.

n

must

have

a

computational

type

and

should

have

a

character

type.

If

n

does

not

have

the

attributes

FIXED

BINARY(31,0),

it

is

converted

to

them.

z

Expression.

If

specified,

z

must

have

the

type

CHARACTER(1)

NONVARYING

type.

Example

dcl

Source

char

value(’One

Hundred

SCIDS

Marks’);

dcl

Target

char(30);

Target

=

left

(Source,

length(Target),

’*’);

/*

’One

Hundred

SCIDS

Marks*******’

*/

IUNSIGNED

424

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

If

z

is

omitted,

a

blank

is

used

as

the

padding

character.

LENGTH

LENGTH

returns

an

unscaled

REAL

FIXED

BINARY

value

specifying

the

current

length

of

x.

��

LENGTH(x)

��

x

String-expression.

If

x

is

binary,

it

is

converted

to

bit

string;

otherwise,

any

other

conversion

required

is

to

character

string.

For

an

example

of

the

LENGTH

built-in

function,

refer

to

“MAXLENGTH”

on

page

430.

The

BIFPREC

compiler

option

determines

the

precision

of

the

result

returned.

LINENO

LINENO

returns

an

unscaled

REAL

FIXED

BINARY

specifying

the

current

line

number

of

x.

��

LINENO(x)

��

x

File-reference.

The

file

must

be

open

and

have

the

PRINT

attribute.

If

the

file

is

not

open

or

does

not

have

the

PRINT

attribute,

'0'B

is

returned.

The

BIFPREC

compiler

option

determines

the

precision

of

the

result

returned.

LOCATION

LOCATION

returns

a

FIXED

BINARY(31,0)

value

specifying

the

byte

location

of

x

within

the

level-1

structure

or

union

that

has

member

x.

��

LOCATION(x)

��

Abbreviation:

LOC

x

Structure

or

union

member

name.

If

x

is

not

a

member

of

a

structure

or

union,

a

value

of

0

is

returned.

If

x

has

the

BIT

attribute,

the

value

returned

by

LOCATION

is

the

location

of

the

byte

that

contains

x.

The

value

for

x

must

not

be

subscripted.

LENGTH

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

425

LOCATION

can

be

used

in

restricted

expressions,

with

a

limitation.

The

value

for

x

must

be

declared

before

y

if

LOC(x)

is

used

to

set

either

of

the

following:

v

The

extent

of

a

variable

y

that

must

have

constant

extents

v

The

value

of

a

variable

y

that

must

have

a

constant

value.

Example

dcl

1

Table

static,

2

Tab2loc

fixed

bin(15)

nonasgn

init(loc(Tab2)),

/*

location

is

0;

gets

initialized

to

8

*/

2

Tab3loc

fixed

bin(15)

nonasgn

init(loc(Tab3)),

/*

location

is

2;

gets

initialized

to

808

*/

2

Length

fixed

bin

nonasgn

init(loc(End)),

/*

location

is

4

*/

2

*

fixed

bin,

2

Tab2(20,20)

fixed

bin,

/*

location

is

8

*/

2

Tab3(20,20)

fixed

bin,

/*

location

is

808

*/

2

F2_loc

fixed

bin

nonasgn

init(loc(F2)),

/*

location

is

1608;

gets

initialized

to

1612

*/

2

F2_bitloc

fixed

bin

nonasgn

init(bitloc(F2)),

/*

location

is

1610;

gets

initialized

to

1

*/

2

Flags,

/*

location

is

1612

*/

3

F1

bit(1),

3

F2

bit(1),

/*

bitlocation

is

1

*/

3

F3

bit(1),

2

Bits(16)

bit,

/*

location

is

1613

*/

2

End

char(0);

LOG

LOG

returns

a

floating-point

value

that

is

an

approximation

of

the

natural

logarithm

(the

logarithm

to

the

base

e)

of

x.

It

has

the

base,

mode,

and

precision

of

x.

��

LOG(x)

��

x

Expression.

x

must

be

greater

than

zero.

LOGF

LOGF

is

exactly

like

LOG

except

that:

v

LOGF

calculates

its

result

inline

if

hardware

architecture

permits.

v

The

argument

must

be

a

real

expression.

v

Invalid

arguments

may

raise

the

INVALIDOP

condition,

generate

some

other

hardware

exception

or

cause

some

other

unpredictable

result.

v

The

accuracy

of

the

result

is

set

by

the

hardware.

For

the

definition

and

syntax,

see

“LOG.”

LOCATION

426

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

LOGGAMMA

LOGGAMMA

returns

a

floating-point

value

that

is

an

approximation

of

the

log

of

gamma

of

x.

The

gamma

of

x

is

given

by

the

following

equation:

gamma(x)

=

∫∞0

(ux-1)(e-x)du

LOGGAMMA

has

the

base,

mode,

and

precision

of

x.

��

LOGGAMMA(x)

��

x

Real

expression.

The

value

of

x

must

be

greater

than

0.

LOG2

LOG2

returns

a

real

floating-point

value

that

is

an

approximation

of

the

binary

logarithm

(the

logarithm

to

the

base

2)

of

x.

It

has

the

base

and

precision

of

x.

��

LOG2(x)

��

x

Real

expression.

The

value

of

x

must

be

greater

than

zero.

LOG10

LOG10

returns

a

real

floating-point

value

that

is

an

approximation

of

the

common

logarithm

(the

logarithm

to

the

base

10)

of

x.

It

has

the

base

and

precision

of

x.

��

LOG10(x)

��

x

Real

expression.

It

must

be

greater

than

zero.

LOG10F

LOG10F

is

exactly

like

LOG10

except

that:

v

LOG10F

calculates

its

result

inline

if

hardware

architecture

permits.

v

The

argument

must

be

a

real

expression.

v

Invalid

arguments

may

raise

the

INVALIDOP

condition,

generate

some

other

hardware

exception

or

cause

some

other

unpredictable

result.

v

The

accuracy

of

the

result

is

set

by

the

hardware.

For

the

definition

and

syntax,

see

“LOG10.”

LOGGAMMA

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

427

LOW

LOW

returns

a

character

string

of

length

x,

where

each

character

is

the

lowest

character

in

the

collating

sequence

(hexadecimal

00).

��

LOW(x)

��

x

Expression.

If

necessary,

x

is

converted

to

a

positive

real

fixed-point

binary

value.

If

x

=

0,

the

result

is

the

null

character

string.

LOWERCASE

LOWERCASE

returns

a

character

string

with

all

the

alphabetic

characters

from

A

to

Z

converted

to

their

lowercase

equivalent.

��

LOWERCASE(x)

��

x

Expression.

If

necessary,

x

is

converted

to

character.

LOWERCASE(x)

is

equivalent

to

TRANSLATE(

x,

’abcdefghijklmnopqrstuvwxyz’,

’ABCDEFGHIJKLMNOPQRSTUVWXYZ’

)

LOWER2

LOWER2(x,n)

returns

the

value:

-n

floor(x

*

(2

))

LOWER2(x,n)

returns

the

value:

-n

floor(x

*

(2

))

��

LOWER2(x,n)

��

Note:

LOWER2(x,n)

is

equivalent

to

the

assembler

SRA(x,n).

x

Expression.

x

must

have

a

computational

type.

n

Expression.

n

must

have

a

computational

type.

If

x

is

SINGED

REAL

FIXED

BIN(p,0),

then

the

result

has

the

same

attributes.

Otherwise,

x

is

converted

to

SIGNED

REAL

FIXED

BIN(M,0)

and

the

result

has

the

same

attributes.

LOW

428

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

The

result

is

undefined

if

n

is

negative

or

if

n

is

greater

than

M.

Examples

lower2

(+6,1)

/*

Produces

3

*/

lower2

(-6,1)

/*

Produces

-3

*/

lower2

(-7,1)

/*

Produces

-4

*/

MAX

MAX

returns

the

largest

value

from

a

set

of

two

or

more

expressions.

��

�

,

MAX(

x,

y

)

��

x

and

y

Expressions.

All

the

arguments

must

be

real.

The

result

is

real,

with

the

common

base

and

scale

of

the

arguments.

If

the

arguments

are

fixed-point

with

precisions:

(p1,q1),(p2,q2),...,(pn,qn)

then

the

precision

of

the

result

is

given

by:

(min(N,max(p1-q1,p2-q2,...,pn-qn)

+

max(q1,q2,...,qn)),max(q1,q2,...,qn))

where

N

is

the

maximum

number

of

digits

allowed.

If

the

arguments

are

floating-point

with

precisions:

p1,p2,p3,...pn

then

the

precision

of

the

result

is

given

by:

max(p1,p2,p3,...pn)

MAXEXP

MAXEXP

returns

a

FIXED

BINARY(31,0)

value

that

is

the

maximum

value

that

EXPONENT(x)

could

assume.

��

MAXEXP(x)

��

x

Expression.

x

must

have

the

REAL

and

FLOAT

attributes.

LOWER2

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

429

Example

(Intel

Values)

maxexp(x)

=

00128

for

x

float

bin(p),

p

<=

21

maxexp(x)

=

01024

for

x

float

bin(p),

21

<

p

<=

53

maxexp(x)

=

16384

for

x

float

bin(p),

53

<

p

maxexp(x)

=

00128

for

x

float

dec(p),

p

<=

6

maxexp(x)

=

01024

for

x

float

dec(p),

6

<

p

<=

16

maxexp(x)

=

16384

for

x

float

dec(p),

16

<

p

Example

(AIX

Values)

maxexp(x)

=

0128

for

x

float

bin(p),

p

<=

21

maxexp(x)

=

1024

for

x

float

bin(p),

21

<

p

<=

53

maxexp(x)

=

1024

for

x

float

bin(p),

53

<

p

maxexp(x)

=

0128

for

x

float

dec(p),

p

<=

6

maxexp(x)

=

1024

for

x

float

dec(p),

6

<

p

<=

16

maxexp(x)

=

1024

for

x

float

dec(p),

16

<

p

Example

(z/OS

Hexdecimal

Values)

maxexp(x)

=

63

for

x

float

bin(p),

p

<=

21

maxexp(x)

=

63

for

x

float

bin(p),

21

<

p

<=

53

maxexp(x)

=

63

for

x

float

bin(p),

53

<

p

maxexp(x)

=

63

for

x

float

dec(p),

p

<=

6

maxexp(x)

=

63

for

x

float

dec(p),

6

<

p

<=

16

maxexp(x)

=

63

for

x

float

dec(p),

16

<

p

Example

(z/OS

IEEE

Values)

maxexp(x)

=

128

for

x

float

bin(p),

p

<=

21

maxexp(x)

=

1024

for

x

float

bin(p),

21

<

p

<=

53

maxexp(x)

=

16384

for

x

float

bin(p),

53

<

p

maxexp(x)

=

128

for

x

float

dec(p),

p

<=

6

maxexp(x)

=

1024

for

x

float

dec(p),

6

<

p

<=

16

maxexp(x)

=

16384

for

x

float

dec(p),

16

<

p

MAXEXP(x)

is

a

constant

and

can

be

used

in

restricted

expressions.

MAXLENGTH

MAXLENGTH

returns

the

maximum

length

of

a

string.

��

MAXLENGTH(x)

��

x

Expression.

x

must

have

a

computational

type

and

should

have

a

string

type.

If

not,

it

is

converted

to

character.

Example

dcl

x

char(20);

dcl

y

char(20)

varying;

x,

y

=

’’;

x

=

copy(

’*’,

length(x)

);

/*

fills

x

with

’*’

*/

y

=

copy(

’*’,

length(y)

);

/*

leaves

y

unchanged

*/

MAXEXP

430

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

x

=

copy(

’-’,

maxlength(x)

);

/*

fills

x

with

’-’

*/

y

=

copy(

’-’,

maxlength(y)

);

/*

fills

y

with

’-’

*/

Note

that

the

first

assignment

to

y

leaves

it

unchanged

because

length(y)

will

return

zero

when

it

is

used

in

the

code

snippet

above

(since

y

is

VARYING

and

was

previously

set

to

’’).

However,

the

second

assignment

to

y

fills

it

with

20

−

signs

because

maxlength(y)

will

return

20

(the

declared

length

of

y).

MEMINDEX

MEMINDEX

returns

an

unscaled

REAL

FIXED

BINARY

value

indicating

the

starting

position

within

a

buffer

of

a

specified

substring.

With

3

arguments,

the

function’s

syntax

is

:

��

MEMINDEX

(

p

,

n

,

x

)

��

p

Address

of

buffer

to

be

searched

n

Length

of

buffer

to

be

searched.

x

String-expression

to

use

as

the

target

of

the

search.

With

4

arguments,

the

function’s

syntax

is

��

MEMINDEX

(

p

,

n

,

q

,

m

)

��

p

Address

of

first

buffer

to

be

searched.

n

Length

of

first

buffer

to

be

searched.

q

Address

of

second

buffer

to

use

as

the

target

of

the

search.

m

Length

of

second

buffer

to

use

as

the

target

of

the

search.

The

buffer

lengths

must

have

a

computational

type

and

will

be

converted

to

FIXED

BINARY(31,0).

The

buffer

lengths

must

be

nonnegative

With

3

arguments,

the

target

string-expression

must

have

type

CHARACTER

(including

PICTURE),

GRAPHIC

or

WIDECHAR.

The

buffer

length

is

interpreted

as

the

number

of

units

of

that

string

type.

With

4

arguments,

the

buffer

lengths

specify

a

number

of

bytes

and

the

search

performed

is

a

character

search.

For

a

VARYING

or

VARYINGZ

string

X

and

string

Y,

the

function

MEMINDEX(

ADDRDATA(X),

LENGTH(X),

Y

)

will

return

the

same

value

as

INDEX(

X,

Y

).

MAXLENGTH

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

431

Example

dcl

cb(128*1024)

char(1);

dcl

wb(128*1024)

widechar(1);

dcl

pos

fixed

bin(31);

/*

128K

bytes

searched

for

the

character

string

’test’

*/

pos

=

memindex(

cb,

stg(cb),

’test’

);

/*

256K

bytes

searched

for

the

string

’test’

as

widechar

*/

pos

=

memindex(

wb,

stg(wb),

wchar(’<’)

);

MEMSEARCH

MEMSEARCH

returns

an

unscaled

REAL

FIXED

BINARY

value

specifying

the

first

position

(from

the

left)

in

a

buffer

at

which

any

character,

graphic

or

widechar

in

a

given

string

appears.

��

MEMSEACRH

(

p

,

n

,

x

)

��

p

Address

of

buffer

to

be

searched.

n

Length

of

buffer

to

be

searched.

x

String-expression.

The

buffer

length

must

have

a

computational

type

and

will

be

converted

to

FIXED

BINARY(31,0).

The

buffer

length

must

be

nonnegative.

The

string-expression

x

must

have

type

CHARACTER

(including

PICTURE),

GRAPHIC

or

WIDECHAR.

The

buffer

length

is

interpreted

as

the

number

of

units

of

that

string

type.

The

address

p

and

the

length

n

specify

the

″string″

in

which

to

search

for

any

character,

graphic

or

widechar

that

appears

in

x.

If

either

the

buffer

length

n

is

zero

or

x

is

the

null

string,

the

result

is

zero.

If

x

does

not

occur

in

the

buffer,

the

result

is

zero.

Example

dcl

cb(128*1024)

char(1);

dcl

wb(128*1024)

widechar(1);

dcl

pos

fixed

bin(31);

/*

128K

bytes

searched

from

the

left

for

a

numeric

*/

pos

=

memsearch(

cb,

stg(cb),

’012345789’

);

/*

256K

bytes

searched

from

the

left

for

a

widechar

’0’

or

’1’

*/

pos

=

memsearch(

wb,

stg(wb),

’0030_0031’wx

);

MAXLENGTH

432

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

MESEARCHR

MEMSEARCHR

returns

an

unscaled

REAL

FIXED

BINARY

value

specifying

the

first

position

(from

the

right)

in

a

buffer

at

which

any

character,

graphic

or

widechar

in

a

given

string

appears

��

MEMSEACRHR

(

p

,

n

,

x

)

��

p

Address

of

buffer

to

be

searched.

n

Length

of

buffer

to

be

searched.

x

String-expression.

The

buffer

length

must

have

a

computational

type

and

will

be

converted

to

FIXED

BINARY(31,0).

The

buffer

length

must

be

nonnegative.

The

string-expression

x

must

have

type

CHARACTER

(including

PICTURE),

GRAPHIC

or

WIDECHAR.

The

buffer

length

is

interpreted

as

the

number

of

units

of

that

string

type.

The

address

p

and

the

length

n

specify

the

″string″

in

which

to

search

for

any

character,

graphic

or

widechar

that

appears

in

x.

If

either

the

buffer

length

n

is

zero

or

x

is

the

null

string,

the

result

is

zero.

If

x

does

not

occur

in

the

buffer,

the

result

is

zero.

Example

dcl

cb(128*1024)

char(1);

dcl

wb(128*1024)

widechar(1);

dcl

pos

fixed

bin(31);

/*

128K

bytes

searched

from

the

right

for

a

numeric

*/

pos

=

memsearchr(

cb,

stg(cb),

’012345789’

);

/*

256K

bytes

searched

from

the

right

for

a

widechar

’0’

or

’1’

*/

pos

=

memsearchr(

wb,

stg(wb),

’0030_0031’wx

);

MEMVERIFY

MEMVERIFY

returns

an

unscaled

REAL

FIXED

BINARY

value

specifying

the

position

in

a

buffer

of

the

first

(from

the

left)

character,

graphic

or

widechar

that

is

not

in

a

specified

string.

��

MEMVERIFY

(

p

,

n

,

x

)

��

p

Address

of

buffer

to

be

searched.

n

Length

of

buffer

to

be

searched.

MAXLENGTH

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

433

x

String-expression.

The

buffer

length

must

have

a

computational

type

and

will

be

converted

to

FIXED

BINARY(31,0).

The

buffer

length

must

be

nonnegative.

The

string-expression

x

must

have

type

CHARACTER

(including

PICTURE),

GRAPHIC

or

WIDECHAR.

The

buffer

length

is

interpreted

as

the

number

of

units

of

that

string

type.

The

address

p

and

the

length

n

specify

the

″string″

in

which

to

search

for

any

character,

graphic

or

widechar

that

does

not

appear

in

x.

If

either

the

buffer

length

n

is

zero

or

x

is

the

null

string,

the

result

is

zero.

If

all

the

characters,

graphics

or

widechars

in

the

buffer

do

appear

in

x,

the

result

is

zero.

Example

dcl

cb(128*1024)

char(1);

dcl

wb(128*1024)

widechar(1);

dcl

pos

fixed

bin(31);

/*

128K

bytes

searched

from

the

left

for

a

non-numeric

*/

pos

=

memverify(

cb,

stg(cb),

’012345789’

);

/*

256K

bytes

searched

from

the

left

for

the

a

non-blank

widechar

*/

pos

=

memverify(

wb,

stg(wb),

’0020’wx

);

MEMVERIFYR

MEMVERIFYR

returns

an

unscaled

REAL

FIXED

BINARY

value

specifying

the

position

in

a

buffer

of

the

first

(from

the

right)

character,

graphic

or

widechar

that

is

not

in

a

specified

string.

��

MEMVERIFYR

(

p

,

n

,

x

)

��

p

Address

of

buffer

to

be

searched.

n

Length

of

buffer

to

be

searched.

x

String-expression.

The

buffer

length

must

have

a

computational

type

and

will

be

converted

to

FIXED

BINARY(31,0).

The

buffer

length

must

be

nonnegative.

The

string-expression

x

must

have

type

CHARACTER

(including

PICTURE),

GRAPHIC

or

WIDECHAR.

The

buffer

length

is

interpreted

as

the

number

of

units

of

that

string

type.

The

address

p

and

the

length

n

specify

the

″string″

in

which

to

search

for

any

character,

graphic

or

widechar

that

does

not

appear

in

x.

MAXLENGTH

434

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

If

either

the

buffer

length

n

is

zero

or

x

is

the

null

string,

the

result

is

zero.

If

all

the

characters,

graphics

or

widechars

in

the

buffer

do

appear

in

x,

the

result

is

zero.

Example

dcl

cb(128*1024)

char(1);

dcl

wb(128*1024)

widechar(1);

dcl

pos

fixed

bin(31);

/*

128K

bytes

searched

from

the

right

for

a

non-numeric

*/

pos

=

memverify(

cb,

stg(cb),

’012345789’

);

/*

256K

bytes

searched

from

the

right

for

the

a

non-blank

widechar

*/

pos

=

memverify(

wb,

stg(wb),

’0020’wx

);

MIN

MIN

returns

the

smallest

value

from

a

set

of

one

or

more

expressions.

��

�

,

MIN(

x,

y

)

��

x

and

y

Expressions.

All

the

arguments

must

be

real.

The

result

is

real

with

the

common

base

and

scale

of

the

arguments.

The

precision

of

the

result

is

the

same

as

that

described

in

“MAX”

on

page

429.

MINEXP

MINEXP

returns

a

FIXED

BINARY(31,0)

value

that

is

the

minimum

value

that

EXPONENT(x)

could

assume.

��

MINEXP(x)

��

x

Expression.

x

must

have

the

REAL

and

FLOAT

attributes.

MINEXP(x)

is

a

constant

and

can

be

used

in

restricted

expressions.

Example

(Intel

Values)

minexp(x)

=

-00125

for

x

float

bin(p),

p

<=

21

minexp(x)

=

-01021

for

x

float

bin(p),

21

<

p

<=

53

minexp(x)

=

-16831

for

x

float

bin(p),

53

<

p

minexp(x)

=

-00125

for

x

float

dec(p),

p

<=

6

minexp(x)

=

-01021

for

x

float

dec(p),

6

<

p

<=

16

minexp(x)

=

-16831

for

x

float

dec(p),

16

<

p

MAXLENGTH

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

435

Example

(AIX

Values)

minexp(x)

=

-0125

for

x

float

bin(p),

p

<=

21

minexp(x)

=

-1021

for

x

float

bin(p),

21

<

p

<=

53

minexp(x)

=

-0968

for

x

float

bin(p),

53

<

p

minexp(x)

=

-0125

for

x

float

dec(p),

p

<=

6

minexp(x)

=

-1021

for

x

float

dec(p),

6

<

p

<=

16

minexp(x)

=

-0968

for

x

float

dec(p),

16

<

p

Example

(z/OS

Hexadecimal

Values)

minexp(x)

=

-64

for

x

float

bin(p),

p

<=

21

minexp(x)

=

-64

for

x

float

bin(p),

21

<

p

<=

53

minexp(x)

=

-50

for

x

float

bin(p),

53

<

p

minexp(x)

=

-64

for

x

float

dec(p),

p

<=

6

minexp(x)

=

-64

for

x

float

dec(p),

6

<

p

<=

16

minexp(x)

=

-50

for

x

float

dec(p),

16

<

p

Example

(z/OS

IEEE

Values)

maxexp(x)

=

-125

for

x

float

bin(p),

p

<=

21

maxexp(x)

=

-1021

for

x

float

bin(p),

21

<

p

<=

53

maxexp(x)

=

-16381

for

x

float

bin(p),

53

<

p

maxexp(x)

=

-125

for

x

float

dec(p),

p

<=

6

maxexp(x)

=

-1021

for

x

float

dec(p),

6

<

p

<=

16

maxexp(x)

=

-16381

for

x

float

dec(p),

16

<

p

MOD

MOD

returns

the

smallest

nonnegative

value,

R,

such

that:

(x

-

R)/y

=

n

In

this

example,

the

value

for

n

is

an

integer

value.

That

is,

R

is

the

smallest

nonnegative

value

that

must

be

subtracted

from

x

to

make

it

divisible

by

y.

��

MOD(x,y)

��

x

Real

expression.

y

Real

expression.

If

y

=

0,

the

ZERODIVIDE

condition

is

raised.

The

result,

R,

is

real

with

the

common

base

and

scale

of

the

arguments.

If

the

result

is

floating-point,

the

precision

is

the

greater

of

those

of

x

and

y.

If

the

result

is

fixed-point,

the

precision

is

given

by

the

following:

(min(n,p2-q2+max(q1,q2)),max(q1,q2))

In

this

example,

(p1,q1)

and

(p2,q2)

are

the

precisions

of

x

and

y,

respectively,

and

n

is

N

for

FIXED

DECIMAL

or

M

for

FIXED

BINARY.

If

x

and

y

are

fixed-point

with

different

scaling

factors,

the

argument

with

the

smaller

scaling

factor

is

converted

to

the

larger

scaling

factor

before

R

is

calculated.

If

the

conversion

fails,

the

result

is

unpredictable.

The

following

example

contrasts

the

MOD

and

REM

built-in

functions.

MINEXP

436

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

For

information

on

the

REM

built-in

function,

see

“REM”

on

page

461.

Example

rem(

+10,

+8

)

=

2

mod(

+10,

+8

)

=

2

rem(

+10,

-8

)

=

2

mod(

+10,

-8

)

=

2

rem(

-10,

+8

)

=

-2

mod(

-10,

+8

)

=

6

rem(

-10,

-8

)

=

-2

mod(

-10,

-8

)

=

6

MPSTR

MPSTR

truncates

a

string

at

a

logical

boundary

and

returns

a

mixed

character

string.

It

does

not

truncate

a

double-byte

character

between

bytes.

The

length

of

the

returned

string

is

equal

to

the

length

of

the

expression

x,

or

to

the

value

specified

by

y.

The

processing

of

the

string

is

determined

by

the

rules

selected

by

the

expression

r,

as

described

below.

��

MPSTR(x,r

)

,y

��

x

Expression

that

yields

the

character

string

result.

The

value

of

x

is

converted

to

character

if

necessary.

r

Expression

that

yields

a

character

result.

The

expression

cannot

be

GRAPHIC

and

is

converted

to

character

if

necessary.

The

expression

r

specifies

the

rules

to

be

used

for

processing

the

string.

The

characters

that

can

be

used

in

r

and

the

rules

for

them

are

as

follows:

V

or

v

Validates

the

mixed

string

x

and

returns

a

mixed

string.

S

or

s

Removes

any

null

DBCS

strings,

creates

a

new

string,

and

returns

a

mixed

string.

If

both

V

and

S

are

specified,

V

takes

precedence

over

S,

regardless

of

the

order

in

which

they

were

specified.

If

S

is

specified

without

V,

the

string

x

is

assumed

to

be

a

valid

string.

If

the

string

is

not

valid,

undefined

results

occur.

Note:

The

parameter

r

is

ignored

on

Intel

and

AIX.

y

Expression.

If

necessary,

y

is

converted

to

a

real

fixed-point

binary

value.

If

y

is

omitted,

the

length

is

determined

by

the

rules

for

type

conversion.

The

value

of

y

cannot

be

negative.

If

y

=

0,

the

result

is

the

null

character

string.

If

y

is

greater

than

the

length

needed

to

contain

x,

the

result

is

padded

with

blanks.

If

y

is

less

than

the

length

needed

to

contain

x,

the

result

is

truncated

by

discarding

excess

characters

from

the

right

(if

they

are

SBCS

characters),

or

by

discarding

as

many

DBCS

characters

(2-byte

pairs)

as

needed.

MOD

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

437

MULTIPLY

MULTIPLY

returns

the

product

of

x

and

y,

with

a

precision

specified

by

p

and

q.

The

base,

scale,

and

mode

of

the

result

are

determined

by

the

rules

for

expression

evaluation.

��

MULTIPLY(x,y,p

)

,q

��

x

and

y

Expressions.

p

Restricted

expression

that

specifies

the

number

of

digits

to

be

maintained

throughout

the

operation.

q

Restricted

expression

that

specifies

the

scaling

factor

of

the

result.

For

a

fixed-point

result,

if

q

is

omitted,

a

scaling

factor

of

zero

is

assumed.

For

a

floating-point

result,

q

must

be

omitted.

NULL

NULL

returns

the

null

pointer

value.

The

null

pointer

value

does

not

identify

any

generation

of

a

variable.

The

null

pointer

value

can

be

assigned

to

and

compared

with

handles.

The

null

pointer

value

can

be

converted

to

OFFSET

by

assignment

of

the

built-in

function

value

to

an

offset

variable.

��

NULL

()

��

OFFSET

OFFSET

returns

an

offset

value

derived

from

a

pointer

reference

x

and

relative

to

an

area

y.

If

x

is

the

null

pointer

value,

the

null

offset

value

is

returned.

��

OFFSET

(

x

,

y

)

��

x

Pointer

reference.

It

must

identify

a

generation

of

a

based

variable

within

the

area

y,

or

be

the

null

pointer

value.

y

Area

reference.

If

x

is

an

element

reference,

y

must

be

an

element

variable.

MULTIPLY

438

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

OFFSETADD

OFFSETADD

returns

the

sum

of

the

arguments.

��

OFFSETADD(x,y)

��

x

Expression.

x

must

be

specified

as

OFFSET.

y

Expression.

y

must

have

a

computational

type

and

is

converted

to

FIXED

BINARY(31,0).

OFFSETDIFF

OFFSETDIFF

returns

a

FIXED

BINARY(31,0)

value

that

is

the

arithmetic

difference

between

the

arguments.

��

OFFSETDIFF(x,y)

��

x

and

y

Expressions.

Both

must

be

specified

as

OFFSET.

OFFSETSUBTRACT

OFFSETSUBTRACT

is

equivalent

to

OFFSETADD(x,-y).

��

OFFSETSUBTRACT(x,y)

��

x

Expressions.

x

must

be

specified

as

OFFSET.

y

Expression.

y

must

have

a

computational

type

and

is

converted

to

FIXED

BINARY(31,0).

OFFSETVALUE

OFFSETVALUE

returns

an

offset

value

that

is

the

converted

value

of

x.

��

OFFSETVALUE(x)

��

x

Expression.

x

must

have

a

computational

type

and

is

converted

to

FIXED

BINARY(31,0).

OFFSETADD

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

439

OMITTED

OMITTED

returns

a

BIT(1)

value

that

is

'1'B

if

the

parameter

named

x

was

omitted

in

the

invocation

to

its

containing

procedure.

��

OMITTED(x)

��

x

Level-1

unsubscripted

parameter

with

the

BYADDR

attribute.

ONCHAR

ONCHAR

returns

a

character(1)

string

containing

the

character

that

caused

the

CONVERSION

condition

to

be

raised.

It

is

in

context

in

an

ON-unit

(or

any

of

its

dynamic

descendants)

for

the

CONVERSION

condition

or

for

the

ERROR

or

FINISH

condition

raised

as

the

implicit

action

for

the

CONVERSION

condition.

��

ONCHAR

()

��

If

the

ONCHAR

built-in

function

is

used

out

of

context,

a

blank

is

returned.

ONCHAR

pseudovariable

The

ONCHAR

pseudovariable

sets

the

current

value

of

the

ONCHAR

built-in

function.

The

element

value

assigned

to

the

pseudovariable

is

converted

to

a

character

value

of

length

1.

The

new

character

is

used

when

the

conversion

is

attempted

again.

(See

conversions

in

Chapter

5,

“Data

conversion,”

on

page

73.)

��

ONCHAR

()

��

The

pseudovariable

must

not

be

used

out

of

context.

ONCODE

The

ONCODE

built-in

function

provides

a

fixed-point

binary

value

that

depends

on

the

cause

of

the

last

condition.

ONCODE

can

be

used

to

distinguish

between

the

various

circumstances

that

raise

a

particular

condition—for

instance,

the

ERROR

condition.

For

codes

corresponding

to

the

conditions

and

errors

detected,

refer

to

the

specific

condition.

ONCODE

returns

a

real

fixed-point

binary

value

that

is

the

condition

code.

It

is

in

context

in

any

ON-unit

or

its

dynamic

descendant.

All

condition

codes

are

defined

in

Messages

and

Codes.

OMITTED

440

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

ONCODE

()

��

If

ONCODE

is

used

out

of

context,

zero

is

returned.

ONCONDCOND

ONCONDCOND

returns

a

nonvarying

character

string

whose

value

is

the

name

of

the

condition

for

which

a

CONDITION

condition

is

raised.

If

the

name

is

a

DBCS

name,

it

will

be

returned

as

a

mixed

character

string.

It

is

in

context

in

the

following

circumstances:

v

In

a

CONDITION

ON-unit,

or

any

of

its

dynamic

descendants

v

In

an

ANYCONDITION

ON-unit

that

traps

a

CONDITION

condition,

or

any

dynamic

descendants

of

such

an

ON-unit.

��

ONCONDCOND

()

��

If

ONCONDCOND

is

used

out

of

context,

a

null

string

is

returned.

ONCONDID

ONCONDID

(short

for

ON-condition

identifier)

returns

a

FIXED

BINARY(31,0)

value

that

identifies

the

condition

being

handled

by

an

ON-unit.

It

is

in

context

in

any

ON-unit

or

one

of

its

dynamic

descendants.

��

ONCONDID

()

��

The

values

returned

by

ONCONDID

are

given

in

the

following

DECLARE

statement:

declare

(

condid_area

value(1),

condid_attention

value(2),

condid_condition

value(3),

condid_conversion

value(4),

condid_endfile

value(5),

condid_endpage

value(6),

condid_error

value(7),

condid_finish

value(8),

condid_fixedoverflow

value(9),

condid_invalidop

value(10),

condid_key

value(11),

condid_name

value(12),

condid_overflow

value(13),

condid_record

value(14),

condid_size

value(15),

condid_storage

value(16),

condid_stringrange

value(17),

ONCODE

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

441

condid_stringsize

value(18),

condid_subscriptrange

value(19),

condid_transmit

value(20),

condid_undefinedfile

value(21),

condid_underflow

value(22),

condid_zerodivide

value(23)

)

fixed

bin(31);

If

ONCONDID

is

used

out

of

context,

a

value

of

zero

is

returned.

ONCOUNT

ONCOUNT

returns

an

unscaled

REAL

FIXED

BINARY

value

specifying

the

number

of

conditions

that

remain

to

be

handled

when

an

ON-unit

is

entered.

(See

“Multiple

conditions”

on

page

338.)

It

is

in

context

in

any

ON-unit,

or

any

dynamic

descendant

of

an

ON-unit.

��

ONCOUNT

()

��

If

ONCOUNT

is

used

out

of

context,

zero

is

returned.

The

BIFPREC

compiler

option

determines

the

precision

of

the

result

returned.

ONFILE

ONFILE

returns

a

character

string

whose

value

is

the

name

of

the

file

for

which

an

input

or

output

condition

is

raised.

If

the

name

is

a

DBCS

name,

it

is

returned

as

a

mixed

character

string.

It

is

in

context

in

an

ON-unit

(or

any

of

its

dynamic

descendants)

for

an

input

or

output

condition,

or

for

the

ERROR

or

FINISH

condition

raised

as

the

implicit

action

for

an

input

or

output

condition.

��

ONFILE

()

��

If

ONFILE

is

used

out

of

context,

a

null

string

is

returned.

ONGSOURCE

ONGSOURCE

returns

a

graphic

string

containing

the

DBCS

character

that

caused

the

CONVERSION

condition

to

be

raised.

It

is

in

context

in

an

ON-unit

(or

any

of

its

dynamic

descendants)

for

the

CONVERSION

condition

or

for

the

ERROR

or

FINISH

condition

raised

as

the

implicit

action

for

a

CONVERSION

condition.

ONCONDID

442

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

ONGSOURCE

()

��

If

the

ONGSOURCE

built-in

function

is

used

out

of

context,

a

null

GRAPHIC

string

is

returned.

ONGSOURCE

pseudovariable

The

ONGSOURCE

pseudovariable

sets

the

current

value

of

the

ONGSOURCE

built-in

function.

The

element

value

assigned

to

the

pseudovariable

is

converted

graphic.

The

string

is

used

when

the

conversion

is

attempted

again.

��

ONGSOURCE

()

��

The

pseudovariable

must

not

be

used

out

of

context.

ONKEY

ONKEY

returns

a

character

string

whose

value

is

the

key

of

the

record

that

raised

an

input/output

condition.

For

indexed

files,

if

the

key

is

GRAPHIC,

the

string

is

returned

as

a

mixed

character

string.

ONKEY

is

in

context

for

the

following:

v

An

ON-unit,

or

any

of

its

dynamic

descendants

v

Any

input/output

condition,

except

ENDFILE

v

The

ERROR

or

FINISH

condition

raised

as

implicit

action

for

an

input/output

condition.

ONKEY

is

always

set

for

operations

on

a

KEYED

file,

even

if

the

statement

that

raised

the

condition

does

not

specified

the

KEY,

KEYTO,

or

KEYFROM

options.

��

ONKEY

()

��

The

result

of

specifying

ONKEY

is:

v

For

any

input/output

condition

(other

than

ENDFILE),

or

for

the

ERROR

or

FINISH

condition

raised

as

implicit

action

for

these

conditions,

the

result

is

the

value

of

the

recorded

key

from

the

I/O

statement

causing

the

error.

v

For

relative

data

sets,

the

result

is

a

character

string

representation

of

the

relative

record

number.

If

the

key

was

incorrectly

specified,

the

result

is

the

last

8

characters

of

the

source

key.

If

the

source

key

is

less

than

8

characters,

it

is

padded

on

the

right

with

blanks

to

make

it

8

characters.

If

the

key

was

correctly

specified,

the

character

string

consists

of

the

relative

record

number

in

character

form

padded

on

the

left

with

blanks,

if

necessary.

v

For

a

REWRITE

statement

that

attempts

to

write

an

updated

record

on

to

an

indexed

data

set

when

the

key

of

the

updated

record

differs

from

that

of

the

input

record,

the

result

is

the

value

of

the

embedded

key

of

the

input

record.

ONGSOURCE

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

443

If

ONKEY

is

used

out

of

context,

a

null

string

is

returned.

ONLOC

ONLOC

returns

a

character

string

whose

value

is

the

name

of

the

entry-point

used

for

the

current

invocation

of

the

procedure

in

which

a

condition

was

raised.

ONLOC

always

returns

the

leftmost

name

of

a

multiple

label

specification,

regardless

of

which

name

appears

in

the

CALL

or

GOTO

statement.

If

the

name

is

a

DBCS

name,

it

is

returned

as

a

mixed-character

string.

It

is

in

context

in

any

ON-unit,

or

in

any

of

its

dynamic

descendants.

��

ONLOC

()

��

If

ONLOC

is

used

out

of

context,

a

null

string

is

returned.

ONSOURCE

ONSOURCE

returns

a

character

string

whose

value

is

the

contents

of

the

field

that

was

being

processed

when

the

CONVERSION

condition

was

raised.

It

is

in

context

in

an

ON-unit

(or

any

of

its

dynamic

descendants)

for

the

CONVERSION

condition

or

for

the

ERROR

or

FINISH

condition

raised

as

the

implicit

action

for

a

CONVERSION

condition.

��

ONSOURCE

()

��

If

ONSOURCE

is

used

out

of

context,

a

null

string

is

returned.

ONSOURCE

pseudovariable

The

ONSOURCE

pseudovariable

sets

the

current

value

of

the

ONSOURCE

built-in

function.

The

element

value

assigned

to

the

pseudovariable

is

converted

to

a

character

string

and,

if

necessary,

is

padded

on

the

right

with

blanks

or

truncated

to

match

the

length

of

the

field

that

raised

the

CONVERSION

condition.

The

string

is

used

when

the

conversion

is

attempted

again.

��

ONSOURCE

()

��

When

conversion

is

retried,

the

string

assigned

to

the

pseudovariable

is

processed

as

a

single

data

item.

For

this

reason,

the

error

correction

process

must

not

assign

a

string

containing

more

than

one

data

item

when

the

conversion

occurs

during

the

ONLOC

444

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

execution

of

a

GET

LIST

or

GET

DATA

statement.

The

presence

of

blanks

or

commas

in

the

string

could

raise

CONVERSION

again.

The

pseudovariable

must

not

be

used

out

of

context.

ONSUBCODE

ONSUBCODE

returns

a

FIXED

BINARY(31,0)

value

that

gives

more

information

about

an

I/O

error

that

occurred.

This

corresponds

to

the

SUBCODE1

values

documented

for

messages

IBM0236I

and

IBM0265I.

These

values

are

defined

in

Messages

and

Codes.

��

ONSUBCODE()

��

ONWCHAR

ONWCHAR

returns

a

widechar(1)

string

containing

the

widechar

that

caused

the

CONVERSION

condition

to

be

raised.

It

is

in

context

in

an

ON-unit

(or

any

of

its

dynamic

descendants)

for

the

CONVERSION

condition

or

for

the

ERROR

or

FINISH

condition

raised

as

the

implicit

action

for

the

CONVERSION

condition.

��

ONWCHAR

()

��

If

the

ONWCHAR

built-in

function

is

used

out

of

context,

a

widechar

blank

is

returned.

ONWCHAR

pseudovariable

The

ONWCHAR

pseudovariable

sets

the

current

value

of

the

ONWCHAR

built-in

function.

The

element

value

assigned

to

the

pseudovariable

is

converted

to

a

widechar

value

of

length

1.

The

new

widechar

is

used

when

the

conversion

is

attempted

again.

(See

conversions

in

Chapter

5,

“Data

conversion,”

on

page

73.)

��

ONWCHAR

()

��

The

pseudovariable

must

not

be

used

out

of

context.

ONSOURCE

pseudovariable

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

445

ONWSOURCE

ONWSOURCE

returns

a

widechar

string

whose

value

is

the

contents

of

the

field

that

was

being

processed

when

the

CONVERSION

condition

was

raised.

It

is

in

context

in

an

ON-unit

(or

any

of

its

dynamic

descendants)

for

the

CONVERSION

condition

or

for

the

ERROR

or

FINISH

condition

raised

as

the

implicit

action

for

a

CONVERSION

condition.

��

ONWSOURCE

()

��

If

ONWSOURCE

is

used

out

of

context,

a

null

string

is

returned.

ONWSOURCE

pseudovariable

The

ONWSOURCE

pseudovariable

sets

the

current

value

of

the

ONWSOURCE

built-in

function.

The

element

value

assigned

to

the

pseudovariable

is

converted

to

a

widechar

string

and,

if

necessary,

is

padded

on

the

right

with

widecahr

blanks

or

truncated

to

match

the

length

of

the

field

that

raised

the

CONVERSION

condition.

The

string

is

used

when

the

conversion

is

attempted

again.

��

ONWSOURCE

()

��

When

conversion

is

retried,

the

string

assigned

to

the

pseudovariable

is

processed

as

a

single

data

item.

For

this

reason,

the

error

correction

process

must

not

assign

a

string

containing

more

than

one

data

item

when

the

conversion

occurs

during

the

execution

of

a

GET

LIST

or

GET

DATA

statement.

The

presence

of

blanks

or

commas

in

the

string

could

raise

CONVERSION

again.

The

pseudovariable

must

not

be

used

out

of

context.

ORDINALNAME

ORDINALNAME

returns

a

nonvarying

character

string

that

is

the

member

of

the

set

associated

with

the

ordinal

x.

��

ORDINALNAME(x)

��

x

Reference.

It

must

have

ordinal

type.

ORDINALs

cannot

be

used

in

computational

expressions

and

cannot

be

converted

to

character,

but

ORDINALNAME

provides

a

way

to

obtain

a

displayable

value

for

an

ORDINAL

and

can

be

very

useful

in

debugging.

ONWSOURCE

446

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

ORDINALPRED

ORDINALPRED

returns

an

ordinal

that

is

the

next

lower

value

that

the

ordinal

x

could

assume.

��

ORDINALPRED(x)

��

x

Reference.

It

must

have

ordinal

type.

The

returned

ordinal

has

the

same

type

as

ordinal

x.

ORDINALSUCC

ORDINALSUCC

returns

an

ordinal

that

is

the

next

higher

value

the

ordinal

x

could

assume.

��

ORDINALSUCC(x)

��

x

Reference.

It

must

have

ordinal

type.

The

returned

ordinal

has

the

same

type

as

ordinal

x.

PACKAGENAME

PACKAGENAME

returns

a

nonvarying

character

string

containing

the

name

of

the

package

in

which

it

is

invoked.

If

there

is

no

package

in

the

current

compilation

unit,

PACKAGENAME

returns

the

name

of

the

outermost

procedure.

��

PACKAGENAME

()

��

PAGENO

PAGENO

returns

an

unscaled

REAL

FIXED

BINARY31

value

that

is

the

current

page

number

associated

with

file

x.

��

PAGENO(x)

��

x

An

open

PRINT

file.

If

the

file

is

not

a

PRINT

file,

the

ERROR

condition

is

raised.

The

BIFPREC

compiler

option

determines

the

precision

of

the

result

returned.

ORDINALPRED

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

447

PLACES

PLACES

returns

a

FIXED

BINARY(31,0)

value

that

is

the

model-precision

used

to

represent

the

floating-point

expression

x.

��

PLACES(x)

��

x

Expression.

x

must

be

declared

REAL

FLOAT.

PLACES(x)

is

a

constant

and

can

be

used

in

restricted

expressions.

Example

(Intel

Values)

places(x)

=

24

for

x

float

bin(p),

p

<=

21

places(x)

=

53

for

x

float

bin(p),

21

<

p

<=

53

places(x)

=

64

for

x

float

bin(p),

53

<

p

places(x)

=

24

for

x

float

dec(p),

p

<=

6

places(x)

=

53

for

x

float

dec(p),

6

<

p

<=

16

places(x)

=

64

for

x

float

dec(p),

16

<

p

Example

(AIX

Values)

places(x)

=

024

for

x

float

bin(p),

p

<=

21

places(x)

=

053

for

x

float

bin(p),

21

<

p

<=

53

places(x)

=

106

for

x

float

bin(p),

53

<

p

places(x)

=

024

for

x

float

dec(p),

p

<=

6

places(x)

=

053

for

x

float

dec(p),

6

<

p

<=

16

places(x)

=

106

for

x

float

dec(p),

16

<

p

Example

(z/OS

Hexadecimal

Values)

places(x)

=

6

for

x

float

bin(p),

p

<=

21

places(x)

=

14

for

x

float

bin(p),

21

<

p

<=

53

places(x)

=

28

for

x

float

bin(p),

53

<

p

places(x)

=

6

for

x

float

dec(p),

p

<=

6

places(x)

=

14

for

x

float

dec(p),

6

<

p

<=

16

places(x)

=

28

for

x

float

dec(p),

16

<

p

Example

(z/OS

IEEE

Values)

places(x)

=

24

for

x

float

bin(p),

p

<=

21

places(x)

=

53

for

x

float

bin(p),

21

<

p

<=

53

places(x)

=

113

for

x

float

bin(p),

53

<

p

places(x)

=

24

for

x

float

dec(p),

p

<=

6

places(x)

=

53

for

x

float

dec(p),

6

<

p

<=

16

places(x)

=

113

for

x

float

dec(p),

16

<

p

PLIASCII

PLIASCII

converts

Z

storage

units

(bytes)

at

location

y

from

EBCDIC

to

ASCII

at

location

x.

The

storage

at

location

x

and

y

must

not

overlap

unless

they

specify

the

same

location.

PLACES

448

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

PLIASCII(x,y,z)

��

x

and

y

Expressions

with

type

POINTER

or

OFFSET.

If

the

type

is

OFFSET,

the

expression

must

be

an

OFFSET

variable

declared

with

the

AREA

attribute.

z

Expression

with

computational

type

that

is

converted

to

FIXED

BIN(31,0).

PLICANC

This

built-in

subroutine

allows

you

to

cancel

the

automatic

restart

facility.

��

PLICANC

()

��

For

more

information

about

using

PLICANC,

see

the

Programming

Guide.

PLICKPT

This

built-in

subroutine

allows

you

to

take

a

checkpoint

for

later

restart.

��

PLICKPT(argument

)

,argument

��

For

more

information

about

using

PLICKPT,

see

the

Programming

Guide.

PLIDELETE

This

built-in

subroutine

frees

the

storage

associated

with

the

handle

x.

��

PLIDELETE(x)

��

x

Handle

expression.

PLIDELETE(x)

is

the

best

way

to

free

the

storage

associated

with

a

handle;

this

storage

is

usually

acquired

by

the

NEW

type

function.

CALL

PLIDELETE(x)

is

equivalent

to

CALL

PLIFREE(PTRVALUE(x)).

PLIASCII

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

449

PLIDUMP

This

built-in

subroutine

allows

you

to

obtain

a

formatted

dump

of

selected

parts

of

storage

used

by

your

program.

��

PLIDUMP(argument

)

,argument

��

For

more

information

about

using

PLIDUMP,

see

the

Programming

Guide.

PLIEBCDIC

PLIEBCDIC

converts

Z

storage

units

(bytes)

at

location

y

from

ASCII

to

EBCDIC

at

location

x.

The

storage

at

location

x

and

y

must

not

overlap

unless

they

specify

the

same

location.

��

PLIEBCDIC(x,y,z)

��

x

and

y

Expressions

with

type

POINTER

or

OFFSET.

If

the

type

is

OFFSET,

the

expression

must

be

an

OFFSET

variable

declared

with

the

AREA

attribute.

z

Expression

with

computational

type

that

is

converted

to

FIXED

BIN(31,0).

PLIFILL

This

built-in

subroutine

moves

z

copies

of

the

byte

y

to

the

location

x

without

any

conversions,

padding,

or

truncation.

��

PLIFILL(x,y,z)

��

x

Expression.

x

must

be

declared

POINTER

or

OFFSET.

If

it

is

OFFSET,

x

must

be

declared

with

the

AREA

attribute.

y

Must

be

declared

CHARACTER(1)

NONVARYING.

z

Expression

that

is

converted

to

FIXED

BINARY(31,0).

Example

dcl

1

Str1,

2

B

fixed

bin(31),

2

C

pointer,

2

*

union,

3

D

char(4),

3

E

fixed

bin(31),

3

*,

4

*

char(3),

PLIDUMP

450

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

4

F

fixed

bin(8)

unsigned,

2

*

char(0)

initial

call

plifill(

addr(Str1),

’00’x,

stg(Str1)

);

PLIFREE

This

built-in

subroutine

frees

the

heap

storage

associated

with

the

pointer

p

that

was

allocated

using

the

ALLOCATE

built-in

function.

��

PLIFREE(p)

��

p

Locator

expression.

PLIFREE

is

the

opposite

of

ALLOCATE

(ALLOC).

PLIMOVE

This

built-in

subroutine

moves

z

storage

units

(bytes)

from

location

y

to

location

x,

without

any

conversions,

padding,

or

truncation.

Unlike

the

PLIOVER

built-in

subroutine,

storage

at

locations

x

and

y

is

assumed

to

be

unique.

If

storage

overlaps,

unpredictable

results

can

occur.

��

PLIMOVE(x,y,z)

��

x

and

y

Expressions

declared

as

POINTER

or

OFFSET.

If

the

type

is

OFFSET,

x

or

y

must

be

declared

with

the

AREA

attribute.

z

Expression.

z

must

have

a

computational

type

and

is

converted

to

FIXED

BINARY(31,0).

Example

dcl

1

Str1,

2

B

fixed

bin(31),

2

C

pointer,

2

*

union,

3

D

char(4),

3

E

fixed

bin(31),

3

*,

4

*

char(3),

4

F

fixed

bin(8)

unsigned,

2

*

char(0);

dcl

1

Template

nonasgn

static,

2

*

fixed

bin(31)

init(200),

2

*

pointer

init(null()),

2

*

char(4)

init(’’),

2

*

char(0);

call

plimove(addr(Str1),

addr(Template),

stg(Str1));

PLIFILL

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

451

PLIOVER

This

built-in

subroutine

moves

z

storage

units

(bytes)

from

location

y

to

location

x,

without

any

conversions,

padding,

or

truncation.

Unlike

the

PLIMOVE

built-in

subroutine,

the

storage

at

locations

x

and

y

can

overlap.

��

PLIOVER(x,y,z)

��

x

and

y

Expressions

declared

as

POINTER

or

OFFSET.

If

the

type

is

OFFSET,

x

or

y

must

be

declared

with

the

AREA

attribute.

z

Expression.

z

must

have

a

computational

type

and

is

converted

to

FIXED

BINARY(31,0).

Usage

of

PLIOVER

is

the

same

as

PLIMOVE,

with

the

exception

that

storage

for

x

and

y

can

overlap

(see

“PLIMOVE”

on

page

451).

PLIREST

This

built-in

subroutine

allows

you

to

restart

program

execution.

��

PLIREST

()

��

For

more

information

about

using

PLIREST,

see

the

Programming

Guide.

PLIRETC

This

built-in

subroutine

allows

you

to

set

a

return

code

that

can

be

examined

by

the

program

that

invoked

this

PL/I

program

or

by

another

PL/I

procedure

via

the

PLIRETV

built-in

function.

��

PLIRETC(x)

��

x

An

expression

yielding

a

FIXED

BINARY(31,0)

return

code.

PLIOVER

452

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

PLIRETV

PLIRETV

returns

a

FIXED

BINARY(31,0)

value

that

is

the

PL/I

return

code.

��

PLIRETV

()

��

The

value

of

the

PL/I

return

code

is

the

most

recent

value

specified

by

a

CALL

PLIRETC

statement.

PLISAXA

This

built-in

subroutine

allows

you

to

perform

SAX-style

parsing

of

an

XML

document

residing

in

a

buffer

in

your

program.

��

PLISAXA(e,p,x,n

)

,c

��

e

An

event

structure

p

A

pointer

value

or

″token″

that

will

be

passed

back

to

the

parsing

events

x

The

address

of

the

buffer

containing

the

input

XML

n

The

number

of

bytes

of

data

in

that

buffer

c

A

numeric

expression

specifying

the

purported

codepage

of

that

XML

Note

that

if

the

XML

is

contained

in

a

CHARACTER

VARYING

or

a

WIDECHAR

VARYING

string,

then

the

ADDRDATA

built-in

function

should

be

used

to

obtain

the

address

of

the

first

data

byte.

Also

note

that

if

the

XML

is

contained

in

a

WIDECHAR

string,

the

value

for

the

number

of

bytes

is

twice

the

value

returned

by

the

LENGTH

built-in

function.

For

more

information,

see

the

Programming

Guide.

PLISAXB

This

built-in

subroutine

allows

you

to

perform

SAX-style

parsing

of

an

XML

document

residing

in

a

file.

��

PLISAXB(e,p,x

)

,c

��

e

An

event

structure

p

A

pointer

value

or

″token″

that

will

be

passed

back

to

the

parsing

events

PLIRETV

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

453

x

A

character

string

expression

specifying

the

input

file

c

A

numeric

expression

specifying

the

purported

codepage

of

that

XML

For

more

information,

see

the

Programming

Guide.

PLISRTA

This

built-in

subroutine

allows

you

to

sort

an

input

file

to

produce

a

sorted

output

file.

��

�

,

PLISRTA(

argument

)

��

For

more

information,

see

the

Programming

Guide.

PLISRTB

This

built-in

subroutine

allows

you

to

sort

input

records

provided

by

an

E15

PL/I

exit

procedure

to

produce

a

sorted

output

file.

��

�

,

PLISRTB(

argument

)

��

For

more

information,

see

the

Programming

Guide.

PLISRTC

This

built-in

subroutine

allows

you

to

sort

an

input

file

to

produce

sorted

records

that

are

processed

by

an

E35

PL/I

exit

procedure.

��

�

,

PLISRTC(

argument

)

��

For

more

information,

see

the

Programming

Guide.

PLISRTD

This

built-in

subroutine

allows

you

to

sort

input

records

provided

by

an

E15

PL/I

exit

procedure

to

produce

sorted

records

that

are

processed

by

an

E35

PL/I

exit

procedure.

PLISAXB

454

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

�

,

PLISRTD(

argument

)

��

For

more

information,

see

the

Programming

Guide.

POINTER

POINTER

returns

a

pointer

value

that

identifies

the

generation

specified

by

an

offset

reference

x,

in

an

area

specified

by

y.

If

x

is

the

null

offset

value,

the

null

pointer

value

is

returned.

��

POINTER(x,y)

��

Abbreviation:

PTR

x

Offset

reference.

It

can

be

the

null

offset

value.

If

it

is

not,

x

must

identify

a

generation

of

a

based

variable,

but

not

necessarily

in

y.

If

it

is

not

in

y,

the

generation

must

be

equivalent

to

a

generation

in

y.

y

Area

reference.

Generations

of

based

variables

in

different

areas

are

equivalent

if,

up

to

the

allocation

of

the

latest

generation,

the

variables

have

been

allocated

and

freed

the

same

number

of

times

as

each

other.

POINTERADD

POINTERADD

returns

a

pointer

value

that

is

the

sum

of

its

arguments.

��

POINTERADD(x,y)

��

Abbreviation:

PTRADD

x

Pointer

expression.

y

Expression

that

must

have

a

computational

type

and

is

converted

to

FIXED

BINARY(31,0).

POINTERADD

can

be

used

as

a

locator

for

a

based

variable.

POINTERADD

can

be

used

for

subtraction

by

prefixing

the

operand

to

be

subtracted

with

a

minus

sign.

There

is

no

need

to

use

POINTERADD

to

increment

a

pointer

-

you

can

simply

increment

the

pointer

as

you

would

an

integer.

For

example,

there

is

no

need

to

write:

p

=

pointeradd(p,2);

PLISRTD

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

455

Instead,

you

could

write

either

of

the

following

equivalent

statements:

p

=

p

+

2;

p

+=

2;

However,

POINTERADD

can

be

useful

in

dereferencing

the

storage

at

a

location

offset

from

a

pointer,

as

in

the

following

example:

dcl

x

fixed

bin(31),

b

based

fixed

bin(31);

x

=

pointeradd(p,2)->b;

Note,

however,

since

a

locator

in

PL/I

must

be

a

reference,

you

cannot

write

x

=

(p

+

2)->b;

POINTERDIFF

POINTERDIFF

returns

a

FIXED

BINARY(31,0)

result

that

is

the

difference

between

the

two

pointers

x

and

y.

��

POINTERDIFF(x,y)

��

Abbreviation:

PTRDIFF

x

and

y

Expressions

declared

as

POINTER.

POINTERSUBTRACT

POINTERSUBTRACT

is

equivalent

to

POINTERADD(x,-y).

��

POINTERSUBTRACT(x,y)

��

Abbreviation:

PTRSUBTRACT

x

Must

be

a

pointer

expression.

y

Expression

that

must

have

a

computational

type

and

is

converted

to

FIXED

BINARY(31,0).

POINTERVALUE

POINTERVALUE

returns

a

pointer

value

that

is

the

converted

value

of

x.

��

POINTERVALUE(x)

��

Abbreviation:

PTRVALUE

POINTERADD

456

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

x

Expression

that

must

have

either

the

HANDLE

attribute,

or

have

a

computational

type.

If

x

has

a

computational

type,

it

is

converted

to

FIXED

BINARY(31,0).

POINTERVALUE(x)

can

be

used

to

initialize

static

pointer

variables

if

x

is

a

constant.

POLY

POLY

returns

a

floating-point

value

that

is

an

approximation

of

a

polynomial

formed

from

an

one-dimensional

array

expressions

x.

The

returned

value

has

the

same

attributes

as

the

first

argument.

The

syntax

for

POLY

is:

��

POLY

(

x

,

y

)

��

x

An

array

expression.

y

An

element

expression.

x

must

be

REAL

FLOAT

and

y

is

converted

to

the

attributes

of

x,

if

necessary.

If

x

has

lower

bound

0

and

upper

bound

n,

the

result

is

a

classic

polynomial

of

degree

n

in

y

with

coefficients

given

by

x,

i.e.

the

result

is

x(0)

+

x(1)*y

+

x(2)*y**2

+

...

+

x(n)*y**n

In

the

general

case,

where

x

has

lower

bound

m

and

upper

bound

n,

the

result

is

the

polynomial

x(m)

+

x(m+1)*y

+

x(m+2)*y**2

+

...

+

x(n)*y**(n-m)

PRECISION

PRECISION

returns

the

value

of

x,

with

a

precision

specified

by

p

and

q.

The

base,

mode,

and

scale

of

the

returned

value

are

the

same

as

that

of

x.

��

PRECISION(x,p

)

,q

��

Abbreviation:

PREC

x

Expression.

p

Restricted

expression.

p

specifies

the

number

of

digits

that

the

value

of

the

expression

x

is

to

have

after

conversion.

q

Restricted

expression.

It

specifies

the

scaling

factor

of

the

result.

For

a

fixed-point

result,

if

q

is

omitted,

a

scaling

factor

of

zero

is

assumed.

For

a

floating-point

result,

q

must

be

omitted.

POINTERVALUE

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

457

PRED

PRED

returns

a

floating-point

value

that

is

the

biggest

representable

number

smaller

than

x.

It

has

the

base,

mode,

and

precision

of

x.

OVERFLOW

will

be

raised

if

there

is

no

such

number.

��

PRED(x)

��

x

REAL

FLOAT

expression.

PRED(TINY(X))

will

return

zero

and

will

not

raise

UNDERFLOW.

PRESENT

PRESENT(x)

returns

a

BIT(1)

value

that

is

’1’B

if

the

parameter

x

was

present

in

the

invocation

of

its

containing

procedure.

��

PRESENT(x)

��

x

Level-1

unsubscripted

BYADDR

parameter.

PROCEDURENAME

PROCEDURENAME()

returns

a

nonvarying

character

string

containing

the

name

of

the

procedure

in

which

this

built-in

function

is

invoked.

��

PROCEDURENAME

(

)

��

Abbreviation:

PROCNAME

PROCEDURENAME

always

returns

the

leftmost

name

of

a

multiple

label

specification,

regardless

of

which

name

appears

in

the

CALL

or

GOTO

statement.

PROD

PROD

returns

the

product

of

all

the

elements

in

x.

��

PROD(x)

��

x

Array

expression.

If

the

elements

of

x

are

strings,

they

are

converted

to

fixed-point

integer

values.

If

the

elements

of

x

are

not

fixed-point

integer

values

or

strings,

they

are

converted

to

floating-point

and

the

result

is

floating-point.

PRED

458

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

The

result

has

the

precision

of

x,

except

that

the

result

for

fixed-point

integer

values

and

strings

is

fixed-point

with

precision

(n,0),

where

n

is

the

maximum

number

of

digits

allowed.

The

base

and

mode

match

the

converted

argument

x.

PUTENV

PUTENV

works

the

same

as

the

C

putenv

function.

This

function

adds

new

environment

variables

or

modifies

the

values

of

existing

environment

variables.

��

PUTENV(string)

��

string

A

character

string

of

the

form

envvarname=value.

PUTENV

returns

true

(’1’B)

if

successful

and

false

(’0’B)

otherwise.

RADIX

RADIX

returns

a

FIXED

BINARY(31,0)

value

that

is

the

model-base

used

to

represent

the

floating-point

expression

x.

��

RADIX(x)

��

x

REAL

FLOAT

expression.

RADIX(x)

is

2

(except

for

hexadecimal

on

z/OS

where

it

is

16)

and

can

be

used

in

restricted

expressions.

RAISE2

RAISE2(x,n)

returns

the

value

x*(2**n)

��

RAISE2(x,n)

��

Note:

RAISE2(x,n)

is

equivalent

to

the

assembler

SLA(x,n).

x

Expression.

x

must

have

a

computational

type.

n

Expression.

n

must

have

a

computational

type.

x

is

converted

to

SIGNED

REAL

FIXED

BIN(M,0)

and

the

result

has

the

same

attributes.

It

is

undefined

if

n

is

negative

or

if

n

is

greater

than

M.

Example

raise2(6,1)

/*

produces

12

*/

PROD

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

459

RANDOM

RANDOM

returns

a

FLOAT

BINARY(53)

random

number

generated

using

x

as

the

given

seed.

If

x

is

omitted,

the

random

number

generated

is

based

on

the

seed

provided

by

the

last

RANDOM

invocation

with

a

seed,

or

on

a

default

initial

seed

of

1

if

RANDOM

has

not

previously

been

invoked

with

a

seed.

��

RANDOM

(x)

��

x

Expression.

x

must

have

a

computational

type

and

should

have

an

arithmetic

type.

If

x

is

numeric,

it

must

be

real.

If

x

is

not

specified

FIXED

BINARY(31,0),

it

is

converted.

Unless

0

<

x

<

2,147,483,646,

the

ERROR

condition

is

raised.

The

values

generated

by

RANDOM

are

uniformly

distributed

between

0

and

1,

with

0

<

random(x)

<

1.

They

are

generated

as

follows

using

the

multiplicative

congruential

method:

seed(x)

=

mod(950706376

*

seed(x

−

1),

2147483647)

random(x)

=

seed(x)

/

2147483647

The

seed

is

maintained

at

the

program

level

and

not

within

each

thread

in

a

multithreading

application.

RANK

RANK

returns

the

integer

value

corresponding

to

a

character

or

widechar.

��

RANK(x)

��

x

Must

have

the

attributes

CHAR

(1)

NONVARYING

or

WCHAR

(1)

NONVARYING.

If

x

is

character,

RANK(x)

is

defined

as

index(collate(),x)-1,

and

Rank

is

the

inverse

of

BYTE.

If

x

is

widechar,

RANK(x)

is

equal

to

UNSPEC(y)

where

y

is

x

stored

in

bigendian

format.

REAL

REAL

returns

the

real

part

of

x.

The

result

has

the

base,

scale,

and

precision

of

x.

��

REAL(x)

��

x

Expression.

If

x

is

real,

it

is

converted

to

complex.

RANDOM

460

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

REAL

pseudovariable

The

REAL

pseudovariable

assigns

a

real

value

or

the

real

part

of

a

complex

value

to

the

real

part

of

x.

��

REAL(x)

��

x

Complex

reference.

REM

REM

returns

the

remainder

of

x

divided

by

y.

This

can

be

calculated

by:

x

-

y

*

trunc(x/y)

��

REM(x,y)

��

x

and

y

Expressions.

x

and

y

must

be

computational

and

can

be

arithmetic.

For

examples

that

contrast

the

REM

and

MOD

built-in

functions,

refer

to

“MOD”

on

page

436.

REPATTERN

Takes

a

value

holding

a

date

in

one

pattern

and

returns

that

value

converted

to

a

date

in

a

second

pattern.

��

REPATTERN(d

,p

,q

)

,w

��

d

A

string

expression

representing

a

date.

The

length

of

d

must

be

at

least

as

large

as

the

length

of

the

source

pattern

q.

If

d

is

larger,

any

excess

characters

must

be

formed

by

leading

blanks.

d

must

have

a

computational

type

and

should

have

character

type.

If

not,

it

is

converted

to

character.

p

The

target

pattern;

must

be

one

of

the

supported

date/time

patterns.

q

The

source

pattern;

must

be

one

of

the

supported

date/time

patterns.

w

Specifies

an

expression

(such

as

1950)

that

can

be

converted

to

an

integer.

If

negative,

it

specifies

an

offset

to

be

subtracted

from

the

value

of

the

year

when

the

code

runs.

If

omitted,

w

defaults

to

the

value

specified

in

the

WINDOW

compile-time

option.

The

returned

value

has

the

attributes

CHAR(m)

NONVARYING

where

m

is

the

length

of

the

target

patter

p.

REAL

pseudovariable

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

461

The

allowed

patterns

are

listed

in

Table

52

on

page

374.

For

an

explanation

of

Lilian

format,

see

“Date/time

built-in

functions”

on

page

373.

REPATTERN(’990101’,’YYYYMMDD’,’YYMMDD’,

1950)

returns

’19990101’

REPATTERN(’000101’,’YYYYMMDD’,’YYMMDD’,

1950)

returns

’20000101’

REPATTERN(’19990101’,’YYMMDD’,’YYYYMMDD’,

1950)

returns

’990101’

REPATTERN(’20000101’,’YYMMDD’,’YYYYMMDD’,

1950)

returns

’000101’

REPATTERN(’19490101’,’YYMMDD’,’YYYYMMDD’,

1950)

raises

ERROR

REPEAT

REPEAT

returns

a

bit,

character,

graphic

or

widechar

string

consisting

of

x

concatenated

to

itself

the

number

of

times

specified

by

y.

That

is,

there

are

(y

+

1)

occurrences

of

x.

��

REPEAT(x,y)

��

x

Bit,

character,

graphic

or

widechar

expression

to

be

repeated.

If

x

is

arithmetic,

the

following

conversions

occur:

v

If

it

is

binary,

x

is

converted

to

bit

string

v

If

it

is

decimal,

x

is

converted

to

character

string.

y

Expression.

If

necessary,

y

is

converted

to

a

real

fixed-point

binary

value.

If

y

is

zero

or

negative,

the

string

x

is

returned.

For

an

example

of

the

REPEAT

built-in

function,

see

“COPY”

on

page

397.

REVERSE

REVERSE

returns

a

nonvarying

string

that

contains

the

elements

of

x

in

reverse

order.

��

REVERSE(x)

��

x

Expression.

x

must

have

a

computational

type

and

should

have

a

string

type.

If

x

does

not

have

a

string

type,

it

is

converted

to

string

(that

is,

from

numeric

to

bit,

character,

graphic

or

widechar),

according

to

the

rules

for

concatenation.

Example

dcl

Source

char

value(’HARPO’);

dcl

Target

char(length(Source));

Target

=

reverse

(Source);

/*

’OPRAH’

*/

RIGHT

RIGHT

returns

a

string

that

is

the

result

of

inserting

string

x

at

the

right

end

of

a

string

with

length

n

and

padded

on

the

left

with

the

character

z

as

needed.

If

z

is

omitted,

a

blank

is

used

as

the

padding

character.

REPATTERN

462

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

RIGHT(x,n

)

,z

��

x

Expression.

x

must

have

a

computational

type

and

can

have

a

character

type.

If

not,

it

is

converted

to

character.

n

Expression.

n

must

have

a

computational

type

and

is

converted

to

FIXED

BINARY(31,0).

z

Expression.

If

specified,

z

must

have

the

type

CHARACTER(1)

NONVARYING

type.

Example

dcl

Source

char

value(’One

Hundred

SCIDS

Marks’);

dcl

Target

char(30);

Target

=

right

(Source,

length(Target),

’*’);

/*

’*******One

Hundred

SCIDS

Marks’

*/

ROUND

ROUND

returns

the

value

of

x

rounded

at

a

digit

specified

by

n.

The

result

has

the

mode,

base,

and

scale

of

x.

��

ROUND(x,n)

��

x

Real

expression.

If

x

is

negative,

the

absolute

value

is

rounded

and

the

sign

is

restored.

n

Optionally-signed

integer.

It

specifies

the

digit

at

which

rounding

is

to

occur.

n

must

conform

to

the

limits

of

scaling-factors

for

FIXED

data.

If

n

is

greater

than

0,

rounding

occurs

at

the

(n)th

digit

to

the

right

of

the

point.

If

n

is

zero

or

negative,

rounding

occurs

at

the

(1-n)th

digit

to

the

left

of

the

point.

The

precision

of

a

fixed-point

result

is

given

in

the

following

example

where

(p,q)

is

the

precision

of

x,

and

N

is

the

maximum

number

of

digits

allowed:

(max(1,min(p-q+1+n,N)),n)

Thus,

n

specifies

the

scaling

factor

of

the

result.

In

the

following

example,

the

value

6.67

is

output:

dcl

X

fixed

dec(5,4)

init(6.6666);

put

(round(X,2));

Results

under

compiler

option

USAGE(

ROUND(ANS)

)

If

x

is

FIXED,

consider

the

following

example

where

b

=

2

if

x

is

BINARY

and

b

=

10

if

x

is

DECIMAL:

round(x,n)

=

sign(x)*(b-n)*

floor(abs(x)*

(bn)

+

1/2)

If

x

is

FLOAT

and

not

equal

to

0,

consider

this

example

where

b

=

radix(x)

and

e

=

exponent(x):

round(x,n)

=

sign(x)*(b(e-n))*

floor(abs(x)*

(b(n-e))

+

1/2)

RIGHT

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

463

Finally,

if

x

is

FLOAT

and

equal

to

0,

consider

this

example:

round

(x,n)

=

0

Results

under

compiler

option

USAGE(

ROUND(IBM)

)

If

x

is

FIXED,

consider

the

following

example

where

b

=

2

if

x

is

BINARY

and

b

=

10

if

x

is

DECIMAL.

round(x,n)

=

sign(x)*(b-n)*

floor(abs(x)*

(bn)

+

1/2)

If

x

is

FLOAT,

no

action

is

taken.

SAMEKEY

SAMEKEY

returns

a

bit

string

of

length

1

indicating

whether

a

record

that

has

been

accessed

is

followed

by

another

with

the

same

key.

��

SAMEKEY(x)

��

x

File

reference.

The

file

must

have

the

RECORD

attribute.

Upon

successful

completion

of

an

input/output

operation

on

file

x,

or

immediately

before

the

RECORD

condition

is

raised,

the

value

accessed

by

SAMEKEY

is

set

to

'1'B

if

the

record

processed

is

followed

by

another

record

with

the

same

key,

and

set

to

'0'B

if

it

is

not.

The

value

accessed

by

SAMEKEY

is

also

set

to

'0'B

if:

v

An

input/output

operation

that

raises

a

condition

other

than

RECORD

also

causes

file

positioning

to

be

changed

or

lost

v

The

file

is

not

open

v

No

current

cursor

position

exists

in

the

file.

SCALE

SCALE

returns

a

floating-point

value

based

on

the

following

formula:

n

x*(radix(x)

)

The

result

has

the

base,

mode,

and

precision

of

x.

��

SCALE(x,n)

��

x

REAL

FLOAT

expression.

n

Expression

that

must

have

a

computational

type

and

is

converted

to

FIXED

BINARY(31,0).

ROUND

464

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

SEARCH

SEARCH

returns

an

unscaled

REAL

FIXED

BINARY

value

specifying

the

first

position

in

one

string

at

which

any

character,

bit,

graphic

or

widechar

of

another

string

appears.

It

also

allows

you

to

specify

the

location

at

which

to

start

searching.

��

SEARCH(x,y

)

,n

��

x

and

y

Expressions.

x

specifies

the

string

in

which

to

search

for

any

character,

bit,

graphic

or

widechar

that

appears

in

string

y.

If

either

x

or

y

are

the

null

string,

the

result

is

zero.

If

y

does

not

occur

in

x,

the

result

is

zero.

n

Expression.

n

specifies

the

location

within

x

at

which

to

begin

searching.

It

must

have

a

computational

type

and

is

converted

to

FIXED

BINARY(31,0).

Unless

1

≤

n

≤

LENGTH(x)+1,

STRINGRANGE

condition,

if

enabled,

is

raised.

Its

implicit

action

and

normal

return

give

a

result

of

zero.

The

BIFPREC

compiler

option

determines

the

precision

of

the

result

returned.

SEARCH

can

be

used

to

find

delimiters

in

a

string

of

numbers.

Example

dcl

Source

char

value(’

Our

PL/I

wields

the

Power

’);

dcl

Pos

fixed

bin(31);

/*

Find

occurrences

of

any

of

the

characters

’P’,’o’,or

’w’

in

source

*

/

Pos

=

search

(Source,

’Pow’);

/*

returns

6

for

the

’P’

*/

Pos

=

search

(Source,

’Pow’,

Pos+1);

/*

returns

11

for

the

’w’

*/

Pos

=

search

(Source,

’Pow’,

Pos+1);

/*

returns

22

for

the

’P’

*/

Pos

=

search

(Source,

’Pow’,

Pos+1);

/*

returns

23

for

the

’o’

*/

Pos

=

search

(Source,

’Pow’,

Pos+1);

/*

returns

24

for

the

’w’

*/

Pos

=

index

(source,

’Pow’,1);

/*

returns

22

for

the

’Pow’

*/

In

the

above

example,

SEARCH

returns

the

position

at

which

any

of

the

three

characters

(’P’,

’o’,

or

’w’)

appear.

INDEX

returns

the

position

at

which

the

whole

string

’Pow’

appears.

Example

dcl

Source

char

value

(’

368,475;121.,856,478’)

dcl

Delims

char(3)

init

(’,;.’);

/*

string

of

delimiters

*/

dcl

Number(5)

char(3);

dcl

Start

fixed

bin(31);

dcl

End

fixed

bin(31);

/*

Extract

the

three-digit

numbers

from

the

source

string

*/

/*

by

searching

for

the

delimiters

*/

Start

=

verify

(Source,

’

’);

/*

find

start

of

first

number

*/

End

=

search

(Source,

’,;.’,

Start

);

/*

find

end

of

first

number

*/

SEARCH

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

465

if

End

=

0

then

End

=

length

(Source)

+

1;

Number(1)

=

substr

(Source,

Start,

3);

/*

368

*/

Start

=

verify

(Source,

Delims,

End);

/*

find

start

of

second

number

*/

End

=

search

(Source,

Delims,

Start

);

Number(2)

=

substr

(Source,

Start,

3);

/*

475

*/

SEARCHR

��

SEARCHR(x,y

)

,n

��

The

SEARCHR

function

performs

the

same

operation

as

the

SEARCH

built-in

function

except

for

the

following

differences:

v

The

search

is

done

from

right

to

left.

v

The

default

value

for

n

is

LENGTH(x).

v

Unless

0

≤

n

≤

LENGTH(x),

the

STRINGRANGE

condition,

if

enabled,

is

raised.

Its

implicit

action

and

normal

return

give

a

result

of

zero.

The

BIFPREC

compiler

option

determines

the

precision

of

the

result

returned.

The

syntax

for

SEARCHR

is

described

in

“SEARCH”

on

page

465.

Example

dcl

Source

char

value

(’

555

Bailey

Ave,

San

Jose,

CA

95141,

USA’);

dcl

Digits

char

value

(’0123456789’);

dcl

(Start,

End)

fixed

bin(31);

dcl

Num

char(20)

var;

/*

Find

last

number

(i.e.,

zip

code)

*/

End

=

searchr

(Source,

Digits);

/*

returns

35

for

the

’1’

*/

Start

=

verifyr

(Source,

Digits,

End);

/*

returns

30

for

the

’

’

*/

Num

=

substr

(Source,

Start

+

1,

End

−

Start);

/*

extract

number

*/

SECS

SECS

returns

a

FLOAT

BINARY(53)

value

which

is

the

number

of

seconds

(based

on

Lilian

format)

corresponding

to

the

date

d.

��

SECS

(

)

d

,p

,w

��

d

A

string

expression

representing

a

date.

If

present,

d

specifies

the

input

date

as

a

character

string

representing

the

date/time

specified

in

the

pattern

p.

If

d

is

missing,

it

is

assumed

to

be

DATETIME().

d

must

have

a

computational

type

and

should

have

character

type.

If

not,

it

is

converted

to

character.

SEARCH

466

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

p

One

of

the

supported

date/time

patterns.

If

p

is

omitted,

it

is

assumed

to

be

the

default

date/time

pattern

'YYYYMMDDHHMISS999'.

p

must

have

a

computational

type

and

should

have

character

type.

If

not,

it

is

converted

to

character.

w

Specifies

an

expression

(such

as

1950)

that

can

be

converted

to

an

integer.

If

negative,

it

specifies

an

offset

to

be

subtracted

from

the

value

of

the

year

when

the

code

runs.

If

omitted,

w

defaults

to

the

value

specified

in

the

WINDOW

compile-time

option.

The

allowed

patterns

are

listed

in

Table

52

on

page

374.

For

an

explanation

of

Lilian

format,

see

“Date/time

built-in

functions”

on

page

373.

Example

dcl

Dayname

(7)

char(9)

var

static

nonasgn

init(

’Sunday’,

’Monday’,

’Tuesday’,

’Wednesday’,

’Thursday’,

’Friday’,

’Saturday’);

dcl

Jul4_1776_Secs

float

bin(53);

dcl

Age_Tot_Secs

pic

’Z,ZZZ,ZZZ,ZZZ,ZZ9’;

Jul4_1776_Secs

=

secs(’17760704’,’YYYYMMDD’);

/*

seconds

*/

Age_Tot_Secs

=

secs()

−

Jul4_1776_Secs;

/*

seconds

since

*/

display

(’USA

became

independent

on

’

\

dayname(weekday(secstodays(Jul4_1776_Secs)))

\

’,

July

4,

1776

and

at

this

very

moment

it

has

been

’

\

Age_Tot_Secs,

\

’

seconds.’);

SECSTODATE

SECSTODATE

returns

a

nonvarying

character

string

containing

the

date

in

the

date/time

pattern

specified

by

p

that

corresponds

to

d

seconds

(based

on

Lilian

format).

��

SECSTODATE

(

)

d

,p

,w

��

d

A

string

expression

representing

a

date.

If

omitted,

it

is

assumed

to

be

the

value

returned

by

DATETIME().

The

value

for

d

must

have

a

computational

type

and

is

converted

to

FLOAT

BINARY(53),

if

necessary.

p

One

of

the

supported

date/time

patterns.

If

omitted,

p

is

assumed

to

be

the

default

date/time

pattern

'YYYYMMDDHHMISS999'

(the

default

format

returned

by

DATETIME).

w

Specifies

an

expression

(such

as

1950)

that

can

be

converted

to

an

integer.

If

negative,

it

specifies

an

offset

to

be

subtracted

from

the

value

of

the

year

when

the

code

runs.

If

omitted,

w

defaults

to

the

value

specified

in

the

WINDOW

compile-time

option.

SECS

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

467

The

allowed

patterns

are

listed

in

Table

52

on

page

374.

For

an

explanation

of

Lilian

format,

see

“Date/time

built-in

functions”

on

page

373.

SECSTODAYS

SECSTODAYS

returns

a

FIXED

BINARY(31,0)

value

that

represents

the

number

of

seconds

x

converted

to

days,

ignoring

incomplete

days.

��

SECSTODAYS(x)

��

x

Expression.

The

value

for

x

must

have

computational

type

and

should

be

FLOAT

BINARY(53).

If

not,

it

is

converted

to

FLOAT

BINARY(53).

SECSTODAYS(x)

is

the

same

as

x⁄(24*60*60).

For

an

example,

see

“SECS”

on

page

466.

SIGN

SIGN

returns

an

unscaled

REAL

FIXED

BINARY

value

that

indicates

whether

x

is

positive,

zero,

or

negative.

��

SIGN(x)

��

x

Real

expression.

The

returned

value

is

given

by:

Value

of

x

Value

Returned

x

>

0

+1

x

=

0

0

x

<

0

−1

The

BIFPREC

compiler

option

determines

the

precision

of

the

result

returned.

SIGNED

SIGNED

returns

a

signed

FIXED

BINARY

value

of

x,

with

a

precision

specified

by

p

and

q.

��

SIGNED(x

)

,p

,q

��

x

Expression.

SECSTODATE

468

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

p

Restricted

expression

that

specifies

the

number

of

digits

to

be

maintained

throughout

the

operation.

q

Restricted

expression

that

specifies

the

scaling

factor

of

the

result.

For

a

fixed-point

result,

if

p

is

given

and

q

is

omitted,

a

scaling

factor

of

zero

is

the

default.

SIN

SIN

returns

a

floating-point

value

that

is

an

approximation

of

the

sine

of

x.

It

has

the

base,

mode,

and

precision

of

x.

��

SIN(x)

��

x

Expression

whose

value

is

in

radians.

SIND

SIND

returns

a

real

floating-point

value

that

is

an

approximation

of

the

sine

of

x.

It

has

the

base

and

precision

of

x.

��

SIND(x)

��

x

Real

expression

whose

value

is

in

degrees.

SINF

SINF

is

exactly

like

SIN

except

that:

v

SINF

calculates

its

result

inline

if

hardware

architecture

permits.

v

The

argument

must

be

real.

v

The

maximum

supported

absolute

value

of

the

argument

is

set

by

the

hardware.

v

Invalid

arguments

may

raise

the

INVALIDOP

condition,

generate

some

other

hardware

exception

or

cause

some

other

unpredictable

result.

v

The

accuracy

of

the

result

is

set

by

the

hardware.

For

the

definition

and

syntax,

see

“SIN.”

SINH

SINH

returns

a

floating-point

value

that

represents

an

approximation

of

the

hyperbolic

sine

of

x.

It

has

the

base,

mode,

and

precision

of

x.

��

SINH(x)

��

x

Expression

whose

value

is

in

radians.

SIGNED

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

469

SIZE

SIZE

returns

a

FIXED

BINARY(31,0)

value

giving

the

implementation-defined

storage,

in

bytes,

allocated

to

a

variable

x.

��

SIZE(x)

��

x

A

variable

of

any

data

type,

data

organization,

alignment,

and

storage

class,

except

as

listed

below.

x

cannot

be:

v

A

BASED,

DEFINED,

parameter,

subscripted,

or

structure

or

union

base-element

variable

that

is

an

unaligned

fixed-length

bit

string

v

A

minor

structure

or

union

whose

first

or

last

base

element

is

an

unaligned

fixed-length

bit

string

(except

where

it

is

also

the

first

or

last

element

of

the

containing

major

structure

or

union)

v

A

major

structure

or

union

that

has

the

BASED,

DEFINED,

or

parameter

attribute,

and

which

has

an

unaligned

fixed-length

bit

string

as

its

first

or

last

element

v

A

variable

not

in

connected

storage

The

value

returned

by

SIZE(x)

is

the

maximum

number

of

bytes

that

could

be

transmitted

in

the

following

circumstances:

declare

F

file

record

input

environment(scalarvarying);

read

file(F)

into(x);

If

x

is:

v

A

varying-length

string,

the

returned

value

includes

the

length-prefix

of

the

string

and

the

number

of

bytes

in

the

maximum

length

of

the

string

v

An

area,

the

returned

value

includes

the

area

control

bytes

and

the

maximum

size

of

the

area

v

An

aggregate

containing

areas

or

varying-length

strings,

the

returned

value

includes

the

area

control

bytes,

the

maximum

sizes

of

the

areas,

the

length

prefixes

of

the

strings,

and

the

number

of

bytes

in

the

maximum

lengths

of

the

strings.

The

SIZE

built-in

function

must

not

be

used

on

a

BASED

variable

with

adjustable

extents

if

that

variable

has

not

been

allocated.

To

get

the

number

of

bytes

currently

required

by

a

variable,

as

opposed

to

the

number

of

bytes

allocated

to

it,

use

the

CURRENTSIZE

built-in

function.

See

“CURRENTSIZE”

on

page

401

for

more

details.

Example

dcl

Scids

char(17)

init(’See

you

at

SCIDS!’)

static;

dcl

Vscids

char(20)

varying

init(’See

you

at

SCIDS!’)

static;

dcl

Stg

fixed

bin(31);

Stg

=

storage

(Scids);

/*

17

bytes

*/

Stg

=

currentsize

(Scids);

/*

17

bytes

*/

Stg

=

size

(Vscids);

/*

22

bytes

*/

SIZE

470

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Stg

=

currentsize

(Vscids);

/*

19

bytes

*/

Stg

=

size

(Stg);

/*

4

bytes

*/

Stg

=

currentsize

(Stg);

/*

4

bytes

*/

SOURCEFILE

SOURCEFILE

returns

a

nonvarying

character

string

containing

the

name

of

the

file

that

contains

the

statement

where

this

function

is

invoked.

��

SOURCEFILE

()

��

SOURCEFILE

can

be

used

in

restricted

expressions.

The

string

returned

is

system

dependent

and

should

be

used

for

tracing

and

debugging

purposes

only.

SOURCELINE

SOURCELINE()

returns

a

FIXED

BINARY(31,0)

value

that

is

the

line

number

of

the

statement

where

this

function

is

invoked,

within

the

file

that

contains

that

statement.

If

the

statement

extends

over

several

source

lines,

the

number

returned

is

that

of

the

line

on

which

the

statement

starts.

��

SOURCELINE

(

)

��

SOURCELINE()

can

be

used

in

restricted

expressions.

SQRT

SQRT

returns

a

floating-point

value

that

is

an

approximation

of

the

positive

square

root

of

x.

It

has

the

base,

mode,

and

precision

of

x.

��

SQRT(x)

��

x

Expression.

If

x

is

real,

it

must

not

be

less

than

zero.

SQRTF

SQRTF

is

the

same

as

SQRT

except

for

these

differences:

v

SQRTF

calculates

its

result

inline

if

hardware

architecture

permits.

v

The

argument

must

be

real.

v

Invalid

arguments

will

generate

hardware

exceptions.

v

The

accuracy

of

the

result

is

set

by

the

hardware.

For

the

definition

and

syntax,

see

“SQRT.”

SIZE

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

471

STORAGE

Abbreviation:

STG

STORAGE

is

a

synonym

for

SIZE.

See

the

syntax

for

“SIZE”

on

page

470.

STRING

STRING

returns

an

element

bit

or

character

string

that

is

the

concatenation

of

all

the

elements

of

x.

��

STRING(x)

��

x

Aggregate

or

element

reference.

STRING

is

restricted

as

follows:

v

It

cannot

be

applied

to

unions

or

structures

containing

unions.

v

If

applied

to

a

scalar,

the

scalar

must

be

a

bit

string,

a

character

string,

a

pictured

character

string,

a

pictured

numeric

string,

a

graphic

string,

or

a

widechar

string.

v

If

applied

to

a

structure,

the

structure

must

contain

no

padding

bytes

and

the

elements

of

the

structure

must

be

either:

–

All

unaligned

bit

strings

–

All

character

strings,

each

of

which

is

either

a

character

string,

a

pictured

string,

or

a

pictured

numeric

string

–

All

graphic

strings

–

All

widechar

strings
v

If

applied

to

an

array,

all

elements

in

the

array

are

subject

to

the

restrictions

as

described

previously.

The

following

are

valid

STRING

targets:

dcl

1

A,

2

B

bit(8),

2

C

bit(2),

2

D

bit(8);

dcl

1

W,

2

X

char(2),

2

Y

pic’aa’,

2

Z

char(6);

dcl

1

W,

2

X

char(2),

2

Y

pic’99’,

2

Z

char(6);

The

following

are

invalid

STRING

targets:

STORAGE

472

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

dcl

1

A,

2

B

bit(8)

aligned,

2

C

bit(2),

2

D

bit(8)

aligned;

STRING

pseudovariable

The

STRING

pseudovariable

assigns

a

string

to

x

as

if

x

were

a

string

scalar.

Any

remaining

strings

in

x

are

filled

with

blanks

or

zero

bits,

or,

if

varying-length,

are

given

zero

length.

��

STRING(x)

��

x

Aggregate

or

element

reference.

Each

base

element

of

x

must

be

either

all

bit-string

or

all

character-string.

The

STRING

pseudovariable

must

not

be

used

out

of

context.

The

pseudovariable

is

also

subject

to

the

restrictions

of

the

STRING

built-in

function.

For

more

information

on

the

restrictions,

refer

to

472.

SUBSTR

SUBSTR

returns

a

substring,

specified

by

y

and

z,

of

x.

��

SUBSTR(x,y

)

,z

��

x

String

expression.

It

specifies

the

string

from

which

the

substring

is

extracted.

If

x

is

not

a

string,

it

is

converted

to

character.

y

Expression

that

is

converted

to

FIXED

BINARY(31,0).

y

specifies

the

starting

position

of

the

substring

in

x.

z

Expression

that

is

converted

to

FIXED

BINARY(31,0).

z

specifies

the

length

of

the

substring

in

x.

If

z

is

zero,

a

null

string

is

returned.

If

z

is

omitted,

the

substring

returned

is

position

y

in

x

to

the

end

of

x.

The

STRINGRANGE

condition

is

raised

if

z

is

negative

or

if

the

values

of

y

and

z

are

such

that

the

substring

does

not

lie

entirely

within

the

current

length

of

x.

It

is

not

raised

when

y

=

LENGTH(x)+1

and

z

=

0.

For

an

example

of

the

SUBSTR

built-in

function,

see

“SEARCH”

on

page

465.

SUBSTR

pseudovariable

The

SUBSTR

pseudovariable

assigns

a

string

value

to

a

substring,

specified

by

y

and

z,

of

x.

The

remainder

of

x

is

unchanged.

Assignments

to

a

varying

string

do

not

change

the

length

of

the

string.

STRING

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

473

��

SUBSTR(x,y

)

,z

��

x

String-reference.

x

must

not

be

a

numeric

character.

y

Expression.

y

expression

that

can

be

converted

to

a

FIXED

BINARY

value

which

specifies

the

starting

position

of

the

substring

in

x.

z

Expression.

z

specifies

the

length

of

the

substring

in

x.

It

can

be

converted

to

a

real

fixed-point

binary

value.

If

z

is

zero,

a

null

string

is

returned.

If

z

is

omitted,

the

substring

returned

is

position

y

in

x

to

the

end

of

x.

y

and

z

can

be

arrays

only

if

x

is

an

array.

SUBTRACT

SUBTRACT

is

equivalent

to

ADD(x,-y,p,q).

��

SUBTRACT(x,y,p

)

,q

��

For

details

about

arguments,

refer

to

“ADD”

on

page

383

for

argument

descriptions.

SUCC

SUCC

returns

a

floating-point

value

that

is

the

smallest

representable

number

larger

than

x.

It

is

the

base,

mode,

and

precision

of

x.

The

OVERFLOW

condition

is

raised

if

there

is

no

such

number.

��

SUCC(x)

��

x

REAL

FLOAT

expression.

SUCC

satisfies

the

following

relationships:

pred(succ(x))

=

x

succ(pred(x))

=

x

succ(x)

=

-pred(-x)

succ(0d0)

=

tiny(0d0)

SUBSTR

pseudovariable

474

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

SUM

SUM

returns

the

sum

of

all

the

elements

in

x.

The

base,

mode,

and

scale

of

the

result

match

those

of

x.

��

SUM(x)

��

x

Array

expression.

If

the

elements

of

x

are

strings,

they

are

converted

to

fixed-point

integer

values.

If

the

elements

of

x

are

fixed-point,

the

precision

of

the

result

is

(N,q),

where

N

is

the

maximum

number

of

digits

allowed,

and

q

is

the

scaling

factor

of

x.

If

the

elements

of

x

are

floating-point,

the

precision

of

the

result

matches

x.

SYSNULL

SYSNULL

returns

the

system

null

pointer

value.

You

can

assign

SYSNULL

to

handles

and

compare

it

with

handles.

You

can

use

SYSNULL

to

initialize

static

pointer

and

offset

variables.

��

SYSNULL

()

��

Note:

NULL

and

SYSNULL

may

compare

equal;

however,

you

should

not

write

code

that

depends

on

their

equality.

See

also

“NULL”

on

page

438.

SYSTEM

SYSTEM(x)

returns

a

FIXED

BIN(31,0)

value

that

is

the

return

value

from

the

command

processor

when

it

is

invoked

with

the

command

contained

in

x.

��

SYSTEM

(x)

��

x

Must

have

a

computational

type

and

should

have

characater

type.

If

not,

x

is

converted

to

character.

SUM

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

475

TALLY

TALLY

returns

a

FIXED

BINARY(31,0)

result

that

indicates

the

number

of

times

string

y

appears

in

string

x.

If

y

does

not

appear

in

x,

a

value

of

0

is

returned.

��

TALLY(x,y)

��

x

and

y

String

expressions.

Both

x

and

y

must

have

computational

type

and

should

be

character,

bit,

graphic

or

widechar

type.

If

either

x

or

y

are

the

null

string,

the

result

is

zero.

Example

TALLY

(’We’’ve

got

the

Power!’,

’power’);

/*

returns

0

*/

TALLY

(’We’’ve

got

the

Power!’,

’Power’);

/*

returns

1

*/

TALLY

(’We’’ve

got

the

Power!’,

’

’);

/*

returns

3

*/

TALLY

(’We’’ve

got

the

Power!’,

’e’);

/*

returns

4

*/

TALLY

(’1001’B,

’1’B);

/*

returns

2

*/

TAN

TAN

returns

a

floating-point

value

that

is

an

approximation

of

the

tangent

of

x.

It

has

the

base,

mode,

and

precision

of

x.

��

TAN(x)

��

x

Expression

whose

value

is

in

radians.

TAND

TAND

returns

a

real

floating-point

value

that

is

an

approximation

of

the

tangent

of

x.

It

has

the

base

and

precision

of

x.

��

TAND(x)

��

x

Real

expression

whose

value

is

in

degrees.

TANF

TANF

is

exactly

like

TAN

except

that:

v

TANF

calculates

its

result

inline

if

hardware

architecture

permits.

v

The

argument

must

be

real.

v

The

maximum

supported

absolute

value

of

the

argument

is

set

by

the

hardware.

TALLY

476

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

v

Invalid

arguments

may

raise

the

INVALIDOP

condition,

generate

some

other

hardware

exception

or

cause

some

other

unpredictable

result.

v

The

accuracy

of

the

result

is

set

by

the

hardware.

For

the

definition

and

syntax,

see

“TAN”

on

page

476.

TANH

TANH

returns

a

floating-point

value

that

is

an

approximation

of

the

hyperbolic

tangent

of

x.

It

has

the

base,

mode,

and

precision

of

x.

��

TANH(x)

��

x

Expression

whose

value

is

in

radians.

THREADID

THREADID

(short

for

thread

identifier)

returns

a

FIXED

BINARY(31,0)

value

that

is

the

operating

system

thread

identifier

for

an

attached

thread.

If

you

invoke

THREADID

without

an

argument,

it

returns

the

id

for

the

current

thread.

��

THREADID

(

x

)

��

x

Task

reference.

You

can

specify

the

value

of

x

in

the

THREAD

option

of

the

ATTACH

statement.

The

value

returned

by

this

built-in

function

can

be

used

as

a

parameter

to

system

functions

such

as

DosSetPriority.

TANF

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

477

TIME

TIME

returns

a

character

string

timestamp

in

the

format

HHMISS999.

��

TIME

()

��

TINY

TINY

returns

a

floating-point

value

that

is

the

smallest

positive

value

x

can

assume.

It

has

the

base,

mode,

and

precision,

of

x.

��

TINY(x)

��

x

REAL

FLOAT

expression.

TINY(x)

is

a

constant

and

can

be

used

in

restricted

expressions.

TRANSLATE

TRANSLATE

returns

a

character

string

of

the

same

length

as

x.

��

TRANSLATE(x,y

)

,z

��

x

Character

expression

to

be

searched

for

possible

translation

of

its

characters.

y

Character

expression

containing

the

translation

values

of

characters.

z

Character

expression

containing

the

characters

that

are

to

be

translated.

If

z

is

omitted,

it

defaults

to

collate().

TRANSLATE

operates

on

each

character

of

x

as

follows:

If

a

character

in

x

is

found

in

z,

the

character

in

y

that

corresponds

to

that

in

z

is

copied

to

the

result;

otherwise,

the

character

in

x

is

copied

directly

to

the

result.

If

z

contains

duplicates,

the

leftmost

occurrence

is

used.

y

is

padded

with

blanks,

or

truncated,

on

the

right

to

match

the

length

of

z.

Any

arithmetic

or

bit

arguments

are

converted

to

character.

TRANSLATE

does

not

support

GRAPHIC

or

WIDECHAR

data.

Example

dcl

source

char

value("Ein

Raetsel

gibt

es

nicht.");

dcl

target

char(length(source));

dcl

(to

value

(’ABCDEFGHIJKLMNOPQRSTUVWXYZ’),

TIME

478

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

from

value

(’abcdefghijklmnopqrstuvwxyz’))

char;

target

=

translate(source,

to,

from);

/*

"EIN

RAETSEL

GIBT

ES

NICHT."

*/

Note

that

you

could

also

use

the

UPPERCASE

built-in

for

the

same

purpose

as

the

TRANSLATE

built-in

in

the

example

above.

However,

while

the

UPPERCASE

built-in

function

will

translate

only

the

standard

alphabetic

characters,

TRANSLATE

can

be

used

to

translate

other

characters.

For

example,

if

″Raetsel″

were

spelled

with

an

a-umlaut,

TRANSLATE

could

translate

the

a-umlaut

to

A-umlaut

if

those

characters

were

added

to

the

from

and

to

strings,

respectively.

TRIM

TRIM

returns

a

nonvarying

character

string

with

characters

trimmed

from

one

or

both

ends.

��

TRIM(x

)

,y

,z

��

x,

y,

and

z

Expressions.

Each

must

have

a

computational

type

and

should

have

the

attribute

CHARACTER.

If

not,

they

are

converted.

x

is

the

string

from

which

the

characters

defined

by

y

are

trimmed

from

the

left,

and

the

characters

defined

by

z

are

trimmed

from

the

right.

If

z

is

omitted,

it

defaults

to

a

CHARACTER(1)

NONVARYING

string

containing

one

blank.

If

y

and

z

are

both

omitted,

they

both

default

to

a

CHAR(1)

NONVARYING

string

containing

one

blank.

Example

dcl

Source

char

value("

PL/I’s

got

the

Power!

");

dcl

Target

char(length(Source))

varying;

Target

=

trim(Source,

’

’,

’*

’);

/*

"***

PL/I’s

got

the

Power!"

*/

TRUNC

TRUNC

returns

an

integer

value

that

is

the

truncated

value

of

x.

If

x

is

positive

or

0,

this

is

the

largest

integer

value

less

than

or

equal

to

x.

If

x

is

negative,

this

is

the

smallest

integer

value

greater

than

or

equal

to

x.

This

value

is

assigned

to

the

result.

TRANSLATE

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

479

��

TRUNC(x)

��

x

Real

expression.

The

base,

mode,

scale,

and

precision

of

the

result

match

those

of

x.

Except

when

x

is

fixed-point

with

precision

(p,q),

the

precision

of

the

result

is

given

by:

(min(N,max(p-q+1,1)),0)

where

N

is

the

maximum

number

of

digits

allowed.

TYPE

TYPE

returns

the

typed

structure

or

union

located

by

the

handle,

x.

��

TYPE(x)

��

x

Handle

TYPE(x)

dereferences

the

typed

structure

(or

union)

x.

For

an

example

of

the

TYPE

built-in

functions,

see

“TYPE

pseudovariable.”

TYPE

pseudovariable

The

TYPE

pseudovariable

assigns

a

typed

structure

or

union

to

the

storage

located

by

the

handle

x.

��

TYPE(x)

��

x

Handle

Given

a

defined

structure

T,

the

following

assignments

are

valid:

dcl

P1

handle

T;

dcl

P2

handle

T;

dcl

D1

type

T;

dcl

D2

type

T;

D1

=

type(P2);

/*

Assigns

the

storage

located

by

P2

to

D1

*/

type(P1)

=

type(P2);

type(P1)

=

D2;

/*

Assigns

D2

to

the

storage

located

by

P1

*/

UNALLOCATED

UNALLOCATED

returns

a

bit(1)

value

indicating

whether

or

not

a

specified

pointer

value

is

the

start

of

a

piece

of

allocated

storage.

To

use

this

built-in

function,

you

must

also

specify

the

CHECK(STORAGE)

compile-time

option.

TRUNC

480

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

UNALLOCATED(P)

��

p

Pointer

expression.

UNALLOCATED

returns

the

bit(1)

value

’1’b

if

the

specified

pointer

value

is

the

start

of

a

piece

of

storage

obtained

via

the

ALLOCATE

statement

or

the

ALLOCATE

built-in

function.

UNSIGNED

UNSIGNED

returns

an

unsigned

FIXED

BINARY

value

of

x,

with

a

precision

specified

by

p

and

q.

��

UNSIGNED(x

)

,p

,q

��

x

Expression.

p

Integer.

It

specifies

the

number

of

digits

to

be

maintained

throughout

the

operation.

q

Optionally-signed

integer.

It

specifies

the

scaling

factor

of

the

result.

For

a

fixed-point

result,

if

p

is

given

and

q

is

omitted,

a

scaling

factor

of

zero

is

the

default.

UNSPEC

UNSPEC

returns

a

bit

string

that

is

the

internal

coded

form

of

x.

��

UNSPEC(x)

��

x

Scalar,

array,

structure,

or

union

expression.

The

UNSPEC

built-in

function

is

subject

to

the

following

rules:

v

Under

the

compiler

option

USAGE(

UNSPEC(IBM)

),

–

UNSPEC

of

structure

references

and

expressions

is

not

allowed.

–

UNSPEC

of

an

array

yields

an

array

of

BIT.
v

Under

the

compiler

option

USAGE(

UNSPEC(ANS)

),

–

For

aggregates,

UNSPEC

is

allowed

only

for

those

that

contain

no

padding

bytes

or

bits.

–

The

result

will

always

be

BIT

scalar.

UNSPEC

of

an

array

does

not

yield

an

array

of

BIT.

Note:

Use

of

UNSPEC

can

affect

the

portability

of

your

program.

The

length

of

the

returned

bit

string

depends

on

the

attributes

of

x,

as

shown

in

Table

65

on

page

482.

UNALLOCATED

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

481

Table

65.

Length

of

bit

string

returned

by

UNSPEC

Bit-String

length

Attribute

of

x

8

SIGNED

FIXED

BINARY(p,q),

1

<=

p

<=

7

UNSIGNED

FIXED

BINARY(p,q),

1

<=

p

<=

8

ORDINAL

SIGNED

PRECISION(p),

1

<=

p

<=

7

ORDINAL

UNSIGNED

PRECISION(p),

1

<=

p

<=

8

16

SIGNED

FIXED

BINARY(p,q),

8

<=

p

<=

15

UNSIGNED

FIXED

BINARY(p,q),

9

<=

p

<=

16

ORDINAL

SIGNED

PRECISION(p),

8

<=

p

<=

15

ORDINAL

UNSIGNED

PRECISION(p),

9

<=

p

<=

16

32

ENTRY

LIMITED

SIGNED

FIXED

BINARY(p,q),

16

<=

p

<=

31

UNSIGNED

FIXED

BINARY(p,q),

17

<=

p

<=

32

ORDINAL

SIGNED

PRECISION(p),

16

<=

p

<=

31

ORDINAL

UNSIGNED

PRECISION(p),

17

<=

p<=

32

FLOAT

DECIMAL(p),

1

<=

p

<=

6

FLOAT

BINARY(p),

1

<=

p

<=

21

OFFSET

FILE

constant

or

variable

POINTER

HANDLE

64

SIGNED

FIXED

BINARY(p),

31

<

p

UNSIGNED

FIXED

BINARY(p),

32

<

p

FLOAT

BINARY(p),

21

<

p

<

53

FLOAT

DECIMAL(p),

7

<=

p

<=

16

LABEL

constant

or

variable

ENTRY

constant

or

variable

128

FLOAT

BINARY(p),

54

<=

p

FLOAT

DECIMAL(p),

17

<=

p

TASK

n

BIT(n)

8*n

CHARACTER(n)PICTURE

(with

character-string-value

length

of

n)

16*n

GRAPHIC(n)WIDECHAR(n)

16+n

BIT(n)

VARYING

where

n

is

the

maximum

length

of

x

16+(8*n)

CHARACTER(n)

VARYING

where

n

is

the

maximum

length

of

x

8+(8*n)

CHARACTER(n)

VARYINGZ

where

n

is

the

maximum

length

of

x

16+(16*n)

GRAPHIC(n)

VARYING

where

n

is

the

maximum

length

of

xWIDECHAR(n)

VARYING

where

n

is

the

maximum

length

of

x

16+(16*n)

GRAPHIC(n)

VARYINGZ

where

n

is

the

maximum

length

of

xWIDECHAR(n)

VARYINGZ

where

n

is

the

maximum

length

of

x

8*(n+16)

AREA

(n)

8*FLOOR(n)

FIXED

DECIMAL

(p,q)

where

n

=

(p+2)/2

Alignment

and

storage

requirements

for

program-control

data

can

vary

across

supported

systems.

If

x

is

a

varying-length

string,

its

two-byte

prefix

is

included

in

the

returned

bit

string.

If

x

is

an

area,

the

returned

value

includes

the

control

information.

UNSPEC

482

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

UNSPEC

pseudovariable

The

UNSPEC

pseudovariable

assigns

a

bit

value

directly

to

x;

that

is,

without

conversion.

The

bit

value

is

padded,

if

necessary,

on

the

right

with

'0'B

to

match

the

length

of

x,

according

to

Table

65.

��

UNSPEC(x)

��

x

Reference.

If

x

is

a

varying

length

string,

its

2-byte

prefix

is

included

in

the

field

to

which

the

bit

value

is

assigned.

If

x

is

an

area,

its

control

information

is

included

in

the

receiving

field.

The

pseudovariable

is

subject

to

the

rules

for

the

UNSPEC

built-in

function

described

in

“UNSPEC”

on

page

481.

Note:

Use

of

UNSPEC

can

affect

the

portability

of

your

program.

Example

dcl

1

Str1

nonasgn

static,

2

*

fixed

bin(15)

littleendian

init(16),

/*

’1000’X

*/

2

*

char

init(’33’x),

2

*

bit

init(’1’b),

2

Ba(4)

bit

init(’1’b,

’0’b,

’1’b,

’0’b),

2

B3

bit(3)

init(’111’b),

2

*

char(0);

dcl

Bit_Str1

bit(size(Str1)*8);

dcl

Bit_Ba

bit(dim(Ba)*length(Ba(1)));

dcl

Bit_B3

bit(length(B3));

Bit_Ba

=

unspec(Ba);

/*

result

is

scalar

’1010’B

not

an

array

*/

Bit_B3

=

unspec(B3);

/*

’111’B

*/

Bit_Str1

=

unspec(Str1);

/*

’100033D7’B4

or

’100033’B4

\

’11010111’B

*/

UPPERCASE

UPPERCASE

returns

a

character

string

with

all

the

alphabetic

characters

from

a

to

z

converted

to

their

uppercase

equivalent.

��

UPPERCASE(x)

��

x

Expression.

If

necessary,

x

is

converted

to

character.

UPPERCASE(x)

is

equivalent

to

TRANSLATE(

x,

’ABCDEFGHIJKLMNOPQRSTUVWXYZ’,

’abcdefghijklmnopqrstuvwxyz’

)

UNSPEC

pseudovariable

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

483

VALID

VALID

returns

a

BIT(1)

value

that

is

'1'B

under

the

following

conditions:

v

If

x

is

PICTURE

and

its

contents

are

valid

for

x’s

picture

specification

v

If

x

is

FIXED

DECIMAL

and

the

data

in

x

is

valid

fixed

decimal

data

If

these

conditions

are

not

met,

the

result

is

'0'B.

��

VALID(x)

��

x

Reference

with

either

picture

or

fixed

decimal

type.

VALIDDATE

VALIDDATE

returns

a

'1'B

if

the

string

d

holds

a

date/time

value

that

matches

the

pattern

p.

��

VALIDDATE

(

)

d

,p

,w

��

d

A

string

expression

representing

a

date.

If

present,

d

specifies

the

input

date

as

a

character

string

representing

date/time

according

to

the

pattern

p.

If

d

is

missing,

it

is

assumed

to

be

DATETIME().

d

must

have

computational

type

and

should

have

character

type.

If

not,

d

is

converted

to

character.

p

One

of

the

supported

date/time

patterns.

If

present,

it

specifies

the

date/time

pattern

of

d.

If

p

is

missing,

it

is

assumed

to

be

the

default

date/time

pattern

of

'YYYYMMDDHHMISS9999'.

p

must

have

computational

type

and

should

have

character

type.

If

not,

it

is

converted

to

character.

w

Specifies

an

expression

(such

as

1950)

that

can

be

converted

to

an

integer.

If

negative,

it

specifies

an

offset

to

be

subtracted

from

the

value

of

the

year

when

the

code

runs.

If

omitted,

w

defaults

to

the

value

specified

in

the

WINDOW

compile-time

option.

Allowable

patterns

are

listed

in

Table

52

on

page

374.

For

an

explanation

of

Lilian

format,

see

“Date/time

built-in

functions”

on

page

373.

Example

dcl

duedate

char(8);

dcl

(b1,b2)

bit(1);

duedate

=

’19950228’;

VALID

484

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

b1

=

validdate(

duedate,

’YYYYMMDD’

);

/*

b1

=

’1’b

*/

duedate

=

’02301995’;

b2

=

validdate(

duedate,

’DDMMYYYY’

);

/*

b2

=

’0’b

*/

VARGLIST

VARGLIST

returns

the

address

of

the

first

optional

parameter

passed

to

a

procedure

with

a

variable

number

of

arguments

��

VARGLIST()

��

VARGLIST

may

be

used

only

inside

a

procedure

whose

last

parameter

has

the

LIST

attribute.

VARGSIZE

VARGSIZE

returns

the

number

of

bytes

that

a

variable

would

occupy

on

the

stack

if

it

were

passed

byvalue.

��

VARGSIZE(x)

��

x

A

variable

of

any

data

type,

data

organization,

alignment,

and

storage

class,

except

as

listed

below.

x

cannot

be:

v

A

BASED,

DEFINED,

parameter,

subscripted,

or

structure

or

union

base-element

variable

that

is

an

unaligned

fixed-length

bit

string

v

A

minor

structure

or

union

whose

first

or

last

base

element

is

an

unaligned

fixed-length

bit

string

(except

where

it

is

also

the

first

or

last

element

of

the

containing

major

structure

or

union)

v

A

major

structure

or

union

that

has

the

BASED,

DEFINED,

or

parameter

attribute,

and

which

has

an

unaligned

fixed-length

bit

string

as

its

first

or

last

element

v

A

variable

not

in

connected

storage

VARGSIZE(x)

returns

the

number

of

bytes

that

x

would

occupy

on

the

stack

if

it

were

passed

byvalue.

This

value

will

be

at

least

as

large

as

SIZE(x);

it

will

be

larger

if

the

value

returned

by

SIZE(x)

needs

to

be

rounded

up

to

a

4-byte

multiple.

VARGSIZE

is

meant

to

be

used

only

inside

a

procedure

whose

last

parameter

has

the

LIST

attribute.

VERIFY

VERIFY

returns

an

unscaled

REAL

FIXED

BINARY

value

indicating

the

position

in

x

of

the

leftmost

character,

widechar,

graphic,

or

bit

that

is

not

in

y.

It

also

allows

you

to

specify

the

location

within

x

at

which

to

begin

processing.

VALIDDATE

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

485

If

all

the

characters,

widechars,

graphics,

or

bits

in

x

do

appear

in

y,

a

value

of

zero

is

returned.

If

x

is

the

null

string,

a

value

of

zero

is

returned.

If

x

is

not

the

null

string

and

y

is

the

null

string,

the

value

of

n

is

returned.

The

default

value

for

n

is

one.

��

VERIFY(x,y

)

,n

��

x

String-expression.

y

String-expression.

n

Expression

n

specifies

the

location

within

x

where

processing

begins.

It

must

have

a

computational

type

and

is

converted

to

FIXED

BINARY(31,0).

Unless

1

≤

n

≤

LENGTH(x)

+

1,

the

STRINGRANGE

condition,

if

enabled,

is

raised.

Its

implicit

action

and

normal

return

give

a

result

of

0.

If

n

=

LENGTH(x)

+

1,

the

result

is

zero.

The

BIFPREC

compiler

option

determines

the

precision

of

the

result

returned.

Example

X

=

’

a

b’;

/*

Two

blanks

in

each

space

*/

Y

=

’

’;

/*

One

blank

*/

N

=

1;

I

=

verify(X,Y,N);

/*

I

=

3

*/

do

while

(I

>

0);

display

(

’Nonblank

at

position

’

\

trim(I)

);

N

=

I

+

1;

I

=

verify(X,Y,N);

end;

After

the

first

pass

through

the

do-loop,

N=4

and

VERIFY(X,Y,N)

returns

6.

After

the

second

pass,

N=7

(LENGTH(x)+1),

VERIFY(X,Y,N)

now

returns

0,

and

the

loop

ends.

For

more

examples

of

the

VERIFY

built-in

function,

see

“SEARCH”

on

page

465.

VERIFYR

The

VERIFYR

function

performs

the

same

operation

as

the

VERIFY

built-in

function

except

that:

v

The

verification

is

done

from

right

to

left.

v

The

default

value

for

n

is

LENGTH(x).

��

VERIFYR(x,y

)

,n

��

Unless

0

≤

n

≤

LENGTH(x),

the

STRINGRANGE

condition,

if

enabled,

is

raised.

If

n

=

0,

the

result

is

zero.

VERIFY

486

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

The

BIFPREC

compiler

option

determines

the

precision

of

the

result

returned.

For

argument

descriptions,

refer

to

“VERIFY”

on

page

485.

Example

X

=

’a

b

’;

/*

Two

blanks

in

each

space

*/

Y

=

’

’;

/*

One

blank

*/

N

=

length(X);

/*

N

=

6

*/

I

=

verifyr(X,Y,N);

/*

I

=

4

*/

do

while

(I

>

0);

display

(

’Nonblank

at

position

’

\

trim(I)

);

N

=

I

−

1;

I

=

verifyr(X,Y,N);

end;

After

the

first

pass

through

the

do-loop,

N=3

and

VERIFYR(X,Y,N)

returns

1.

After

the

second

pass,

N=0,

VERIFYR(X,Y,N)

returns

0,

and

the

loop

ends.

For

another

example,

see

“SEARCHR”

on

page

466.

WCHARVAL

WCHARVAL

returns

the

WIDECHAR(1)

value

corresponding

to

an

integer.

��

WCHARVAL

(

n

)

��

n

Expression

converted

to

UNSIGNED

FIXED

BIN(16)

if

necessary.

If

n

is

in

bigendian

format,

WCHARVAL(n)

has

the

same

bit

value

as

n

(that

is,

UNSPEC(WCHARVAL(n))

is

equal

to

UNSPEC(n)),

but

it

has

the

attributes

WIDECHAR(1).

WCHARVAL

is

the

inverse

of

RANK

(when

applied

to

widechar).

WEEKDAY

WEEKDAY

returns

a

FIXED

BINARY(31,0)

value

that

is

the

number

of

days

x

converted

to

the

day

of

the

week,

where

1=Sunday,

2=Monday,

.

.

.

7=Saturday.

If

x

is

missing,

it

is

assumed

to

be

DAYS

for

today.

��

WEEKDAY

(

)

x

��

x

Expression.

If

present,

x

specifies

the

input

date

as

days.

If

missing,

x

is

assumed

to

be

DAYS().

If

x

is

missing

and

today’s

date

is

not

available

from

the

system,

a

result

of

zero

is

returned.

x

must

have

computational

type

and

will

be

converted

to

FIXED

BINARY(31,0),

if

necessary.

VERIFYR

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

487

For

an

example

of

WEEKDAY,

see

“SECS”

on

page

466.

WHIGH

WHIGH

returns

a

widechar

string

of

length

x,

where

each

widechar

has

the

highest

widechar

value

(hexadecimal

FFFF).

��

WHIGH(x)

��

x

Expression.

If

necessary,

x

is

converted

to

a

positive

real

fixed-point

binary

value.

If

x

=

0,

the

result

is

the

null

widechar

string.

WIDECHAR

WIDECHAR

returns

the

widechar

value

of

x,

with

a

length

specified

by

y.

��

WIDECHAR(x

)

,y

��

Abbreviation:

WCHAR

x

Expression.

x

must

have

a

computational

type.

The

values

of

x

are

not

checked.

y

Expression.

If

necessary,

y

is

converted

to

a

real

fixed-point

binary

value.

If

y

is

omitted,

the

length

is

determined

by

the

rules

for

type

conversion.

y

cannot

be

negative.

If

y

=

0,

the

result

is

the

null

widechar

string.

WLOW

WLOW

returns

a

widechar

string

of

length

x,

where

each

widechar

has

the

lowest

widechar

value

(hexadecimal

0000).

��

WLOW(x)

��

x

Expression.

If

necessary,

x

is

converted

to

a

positive

real

fixed-point

binary

value.

If

x

=

0,

the

result

is

the

null

widechar

string.

WHIGH

488

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

XMLCHAR

The

XMLCHAR

built-in

function

dumps

data

from

a

structure

as

XML

into

a

buffer.

It

returns

the

number

of

bytes

written

to

the

buffer.

��

XMLCHAR

(

x

,

p

,

n

)

��

x

Structure-reference.

p

Address

of

target

buffer.

n

Length

of

target

buffer.

The

buffer

length

must

have

a

computational

type

and

will

be

converted

to

FIXED

BINARY(31,0).

The

buffer

length

must

be

nonnegative.

The

structure-reference

x

must

contain

only

computational

data,

i.e.

only

string

and

numeric

data.

The

structure-reference

x

may

contain

arrays,

but

if

itself

is

an

array,

then

it

must

be

completely

subscripted.

The

structure-reference

x

may

contain

substructures,

but

any

contained

substructure

must

not

use

an

*

in

place

of

a

name.

However,

an

*

may

be

used

as

the

name

of

a

base

element,

but

in

that

case,

the

unnamed

element

will

not

be

written

to

the

target

buffer.

When

the

xml

is

created,

v

each

name

in

the

struture

will

be

witten

out,

first

enclosed

″<″

and

″>″

and

later

enclosed

in

″</″

and

″>″

v

numeric

and

bit

data

will

be

converted

to

character

v

leading

and

trailing

blanks

will

be

trimmed

wherever

possible

Example

Given

this

code

fragment:

dcl

buffer

char(800);

dcl

written

fixed

bin(31);

dcl

next

pointer;

dcl

left

fixed

bin(31);

dcl

1

a,

2

a1,

3

b1

char(8),

3

b2

char(8),

2

a2,

3

c1

fixed

bin,

3

c2

fixed

dec(5,1);

b1

=

’

t1’;

b2

=

’t2’;

c1

=

17;

c2

=

-29;

next

=

addr(buffer);

WLOW

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

489

left

=

stg(buffer);

written

=

xmlchar(

a,

next,

left

);

next

+=

written;

left

-=

written;

The

following

bytes

would

be

written

to

the

buffer,

and

written

would

be

set

equal

to

72.

<A><A1><B1>t1</B1><B2>t2</B2></A1><A2><C1>17</C1><C2>-29.0</C2></A2>

Y4DATE

Y4DATE

takes

a

date

value

with

the

patter

’YYMMDD’

and

returns

the

date

value

with

the

two-digit

year

widened

to

a

four-digit

year.

��

Y4DATE(d

)

,w

��

d

A

string

expression

representing

a

date.

d

must

have

computational

type

and

should

have

character

type.

If

not,

d

is

converted

to

character.

w

Specifies

an

expression

(such

as

1950)

that

can

be

converted

to

an

integer.

If

negative,

it

specifies

an

offset

to

be

subtracted

from

the

value

of

the

year

when

the

code

runs.

If

omitted,

w

defaults

to

the

value

specified

in

the

WINDOW

compile-time

option.

The

returned

value

has

the

attributes

CHAR(8)

NONVARYING

and

is

calculated

as

follows:

dcl

y2

pic’99’;

dcl

y4

pic’9999’;

dcl

c

pic’99’;

y2

=

substr(d,1,2);

cc

=

w/100;

if

y2

<

mod(w,100)

then

y4

=

100*cc

+

100

+

y2;

else

y4

=

100*cc

+

y2;

return(

y4

||

substr(d,3)

);

Y4DATE(’990101’,1950)

returns

’19990101’

Y4DATE(’000101’,1950)

returns

’20000101’

WLOW

490

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Y4JULIAN

Y4JULIAN

takes

a

date

value

with

the

patter

’YYDDD’

and

returns

the

date

value

with

the

two-digit

year

widened

to

a

four-digit

year.

��

Y4JULIAN(d

)

,w

��

d

A

string

expression

representing

a

date.

The

length

of

d

must

be

at

least

5.

If

it

is

larger

than

5,

excess

characters

must

be

formed

by

leading

blanks.

d

must

have

computational

type

and

should

have

character

type.

If

not,

it

is

converted

to

character.

w

Specifies

an

expression

(such

as

1950)

that

can

be

converted

to

an

integer.

If

negative,

it

specifies

an

offset

to

be

subtracted

from

the

value

of

the

year

when

the

code

runs.

If

omitted,

w

defaults

to

the

value

specified

in

the

WINDOW

compile-time

option.

The

returned

value

has

the

attributes

CHAR(7)

NONVARYING

and

is

calculated

as

follows:

dcl

y2

pic’99’;

dcl

y4

pic’9999’;

dcl

c

pic’99’;

y2

=

substr(d,1,2);

cc

=

w/100;

if

y2

<

mod(w,100)

then

y4

=

100*cc

+

100

+

y2;

else

y4

=

100*cc

+

y2;

return(

y4

||

substr(d,3)

);

Y4JULIAN(’99001’,1950)

returns

’1999001’

Y4JULIAN(’00001’,1950)

returns

’2000001’.

Y4YEAR

Y4YEAR

takes

a

date

value

with

the

patter

’YY’

and

returns

the

date

value

with

the

two-digit

year

widened

to

a

four-digit

year.

��

Y4YEAR(d

)

,w

��

d

A

string

expression

representing

a

date.

The

length

of

d

must

be

at

least

2.

If

it

is

larger

than

2,

excess

characters

must

be

formed

by

leading

blanks.

d

must

have

computational

type

and

should

have

character

type.

If

not,

it

is

converted

to

character.

w

Specifies

an

expression

(such

as

1950)

that

can

be

converted

to

an

integer.

If

Y4JULIAN

Chapter

19.

Built-in

functions,

pseudovariables,

and

subroutines.

491

negative,

it

specifies

an

offset

to

be

subtracted

from

the

value

of

the

year

when

the

code

runs.

If

omitted,

w

defaults

to

the

value

specified

in

the

WINDOW

compile-time

option.

The

returned

value

has

the

attributes

CHAR(4)

NONVARYING

and

is

calculated

as

follows:

dcl

y2

pic’99’;

dcl

y4

pic’9999’;

dcl

c

pic’99’;

y2

=

d;

cc

=

w/100;

if

y2

<

mod(w,100)

then

y4

=

100*cc

+

100

+

y2;

else

y4

=

100*cc

+

y2;

return(

y4

);

Y4YEAR(’99’,1950)

returns

’1999’

Y4YEAR(’00’,1950)

returns

’2000’

Y4YEAR

492

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Chapter

20.

Type

Functions

Invoking

type

functions

.

.

.

.

.

.

.

.

.

. 493

Specifying

arguments

for

type

functions

.

.

.

. 493

Brief

descriptions

of

type

functions

.

.

.

.

.

. 494

BIND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 494

CAST

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 494

FIRST

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 495

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 495

LAST

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 495

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 495

NEW

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 496

RESPEC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 496

SIZE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 496

Using

type

functions,

you

can

manipulate

defined

types.

Type

functions

are

distinguished

from

built-in

functions

in

the

following

ways:

v

At

least

one

of

the

arguments

is

a

defined

type.

v

They

cannot

be

declared.

v

Arguments

are

enclosed

in

the

(:

and

:)

composite

symbols,

rather

than

in

(

and

)

symbols.

In

this

chapter,

the

type

functions

are

listed

in

alphabetical

order.

In

general,

each

description

has

the

following

format:

v

A

heading

showing

the

syntax

of

the

reference

v

A

description

of

the

value

returned

v

A

description

of

any

arguments

v

Any

other

qualifications

on

using

the

function.

Invoking

type

functions

Use

the

following

syntax

to

invoke

type

functions.

��

�

name

,

(:

:)

argument

��

The

arguments

for

a

type

function

are

enclosed

by

the

delimiters

(:

and

:).

Specifying

arguments

for

type

functions

Arguments

for

type

functions

can

be

type

names

(aliases,

named

structures

and

unions,

ordinals)

and

other

data

types.

493

Brief

descriptions

of

type

functions

Table

66.

Type

functions

Function

Description

BIND

Converts

a

pointer

to

a

handle

for

a

type

CAST

Converts

an

expression

to

a

specified

type

using

C

conversion

rules

FIRST

Returns

the

first

value

in

an

ordinal

set

LAST

Returns

the

last

value

in

an

ordinal

set

NEW

Acquires

storage

for

a

structure

type

and

returns

a

handle

to

the

acquired

storage

RESPEC

Changes

the

attributes

of

an

expression

to

a

specified

type

without

changing

the

bit

pattern

of

the

expression

SIZE

Returns

the

amount

of

storage

needed

to

represent

a

type

BIND

BIND

converts

the

pointer

p

to

a

handle

for

the

structure

type

t.

The

BIND

function

can

be

used

as

a

locator

for

a

member

of

a

typed

structure.

��

BIND

(:

t

,

p

:)

��

t

Name

of

a

structure

type

p

Pointer

expression

CAST

CAST

converts

the

expression

x

to

the

type

t

using

C

conversion

rules.

��

CAST

(:

t

,

x

:)

��

t

Name

of

a

scalar

″C

type″

x

A

scalar

expression

also

having

″C

type″

The

supported

″C

types″

are

v

REAL

FIXED

BIN(p,0)

v

REAL

FIXED

DEC(p,q)

where

p

>=

q

and

q>=

0.

v

NATIVE

FLOAT

v

ORDINAL

v

POINTER

or

HANDLE

v

LIMITED

ENTRY

If

x

is

FLOAT

or

FIXED

DEC,

then

t

must

be

FLOAT,

FIXED

or

ORDINAL,

and

if

t

is

FLOAT

or

FIXED

DEC,

then

x

must

be

FLOAT,

FIXED

or

ORDINAL.

Arguments

for

type

functions

494

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Any

conversions

that

are

needed

follow

the

ANSI

C

rules.

This

means,

for

instance,

that

SIZE

will

not

be

raised

by

CAST

and

that

if

negative

values

are

cast

to

UNSIGNED,

then

the

result

will

be

a

large

positive

number.

FIRST

FIRST

returns

the

first

value

in

the

ordinal

set

t.

��

FIRST

(:

t

:)

��

t

Name

of

an

ordinal

type

Example

define

ordinal

Color

(

Red,

Orange,

Yellow,

Green,

Blue,

Indigo,

Violet

);

display

(ordinalname(

first(:Color:)

));

/*

RED

*/

LAST

LAST

returns

the

last

value

in

the

ordinal

set

t.

��

LAST

(:

t

:)

��

t

Name

of

an

ordinal

type

Example

define

ordinal

Color

(

Red,

Orange,

Yellow,

Green,

Blue,

Indigo,

Violet

);

display

(ordinalname(

last(:Color:)

));

/*

VIOLET

*/

CAST

Chapter

20.

Type

Functions

495

NEW

NEW

acquires

heap

storage

for

structure

type

t

and

returns

a

handle

to

the

acquired

storage.

��

NEW

(:

t

:)

��

t

Name

of

a

structure

type

NEW(:t:)

is

equivalent

to

BIND(:

t,

ALLOC(

SIZE(:t:)

)

:).

RESPEC

RESPEC

changes

the

attributes

of

the

expression

x

to

the

type

t

without

changing

the

bit

value

of

the

expression.

��

RESPEC

(:

t

,

x

:)

��

t

Name

of

a

scalar

type

p

A

scalar

expression

x

must

have

the

same

as

t,

and

if

either

x

or

t

is

UNALIGNED

BIT,

then

both

must

be

(in

which

case

the

function

is

somewhat

uninteresting

since

it

would

do

nothing).

As

an

example,

if

t

is

a

type

with

the

attributes

LIMITED

ENTRY,

then

RESPEC(

t,

sysnull()

)

would

return

a

″null″

function

pointer.

SIZE

SIZE

returns

the

amount

of

storage

needed

for

a

variable

declared

with

the

type

t.

��

SIZE

(:

t

:)

��

t

Name

of

a

structure

or

union

type

NEW

496

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Chapter

21.

Preprocessor

Facilities

Preprocessor

Options

.

.

.

.

.

.

.

.

.

.

. 498

Preprocessor

Scan

.

.

.

.

.

.

.

.

.

.

.

. 499

Preprocessor

Statements

.

.

.

.

.

.

.

.

. 499

Preprocessor

Variables

and

Data

Elements

.

.

.

. 500

Preprocessor

References

and

Expressions

.

.

.

. 501

Scope

of

Preprocessor

Names

.

.

.

.

.

.

.

. 501

Preprocessor

Procedures

.

.

.

.

.

.

.

.

.

. 502

Arguments

and

Parameters

for

Preprocessor

Procedures

.

.

.

.

.

.

.

.

.

.

.

.

. 503

%PROCEDURE

Statement

.

.

.

.

.

.

.

. 503

Preprocessor

RETURN

Statement

.

.

.

.

.

. 504

Preprocessor

ANSWER

Statement

.

.

.

.

. 505

Preprocessor

Built-In

Functions

.

.

.

.

.

.

. 507

COLLATE

.

.

.

.

.

.

.

.

.

.

.

.

. 508

COMMENT

.

.

.

.

.

.

.

.

.

.

.

.

. 508

COMPILEDATE

.

.

.

.

.

.

.

.

.

.

. 508

COMPILETIME

.

.

.

.

.

.

.

.

.

.

. 509

COPY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 509

COUNTER

.

.

.

.

.

.

.

.

.

.

.

.

. 510

DIMENSION

.

.

.

.

.

.

.

.

.

.

.

. 510

HBOUND

.

.

.

.

.

.

.

.

.

.

.

.

. 510

INDEX

.

.

.

.

.

.

.

.

.

.

.

.

.

. 511

LBOUND

.

.

.

.

.

.

.

.

.

.

.

.

.

. 511

LENGTH

.

.

.

.

.

.

.

.

.

.

.

.

.

. 511

MACCOL

.

.

.

.

.

.

.

.

.

.

.

.

. 512

MACLMAR

.

.

.

.

.

.

.

.

.

.

.

.

. 512

MACRMAR

.

.

.

.

.

.

.

.

.

.

.

.

. 512

MAX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 512

MIN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 513

PARMSET

.

.

.

.

.

.

.

.

.

.

.

.

. 513

QUOTE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 513

REPEAT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 514

SUBSTR

.

.

.

.

.

.

.

.

.

.

.

.

.

. 514

SYSPARM

.

.

.

.

.

.

.

.

.

.

.

.

. 515

SYSTEM

.

.

.

.

.

.

.

.

.

.

.

.

.

. 515

SYSVERSION

.

.

.

.

.

.

.

.

.

.

.

. 515

TRANSLATE

.

.

.

.

.

.

.

.

.

.

.

. 515

VERIFY

.

.

.

.

.

.

.

.

.

.

.

.

.

. 516

Preprocessor

Statements

.

.

.

.

.

.

.

.

.

. 516

%ACTIVATE

Statement

.

.

.

.

.

.

.

.

. 516

%assignment

Statement

.

.

.

.

.

.

.

.

. 517

%DEACTIVATE

Statement

.

.

.

.

.

.

.

. 517

%DECLARE

Statement

.

.

.

.

.

.

.

.

. 518

%DO

Statement

.

.

.

.

.

.

.

.

.

.

. 520

%END

Statement

.

.

.

.

.

.

.

.

.

.

. 521

%GO

TO

Statement

.

.

.

.

.

.

.

.

.

. 521

%IF

Statement

.

.

.

.

.

.

.

.

.

.

.

. 521

%INCLUDE

Statement

.

.

.

.

.

.

.

.

. 522

%ITERATE

Statement

.

.

.

.

.

.

.

.

. 523

%LEAVE

Statement

.

.

.

.

.

.

.

.

.

. 524

%NOTE

Statement

.

.

.

.

.

.

.

.

.

. 524

%null

Statement

.

.

.

.

.

.

.

.

.

.

. 525

%REPLACE

Statement

.

.

.

.

.

.

.

.

. 525

%SELECT

Statement

.

.

.

.

.

.

.

.

.

. 525

Preprocessor

Examples

.

.

.

.

.

.

.

.

.

. 526

Example

1

.

.

.

.

.

.

.

.

.

.

.

.

. 526

The

compiler

provides

a

MACRO

preprocessor

for

source

program

alteration.

It

is

executed

prior

to

compilation,

when

you

specify

the

MACRO

or

PP(MACRO)

compile-time

option.

The

MACRO

preprocessor

scans

the

preprocessor

input

and

generates

preprocessor

output.

The

preprocessor

output

can

serve

as

input

to

the

compiler.

This

description

of

the

preprocessor

assumes

that

you

know

the

PL/I

language

described

throughout

this

publication.

The

Preprocessor

input

is

a

string

of

characters.

consisting

of

intermixed:

v

Preprocessor

statements.1

Preprocessor

statements

are

executed

as

they

are

encountered

by

the

preprocessor

scan

(with

the

exception

of

preprocessor

procedures,

which

must

be

invoked

in

order

to

be

executed).

Preprocessor

statements,

except

those

in

preprocessor

procedures,

begin

with

a

percent

symbol

(%).

Using

a

blank

to

separate

the

percent

symbol

from

the

rest

of

the

statement

is

optional.

The

preprocessor

executes

preprocessor

statements

and

alters

the

input

text

accordingly.

Preprocessor

statements

can

cause

alteration

of

the

input

text

in

any

of

the

following

ways:

–

Any

identifier

(and

an

optional

argument

list)

appearing

in

the

input

text

can

be

changed

to

an

arbitrary

string

of

text.

1. For

clarity

in

this

discussion,

preprocessor

statements

are

shown

with

the

%

symbol

(even

though,

when

used

in

a

preprocessor

procedure,

such

a

statement

would

not

have

a

%

symbol).

497

–

You

can

indicate

which

portions

of

the

input

text

to

copy

into

the

preprocessor

output.

–

A

string

of

characters

residing

in

a

library

can

be

included

in

the

preprocessor

input.
v

Listing

control

statements,

which

control

the

layout

of

the

printed

listing

of

the

program.

These

statements

affect

both

the

insource

listing

(the

preprocessor

input)

and

the

source

listing

(the

preprocessor

output)

and

are

described

in

Chapter

9,

“Statements

and

directives,”

on

page

187.

v

Input

text,

which

is

preprocessor

input

that

is

not

a

preprocessor

statement

or

a

listing

control

statement.

The

input

text

can

be

a

PL/I

source

program

or

any

other

text,

provided

that

it

is

consistent

with

the

processing

of

the

input

text

by

the

preprocessor

scan,

described

below.

Preprocessor

output

2

is

a

string

of

characters

consisting

of

intermixed:

v

Listing

control

statements.

Listing

control

statements

that

are

scanned

in

the

preprocessor

input

are

copied

to

the

preprocessor

output.

v

Output

text.

Input

text

that

is

scanned

and

possibly

altered

is

placed

in

the

preprocessor

output.

You

can

specify

compile-time

options

that

cause

the

preprocessor

input

to

be

printed

or

the

preprocessor

output

or

both

to

be

printed

or

to

be

written

to

a

data

set.

Preprocessor

Options

The

preprocessor

is

invoked

when

you

specify

the

MACRO

or

PP(MACRO)

compile-time

option.

You

may

also

specify

compiler

options

that

affect

the

preprocessor

only.

Some

of

the

options

can

significantly

change

the

behavior

of

the

preprocessor.

Of

particular

note

are

the

options:

FIXED

Specifies

how

FIXED

variables

are

treated.

This

option

has

two

suboptions:

BINARY

Specifies

that

FIXED

variables

are

treated

as

BINARY

DECIMAL

Specifies

that

FIXED

variables

are

treated

as

DECIMAL

CASE

Specifies

if

input

text

is

converted

to

uppercase.

This

option

has

two

suboptions:

ASIS

Specifies

that

input

text

is

left

″as

is″.

UPPER

Specifies

that

input

text

is

converted

to

upper

case.

The

defaults

for

these

options

are

FIXED(DECIMAL)

and

CASE(UPPER).

2. Preprocessor

replacement

output

is

shown

in

a

formatted

style,

while

actual

execution-generated

replacement

output

is

unformatted.

Preprocessor

facilities

498

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

For

more

information

on

how

to

specify

these

options,

see

the

Programming

Guide.

Preprocessor

Scan

The

preprocessor

starts

its

scan

at

the

beginning

of

the

preprocessor

input

and

scans

each

character

sequentially.

By

default

the

CASE(UPPER)

option

is

in

effect,

and

the

preprocessor

converts

lowercase

characters

in

the

input

(except

for

those

in

comments

and

string

constants)

to

uppercase.

But

if

the

CASE(ASIS)

suboption

is

in

effect,

the

text

will

be

left

as

is.

Preprocessor

Statements

Preprocessor

statements

are

executed

when

encountered.

You

can:

v

Define

preprocessor

names

using

the

%DECLARE

statement

and

appearance

as

a

label

prefix.

If

a

preprocessor

variable

is

not

explicitly

declared,

a

diagnostic

message

is

issued

and

the

variable

is

given

the

default

attribute

of

CHARACTER.

However,

the

variable

is

not

activated

for

replacement

unless

it

appears

in

a

subsequently

executed

%ACTIVATE

statement.

The

variable

can

be

referenced

in

preprocessor

statements.

v

Activate

an

identifier

using

the

%DECLARE

or

%ACTIVATE

statement,

thus

initiating

replacement

activity,

as

described

below

under

“Input

Text.”

v

Deactivate

an

identifier

using

the

%DEACTIVATE

statement,

thus

terminating

replacement

activity.

v

Generate

a

message

in

the

compiler

listing

using

the

%NOTE

statement.

v

Include

string

of

characters

into

the

preprocessor

input.

v

Cause

the

preprocessor

to

continue

the

scan

at

a

different

point

in

the

preprocessor

input

using

the

%GOTO,

%IF,

%null,

%DO,

or

%END

statement.

v

Change

values

of

preprocessor

variables

using

the

%assignment

or

%DO

statement.

v

Define

preprocessor

procedures

using

the

%PROCEDURE,

%RETURN,

and

%END

statements.

A

preprocessor

procedure

can

be

invoked

by

a

function

reference

in

a

preprocessor

expression,

or,

if

the

function

procedure

name

is

active,

by

encountering

a

function

reference

in

the

preprocessor

scan

of

input

text.

Listing

Control

Statements

Listing

control

statements

that

are

not

contained

in

a

preprocessor

procedure

are

copied

into

the

preprocessor

output,

each

on

a

line

of

its

own.

Input

Text

The

input

text,

after

replacement

of

any

active

identifiers

by

new

values,

is

copied

into

the

preprocessor

output.

Invalid

characters

(part

of

a

character

constant

or

comment)

are

replaced

with

blanks

in

the

preprocessor

output.

To

determine

replacements,

the

input

text

is

scanned

for:

v

Characters

that

are

not

part

of

this

PL/I

character

set

are

treated

as

delimiters

and

are

otherwise

copied

to

this

output

unchanged.

v

PL/I

character

constants

or

PL/I

comments.

These

are

passed

through

unchanged

from

input

text

to

preprocessor

output

by

the

preprocessor

unless

they

appear

in

an

argument

list

to

an

active

preprocessor

procedure.

However,

Preprocessor

options

Chapter

21.

Preprocessor

Facilities

499

this

can

cause

mismatches

between

input

and

output

lines

for

strings

or

comments

extending

over

several

lines,

when

the

input

and

output

margins

are

different.

This

is

especially

true

when

V

format

input

is

used,

since

the

output

is

always

F

format,

with

margins

in

columns

2

and

72.

The

output

line

numbering

in

these

cases

also

shows

this

inevitable

mismatch.

v

Active

Identifiers.

For

an

identifier

to

be

replaced

by

a

new

value,

the

identifier

must

be

first

activated

for

replacement.

Initially,

an

identifier

can

be

activated

by

its

appearance

in

a

%DECLARE

statement.

It

can

be

deactivated

by

executing

a

%DEACTIVATE

statement,

and

it

can

be

reactivated

by

executing

a

%ACTIVATE

or

%DECLARE

statement.

An

identifier

that

matches

the

name

of

an

active

preprocessor

variable

is

replaced

in

the

preprocessor

output

by

the

value

of

the

variable.

When

an

identifier

matches

the

name

of

an

active

preprocessor

function

(either

programmer-written

or

built-in)

the

procedure

is

invoked

and

the

invocation

is

replaced

by

the

returned

value.

Identifiers

can

be

activated

with

either

the

RESCAN

or

the

NORESCAN

options.

If

the

NORESCAN

option

applies,

the

value

is

immediately

inserted

into

the

preprocessor

output.

If

the

RESCAN

option

applies,

a

rescan

is

made

during

which

the

value

is

tested

to

determine

whether

it,

or

any

part

of

it,

should

be

replaced

by

another

value.

If

it

cannot

be

replaced,

it

is

inserted

into

the

preprocessor

output;

if

it

can

be

replaced,

replacement

activity

continues

until

no

further

replacements

can

be

made.

Thus,

insertion

of

a

value

into

the

preprocessor

output

takes

place

only

after

all

possible

replacements

have

been

made.

Replacement

values

must

not

contain

%

symbols,

unmatched

quotation

marks,

or

unmatched

comment

delimiters.

The

scan

terminates

when

an

attempt

is

made

to

scan

beyond

the

last

character

in

the

preprocessor

input.

The

preprocessor

output

is

then

complete

and

compilation

can

begin.

Preprocessor

Variables

and

Data

Elements

A

preprocessor

variable

is

specified

in

a

%DECLARE

statement

with

either

the

FIXED

or

the

CHARACTER

attribute.

No

other

attributes

can

be

declared

for

a

preprocessor

variable.

(Other

attributes

are

supplied

by

the

preprocessor,

however.)

All

variables

have

storage

equivalent

to

the

STATIC

storage

class.

Preprocessor

data

types

are

coded

arithmetic

and

string

data,

and

are

either:

FIXED

A

preprocessor

variable

declared

with

the

FIXED

attribute

is,

by

default,

given

the

attributes

DECIMAL(5,0).

If

the

FIXED(BINARY)

is

in

effect,

then

it

is

given

the

attributes

BINARY(31,0).

Fractional

values

are

not

supported.

CHARACTER

A

preprocessor

variable

declared

with

the

CHARACTER

attribute

is

given

the

VARYING

attribute.

The

preprocessor

also

supports

X

character

string

constants.

String

repetition

factors

are

not

allowed

for

character

constants.

However,

the

COPY

built-in

function

may

be

used

to

replicate

a

constant.

Preprocessor

scan

500

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

BIT

There

are

no

preprocessor

bit

variables.

However,

bit

constants

are

allowed,

and

bit

values

result

from

comparison

operators,

the

concatenation

operator

(when

used

with

bit

operands),

the

not

operator,

and

the

PARMSET

built-in

function.

The

preprocessor-expression

in

the

%IF

statement

converts

to

a

bit

value.

Preprocessor

References

and

Expressions

Preprocessor

references

and

expressions

are

written

and

evaluated

in

the

same

way

as

described

in

Chapter

4,

“Expressions

and

references,”

with

the

following

additional

comments:

v

The

operands

of

a

preprocessor

expression

can

consist

only

of

preprocessor

variables,

references

to

preprocessor

procedures,

fixed

decimal

constants,

bit

constants,

character

constants,

and

references

to

preprocessor

built-in

functions.

v

While

an

array

may

be

declared

outside

of

a

preprocessor

procedure

(so

that

it

can

be

shared

across

multiple

procedures),

it

may

not

be

referenced

outside

a

procedure

(except

as

the

first

argument

to

one

of

the

array-enquiry

built-in

functions).

v

The

exponentiation

symbol

(**)

cannot

be

used.

v

Under

the

FIXED(DECIMAL)

option:

–

For

arithmetic

operations,

only

decimal

arithmetic

of

precision

(5,0)

is

performed;

that

is,

each

operand

is

converted

to

a

decimal

fixed-point

integer

value

of

precision

(5,0)

before

the

operation

is

performed,

and

the

decimal

fixed-point

result

is

converted

to

precision

(5,0).

For

example,

the

expression

3/5

evaluates

to

0,

rather

than

to

0.6.

Any

character

value

being

converted

to

an

arithmetic

value

must

be

in

the

form

of

an

optionally

signed

integer.

A

null

string

converts

to

0.

–

The

conversion

of

a

fixed-point

value

to

a

bit

value

always

results

in

a

string

of

length

CEIL(3.32*5),

that

is,

17.

–

The

conversion

of

a

fixed-point

value

to

a

character

value

always

results

in

a

string

of

length

8

and

has

the

same

value

that

would

result

from

converting

a

FIXED

DEC(5,0)

value

to

CHARACTER

in

a

PL/I

program.
v

Under

the

FIXED(BINARY)

option:

–

For

arithmetic

operations,

only

binary

arithmetic

of

precision

(31,0)

is

performed;

that

is,

each

operand

is

converted

to

a

binary

fixed-point

integer

value

of

precision

(31,0)

before

the

operation

is

performed,

and

the

binary

fixed-point

result

is

converted

to

precision

(31,0).

For

example,

the

expression

3/5

evaluates

to

0,

rather

than

to

0.6.

Any

character

value

being

converted

to

an

arithmetic

value

must

be

in

the

form

of

an

optionally

signed

integer.

A

null

string

converts

to

0.

–

The

conversion

of

a

fixed-point

value

to

a

bit

value

always

results

in

a

string

of

31.

–

The

conversion

of

a

fixed-point

value

to

a

character

value

results

in

a

string

of

varying

length

because

leading

blanks

are

trimmed.

Scope

of

Preprocessor

Names

The

scope

of

a

preprocessor

name

is

determined

by

where

it

is

declared.

The

scope

of

a

name

declared

within

a

preprocessor

procedure

is

that

procedure.

The

scope

of

a

name

declared

within

an

included

string

is

that

string

and

all

input

text

scanned

after

that

string

is

included

(except

any

preprocessor

procedure

in

which

Variables

and

data

elements

Chapter

21.

Preprocessor

Facilities

501

the

name

is

also

declared).

The

scope

of

any

other

name

is

the

entire

preprocessor

input

(except

any

preprocessor

procedure

in

which

the

name

is

also

declared).

Preprocessor

Procedures

A

preprocessor

procedure

is

delimited

by

%PROCEDURE

and

%END

statements.

If

the

procedure

is

not

defined

with

a

RETURNS

attribute,

then

it

may

not

contain

ANSWER

statements,

but

it

must

not

contain

any

RETURN

statements.

Conversely,

if

the

procedure

is

a

function,

then

it

must

contain

at

least

one

RETURN

statement,

and

it

must

not

contain

any

ANSWER

statements.

The

statements

and

groups

that

can

be

used

within

a

preprocessor

procedure

are:

v

The

preprocessor

ANSWER

statement.

v

The

preprocessor

assignment

statement.

v

The

preprocessor

DECLARE

statement.

v

The

preprocessor

DO-group.

v

The

preprocessor

GO

TO

statement.

(A

GO

TO

statement

appearing

in

a

preprocessor

procedure

cannot

transfer

control

to

a

point

outside

of

that

procedure.)

v

The

preprocessor

IF

statement.

v

The

preprocessor

ITERATE

statement.

v

The

preprocessor

LEAVE

statement.

v

The

preprocessor

null

statement.

v

The

preprocessor

NOTE

statement.

v

The

preprocessor

REPLACE

statement.

v

The

preprocessor

RETURN

statement.

v

The

preprocessor

SELECT-group.

v

The

%PAGE,

%SKIP,

%PRINT,

and

%NOPRINT

listing

control

statements.

Preprocessor

statements

in

a

preprocessor

procedure

do

not

begin

with

a

percent

symbol.

Preprocessor

procedures

cannot

be

nested.

A

preprocessor

ENTRY

declaration

is

not

permitted

in

a

preprocessor

procedure.

A

preprocessor

procedure

entry

name,

together

with

the

arguments

to

the

procedure,

is

called

a

function

reference.

A

preprocessor

procedure

can

be

invoked

by

a

function

reference

in

a

preprocessor

expression,

or,

if

the

function

procedure

name

is

active,

by

encountering

a

function

reference

in

the

preprocessor

scan

of

input

text.

Preprocessor

procedure

entry

names

need

not

be

specified

in

%DECLARE

statements.

Provided

its

entry

name

is

active,

a

preprocessor

procedure

need

not

be

scanned

before

it

is

invoked.

It

must,

however,

be

present

either

in:

v

The

preprocessor

input

v

A

string

included

prior

to

the

point

of

invocation

The

result

of

a

preprocessor

procedure

reference

encountered

before

that

procedure

is

incorporated

into

the

preprocessor

input

is

undefined.

Scope

of

preprocessor

names

502

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

The

value

returned

by

a

preprocessor

function

(that

is,

the

value

of

the

preprocessor

expression

in

the

RETURN

statement)

replaces

the

function

reference

and

its

associated

argument

list

in

the

preprocessor

output.

Arguments

and

Parameters

for

Preprocessor

Procedures

The

number

of

arguments

in

the

procedure

reference

and

the

number

of

parameters

in

the

%PROCEDURE

statement

need

not

be

the

same.

The

arguments

are

evaluated

before

any

match

is

made

with

the

parameter

list.

If

there

are

more

positional

arguments

than

parameters,

the

excess

arguments

on

the

right

are

ignored.

(For

an

argument

that

is

a

function

reference,

the

function

is

invoked

and

executed,

even

if

the

argument

is

ignored

later.)

Parameters

that

are

not

set

by

the

function

reference

are

given

values

of

zero,

for

FIXED

parameters,

or

the

null

string,

for

CHARACTER

parameters.

Parameters

should

not

be

set

more

than

once

by

a

function

reference.

However,

if

the

value

of

a

parameter

is

specified

more

than

once,

for

example

both

by

its

position

and

by

keyword,

the

error

is

diagnosed

and

the

leftmost

setting

is

used

for

the

invocation.

If

the

function

reference

appears

in

a

preprocessor

statement,

the

arguments

are

associated

with

the

parameters

in

the

normal

fashion.

Dummy

arguments

can

be

created

and

the

arguments

converted

to

the

attributes

of

the

corresponding

parameters,

in

the

same

manner

as

described

under

“Passing

arguments

to

procedures”

on

page

107.

If

the

function

reference

appears

in

input

text,

dummy

arguments

are

always

created.

The

arguments

are

interpreted

as

character

strings

and

are

delimited

by

a

comma

or

right

parenthesis.

A

comma

or

right

parenthesis

does

not

act

as

a

delimiter,

however,

if

it

appears

between

matching

parentheses,

single

quotes,

or

comment

delimiters.

For

example,

the

positional

argument

list

(A(B,C),D)

has

two

arguments,

namely,

the

string

A(B,C)

and

the

string

D.

Blanks

in

arguments

(including

leading

and

trailing

blanks)

are

significant

but,

if

such

blanks

extend

to

the

end

of

a

line

and

are

not

enclosed

in

quotes

or

comment

delimiters,

they

are

replaced

by

one

blank.

When

a

function

reference

is

encountered

in

input

text,

each

argument

is

scanned

for

possible

replacement

activity.

This

replacement

activity

has

no

effect

on

the

number

of

arguments

passed

to

the

function.

Any

commas

or

parentheses

introduced

into

arguments

by

replacement

activity

are

not

treated

as

delimiters,

but

simply

as

characters

in

the

argument.

If

keyword

invocation

is

used,

the

keywords

themselves

are

not

eligible

for

replacement

activity.

After

all

replacements

are

made,

each

resulting

argument

is

converted

to

the

type

indicated

by

the

corresponding

parameter

attribute

in

the

preprocessor

procedure

statement

for

the

function

entry

name.

%PROCEDURE

Statement

The

%PROCEDURE

statement

is

used

in

conjunction

with

a

%END

statement

to

delimit

a

preprocessor

procedure.

The

syntax

for

the

%PROCEDURE

statement

is:

Preprocessor

procedures

Chapter

21.

Preprocessor

Facilities

503

��

%

�

entry-name:

PROCEDURE

�

,

(

parameter

)

STATEMENT

�

�

RETURNS

(

CHARACTER

)

FIXED

;

��

Abbreviation:

%PROC

parameter

specifies

a

parameter

of

the

function

procedure.

STATEMENT

If

the

reference

occurs

in

input

text

and

the

STATEMENT

option

is

present:

v

The

arguments

can

be

specified

either

in

the

positional

argument

list

or

by

keyword

reference.

v

The

end

of

the

reference

must

be

indicated

by

a

semicolon.

The

semicolon

is

not

retained

when

the

replacement

takes

place.

For

example,

a

preprocessor

procedure

headed

by:

%FIND:PROC(A,B,C)

STATEMENT...;

must

be

invoked

from

a

preprocessor

expression

by

a

reference

of

the

form:

FIND(arg1,arg2,arg3)

If

the

reference

is

in

input

text,

the

procedure

can

be

invoked

by

any

of

the

following

references

(or

similar

ones),

all

of

which

have

the

same

result:

FIND(X,Y,Z);

FIND

B(Y)

C(Z)

A(X);

FIND(X)

C(Z)

B(Y);

FIND(,Y,Z)

A(X);

RETURNS

The

attribute

CHARACTER

or

FIXED

must

be

specified

in

the

RETURNS

attribute

list

to

specify

the

attribute

of

the

value

returned

by

the

function

procedure.

Preprocessor

RETURN

Statement

The

preprocessor

RETURN

statement

can

be

used

only

in

a

preprocessor

procedure

and

only

when

the

procedure

has

the

RETURNS

attribute,

and

it

therefore,

can

have

no

leading

%.

It

returns

a

value

as

well

as

control

back

to

the

point

from

which

the

preprocessor

procedure

was

invoked.

At

least

one

RETURN

statement

must

appear

in

each

preprocessor

procedure

that

has

the

RETURNS

attribute.

The

value

returned

by

a

preprocessor

function

procedure

to

the

point

of

invocation

is

specified

by

the

preprocessor-expression

in

a

RETURN

statement

in

the

procedure.

The

syntax

of

the

preprocessor

RETURN

statement

is:

%PROCEDURE

504

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

�

label:

RETURN

(

preprocessor-expression

)

;

��

preprocessor-expression

The

value

is

converted

to

the

RETURNS

attribute

specified

in

the

%PROCEDURE

statement

before

it

is

passed

back

to

the

point

of

invocation.

Preprocessor

ANSWER

Statement

The

preprocessor

ANSWER

statement

can

be

used

only

in

a

preprocessor

procedure

that

does

not

have

the

RETURNS

attribute.

The

ANSWER

statement

produces

text

and/or

invokes

other

preprocessor

procedures.

The

answered

text

replaces

the

invocation

of

the

preprocessor

procedure

in

the

source

text.

You

can

use

any

number

of

ANSWER

statements

in

a

preprocessor

procedure.

��

ANSWER

(

exp1

)

PAGE

SKIP

(

exp2

)

RESCAN

SCAN

NOSCAN

�

�

COLUMN

(

exp3

)

MARGINS

(

exp4

)

,

exp5

;

��

Abbreviations:

ANS

for

ANSWER,

COL

for

COLUMN,

MAR

for

MARGINS

exp1

Represents

a

character

expression

that

represents

the

ANSWER

text.

The

ANSWER

text

can

be

either

a

single

character

string

constant

or

a

preprocessor

expression

of

any

complexity.

If

it

is

an

expression,

the

expression

evaluation

occurs

in

the

usual

manner

and

the

result

is

converted

to

a

single

character

string.

If

SCAN

or

RESCAN

is

in

effect,

the

character

string

is

scanned

for

replacements

and

preprocessor

procedure

invocations.

This

replacement

is

done

within

the

scope

of

the

preprocessor

procedure

and

not

in

the

scope

into

which

the

answered

text

is

returned.

The

answered

text

is

then

inserted

into

the

source

at

the

point

of

the

preprocessor

invocation.

After

the

text

is

returned

into

the

source,

it

is

not

scanned

for

any

replacement

activity.

Replacement

activity

in

the

string

follows

the

same

rules

as

those

for

source

text

scanning

and

replacement.

See

“Example”

on

page

506.

RETURN

Chapter

21.

Preprocessor

Facilities

505

PAGE

Forces

the

answer

text

to

be

placed

on

a

new

page

of

the

output

source

by

generating

a

%PAGE

directive.

SKIP

Forces

the

answer

text

to

be

placed

on

a

new

line

of

the

output

source.

The

value

of

exp2

represents

the

arithmetic

expression

specifying

the

number

of

lines

to

be

skipped.

If

exp2

is

not

specified,

the

default

value

is

1.

RESCAN

Allows

eligible

preprocessor

identifiers

to

be

replaced

once

or

multiple

times

depending

on

their

scanning

status

(SCAN

or

RESCAN).

NOSCAN

Inhibits

replacement

of

eligible

preprocessor

identifiers.

SCAN

Allows

eligible

preprocessor

identifiers

to

be

replaced

only

once

regardless

of

their

scanning

status,

that

is,

SCAN

and

RESCAN

status

of

an

identifier

is

treated

as

SCAN.

COLUMN

Specifies

the

starting

column

in

the

source

program

line

in

which

the

answer

text

is

placed.

The

value

of

exp3

represents

the

arithmetic

expression

for

the

column

number

of

the

source

program

line

where

the

answer

text

starts.

MARGINS

Specifies

where

the

output

text

is

placed

within

the

output

record.

The

value

of

exp4

represents

the

arithmetic

expression

for

the

left

margin

for

the

output

text.

The

value

of

exp5

represents

the

arithmetic

expression

for

the

right

margin

for

the

output

text.

The

values

specified

for

exp5

must

be

within

the

range

returned

by

the

MACLMAR

(left

margin)

and

MACRMAR

(right

margin)

built-in

functions.

If

you

do

not

specify

the

MARGINS

option

for

an

ANSWER

statement,

the

default

value

is

MARGINS(MACLMAR,MACRMAR);

if

you

specify

the

MARGINS

option

with

no

operands,

the

default

value

is

MARGINS(MACCOL,MACRMAR).

You

must

not

use

both

the

RETURN

statement

with

an

expression

and

the

ANSWER

statement

within

the

same

preprocessor

procedure.

Example

%dcl

(Expression,

Single_string)

entry;

%dcl

(Deactivated_macro,

Statement_function)

entry;

%dcl

Deactivated_variable

character;

%deact

Deactivated_variable,

Deactivated_macro;

%Deactivated_variable

=

’**

value

of

deactivated

variable

**’;

%Deactivated_macro:

procedure

returns(

character

);

return(

’**

value

of

deactivated

macro

**’

);

%end;

%Statement_function:

procedure(

key1

)

stmt

returns(

fixed

);

dcl

key1

fixed;

return(

key1

+

key1

);

%end;

%Expression:

procedure;

ANS(

Counter

)

skip;

ANS(

Deactivated_macro

)

skip;

ANS(

Deactivated_variable

)

skip;

ANSWER

506

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

/*

The

following

is

invalid:

*/

/*

ANS(

Statement_function

Key1(7););

*/

%end;

%Single_string:

procedure;

ANS(

’Counter’

)

skip;

ANS(

’Deactivated_macro’

)

skip;

ANS(

’Deactivated_variable’

)

skip;

ANS(

’Statement_function

Key1(

7

);’

)

skip;

%end;

Expression

/*

Generates:

*/

/*

00001

*/

/*

**

value

of

deactivated

macro

**

*/

/*

**

value

of

deactivated

variable

**

*/

Single_string

/*

Generates:

*/

/*

Counter

*/

/*

Deactivated_macro

*/

/*

Deactivated_variable

*/

/*

14

*/

Preprocessor

Built-In

Functions

A

function

reference

can

invoke

one

of

a

set

of

predefined

functions

called

preprocessor

built-in

functions.

These

built-in

functions

are

invoked

in

the

same

way

that

programmer-defined

functions

are

invoked,

except

that

they

must

be

invoked

with

the

correct

number

of

arguments.

The

preprocessor

built-in

functions

are:

COLLATE

COMMENT

COMPILEDATE

COMPILETIME

COPY

COUNTER

DIMENSION

HBOUND

INDEX

LBOUND

LENGTH

MACCOL

MACLMAR

MACRMAR

MAX

MIN

PARMSET

QUOTE

REPEAT

SUBSTR

SYSPARM

SYSTEM

SYSVERSION

TRANSLATE

VERIFY

The

preprocessor

executes

a

reference

to

a

preprocessor

built-in

function

in

input

text

only

if

the

built-in

function

name

is

active.

The

built-in

functions

can

be

activated

by

a

%DECLARE

or

%ACTIVATE

statement.

In

preprocessor

statements,

the

preprocessor

built-in

function

names

are

always

active

as

built-in

functions

unless

they

are

declared

with

some

other

meaning.

If

a

preprocessor

built-in

function

name

is

used

as

the

name

of

a

user-defined

preprocessor

procedure,

references

to

the

name

are

references

to

the

procedure,

not

to

the

built-in

function.

In

such

cases,

the

identifiers

must

be

declared

with

the

BUILTIN

attribute

when

the

built-in

function

is

to

be

used

within

a

preprocessor

procedure.

The

following

preprocessor

built-in

functions

do

not

require

arguments

and

must

not

be

given

a

null

argument:

COLLATE

COMPILEDATE

COMPILETIME

COUNTER

MACCOL

MACLMAR

MACRMAR

SYSPARM

SYSTEM

SYSVERSION

ANSWER

Chapter

21.

Preprocessor

Facilities

507

COLLATE

COLLATE

returns

a

CHARACTER

string

of

length

256

comprising

the

256

possible

character

values

one

time

each

in

the

collating

order.

��

COLLATE

��

COMMENT

COMMENT

converts

a

CHARACTER

expression

into

a

comment.

��

COMMENT(x)

��

x

Expression

that

is

to

be

converted

to

a

comment.

x

should

have

CHARACTER

type,

and

if

not,

it

is

converted

thereto.

x

is

enclosed

with

a

/*

and

an

*/.

If

x

contains

/*

or

*/

composite

symbols,

they

are

replaced

by

/>

and

</,

respectively.

COMPILEDATE

COMPILEDATE

returns

a

CHARACTER

string

of

length

17

containing

the

date

and

the

time

of

the

compilation.

��

COMPILEDATE

��

The

format

of

the

string

returned

by

COMPILEDATE

is:

yyyy

current

year

mm

current

month

dd

current

day

hh

current

hour

mm

current

minute

ss

current

second

ttt

current

millisecond

The

time

zone

and

accuracy

are

system

dependent.

The

following

example

shows

how

to

print

the

string

returned

by

COMPILEDATE

when

your

program

is

run:

%DECLARE

COMP_DATE

CHAR;

%COMP_DATE=QUOTE(COMPILEDATE);

PUT

EDIT

(COMP_DATE)

(A);

COLLATE

508

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

COMPILETIME

COMPILETIME

returns

a

CHARACTER

string

of

length

18

containing

the

date

and

the

time

of

compilation.

��

COMPILETIME

��

The

format

of

the

string

returned

by

COMPILETIME

is:

DD

Day

of

the

month

.

Period

MMM

Month

in

the

form

JAN,

FEB,

MAR,

etc.

.

Period

YY

Year

b

Blank

HH

Hour

.

Period

MM

Minute

.

Period

SS

Second

A

leading

zero

in

the

day

of

the

month

field

is

replaced

by

a

blank;

no

other

leading

zeros

are

suppressed.

If

no

timing

facility

is

available,

the

last

8

characters

of

the

returned

string

are

set

to

00.00.00.

The

following

example

shows

how

to

print

the

string

returned

by

COMPILETIME

when

your

program

is

executed:

%DECLARE

COMP_TIME

CHAR;

%COMP_TIME=QUOTE(COMPILETIME);

PUT

EDIT

(COMP_TIME)

(A);

COPY

COPY

returns

a

CHARACTER

string

consisting

of

y

concatenated

copies

of

the

string

x.

��

COPY(x,y)

��

x

Expression.

x

should

have

CHARACTER

type,

and

if

not,

it

is

converted

thereto.

y

Expression

that

specifies

the

number

of

repetitions.

y

should

have

FIXED

type,

and

if

not,

it

is

converted

thereto.

y

must

be

nonnegative.

If

y

is

zero,

the

result

is

a

null

string.

COMPILETIME

Chapter

21.

Preprocessor

Facilities

509

COUNTER

COUNTER

returns

a

CHARACTER

string

of

length

5

containing

a

decimal

number.

The

returned

number

is

00001

for

the

first

invocation,

and

is

incremented

by

one

on

each

successive

invocation.

��

COUNTER

��

If

COUNTER

is

invoked

99999

times,

the

next

time

it

is

invoked,

a

diagnostic

message

is

issued

and

00000

is

returned.

The

next

invocation

after

that

is

treated

as

the

first.

The

COUNTER

built-in

function

can

be

used

to

generate

unique

names,

or

for

counting

purposes.

DIMENSION

DIMENSION

returns

a

FIXED

value

specifying

current

extent

of

dimension

y

of

x.

��

DIMENSION(x

)

,y

��

Abbreviation:

DIM

x

Array

reference.

x

must

not

have

less

than

y

dimensions.

y

Expression

specifying

a

particular

dimension

of

x.

y

should

have

FIXED

type,

and

if

not,

it

will

be

converted

thereto.

y

must

be

greater

than

or

equal

to

1.

If

y

is

not

supplied,

it

defaults

to

1.

y

can

be

omitted

only

if

the

array

is

one-dimensional.

HBOUND

HBOUND

returns

a

FIXED

value

specifying

current

upper

bound

of

dimension

y

of

x.

��

HBOUND(x

)

,y

��

x

Array

reference.

x

must

not

have

less

than

y

dimensions.

y

Expression

specifying

a

particular

dimension

of

x.

y

should

have

FIXED

type,

and

if

not,

it

will

be

converted

thereto.

y

must

be

greater

than

or

equal

to

1.

If

y

is

not

supplied,

it

defaults

to

1.

y

can

be

omitted

only

if

the

array

is

one-dimensional.

COUNTER

510

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

INDEX

INDEX

returns

a

FIXED

value

indicating

the

starting

position

within

x

of

a

substring

identical

to

y.

You

can

also

specify

the

location

within

x

where

processing

begins.

��

INDEX(x,y

)

,n

��

x

Expression

to

be

searched.

x

should

have

CHARACTER

type,

and

if

not,

it

will

be

converted

thereto.

y

Target

expression

of

the

search.

y

should

have

CHARACTER

type,

and

if

not,

it

will

be

converted

thereto.

n

n

specifies

the

location

within

x

at

which

to

begin

processing.

n

should

have

FIXED

type,

and

if

not,

it

will

be

converted

thereto.

If

y

does

not

occur

in

x,

or

if

either

x

or

y

have

zero

length,

the

value

zero

is

returned.

n

must

be

greater

than

0

and

no

greater

than

1

+

LENGTH(x).

If

n

=

LENGTH(x)

+

1,

the

result

is

zero.

LBOUND

LBOUND

returns

a

FIXED

value

specifying

current

lower

bound

of

dimension

y

of

x.

��

LBOUND(x

)

,y

��

x

Array

reference.

x

must

not

have

less

than

y

dimensions.

y

Expression

specifying

a

particular

dimension

of

x.

y

should

have

FIXED

type,

and

if

not,

it

will

be

converted

thereto.

y

must

be

greater

than

or

equal

to

1.

If

y

is

not

supplied,

it

defaults

to

1.

y

can

be

omitted

only

if

the

array

is

one-dimensional.

LENGTH

LENGTH

returns

a

FIXED

value

specifying

the

current

length

of

a

given

character

expression

x.

INDEX

Chapter

21.

Preprocessor

Facilities

511

��

LENGTH

(

x

)

��

x

Expression.

x

should

have

CHARACTER

type,

and

if

not,

it

is

converted

thereto.

MACCOL

MACCOL

returns

a

FIXED

value

that

represents

the

column

where

the

outermost

macro

invocation

starts

in

the

source

text

that

contains

the

macro

invocation.

��

MACCOL

��

The

value

returned

is

not

affected

by

nested

macro

invocations.

MACLMAR

MACLMAR

returns

a

FIXED

value

that

represents

the

column

number

of

the

left

source

margin

in

MARGINS

compiler

option.

��

MACLMAR

��

See

the

MARGINS

option

in

the

Programming

Guide.

MACRMAR

MACRMAR

returns

a

FIXED

value

that

represents

the

column

number

of

the

right

source

margin

in

MARGINS

compiler

option.

��

MACRMAR

��

See

the

MARGINS

option

in

the

Programming

Guide.

MAX

MAX

returns

the

largest

value

from

a

set

of

two

or

more

expressions.

��

�

,

MAX(

x,

y

)

��

x

and

y

Expressions.

LENGTH

512

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

All

the

arguments

should

be

FIXED,

and

any

that

are

not

FIXED

are

converted

thereto.

MIN

MIN

returns

the

smallest

value

from

a

set

of

two

or

more

expressions.

��

�

,

MIN(

x,

y

)

��

x

and

y

Expressions.

All

the

arguments

should

be

FIXED,

and

any

that

are

not

FIXED

are

converted

thereto.

PARMSET

PARMSET

returns

a

BIT

value

indicating

if

a

specified

parameter

was

set

on

invocation

of

the

procedure.

��

PARMSET

(

x

)

��

x

Must

be

a

parameter

of

the

preprocessor

procedure.

The

PARMSET

built-in

function

can

be

used

only

within

a

preprocessor

procedure.

PARMSET

returns

a

bit

value

of

’1’B

if

the

parameter

x

was

explicitly

set

by

the

function

reference

which

invoked

the

procedure,

and

a

bit

value

of

’0’B

if

it

was

not—that

is,

if

the

corresponding

argument

was

omitted

from

the

function

reference

in

a

preprocessor

expression,

or

was

the

null

string

in

a

function

reference

from

input

text.

PARMSET

can

return

’0’B,

even

if

a

matching

argument

does

appear

in

the

reference,

but

the

reference

is

in

another

preprocessor

procedure,

as

follows:

v

If

the

argument

is

not

itself

a

parameter

of

the

invoking

procedure,

PARMSET

returns

the

value

’1’B.

v

If

the

argument

is

a

parameter

of

the

invoking

procedure,

PARMSET

returns

the

value

for

the

specified

parameter

when

the

invoking

procedure

was

itself

invoked.

QUOTE

QUOTE

returns

a

CHARACTER

string

that

represents

x

as

a

valid

quoted

string.

MAX

Chapter

21.

Preprocessor

Facilities

513

��

QUOTE(x)

��

x

Expression

that

is

converted

to

a

quoted

string.

x

should

have

CHARACTER

type,

and

if

not,

it

is

converted

thereto.

If

x

contains

single

quotation

marks,

each

is

replaced

by

two

consecutive

single

quotation

marks.

REPEAT

REPEAT

returns

a

CHARACTER

string

consisting

of

(y

+

1)

concatenated

copies

of

the

string

x.

��

REPEAT(x,y)

��

x

Expression.

x

should

have

CHARACTER

type,

and

if

not,

it

is

converted

thereto.

y

Expression

that

specifies

the

number

of

repetitions.

y

should

have

FIXED

type,

and

if

not,

it

is

converted

thereto.

y

must

be

nonnegative.

If

y

is

zero,

the

result

is

x

(converted

to

character

as

necessary).

SUBSTR

SUBSTR

returns

a

substring,

specified

by

y

and

z,

of

x.

��

SUBSTR(x,y

)

,z

��

x

Expression

specifies

the

string

from

which

the

substring

is

extracted.

x

should

have

CHARACTER

type,

and

if

not,

it

is

converted

thereto.

y

Expression

that

specifies

the

starting

position

of

the

substring

in

x.

y

should

have

FIXED

type,

and

if

not,

it

is

converted

thereto.

z

Expression

that

specifies

the

length

of

the

substring

in

x.

z

should

have

FIXED

type,

and

if

not,

it

is

converted

thereto.

If

z

is

zero,

a

null

string

is

returned.

If

z

is

omitted,

the

substring

returned

is

position

y

in

x

to

the

end

of

x.

z

must

be

nonnegative,

and

the

values

of

y

and

z

must

be

such

that

the

substring

lies

entirely

within

the

current

length

of

x.

If

y

=

LENGTH(x)+1

and

z

=

0,

then

the

null

string

is

returned.

QUOTE

514

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

SYSPARM

SYSPARM

returns

the

CHARACTER

string

value

of

the

SYSPARM

compiler

option.

��

SYSPARM

��

The

value

returned

is

not

translated

to

uppercase;

the

exact

value

as

specified

in

the

compiler

option

is

returned.

For

more

information,

see

the

description

of

the

SYSPARM

compiler

option

in

the

Programming

Guide.

SYSPARM

allows

information

external

to

the

program

to

be

accessed

without

modifying

the

source

program.

SYSTEM

SYSTEM

returns

a

CHARACTER

string

that

contains

the

value

of

the

SYSTEM

compiler

option

that

is

in

effect.

��

SYSTEM

��

For

more

information,

see

the

description

of

the

SYSTEM

compiler

option

in

the

Programming

Guide.

SYSVERSION

SYSVERSION

returns

a

CHARACTER

string

containing

the

product

name

as

well

as

the

version,

release,

and

modification

level.

��

SYSVERSION

��

TRANSLATE

TRANSLATE

returns

a

CHARACTER

string

of

the

same

length

as

x,

but

with

selected

characters

translated.

��

TRANSLATE(x,y

)

,z

��

x

Expression

to

be

searched

for

possible

translation

of

its

characters.

x

should

have

CHARACTER

type,

and

if

not,

it

is

converted

thereto.

y

Expression

containing

the

translation

values

of

characters.

y

should

have

CHARACTER

type,

and

if

not,

it

is

converted

thereto.

SYSPARM

Chapter

21.

Preprocessor

Facilities

515

z

Expression

containing

the

characters

that

are

to

be

translated.

If

z

is

omitted,

it

defaults

to

COLLATE.

z

should

have

CHARACTER

type,

and

if

not,

it

is

converted

thereto.

TRANSLATE

operates

on

each

character

of

x

as

follows:

If

a

character

in

x

is

found

in

z,

the

character

in

y

that

corresponds

to

that

in

z

is

copied

to

the

result;

otherwise,

the

character

in

x

is

copied

directly

to

the

result.

If

z

contains

duplicates,

the

leftmost

occurrence

is

used.

y

is

padded

with

blanks,

or

truncated,

on

the

right

to

match

the

length

of

z.

VERIFY

VERIFY

returns

a

FIXED

value

indicating

the

position

in

x

of

the

leftmost

character

that

is

not

in

y.

It

also

allows

you

to

specify

the

location

within

x

at

which

to

begin

processing.

��

VERIFY(x,y

)

,n

��

x

Expression.

x

should

have

CHARACTER

type,

and

if

not,

it

is

converted

thereto.

y

Expression.

y

should

have

CHARACTER

type,

and

if

not,

it

is

converted

thereto.

n

Expression

n

specifies

the

location

within

x

where

processing

begins.

n

should

have

FIXED

type,

and

if

not,

it

is

converted

thereto.

If

all

the

characters

in

x

do

appear

in

y,

a

value

of

zero

is

returned.

If

x

is

the

null

string,

a

value

of

zero

is

returned.

If

x

is

not

the

null

string

and

y

is

the

null

string,

the

value

of

n

is

returned.

The

default

value

for

n

is

one.

n

must

be

greater

than

0

and

no

greater

than

1

+

LENGTH(x).

If

n

=

LENGTH(x)

+

1,

the

result

is

zero.

Preprocessor

Statements

This

section

lists

alphabetically

the

preprocessor

statements

and

discusses

each.

Comments

can

appear

within

preprocessor

statements

wherever

blanks

can

appear.

Such

comments

are

not

inserted

into

preprocessor

output

text.

All

preprocessor

statements

can

be

labeled.

%ACTIVATE

Statement

A

%ACTIVATE

statement

makes

an

identifier

active

and

eligible

for

replacement.

Any

subsequent

encounter

of

that

identifier

in

the

input

text

while

the

identifier

is

active

initiates

replacement

activity.

TRANSLATE

516

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

%

ACTIVATE

�

,

RESCAN

identifier

SCAN

NORESCAN

;

��

Abbreviation:

%ACT

identifier

Specifies

the

name

of

a

preprocessor

variable,

a

preprocessor

procedure,

or

a

preprocessor

built-in

function.

The

identifier

should

not

refer

to

an

array

variable.

RESCAN

Specifies

that

the

identifier

is

replaced

as

many

times

as

necessary

to

replace

all

active

identifiers

before

being

placed

into

the

output.

SCAN

Specifies

that

the

identifier

is

replaced

only

once

before

being

placed

into

the

output.

NORESCAN

Synonym

for

SCAN.

Using

the

%ACTIVATE

statement

for

an

identifier

that

is

already

active

has

no

effect,

except

possibly

to

change

the

scanning

status.

%assignment

Statement

A

%assignment

statement

evaluates

a

preprocessor

expression

and

assigns

the

result

to

a

preprocessor

variable.

��

�

%

label:

preprocessor-variable

=

preprocessor-expression

;

��

Compound

and

multiple

assignments

are

not

allowed.

The

target

in

an

assignment

may

not

be

an

array,

but

it

may

be

an

array

element.

%DEACTIVATE

Statement

A

%DEACTIVATE

statement

makes

an

identifier

inactive.

%ACTIVATE

Chapter

21.

Preprocessor

Facilities

517

��

�

%

label:

�

,

DEACTIVATE

identifier

;

��

Abbreviation:

%DEACT

identifier

Specifies

the

name

of

either

a

preprocessor

variable,

a

preprocessor

procedure,

or

a

preprocessor

built-in

function.

The

deactivation

of

an

identifier

causes

loss

of

its

replacement

capability

but

not

its

value.

Hence,

the

reactivation

of

such

an

identifier

need

not

be

accompanied

by

the

assignment

of

a

replacement

value.

The

deactivation

of

an

identifier

does

not

prevent

it

from

receiving

new

values

in

subsequent

preprocessor

statements.

Deactivation

of

a

deactivated

identifier

has

no

effect.

%DECLARE

Statement

The

%DECLARE

statement

establishes

an

identifier

as

a

macro

variable,

macro

procedure,

or

built-in

function.

In

addition,

scanning

status

can

be

specified

for

macro

variables.

��

%

DECLARE

�

�

,

identifier

BUILTIN

,

ENTRY

(

identifier

)

;

��

Or

%DEACTIVATE

518

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

��

%

DECLARE

�

,

identifier

description

;

�

�

�

identifier

description:

identifier

(

dimension

)

,

(

identifier

)

(

dimension

)

�

�

attributes

��

dimension:

�

�

,

hbound

lbound

:

,

*

attributes:

CHARACTER

FIXED

EXTERNAL

INTERNAL

NOSCAN

SCAN

RESCAN

Abbreviations:

%DCL

for

%DECLARE,

CHAR

for

CHARACTER,

INT

for

INTERNAL,

EXT

for

EXTERNAL

identifier

description

Specifies

the

names

and

attributes

of

macro

facility

identifiers.

BUILTIN

Specifies

that

the

identifier

is

the

preprocessor

built-in

function

of

the

same

name.

CHARACTER

Specifies

that

the

identifier

represents

a

varying-length

character

string

that

has

no

maximum

length.

ENTRY

Specifies

that

the

identifier

is

a

preprocessor

procedure.

The

declaration

activates

the

entry

name.

The

declaration

of

a

preprocessor

procedure

entry

name

can

be

performed

explicitly

by

its

appearance

as

the

label

of

a

%PROCEDURE

statement.

This

explicit

declaration,

however,

does

not

activate

the

preprocessor

procedure

name.

%DECLARE

Chapter

21.

Preprocessor

Facilities

519

FIXED

Specifies

that

the

identifier

represents

an

integer.

Under

the

(default)

FIXED(DECIMAL)

option,

it

is

also

given

the

attributes

DECIMAL(5,0).

Under

the

FIXED(BINARY)

option,

it

is

also

given

the

attributes

BINARY(31,0).

RESCAN

Specifies

that

the

identifier

is

active

and

is

replaced

as

many

times

as

necessary.

SCAN

Specifies

that

the

identifier

is

active

and

is

replaced

only

once

in

output.

NOSCAN

Specifies

that

the

identifier

is

inactive

and

is

not

to

be

replaced

in

output.

dimension

Dimension

specification

for

array

variables.

No

more

than

15

dimensions

may

be

specified.

Note:

While

an

array

may

be

declared

outside

of

a

preprocessor

procedure

(so

that

it

can

be

shared

across

multiple

procedures),

it

may

not

be

referenced

outside

a

procedure

(except

as

the

first

argument

to

one

of

the

array-enquiry

built-in

functions).

lbound

The

desired

lower

bound

for

that

dimension.

The

default

is

1.

hbound

The

desired

upper

bound

for

that

dimension.

INTERNAL

This

attribute

is

valid

only

inside

a

procedure.

If

specified

outside

a

procedure,

a

diagnostic

message

is

issued

and

the

variable

is

given

the

EXTERNAL

attribute.

All

variables

declared

outside

a

procedure

are

EXTERNAL,

and

all

variables

declared

inside

a

procedure

are

INTERNAL.

EXTERNAL

This

attribute

is

valid

only

outside

a

procedure.

If

specified

inside

a

procedure,

a

diagnostic

message

is

issued

and

the

variable

is

given

the

INTERNAL

attribute.

%DO

Statement

The

%DO

statement,

and

its

corresponding

%END

statement,

delimit

a

preprocessor

DO-group,

and

can

also

specify

repetitive

execution

of

the

DO-group.

The

syntax

for

the

%DO

statement

is

described

under

“DO

statement”

on

page

195.

Note:

All

the

formats

of

the

DO

statement

are

supported

except

v

UPTHRU

and

DOWNTHRU

are

not

accepted.

v

The

“specification”

in

Type

3

DO

statements

cannot

be

specified

multiple

times.

Preprocessor

DO-groups

can

be

nested.

Control

cannot

transfer

to

a

Type

3

preprocessor

DO-group,

except

by

return

from

a

preprocessor

procedure

invoked

from

within

the

DO-group.

%DECLARE

520

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Preprocessor

statements,

input

text,

and

listing

control

statements

can

appear

within

a

preprocessor

DO-group.

The

preprocessor

statements

are

executed,

and

any

input

text

is

scanned

for

possible

replacement

activity.

%END

Statement

The

%END

statement

is

used

in

conjunction

with

%DO,

%SELECT

or

%PROCEDURE

statements

to

delimit

preprocessor

DO-groups,

SELECT-groups

or

preprocessor

procedures.

��

%

�

label:

END

label

;

��

The

label

following

END

must

be

a

label

of

a

%PROCEDURE,

%DO

or

%SELECT

statement.

Multiple

closure

is

allowed.

%GO

TO

Statement

The

%GO

TO

statement

causes

the

preprocessor

to

continue

its

scan

at

the

specified

label.

��

%

�

label:

GO

TO

label

;

��

Abbreviation:

%GOTO

The

label

following

the

GO

TO

specifies

the

point

to

which

the

scan

is

transferred.

It

must

be

a

label

of

a

preprocessor

statement,

although

it

cannot

be

the

label

of

a

preprocessor

procedure.

A

preprocessor

GO

TO

statement

appearing

within

a

preprocessor

procedure

cannot

transfer

control

to

a

point

outside

of

that

procedure.

In

other

words,

the

label

following

GO

TO

must

be

contained

within

the

procedure.

See

“%INCLUDE

Statement”

below,

for

a

restriction

regarding

the

use

of

%GO

TO

with

included

strings.

%IF

Statement

The

%IF

statement

controls

the

flow

of

the

scan

according

to

the

bit

value

of

a

preprocessor

expression.

%DO

Chapter

21.

Preprocessor

Facilities

521

��

%

�

label:

IF

preprocessor-expression

%

THEN

�

�

preprocessor-unit1

%

ELSE

preprocessor-unit2

��

preprocessor-expression

Is

evaluated

and

converted

to

a

bit

string

(if

the

conversion

cannot

be

made,

it

is

an

error).

preprocessor-unit

Is

any

single

preprocessor

statement

(other

than

%DECLARE,

%PROCEDURE,

%END,

or

%DO)

a

preprocessor

DO-group,

or

a

preprocessor

SELECT-group.

Otherwise,

the

description

is

the

same

as

that

given

under

“IF

statement”

on

page

207.

If

any

bit

in

the

string

has

the

value

’1’B,

unit1

is

executed

and

unit2,

if

present,

is

ignored;

if

all

bits

are

’0’B,

unit1

is

ignored

and

unit2,

if

present,

is

executed.

Scanning

resumes

immediately

following

the

%IF

statement,

unless,

of

course,

a

%GO

TO

or

preprocessor

RETURN

statement

in

one

of

the

units

causes

the

scan

to

resume

elsewhere.

%IF

statements

can

be

nested

in

the

same

manner

used

for

nesting

IF

statements,

as

described

under

“IF

statement”

on

page

207.

%INCLUDE

Statement

The

external

text

specified

by

a

%INCLUDE

statement

is

included

into

the

preprocessor

input

at

the

point

at

which

the

%INCLUDE

statement

is

executed.

Such

text,

once

included,

is

called

included

text

and

can

consist

of

preprocessor

statements,

listing

control

statements,

and

PL/I

source.

The

syntax

for

the

%INCLUDE

statement

is

described

under

“%INCLUDE

directive”

on

page

209.

Each

dataset

and

member

name

pair

identifies

the

external

text

to

be

incorporated

into

the

source

program.

The

scan

continues

with

the

first

character

in

the

included

text.

The

included

text

is

scanned

in

the

same

manner

as

the

preprocessor

input.

Hence,

included

text

can

contribute

to

the

preprocessor

output

being

formed.

%INCLUDE

statements

can

be

nested.

In

other

words,

included

text

can

contain

%INCLUDE

statements.

A

%GO

TO

statement

in

included

text

can

transfer

control

only

to

a

point

within

the

same

include

file.

The

target

label

in

the

%GOTO

statement

must

not

precede

the

%GOTO.

Preprocessor

statements,

DO-groups,

SELECT-groups

and

procedures

in

included

text

must

be

complete.

For

example,

it

is

not

allowable

to

have

half

of

a

%IF

statement

in

an

included

text

and

half

in

another

portion

of

the

preprocessor

input.

%IF

522

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

If

the

preprocessor

input

and

the

included

text

contain

no

preprocessor

statements

other

than

%INCLUDE,

execution

of

the

preprocessor

can

be

omitted.

(This

necessitates

the

use

of

the

INCLUDE

compile-time

option.)

For

example,

assume

that

PAYRL

is

a

member

of

the

data

set

SYSLIB

and

contains

the

following

text

(a

structure

declaration):

DECLARE

1

PAYROLL,

2

NAME,

3

LAST

CHARACTER

(30)

VARYING,

3

FIRST

CHARACTER

(15)

VARYING,

3

MIDDLE

CHARACTER

(3)

VARYING,

2

CURR,

3

(REGLAR,

OVERTIME)

FIXED

DECIMAL

(8,2),

2

YTD

LIKE

CURR;

Then

the

following

preprocessor

statements:

%DECLARE

PAYROLL

CHARACTER;

%PAYROLL=’CUM_PAY’;

%INCLUDE

PAYRL;

%DEACTIVATE

PAYROLL;

%INCLUDE

PAYRL;

generate

two

structure

declarations

in

the

preprocessor

output

text.

The

only

difference

between

them

is

their

names,

CUM_PAY

and

PAYROLL.

Execution

of

the

first

%INCLUDE

statement

incorporates

the

text

in

PAYRL

into

the

preprocessor

input.

When

the

preprocessor

scan

encounters

the

identifier

PAYROLL

in

this

included

text,

it

replaces

it

with

the

current

value

of

the

active

preprocessor

variable

PAYROLL,

namely,

CUM_PAY.

Further

scanning

of

the

included

text

results

in

no

additional

replacements.

The

preprocessor

scan

then

encounters

the

%DEACTIVATE

statement

and

deactivates

the

preprocessor

variable

PAYROLL.

When

the

second

%INCLUDE

statement

is

executed,

the

text

in

PAYRL

once

again

is

incorporated

into

the

preprocessor

input.

This

time,

however,

scanning

of

the

included

text

results

in

no

replacements

whatsoever.

%ITERATE

Statement

The

%ITERATE

statement

transfers

control

to

the

%END

statement

that

delimits

its

containing

iterative

DO-group.

The

current

iteration

completes

and

the

next

iteration,

if

needed,

is

started.

The

ITERATE

statement

can

be

specified

inside

a

non-iterative

DO-group

as

long

as

that

DO-group

is

contained

in

an

iterative

DO-group.

��

%

�

label:

ITERATE

label

;

��

label-constant

Must

be

the

label

of

a

containing

DO-group.

If

omitted,

control

transfers

to

the

END

statement

of

the

most

recent

iterative

do-group

containing

the

ITERATE

statement.

%INCLUDE

Chapter

21.

Preprocessor

Facilities

523

%LEAVE

Statement

When

contained

in

or

specifying

a

simple

DO-group,

the

%LEAVE

statement

terminates

the

group.

When

contained

in

or

specifying

an

iterative

DO-group,

the

%LEAVE

statement

terminates

all

iterations

of

the

group,

including

the

current

iteration.

The

flow

of

control

goes

to

the

same

point

it

would

normally

go

to

if

the

do-group

had

terminated

by

reaching

its

END

statement.

��

%

�

label:

LEAVE

label

;

��

label-constant

Must

be

a

label

of

a

containing

DO-group.

The

DO-group

that

is

left

is

the

DO-group

that

has

the

specified

label.

If

label-constant

is

omitted,

the

DO-group

that

is

left

is

the

group

that

contains

the

LEAVE

statement.

%NOTE

Statement

The

%NOTE

statement

generates

a

preprocessor

diagnostic

message

of

specified

text

and

severity.

��

%

�

label:

NOTE

(

message

)

,

code

;

��

message

A

character

expression

whose

value

is

the

required

diagnostic

message.

code

A

fixed

expression

whose

value

indicates

the

severity

of

the

message,

as

follows:

Code

Severity

0

I

4

W

8

E

12

S

16

U

If

code

is

omitted,

the

default

is

0.

If

code

has

a

value

other

than

those

listed

above,

a

diagnostic

message

is

produced

and

a

default

value

is

taken.

If

the

value

is

less

than

0

or

greater

than

16,

severity

U

is

the

default.

Otherwise,

the

next

lower

severity

is

the

default.

%LEAVE

524

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Generated

messages

are

filed

together

with

other

preprocessor

messages.

Whether

or

not

a

particular

message

is

subsequently

printed

depends

upon

its

severity

level

and

the

setting

of

the

compiler

FLAG

option.

Generated

messages

of

severity

U

cause

immediate

termination

of

preprocessing

and

compilation.

Generated

messages

of

severity

S,

E,

or

W

might

cause

termination

of

compilation,

depending

upon

the

setting

of

the

NOSYNTAX

and

NOCOMPILE

compile-time

options.

%null

Statement

The

%null

statement

does

nothing

and

does

not

modify

sequential

statement

execution.

��

%

;

��

Note:

The

%PROCEDURE

and

RETURN

statements

are

described

earlier

in

this

chapter.

%REPLACE

Statement

The

%REPLACE

statement

allows

for

the

immediate

replacement

of

a

name

with

a

string

constant,

or

a

numeric

constant.

The

name

does

not

need

to

be

a

declared

variable

to

have

a

value

assigned

to

it.

��

%REPLACE

identifier

BY

WITH

string-constant

arithmetic-constant

��

identifier

Name

to

be

replaced.

string-constant

The

name,

if

undeclared,

will

be

given

the

CHARACTER

attribute

arithmetic-constant

The

name,

if

undeclared,

will

be

given

the

FIXED

attribute

Under

the

FIXED(DEC)

option,

the

value

will

be

converted

to

FIXED

DEC(5,0).

Under

the

FIXED(BIN)

option,

the

value

will

be

converted

to

FIXED

BIN(31,0).

%SELECT

Statement

The

%SELECT

statement,

and

its

corresponding

%END

statement,

delimit

a

preprocessor

SELECT-group.

%NOTE

Chapter

21.

Preprocessor

Facilities

525

��

%

�

label:

SELECT

(

exp1

)

;

�

�

�

�

,

%WHEN

(

exp2

)

unit

%OTHERWISE

unit

%END

;

��

Preprocessor

Examples

Example

1

If

the

preprocessor

input

contains:

%DECLARE

A

CHARACTER,

B

FIXED;

%A

=

’B+C’;

%B

=

2;

X

=

A;

the

following

is

inserted

into

the

preprocessor

output:

X

=

2+C;

The

preprocessor

statements

activate

A

and

B

with

the

default

RESCAN,

assign

the

character

string

’B+C’

to

A,

and

assign

the

constant

2

to

B.

The

fourth

line

is

input

text.

The

current

value

of

A,

which

is

’B+C’,

replaces

A

in

the

preprocessor

output.

But

this

string

contains

the

preprocessor

variable

B.

Upon

rescanning

B,

the

preprocessor

finds

that

it

has

been

activated.

Hence,

the

value

2

replaces

B

in

the

preprocessor

output.

The

preprocessor

variable

B

has

a

default

precision

of

(5,0)

and,

therefore,

actually

contains

2

preceded

by

four

zeros.

When

this

value

replaces

B

in

the

string

’B+C’

it

is

converted

to

a

character

string

and

becomes

2

preceded

by

seven

blanks.

Further

rescanning

shows

that

2

cannot

be

replaced;

scanning

resumes

with

+C

which,

again,

cannot

be

replaced.

If,

in

the

above

example,

the

preprocessor

variable

A

was

activated

by

this

statement:

%ACTIVATE

A

NORESCAN;

the

preprocessor

output

would

be:

X

=

B+C;

Example

2

If

the

preprocessor

input

contains:

%DECLARE

I

FIXED,

T

CHARACTER;

%DEACTIVATE

I;

%I

=

15;

%T

=

’A(I)’;

S

=

I*T*3;

%SELECT

526

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

%I

=

I+5;

%ACTIVATE

I;

%DEACTIVATE

T;

R

=

I*T*2

the

preprocessor

output

would

be

as

follows

(replacement

blanks

are

not

shown):

S

=

I*A(I)*3;

R

=

20*T*2;

Example

3

This

example

illustrates

how

preprocessor

facilities

can

be

used

to

speed

up

the

execution

of

a

DO-group,

such

as:

DO

I=1

TO

10;

Z(I)=X(I)+Y(I);

END;

The

following

would

accomplish

the

same

thing,

but

without

the

requirements

of

incrementing

and

testing

during

execution

of

the

compiled

program:

%DECLARE

I

FIXED;

%DO

I

=

1

TO

10;

Z(I)=X(I)+Y(I);

%END;

%DEACTIVATE

I;

The

third

line

is

input

text

and

is

scanned

for

replacement

activity.

The

first

time

that

this

line

is

scanned,

I

has

the

value

1

and

has

been

activated.

Therefore,

the

following

is

inserted

into

the

preprocessor

output:

Z(

1)=X(

1)+Y(

1);

Each

1

is

preceded

by

seven

blanks.

For

each

increment

of

I,

up

to

and

including

10,

the

input

text

is

scanned

and

each

occurrence

of

I

is

replaced

by

its

current

value.

As

a

result,

the

following

is

inserted

into

the

preprocessor

output:

Z(

1)=X(

1)+Y(

1);

Z(

2)=X(

2)+Y(

2);

.

.

.

Z(

10)=X(

10)+Y(

10);

When

the

value

of

I

reaches

11,

control

falls

through

to

the

%DEACTIVATE

statement.

Example

4

In

the

preprocessor

input

below,

VALUE

is

a

preprocessor

function

procedure

that

returns

a

character

string

of

the

form

’arg1(arg2)’,

where

arg1

and

arg2

represent

the

arguments

that

are

passed

to

the

function:

DECLARE

(Z(10),

Q)

FIXED;

%A=’Z’;

%ACTIVATE

A,

VALUE;

Q

=

6

+

VALUE(A,3);

%DECLARE

A

CHARACTER;

%VALUE:

PROC(ARG1,ARG2)

RETURNS(CHAR);

DCL

ARG1

CHAR,

ARG2

FIXED;

RETURN(ARG1\’(’\ARG2\’)’);

%END

VALUE;

Preprocessor

examples

Chapter

21.

Preprocessor

Facilities

527

When

the

scan

encounters

the

fourth

line,

A

is

active

and

is

thus

eligible

for

replacement.

Since

VALUE

is

also

active,

the

reference

to

it

in

the

fourth

line

invokes

the

preprocessor

function

procedure

of

that

name.

However,

before

the

arguments

A

and

3

are

passed

to

VALUE,

A

is

replaced

by

its

value

Z

(assigned

to

A

in

a

previous

assignment

statement),

and

3

is

converted

to

fixed-point

to

conform

to

the

attribute

of

its

corresponding

parameter.

VALUE

then

performs

a

concatenation

of

these

arguments

and

the

parentheses

and

returns

the

concatenated

value,

that

is,

the

string

Z

(3),

to

the

point

of

invocation.

The

returned

value

replaces

the

function

reference

and

the

result

is

inserted

into

the

preprocessor

output.

Thus,

the

preprocessor

output

generated

is:

DECLARE

(Z(10),Q)

FIXED;

Q

=

6+Z(

3);

Example

5

The

preprocessor

function

procedure

GEN

defined

below

can

generate

a

GENERIC

declaration

for

up

to

99

entry

names

with

up

to

99

parameter

descriptors

in

the

parameter

descriptor

lists.

Only

four

are

generated

in

this

example.

%DCL

GEN

ENTRY;

DCL

A

GEN

(A,2,5,FIXED);

%GEN:

PROC(NAME,LOW,HIGH,ATTR)

RETURNS

(CHAR);

DCL

(NAME,

SUFFIX,

ATTR,

STRING)

CHAR,

(LOW,

HIGH,

I,

J)

FIXED;

STRING=’GENERIC(’;

DO

I=LOW

TO

HIGH;

/*

ENTRY

NAME

LOOP*/

IF

I>9

THEN

SUFFIX=SUBSTR(I,

7,

2);

/*

2

DIGIT

SUFFIX*/

ELSE

SUFFIX=SUBSTR(I,

8,

1);

/*

1

DIGIT

SUFFIX*/

STRING=STRING\NAME\SUFFIX\’

WHEN

(’;

DO

J=1

TO

I;

/*

DESCRIPTOR

LIST*/

STRING=STRING\ATTR;

IF

J<I

/*

ATTRIBUTE

SEPARATOR*/

THEN

STRING=STRING\’,’;

ELSE

STRING=STRING\’)’;

/*

LIST

SEPARATOR

*/

END;

IF

I<HIGH

THEN

/*

ENTRY

NAME

SEPARATOR*/

STRING=STRING\’,’;

ELSE

STRING=STRING\’)’;

/*

END

OF

LIST

/*

END;

RETURN

(STRING)

%

END;

The

preprocessor

output

produced

is:

DCL

A

GENERIC(A2

WHEN

(FIXED,FIXED),

A3

WHEN

(FIXED,

FIXED,

FIXED),

A4

WHEN

(FIXED,

FIXED,

FIXED,

FIXED),

A5

WHEN

(FIXED,

FIXED,

FIXED,

FIXED,

FIXED));

Example

6

This

example

shows

a

preprocessor

procedure

that

implements

a

statement

of

the

form:

SEARCH

TABLE(array)

FOR(value)

USING(variable)

AND(variable);

This

statement

searches

a

specified

two-dimensional

array

for

a

specified

value,

using

specified

or

default

variables

for

the

array

subscripts.

After

execution

of

the

Preprocessor

examples

528

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

statement,

the

array

subscript

variables

identify

an

element

that

contains

the

specified

value.

If

no

element

contains

the

specified

value,

both

subscript

variables

are

set

to

-22222.

The

preprocessor

procedure

that

implements

this

statement

is:

%SEARCH:

PROC(TABLE,FOR,USING,AND)

STATEMENT

RETURNS(CHARACTER);

DECLARE(TABLE,FOR,USING,AND,LABL,

DO1,DO2)

CHARACTER,

(PARMSET,COUNTER)

BUILTIN;

IF

PARMSET(TABLE)

&

PARMSET(FOR)

THEN;

ELSE

SERR:DO;

NOTE

(’MISSING

OR

INVALID

ARGUMENT(S)’\’FOR

’’SEARCH’’’,4);

RETURN

(’/*INVALID

SEARCH

STATEMENT*/’);

END;

IF

¬PARMSET(USING)

THEN

USING=’I’;

IF

¬PARMSET(AND)

THEN

AND=’J’;

IF

USING

=

AND

THEN

GO

TO

SERR;

LABL=’SL’\COUNTER;

DO1=LABL\’:

DO

’\USING\’=LBOUND(’\TABLE\’,1)

TO

HBOUND(’\TABLE\’,1);’;

DO2=’DO

’\AND\’=LBOUND(’\TABLE\’,2)

TO

HBOUND

(’\TABLE\’,2);’;

RETURN(DO1\DO2\’SELECT(’\TABLE

\’(’\USING\’,’\AND\’));

WHEN(’\FOR\’)

LEAVE

’\LABL\’;

OTHER;

END

’\LABL\’;

IF

’\AND\’

>

H

BOUND(’\TABLE\’,2)

THEN

’\USING\’,’\AND\.’

=

-22222;’);

%END

SEARCH;

The

PARMSET

built-in

function

is

used

to

determine

which

parameters

are

set

when

the

procedure

is

invoked.

If

USING

is

not

set,

the

default

array

subscript

variable

I

is

used.

If

AND

is

not

set,

J

is

used.

If

TABLE

or

FOR

is

not

set,

or

if

the

invocation

results

in

the

same

variable

being

used

for

both

subscripts,

a

preprocessor

diagnostic

message

is

issued

and

a

comment

is

returned

in

the

preprocessor

output.

The

COUNTER

built-in

function

is

used

to

generate

unique

labels

for

the

preprocessor

output

returned

by

the

procedure.

The

procedure

can

be

invoked

with

keyword

arguments

or

positional

arguments,

or

a

combination

of

the

two.

The

following

invocations

of

the

procedure

produce

identical

results:

SEARCH

TABLE(LIST.NAME)

FOR(’J.DOE’)

USING(I)

AND(J);

SEARCH

TABLE(LIST.NAME)

FOR(’J.DOE’);

SEARCH(LIST.NAME)

FOR(’J.DOE’);

SEARCH(LIST.NAME,’J.DOE’);

SEARCH(,’J.DOE’)

TABLE(LIST.NAME);

Preprocessor

examples

Chapter

21.

Preprocessor

Facilities

529

The

preprocessor

output

returned

by

any

of

these

invocations

is:

SL00001:

DO

I=LBOUND(LIST.NAME,1)

TO

HBOUND(LIST.NAME,1);

DO

J=LBOUND(LIST.NAME,2)

TO

HBOUND(LIST.NAME,2);

SELECT(LIST.NAME(I,J));

WHEN(’J.DOE’)

LEAVE

SL00001;

OTHER;

END

SL00001;

IF

J

>

HBOUND(LIST.NAME,2)

THEN

I,J

=

-22222;

The

label

SL00001

is

returned

only

for

the

first

invocation.

A

new

unique

label

is

returned

for

each

subsequent

invocation.

Preprocessor

examples

530

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Appendix.

Limits

Table

67

summarizes

the

implementation

limits

for

the

PL/I

language

elements.

Table

68

on

page

534

summarizes

the

implementation

limits

for

the

macro

facility

language

elements.

Table

67.

Language

element

limits

Language

Element

Description

Limit

Arrays

Maximum

number

of

dimensions

for

an

array

15

Minimum

lower

bound

(Note

1)

−2147483648

Maximum

upper

bound

(Note

1)

+2147483647

Note

1:

Under

the

compile-time

option

CMPAT(V1),

the

minimum

lower

bound

is

−32768

and

the

maximum

upper

bound

is

32767.

Also,

these

bounds

should

be

used

with

caution.

For

instance,

if

A

has

the

maximum

upper

bound

and

JX

has

the

attributes

SIGNED

FIXED

BIN(31),

then

the

loop

DO

JX

=

LBOUND(A)

TO

HBOUND(A)

will

″wrap″

after

it

hits

the

last

element

in

the

array.

It

would

not

″wrap″

if

UPTHRU

were

used

instead

of

TO.

Structures

Maximum

number

of

levels

in

a

structure

15

Maximum

level-number

in

a

structure

255

Arithmetic

Precisions

Maximum

precision

for

FIXED

DECIMAL

31

(Note

2)

Maximum

precision

for

FIXED

BINARY

63

(Note

3)

Maximum

precision

for

FLOAT

DECIMAL

33

(Note

4)

Maximum

precision

for

FLOAT

BINARY

109

(Note

5)

Maximum

scale

factor

for

FIXED

data

127

Minimum

scale

factor

for

FIXED

data

-128

Note

2:

This

is

true

only

if

you

specify

the

compile-time

option

LIMITS(FIXEDDEC(31));

the

default

is

15.

Note

3:

This

is

true

only

if

you

specify

the

compile-time

option

LIMITS(FIXEDBIN(63));

the

default

is

31.

Note

4:

On

Intel,

the

maximum

FLOAT

DECIMAL

precision

is

18.

Note

5:

On

Intel,

the

maximum

FLOAT

BINARY

precision

is

64.

String

and

AREA

Variables

or

Constants

Maximum

length

of

CHARACTER

32767

Maximum

length

of

BIT

32767

Maximum

length

of

GRAPHIC

16383

Maximum

length

of

WIDECHAR

16383

Maximum

size

of

AREA

2147483647

531

Table

67.

Language

element

limits

(continued)

Language

Element

Description

Limit

Built-In

Functions

Maximum

number

of

arguments

to

the

IAND,

IOR,

MAX,

and

MIN

functions

64

Maximum

values

for

the

precision

(p)

in

the

ADD,

BINARY,

DECIMAL,

DIVIDE,

FIXED,

FLOAT,

MULTIPLY,

PRECISION,

and

SUBTRACT

functions

same

as

corresponding

limit

for

arithmetic

precision

Maximum

values

for

the

scale

(q)

in

the

ADD,

BINARY,

DECIMAL,

DIVIDE,

FIXED,

MULTIPLY,

PRECISION,

and

SUBTRACT

functions

same

as

corresponding

limit

for

arithmetic

precisions

Maximum

number

of

digits

(N)

in

the

CEIL,

FLOOR,

MAX,

MIN,

MOD,

ROUND

and

TRUNC

functions

same

as

corresponding

limit

for

arithmetic

precisions

Limits

532

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Table

67.

Language

element

limits

(continued)

Language

Element

Description

Limit

Program

Size

Maximum

length

of

an

identifier

100

Maximum

number

of

procedures

in

a

program

255

Maximum

number

of

lexical

units

(keywords,

identifiers,

delimiters,

etc)

before

a

statement

type

can

be

resolved

511

Maximum

number

of

DEFAULT-statements

in

a

block

31

Maximum

number

of

%PUSH

statements

63

Maximum

number

of

%INCLUDE

statements

2047

Maximum

nesting

of

%INCLUDE

statements

2046

Maximum

number

of

lines

in

any

source

file

1048575

Maximum

number

of

statements

16777215

Maximum

number

of

LIKE-attributes

in

a

block

63

Maximum

number

of

output

expressions

in

a

data-list

60

Maximum

number

of

repetitive

DO-specifications

in

a

data-list

50

Maximum

size

of

a

data

aggregate

containing

no

unaligned

bits

2147483647

Maximum

size

of

a

data

aggregate

containing

some

unaligned

bits

268435455

Maximum

number

of

arguments

in

a

CALL

or

function

reference

255

Maximum

number

of

parameters

for

a

procedure

4095

Maximum

nesting

of

factored

attributes

15

Maximum

nesting

of

BEGIN

and

PROCEDURE

statements

30

Maximum

nesting

of

DO-groups

49

Maximum

nesting

of

IF

statements

49

Maximum

nesting

of

SELECT-statements

49

Maximum

length

of

%NOTE

message

32767

Limits

Appendix.

Limits

533

Table

67.

Language

element

limits

(continued)

Language

Element

Description

Limit

Miscellaneous

Maximum

number

of

picture

characters

in

a

character

picture

511

Maximum

number

of

bytes

in

a

numeric

picture

253

Maximum

number

of

numeric

picture

characters

in

a

numeric

picture

31

Maximum

number

of

bytes

in

the

external

representation

of

CHARACTER,

X,

BIT,

BX,

GRAPHIC,

GX,

WX

and

M

string

constants

The

external

representation

includes

all

quotes

and

string

suffixes.

For

example,

the

string

’01010110’B

has

11

bytes

in

its

external

specification,

but

only

1

byte

in

its

internal

representation.

Similarly,

the

string

’Ain’’t

Misbehavin’’’

has

21

bytes

in

its

external

specification,

but

only

17

in

its

internal

representation.

3072

Maximum

length

for

a

KEYTO

character

string

120

Maximum

length

for

a

KEYTO

graphic

or

widechar

string

60

Maximum

KEY

length

32763

Maximum

line

size

for

LINESIZE

32,759

for

F-format

or

U-format,

and

32,751

for

V-format

Minimum

line

size

for

LINESIZE

1

Maximum

page

size

for

PAGESIZE

32,767

Minimum

page

size

for

PAGESIZE

compiler

option

1

Maximum

size

of

DISPLAY

character

string

126

Maximum

DISPLAY

reply

message.

72

bytes

Range

of

IEEE

normalized

floating-point

numbers

+3.30E-4932

to

+1.21E+4932,

0,

-3.30E-4932

to

-1.21E+4932

Range

of

hex

floating-point

numbers

+10E-78

to

+10E75,

0,

-10E-78

to

+10E+75

Table

68.

Macro

facility

limits

Language

Element

Description

Limit

Arrays

Maximum

number

of

dimensions

15

Minimum

lower

bound

−32768

Maximum

upper

bound

+32767

Limits

534

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Table

68.

Macro

facility

limits

(continued)

Language

Element

Description

Limit

Arithmetic

Range

Min

and

max

for

a

FIXED

variable

under

FIXED(DECIMAL)

option

same

as

FIXED

DECIMAL(5)

identifier

Min

and

max

for

a

FIXED

variable

under

FIXED(BINARY)

option

same

as

FIXED

BINARY(31)

identifier

Macro

Procedures

Maximum

nesting

level

1

Keys

Maximum

number

of

keyword

parameters

4096

Limits

Appendix.

Limits

535

Limits

536

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user└s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Corporation

J74/G4

555

Bailey

Avenue

San

Jose,

CA

95141-1099

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

″AS

IS″

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

publication

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

537

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

or

other

countries,

or

both:

AIX

CICS

CICS/ESA

DB2

DFSMS

DFSORT

IBM

IMS

IMS/ESA

Language

Environment

MVS

OpenEdition

z/OS

RACF

System/390

VisualAge

z/OS

Intel

is

a

registered

trademark

of

Intel

Corporation

in

the

United

States

and

other

countries.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States

and

other

countries.

Microsoft,

Windows,

and

Windows

NT

are

trademarks

of

Microsoft

Corporation

in

the

United

States

and

other

countries.

Pentium

is

a

registered

trademark

of

Intel

Corporation

in

the

United

States

and

other

countries.

Unicode

is

a

trademark

of

the

Unicode

Consortium.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product

or

service

names

may

be

the

trademarks

or

service

marks

of

others.

If

you

are

viewing

this

information

in

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

538

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Bibliography

Enterprise

PL/I

publications

Programming

Guide,

SC27-1457

Language

Reference,

SC27-1460

Messages

and

Codes,

SC27-1461

Diagnosis

Guide,

GC27-1459

Compiler

and

Run-Time

Migration

Guide,

GC27-1458

PL/I

for

MVS

&

VM

Installation

and

Customization

under

MVS,

SC26-3119

Language

Reference,

SC26-3114

Compile-Time

Messages

and

Codes,

SC26-3229

Diagnosis

Guide,

SC26-3149

Migration

Guide,

SC26-3118

Programming

Guide,

SC26-3113

Reference

Summary,

SX26-3821

z/OS

Language

Environment

Concepts

Guide,

SA22-7567

Debugging

Guide,

GA22-7560

Run-Time

Messages,

SA22-7566

Customization,

SA22-7564

Programming

Guide,

SA22-7561

Programming

Reference,

SA22-7562

Run-Time

Migration

Guide,

GA22-7565

Writing

Interlanguage

Communication

Applications,

SA22-7563

CICS

Transaction

Server

Application

Programming

Guide,

SC33-1687

Application

Programming

Reference,

SC33-1688

Customization

Guide,

SC33-1683

External

Interfaces

Guide,

SC33-1944

DB2

UDB

for

OS/390

and

z/OS

Administration

Guide,

SC26-9931

An

Introduction

to

DB2

for

OS/390,

SC26-9937

Application

Programming

and

SQL

Guide,

SC26-9933

Command

Reference,

SC26-9934

Messages

and

Codes,

GC26-9940

SQL

Reference,

SC26-9944

539

DFSORT™

Application

Programming

Guide,

SC33-4035

Installation

and

Customization,

SC33-4034

IMS/ESA®

Application

Programming:

Database

Manager,

SC26-8015

Application

Programming:

Database

Manager

Summary,

SC26-8037

Application

Programming:

Design

Guide,

SC26-8016

Application

Programming:

Transaction

Manager,

SC26-8017

Application

Programming:

Transaction

Manager

Summary,

SC26-8038

Application

Programming:

EXEC

DL/I

Commands

for

CICS

and

IMS™,

SC26-8018

Application

Programming:

EXEC

DL/I

Commands

for

CICS

and

IMS

Summary,

SC26-8036

z/OS

MVS

JCL

Reference,

SA22-7597

JCL

User’s

Guide,

SA22-7598

System

Commands,

SA22-7627

z/OS

UNIX

System

Services

UNIX

System

Services

Command

Reference,

SA22-7802

UNIX

System

Services

Programming:

Assembler

Callable

Services

Reference,

SA22-7803

UNIX

System

Services

User’s

Guide,

SA22-7801

z/OS

TSO/E

Command

Reference,

SA22-7782

User’s

Guide,

SA22-7794

z/Architecture

Principles

of

Operation,

SA22-7832

Unicode®

and

character

representation

OS/390

Support

for

Unicode:

Using

Conversion

Services,

SC33-7050

540

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Glossary

This

glossary

defines

terms

for

all

platforms

and

releases

of

PL/I.

It

might

contain

terms

that

this

manual

does

not

use.

If

you

do

not

find

the

terms

for

which

you

are

looking,

see

the

index

in

this

manual

or

IBM

Dictionary

of

Computing,

SC20-1699.

A

access.

To

reference

or

retrieve

data.

action

specification.

In

an

ON

statement,

the

ON-unit

or

the

single

keyword

SYSTEM,

either

of

which

specifies

the

action

to

be

taken

whenever

the

appropriate

condition

is

raised.

activate

(a

block).

To

initiate

the

execution

of

a

block.

A

procedure

block

is

activated

when

it

is

invoked.

A

begin-block

is

activated

when

it

is

encountered

in

the

normal

flow

of

control,

including

a

branch.

A

package

cannot

be

activated.

activate

(a

preprocessor

variable

or

preprocessor

entry

point).

To

make

a

macro

facility

identifier

eligible

for

replacement

in

subsequent

source

code.

The

%ACTIVATE

statement

activates

preprocessor

variables

or

preprocessor

entry

points.

active.

The

state

of

a

block

after

activation

and

before

termination.

The

state

in

which

a

preprocessor

variable

or

preprocessor

entry

name

is

said

to

be

when

its

value

can

replace

the

corresponding

identifier

in

source

program

text.

The

state

in

which

an

event

variable

is

said

to

be

during

the

time

it

is

associated

with

an

asynchronous

operation.

The

state

in

which

a

task

variable

is

said

to

be

when

its

associated

task

is

attached.

The

state

in

which

a

task

is

said

to

be

before

it

has

been

terminated.

actual

origin

(AO).

The

location

of

the

first

item

in

the

array

or

structure.

additive

attribute.

A

file

description

attribute

for

which

there

are

no

defaults,

and

which,

if

required,

must

be

stated

explicitly

or

implied

by

another

explicitly

stated

attribute.

Contrast

with

alternative

attribute.

adjustable

extent.

The

bound

(of

an

array),

the

length

(of

a

string),

or

the

size

(of

an

area)

that

might

be

different

for

different

generations

of

the

associated

variable.

Adjustable

extents

are

specified

as

expressions

or

asterisks

(or

by

REFER

options

for

based

variables),

which

are

evaluated

separately

for

each

generation.

They

cannot

be

used

for

static

variables.

aggregate.

See

data

aggregate.

aggregate

expression.

An

array,

structure,

or

union

expression.

aggregate

type.

For

any

item

of

data,

the

specification

whether

it

is

structure,

union,

or

array.

allocated

variable.

A

variable

with

which

main

storage

is

associated

and

not

freed.

allocation.

The

reservation

of

main

storage

for

a

variable.

A

generation

of

an

allocated

variable.

The

association

of

a

PL/I

file

with

a

system

data

set,

device,

or

file.

alignment.

The

storing

of

data

items

in

relation

to

certain

machine-dependent

boundaries

(for

example,

a

fullword

or

halfword

boundary).

alphabetic

character.

Any

of

the

characters

A

through

Z

of

the

English

alphabet

and

the

alphabetic

extenders

#,

$,

and

@

(which

can

have

a

different

graphic

representation

in

different

countries).

alphameric

character.

An

alphabetic

character

or

a

digit.

alternative

attribute.

A

file

description

attribute

that

is

chosen

from

a

group

of

attributes.

If

none

is

specified,

a

default

is

assumed.

Contrast

with

additive

attribute.

ambiguous

reference.

A

reference

that

is

not

sufficiently

qualified

to

identify

one

and

only

one

name

known

at

the

point

of

reference.

area.

A

portion

of

storage

within

which

based

variables

can

be

allocated.

argument.

An

expression

in

an

argument

list

as

part

of

an

invocation

of

a

subroutine

or

function.

argument

list.

A

parenthesized

list

of

zero

or

more

arguments,

separated

by

commas,

following

an

entry

name

constant,

an

entry

name

variable,

a

generic

name,

or

a

built-in

function

name.

The

list

becomes

the

parameter

list

of

the

entry

point.

arithmetic

comparison.

A

comparison

of

numeric

values.

See

also

bit

comparison,

character

comparison.

541

arithmetic

constant.

A

fixed-point

constant

or

a

floating-point

constant.

Although

most

arithmetic

constants

can

be

signed,

the

sign

is

not

part

of

the

constant.

arithmetic

conversion.

The

transformation

of

a

value

from

one

arithmetic

representation

to

another.

arithmetic

data.

Data

that

has

the

characteristics

of

base,

scale,

mode,

and

precision.

Coded

arithmetic

data

and

pictured

numeric

character

data

are

included.

arithmetic

operators.

Either

of

the

prefix

operators

+

and

−,

or

any

of

the

following

infix

operators:

+

−

*

/

**

array.

A

named,

ordered

collection

of

one

or

more

data

elements

with

identical

attributes,

grouped

into

one

or

more

dimensions.

array

expression.

An

expression

whose

evaluation

yields

an

array

of

values.

array

of

structures.

An

ordered

collection

of

identical

structures

specified

by

giving

the

dimension

attribute

to

a

structure

name.

array

variable.

A

variable

that

represents

an

aggregate

of

data

items

that

must

have

identical

attributes.

Contrast

with

structure

variable.

ASCII.

American

National

Standard

Code

for

Information

Interchange.

assignment.

The

process

of

giving

a

value

to

a

variable.

asynchronous

operation.

The

overlap

of

an

input/output

operation

with

the

execution

of

statements.

The

concurrent

execution

of

procedures

using

multiple

flows

of

control

for

different

tasks.

attachment

of

a

task.

The

invocation

of

a

procedure

and

the

establishment

of

a

separate

flow

of

control

to

execute

the

invoked

procedure

(and

procedures

it

invokes)

asynchronously,

with

execution

of

the

invoking

procedure.

attention.

An

occurrence,

external

to

a

task,

that

could

cause

a

task

to

be

interrupted.

attribute.

A

descriptive

property

associated

with

a

name

to

describe

a

characteristic

represented.

A

descriptive

property

used

to

describe

a

characteristic

of

the

result

of

evaluation

of

an

expression.

automatic

storage

allocation.

The

allocation

of

storage

for

automatic

variables.

automatic

variable.

A

variable

whose

storage

is

allocated

automatically

at

the

activation

of

a

block

and

released

automatically

at

the

termination

of

that

block.

B

base.

The

number

system

in

which

an

arithmetic

value

is

represented.

base

element.

A

member

of

a

structure

or

a

union

that

is

itself

not

another

structure

or

union.

base

item.

The

automatic,

controlled,

or

static

variable

or

the

parameter

upon

which

a

defined

variable

is

defined.

based

reference.

A

reference

that

has

the

based

storage

class.

based

storage

allocation.

The

allocation

of

storage

for

based

variables.

based

variable.

A

variable

whose

storage

address

is

provided

by

a

locator.

Multiple

generations

of

the

same

variable

are

accessible.

It

does

not

identify

a

fixed

location

in

storage.

begin-block.

A

collection

of

statements

delimited

by

BEGIN

and

END

statements,

forming

a

name

scope.

A

begin-block

is

activated

either

by

the

raising

of

a

condition

(if

the

begin-block

is

the

action

specification

for

an

ON-unit)

or

through

the

normal

flow

of

control,

including

any

branch

resulting

from

a

GOTO

statement.

binary.

A

number

system

whose

only

numerals

are

0

and

1.

binary

digit.

See

bit.

binary

fixed-point

value.

An

integer

consisting

of

binary

digits

and

having

an

optional

binary

point

and

optional

sign.

Contrast

with

decimal

fixed-point

value.

binary

floating-point

value.

An

approximation

of

a

real

number

in

the

form

of

a

significand,

which

can

be

considered

as

a

binary

fraction,

and

an

exponent,

which

can

be

considered

as

an

integer

exponent

to

the

base

of

2.

Contrast

with

decimal

floating-point

value.

bit.

A

0

or

a

1.

The

smallest

amount

of

space

of

computer

storage.

bit

comparison.

A

left-to-right,

bit-by-bit

comparison

of

binary

digits.

See

also

arithmetic

comparison,

character

comparison.

bit

string

constant.

A

series

of

binary

digits

enclosed

in

and

followed

immediately

by

the

suffix

B.

Contrast

with

character

constant.

A

series

of

hexadecimal

digits

enclosed

in

single

quotes

and

followed

by

the

suffix

B4.

bit

string.

A

string

composed

of

zero

or

more

bits.

bit

string

operators.

The

logical

operators

not

and

exclusive-or

(¬),

and

(&),

and

or

(|).

bit

value.

A

value

that

represents

a

bit

type.

542

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

block.

A

sequence

of

statements,

processed

as

a

unit,

that

specifies

the

scope

of

names

and

the

allocation

of

storage

for

names

declared

within

it.

A

block

can

be

a

package,

procedure,

or

a

begin-block.

bounds.

The

upper

and

lower

limits

of

an

array

dimension.

break

character.

The

underscore

symbol

(

_

).

It

can

be

used

to

improve

the

readability

of

identifiers.

For

instance,

a

variable

could

be

called

OLD_INVENTORY_TOTAL

instead

of

OLDINVENTORYTOTAL.

built-in

function.

A

predefined

function

supplied

by

the

language,

such

as

SQRT

(square

root).

built-in

function

reference.

A

built-in

function

name,

which

has

an

optional

argument

list.

built-in

name.

The

entry

name

of

a

built-in

subroutine.

built-in

subroutine.

Subroutine

that

has

an

entry

name

that

is

defined

at

compile-time

and

is

invoked

by

a

CALL

statement.

buffer.

Intermediate

storage,

used

in

input/output

operations,

into

which

a

record

is

read

during

input

and

from

which

a

record

is

written

during

output.

C

call.

To

invoke

a

subroutine

by

using

the

CALL

statement

or

CALL

option.

character

comparison.

A

left-to-right,

character-by-character

comparison

according

to

the

collating

sequence.

See

also

arithmetic

comparison,

bit

comparison.

character

string

constant.

A

sequence

of

characters

enclosed

in

single

quotes;

for

example,

'Shakespeare''s

'Hamlet:''.

character

set.

A

defined

collection

of

characters.

See

language

character

set

and

data

character

set.

See

also

ASCII

and

EBCDIC.

character

string

picture

data.

Picture

data

that

has

only

a

character

value.

This

type

of

picture

data

must

have

at

least

one

A

or

X

picture

specification

character.

Contrast

with

numeric

picture

data.

closing

(of

a

file).

The

dissociation

of

a

file

from

a

data

set

or

device.

coded

arithmetic

data.

Data

items

that

represent

numeric

values

and

are

characterized

by

their

base

(decimal

or

binary),

scale

(fixed-point

or

floating-point),

and

precision

(the

number

of

digits

each

can

have).

This

data

is

stored

in

a

form

that

is

acceptable,

without

conversion,

for

arithmetic

calculations.

combined

nesting

depth.

The

deepest

level

of

nesting,

determined

by

counting

the

levels

of

PROCEDURE/BEGIN/ON,

DO,

SELECT,

and

IF...THEN...ELSE

nestings

in

the

program.

comment.

A

string

of

zero

or

more

characters

used

for

documentation

that

are

delimited

by

/*

and

*/.

commercial

character.

v

CR

(credit)

picture

specification

character

v

DB

(debit)

picture

specification

character

comparison

operator.

An

operator

that

can

be

used

in

an

arithmetic,

string

locator,

or

logical

relation

to

indicate

the

comparison

to

be

done

between

the

terms

in

the

relation.

The

comparison

operators

are:

=

(equal

to)

>

(greater

than)

<

(less

than)

>=

(greater

than

or

equal

to)

<=

(less

than

or

equal

to)

¬=

(not

equal

to)

¬>

(not

greater

than)

¬<

(not

less

than)

compile

time.

In

general,

the

time

during

which

a

source

program

is

translated

into

an

object

module.

In

PL/I,

it

is

the

time

during

which

a

source

program

can

be

altered,

if

desired,

and

then

translated

into

an

object

program.

compiler

options.

Keywords

that

are

specified

to

control

certain

aspects

of

a

compilation,

such

as:

the

nature

of

the

object

module

generated,

the

types

of

printed

output

produced,

and

so

forth.

complex

data.

Arithmetic

data,

each

item

of

which

consists

of

a

real

part

and

an

imaginary

part.

composite

operator.

An

operator

that

consists

of

more

than

one

special

character,

such

as

<=,

**,

and

/*.

compound

statement.

A

statement

that

contains

other

statements.

In

PL/I,

IF,

ON,

OTHERWISE,

and

WHEN

are

the

only

compound

statements.

See

statement

body.

concatenation.

The

operation

that

joins

two

strings

in

the

order

specified,

forming

one

string

whose

length

is

equal

to

the

sum

of

the

lengths

of

the

two

original

strings.

It

is

specified

by

the

operator

||.

condition.

An

exceptional

situation,

either

an

error

(such

as

an

overflow),

or

an

expected

situation

(such

as

the

end

of

an

input

file).

When

a

condition

is

raised

(detected),

the

action

established

for

it

is

processed.

See

also

established

action

and

implicit

action.

condition

name.

Name

of

a

PL/I-defined

or

programmer-defined

condition.

Glossary

543

condition

prefix.

A

parenthesized

list

of

one

or

more

condition

names

prefixed

to

a

statement.

It

specifies

whether

the

named

conditions

are

to

be

enabled

or

disabled.

connected

aggregate.

An

array

or

structure

whose

elements

occupy

contiguous

storage

without

any

intervening

data

items.

Contrast

with

nonconnected

aggregate.

connected

reference.

A

reference

to

connected

storage.

It

must

be

apparent,

prior

to

execution

of

the

program,

that

the

storage

is

connected.

connected

storage.

Main

storage

of

an

uninterrupted

linear

sequence

of

items

that

can

be

referred

to

by

a

single

name.

constant.

An

arithmetic

or

string

data

item

that

does

not

have

a

name

and

whose

value

cannot

change.

An

identifier

declared

with

the

VALUE

attribute.

An

identifier

declared

with

the

FILE

or

the

ENTRY

attribute

but

without

the

VARIABLE

attribute.

constant

reference.

A

value

reference

which

has

a

constant

as

its

object

contained

block,

declaration,

or

source

text.

All

blocks,

procedures,

statements,

declarations,

or

source

text

inside

a

begin,

procedure,

or

a

package

block.

The

entire

package,

procedure,

and

the

BEGIN

statement

and

its

corresponding

END

statements

are

not

contained

in

the

block.

containing

block.

The

package,

procedure,

or

begin-block

that

contains

the

declaration,

statement,

procedure,

or

other

source

text

in

question.

contextual

declaration.

The

appearance

of

an

identifier

that

has

not

been

explicitly

declared

in

a

DECLARE

statement,

but

whose

context

of

use

allows

the

association

of

specific

attributes

with

the

identifier.

control

character.

A

character

in

a

character

set

whose

occurrence

in

a

particular

context

specifies

a

control

function.

One

example

is

the

end-of-file

(EOF)

marker.

control

format

item.

A

specification

used

in

edit-directed

transmission

to

specify

positioning

of

a

data

item

within

the

stream

or

printed

page.

control

variable.

A

variable

that

is

used

to

control

the

iterative

execution

of

a

DO

statement.

controlled

parameter.

A

parameter

for

which

the

CONTROLLED

attribute

is

specified

in

a

DECLARE

statement.

It

can

be

associated

only

with

arguments

that

have

the

CONTROLLED

attribute.

controlled

storage

allocation.

The

allocation

of

storage

for

controlled

variables.

controlled

variable.

A

variable

whose

allocation

and

release

are

controlled

by

the

ALLOCATE

and

FREE

statements,

with

access

to

the

current

generation

only.

control

sections.

Grouped

machine

instructions

in

an

object

module.

conversion.

The

transformation

of

a

value

from

one

representation

to

another

to

conform

to

a

given

set

of

attributes.

For

example,

converting

a

character

string

to

an

arithmetic

value

such

as

FIXED

BINARY

(15,0).

cross

section

of

an

array.

The

elements

represented

by

the

extent

of

at

least

one

dimension

of

an

array.

An

asterisk

in

the

place

of

a

subscript

in

an

array

reference

indicates

the

entire

extent

of

that

dimension.

current

generation.

The

generation

of

an

automatic

or

controlled

variable

that

is

currently

available

by

referring

to

the

name

of

the

variable.

D

data.

Representation

of

information

or

of

value

in

a

form

suitable

for

processing.

data

aggregate.

A

data

item

that

is

a

collection

of

other

data

items.

data

attribute.

A

keyword

that

specifies

the

type

of

data

that

the

data

item

represents,

such

as

FIXED

BINARY.

data-directed

transmission.

The

type

of

stream-oriented

transmission

in

which

data

is

transmitted.

It

resembles

an

assignment

statement

and

is

of

the

form

name

=

constant.

data

item.

A

single

named

unit

of

data.

data

list.

In

stream-oriented

transmission,

a

parenthesized

list

of

the

data

items

used

in

GET

and

PUT

statements.

Contrast

with

format

list.

data

set.

A

collection

of

data

external

to

the

program

that

can

be

accessed

by

reference

to

a

single

file

name.

A

device

that

can

be

referenced.

data

specification.

The

portion

of

a

stream-oriented

transmission

statement

that

specifies

the

mode

of

transmission

(DATA,

LIST,

or

EDIT)

and

includes

the

data

list(s)

and,

for

edit-directed

mode,

the

format

list(s).

data

stream.

Data

being

transferred

from

or

to

a

data

set

by

stream-oriented

transmission,

as

a

continuous

stream

of

data

elements

in

character

form.

data

transmission.

The

transfer

of

data

from

a

data

set

to

the

program

or

vice

versa.

data

type.

A

set

of

data

attributes.

544

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

DBCS.

In

the

character

set,

each

character

is

represented

by

two

consecutive

bytes.

deactivated.

The

state

in

which

an

identifier

is

said

to

be

when

its

value

cannot

replace

a

preprocessor

identifier

in

source

program

text.

Contrast

with

active.

debugging.

Process

of

removing

bugs

from

a

program.

decimal.

The

number

system

whose

numerals

are

0

through

9.

decimal

digit

picture

character.

The

picture

specification

character

9.

decimal

fixed-point

constant.

A

constant

consisting

of

one

or

more

decimal

digits

with

an

optional

decimal

point.

decimal

fixed-point

value.

A

rational

number

consisting

of

a

sequence

of

decimal

digits

with

an

assumed

position

of

the

decimal

point.

Contrast

with

binary

fixed-point

value.

decimal

floating-point

constant.

A

value

made

up

of

a

significand

that

consists

of

a

decimal

fixed-point

constant,

and

an

exponent

that

consists

of

the

letter

E

followed

by

an

optionally

signed

integer

constant

not

exceeding

three

digits.

decimal

floating-point

value.

An

approximation

of

a

real

number,

in

the

form

of

a

significand,

which

can

be

considered

as

a

decimal

fraction,

and

an

exponent,

which

can

be

considered

as

an

integer

exponent

to

the

base

10.

Contrast

with

binary

floating-point

value.

decimal

picture

data.

See

numeric

picture

data.

declaration.

The

establishment

of

an

identifier

as

a

name

and

the

specification

of

a

set

of

attributes

(partial

or

complete)

for

it.

A

source

of

attributes

of

a

particular

name.

default.

Describes

a

value,

attribute,

or

option

that

is

assumed

when

none

has

been

specified.

defined

variable.

A

variable

that

is

associated

with

some

or

all

of

the

storage

of

the

designated

base

variable.

delimit.

To

enclose

one

or

more

items

or

statements

with

preceding

and

following

characters

or

keywords.

delimiter.

All

comments

and

the

following

characters:

percent,

parentheses,

comma,

period,

semicolon,

colon,

assignment

symbol,

blank,

pointer,

asterisk,

and

single

quote.

They

define

the

limits

of

identifiers,

constants,

picture

specifications,

iSUBs,

and

keywords.

descriptor.

A

control

block

that

holds

information

about

a

variable,

such

as

area

size,

array

bounds,

or

string

length.

digit.

One

of

the

characters

0

through

9.

dimension

attribute.

An

attribute

that

specifies

the

number

of

dimensions

of

an

array

and

indicates

the

bounds

of

each

dimension.

disabled.

The

state

of

a

condition

in

which

no

interrupt

occurs

and

no

established

action

will

take

place.

do-group.

A

sequence

of

statements

delimited

by

a

DO

statement

and

ended

by

its

corresponding

END

statement,

used

for

control

purposes.

Contrast

with

block.

do-loop.

See

iterative

do-group.

dummy

argument.

Temporary

storage

that

is

created

automatically

to

hold

the

value

of

an

argument

that

cannot

be

passed

by

reference.

dump.

Printout

of

all

or

part

of

the

storage

used

by

a

program

as

well

as

other

program

information,

such

as

a

trace

of

an

error’s

origin.

E

EBCDIC.

(Extended

Binary-Coded

Decimal

Interchange

Code).

A

coded

character

set

consisting

of

8-bit

coded

characters.

edit-directed

transmission.

The

type

of

stream-oriented

transmission

in

which

data

appears

as

a

continuous

stream

of

characters

and

for

which

a

format

list

is

required

to

specify

the

editing

desired

for

the

associated

data

list.

element.

A

single

item

of

data

as

opposed

to

a

collection

of

data

items

such

as

an

array;

a

scalar

item.

element

expression.

An

expression

whose

evaluation

yields

an

element

value.

element

variable.

A

variable

that

represents

an

element;

a

scalar

variable.

elementary

name.

See

base

element.

enabled.

The

state

of

a

condition

in

which

the

condition

can

cause

an

interrupt

and

then

invocation

of

the

appropriate

established

ON-unit.

end-of-step

message.

message

that

follows

the

listng

of

the

job

control

statements

and

job

scheduler

messages

and

contains

return

code

indicating

success

or

failure

for

each

step.

entry

constant.

The

label

prefix

of

a

PROCEDURE

statement

(an

entry

name).

The

declaration

of

a

name

with

the

ENTRY

attribute

but

without

the

VARIABLE

attribute.

Glossary

545

entry

data.

A

data

item

that

represents

an

entry

point

to

a

procedure.

entry

expression.

An

expression

whose

evaluation

yields

an

entry

name.

entry

name.

An

identifier

that

is

explicitly

or

contextually

declared

to

have

the

ENTRY

attribute

(unless

the

VARIABLE

attribute

is

given)

or

An

identifier

that

has

the

value

of

an

entry

variable

with

the

ENTRY

attribute

implied.

entry

point.

A

point

in

a

procedure

at

which

it

can

be

invoked.

primary

entry

point

and

secondary

entry

point.

entry

reference.

An

entry

constant,

an

entry

variable

reference,

or

a

function

reference

that

returns

an

entry

value.

entry

variable.

A

variable

to

which

an

entry

value

can

be

assigned.

It

must

have

both

the

ENTRY

and

VARIABLE

attributes.

entry

value.

The

entry

point

represented

by

an

entry

constant

or

variable;

the

value

includes

the

environment

of

the

activation

that

is

associated

with

the

entry

constant.

environment

(of

an

activation).

Information

associated

with

and

used

in

the

invoked

block

regarding

data

declared

in

containing

blocks.

environment

(of

a

label

constant).

Identity

of

the

particular

activation

of

a

block

to

which

a

reference

to

a

statement-label

constant

applies.

This

information

is

determined

at

the

time

a

statement-label

constant

is

passed

as

an

argument

or

is

assigned

to

a

statement-label

variable,

and

it

is

passed

or

assigned

along

with

the

constant.

established

action.

The

action

taken

when

a

condition

is

raised.

See

also

implicit

action

and

ON-statement

action.

epilogue.

Those

processes

that

occur

automatically

at

the

termination

of

a

block

or

task.

evaluation.

The

reduction

of

an

expression

to

a

single

value,

an

array

of

values,

or

a

structured

set

of

values.

event.

An

activity

in

a

program

whose

status

and

completion

can

be

determined

from

an

associated

event

variable.

event

variable.

A

variable

with

the

EVENT

attribute

that

can

be

associated

with

an

event.

Its

value

indicates

whether

the

action

has

been

completed

and

the

status

of

the

completion.

explicit

declaration.

The

appearance

of

an

identifier

(a

name)

in

a

DECLARE

statement,

as

a

label

prefix,

or

in

a

parameter

list.

Contrast

with

implicit

declaration.

exponent

characters.

The

following

picture

specification

characters:

1.

K

and

E,

which

are

used

in

floating-point

picture

specifications

to

indicate

the

beginning

of

the

exponent

field.

2.

F,

the

scaling

factor

character,

specified

with

an

integer

constant

that

indicates

the

number

of

decimal

positions

the

decimal

point

is

to

be

moved

from

its

assumed

position

to

the

right

(if

the

constant

is

positive)

or

to

the

left

(if

the

constant

is

negative).

expression.

A

notation,

within

a

program,

that

represents

a

value,

an

array

of

values,

or

a

structured

set

of

values.

A

constant

or

a

reference

appearing

alone,

or

a

combination

of

constants

and/or

references

with

operators.

extended

alphabet.

The

uppercase

and

lowercase

alphabetic

characters

A

through

Z,

$,

@

and

#,

or

those

specified

in

the

NAMES

compiler

option.

extent.

The

range

indicated

by

the

bounds

of

an

array

dimension,

by

the

length

of

a

string,

or

by

the

size

of

an

area.

The

size

of

the

target

area

if

this

area

were

to

be

assigned

to

a

target

area.

external

name.

A

name

(with

the

EXTERNAL

attribute)

whose

scope

is

not

necessarily

confined

only

to

one

block

and

its

contained

blocks.

external

procedure.

A

procedure

that

is

not

contained

in

any

other

procedure.

A

level-2

procedure

contained

in

a

package

that

is

also

exported.

external

symbol.

Name

that

can

be

referred

to

in

a

control

section

other

than

the

one

in

which

it

is

defined.

External

Symbol

Dictionary

(ESD).

Table

containing

all

the

external

symbols

that

appear

in

the

object

module.

extralingual

character.

Characters

(such

as

$,

@,

and

#)

that

are

not

classified

as

alphanumeric

or

special.

This

group

includes

characters

that

are

determined

with

the

NAMES

compiler

option.

F

factoring.

The

application

of

one

or

more

attributes

to

a

parenthesized

list

of

names

in

a

DECLARE

statement,

eliminating

the

repetition

of

identical

attributes

for

multiple

names.

field

(in

the

data

stream).

That

portion

of

the

data

stream

whose

width,

in

number

of

characters,

is

defined

by

a

single

data

or

spacing

format

item.

546

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

field

(of

a

picture

specification).

Any

character-string

picture

specification

or

that

portion

(or

all)

of

a

numeric

character

picture

specification

that

describes

a

fixed-point

number.

file.

A

named

representation,

within

a

program,

of

a

data

set

or

data

sets.

A

file

is

associated

with

the

data

set(s)

for

each

opening.

file

constant.

A

name

declared

with

the

FILE

attribute

but

not

the

VARIABLE

attribute.

file

description

attributes.

Keywords

that

describe

the

individual

characteristics

of

each

file

constant.

See

also

alternative

attribute

and

additive

attribute.

file

expression.

An

expression

whose

evaluation

yields

a

value

of

the

type

file.

file

name.

A

name

declared

for

a

file.

file

variable.

A

variable

to

which

file

constants

can

be

assigned.

It

has

the

attributes

FILE

and

VARIABLE

and

cannot

have

any

of

the

file

description

attributes.

fixed-point

constant.

See

arithmetic

constant.

fix-up.

A

solution,

performed

by

the

compiler

after

detecting

an

error

during

compilation,

that

allows

the

compiled

program

to

run.

floating-point

constant.

See

arithmetic

constant.

flow

of

control.

Sequence

of

execution.

format.

A

specification

used

in

edit-directed

data

transmission

to

describe

the

representation

of

a

data

item

in

the

stream

(data

format

item)

or

the

specific

positioning

of

a

data

item

within

the

stream

(control

format

item).

format

constant.

The

label

prefix

on

a

FORMAT

statement.

format

data.

A

variable

with

the

FORMAT

attribute.

format

label.

The

label

prefix

on

a

FORMAT

statement.

format

list.

In

stream-oriented

transmission,

a

list

specifying

the

format

of

the

data

item

on

the

external

medium.

Contrast

with

data

list.

fully

qualified

name.

A

name

that

includes

all

the

names

in

the

hierarchical

sequence

above

the

member

to

which

the

name

refers,

as

well

as

the

name

of

the

member

itself.

function

(procedure).

A

procedure

that

has

a

RETURNS

option

in

the

PROCEDURE

statement.

A

name

declared

with

the

RETURNS

attribute.

It

is

invoked

by

the

appearance

of

one

of

its

entry

names

in

a

function

reference

and

it

returns

a

scalar

value

to

the

point

of

reference.

Contrast

with

subroutine.

function

reference.

An

entry

constant

or

an

entry

variable,

either

of

which

must

represent

a

function,

followed

by

a

possibly

empty

argument

list.

Contrast

with

subroutine

call.

G

generation

(of

a

variable).

The

allocation

of

a

static

variable,

a

particular

allocation

of

a

controlled

or

automatic

variable,

or

the

storage

indicated

by

a

particular

locator

qualification

of

a

based

variable

or

by

a

defined

variable

or

parameter.

generic

descriptor.

A

descriptor

used

in

a

GENERIC

attribute.

generic

key.

A

character

string

that

identifies

a

class

of

keys.

All

keys

that

begin

with

the

string

are

members

of

that

class.

For

example,

the

recorded

keys

'ABCD',

'ABCE',

and

'ABDF',

are

all

members

of

the

classes

identified

by

the

generic

keys

'A'

and

'AB',

and

the

first

two

are

also

members

of

the

class

'ABC';

and

the

three

recorded

keys

can

be

considered

to

be

unique

members

of

the

classes

'ABCD',

'ABCE',

'ABDF',

respectively.

generic

name.

The

name

of

a

family

of

entry

names.

A

reference

to

the

generic

name

is

replaced

by

the

entry

name

whose

parameter

descriptors

match

the

attributes

of

the

arguments

in

the

argument

list

at

the

point

of

invocation.

group.

A

collection

of

statements

contained

within

larger

program

units.

A

group

is

either

a

do-group

or

a

select-group

and

it

can

be

used

wherever

a

single

statement

can

appear,

except

as

an

on-unit.

H

hex.

See

hexadecimal

digit.

hexadecimal.

Pertaining

to

a

numbering

system

with

a

base

of

sixteen;

valid

numbers

use

the

digits

0

through

9

and

the

characters

A

through

F,

where

A

represents

10

and

F

represents

15.

hexadecimal

digit.

One

of

the

digits

0

through

9

and

A

through

F.

A

through

F

represent

the

decimal

values

10

through

15,

respectively.

I

identifier.

A

string

of

characters,

not

contained

in

a

comment

or

constant,

and

preceded

and

followed

by

a

delimiter.

The

first

character

of

the

identifier

must

be

one

of

the

26

alphabetic

characters

and

extralingual

characters,

if

any.

The

other

characters,

if

any,

can

additionally

include

extended

alphabetic,

digit,

or

the

break

character.

IEEE.

Institute

of

Electrical

and

Electronics

Engineers.

Glossary

547

implicit.

The

action

taken

in

the

absence

of

an

explicit

specification.

implicit

action.

The

action

taken

when

an

enabled

condition

is

raised

and

no

ON-unit

is

currently

established

for

the

condition.

Contrast

with

ON-statement

action.

implicit

declaration.

A

name

not

explicitly

declared

in

a

DECLARE

statement

or

contextually

declared.

implicit

opening.

The

opening

of

a

file

as

the

result

of

an

input

or

output

statement

other

than

the

OPEN

statement.

infix

operator.

An

operator

that

appears

between

two

operands.

inherited

dimensions.

For

a

structure,

union,

or

element,

those

dimensions

that

are

derived

from

the

containing

structures.

If

the

name

is

an

element

that

is

not

an

array,

the

dimensions

consist

entirely

of

its

inherited

dimensions.

If

the

name

is

an

element

that

is

an

array,

its

dimensions

consist

of

its

inherited

dimensions

plus

its

explicitly

declared

dimensions.

A

structure

with

one

or

more

inherited

dimensions

is

called

a

nonconnected

aggregate.

Contrast

with

connected

aggregate.

input/output.

The

transfer

of

data

between

auxiliary

medium

and

main

storage.

insertion

point

character.

A

picture

specification

character

that

is,

on

assignment

of

the

associated

data

to

a

character

string,

inserted

in

the

indicated

position.

When

used

in

a

P-format

item

for

input,

the

insertion

character

is

used

for

checking

purposes.

integer.

An

optionally

signed

sequence

of

digits

or

a

sequence

of

bits

without

a

decimal

or

binary

point.

An

optionally

signed

whole

number,

commonly

described

as

FIXED

BINARY

(p,0)

or

FIXED

DECIMAL

(p,0).

integral

boundary.

A

byte

multiple

address

of

any

8-bit

unit

on

which

data

can

be

aligned.

It

usually

is

a

halfword,

fullword,

or

doubleword

(2-,

4-,

or

8-byte

multiple

respectively)

boundary.

interleaved

array.

An

array

that

refers

to

nonconnected

storage.

interleaved

subscripts.

Subscripts

that

exist

in

levels

other

than

the

lowest

level

of

a

subscripted

qualified

reference.

internal

block.

A

block

that

is

contained

in

another

block.

internal

name.

A

name

that

is

known

only

within

the

block

in

which

it

is

declared,

and

possibly

within

any

contained

blocks.

internal

procedure.

A

procedure

that

is

contained

in

another

block.

Contrast

with

external

procedure.

interrupt.

The

redirection

of

the

program’s

flow

of

control

as

the

result

of

raising

a

condition

or

attention.

invocation.

The

activation

of

a

procedure.

invoke.

To

activate

a

procedure.

invoked

procedure.

A

procedure

that

has

been

activated.

invoking

block.

A

block

that

activates

a

procedure.

iteration

factor.

In

an

INITIAL

attribute

specification,

an

expression

that

specifies

the

number

of

consecutive

elements

of

an

array

that

are

to

be

initialized

with

the

given

value.

In

a

format

list,

an

expression

that

specifies

the

number

of

times

a

given

format

item

or

list

of

format

items

is

to

be

used

in

succession.

iterative

do-group.

A

do-group

whose

DO

statement

specifies

a

control

variable

and/or

a

WHILE

or

UNTIL

option.

K

key.

Data

that

identifies

a

record

within

a

direct-access

data

set.

See

source

key

and

recorded

key.

keyword.

An

identifier

that

has

a

specific

meaning

in

PL/I

when

used

in

a

defined

context.

keyword

statement.

A

simple

statement

that

begins

with

a

keyword,

indicating

the

function

of

the

statement.

known

(applied

to

a

name).

Recognized

with

its

declared

meaning.

A

name

is

known

throughout

its

scope.

L

label.

A

name

prefixed

to

a

statement.

A

name

on

a

PROCEDURE

statement

is

called

an

entry

constant;

a

name

on

a

FORMAT

statement

is

called

a

format

constant;

a

name

on

other

kinds

of

statements

is

called

a

label

constant.

A

data

item

that

has

the

LABEL

attribute.

label

constant.

A

name

written

as

the

label

prefix

of

a

statement

(other

than

PROCEDURE,

ENTRY,

FORMAT,

or

PACKAGE)

so

that,

during

execution,

program

control

can

be

transferred

to

that

statement

through

a

reference

to

its

label

prefix.

label

data.

A

label

constant

or

the

value

of

a

label

variable.

label

prefix.

A

label

prefixed

to

a

statement.

label

variable.

A

variable

declared

with

the

LABEL

attribute.

Its

value

is

a

label

constant

in

the

program.

548

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

leading

zeroes.

Zeros

that

have

no

significance

in

an

arithmetic

value.

All

zeros

to

the

left

of

the

first

nonzero

in

a

number.

level

number.

A

number

that

precedes

a

name

in

a

DECLARE

statement

and

specifies

its

relative

position

in

the

hierarchy

of

structure

names.

level-one

variable.

A

major

structure

or

union

name.

Any

unsubscripted

variable

not

contained

within

a

structure

or

union.

lexically.

Relating

to

the

left-to-right

order

of

units.

library.

An

MVS

partitioned

data

set

or

a

CMS

MACLIB

that

can

be

used

to

store

other

data

sets

called

members.

list-directed.

The

type

of

stream-oriented

transmission

in

which

data

in

the

stream

appears

as

constants

separated

by

blanks

or

commas

and

for

which

formatting

is

provided

automatically.

locator.

A

control

block

that

holds

the

address

of

a

variable

or

its

descriptor.

locator/descriptor.

A

locator

followed

by

a

descriptor.

The

locator

holds

the

address

of

the

variable,

not

the

address

of

the

descriptor.

locator

qualification.

In

a

reference

to

a

based

variable,

either

a

locator

variable

or

function

reference

connected

by

an

arrow

to

the

left

of

a

based

variable

to

specify

the

generation

of

the

based

variable

to

which

the

reference

refers.

It

might

be

an

implicit

reference.

locator

value.

A

value

that

identifies

or

can

be

used

to

identify

the

storage

address.

locator

variable.

A

variable

whose

value

identifies

the

location

in

main

storage

of

a

variable

or

a

buffer.

It

has

the

POINTER

or

OFFSET

attribute.

locked

record.

A

record

in

an

EXCLUSIVE

DIRECT

UPDATE

file

that

has

been

made

available

to

one

task

only

and

cannot

be

accessed

by

other

tasks

until

the

task

using

it

relinquishes

it.

logical

level

(of

a

structure

or

union

member).

The

depth

indicated

by

a

level

number

when

all

level

numbers

are

in

direct

sequence

(when

the

increment

between

successive

level

numbers

is

one).

logical

operators.

The

bit-string

operators

not

and

exclusive-or

(¬),

and

(&),

and

or

(|).

loop.

A

sequence

of

instructions

that

is

executed

iteratively.

lower

bound.

The

lower

limit

of

an

array

dimension.

M

main

procedure.

An

external

procedure

whose

PROCEDURE

statement

has

the

OPTIONS

(MAIN)

attribute.

This

procedure

is

invoked

automatically

as

the

first

step

in

the

execution

of

a

program.

major

structure.

A

structure

whose

name

is

declared

with

level

number

1.

member.

A

structure,

union,

or

element

name

in

a

structure

or

union.

Data

sets

in

a

library.

minor

structure.

A

structure

that

is

contained

within

another

structure

or

union.

The

name

of

a

minor

structure

is

declared

with

a

level

number

greater

than

one

and

greater

than

its

parent

structure

or

union.

mode

(of

arithmetic

data).

An

attribute

of

arithmetic

data.

It

is

either

real

or

complex.

multiple

declaration.

Two

or

more

declarations

of

the

same

identifier

internal

to

the

same

block

without

different

qualifications.

Two

or

more

external

declarations

of

the

same

identifier.

multiprocessing.

The

use

of

a

computing

system

with

two

or

more

processing

units

to

execute

two

or

more

programs

simultaneously.

multiprogramming.

The

use

of

a

computing

system

to

execute

more

than

one

program

concurrently,

using

a

single

processing

unit.

N

name.

Any

identifier

that

the

user

gives

to

a

variable

or

to

a

constant.

An

identifier

appearing

in

a

context

where

it

is

not

a

keyword.

Sometimes

called

a

user-defined

name.

nesting.

The

occurrence

of:

v

A

block

within

another

block

v

A

group

within

another

group

v

An

IF

statement

in

a

THEN

clause

or

in

an

ELSE

clause

v

A

function

reference

as

an

argument

of

a

function

reference

v

A

remote

format

item

in

the

format

list

of

a

FORMAT

statement

v

A

parameter

descriptor

list

in

another

parameter

descriptor

list

v

An

attribute

specification

within

a

parenthesized

name

list

for

which

one

or

more

attributes

are

being

factored

nonconnected

storage.

Storage

occupied

by

nonconnected

data

items.

For

example,

interleaved

arrays

and

structures

with

inherited

dimensions

are

in

nonconnected

storage.

Glossary

549

null

locator

value.

A

special

locator

value

that

cannot

identify

any

location

in

internal

storage.

It

gives

a

positive

indication

that

a

locator

variable

does

not

currently

identify

any

generation

of

data.

null

statement.

A

statement

that

contains

only

the

semicolon

symbol

(;).

It

indicates

that

no

action

is

to

be

taken.

null

string.

A

character,

graphic,

or

bit

string

with

a

length

of

zero.

numeric-character

data.

See

decimal

picture

data.

numeric

picture

data.

Picture

data

that

has

an

arithmetic

value

as

well

as

a

character

value.

This

type

of

picture

data

cannot

contain

the

characters

'A'

or

'X.'

O

object.

A

collection

of

data

referred

to

by

a

single

name.

offset

variable.

A

locator

variable

with

the

OFFSET

attribute,

whose

value

identifies

a

location

in

storage

relative

to

the

beginning

of

an

area.

ON-condition.

An

occurrence,

within

a

PL/I

program,

that

could

cause

a

program

interrupt.

It

can

be

the

detection

of

an

unexpected

error

or

of

an

occurrence

that

is

expected,

but

at

an

unpredictable

time.

ON-statement

action.

The

action

explicitly

established

for

a

condition

that

is

executed

when

the

condition

is

raised.

When

the

ON-statement

is

encountered

in

the

flow

of

control

for

the

program,

it

executes,

establishing

the

action

for

the

condition.

The

action

executes

when

the

condition

is

raised

if

the

ON-unit

is

still

established

or

a

RESIGNAL

statement

reestablishes

it.

Contrast

with

implicit

action.

ON-unit.

The

specified

action

to

be

executed

when

the

appropriate

condition

is

raised.

opening

(of

a

file).

The

association

of

a

file

with

a

data

set.

operand.

The

value

of

an

identifier,

constant,

or

an

expression

to

which

an

operator

is

applied,

possibly

in

conjunction

with

another

operand.

operational

expression.

An

expression

that

consists

of

one

or

more

operators.

operator.

A

symbol

specifying

an

operation

to

be

performed.

option.

A

specification

in

a

statement

that

can

be

used

to

influence

the

execution

or

interpretation

of

the

statement.

P

package

constant.

The

label

prefix

on

a

PACKAGE

statement.

packed

decimal.

The

internal

representation

of

a

fixed-point

decimal

data

item.

padding.

One

or

more

characters,

graphics,

or

bits

concatenated

to

the

right

of

a

string

to

extend

the

string

to

a

required

length.

One

or

more

bytes

or

bits

inserted

in

a

structure

or

union

so

that

the

following

element

within

the

structure

or

union

is

aligned

on

the

appropriate

integral

boundary.

parameter.

A

name

in

the

parameter

list

following

the

PROCEDURE

statement,

specifying

an

argument

that

will

be

passed

when

the

procedure

is

invoked.

parameter

descriptor.

The

set

of

attributes

specified

for

a

parameter

in

an

ENTRY

attribute

specification.

parameter

descriptor

list.

The

list

of

all

parameter

descriptors

in

an

ENTRY

attribute

specification.

parameter

list.

A

parenthesized

list

of

one

or

more

parameters,

separated

by

commas

and

following

either

the

keyword

PROCEDURE

in

a

procedure

statement

or

the

keyword

ENTRY

in

an

ENTRY

statement.

The

list

corresponds

to

a

list

of

arguments

passed

at

invocation.

partially

qualified

name.

A

qualified

name

that

is

incomplete.

It

includes

one

or

more,

but

not

all,

of

the

names

in

the

hierarchical

sequence

above

the

structure

or

union

member

to

which

the

name

refers,

as

well

as

the

name

of

the

member

itself.

picture

data.

Numeric

data,

character

data,

or

a

mix

of

both

types,

represented

in

character

form.

picture

specification.

A

data

item

that

is

described

using

the

picture

characters

in

a

declaration

with

the

PICTURE

attribute

or

in

a

P-format

item.

picture

specification

character.

Any

of

the

characters

that

can

be

used

in

a

picture

specification.

PL/I

character

set.

A

set

of

characters

that

has

been

defined

to

represent

program

elements

in

PL/I.

PL/I

prompter.

Command

processor

program

for

the

PLI

command

that

checks

the

operands

and

allocates

the

data

sets

required

by

the

compiler.

point

of

invocation.

The

point

in

the

invoking

block

at

which

the

reference

to

the

invoked

procedure

appears.

pointer.

A

type

of

variable

that

identifies

a

location

in

storage.

pointer

value.

A

value

that

identifies

the

pointer

type.

550

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

pointer

variable.

A

locator

variable

with

the

POINTER

attribute

that

contains

a

pointer

value.

precision.

The

number

of

digits

or

bits

contained

in

a

fixed-point

data

item,

or

the

minimum

number

of

significant

digits

(excluding

the

exponent)

maintained

for

a

floating-point

data

item.

prefix.

A

label

or

a

parenthesized

list

of

one

or

more

condition

names

included

at

the

beginning

of

a

statement.

prefix

operator.

An

operator

that

precedes

an

operand

and

applies

only

to

that

operand.

The

prefix

operators

are

plus

(+),

minus

(−),

and

not

(¬).

preprocessor.

A

program

that

examines

the

source

program

before

the

compilation

takes

place.

preprocessor

statement.

A

special

statement

appearing

in

the

source

program

that

specifies

the

actions

to

be

performed

by

the

preprocessor.

It

is

executed

as

it

is

encountered

by

the

preprocessor.

primary

entry

point.

The

entry

point

identified

by

any

of

the

names

in

the

label

list

of

the

PROCEDURE

statement.

priority.

A

value

associated

with

a

task,

that

specifies

the

precedence

of

the

task

relative

to

other

tasks.

problem

data.

Coded

arithmetic,

bit,

character,

graphic,

and

picture

data.

problem-state

program.

A

program

that

operates

in

the

problem

state

of

the

operating

system.

It

does

not

contain

input/output

instructions

or

other

privileged

instructions.

procedure.

A

collection

of

statements,

delimited

by

PROCEDURE

and

END

statements.

A

procedure

is

a

program

or

a

part

of

a

program,

delimits

the

scope

of

names,

and

is

activated

by

a

reference

to

the

procedure

or

one

of

its

entry

names.

See

also

external

procedure

and

internal

procedure.

procedure

reference.

An

entry

constant

or

variable.

It

can

be

followed

by

an

argument

list.

It

can

appear

in

a

CALL

statement

or

the

CALL

option,

or

as

a

function

reference.

program.

A

set

of

one

or

more

external

procedures

or

packages.

One

of

the

external

procedures

must

have

the

OPTIONS(MAIN)

specification

in

its

procedure

statement.

program

control

data.

Area,

locator,

label,

format,

entry,

and

file

data

that

is

used

to

control

the

processing

of

a

PL/I

program.

prologue.

The

processes

that

occur

automatically

on

block

activation.

pseudovariable.

Any

of

the

built-in

function

names

that

can

be

used

to

specify

a

target

variable.

It

is

usually

on

the

left-hand

side

of

an

assignment

statement.

Q

qualified

name.

A

hierarchical

sequence

of

names

of

structure

or

union

members,

connected

by

periods,

used

to

identify

a

name

within

a

structure.

Any

of

the

names

can

be

subscripted.

R

range

(of

a

default

specification).

A

set

of

identifiers

and/or

parameter

descriptors

to

which

the

attributes

in

a

DEFAULT

statement

apply.

record.

The

logical

unit

of

transmission

in

a

record-oriented

input

or

output

operation.

A

collection

of

one

or

more

related

data

items.

The

items

usually

have

different

data

attributes

and

usually

are

described

by

a

structure

or

union

declaration.

recorded

key.

A

character

string

identifying

a

record

in

a

direct-access

data

set

where

the

character

string

itself

is

also

recorded

as

part

of

the

data.

record-oriented

data

transmission.

The

transmission

of

data

in

the

form

of

separate

records.

Contrast

with

stream

data

transmission.

recursive

procedure.

A

procedure

that

can

be

called

from

within

itself

or

from

within

another

active

procedure.

reentrant

procedure.

A

procedure

that

can

be

activated

by

multiple

tasks,

threads,

or

processes

simultaneously

without

causing

any

interference

between

these

tasks,

threads,

and

processes.

REFER

expression.

The

expression

preceding

the

keyword

REFER,

which

is

used

as

the

bound,

length,

or

size

when

the

based

variable

containing

a

REFER

option

is

allocated,

either

by

an

ALLOCATE

or

LOCATE

statement.

REFER

object.

The

variable

in

a

REFER

option

that

holds

or

will

hold

the

current

bound,

length,

or

size

for

the

member.

The

REFER

object

must

be

a

member

of

the

same

structure

or

union.

It

must

not

be

locator-qualified

or

subscripted,

and

it

must

precede

the

member

with

the

REFER

option.

reference.

The

appearance

of

a

name,

except

in

a

context

that

causes

explicit

declaration.

relative

virtual

origin

(RVO).

The

actual

origin

of

an

array

minus

the

virtual

origin

of

an

array.

remote

format

item.

The

letter

R

followed

by

the

label

(enclosed

in

parentheses)

of

a

FORMAT

statement.

The

Glossary

551

format

statement

is

used

by

edit-directed

data

transmission

statements

to

control

the

format

of

data

being

transmitted.

repetition

factor.

A

parenthesized

unsigned

integer

constant

that

specifies:

1.

The

number

of

times

the

string

constant

that

follows

is

to

be

repeated.

2.

The

number

of

times

the

picture

character

that

follows

is

to

be

repeated.

repetitive

specification.

An

element

of

a

data

list

that

specifies

controlled

iteration

to

transmit

one

or

more

data

items,

generally

used

in

conjunction

with

arrays.

restricted

expression.

An

expression

that

can

be

evaluated

by

the

compiler

during

compilation,

resulting

in

a

constant.

Operands

of

such

an

expression

are

constants,

named

constants,

and

restricted

expressions.

returned

value.

The

value

returned

by

a

function

procedure.

RETURNS

descriptor.

A

descriptor

used

in

a

RETURNS

attribute,

and

in

the

RETURNS

option

of

the

PROCEDURE

and

ENTRY

statements.

S

scalar

variable.

A

variable

that

is

not

a

structure,

union,

or

array.

scale.

A

system

of

mathematical

notation

whose

representation

of

an

arithmetic

value

is

either

fixed-point

or

floating-point.

scale

factor.

A

specification

of

the

number

of

fractional

digits

in

a

fixed-point

number.

scaling

factor.

See

scale

factor.

scope

(of

a

condition

prefix).

The

portion

of

a

program

throughout

which

a

particular

condition

prefix

applies.

scope

(of

a

declaration

or

name).

The

portion

of

a

program

throughout

which

a

particular

name

is

known.

secondary

entry

point.

An

entry

point

identified

by

any

of

the

names

in

the

label

list

of

an

entry

statement.

select-group.

A

sequence

of

statements

delimited

by

SELECT

and

END

statements.

selection

clause.

A

WHEN

or

OTHERWISE

clause

of

a

select-group.

self-defining

data.

An

aggregate

that

contains

data

items

whose

bounds,

lengths,

and

sizes

are

determined

at

program

execution

time

and

are

stored

in

a

member

of

the

aggregate.

separator.

See

delimiter.

shift.

Change

of

data

in

storage

to

the

left

or

to

the

right

of

original

position.

shift-in.

Symbol

used

to

signal

the

compiler

at

the

end

of

a

double-byte

string.

shift-out.

Symbol

used

to

signal

the

compiler

at

the

beginning

of

a

double-byte

string.

sign

and

currency

symbol

characters.

The

picture

specification

characters.

S,

+,

−,

and

$

(or

other

national

currency

symbols

enclosed

in

<

and

>).

simple

parameter.

A

parameter

for

which

no

storage

class

attribute

is

specified.

It

can

represent

an

argument

of

any

storage

class,

but

only

the

current

generation

of

a

controlled

argument.

simple

statement.

A

statement

other

than

IF,

ON,

WHEN,

and

OTHERWISE.

source.

Data

item

to

be

converted

for

problem

data.

source

key.

A

key

referred

to

in

a

record-oriented

transmission

statement

that

identifies

a

particular

record

within

a

direct-access

data

set.

source

program.

A

program

that

serves

as

input

to

the

source

program

processors

and

the

compiler.

source

variable.

A

variable

whose

value

participates

in

some

other

operation,

but

is

not

modified

by

the

operation.

Contrast

with

target

variable.

spill

file.

Data

set

named

SYSUT1

that

is

used

as

a

temporary

workfile.

standard

default.

The

alternative

attribute

or

option

assumed

when

none

has

been

specified

and

there

is

no

applicable

DEFAULT

statement.

standard

file.

A

file

assumed

by

PL/I

in

the

absence

of

a

FILE

or

STRING

option

in

a

GET

or

PUT

statement.

SYSIN

is

the

standard

input

file

and

SYSPRINT

is

the

standard

output

file.

standard

system

action.

Action

specified

by

the

language

to

be

taken

for

an

enabled

condition

in

the

absence

of

an

ON-unit

for

that

condition.

statement.

A

PL/I

statement,

composed

of

keywords,

delimiters,

identifiers,

operators,

and

constants,

and

terminated

by

a

semicolon

(;).

Optionally,

it

can

have

a

condition

prefix

list

and

a

list

of

labels.

See

also

keyword

statement,

assignment

statement,

and

null

statement.

statement

body.

A

statement

body

can

be

either

a

simple

or

a

compound

statement.

statement

label.

See

label

constant.

static

storage

allocation.

The

allocation

of

storage

for

static

variables.

552

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

static

variable.

A

variable

that

is

allocated

before

execution

of

the

program

begins

and

that

remains

allocated

for

the

duration

of

execution.

stream-oriented

data

transmission.

The

transmission

of

data

in

which

the

data

is

treated

as

though

it

were

a

continuous

stream

of

individual

data

values

in

character

form.

Contrast

with

record-oriented

data

transmission.

string.

A

contiguous

sequence

of

characters,

graphics,

or

bits

that

is

treated

as

a

single

data

item.

string

variable.

A

variable

declared

with

the

BIT,

CHARACTER,

or

GRAPHIC

attribute,

whose

values

can

be

either

bit,

character,

or

graphic

strings.

structure.

A

collection

of

data

items

that

need

not

have

identical

attributes.

Contrast

with

array.

structure

expression.

An

expression

whose

evaluation

yields

a

structure

set

of

values.

structure

of

arrays.

A

structure

that

has

the

dimension

attribute.

structure

member.

See

member.

structuring.

The

hierarchy

of

a

structure,

in

terms

of

the

number

of

members,

the

order

in

which

they

appear,

their

attributes,

and

their

logical

level.

subroutine.

A

procedure

that

has

no

RETURNS

option

in

the

PROCEDURE

statement.

Contrast

with

function.

subroutine

call.

An

entry

reference

that

must

represent

a

subroutine,

followed

by

an

optional

argument

list

that

appears

in

a

CALL

statement.

Contrast

with

function

reference.

subscript.

An

element

expression

that

specifies

a

position

within

a

dimension

of

an

array.

If

the

subscript

is

an

asterisk,

it

specifies

all

of

the

elements

of

the

dimension.

subscript

list.

A

parenthesized

list

of

one

or

more

subscripts,

one

for

each

dimension

of

the

array,

which

together

uniquely

identify

either

a

single

element

or

cross

section

of

the

array.

subtask.

A

task

that

is

attached

by

the

given

task

or

any

of

the

tasks

in

a

direct

line

from

the

given

task

to

the

last

attached

task.

synchronous.

A

single

flow

of

control

for

serial

execution

of

a

program.

T

target.

Attributes

to

which

a

data

item

(source)

is

converted.

target

reference.

A

reference

that

designates

a

receiving

variable

(or

a

portion

of

a

receiving

variable).

target

variable.

A

variable

to

which

a

value

is

assigned.

task.

The

execution

of

one

or

more

procedures

by

a

single

flow

of

control.

task

name.

An

identifier

used

to

refer

to

a

task

variable.

task

variable.

A

variable

with

the

TASK

attribute

whose

value

gives

the

relative

priority

of

a

task.

termination

(of

a

block).

Cessation

of

execution

of

a

block,

and

the

return

of

control

to

the

activating

block

by

means

of

a

RETURN

or

END

statement,

or

the

transfer

of

control

to

the

activating

block

or

to

some

other

active

block

by

means

of

a

GO

TO

statement.

termination

(of

a

task).

Cessation

of

the

flow

of

control

for

a

task.

truncation.

The

removal

of

one

or

more

digits,

characters,

graphics,

or

bits

from

one

end

of

an

item

of

data

when

a

string

length

or

precision

of

a

target

variable

has

been

exceeded.

type.

The

set

of

data

attributes

and

storage

attributes

that

apply

to

a

generation,

a

value,

or

an

item

of

data.

U

undefined.

Indicates

something

that

a

user

must

not

do.

Use

of

a

undefined

feature

is

likely

to

produce

different

results

on

different

implementations

of

a

PL/I

product.

In

that

case,

the

application

program

is

in

error.

union.

A

collection

of

data

elements

that

overlay

each

other,

occupying

the

same

storage.

The

members

can

be

structures,

unions,

elementary

variables,

or

arrays.

They

need

not

have

identical

attributes.

union

of

arrays.

A

union

that

has

the

DIMENSION

attribute.

upper

bound.

The

upper

limit

of

an

array

dimension.

V

value

reference.

A

reference

used

to

obtain

the

value

of

an

item

of

data.

variable.

A

named

entity

used

to

refer

to

data

and

to

which

values

can

be

assigned.

Its

attributes

remain

constant,

but

it

can

refer

to

different

values

at

different

times.

variable

reference.

A

reference

that

designates

all

or

part

of

a

variable.

Glossary

553

virtual

origin

(VO).

The

location

where

the

element

of

the

array

whose

subscripts

are

all

zero

are

held.

If

such

an

element

does

not

appear

in

the

array,

the

virtual

origin

is

where

it

would

be

held.

Z

zero-suppression

characters.

The

picture

specification

characters

Z

and

*,

which

are

used

to

suppress

zeros

in

the

corresponding

digit

positions

and

replace

them

with

blanks

or

asterisks

respectively.

554

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Index

Special

characters
_

(underscore,

break),

ASCII

and

EBCDIC

values

11

-

(subtraction)
ASCII

and

EBCDIC

values

11

using

as

an

operator

14

using

in

arithmetic

operations

56

->

(locator)
locator

qualification

231

using

as

a

delimiter

14

-=

(subtract

and

assign),

creating

composite

symbols

12

,

(separator)
ASCII

and

EBCDIC

values

11

using

as

a

delimiter

13

;

(statement

terminator)
ASCII

and

EBCDIC

values

11

using

as

a

delimiter

13

:

(prefix,

dimension,

and

range

delimiter)
ASCII

and

EBCDIC

values

11

using

13

?

(macro

trigger

character)
ASCII

and

EBCDIC

values

11

/

(division)
ASCII

and

EBCDIC

values

11

using

as

an

operator

14

using

in

arithmetic

operations

56

/

(insertion

character)

321

/*

(start

of

a

comment),

creating

composite

symbols

12

/*

*/

(comment)
syntax

15

using

as

a

delimiter

13

/=

(divide

and

assign),

creating

composite

symbols

12

.

(name

qualifier,

decimal

point)
ASCII

and

EBCDIC

values

11

using

as

a

delimiter

13

’

’

(enclose

constants)
ASCII

and

EBCDIC

values

11

using

as

a

delimiter

14

’break

(_)

character

22

″

″

(enclose

constants)

14

(

)

(enclose

symbols)
ASCII

and

EBCDIC

values

11

using

as

delimiters

13

$

(picture

character)

324

*

(multiplication)
ASCII

and

EBCDIC

values

11

using

as

an

operator

14

using

in

arithmetic

operations

56

*

zero

suppression

picture

character

320

*/

(end

of

a

comment),

creating

composite

symbols

12

**

(exponentiation)
creating

composite

symbols

12

using

as

an

operator

14

using

in

arithmetic

operations

56

**=

(exponentiate

and

assign),

creating

composite

symbols

12

*=

(multiply

and

assign),

creating

composite

symbols

12

*PROCESS

directive

214

%

(for

%statements)
ASCII

and

EBCDIC

values

11

using

as

a

delimiter

14

%directives
%INCLUDE

209

%LINE

211

%NOPRINT

211

%NOTE

211

%OPTION

212

%PAGE

213

%POP

213

%PRINT

214

%PROCESS

214

%PUSH

214

%SKIP

218

%INCLUDE

directive

209

%LINE

directive

211

%NOPRINT

directive

211

%NOTE

directive

211

%OPTION

directive

212

%PAGE

directive

213

%POP

directive

213

%PRINT

directive

214

%PROCESS

directive

214

%PUSH

directive

214

%SKIP

directive

218

>

(greater

than

symbol)
ASCII

and

EBCDIC

values

11

using

as

an

operator

14

>=

(greater

than

or

equal

to

symbol)

12

–>

(locator),

creating

composite

symbols

12

|

(bit

operator:

OR)

63

|

(logical

OR

symbol)
ASCII

and

EBCDIC

values

11

using

as

an

operator

14

||

(concatenation)
creating

composite

symbols

12

using

as

an

operator

14

using

in

concatenation

operations

66

||=

(concatenate

and

assign),

creating

composite

symbols

12

|=

(or

and

assign),

creating

composite

symbols

12

&

(and

symbol)
ASCII

and

EBCDIC

values

11

using

as

an

operator

14

&

(bit

operator:

AND)

63

&=

(and

and

assign),

creating

composite

symbols

12

+

(addition)
ASCII

and

EBCDIC

values

11

using

as

an

operator

14

using

in

arithmetic

operations

56

+

(picture

character)

324

+=

(add

and

assign),

creating

composite

symbols

12

=

(equal

to

symbol)
ASCII

and

EBCDIC

values

11

using

as

a

delimiter

13

using

as

an

operator

14

using

in

comparison

operations

64

¬
description

12

using

as

an

operator

14

using

in

comparison

operations

64

¬

(logical

NOT

EOR

symbol)
ASCII

and

EBCDIC

values

11

using

as

an

operator

14

¬>

(not

greater

than

symbol)
description

12

using

as

an

operator

14

using

in

comparison

operations

64

¬=

(not

equal

to

symbol)
description

12

using

as

an

operator

14

using

in

comparison

operations

64

^

(bit

operator:

NOT,

XOR)

63

^

(not

symbol)
ASCII

and

EBCDIC

values

11

Numerics
9

picture

specification

character
for

character

data

316

using

318

A
A

picture

specification

character

316

A-format

item

303

ABNORMAL

attribute

242

abnormal

termination
procedure

99

program

88

ABS

built-in

function

382

accuracy

of

mathematical

built-in

functions

370

ACOS

built-in

function

383

ACOSF

built-in

function

383

ACTIVATE

statez

516

activation
begin-block

110

block

89

procedure

98

program

88

ADD

built-in

function

383

additive

attributes
definition

260

ENVIRONMENT

264

KEYED

264

ADDR

built-in

function

384

ADDRDATA

built-in

function

384

adjustable

extents

228

aggregate

arguments

369

aggregates,

assignments

190

algebraic

comparison

operations

64

555

aliases
DEFINE

ALIAS

statement

135

defining

135

ALIGNED

attribute
description

159

example

162

storage

alignment

requirements

160

alignment

attributes

for

data

159

ALL

built-in

function

385

ALLOC

(ALLOCATE)

statement

225

ALLOCATE

(ALLOC)
built-in

function
based

area

variables

229

based

variables

229,

233

syntax

385

statement

225

allocation

221

ALLOCATION

(ALLOCN)

built-in

function

385

ALLOCSIZE

built-in

function

385

alphabetic

characters

9

alphanumeric

characters

10

alternative

attributes

259

BUFFERED

and

UNBUFFERED

263

definition

259

INPUT,

OUTPUT,

and

UPDATE

262

RECORD

and

STREAM

262

SEQUENTIAL

and

DIRECT

263

ANSWER

statement
using

in

a

preprocessor

procedure

505

answer

text

505

ANY

built-in

function

386

ANYCONDITION

condition

339

application

87

area
ALLOCATE

statement

with

IN

option

233

assignment

239

attributes

26

data

237

EMPTY

built-in

function

407

input/output

of

240

transmission

of

variables

272

AREA
attribute

237

condition

340

arguments
dummy

deriving

attributes

109

description

108

rules

109

passing
to

procedures

107

to

the

main

procedure

110

specifying

129,

369

arithmetic

built-in

functions
ABS

382

CEIL

391

COMPLEX

397

CONJG

397

FLOOR

414

IMAG

420

MAX

429

MIN

435

MOD

436

RANDOM

460

arithmetic

built-in

functions

(continued)
REAL

460

REM

461

ROUND

463

SIGN

468

summary

370

TRUNC

479

arithmetic

character

data
conversion

to

PICTURE

data

81

inserting

editing

characters

41

using

41

arithmetic

data
coded

22

numeric

picture

22

arithmetic

operations
data

conversion

57

description

56

results
discussion

58

FLOAT

operands

58

special

cases

63

under

RULES(ANS)

59

arithmetic

operators
description

56

using

14

arithmetic

picture

specification
description

36

using

41

array

argument

with

parameters

96

array

expression
definition

53

description

69

example

53

array

variable

167

array-handling

built-in

functions
ALL

385

ANY

386

DIMENSION

405

HBOUND

416

LBOUND

424

POLY

457

PROD

458

SUM

475

summary

371

arrays
array-and-array

operations

70

array-and-element

operations

70

assignment

190,

191

attributes

26

bounds

167

cross

sections

170

definition

167

DIMENSION

attribute

167

example

168

expression
description

52,

69

example

53

extent

167

infix

operators

and

70

of

structures

and

unions

176

prefix

operators

and

69

subscripts

169

targets

190

variable

167

ASIN

built-in

function

386

ASINF

built-in

function

386

ASM

(ASSEMBLER)

option

128

ASSEMBLER

(ASM)

option

128

ASSIGNABLE

attribute

242

assignment

statements
BY

NAME

option

188

definition

17

description

187

requirements

for

target

variables

189

assignment

statez

517

assignments
aggregate

190

area

239

array
assigning

aggregates

191

target

variables

for

190

compound

189

element

190

expression

values

192

multiple

192

structure

190

using

BY

NAME

for

structure

assignment

192

association

of

arguments

and

parameters

107

asterisk
as

an

identifier

13

description

320

using

as

a

subscript

170

using

in

arithmetic

operations

56

ATAN

built-in

function

387

ATAND

built-in

function

387

ATANF

built-in

function

388

ATANH

built-in

function

388

ATTACH

statement

360

ATTENTION

(ATTN)

condition
description

341

multithreading

362

attributes
ABNORMAL

242

additive

260

ALIGNED
description

159

example

162

storage

alignment

requirements

160

alternative

259

AREA

26

array

data

26

ASSIGNABLE

242

AUTOMATIC

223

BASED

228

BIGENDIAN

243

BINARY

28

BIT

33

BUFFERED

263

BUILTIN
using

105,

368

BYADDR

129

BYVALUE

129

CHARACTER
description

33

classification

according

to

data

types

24

coded

arithmetic

25,

26

COMPLEX

28

computational

data

22

CONDITION

338

CONNECTED

244

556

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

attributes

(continued)
CONTROLLED

224

data
description

22

list

23

DATE

42

DECIMAL

28

defaults

for

data

162

DEFINED

245

DIMENSION

167

DIRECT

263

discussion

22

ENTRY

113

ENVIRONMENT

264

EXTERNAL
description

153

using

103

FILE

259

file

data

25,

26

FIXED
description

28

FLOAT

28

for

parameters

95

FORMAT
classification

by

variable

type

26

description

48

GENERIC

121

GRAPHIC

33

HANDLE

139

HEXADEC

244

IEEE

244

INITIAL

250

INPUT

262

INTERNAL

153

KEYED

264

LABEL

47

label

data

25,

26

LIKE

174

LIMITED

120

LIST

117

LITTLEENDIAN

243

locator

data

26

merging

267

named

coded

arithmetic

25

named

string

data

25

NONASSIGNABLE

242

NONCONNECTED

244

nondata

23

NONVARYING

35

NORMAL

242

OFFSET

238

OPTIONAL

116

OPTIONS

126

ORDINAL

140

ordinal

data

26

OUTPUT

262

PARAMETER

95

PICTURE

35

POINTER

232

POSITION

245

PRECISION

28

PRINT

300

program-control

data

23

REAL

28

RECORD

262

RECURSIVE

100

RESERVED

158

attributes

(continued)
RETURNS

134

SEQUENTIAL

263

SIGNED
data

storage

requirements

30

description

29

STATIC

222

STREAM

262

string

data

25,

26

structure

data

26

TASK

362

task

data

26

TYPE

139

UNALIGNED
description

159

example

162

storage

alignment

requirements

160

UNBUFFERED

263

UNION

172

union

data

26

UNSIGNED
data

storage

requirements

30

description

29

UPDATE

262

VALUE

45

VARIABLE

48

VARYING

35

VARYINGZ

35

WIDECHAR
description

33

AUTO

(AUTOMATIC)

attribute

223

AUTOMATIC

(AUTO)

built-in

function

388

AUTOMATIC

built-in

function
for

based

area

variables

229

for

based

variables

229,

233

automatic

storage
description

221

syntax

for

AUTOMATIC

attribute

223

automatic

variables,

effect

of

recursion

101

AUTOMATIC,

(AUTO)

attribute

223

AVAILABLEAREA

built-in

function
for

area

variables

239

syntax

388

B
B

(insertion

character)

321

B-format

item

304

B3

(bit

hex)

bit

string

constant

38

B4

(bit

hex)

bit

string

constant

38

BASED

attribute

228

based

storage
built-in

functions

229

description

222

syntax

for

BASED

attribute

228

based

variables
ALLOCATE

statement

233

built-in

functions

229

description

228,

233

FREE

statement

234

input/output

of

lists

240

BEGIN

statement
description

110

BEGIN

statement

(continued)
valid

OPTIONS

options

for

126

begin-blocks
activation

110

description

110

example

110

termination

111

BIGENDIAN

attribute

243

BINARY

(BIN)

attribute

28

BINARY

(BIN)

built-in

function

389

binary

digit

11

binary

fixed-point

constant

30,

31

binary

fixed-point

data
conversion

78

description

30

binary

floating-point

constant

32

binary

floating-point

data
conversion

80

description

32

BINARYVALUE

(BINVALUE)

built-in

function

389

BINARYVALUE

built-in

function
for

ordinals

143

using

with

pointer

expressions

56

BIND

type

function

494

bit
constant

37

conversion
description

76

rules

84

data

37

operators
description

14

using

in

bit

operations

63

BIT

attribute

33

BIT

built-in

function

390

bit

format

item

304

bit

operations
examples

64

using

63

bit

strings,

transmission

of

unaligned

271

BITLOCATION

(BITLOC)

built-in

function

390

BKWD

environment

characteristic

264

blanks
description

15

using

as

a

delimiter

14

blocks
activation

89

begin

110

description

89

packages

90

procedures

92

termination

90

types

89

BOOL

built-in

function

390

Boolean

operators

63

bounds

167

controlled

parameter

96

simple

parameter

95

BUF

(BUFFERED)

attribute

263

buffer-management

built-in

functions
COMPARE

396

HEXIMAGE

418

MEMINDEX

431

MEMSEARCH

432

Index

557

buffer-management

built-in

functions

(continued)
MEMSEARCHR

433

MEMVERIFY

433

MEMVERIFYR

434

XMLCHAR

489

BUFFERED

(BUF)

attribute

263

built-in

functions
ABS

382

accuracy

of

mathematical

functions

in

370

ACOS

383

ACOSF

383

ADD

383

ADDR

384

ADDRDATA

384

aggregate

arguments

369

ALL

385

ALLOCATE

(ALLOC)

385

ALLOCATION

(ALLOCN)

385

ALLOCSIZE

385

ANY

386

area

variables

239

arithmetic,

summary

370

array-handling,

summary

371

ASIN

386

ASINF

386

ATAN

387

ATAND

387

ATANF

388

ATANH

388

AUTOMATIC

(AUTO)

388

AVAILABLEAREA

388

based

variables

233

BINARY
converting

data

74

BINARY

(BIN)

389

BINARYVALUE
using

with

ordinals

143

using

with

pointer

expressions

56

BINARYVALUE

(BINVALUE)

389

BIT

390

converting

data

74

BITLOCATION

(BITLOC)

390

BOOL

390

BYTE

391

categories

of

370

CDS

391

CEIL

391

CENTERLEFT

(CENTER)

392

CENTERRIGHT

392

CHAR

74

CHARACTER

(CHAR)

393

CHARGRAPHIC

(CHARG)

394

CHARVAL

395

CHECKSTG

395

COLLATE

396

COMPARE

396

COMPLEX

(CPLX)

397

condition-handling,

summary

372

CONJG

397

controlled

variables

228

converting

data

74

COPY

397

COS

398

COSD

398

COSF

398

built-in

functions

(continued)
COSH

399

COUNT

399

CS

399

CURRENTSIZE

(CSTG)

401

CURRENTSTORAGE

401

DATAFIELD

402

DATE

402

date/time,

summary

373

DATETIME

402

DAYS

403

DAYSTODATE

404

DAYSTOSECS

404

DECIMAL
converting

data

74

DECIMAL

(DEC)

405

declaring

368

definition

107

DIMENSION

(DIM)

405

DIVIDE

406

EDIT

406

EMPTY

407

ENDFILE

407

ENTRYADDR

407

EPSILON

408

ERF

408

ERFC

408

EXP

409

EXPF

409

EXPONENT

409

FILEDDINT

410

FILEDDTEST

410

FILEDDWORD

411

FILEID

411

FILEOPEN

412

FILEREAD

412

FILESEEK

412

FILETELL

413

FILEWRITE

413

FIXED

413

converting

data

74

FLOAT

414

converting

data

74

floating-point

inquiry,

summary

374

floating-point

manipulation,

summary

375

FLOOR

414

for

preprocessor

507

GAMMA

414

GETENV

415

GRAPHIC

415

converting

data

74

HANDLE

416

HBOUND

416

HEX

417

HEXIMAGE

418

HIGH

418

HUGE

418

IAND

419

IEOR

419

IMAG

420

converting

data

74

INDEX

420

initiating

data

conversion

74

INOT

421

input/output,

summary

375

integer

manipulation,

summary

376

built-in

functions

(continued)
invoking

369

IOR

421

ISIGNED

422

ISLL

422

ISMAIN

423

ISRL

423

IUNSIGNED

423

LBOUND

424

LEFT

424

LENGTH

425

LINENO

425

LOCATION

(LOC)

425

LOG

426

LOG10

427

LOG10F

427

LOG2

427

LOGF

426

LOGGAMMA

427

LOW

428

LOWER2

428

LOWERCASE

428

mathematical,

summary

376

MAX

429

MAXEXP

429

MAXLENGTH

430

MEMINDEX

431

MEMSEARCH

432

MEMSEARCHR

433

MEMVERIFY

433

MEMVERIFYR

434

MIN

435

MINEXP

435

MOD

436

MPSTR

437

MULTIPLY

438

NULL

438

null

arguments

and

370

OFFSET

438

OFFSETADD

439

OFFSETDIFF

439

OFFSETSUBTRACT

439

OFFSETVALUE

439

OMITTED

440

ONCHAR

440

ONCODE

440

ONCONDCOND

441

ONCONDID

441

ONCOUNT

442

ONFILE

442

ONGSOURCE

442

ONKEY

443

ONLOC

444

ONSOURCE

444

ONSUBCODE

445

ONWCHAR

445

ONWSOURCE

446

ordinal-handling,

summary

378

ORDINALNAME

446

ORDINALPRED

447

ordinals

143

ORDINALSUCC

447

PACKAGENAME

447

PAGENO

447

PLACES

448

PLIRETV

453

POINTER

(PTR)

455

558

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

built-in

functions

(continued)
POINTERADD

using

with

pointer

operations

56

POINTERADD

(PTRADD)

455

POINTERDIFF

(PTRDIFF)

456

POINTERSUBTRACT

(PTRSUBTRACT)

456

POINTERVALUE
using

56

POINTERVALUE

(PTRVALUE)

456

POLY

457

PRECISION
converting

data

74

evaluating

results

62

PRECISION

(PREC)

457

precision-handling,

summary

378

PRED

458

preprocessor

507

PRESENT

458

PROCEDURENAME

(PROCNAME)

458

PROD

458

PUTENV

459

RADIX

459

RAISE2

459

RANDOM

460

RANK

460

REAL

460

converting

data

74

REM

461

REPATTERN

461

REPEAT

462

REVERSE

462

RIGHT

462

ROUND

463

SAMEKEY

464

SCALE

464

SEARCH

465

SEARCHR

466

SECS

466

SECSTODATE

467

SECSTODAYS

468

SIGN

468

SIGNED

468

converting

data

74

SIN

469

SIND

469

SINF

469

SINH

469

SIZE

470

SOURCEFILE

471

SOURCELINE

471

SQRT

471

SQRTF

471

STORAGE

(STG)

472

storage

control,

summary

379

STRING

472

string-handling,

summary

380

SUBSTR

473

SUBTRACT

474

SUCC

474

SUM

475

SYSNULL

475

SYSTEM

475

TALLY

476

TAN

476

TAND

476

built-in

functions

(continued)
TANF

476

TANH

477

THREADID

477

TIME

478

TINY

478

TRANSLATE

478

TRIM

479

TRUNC

479

TYPE

480

UNALLOCATED

480

UNSIGNED

481

converting

data

74

UNSPEC

481

UPPERCASE

483

VALID

484

VALIDDATE

484

VARGLIST

485

VARGSIZE

485

VERIFY

485

VERIFYR

486

WCHARVAL

487

WEEKDAY

487

WHIGH

488

WIDECHAR
converting

data

74

WIDECHAR

(WCHAR)

488

WLOW

488

XMLCHAR

489

Y4DATE

490

Y4JULIAN

491

Y4YEAR

491

built-in

functions,

miscellaneous
summary

377

built-in

names
using

with

built-in

functions

107

using

with

subroutines

105

built-in

pseudovariables,

summary

378

built-in

subroutines
declaring

368

definition

105

invoking

369

PLIASCII

448

PLICANC

449

PLICKPT

449

PLIDELETE

449

PLIDUMP

450

PLIEBCDIC

450

PLIFILL

450

PLIFREE

451

PLIMOVE

451

PLIOVER

452

PLIREST

452

PLIRETC

452

PLISAXA

453

PLISAXB

453

PLISRTA

454

PLISRTB

454

PLISRTC

454

PLISRTD

454

summary

382

BUILTIN

attribute

368

declaring

names

for

built-in

functions

105

BX

(bit

hex)

bit

string

constant

38

BY

NAME

option

of

assignment

statement
description

188

when

not

specified

in

structure

assignment

191

when

specified

in

structure

assignment

191

BY

option

of

DO

statement

196

BYADDR

attribute

129

BYADDR

option

129

BYTE

built-in

function

391

byte,

definition

159

BYVALUE

attribute

129

BYVALUE

option

129

C
C-format

item

304

CALL

option

on

INITIAL

attribute

252

CALL

statement

124

calling

conventions
OPTLINK

132

SYSTEM

132

case

sensitivity

12

CAST

type

function

494

CDS

built-in

function

391

CEIL

built-in

function

391

CELL,

synonym

for

172

CENTERLEFT

(CENTER)

built-in

function

392

CENTERRIGHT

built-in

function

392

CHARACTER

(CHAR)

attribute
description

33

CHARACTER

(CHAR)

built-in

function

393

character

sets
discussion

9

double-byte
identifier

19

statement

element

19

single-byte
delimiters

and

operators

13

identifier

in

DBCS

form

19

identifiers

13

statement

elements

for

13

character

string

constant

37

characters
alphabetic

9

alphanumeric

10

character

data
conversion

76,

82

description

36

picture

specifiers

316

constant

36

extralingual

10

format

items

303

insertion

321

picture

specification

36

sets
double-byte

18

single-byte

9

special

11

using

in

comparison

operations

64

zero

suppression

320

CHARGRAPHIC

(CHARG)

built-in

function

394

CHARGRAPHIC

option

130

Index

559

CHARVAL

built-in

function

395

CHECKSTG

built-in

function

395

CLOSE

statement

269

COBOL

option

130

coded

arithmetic

data
attributes

abbreviations

27

types

25,

26

BINARY

and

DECIMAL

attributes

28

binary

fixed-point

data

30

binary

floating-point

32

conversion

target

77

decimal

fixed-point

31

decimal

floating-point

33

FIXED

and

FLOAT

attribute

28

PRECISION

attribute

28

REAL

and

COMPLEX

attributes

28

syntax

27

COLLATE

built-in

function

396

COLLATE

macro

facility

built-in

function

508

colon

symbol

14

COLUMN

format

item

305

COLUMN

keyword
on

ANSWER

preprocessor

statement

506

combinations

of

operations

67

combining

arrays,

structures,

and

unions

176

comma

14

COMMENT

macro

facility

built-in

function

508

comments
description

15

using

as

a

delimiter

14

COMPARE

built-in

function

396

comparison

operations
algebraic

64

bit

64

characters

64

conversion

of

operands

64

description

64

example

65

graphic

65

ordinal

data

65

pointer

and

offset

data

65

program-control

data

65

widechar

65

comparison

operators

14

compilation

unit

87

COMPILEDATE

macro

facility

built-in

function

508

COMPILETIME

macro

facility

built-in

function

509

complex
data

item

28

format

item

304

COMPLEX

(CPLX)

attribute

28

COMPLEX

(CPLX)

built-in

function

397

composite

symbol

12

compound

assignment

189

compound

statement

18

computational

conditions
CONVERSION

343

FIXEDOVERFLOW

347

INVALIDOP

348

OVERFLOW

350

computational

conditions

(continued)
UNDERFLOW

357

ZERODIVIDE

357

computational

data
attributes

22

conversion

74

description

22

string

data

22

computational

data

types
attributes

26

BINARY

and

DECIMAL

attributes

28

REAL

and

COMPLEX

attributes

28

repetition

factor

for

strings

37

string

data
BIT

attribute

33

CHARACTER

attribute

33

discussion

of

33

graphic

39

GRAPHIC

attribute

33

NONVARYING

attribute

35

VARYING

attribute

35

VARYINGZ

attribute

35

widechar

40

WIDECHAR

attribute

33

concatenation
operations

66

operator

14

COND

(CONDITION)

condition

342

CONDITION

(COND)

condition

342

CONDITION

attribute

338

condition

codes
discussion

331

condition

codes,

using

with

ONCODE

built-in

function

440

condition

handling
CONDITION

attribute

338

description

331

disabling

a

condition

331

enabling

a

condition

331

established

action

331

establishing

an

enabled

condition

331

implicit

action

331

multiple

conditions

338

multithreading

362

ON

statement
description

334

dynamically

descendant

ON-units

335

null

ON-unit

335

ON-units

for

file

variables

336

scope

of

established

action

335

syntax

334

RESIGNAL

statement

338

REVERT

statement

337

scope

of

condition

prefix

333

SIGNAL

statement

337

condition

prefix
description

17

example

332

syntax

332

using

331

condition-handling

built-in

functions
DATAFIELD

402

ONCHAR

440

ONCODE

440

ONCONDCOND

441

condition-handling

built-in

functions

(continued)
ONCONDID

441

ONCOUNT

442

ONFILE

442

ONGSOURCE

442

ONKEY

443

ONLOC

444

ONSOURCE

444

ONWCHAR

445

ONWSOURCE

446

summary

372

conditions
ANYCONDITION

339

AREA

340

ATTENTION
description

341

with

multithreading

362

classes

332,

333

computational

332,

333

CONDITION

342

CONVERSION

343

ENDFILE

344

ENDPAGE

345

ERROR

346

FINISH

347

FIXEDOVERFLOW

347

input/output

332,

333

INVALIDOP

348

KEY

348

miscellaneous

332,

333

NAME

349

output

and

input

332

OVERFLOW

350

program

checkout

332,

333

raising

under

OPTIMIZATION

333

RECORD

350

SIZE

351

status

332,

333

STORAGE

352

STRINGRANGE

353

STRINGSIZE

354

SUBCRIPTRANGE

354

TRANSMIT

355

UNDEFINEDFILE

356

UNDERFLOW

357

ZERODIVIDE

357

CONJG

built-in

function

397

CONNECTED

(CONN)

attribute

244

connected

storage

244

consecutive

data

sets

258

CONSECUTIVE

environment

characteristic

264

constants
B3

(bit

hex)

string

38

B4

(bit

hex)

string

38

binary

fixed-point

30

binary

floating-point

32

bit

37

BX

(bit

hex)

string

38

character

36

character

string

37

decimal

fixed-point

32

decimal

floating-point

33

entry
description

111

syntax

112

560

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

constants

(continued)
entry

(continued)
using

111

file

259

graphic

39

GX

(graphic)

string

39

imaginary

28,

29

label

47

M

(mixed)

string

40

named

45

WX

(widechar)

string

40

XN

(binary

hex)

30

XU

(binary

hex)

31

contained

in,

definition

151

contextual

declarations

150

continuation

rules

for

DBCS

20

controlled
parameter

96

storage

222,

224

structure

and

union

members

228

variables
description

224

multiple

generations

227

using

the

ALLOCATE

statement

225

using

the

FREE

statement

227

CONTROLLED

(CTL)

attribute

224

controlling

storage

221

CONV

(CONVERSION)

condition

343

conversion
data

73

errors

86

in

arithmetic

operations

57

in

concatenation

operations

66

mode

76

of

arithmetic

precision

76

of

locator

data

230

operands

59

source

to

target

rules

77

string

lengths

75

to

other

data

attributes

76

using

built-in

functions

74

CONVERSION

(CONV)

condition

343

CONVERSION

condition

prefix

332,

333

conversion

errors

86

conversion

of

graphic

to

character

(CHARGRAPHIC)

394

converting

data
arithmetic

precision

76

arithmetic-to-bit-string,

example

85

arithmetic-to-character

string,

example

86

computational

data

74

conversion

errors

86

description

73

initiating

with

built-in

functions

74

mode

76

rules

74

source-to-target

rules

77

string

lengths

75

COPY

built-in

function

397

COPY

macro

facility

built-in

function

509

COPY

option

283

COS

built-in

function

398

COSD

built-in

function

398

COSF

built-in

function

398

COSH

built-in

function

399

COUNT

built-in

function

399

COUNTER

macro

facility

built-in

function

510

credit

(CR)

picture

character

326

cross

sections

of

arrays

of

structures/unions

177

cross

sections,

of

arrays

170

CS

built-in

function

399

CTL

(CONTROLLED)

attribute

224

CTLASA

environment

characteristic

264

currency

symbol
defining

322

description

324

CURRENTSIZE

built-in

function

401

CURRENTSTORAGE

(CSTG)

built-in

function

401

D
data

alignment

159

area

237

arithmetic

character

41

attributes

22

binary

fixed-point

30

binary

floating-point

32

bit

37

bit

constant

37

character

36

character

constant

36

computational

22

conversion
description

73

errors

86

in

arithmetic

operations

57

source-to-target

rules

77

using

built-in

functions

74

decimal

fixed-point

31

decimal

floating

point

33

element

21

elements

500

entry

111

format

48

format

items

303

graphic

39

item

21

label

47

locator

230

mixed

39

numeric

character

317

offset

238

program-control
description

23

types

and

attributes

47

sharing

between

threads

363

specifications

284

transmission

257

types

22

widechar

40

data

alignment
discussion

159

storage

addresses

159

using

ALIGNED

and

UNALIGNED

attributes

159

data

conversion
arithmetic

precision

76

data

conversion

(continued)
errors

86

in

arithmetic

operations

57

mode

76

source-to-target

rules

77

string

lengths

75

data

declarations
array

167

description

147

explicit

147

implicit

150

language-specified

defaults

for

attributes

162

structures

170

unions

172

data

elements
attributes

21

constants
named

21

punctuating

22

quotation

marks

22

data

item

21

discussion

21

preprocessor

500

data

items
aggregates

21

complex

28

definition

21

expression

52

mode

28

scalar

21

data

sets
consecutive

258

indexed

258

regional

259

relative

259

storing

258

transmission

of

data

from

257

types

258

data

specification

options

for

stream

i/o
data

transmitted

271

data-directed

289

definition

282

discussion

of

284

data

transmission
area

variables

272

data

aggregates

271

data-directed

281

data-list-items

288

discussion

of

271

edit-directed

281

graphic

strings

271

input

257

output

257

record-oriented

271

record-oriented

statements
DELETE

274

discussion

272

LOCATE

274

READ

272

REWRITE

273

WRITE

273

statements
UNLOCK

218

stream-oriented

281

stream-oriented

statements
discussion

282

Index

561

data

transmission

(continued)
stream-oriented

statements

(continued)
GET

282

PUT

282

type

3

do-group

285

TRANSMIT

condition

355

unaligned

bit

strings

271

varying

length

strings

272

data

transmission

statements

options
COPY

283

discussion

283

FILE

286

LINE

286

PAGE

286

SKIP

286

STRING

287

data

types
computational

22

discussion

22

data-directed

data

specification
discussion

289

using

the

GET

statement

291

using

the

PUT

statement

292

data-directed

data

transmission

281

DATAFIELD

built-in

function

402

DATE

attribute
description

42

DATE

built-in

function

402

date/time

built-in

functions
DATE

402

DATETIME

402

DAYS

403

DAYSTODATE

404

DAYSTOSECS

404

Lilian

format

373

patterns

374

REPATTERN

461

SECS

466

SECSTODATE

467

SECSTODAYS

468

summary

373

TIME

478

VALIDDATE

484

VARGLIST

485

VARGSIZE

485

WEEKDAY

487

Y4DATE

490

Y4JULIAN

491

Y4YEAR

491

DATETIME

built-in

function

402

DAYS

built-in

function

403

DAYSTODATE

built-in

function

404

DAYSTOSECS

built-in

function

404

DBCS

(double-byte

character

set)

18

DCL

(DECLARE)

statement
description

148

DCL

(DECLARE)

statez

518

DEACTIVATE

statez

517

debit

(DB)

picture

character

326

DECIMAL

(DEC)

attribute

28

DECIMAL

(DEC)

built-in

function

405

decimal

digit

10

decimal

fixed-point

constant

32

decimal

fixed-point

data
conversion

79

description

31

decimal

floating-point

constant

33

decimal

floating-point

data
conversion

80

description

33

decimal-point

and

digit

specifiers

318

declarations
array

167

contextual

150

DEFINE

ORDINAL

statement

136

explicit

147

implicit

150

scope
defining

with

INTERNAL

and

EXTERNAL

attributes

153

discussion

151

example

152

declarations,

DEFINE

ALIAS,

statement

135

DECLARE

(DCL)

statement
description

148

DECLARE

statez

518

declaring

built-in

functions

368

declaring

data
description

147

factoring

of

attributes

149

DEF

(DEFINED)

attribute

245

DEFAULT

(DFT)

statement

163

defaults

for

attributes
DEFAULT

statement

163

discussion

of

162

for

data

attributes

162

language-specified

162,

163

restoring

language-specified

167

DEFINE

ALIAS

statement

135

DEFINE

ORDINAL

statement
description

136

options

136

DEFINE

STRUCTURE

statement

138

DEFINED

(DEF)

attribute

245

DELAY

statement

194

DELETE

statement

274

delimiter

13

descriptor

list

114

DESCRIPTOR

option

130

DESCRIPTORS

option

for

the

DEFAULT

statement

165

DETACH

statement

362

DFT

(DEFAULT)

statement

163

digits
and

decimal-point

specifiers

318

binary

11

decimal

10

hexadecimal

11

DIM

(DIMENSION)

attribute

167

DIMENSION

(DIM)

attribute

167

DIMENSION

(DIM)

built-in

function

405

DIMENSION

macro

facility

built-in

function

510

DIRECT

attribute

263

direct

entry

declaration

111

directives
*PROCESS

214

%INCLUDE

209

%LINE

211

%NOPRINT

211

%NOTE

211

%OPTION

212

directives

(continued)
%PAGE

213

%POP

213

%PRINT

214

%PROCESS

214

%PUSH

214

%SKIP

218

DISPLAY

statement

194

DIVIDE

built-in

function

406

DLL

101

DO

statement
description

195

repetitive

execution

of

195

DO

statez

520

do-groups
examples

202

macro

facility

195

type

3

do-group

195,

198

double

quote
ASCII

and

EBCDIC

values

11

using

as

a

delimiter

14

double-byte

character

set

(DBCS)
continuation

rules

20

data

in

stream

I/O

301

discussion

18

identifiers

19

in

graphic

data

39

statement

elements

19

using

in

source

program

18

doubleword,

in

data

alignment

159

DOWNTHRU

option
description

197

example

204

using

with

a

type

3

DO

specification

201

using

with

ordinals

204

drifting

character

325

dummy

arguments
deriving

attributes

109

description

108

rules

109

dynamic

allocation

221

dynamic

loading

of

an

external

procedure
FETCH

statement

101

RELEASE

statement

101

dynamically

descendant

ON-units

335

E
E

picture

character

328

E-format

item

306

EDIT

built-in

function

406

EDIT

option

293

edit-directed
data

transmission

281

format

items

303

edit-directed

data

specification

293

effect

of

recursion

on

automatic

variables

101

elementary

names

171

elements
assignment

190

data

21

expression

52

for

DBCS

19

for

SBCS

13

parameter

109

562

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

elements

(continued)
program

9

scalar

21

variable

21

ELSE

clause

of

%IF

statement

522

ELSE

clause

of

IF

statement

207

EMPTY

built-in

function

407

for

area

variables

239

enabled

condition

331

END

statement
description

205

END

statez

521

ENDFILE

built-in

function

407

ENDFILE

condition

344

ENDPAGE

condition

345

ENTRY

attribute
description

113

valid

OPTIONS

options

126

entry

constants

111

entry

data
attributes

classification

25,

26

ENTRY

113

GENERIC

121

LIMITED

120

LIST

117

OPTIONAL

116

constants

111

description

111

direct

entry

declaration

111

generic

121

generic

entry

declaration

121

invocation

of

references

124

variables

112

entry

points

92

entry

reference

invocation

124

ENTRY

statement

94

ENTRY

statement,

valid

OPTIONS

options

126

entry-constant
using

with

a

FETCH

statement

102

ENTRYADDR

built-in

function

407

ENTRYADDR

pseudovariable

408

ENV

(ENVIRONMENT)

attribute

264

ENVIRONMENT

(ENV)

attribute

264

ENVIRONMENT

characteristics
BWD

264

CONSECUTIVE

264

CTLASA

264

GENKEY

264

GRAPHIC

264

KEYLENGTH

264

KEYLOC

264

ORGANIZATION

264

RECSIZE

264

REGIONAL

264

SCALARVARYING

264

VSAM

264

ENVIRONMENT

option

360

EPSILON

built-in

function

408

equal

sign

14

ERF

built-in

function

408

ERFC

built-in

function

408

ERROR

condition
abnormal

termination

of

procedures

99

description

346

established

action

333

established

condition

331

evaluation

order

for

expressions

and

references

68

evaluation

order

of

expressions

54

exclusive-or

operator

63

EXE

(file

extension)

87

EXIT

statement

99

EXP

built-in

function

409

EXPF

built-in

function

409

explicit

declaration

147

explicitly

locator-qualified

reference

231

EXPONENT

built-in

function

409

exponent

specifiers

328

exponentiation,

special

cases

63

EXPORTS

option

91

expressions
array

69

assigning

values

192

description

51

element

52

evaluation

order

54

intermediate

results

of

expressions

61

of

targets

54

operational
classes

56

definition

51

discussion

55

preprocessor

501

restricted
applying

built-in

functions

71

description

71

example

71

scalar

52

structure

52

syntax

51

types

52

EXT

(EXTERNAL)

attribute

153

extent

(of

bounds)

167

EXTERNAL

(EXT)

attribute
description

153

using

103

external

procedure
description

92

dynamic

loading

101

extralingual

character

10

F
F

picture

character

328

F-format

item

308

factoring

of

attributes

149

FETCH

statement
description

102

dynamically

loading

external

procedures

101

restrictions

102

FETCHABLE

option

131

fields

318

FILE

attribute

259

file

data

26

FILE

option
description

286

for

record-oriented

data

transmission

274

FILE

option

(continued)
for

stream-oriented

data

transmission

273

FILE

specification

in

OPEN

statement

265

FILEDDINT

built-in

function

410

FILEDDTEST

built-in

function

410

FILEDDWORD

built-in

function

411

FILEID

built-in

function

411

FILEOPEN

built-in

function

412

FILEREAD

built-in

function

412

files
additive

attribute

260

alternative

attributes

259

attributes

25

constant

259

declaration

259

definition

of

259

description

attributes

259

FILE

attribute

259

implicit

opening

266

opening

and

closing

264

PRINT

300

sharing

between

threads

363

specifying

a

reference

261

SYSIN

269

SYSPRINT

269

variable

261

FILESEEK

built-in

function

412

FILETELL

built-in

function

413

FILEWRITE

built-in

function

413

FINISH

condition

347

FIRST

type

function

495

FIXED

attribute
description

28

FIXED

built-in

function

413

fixed-point
binary

data

30

decimal

data

31

format

item
description

308

specifying

a

picture

scaling

factor

328

FIXEDOVERFLOW

(FOFL)

condition

347

FIXEDOVERFLOW

condition

prefix

332,

333

FLOAT

attribute

28

FLOAT

built-in

function

414

floating-point
binary

data

32

data

conversion

80

decimal

data

33

format

item

306

floating-point

inquiry

built-in

functions
EPSILON

408

HUGE

418

MAXEXP

429

MINEXP

435

PLACES

448

RADIX

459

summary

374

TINY

478

floating-point

manipulation

built-in

functions
EXPONENT

409

PRED

458

Index

563

floating-point

manipulation

built-in

functions

(continued)
SCALE

464

SUCC

474

summary

375

FLOOR

built-in

function

414

FOFL

(FIXEDOVERFLOW)

condition

347

FORMAT

attribute
classification

by

variable

type

26

description

48

format

data

48

format

items
A

303

B

304

C

304

COLUMN

305

description

294

E

306

F

308

G

310

L

310

LINE

311

P

311

PAGE

312

R

312

SKIP

313

X

313

format

notation,

rules

for

1

FORMAT

statement

297

FORTRAN

option

131

FREE

statement
based

variables

234

controlled

variables

227

IN

option

234

FROM

option

of

data

transmission

statements

275

FROMALIEN

option

131

fullword

159

functions
built-in

107

definition

105

description

105

examples

106

programmer-written

107

restrictions

on

106

returning

from

125

G
G-format

item

310

GAMMA

built-in

function

414

GENERIC

attribute
description

121

using

the

OTHERWISE

option

122

generic

descriptor

122

generic

entry

declaration

121

generic

name

121

generic

selection

123

GENKEY

environment

characteristic

264

GET

statement
data-directed

291

edit-directed

295

list-directed

298

strings

295

GET

STRING

statement

282

GETENV

built-in

function

415

GO

TO

(GOTO)

statement
description

207

GO

TO

statez

521

GRAPHIC

attribute

(G)

33

GRAPHIC

built-in

function

415

graphic

constant
comparison

operations

65

description

39

strings

271

syntax

39

graphic

data
constant

39

conversion

85

format

item

310

GX

(graphic

hex)

string

constant

39

transmission

271

graphic

data,

converting

(GRAPHIC)

415

GRAPHIC

environment

characteristic

264

GRAPHIC

ENVIRONMENT

option

39

GRAPHIC

option

39

graphic

string

constant

39

group,

of

statements

18

GX

(graphic

hex)

string

constant

39

H
halfword

159

HANDLE

attribute

139

HANDLE

built-in

function

416

HBOUND

built-in

function

416

HBOUND

macro

facility

built-in

function

510

hex

(X)

character

string

constant

37

HEX

built-in

function

417

HEXADEC

attribute

244

hexadecimal

digit

11

HEXIMAGE

built-in

function

418

HIGH

built-in

function

418

higher

bound

of

an

array,

obtaining

(HBOUND)

416

HUGE

built-in

function

418

I
I

(overpunch)

picture

character

326

IAND

built-in

function

419

identifier
asterisk

13

DBCS

19

DBCS

with

double-byte

characters

19

definition

13

programmer-defined

names

13

SBCS

in

DBCS

form

19

scalar

45

using

keywords

13

IEEE

attribute

244

IEOR

built-in

function

419

IF

statement

522

description

207

syntax

207

IF

statez

521

IGNORE

option

of

data

transmission

statements

275

IMAG

built-in

function

420

IMAG

pseudovariable

420

imaginary

constants

29

implementation

limits

531

implicit
declaration

150

freeing
of

based

variable

235

of

controlled

variable

227

opening

of

files

266

implicit

action

331

Implicit

date
assignments

43

comparisons

43

implicitly

locator-qualified

reference

232

IN

option
ALLOCATE

statement

233

FREE

statement

234

IN

option

with

FREE

statement,

for

based

variables

234

INCLUDE

directive

209

INCLUDE

statez

522

INDEX

built-in

function

420

INDEX

macro

facility

built-in

function

511

indexed

data

sets

258

industry

standards

4

infix

operation

55

infix

operators

and

arrays

70

INITIAL

(INIT)

attribute

250

INITIAL

CALL

252

INITIAL

TO

252

initial

values
for

unions

250

on

STATIC

variables

254

initializing
array

variables

253

automatic

variables

254

based

and

controlled

variables

255

static

variables

254

unions

254

INLINE

option

131

INOT

built-in

function

421

input
conditions

ENDFILE

344

ENDPAGE

345

KEY

348

NAME

349

RECORD

350

TRANSMIT

355

UNDEFINEDFILE

356

definition

257

discussion

257

of

area

240

INPUT

attribute

262

input/output

built-in

functions
COUNT

399

ENDFILE

407

FILEDDINT

410

FILEDDTEST

410

FILEDDWORD

411

FILEID

411

FILEOPEN

412

FILEREAD

412

FILESEEK

412

FILETELL

413

FILEWRITE

413

564

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

input/output

built-in

functions

(continued)
LINENO

425

ONSUBCODE

445

PAGENO

447

SAMEKEY

464

summary

375

insertion

characters

321

INT

(INTERNAL)

attribute

153

integer
value

28

integer

manipulation

built-in

functions
IAND

419

IEOR

419

INOT

421

IOR

421

ISIGNED

422

ISLL

422

ISRL

423

IUNSIGNED

423

LOWER2

428

RAISE2

459

summary

376

integral

boundary

159

interlanguage

communication
LINKAGE

option

132

linkages
OPTLINK

132

SYSTEM

132

interleaved

subscripts

177

intermediate

results

of

expressions
discussion

54

example

61

INTERNAL

(INT)

attribute

153

internal

procedure

92

internal

to,

definition

151

INTO

option

of

data

transmission

statements

275

INVALIDOP

condition

348

INVALIDOP

condition

prefix

332,

333

invocation

of

entry

references

124

invoked

procedure

98

invoking

block

98

invoking

built-in

functions

and

pseudovariables

369

invoking

built-in

subroutines

369

invoking

main

procedure

88

invoking

type

functions

493

IOR

built-in

function

421

IRREDUCIBLE

(IRRED)

option

133

ISIGNED

built-in

function

422

ISLL

built-in

function

422

ISMAIN

built-in

function

423

ISRL

built-in

function

423

iSUB
defining

245,

248

unconnected

247

ITERATE

statement

209

ITERATE

statez

523

iteration

factor

253

IUNSIGNED

built-in

function

423

K
K

picture

character

328

KEY

condition

348

KEY

option

of

data

transmission

statements

276

KEYED

attribute

264

KEYFROM

option

of

data

transmission

statements

276

KEYLENGTH

environment

characteristic

264

KEYLOC

environment

characteristic

264

KEYTO

option

of

data

transmission

statements

277

keyword

statement

17

keywords
definition

13

L
L-format

item

310

label

17

LABEL

attribute
description

47

valid

OPTIONS

options

47

label

constants

47

label

data
attributes

25,

26

description

47

labels,

on

language

statements

47

language-specified

defaults
defining

162

discussion

of

163

restoring

167

LAST

type

function

495

LBOUND

built-in

function

424

LBOUND

macro

facility

built-in

function

511

LEAVE

statement

210

LEAVE

statez

524

LEFT

built-in

function

424

length
controlled

parameter

96

simple

parameter

95

LENGTH

built-in

function

425

LENGTH

macro

facility

built-in

function

511

level-number

(of

structure

elements)

178

levels

of

structures
description

171

specifying

unique

names

172

levels

of

unions

172

LIKE

attribute

174

Lilian

format

373

LIMITED

attribute
description

120

example

121

limits

531

LINE

directive

211

LINE

format

item

311

LINE

option

286

LINENO

built-in

function

425

LINESIZE

specification

in

OPEN

statement

266

LINKAGE

option

132

list
bidirectional

241

chained

240

parameter

descriptor

114

processing

240

unidirectional

241

LIST

attribute
description

117

list-directed
data

specification

297

data

transmission

281

GET

statement

298

input

298

output

299

PUT

statement

299

listing

control

statements

498

LITTLEENDIAN

attribute

243

load

module
description

87

file

extensions

87

locate

mode

278

LOCATE

statement

274

LOCATION

(LOC)

built-in

function

425

locator
conversion

230

data
attributes

26

description

230

offset

variable

230

pointer

variable

230

qualification

231

levels

of

qualification

232

parameter

109

qualification

231

qualifier

14

reference

231

LOG

built-in

function

426

LOG10

built-in

function

427

LOG10F

built-in

function

427

LOG2

built-in

function

427

LOGF

built-in

function

426

LOGGAMMA

built-in

function

427

logical

level

(of

structure

elements)

178

logical

operator
discussion

63

using

14

LOW

built-in

function

428

lower

bound

of

an

array,

obtaining

(LBOUND)

424

LOWER2

built-in

function

428

LOWERCASE

built-in

function

428

M
M

(mixed)

string

constant

40

MACCOL

macro

facility

built-in

function

512

MACLMAR

macro

facility

built-in

function

512

MACRMAR

macro

facility

built-in

function

512

macro

facility

built-in

functions
COLLATE

508

COMMENT

508

COMPILEDATE

508

COMPILETIME

509

COPY

509

COUNTER

510

DIMENSION

510

HBOUND

510

INDEX

511

LBOUND

511

LENGTH

511

Index

565

macro

facility

built-in

functions

(continued)
MACCOL

512

MACLMAR

512

MACRMAR

512

MAX

512

MIN

513

PARMSET

513

QUOTE

513

REPEAT

514

SUBSTR

514

SYSPARM

515

SYSTEM

515

SYSVERSION

515

TRANSLATE

515

VERIFY

516

MAIN

option

132

main

procedure
invoking

88

passing

an

argument

110

major

structure

names

171

MARGINS

keyword
on

ANSWER

preprocessor

statement

506

mathematical

built-in

functions
accuracy

of

370

ACOS

383

ACOSF

383

ASIN

386

ASINF

386

ATAN

387

ATAND

387

ATANF

388

ATANH

388

COS

398

COSD

398

COSF

398

COSH

399

ERF

408

ERFC

408

EXP

409

EXPF

409

GAMMA

414

LOG

426

LOG10

427

LOG10F

427

LOG2

427

LOGF

426

LOGGAMMA

427

SIN

469

SIND

469

SINF

469

SINH

469

SQRT

471

SQRTF

471

summary

376

TAN

476

TAND

476

TANF

476

TANH

477

MAX

built-in

function

429

MAXEXP

built-in

function

429

MAXLENGTH

built-in

function

430

MEMINDEX

built-in

function

431

MEMSEARCH

built-in

function

432

MEMSEARCHR

built-in

function

433

MEMVERIFY

built-in

function

433

MEMVERIFYR

built-in

function

434

MIN

built-in

function

435

MINEXP

built-in

function

435

minor

structure

names

171

miscellaneous

built-in

functions
BYTE

391

CHARVAL

395

COLLATE

396

GETENV

415

HEX

417

OMITTED

440

PACKAGENAME

447

PLIRETV

453

PRESENT

458

PROCEDURENAME

458

RANK

460

SOURCEFILE

471

SOURCELINE

471

STRING

472

summary

377

UNSPEC

481

VALID

484

WCHARVAL

487

miscellaneous

conditions
ANYCONDITION

339

AREA

340

ATTENTION

341

CONDITION

342

ERROR

346

FINISH

347

STORAGE

352

mixed

data

39

mixed-string

constant

40

MOD

built-in

function

436

mode

of

a

data

item

28

modes

of

processing
description

277

locate

278

move

278

move

mode

278

MPSTR

built-in

function

437

multiple

assignment

192

multiple

conditions

338

multiple

generations

of

controlled

variables

227

MULTIPLY

built-in

function

438

multithreading
ATTACH

statement

360

condition

handling

362

description

359

linkage

requirements

361

options
ENVIRONMENT

360

THREAD

360

TSTACK

361

sharing

data

between

threads

363

sharing

files

between

threads

363

TASK

attribute

362

task

variable

362

thread
creation

359

detaching

362

termination

361

uses

359

waiting

361

THREADID

built-in

function

363

multithreading

facility

359

multithreading,

THREADID

built-in

function

for

477

N
NAME

condition

349

named

coded

arithmetic

attributes

25

named

constant

45

named

constants,

description

21

named

string

data

attributes

25

names
preprocessor

501

names,

typed

135

NEW

type

function

496

NOCHARGRAPHIC

option

130

NODESCRIPTOR

option

130

NOEXECOPS

option

132

NOINLINE

option

131

NOMAP

option

132

NONASSIGNABLE

attribute

242

NONCONNECTED

(NONCONN)

attribute

244

nonconnected

storage

170

nondata

attributes

23

NONVARYING

(NONVAR)

attribute

35

NOPRINT

directive

211

NORESCAN

option

517

NORMAL

attribute

242

normal

termination

of

a

program

88

NOSCAN

keyword

on

ANSWER

statement

506

not

operator

63

NOTE

directive

211

NOTE

statez

524

null

arguments,

using

in

built-in

functions

370

NULL

built-in

function

438

null

ON-unit

335

null

statement
definition

17

description

212

null

statez

525

numeric

character

data
conversion

81

definition

41

fields

318

picture

specifiers

317

subfields

318

numeric

character

pictured

item
description

315

discussion

318

O
OFFSET

attribute

238

OFFSET

built-in

function

438

offset

data

238

offset

variable

230

OFFSETADD

built-in

function

439

OFFSETDIFF

built-in

function

439

OFFSETSUBTRACT

built-in

function

439

OFFSETVALUE

built-in

function

439

OFL

(OVERFLOW)

condition

350

OMITTED

built-in

function

440

ON

statement

334

566

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

ON-units
dynamically

descendant

335

for

file

variables

336

null

335

scope

335

ONCHAR

built-in

function

440

ONCHAR

pseudovariable

440

ONCODE

built-in

function

440

using

331

ONCONDCOND

built-in

function

441

ONCONDID

built-in

function

441

ONCOUNT

built-in

function

442

ONFILE

built-in

function

442

ONGSOURCE

built-in

function

442

ONGSOURCE

pseudovariable

443

ONKEY

built-in

function

443

ONLOC

built-in

function

444

ONSOURCE

built-in

function

444

ONSOURCE

pseudovariable

444

ONSUBCODE

built-in

function

445

ONWCHAR

built-in

function

445

ONWCHAR

pseudovariable

445

ONWSOURCE

built-in

function

446

ONWSOURCE

pseudovariable

446

OPEN

statement

265

opening

and

closing

files

264

operands
conversion

59

definition

51

operational

expressions
classes

56

conversion

rules

55

definition

51

description

55

example

56

restrictions

on

data

types

55

operations
arithmetic

56

bit

63

classes

56

combinations

67

comparison
description

64

example

of

65

concatenation

66

infix

55

logical

63

pointer

56

prefix
description

55

example

69

using

pointer

support

extensions

56

operators
arithmetic

description

56

using

14

bit

14

comparison

14

infix
discussion

70

using

with

pointer

expressions

56

logical

14

string

14

using

13

OPTIMIZATION,

raising

conditions

under

333

OPTION

directive

212

OPTIONAL

attribute

116

options
ASSEMBLER

128

DESCRIPTORS

option

165

EXPORTS

91

FETCHABLE

131

GRAPHIC

39

GRAPHIC

ENVIRONMENT

39

NORESCAN

517

of

data

transmission

statements

274,

283

OPTIONS

126

RANGE

164

RECURSIVE

100

REPEAT

197

REPLY

195

RESCAN

517

RESERVES

91

RETURNS

134

SCAN

517

SET

103

SNAP

334

SYSTEM

334

TITLE

103

value

specification

166

OPTIONS

attribute

126

OPTIONS

options
ASSEMBLER

128

BEGIN

statement

126

BYADDR

129

BYVALUE

129

characteristic

list

126

CHARGRAPHIC

130

COBOL

130

description

126

DESCRIPTOR

130

ENTRY

declaration

126

FORTRAN

131

FROMALIEN

131

INLINE

131

IRREDUCIBLE

133

LINKAGE

132

MAIN

132

NOCHARGRAPHIC

130

NODESCRIPTOR

130

NOEXECOPS

132

NOINLINE

131

NOMAP

132

ORDER

132

PROCEDURE

statements

128

RECURSIVE

100

REDUCIBLE

133

REENTRANT

133

REORDER

132

RETCODE

133

syntax

126

WINMAIN

133

OPTIONS

options,

ENTRY

statement

126

order

of

evaluation
for

expressions

and

references

68

ORDER

option

132

ORDINAL

attribute

140

ordinal

data,

attributes,

classification

26

ordinal

handling

built-in

functions
list

143

ordinal-handling

built-in

functions
ORDINALNAME

446

ORDINALPRED

447

ORDINALSUCC

447

summary

378

ORDINALNAME

built-in

function

446

ORDINALPRED

built-in

function

447

ordinals
allowable

attributes

143

built-in

functions

143

DEFINE

ORDINAL

statement

136

defining

136

description

136

example

137

example

of

do-loops

143

options

136

ORDINAL

attribute

140

PRECISION

attribute

137

SIGNED

attribute

137

UNSIGNED

attribute

137

using

DOWNTHRU

204

using

with

arrays

144

VALUE

attribute

136

ORDINALSUCC

built-in

function

447

ORGANIZATION

environment

characteristic

264

OTHERWISE

option

of

GENERIC

attribute

122

OTHERWISE

statement
in

SELECT

statement

216

output
definition

257

output

and

input
conditions

332

discussion

257

of

area

240

OUTPUT

attribute

262

output/input

built-in

functions

375

OVERFLOW

(OFL)

condition

350

OVERFLOW

condition

prefix

332,

333

overpunch

picture

characters,

I

326

overpunch

picture

characters,

R

326

overpunch

picture

characters,

T

326

P
P-format

item

311

PACKAGE

statement
description

90

example

91

valid

OPTIONS

options

127

PACKAGENAME

built-in

function

447

packages

90

PAGE

directive

213

PAGE

format

item

312

PAGE

keyword

on

ANSWER

statement

506

PAGE

option

286

PAGENO

built-in

function

447

PAGESIZE

specification

in

OPEN

statement

266

PARAMETER

attribute

95

parameter

descriptor

list

114

parameters
and

arguments

107

array

arguments
example

96

Index

567

parameters

(continued)
attributes

95

element

109

parentheses

14

PARMSET

macro

facility

built-in

function

513

passing

arguments
discussion

107

to

the

main

procedure

110

using

BYVALUE

and

BYADDR

108

period

14

PICTURE

(PIC)

attribute

35

picture

data
repetition

factor

316

scaling

factor

328

specification

36

specifiers

for

character

data

316

specifiers

for

numeric

character

data

317

syntax

for

PICTURE

attribute

35

picture

format

item

311

picture

specification

characters
-

324

/

321

$

324

*

320

+

324

9
for

character

data

316

for

numerics

318

A

316

B

321

CR

326

DB

326

definition

of

315

E

328

F

328

I

326

K

328

R

326

S

324

T

326

V
for

numerics

318

insertion

321

X

316

Y

326

Z

320

PL/I

application
description

87

illustration

of

structure

88

PLACES

built-in

function

448

PLIASCII

built-in

subroutine

448

PLICANC

built-in

subroutine

449

PLICKPT

built-in

subroutine

449

PLIDELETE

built-in

subroutine

449

PLIDUMP

built-in

subroutine

450

PLIEBCDIC

built-in

subroutine

450

PLIFILL

built-in

subroutine

450

PLIFREE

built-in

subroutine

451

for

based

variables

233

PLIMOVE

built-in

subroutine

451

PLIOVER

built-in

subroutine

452

PLIREST

built-in

subroutine

452

PLIRETC

built-in

subroutine

452

PLIRETV

built-in

function

453

PLISAXA

built-in

subroutine

453

PLISAXB

built-in

subroutine

453

PLISRTA

built-in

subroutine

454

PLISRTB

built-in

subroutine

454

PLISRTC

built-in

subroutine

454

PLISRTD

built-in

subroutine

454

point

of

invocation,

for

procedures

98

POINTER

(PTR)

attribute

232

POINTER

(PTR)

built-in

function

455

pointer

operations

56

pointer

symbol

14

pointer

variable

230,

232

POINTERADD

(PTRADD)

built-in

function

455

using

with

pointer

operations

56

POINTERDIFF

(PTRDIFF)

built-in

function

456

POINTERSUBTRACT

(PTRSUBTRACT)

built-in

function

456

POINTERVALUE

(PTRVALUE)

built-in

function

456

using

56

POLY

built-in

function

457

POP

directive

213

POS

(POSITION)

attribute

245

POSITION

(POS)

attribute

245

PRECISION

(PREC)

built-in

function

457

PRECISION

attribute
description

28

ordinals

137

PRECISION

built-in

function
using

62

precision-handling

built-in

functions
ADD

383

BINARY

389

DECIMAL

405

DIVIDE

406

FIXED

413

FLOAT

414

MULTIPLY

438

PRECISION

457

SIGNED

468

SUBTRACT

474

summary

378

UNSIGNED

481

PRED

built-in

function

458

prefix
condition

example

332

syntax

332

using

331

operations

55

preprocessor
%ACTIVATE

516

%assignment

517

%DEACTIVATE

517

%DECLARE

518

%DO

520

%END

521

%GO

TO

521

%IF

521

%INCLUDE

522

%ITERATE

523

%LEAVE

524

%NOTE

524

%null

525

%REPLACE

525

preprocessor

(continued)
%SELECT

525

built-in

functions

507

examples

of

526

facilities

497

input

497

input

text

498,

499

listing

control

498

listing

control

statements

498

names,

scope

of

501

output

498

output

text

498

preprocessor

497

procedures

502

references

and

expressions

501

scan
and

input

text

499

and

listing

control

statements

499

and

preprocessor

statements

499

discussion

of

499

statements
description

of

497

list

of

499

statements,

list

of

516

variables

and

data

elements

500

PRESENT

built-in

function

458

PRINT

attribute

300

PRINT

directive

214

priority

of

operators

68

PROC

(PROCEDURE)

statement

93

PROCEDURE

(PROC)

statement
description

93

using

88

valid

OPTIONS

127

PROCEDURE

statement

128

PROCEDURE

statez

503

PROCEDURENAME

(PROCNAME)

built-in

function

458

procedures
activation

98

blocks

89

description

92

dynamically

loading
discussion

101

rules

102

using

the

FETCH

statement

102

using

the

RELEASE

statement

103

external

92

internal

92

passing

an

argument

to

main

110

passing

arguments
discussion

107

using

BYVALUE

and

BYADDR

108

using

dummy

arguments

108

preprocessor

502

recursive

100

specifying

attributes

95

termination

99

transferring

control

out

99

PROCESS

directive

214

processing

lists

240

processing

modes
description

277

locate

278

move

278

568

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

PROD

built-in

function

458

program
activation

88

blocks
activation

89

description

89

definition

(for

PL/I)

87

elements
entry

invocation

124

entry

value

124

elements

of
begin-blocks

110

built-in

functions

107

CALL

statement

124

description

9

entry

data

111

functions

105

OPTIONS

options

126

RETURN

statement

125

subroutines

104

organization

of

87

packages

90

procedures

92

RETURN

125

structure

87

subroutines

92

termination

88

program

block

definition

87

program

checkout

conditions

332

program

element
description

9

double-byte

character

set

(DBCS)
discussion

18

statement

elements

19

group

18

single-byte

character

set

(SBCS)
discussion

9

statement

elements

13

statement
compound

18

discussion

15

simple

17

program

organization

87

program-checkout

conditions
STRINGRANGE

353

STRINGSIZE

354

SUBSCRIPTRANGE

354

program-control

data
description

23

types

and

attributes

47

using

47

programmer-defined

names

13

pseudovariables
declaring

368

description

54

ENTRYADDR

408

example

54

IMAG

420

invoking

369

ONCHAR

440

ONGSOURCE

443

ONSOURCE

444

ONWCHAR

445

ONWSOURCE

446

REAL

461

STRING

473

SUBSTR

473

pseudovariables

(continued)
summary

379

TYPE

480

UNSPEC

483

PTR

(POINTER)

attribute

232

PTRADD

(POINTERADD)

built-in

function
using

with

pointer

operations

56

PTRVALUE

(POINTERVALUE)

built-in

function
using

56

punctuating

constants

22

PUSH

directive

214

PUT

statement
data-directed

292

edit-directed

296

list-directed

299

STREAM

output

282

strings

296

PUTENV

built-in

function

459

Q
qualification

description

231

using

as

a

delimiter

14

structure

173

unions

173

qualified

reference

173

quotation

marks

in

strings

22

quote
double

11,

14

single

14

QUOTE

macro

facility

built-in

function

513

quotes

(single

or

double),

enclosing

string

data

22

R
R

(overpunch)

picture

character

326

R-format

item

312

RADIX

built-in

function

459

RAISE2

built-in

function

459

RANDOM

built-in

function

460

RANGE

option

164

RANK

built-in

function

460

READ

statement

272

REAL

attribute

28

REAL

built-in

function

460

REAL

pseudovariable

461

recognition

of

names

147

RECORD

attribute

262

RECORD

condition

350

record-oriented

data

transmission
definition

257

discussion

271

statements

272

UNLOCK

218

RECSIZE

environment

characteristic

264

recursion
attribute

94

definition

100

effect

on

automatic

variables

101

RECURSIVE

attribute

100

RECURSIVE

option

100

recursive

procedures
description

100

effect

on

automatic

variables

101

example

100

specifying

attributes

100

REDUCIBLE

(RED)

option

133

REENTRANT

option

133

REFER

option
description

235

on

AREA

attribute

237

reference
locator

231

references
description

51

preprocessor

501

syntax

51

regional

data

set

259

REGIONAL(1)

environment

characteristic

264

relative

data

sets

259

relative

line

313

RELEASE

statement
description

103

dynamically

loading

external

procedures

101

example

103

restrictions

102

REM

built-in

function

461

remote

format

item

312

REORDER

option

132

REPATTERN

built-in

function

461

REPEAT

built-in

function

462

REPEAT

macro

facility

built-in

function

514

REPEAT

option

197

repetition

factor
for

picture

characters

316

for

strings

37

repetitive

execution

(DO

statement)

195,

202

REPLACE

statez

525

REPLY

option

195

RESCAN

keyword

on

ANSWER

statement

506

RESCAN

option

517

RESERVED

attribute

158

RESERVES

option

91

RESIGNAL

statement

338

RESPEC

type

function

496

restoring

language-specified

defaults

167

restricted

expressions
applying

built-in

functions

71

description

71

example

71

restrictions

on

FETCH

and

RELEASE
description

102

errors

during

data

conversion

86

results

of

arithmetic

operations
discussion

58

FLOAT

operands

58

special

cases

63

results

of

arithmetic

operations,

under

RULES(ANS)

59

RETCODE

option

133

RETURN

statement
description

125

Index

569

RETURN

statement

(continued)
returning

from

a

function

125

using

99

using

in

a

preprocessor

procedure

504

using

with

subroutines

125

RETURNS

attribute

134

RETURNS

option
description

134

REVERSE

built-in

function

462

REVERT

statement

337

REWRITE

statement
description

273

RIGHT

built-in

function

462

ROUND

built-in

function

463

S
S

picture

character

324

SAMEKEY

built-in

function

464

scalar

identifiers

45

SCALARVARYING

environment

characteristic

264

SCALARVARYING

option

271

SCALE

built-in

function

464

scale

in

arithmetic

operations

57

scaling

factor
character

328

description

28

SCAN

keyword

on

ANSWER

statement

506

SCAN

option

517

scan,

preprocessor

499

scope
of

condition

prefix

333

of

established

action

335

of

label

declarations

151

scope

of
preprocessor

names

501

SEARCH

built-in

function

465

SEARCHR

built-in

function

466

SECS

built-in

function

466

SECSTODATE

built-in

function

467

SECSTODAYS

built-in

function

468

SELECT

statement
description

216

example

of

217

SELECT

statez

525

select-groups

216

self-defining

data

(REFER

option)

235

semicolon

14

SEQL

(SEQUENTIAL)

attribute

263

SEQUENTIAL

(SEQL)

attribute

263

SET

option
description

233

specifying

a

pointer

reference

103

using

the

ALLOCATE

statement

233

using

the

LOCATE

statement

274

using

the

READ

statement

273

sets,

data

257

sharing

data

between

threads

363

sharing

files

between

threads

363

SIGN

built-in

function

468

SIGNAL

statement

337

signalling

a

condition

337

SIGNED

attribute
data

storage

requirements

30

SIGNED

attribute

(continued)
description

29

ordinals

137

SIGNED

built-in

function

468

signs
drifting

use

325

specifying

in

numeric

character

data

324

static

use

324

using

CR

and

DB

with

other

signs

326

simple
controlled

96

defining

245,

247

iSUB

defining

248

overlay

defining

245,

249

parameter
bounds,

lengths,

and

sizes

95

simple

95

simple

defining

247

string

overlay

defining

249

simple

statement

17

SIN

built-in

function

469

SIND

built-in

function

469

SINF

built-in

function

469

single

quote

14

single-byte

character

set

(SBCS)
alphabetic

9

binary

digit

11

decimal

digit

10

discussion

9

extralingual

10

hexadecimal

digit

11

statement

elements

13

SINH

built-in

function

469

size
controlled

parameter

96

simple

parameter

95

SIZE

built-in

function

470

SIZE

condition

351

SIZE

condition

prefix

332,

333

SIZE

type

function

496

SKIP

directive

218

SKIP

format

item

313

SKIP

keyword

on

ANSWER

statement

506

SKIP

option

286

SNAP

option

of

ON

statement

334

source-to-target

conversion

rules
arithmetic

character

81

arithmetic

character

PICTURE

81

bit

84

character

82

coded

arithmetic

77

fixed

binary

78

fixed

decimal

79

float

binary

80

float

decimal

80

graphic

85

numeric

character

81

widechar

85

SOURCEFILE

built-in

function

471

SOURCELINE

built-in

function

471

spacing

format

item

313

specification
edit-directed

293

list-directed

297

specification

(continued)
repetitive

285

transmission

of

data

list

items

288

specification

characters

315

SQRT

built-in

function

471

SQRTF

built-in

function

471

stacking

101

standards

4

statement

elements
for

DBCS

19

for

SBCS

13

STATEMENT

option

504

statements
%PROCEDURE

503

ALLOCATE

233

ANSWER
using

in

a

preprocessor

procedure

505

assignment

17,

187

ATTACH

360

BEGIN

110

CALL

124

CLOSE

269

coding

recommendations

16

compound

18

DECLARE

148

DEFAULT

163

DEFINE

ALIAS

135

DEFINE

ORDINAL

136

DEFINE

STRUCTURE

138

DELAY

194

DELETE

274

DETACH

362

discussion

187

DISPLAY

194

DO

195

END

205

ENTRY

94

EXIT

99

FETCH

101

FORMAT

297

FREE

227,

234

GET
data-directed

291

edit-directed

295

list-directed

298

STREAM

input

282

GET

STRING

282

GO

TO

207

group

18

IF

207

ITERATE

209

keyword

17

LEAVE

210

LOCATE

274

null

212

ON

334

OPEN

265

PACKAGE

90

PROCEDURE
description

93

using

to

invoke

main

procedure

88

PUT
data-directed

292

edit-directed

296

list-directed

299

570

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

statements

(continued)
PUT

(continued)
STREAM

output

282

READ

272

RELEASE
description

103

dynamically

loading

external

101

example

103

restrictions

102

RESIGNAL

338

RETURN
description

125

returning

from

a

function

125

syntax

125

using

99

using

in

a

preprocessor

procedure

504

using

with

subroutines

125

REVERT

337

REWRITE
description

273

SELECT
description

216

example

217

SIGNAL

337

simple

17

STOP
using

99

syntax

15

WAIT

361

WRITE
description

273

static

allocation

221

STATIC

attribute
description

222

with

INITIAL

attribute

254

static

storage

222

STOP

statement
using

99

storage
allocation

221

automatic

223

based

228

classification

221

connected

244

control

221

controlled

224

nonconnected

170

static

222

STORAGE

(STG)

built-in

function

472

STORAGE

condition

352

storage

control

built-in

functions
ADDR

384

ADDRDATA

384

ALLOCATE

385

ALLOCATION

385

ALLOCSIZE

385

AUTOMATIC

388

AVAILABLEAREA

388

BINARYVALUE

389

BITLOCATION

390

CHECKSTG

395

CURRENTSIZE

401

CURRENTSTORAGE

401

EMPTY

407

ENTRYADDR

407

HANDLE

416

storage

control

built-in

functions

(continued)
LOCATION

425

NULL

438

OFFSET

438

OFFSETADD

439

OFFSETDIFF

439

OFFSETSUBTRACT

439

OFFSETVALUE

439

POINTER

455

POINTERADD

455

POINTERDIFF

456

POINTERSUBTRACT

456

POINTERVALUE

456

SIZE

470

STORAGE

472

summary

379

SYSNULL

475

SYSTEM

475

UNALLOCATED

480

STREAM

attribute

262

stream-oriented

data

transmission
definition

257

list

directed

281

STRG

(STRINGRANGE)

condition

353

STRING

built-in

function

472

string

data
attributes

abbreviations

34

classification

25

specifying

length

34

bit

37

BIT

attribute

33

CHARACTER

attribute

33

character

data

36

definition

22

graphic

39

GRAPHIC

attribute

33

mixed

39

NONVARYING

attribute

35

PICTURE

attribute

35

quotation

marks

22

repetition

factor

37

transmission

of

varying

length

272

VARYING

attribute

35

VARYINGZ

attribute

35

string

operator

(

)

14

STRING

option
description

287

using

on

the

GET

statement

282

using

on

the

PUT

statement

282

string

overlay

defining

249

STRING

pseudovariable

473

string-handling

built-in

functions
BIT

390

BOOL

390

CENTERLEFT

392

CENTERRIGHT

392

CHARACTER

393

CHARGRAPHIC

394

COPY

397

EDIT

406

GRAPHIC

415

HIGH

418

INDEX

420

LEFT

424

LENGTH

425

string-handling

built-in

functions

(continued)
LOW

428

LOWERCASE

428

MAXLENGTH

430

MPSTR

437

REPEAT

462

REVERSE

462

RIGHT

462

SEARCH

465

SEARCHR

466

SUBSTR

473

summary

380

TALLY

476

TRANSLATE

478

TRIM

479

UPPERCASE

483

VERIFY

485

VERIFYR

486

WHIGH

488

WIDECHAR

488

WLOW

488

STRINGRANGE

(STRG)

condition

246,

353

STRINGRANGE

condition

prefix

332,

333

STRINGSIZE

(STRZ)

condition

246,

354

STRINGSIZE

condition

prefix

332,

333

structure

mapping
description

177

effect

of

UNALIGNED

attribute

179

example

180

rules

for

mapping

one

pair

179

rules

for

order

of

pairing

178

structure

types,

defining

138

structures
assignment

190

attributes

26

controlled

228

cross

sections

of

arrays

177

declaration

170

DEFINE

STRUCTURE

statement

138

defining

138

definition

170

expression

52

levels
description

171

for

unions

172

highest

number

for

structures

171

highest

number

for

unions

172

maximum

number

for

structures

171

maximum

number

for

unions

172

LIKE

attribute

174

member

elements

172

names
description

170

elementary

171

for

unions

172

major

171

minor

171

qualifying

141

qualifying

names

173

specifying

organization

171

typed
description

138

HANDLE

built-in

function

139

Index

571

structures

(continued)
typed

(continued)
handles

139

variable

174

STRZ

(STRINGSIZE)

condition

354

subfields,

for

numeric

character

data

318

SUBRG

(SUBSCRIPTRANGE)

condition

246,

354

subroutines
built-in

105

definition

104

example

104

identifying

with

the

PROCEDURE

statement

92

restrictions

on

104

returning

from

125

subroutines,

built-in
invoking

369

list

382

PLIASCII

448

PLICANC

449

PLICKPT

449

PLIDELETE

449

PLIDUMP

450

PLIEBCDIC

450

PLIFILL

450

PLIFREE

451

PLIMOVE

451

PLIOVER

452

PLIREST

452

PLIRETC

452

PLISAXA

453

PLISAXB

453

PLISRTA

454

PLISRTB

454

PLISRTC

454

PLISRTD

454

subscripted

qualified

reference

176

SUBSCRIPTRANGE

(SUBRG)

condition

246,

354

SUBSCRIPTRANGE

condition

prefix

332,

333

subscripts
definition

169

interleaved

177

of

arrays

169

SUBSTR

built-in

function

473

SUBSTR

macro

facility

built-in

function

514

SUBSTR

pseudovariable

473

SUBTRACT

built-in

function

474

SUCC

built-in

function

474

SUM

built-in

function

475

suppression

characters

320

symbols,

composite

12

syntax,

diagrams,

how

to

read

1

SYSIN

269

SYSNULL

built-in

function

475

SYSPARM

macro

facility

built-in

function

515

SYSPRINT

269

SYSTEM

built-in

function

475

SYSTEM

macro

facility

built-in

function

515

SYSTEM

option

of

ON

statement

334

SYSVERSION

macro

facility

built-in

function

515

T
T

(overpunch)

picture

character

326

TALLY

built-in

function

476

TAN

built-in

function

476

TAND

built-in

function

476

TANF

built-in

function

476

TANH

built-in

function

477

targets
array

190

description

54

intermediate

results

54

pseudovariables
description

54

example

54

requirements

for

target

variables

189

structure

190

variables

54

TASK

attribute

362

task

data,

attributes,

classification

26

task

variable

362

termination
begin-block

111

block

90,

205

procedure

99

program

88

thread

361

THEN

clause

of

%IF

statement

522

THEN

clause

of

IF

statement

207

thread
ATTACH

statement

360

condition

handling

362

creation

of

359

detaching

362

ENVIRONMENT

option

360

sharing

data

363

sharing

files

363

TASK

attribute

362

task

variable

362

termination

361

THREAD

option

360

TSTACK

option

361

uses

of

359

waiting

361

THREAD

option

360

THREADID

built-in

function

477

TIME

built-in

function

478

TINY

built-in

function

478

TITLE

option

103

TITLE

specification

on

the

OPEN

statement

266

TO

option

196

TO

option

on

INITIAL

attribute

252

TRANSLATE

built-in

function

478

TRANSLATE

macro

facility

built-in

function

515

transmission

of

data

257

TRANSMIT

condition

355

TRIM

built-in

function

479

TRUNC

built-in

function

479

TSTACK

option

361

TYPE

attribute

139

TYPE

built-in

function

480

type

definitions,

description

135

type

functions

145

arguments

493

BIND

494

CAST

494

discussion

493

FIRST

495

LAST

495

list

494

NEW

496

RESPEC

496

SIZE

496

type

functions,

invoking

493

TYPE

pseudovariable

480

typed

names

135

typed

structures

in

HANDLE

built-in

function

416

typed

variables,

declaring

139

handles

139

qualifying

141

types
DEFINE

STRUCTURE

statement

138

defining

135

description

139

HANDLE

built-in

function

139

handles

139

qualifying

141

type

functions

145

variables

139

U
ú

(element

separator)

11

UFL

(UNDERFLOW)

condition

357

UNALIGNED

attribute
description

and

syntax

159

effect

on

structure

mapping

179

example

162

storage

alignment

requirements

160

UNALLOCATED

built-in

function

480

UNBUF

(UNBUFFERED)

attribute

263

UNBUFFERED

(UNBUF)

attribute

263

unconnected

storage

170,

247

UNDEFINEDFILE

(UNDF)

condition

356

UNDERFLOW

(UFL)

condition

357

UNDERFLOW

condition

prefix

332,

333

UNDF

(UNDEFINEDFILE)

condition

356

UNION

attribute

172

UNION,

synonym

for

172

unions
cross

sections

of

arrays

177

declaration

172

description

172

example

172

levels

172

names

172

qualifying

names

173

UNION

attribute,

classification

26

UNLOCK

statement

218

UNSIGNED

attribute
data

storage

requirements

30

description

29

ordinals

137

UNSIGNED

built-in

function

481

UNSPEC

built-in

function

481

UNSPEC

pseudovariable

483

572

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

UNTIL

option
description

195

using

with

a

type

2

DO

specification

197

UPDATE

attribute

262

UPPERCASE

built-in

function

483

UPTHRU

option
description

196

example

204

using

with

a

type

3

DO

specification

200

UPTHRU,

using

with

ordinals

204

V
V

picture

specification

character

318

VALID

built-in

function

484

VALIDDATE

built-in

function

484

VALUE

attribute
description

45

ordinals

136

VALUE

option

164,

166

VARGLIST

built-in

function

485

VARGSIZE

built-in

function

485

VARIABLE

attribute

48

variables
array

167

automatic

101

based
identifying

228

using

233

controlled

224

definition

21

discussion

225

entry

112

offset

230

pointer

230,

232

preprocessor

500

reference

21

representing

complex

data

items

28

structure

170

targets

54

variables,

as

handles

139

variables,

typed

139

VARYING

(VAR)

attribute

35

VARYINGZ

(VARZ)

attribute

35

VERIFY

built-in

function

485

VERIFY

macro

facility

built-in

function

516

VERIFYR

built-in

function

486

VSAM

environment

characteristic

264

W
WAIT

statement

361

WCHARVAL

built-in

function

487

WEEKDAY

built-in

function

487

WHEN

option

of

GENERIC

declaration

122

WHEN

statement
description

216

WHIGH

built-in

function

488

WHILE

option
description

195

using

with

a

type

2

DO

specification

197

WIDECHAR

(WCHAR)

attribute
description

33

WIDECHAR

(WCHAR)

built-in

function

488

widechar

constant
comparison

operations

65

widechar

data
conversion

85

WX

(widechar

hex)

string

constant

40

widechar

string

constant

40

WINMAIN

option

133

WLOW

built-in

function

488

WRITE

statement
description

273

WX

(widechar

hex)

string

constant

40

X
X

(hex)

character

string

constant

37

X

picture

specification

character

316

X-format

item

313

XMLCHAR

built-in

function

489

XN

(binary

hex)

constant

30

XU

(binary

hex)

constant

31

Y
Y

zero

replacement

picture

character

326

Y4DATE

built-in

function

490

Y4JULIAN

built-in

function

491

Y4YEAR

built-in

function

491

Z
Z

zero

suppression

picture

character

320

ZDIV

(ZERODIVIDE)

condition

357

zero

replacement

character

326

zero

suppression

characters

320

ZERODIVIDE

(ZDIV)

condition

357

ZERODIVIDE

condition

prefix

332,

333

Index

573

574

Enterprise

PL/I

for

z/OS:

Enterprise

PL/I

Language

Reference

Readers’

Comments

—

We’d

Like

to

Hear

from

You

Enterprise

PL/I

for

z/OS

PL/I

for

AIX

WSED

PL/I

for

Windows

Language

Reference

Version

3

Release

3.0

Publication

No.

SC27-1460-03

Overall,

how

satisfied

are

you

with

the

information

in

this

book?

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall

satisfaction h h h h h

How

satisfied

are

you

that

the

information

in

this

book

is:

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy

to

find h h h h h

Easy

to

understand h h h h h

Well

organized h h h h h

Applicable

to

your

tasks h h h h h

Please

tell

us

how

we

can

improve

this

book:

Thank

you

for

your

responses.

May

we

contact

you?

h

Yes

h

No

When

you

send

comments

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

your

comments

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Name

Address

Company

or

Organization

Phone

No.

Readers’

Comments

—

We’d

Like

to

Hear

from

You

SC27-1460-03

SC27-1460-03

����

Cut

or

Fold
Along

Line

Cut

or

Fold
Along

Line

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

NO

POSTAGE
NECESSARY
IF

MAILED

IN

THE
UNITED

STATES

BUSINESS

REPLY

MAIL

FIRST-CLASS

MAIL

PERMIT

NO.

40

ARMONK,

NEW

YORK

POSTAGE

WILL

BE

PAID

BY

ADDRESSEE

IBM

Corporation

Department

HHX/H3

555

Bailey

Ave.

San

Jose,

CA

95141-1099

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

	Contents
	Tables
	Figures
	Chapter 1. About this book
	Notation conventions used in this book
	Semantics
	Industry standards used
	Enhancements in this release
	Improved performance

	Enhancements in recent releases

	Chapter 2. Program elements
	Single-byte character set
	Alphabetic and extralingual characters
	Decimal digits
	Binary digits
	Hexadecimal digits
	Special characters
	Composite symbols
	Case sensitivity

	Statement elements for SBCS
	Identifiers
	Delimiters and operators

	Statements
	Simple statements
	Compound statements

	Groups
	Double-byte character set
	DBCS identifiers
	Statement elements for DBCS
	DBCS continuation rules

	Chapter 3. Data elements
	Data items
	Variables
	Constants
	Using quotation marks
	Punctuating constants

	Data types and attributes
	Data attributes

	Computational data types and attributes
	Coded arithmetic data and attributes
	String data and attributes

	Chapter 4. Expressions and references
	Order of evaluation
	Targets
	Variables
	Pseudovariables
	Intermediate results

	Operational expressions
	Pointer Operations
	Arithmetic operations
	Bit operations
	Comparison operations
	Concatenation operations
	Combinations of operations

	Array expressions
	Prefix operators and arrays
	Infix operators and arrays

	Structure expressions
	Restricted expressions
	Examples

	Chapter 5. Data conversion
	Built-in functions for computational data conversion
	Converting string lengths
	Converting arithmetic precision
	Converting mode
	Converting other data attributes
	Source-to-target rules
	Examples
	DECIMAL FIXED to BINARY FIXED with fractions
	Arithmetic to bit string
	Arithmetic to character
	A conversion error

	Chapter 6. Program organization
	Programs
	Program structure
	Program activation
	Program termination

	Blocks
	Block activation
	Block termination

	Packages
	Procedures
	PROCEDURE and ENTRY statements
	ENTRY statement
	Parameter attribute
	Procedure activation
	Procedure termination
	Recursive procedures
	Dynamic loading of an external procedure

	Subroutines
	Example 1
	Example 2

	Built-in subroutines
	Functions
	Examples
	Built-in functions

	Passing arguments to procedures
	Using BYVALUE and BYADDR
	Dummy arguments
	Passing arguments to the MAIN procedure

	Begin-blocks
	BEGIN statement
	Begin-block activation
	Begin-block termination

	Entry data
	Entry constants
	Entry variables
	ENTRY attribute
	OPTIONAL attribute
	LIST attribute
	LIMITED attribute
	Generic entries
	GENERIC attribute

	Entry invocation or entry value
	CALL statement
	RETURN statement
	Return from a subroutine
	Return from a function

	OPTIONS option and attribute
	RETURNS option and attribute

	Chapter 7. Type definitions
	User-defined types (aliases)
	DEFINE ALIAS statement

	Defining ordinals
	DEFINE ORDINAL statement

	Defining typed structures and unions
	HANDLE attribute

	Declaring typed variables
	TYPE attribute
	ORDINAL attribute

	Typed structure qualification
	Using the "." operator
	Combinations of arrays and typed structures or unions
	Using handles

	Using ordinals
	Example

	Type functions

	Chapter 8. Data declarations
	Explicit declaration
	DECLARE statement
	Factoring attributes

	Implicit declaration
	Scope of declarations
	INTERNAL and EXTERNAL attributes

	RESERVED attribute
	Data alignment
	ALIGNED and UNALIGNED attributes

	Defaults for attributes
	Language-specified defaults
	DEFAULT statement
	Restoring language-specified defaults

	Arrays
	DIMENSION attribute
	Examples of arrays
	Subscripts
	Cross sections of arrays

	Structures
	Unions
	UNION attribute

	Structure/union qualification
	LIKE attribute
	Examples
	Combinations of arrays, structures, and unions
	Cross sections of arrays of structures or unions
	Structure and union operations
	Structure and union mapping

	Chapter 9. Statements and directives
	ALLOCATE statement
	Assignment and compound assignment statements
	Assignment statement
	Compound assignment statement
	Target variables
	How assignments are performed
	Multiple assignments
	Example of moving internal data
	Example of assigning expression values
	Example of assigning a structure using BY NAME

	ATTACH statement
	BEGIN statement
	CALL statement
	CLOSE statement
	DECLARE statement
	DEFINE ALIAS statement
	DEFINE ORDINAL statement
	DEFINE STRUCTURE statement
	DEFAULT statement
	DELAY statement
	DELETE statement
	DETACH statement
	DISPLAY statement
	DO statement
	Type 1
	Types 2 and 3
	Type 4
	Examples of basic repetitions
	Example of DO with WHILE, UNTIL
	Example of DO with UPTHRU and DOWNTHRU
	Example of REPEAT

	END statement
	ENTRY statement
	EXIT statement
	FETCH statement
	FLUSH statement
	FORMAT statement
	FREE statement
	GET statement
	GO TO statement
	IF statement
	Examples

	%INCLUDE directive
	ITERATE statement
	LEAVE statement
	Example

	%LINE directive
	LOCATE statement
	%NOPRINT directive
	%NOTE directive
	null statement
	ON statement
	OPEN statement
	%OPTION directive
	OTHERWISE statement
	PACKAGE statement
	%PAGE directive
	%POP directive
	%PRINT directive
	PROCEDURE statement
	%PROCESS directive
	*PROCESS directive
	%PUSH directive
	PUT statement
	READ statement
	RELEASE statement
	RESIGNAL statement
	RETURN statement
	REVERT statement
	REWRITE statement
	SELECT statement
	Examples

	SIGNAL statement
	%SKIP directive
	STOP statement
	UNLOCK Statement
	WAIT statement
	WHEN statement
	WRITE statement

	Chapter 10. Storage control
	Storage classes, allocation, and deallocation
	Static storage and attribute
	Automatic storage and attribute
	Controlled storage and attribute
	ALLOCATE statement for controlled variables
	FREE statement for controlled variables
	Multiple generations of controlled variables
	Asterisk notation
	Adjustable extents
	Built-in functions for controlled variables

	Based storage and attribute
	Locator data
	POINTER variable and attribute
	Built-in functions for based variables
	ALLOCATE statement for based variables
	FREE statement for based variables
	REFER option (self-defining data)

	Area data and attribute
	Offset data and attribute
	Built-in functions for area variables
	Area assignment
	Input/output of areas

	List processing
	ASSIGNABLE and NONASSIGNABLE attributes
	NORMAL and ABNORMAL attributes
	BIGENDIAN and LITTLEENDIAN attributes
	HEXADEC and IEEE attributes
	CONNECTED and NONCONNECTED attributes
	DEFINED and POSITION attributes
	Unconnected Storage
	Simple Defining
	iSUB Defining
	String Overlay Defining
	POSITION attribute

	INITIAL attribute
	Initializing array variables
	Initializing unions
	Initializing static variables
	Initializing automatic variables
	Initializing based and controlled variables
	Examples

	Chapter 11. Input and output
	Data sets
	Consecutive
	Indexed
	Relative
	Regional

	Files
	FILE attribute
	RECORD and STREAM attributes
	INPUT, OUTPUT, and UPDATE attributes
	SEQUENTIAL and DIRECT attributes
	BUFFERED and UNBUFFERED attributes
	ENVIRONMENT attribute
	KEYED attribute
	PRINT attribute

	Opening and closing files
	OPEN statement
	Implicit opening
	CLOSE statement
	FLUSH statement

	SYSPRINT and SYSIN

	Chapter 12. Record-oriented data transmission
	Data transmitted
	Unaligned bit strings
	Varying length strings
	Area variables

	Data transmission statements
	READ statement
	WRITE statement
	REWRITE statement
	LOCATE statement
	DELETE statement

	Options of data transmission statements
	FILE option
	FROM option
	IGNORE option
	INTO option
	KEY option
	KEYFROM option
	KEYTO option
	SET option

	Processing modes
	Move mode
	Locate mode

	Chapter 13. Stream-oriented data transmission
	Data transmission statements
	GET statement
	PUT statement

	Options of data transmission statements
	COPY option
	Data specification options
	FILE option
	LINE option
	PAGE option
	SKIP option
	STRING option

	Transmission of data-list items
	Data-directed data specification
	Restrictions on data-directed data
	Syntax of data-directed data
	GET data-directed
	PUT data-directed

	Edit-directed data specification
	GET edit-directed
	PUT edit-directed
	FORMAT statement

	List-directed data specification
	Syntax of list-directed data
	GET list-directed
	PUT list-directed

	PRINT attribute
	DBCS data in stream I/O

	Chapter 14. Edit-directed format items
	A-format item
	B-format item
	C-format item
	COLUMN format item
	E-format item
	F-format item
	G-format item
	L-format item
	LINE format item
	P-format item
	PAGE format item
	R-format item
	Example

	SKIP format item
	X-format item

	Chapter 15. Picture specification characters
	Picture repetition factor
	Picture characters for character data
	Picture characters for numeric character data
	Digits and decimal points
	Zero suppression
	Insertion characters
	Defining currency symbols
	Signs and currency symbols
	Credit, debit, overpunched, and zero replacement characters
	Exponent characters
	Scaling factor

	Chapter 16. Condition handling
	Condition prefixes
	Scope of the condition prefix
	Raising conditions with OPTIMIZATION

	On-units
	ON statement
	Null ON-unit
	Scope of the ON-unit
	Dynamically descendent ON-units
	ON-units for file variables

	REVERT statement
	SIGNAL statement
	RESIGNAL statement
	Multiple conditions
	CONDITION attribute

	Chapter 17. Conditions
	ANYCONDITION condition
	AREA condition
	ATTENTION condition
	CONDITION condition
	CONVERSION condition
	ENDFILE condition
	ENDPAGE condition
	ERROR condition
	FINISH condition
	FIXEDOVERFLOW condition
	INVALIDOP condition
	KEY condition
	NAME condition
	OVERFLOW condition
	RECORD condition
	SIZE condition
	STORAGE condition
	STRINGRANGE condition
	STRINGSIZE condition
	SUBSCRIPTRANGE condition
	TRANSMIT condition
	UNDEFINEDFILE condition
	UNDERFLOW condition
	ZERODIVIDE condition

	Chapter 18. Multithreading facility
	Creating a thread
	ATTACH statement
	Examples

	Terminating a thread
	Waiting for a thread to complete
	Detaching a thread
	Condition handling
	Task data and attribute
	THREADID built-in function

	Sharing data between threads
	Sharing files between threads

	Chapter 19. Built-in functions, pseudovariables, and subroutines.
	Declaring and invoking built-in functions, pseudovariables, and built-in subroutines
	BUILTIN attribute
	Invoking built-in functions and pseudovariables
	Invoking built-in subroutines

	Specifying arguments for built-in functions, pseudovariables, and built-in subroutines
	Aggregate arguments
	Null and optional arguments

	Accuracy of mathematical functions
	Categories of built-in functions
	Arithmetic built-in functions
	Array-handling built-in functions
	Buffer-management built-in functions
	Condition-handling built-in functions
	Date/time built-in functions
	Floating-point inquiry built-in functions
	Floating-point manipulation built-in functions
	Input/output built-in functions
	Integer manipulation built-in functions
	Mathematical built-in functions
	Miscellaneous built-in functions
	Ordinal-handling built-in functions
	Precision-handling built-in functions
	Pseudovariables
	Storage control built-in functions
	String-handling built-in functions
	Subroutines

	ABS
	ACOS
	ACOSF
	ADD
	ADDR
	ADDRDATA
	ALL
	ALLOCATE
	ALLOCATION
	ALLOCSIZE
	ANY
	ASIN
	ASINF
	ATAN
	ATAND
	ATANF
	ATANH
	AUTOMATIC
	AVAILABLEAREA
	Example

	BINARY
	BINARYVALUE
	BIT
	BITLOCATION
	BOOL
	BYTE
	CDS
	CEIL
	CENTERLEFT
	Example

	CENTRELEFT
	CENTERRIGHT
	Example

	CENTRERIGHT
	CHARACTER
	Example

	CHARGRAPHIC
	Example 1
	Example 2

	CHARVAL
	CHECKSTG
	COLLATE
	COMPARE
	Example

	COMPLEX
	CONJG
	COPY
	COS
	COSD
	COSF
	COSH
	COUNT
	CS
	CURRENTSIZE
	CURRENTSTORAGE
	DATAFIELD
	DATE
	DATETIME
	DAYS
	Example

	DAYSTODATE
	DAYSTOSECS
	DECIMAL
	DIMENSION
	DIVIDE
	EDIT
	Example

	EMPTY
	ENDFILE
	ENTRYADDR
	ENTRYADDR pseudovariable
	EPSILON
	ERF
	ERFC
	EXP
	EXPF
	EXPONENT
	FILEDDINT
	FILEDDTEST
	FILEDDWORD
	FILEID
	FILEOPEN
	FILEREAD
	FILESEEK
	FILETELL
	FILEWRITE
	FIXED
	FLOAT
	FLOOR
	GAMMA
	GETENV
	GRAPHIC
	Example 1
	Example 2

	HANDLE
	HBOUND
	HEX
	Example 1
	Example 2

	HEXIMAGE
	HIGH
	HUGE
	IAND
	IEOR
	IMAG
	IMAG pseudovariable
	INDEX
	Example

	INOT
	Examples

	IOR
	ISIGNED
	Examples

	ISLL
	Examples

	ISMAIN
	ISRL
	Examples

	IUNSIGNED
	Examples

	LBOUND
	LEFT
	Example

	LENGTH
	LINENO
	LOCATION
	Example

	LOG
	LOGF
	LOGGAMMA
	LOG2
	LOG10
	LOG10F
	LOW
	LOWERCASE
	LOWER2
	Examples

	MAX
	MAXEXP
	Example (Intel Values)
	Example (AIX Values)
	Example (z/OS Hexdecimal Values)
	Example (z/OS IEEE Values)

	MAXLENGTH
	Example

	MEMINDEX
	Example

	MEMSEARCH
	Example

	MESEARCHR
	Example

	MEMVERIFY
	Example

	MEMVERIFYR
	Example

	MIN
	MINEXP
	Example (Intel Values)
	Example (AIX Values)
	Example (z/OS Hexadecimal Values)
	Example (z/OS IEEE Values)

	MOD
	Example

	MPSTR
	MULTIPLY
	NULL
	OFFSET
	OFFSETADD
	OFFSETDIFF
	OFFSETSUBTRACT
	OFFSETVALUE
	OMITTED
	ONCHAR
	ONCHAR pseudovariable
	ONCODE
	ONCONDCOND
	ONCONDID
	ONCOUNT
	ONFILE
	ONGSOURCE
	ONGSOURCE pseudovariable
	ONKEY
	ONLOC
	ONSOURCE
	ONSOURCE pseudovariable
	ONSUBCODE
	ONWCHAR
	ONWCHAR pseudovariable
	ONWSOURCE
	ONWSOURCE pseudovariable
	ORDINALNAME
	ORDINALPRED
	ORDINALSUCC
	PACKAGENAME
	PAGENO
	PLACES
	Example (Intel Values)
	Example (AIX Values)
	Example (z/OS Hexadecimal Values)
	Example (z/OS IEEE Values)

	PLIASCII
	PLICANC
	PLICKPT
	PLIDELETE
	PLIDUMP
	PLIEBCDIC
	PLIFILL
	Example

	PLIFREE
	PLIMOVE
	Example

	PLIOVER
	PLIREST
	PLIRETC
	PLIRETV
	PLISAXA
	PLISAXB
	PLISRTA
	PLISRTB
	PLISRTC
	PLISRTD
	POINTER
	POINTERADD
	POINTERDIFF
	POINTERSUBTRACT
	POINTERVALUE
	POLY
	PRECISION
	PRED
	PRESENT
	PROCEDURENAME
	PROD
	PUTENV
	RADIX
	RAISE2
	Example

	RANDOM
	RANK
	REAL
	REAL pseudovariable
	REM
	REPATTERN
	REPEAT
	REVERSE
	Example

	RIGHT
	Example

	ROUND
	Results under compiler option USAGE(ROUND(ANS))
	Results under compiler option USAGE(ROUND(IBM))

	SAMEKEY
	SCALE
	SEARCH
	Example
	Example

	SEARCHR
	Example

	SECS
	Example

	SECSTODATE
	SECSTODAYS
	SIGN
	SIGNED
	SIN
	SIND
	SINF
	SINH
	SIZE
	Example

	SOURCEFILE
	SOURCELINE
	SQRT
	SQRTF
	STORAGE
	STRING
	STRING pseudovariable
	SUBSTR
	SUBSTR pseudovariable
	SUBTRACT
	SUCC
	SUM
	SYSNULL
	SYSTEM
	TALLY
	Example

	TAN
	TAND
	TANF
	TANH
	THREADID
	TIME
	TINY
	TRANSLATE
	Example

	TRIM
	Example

	TRUNC
	TYPE
	TYPE pseudovariable
	UNALLOCATED
	UNSIGNED
	UNSPEC
	UNSPEC pseudovariable
	Example

	UPPERCASE
	VALID
	VALIDDATE
	Example

	VARGLIST
	VARGSIZE
	VERIFY
	Example

	VERIFYR
	Example

	WCHARVAL
	WEEKDAY
	WHIGH
	WIDECHAR
	WLOW
	XMLCHAR
	Example

	Y4DATE
	Y4JULIAN
	Y4YEAR

	Chapter 20. Type Functions
	Invoking type functions
	Specifying arguments for type functions
	Brief descriptions of type functions
	BIND
	CAST
	FIRST
	Example

	LAST
	Example

	NEW
	RESPEC
	SIZE

	Chapter 21. Preprocessor Facilities
	Preprocessor Options
	Preprocessor Scan
	Preprocessor Statements

	Preprocessor Variables and Data Elements
	Preprocessor References and Expressions
	Scope of Preprocessor Names
	Preprocessor Procedures
	Arguments and Parameters for Preprocessor Procedures
	%PROCEDURE Statement
	Preprocessor RETURN Statement
	Preprocessor ANSWER Statement

	Preprocessor Built-In Functions
	COLLATE
	COMMENT
	COMPILEDATE
	COMPILETIME
	COPY
	COUNTER
	DIMENSION
	HBOUND
	INDEX
	LBOUND
	LENGTH
	MACCOL
	MACLMAR
	MACRMAR
	MAX
	MIN
	PARMSET
	QUOTE
	REPEAT
	SUBSTR
	SYSPARM
	SYSTEM
	SYSVERSION
	TRANSLATE
	VERIFY

	Preprocessor Statements
	%ACTIVATE Statement
	%assignment Statement
	%DEACTIVATE Statement
	%DECLARE Statement
	%DO Statement
	%END Statement
	%GO TO Statement
	%IF Statement
	%INCLUDE Statement
	%ITERATE Statement
	%LEAVE Statement
	%NOTE Statement
	%null Statement
	%REPLACE Statement
	%SELECT Statement

	Preprocessor Examples
	Example 1

	Appendix. Limits
	Notices
	Trademarks

	Bibliography
	Enterprise PL/I publications
	PL/I for MVS & VM
	z/OS Language Environment
	CICS Transaction Server
	DB2 UDB for OS/390 and z/OS
	DFSORT™
	IMS/ESA®
	z/OS MVS
	z/OS UNIX System Services
	z/OS TSO/E
	z/Architecture
	Unicode® and character representation

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

