
UNIX Primer

GSI Local Guide
GSI Computing Center

Version 1.0

Preface:
In early summer 1991 the GSI Computing Center started a Unix Pilot Project investigating the hardware and
software possibilities of centrally operated unix workstation systems. A few machines from DEC, HP and IBM
have been installed in the central computer room and have since been used as development platforms by the
computer centers application software-, telecommunication-, and systems groups. We feel that now the moment
has come to publish our experience with the pilot project. At the same time we want to make the machines available
to a larger number of users at GSI and - hence - have chosen the form of this booklet, the

Unix Primer - GSI Local Guide

as our publication medium. We do not consider the present version as complete but rather as a working document,
which will be updated at regular intervals. As you can easily see when reading, the primer is the product of many
authors. A common style is only evolving. However, as it gives the answer to many "frequently asked questions"
we have chosen to publish version 1.0 in the state it is in now. We hope that nevertheless the Primer will be
helpful to many users. Any readers are welcome to comment and make suggestions. We will gratefully accept
mail, printed copies with corrections or personal visits at the help desk (alias Benutzerberatung).

The following people have made contributions to version 1.0 of the primer: Michael Dahlinger, Hans Döbbeling,
Horst Göringer, Richard Herrmann, Eva Hocks, Frank Kraske, Peter Malzacher, Udo Meyer, Thomas Schwab,
Heiko Weber.

This document has been produced with the LATEX macro package. The style used (gsiman.sty) has been derived
from CERN’s cernman style. We acknowledge the support of M.Goossens and A.Samarin [4] from CERN/CN.

Michael Dahlinger has coordinated this project and has taken care of the final editing.

Printed copies of this document can be obtained from the computer centers help desk. Print your own copy by

lp -d pshpad /usr/local/doc/primer/primer.ps on HP-UX or
lpr -P pshpad /usr/local/doc/primer/primer.ps on AIX

A copy of this document can also be obtained via anonymous ftp on internet node ftp.gsi.de as
/dist/doc/primer.ps.

Unix Primer, Version 1.01 printed at GSI: 7th December 1992

i

If You Need Help

There is a help desk (Benutzerberatung) for all general computing related questions.

If you need help, please contact the help desk first.

Telephone 555, Office 2.244, Südbau, first floor
The opening hours are 9:30 to 11:30 and 14:00 to 17:00 except for Tuesdays (from 10:30) and Fridays (until

16:00). If the help desk cannot help you, they will refer you to the appropriate specialist.

If you have Hardware Problems:

For hardware and networking problems, repairs, printer maintenance, please contact the central operating
Tel. 515, machine-room, Südbau, ground-floor, Monday – Friday 6:00 to 23:00.

Service Name Office Phone E-mail

General Help Desk Benutzerberatung 2.244 555

User Registration Eva Hocks 2.248 519 hocks@rzri6f.gsi.de

X-Terminal Installations Operations 1.250 515

Name Service Udo Meyer 1.249 525 rz02@mvs.gsi.de

System Management Unix Eva Hocks 2.248 519 hocks@rzri6f.gsi.de

System Management AIX Heiko Weber 2.247 556 weber@rzri6f.gsi.de

System Management HP-UX Horst Göringer 2.245 553 goeri@rzhp9a.gsi.de

System Management ULTRIX Hans Döbbeling 2.246 554 dob@rzhp9a.gsi.de

CERN Software Support Michael Dahlinger 2.235 546 dahlinge@rzhp9b.gsi.de

Public Domain Software, GNU Thomas Schwab 2.245 553 schwab@rzri6b.gsi.de

Software Support Peter Malzacher 2.223a 551 peter@rzri6b.gsi.de

Software Support Axel Möller 2.223a 551 moeller@rzri6b.gsi.de

LaTeX on Unix Michael Dahlinger 2.235 546 dahlinge@rzhp9b.gsi.de

X-Terminal General Info Hans Döbbeling 2.246 554 dob@rzhp9a.gsi.de

Networking Questions Udo Meyer 1.249 525 rz02@mvs.gsi.de

Networking, NFS & FTP Frank Kraske 1.262 514 kraske@rzri6f.gsi.de

Graphics Tools on Unix Richard Herrmann 2.237 548 rz45@mvs.gsi.de

ii

Manual Conventions:
Throughout this manual the following typographical conventions are used:

If You See This ... It Means ...

$ what you type underlined text is used in dialog examples

to distinguish what you type from what the computer displays

$ command parameter italic text is used to denote parameters

which must be specified on commands

<ESC>-q you press the escape key on the keyboard followed by

key q. The escape key usually sits on the top left

of a PC-like keyboard or on the top center coinciding with

F11 on a VT200-like keyboard

<Ctrl-c> you press and hold-down the control key and simultaneously

press the c key.

<Alt-d> you press and hold-down the alt key and simultaneously

press the d key.

The alt key - if it exists - is next to the space bar on

both VT200-like and PC-like keyboards

<Tab> you press the Tab key

<Backspace> you press the Backspace key

 you press the Delete key

Mb1 the left mouse button

Mb2 the center mouse button

Mb3 the right mouse button

iii

Table of Contents

1 How to get started 1

1.1 How to obtain an Account : 1

1.2 Login : 1

1.2.1 Text oriented Access to Unix : 1

1.2.2 Accessing Unix via X-Windows : 3

1.2.3 Accessing Unix in an HP-VUE Environment : 4

1.3 Unix Shells : 5

1.4 Desktop Environments : 5

1.4.1 AIXwindows Desktop : 5

1.4.2 HP Visual User Environment : 6

1.4.3 Dxsession : 6

1.5 Logout : 6

1.6 Some initial Hints : 6

1.6.1 The first Commands : 6

1.6.2 Handling Motif-Windows : 7

1.7 GSI Customization : 8

1.7.1 Environment Variables : 8

1.7.2 Command Line Editing : 10

2 UNIX Commands 11

2.1 Constructing a command line : 11

2.1.1 Redirection of Input and Output : 11

2.1.2 Pipelines : 11

2.2 Regular Expressions : 11

2.3 Quick Reference of Commands : 12

2.3.1 Managing Directories : 12

2.3.2 Managing Files : 12

2.3.3 Managing Jobs : 12

2.3.4 On-line Help : 12

2.3.5 System Information : 12

2.3.6 Utility Programs : 12

2.3.7 Directory Identifiers : 13

2.3.8 Special Characters : 13

2.4 Shell Scripts : 13

iv

3 Files and Directories 14

3.1 The UNIX File System : 14

3.1.1 Naming Directories and Files : 14

3.1.2 Rules for Naming and Accessing Files : 14

3.2 Working with Directories : 14

3.2.1 Displaying the contents of a directory: ls : 14

3.2.2 Changing the Working Directory: cd : 14

3.2.3 Determining Your Working Directory: pwd : 14

3.2.4 Creating a New Directory: mkdir : 15

3.2.5 Removing an Existing Directory: rmdir : 15

3.2.6 Renaming a Directory: mv : 15

3.3 Working With Files : 15

3.3.1 Displaying the Contents of a File: cat : 15

3.3.2 Renaming a File: mv : 16

3.3.3 Copying a File: cp : 16

3.3.4 Deleting a File: rm : 16

3.4 File and Directory Permissions : 16

3.4.1 Determining Permission: ls -l : 16

3.4.2 Changing Permission: chmod : 16

4 Basic Services 18

4.1 Help and Documentation : 18

4.1.1 How to get Help : 18

4.1.2 The man Command : 18

4.1.3 The info Command : 18

4.1.4 The VUE Help button : 18

4.2 Mail Facilities : 18

4.2.1 The Standard Mailer : 18

4.2.2 The elm Mailer : 19

4.3 Local Networking Tools : 19

4.3.1 Remote Processing : 20

4.3.2 File transfer : 21

4.4 IBM Mainframe Access : 23

4.4.1 Alphanumeric sessions : 23

4.4.2 Access with graphics capabilities : 23

4.5 Print Services : 23

4.6 Backup Services : 25

4.6.1 IBM RISC System/6000 AIX : 26

4.6.2 HP HP-UX : 26

4.6.3 DEC ULTRIX : 27

v

5 Editors 28
5.1 vi Editor : 28

5.1.1 Operating Modes : 28
5.1.2 Starting vi : 28

5.1.3 Exiting vi : 28
5.1.4 vi Command Mode : 28
5.1.5 ex Command Mode : 29

5.1.6 Basic vi Keystrokes : 29
5.1.7 The .exrc File : 30
5.1.8 More about vi : 30

5.2 GNU Emacs : 30
5.2.1 Emacs Commands : 30
5.2.2 Starting Emacs : 30

5.2.3 Exiting Emacs : 30
5.2.4 Emacs Screen : 30
5.2.5 Emacs modes : 31

5.2.6 Basic Emacs Keystrokes : 31
5.2.7 More information about Emacs : 32

5.3 Other Editors : 32

5.3.1 ed Editor : 32
5.3.2 LPEX : 32
5.3.3 INed Editor : 33

5.3.4 edt+ : 33
5.3.5 uni-XEDIT editor : 33
5.3.6 Vuepad : 33

5.3.7 Notepad : 33
5.3.8 xedit : 33

6 Text processing 34
6.1 TEX and LATEX text processing : 34

6.1.1 Advantages of LATEX : 34
6.1.2 Disadvantages of LATEX : 34
6.1.3 How does LATEX work? : 34

6.1.4 TEX glossary : 35
6.1.5 Documentation in PostScript form : 37
6.1.6 Suggested Reading : 37

6.1.7 Running LATEX : 37
6.1.8 Using PostScript fonts : 39
6.1.9 Merging Graphics and Text : 40

7 Program Development 45
7.1 Overview : 45
7.2 Compiling and linking a program : 45
7.3 Correcting errors in a program : 46

7.4 Building and Maintaining a Program : 46
7.4.1 make : 46

vi

8 Applications and Utilities 48
8.1 Mathematical packages : 48

8.1.1 Mathematica : 48
8.1.2 AXIOM : 48

8.2 Graphical Tools : 48
8.2.1 PHIGS : 48
8.2.2 Handling of Image Files : 50
8.2.3 Image Format Conversion : 52

8.3 CERN Software : 53
8.3.1 paw : 53
8.3.2 cmz : 53
8.3.3 GEANT : 54
8.3.4 Organization of the CERN program library : 54
8.3.5 Usage of CERN-library programs : 54

9 Introduction to Internet Services 59
9.1 About Internet : 59

9.1.1 FTP : 59
9.1.2 Internet addresses : 59

9.2 Internet Services : 59
9.2.1 Overview : 59
9.2.2 archie : 59
9.2.3 NetNews : 60

A GNU Software 61

B Motif Windows 62

C Unix Hardware at GSI Computing Center 64

Index 66

List of Figures

3.1 Part of a typical UNIX file system : 15

6.1 Data flow for the files used by LATEX : 36
6.2 Large Text with LATEX and PostScript : 40
6.3 Encapsulated PostScript example 1 : 41
6.4 Encapsulated PostScript example 2 : 41
6.5 A single centered figure : 42
6.6 The same figure as 6.5, but in draft mode : 43
6.7 Distorting a picture with (epsfig) : 43

8.1 Mathematica display : 48
8.2 AXIOM hyperdoc entry panel : 49
8.3 PAW and its components : 53

C.1 Unix Hardware at GSI Computing Center : 64

vii

List of Tables

4.1 List of available Printers : 24

6.1 List of predefined colors for use with dpscolor : 44

8.1 structure of the CERN program library : 55

8.2 CERN libraries installed on /cern/version/lib subdirectories : : : : : : : : : : : : : 55

B.1 Summary of Operations with Motif Windows and Icons : 63

viii

Chapter 1: How to get started

Currently the GSI computing center supports Unix plat-
forms RS/6000 (IBM), HP 9000-700 (Hewlett Packard),
and DEC 5000 (Digital Equipment) with the operating
systems AIX, HP-UX, and ULTRIX, respectively. Users
can get in contact with Unix on three different levels:� The simplest access is when starting a Unix session

with the telnet command from a text oriented
terminal, such as a DEC VT100 or VT200, for
example.� With the appropriate hardware platform - an X-
terminal, PC, or workstation - users can work in
a comfortable X-Windows environment. The X-
Windows system is a network-based graphics win-
dowing system, which can be seen as a layer above
the operating system.� You can work in an even more comfortable (X-
Windows) environment, if you use a session man-
ager, which controls your complete session with
all applications running in it. So it is very easy, for
example, to restore the previous session or to lock
the current session, and to organize your working
environment in several workspaces. Session man-
agers are available with the Visual User Environ-
ment (VUE) of HP, or with dxsession of DEC.

1.1 How to obtain an Account

If you want to work with Unix, please contact one of the
corresponding system managers to get an account:

AIX Eva Hocks, room 2.248, tel 519,
hocks@rzri6f.gsi.de

Heiko Weber, room 2.247, tel 556,
weber@rzri6f.gsi.de

HP-UX Eva Hocks, room 2.248, tel 519,
hocks@rzri6f.gsi.de

Horst Göringer, room 2.245, tel 553,
goeri@rzhp9a.gsi.de

ULTRIXHans Döbbeling, room 2.246, tel 554,
dob@rzhp9a.gsi.de

Currently the following Unix hosts are offered by the
computing center:

rzhp9a HP 9000-720
rzhp9b HP 9000-720
rzri6a IBM RS/6000-320
rzri6f IBM RS/6000-970
rzds5a DEC 5000-200

For more details on the currently available hardware see
C.1 on page 64.

1.2 Login

The steps to be performed in the login procedure depend
on your working place. Vendor dependencies are neg-
ligible. However, there are some differences when log-
ging in on ’dumb’ text oriented terminals, or on devices
supporting X-windows such as workstations, PCs, or
X-terminals, especially when working in environments
under control of a session manager.

1.2.1 Text oriented Access to Unix

Login via Telnet

If you want to access a Unix workstation, e.g. rzhp9a
running HP-UX, enter the command

telnet rzhp9a

There appear some messages and finally the login
prompt:

Trying...148.181.64.51
Connected to RZHP9A
Escape character is ’ˆ]’.

HP-UX rzhp9a A.08.07 E 9000/720 (ttys7)

login:

Enter your account name, and the password will be
prompted:

password:

Be careful when entering your account name and pass-
word, because Unix is case sensitive! Upper and lower
case letters have a different meaning!

If you have an valid account on rzhp9a, the system greets
you with a welcome message and provides some infor-
mation, such as the the existence of unread news or new
mail files. Then you are asked for two things:

1. your terminal type (see next section), and

1

2 Chapter 1. How to get started

2. your display address. Because your terminal has
no display address, just press <Enter> at this
prompt. For more details, see section 1.2.2 on page
3.

Now the system responds with the default prompt

hostname:/u/username sequencenumber$

or, to give an example, with

rzhp9a:/u/goeri 33$

and is ready for command input.

Terminal Type

With the terminal type you describe the terminal hard-
ware or the emulation program you use when commu-
nicating with Unix. The most important terminal types
used at GSI are

vt100 DEC
vt220 DEC
3270 IBM 1
xterm standard X-window terminal
aixterm AIX terminal emulation
hpterm HP-UX terminal emulation
dxterm ULTRIX terminal emulation

If you work in a Unix environment with the wrong ter-
minal type set, you should keep in mind that not all keys
of your keyboard may be available in the way you expect
it! Then you should correct your terminal type with the
export command (see section 1.7.1 on page 8). For
example, if you want to correct your terminal type to
vt100, you have to enter

export TERM=vt100

On dumb terminals, there may be applications that can
not work correctly, because they require hardware fea-
tures not available. However, many Unix commands
can be used in such an environment, e.g. to compile and
run user programs, or to look into the file system.

Logging in from MVS

Access to a Unix workstation via telnet is also possible
from a 3270 terminal under MVS. However, the login
procedure is a little bit more complicated, and you can
only work in line mode. As the invocation of full screen
applications (e.g. the editors vi or emacs) may hang up
your session, this access is not recommended in general.
If your session hangs up, hit one of the buttons <F4> to
<F12>. Then the prompt1only known under AIX

Telnet command:

appears, and you can finish the current telnet session
with the close command.

For example, to access from your 3270 terminal the
RS/6000 workstation rzri6f, enter the TSO-command

telnet rzri6f

Now TSO confirms the action:

TCPTEL001I MVS TCP/IP Telnet V2R1
TCPUTM110I Connecting to RZRI6F

140.181.64.35, port TELNET (23)

Press <Enter>, and the following information appears:

TCPUTM118I
TCPUTM119I Using Line Mode...

TCPUTM120I
TCPUTM121I Notes on using Telnet

when in Line Mode:
TCPUTM122I - To hide Password,

Hit PF3 or PF15
TCPUTM123I - To enter Telnet Command,

Hit PF4-12, or PF16-24

After pressing <Enter>, a new screen appears. The
top line is

AIX telnet (rzri6f)

The bottom line is

Telnet command:

From now, the bottom line is the command line for the
duration of your Telnet session. At this time, however,
you must not enter a Telnet command, but just press
<Enter>. The top line remains unchanged, and the
login prompt appears:

login:

Enter your account name at the current cursor position,
and the password prompt appears.

Password:

To hide your password, enter at first <F3>, as indicated
in the information screen above, and then type your
password. Be careful when entering your account name
and password, because Unix is case sensitive! Upper
and lower case letters have a different meaning!

1.2. Login 3

If you have a valid account on rzri6f, the system greets
you with a welcome message and provides some infor-
mation, such as the the existence of unread news or new
mail files. When prompted for your terminal type, enter
3270. Because your terminal has no display address,
just press <Enter> when asked for your display ad-
dress. Then the system responds with the corresponding
default prompt as in the example above and is ready for
command input.
After some command inputs, the bottom line of your
screen shows the string Holding on the right, and further
inputs are not possible until you press the PA1 key.

1.2.2 Accessing Unix via X-Windows

You can skip this section, if you work with Unix via
dumb terminals such as DEC VTxxx or IBM 3270. This
section is only relevant for hardware platforms enabling
the usage of X-windows, such as X-terminals, PCs, or
workstations.

X-Windows is a standardized, vendor independent user
interface, originally developed at MIT. It is a network-
based graphics windowing system, which allows you to
work with multiple programs simultaneously, each in a
separate window of your screen. Especially you may
have access to different hosts from different windows,
but on a single physical screen. This includes also the
non-Unix operating systems available at GSI such as
MVS on IBM 3090 (see 4.4 on page 23) and VMS on
the VAX computers.

X-server

Central part of the X-Window system is the X-server,
also called X-Window server or display server. It con-
trols screen, keyboard, and mouse, and the process com-
munication requests. The X-server updates the windows
on the screen on request of the clients (e.g. programs
initiated by your input).
On X-Terminals, the X-server is already locally available
and need not be started once more. If you work locally
at a workstation or a PC, you may have to start the X-
server by yourself. The command name depends on
the X-emulation used. On a RS/6000 workstation, for
example, this can be done with the command

xinit

Terminal Windows

At the command prompt after login, you can start win-
dows with terminal emulations (terminal windows) us-
ing the command

xt

which is available on all Unix hosts owned by the GSI
computing center. Depending on the hardware platform,
aixterm, hpterm, or dxterm commands, respectively,
are invoked with GSI-specific defaults. They are labeled
on top with

hostname:username

X-terminal users should not work within telnet win-
dows running VT100 emulations (see section ’Access
via X-Terminal’ below), but only within terminal win-
dows running adequate terminal emulations. In telnet
windows, only a subset of keys and fonts is available,
and several tools (e.g. when requiring the use of func-
tion keys) may not work correctly. The intended use of
telnet windows is only login!

Working with multiple windows requires a window man-
ager, which allows, for example, to change the size and
position of windows. The window manager provided
with OSF/Motif is called mwm, the Motif window man-
ager. Its functionality is described in 1.6.2 on page 7.

Display Address

The display address is the address of the ’host’, on which
your X-server resides, that means, the address of your
X-terminal, PC, or workstation, appended with :0. The
host address has been assigned during installation and
can be the internet address or name.

Examples of display addresses at GSI are:

xwtae:0 (X-terminal)
pc01:0 (PC)
vsaa:0 (VMS Vaxstation)
dsaa:0 (ULTRIX workstation)
140.181.97.168:0 (decimal representation of display

address)

If you have a Unix working place for your own, you
should enter the display address in your profile file. This
will be discussed in more detail in section 1.7 on page 8.

Access via X-Terminal

If your X-terminal is up and running, use a free telnet
window for login. In a telnet window, in principle a
VT100 terminal emulation program is active. It is la-
beled on top with telnet, and if it prompts you with

telnet>

4 Chapter 1. How to get started

you can use it to login. In case of another prompt the
window is already in use by an active login session. If
there is no free telnet session available, you must create
a new telnet window.

On the Tektronix X-terminals at GSI, this can be done
via the following procedure:

1. Press the Setup key on your keyboard (first row,
rightmost key) - the setup menu will appear.

2. If there is a frame around the menu, switch to item
4. If not, move the mouse cursor to the field Local
Clients (top bar) and press the left mouse button.
The Local Clients menu appears.

3. Keep the button pressed, move the mouse cursor
within this menu to the field MWM to activate the
local Motif window manager and then release the
mouse button again: after a few seconds, the setup
menu (and all following windows in your session)
will have an Motif frame (see section 1.6.2 on page
7.

4. Move the mouse cursor to the field Sessions (top
bar) and press the left mouse button. The Sessions
menu appears.

5. Keep the button pressed, move the mouse cursor
within this menu to the field Telnet and then re-
lease the mouse button: a telnet window with the
appropriate prompt telnet> will appear.

Now you can select the logical name of the host and
login using the open statement:

telnet> open hostname

If specifying a valid host name (e.g.rzri6f), the connec-
tion will be established, and the login prompt appears:

IBM AIX Version 3 for RISC System/6000
(C) Copyrights by IBM and by others 1982, 1991

login:

To initiate the login process, at first you have to authorize
yourself by entering your account name and password.
Layout of the login panel and the system prompts may
vary slightly depending on the connected host. In all
cases, however, your password, is not echoed when typ-
ing.

Be careful when entering your account name and pass-
word, because Unix is case sensitive! Upper and lower
case letters have a different meaning! Besides that, you

should keep in mind that the normal backspace keys
might not yet be available during the login process in
some environments! In this case, reenter name or pass-
word completely.

If you enter your account name and password correctly,
the login process proceeds. You receive a welcome
message and some information from your host, such as
the existence of unread news or of new mail files.

Afterwards you are asked for the terminal type. (see
section 1.2.1 on page 2). Depending on the selected
host, the appropriate defaults are offered:

aixterm on AIX
hpterm on HP-UX
dxterm on ULTRIX

Just press <Enter> to get the appropriate value.

Then you have to specify the display address of your
terminal (see section 1.2.2 on page 3).

Now the system responds with the default prompt

hostname:/u/username sequencenumber$

or, to give an example, with

rzri6f:/u/goeri 33$

and is ready for command input. The default prompt can
be changed individually in your profile file (see section
1.7 on page 8).

1.2.3 Accessing Unix in an HP-VUE Envi-
ronment

If you have an X-terminal, and if it is up and running, a
dedicated HP workstation is already connected to your
X-Terminal. A login menu with fields for your account
name (username) and password is offered.

Be careful when entering your account name and pass-
word, because Unix is case sensitive! Upper and lower
case letters have a different meaning!

If you enter your account name and password correctly,
the login process proceeds. You receive a welcome
message and some information from your host, such as
the existence of unread news or of new mail files.

If you log in with HP-VUE for the first time, a lot of
menus and icons appears for immediate graphics access
with mouse and click. For more information, see the
section 1.4 on page 5.

At a following login you get a default startup environ-
ment, or you can continue with the previous environment
which was active at the last logout - depending on what
you said when logging out.

1.4. Desktop Environments 5

1.3 Unix Shells

If the login process has successfully completed, you are
in an environment called shell. It is another process,
which has been started (spawned) at the end of the login
process. A new shell is also started for each invocation
of a terminal window.

A shell is the interface between the operating system and
the user. It interprets the commands you type, and the
keys you press, in order to direct the operating system
to take an appropriate action.

On most platforms, there are several shells available
differing in power and functionality. The most important
ones are� the Bourne Shell (sh),� the Bourne Again Shell (bash),� the C Shell (csh), and the� the Korn Shell (ksh).

Most Unix systems offer several shells with the Bourne
shell as default. However, at the Unix platforms sup-
ported by the GSI computing center, you have the Korn
shell as default, and all GSI customization is only done
for the Korn shell (see section 1.7 on page 8). It is a
newer shell, developed by David Korn at Bell Laborato-
ries, and it is upwardly compatible with the most features
of the Bourne shell.

You can invoke a new Korn shell (subshell) on top of
your current shell by typing

/bin/ksh

e.g., to get a new Korn shell. You can exit this subshell
again by typing

exit

If you repeat theexit command once more, your termi-
nal emulation is closed, and the terminal window disap-
pears. Instead of exit, you can also enter <Ctrl-D>.

More details on the Korn shell environment and its cus-
tomization can be found in 1.7 on page 8.

1.4 Desktop Environments

A desktop environment provides a collection of windows
with menus and icons for immediate graphical access
(with mouse and click) to the most useful commands
and applications. If you click a menu button or icon,

application programs are started providing the required
functionality. Depending on the task they fulfill they
may have names such as file manager, style manager,
help manager, and so on.

A desktop environment may be invoked by the user via
command in an existing session, such as AIXwindows
Desktop, or it may even control the complete session,
such as HP VUE, via its session manager. Therefore, if
HP VUE is enabled on your workstation or X-terminal,
you can login via a special login panel and finally logout
again by activating a logout field. The default configu-
ration of such environments can be tailored by each user
for his specific needs.

Each desktop contains a collection of small pictures,
called icons, which visually contain the contents of the
desktop. Each icon visually represents an actual file,
directory, program, or object and can be activated by
double click with the left mouse button. If you acti-
vate a program icon, you actually run the program. If
you (double) click an icon representing a directory, the
contents of this directory is presented in a new window,
either with text lines or with new icons.

Desktops also contain menu bars with menu fields,
which can be activated by single click with the left mouse
button. In general they can be used to create new files,
directories, or other desktops, and help information.

The following three paragraphs give a very brief
overview on the desktop environments available on the
three Unix flavors supported by the GSI computing cen-
ter. For more information on the functionality and on
the configuration possibilities activate the Help menu in
the specific desktop environment.

1.4.1 AIXwindows Desktop

AIXwindows Desktop runs on RS/6000 workstations
under AIX. Two different desktops are offered each pre-
configured to meet a particular skill level:

1. The General desktop meets the needs of users with
little or no AIX background.

2. The Power desktop provides ready access to AIX
commands and the AIX file system for users with
AIX skills.

AIXwindows Desktop can be invoked with the com-
mand

xdt3

After a greeting menu, the Power desktop appears as
default.

6 Chapter 1. How to get started

1.4.2 HP Visual User Environment

HP VUE runs on Hewlett Packard 9000-700 worksta-
tions with HP-UX and X-Windows. It is a set of en-
hancements to the X-Windows system which controls
complete sessions from login to logout. In addition to
AIXwindows Desktop, it offers also components such
as a

1. Login manager: Performs configuration activi-
ties, starts the X-server, and performs the login and
logout activities.

2. Workspace manager: Controlsand manages up to
six different working environments (’workspaces’),
which can be set up by the user.

You can lock your keyboard for times of absence by
activating an icon. To unlock again, you must enter your
password. The complete configuration of your session
can be saved when logging out and restored again after
a new login (see section 1.5 on page 6.)

1.4.3 Dxsession

Dxsession will be described in a later release of this
document.

1.5 Logout

Closing a Terminal Window

When you are finished with your work session, you can
close the shell(s) running in your terminal window(s) by� entering the shell command exit� entering <Ctrl-D>, or� using the Close button of the window menu. The

window menu is activated by the button in the upper
left corner. Move the mouse cursor there and press
the left mouse button. The window menu appears.
Now move the cursor to the field Close and press
the left mouse button again. The handling of the
window menu is described in more detail in section
B on page 62.

A terminal window disappears when the shell running
in this window is closed. A session is ended when the
primary login shell is closed.

Closing a Telnet Window

If the login shell in a telnet window is closed, the connec-
tion to the host is broken. The window is still available
and prompts you with telnet> - ready for the next
login.

You can also close a telnet window (without host con-
nection) by� entering quit,� entering <Ctrl-D>, or� utilizing the Close button of the window menu.

The telnet window also disappears then.

Closing a HP-VUE Session

If you work with HP VUE, it is not necessary to close
any window for logout. You just need to press the logout
field, the rightmost button in the functions menu at the
bottom of your screen. With the Style Manager, you
can specify what happens each time you press the logout
field:� Either the current window configuration will be

stored and be available again after the next login,
or� you will start with a default window configuration
after the next login, or� you are asked, if you will start next time with the
actual or default window configuration.

1.6 Some initial Hints

1.6.1 The first Commands

To run a command, type the command’s name after the
prompt and press the <Enter> key. When the com-
mand is finished, the prompt appears again. For exam-
ple, if you want to know who and where you are:

rzhp9a:/u/goeri 34$ whoami <Enter>
goeri
rzhp9a:/u/goeri 35$ hostname <Enter>
rzhp9a
rzhp9a:/u/goeri 36$

You get the answers, and the command number is incre-
mented with each new prompt.
Another important command is cd, which stands for
change current working directory:

1.6. Some initial Hints 7

rzhp9a:/u/goeri 35$ cd util <Enter>
rzhp9a:/u/goeri/util 36$

Shell Scripts

The commands described in the previous examples have
been executed when typed at the command prompt.
They can also be written to files and executed as com-
mand lists or shell scripts, which corresponds to a TSO
CLIST in MVS or a DCL in VMS. For more information,
see section 2.4 on page 13.

Set Password

Creating your account on a host, the system administra-
tor gives you a start-up password. Because it is easy to
guess, you should change it immediately when you have
logged in the first time using the command

passwd

After invocation, you are at first prompted for the current
password to check your authorization. Then you can
enter a new password. You have to type it in twice,
because the system compares both versions to avoid
accidental mistyping. From security reasons, the new
password has to fulfill some requirements:� It must have at least six characters. If you en-

ter more than eight characters, only the first eight
characters are significant.� Each password must contain at least two letters
(upper or lower case) and at least one number or
special character.

Please keep in mind that upper case and lower
case letters are treated as different.� A password must be different from the account
name and any reverse or circular shift of it.� A new password must be different from the old one
and any reverse or circular shift of it.

If you have forgotten your old password, please contact
the system administrator of the corresponding host (see
1.1 on page 1).

1.6.2 Handling Motif-Windows

In each window, a process or program is active. In a
terminal window, a terminal emulation running a shell
is active (see 1.2.2 on page 3). Other windows can be

created by application programs to communicate with
the user.
You can have multiple windows on your screen, which
can overlap much like sheets of paper on a desktop.
Both, the terminal and application windows, have a
frame in Motif style and are managed by the Motif win-
dow manager (mwm) provided with OSF/Motif.
Windows are handled by pointer devices, that means
input devices, that, when moved across a flat surface,
move the pointer symbol on the display correspondingly.
Pointers usually have buttons that can be pressed to send
signals, which in turn accomplish certain functions. The
mouse is the most common example of a pointer device.

With a mouse, a lot of functions can be performed with
windows:

1. You can accomplish geometrical operations, such
as moving or resizing.

2. The contents of windows can be scrolled.

3. Windows can be iconized, that means, they can be
converted to a small picture called icon, which is a
representation of an inactive window, and they can
be restored again into the state of an active window.

In section B on page 62 the operations possible with
Motif windows are explained in detail.

Using the Mouse Cursor

The mouse is used to indicate or activate a graphical ele-
ment on the screen such as a window, icon, or command
button. Normally, a mouse has three buttons labeled here
as left, middle, and right button. By placing the mouse
on a particular element and then performing some but-
ton action and possibly cursor motion, you can invoke
a variety of commands. The types of actions you can
perform are:

Click Press the button down and release it immedi-
ately again. A double or triple click is two
or three clicks in succession, with no pause
between clicks.

Press Push the button and hold it down.
Release After pressing a button down, release it by

letting up on the button.
Drag To drag a graphical object (e.g. a window or

an icon) from one location on the screen to
another, place the cursor on the appropriate
field of the object. Then press the mouse
button and move the cursor to the required
new location, such dragging the object. Then
release the button again.

8 Chapter 1. How to get started

Motif Widgets and Menu Types

This short paragraph provides some brief definitions of
some terms which are often heard in connection with X-
Windows. Because the exact knowledge of these terms
is not required when using X-Windows, this paragraph
can be skipped by newcomers.

OSF/Motif provides a set of user interface mechanisms
that are composed of data structures and procedures.
They can be displayed in many ways, for example as
buttons, boxes, labels, scroll bars, and so on, and are
called Motif widgets.

However, in public domain software, often another class
of widgets, called Athena widgets, is used. Their imple-
mentation and graphical visualization differs somewhat
from the Motif widgets.

The Motif widget set provides three types of menus:

1. Pulldown Menus: are displayed as horizontal
menu bars with (normally) several labels. If you
activate a label, it will display a vertical

2. Popup Menu. A popup menu also offers several
labels to select. It disappears again when released
after execution.

3. Option Menus are very similar to popup menus and
offer a one-of-many selection. However, when the
selection is complete, the selected label remains
visible in the menu, and only the not selected alter-
natives disappear.

Active Windows

The window which currently accepts input is called the
active window and differs from all other windows by
a colored frame. The active window sits on top of the
window stack. The other windows, sometimes referred
to as background windows, currently do not accept in-
put. The processes running in the background windows,
however, are still active (in background!) and are even
able to produce output. To direct input to another win-
dow, just move the mouse to any part of it and click with
the left mouse button.

Standard GSI Terminal Windows

A standard GSI terminal window can be obtained with
the command

xt

It is an Motif window and has an outer frame and a hor-
izontal title bar on top and a vertical scroll bar at the
right, but both within this frame. They consist of sev-
eral parts with each of them enabling specific functions.
The mouse cursor, which has the shape of an ’I’ when
positioned within the text field, changes its appearance
when moved to one of these elements. The new shape
depends on the specific location.

1.7 GSI Customization

1.7.1 Environment Variables

There are parameters in the shell that define parts of your
working environment and can be set interactively at the
command prompt, in shell scripts, or in user specific
profile files.� Shell parameters that are local to your login shell

and not passed to any subshell or subprocess are
called shell variables.� Shell parameters that are global are called environ-
ment variables. They are valid in the current shell,
where they are set, and in all subshells. They are not
valid, however, in ’higher’ shells, from where the
current shell is invoked as subshell. To be global,
shell parameters must be exported (see below).

There is one restriction, if you define environment vari-
ables in a shell script (see 2.4 on page 13). You must
invoke the script with a preceding dot, if the environment
variables shall be valid also in the current shell:

. myscript

Else the environment variables are valid only within your
script and all subprocesses invoked from there.

A set of environment variables is already defined by the
operating system and can be changed by each user for
his personal working environment. In addition, you can
also define new environment variables, of course. The
profile files as an interface for initialization at login are
described below.

A list of the currently valid environment variables may
be obtained with the command

printenv

In the following examples, for the reasons of simplicity
and shortness,the command prompt is assumed to be $
.

1.7. GSI Customization 9

Setting Environment Variables

Your default printer, for example, is defined by the en-
vironment variable LPDEST (see section 4.5 on page
23 for information on the available printers and their
names and characteristics). To change its default value
pshpad to pshpa, enter the command

$ export LPDEST=pshpa

Getting Values of Environment Variables

The contents of environment variables can be made vis-
ible with the echo command. To get the value, the
name of the environment variable must be preceded by
a $-sign:

$ echo $LPDEST
pshpa

The value pshpa is shown (assuming that you didn’t
change the system default value).
If you forget the $-sign, not the value, but the character
string is printed:

$ echo LPDEST
LPDEST

Again you should keep in mind that Unix is case sensi-
tive, that means environment variables such as lpdest
or LPdest, for example, are not defined normally.

A More advanced Example

For example, if you want to have your current host name
and working directory available in an environment vari-
able named, MyEnv, you can proceed as follows:

$ export NODE=‘hostname‘
$ export MyEnv=$NODE:$PWD
$ echo ’My environment: $MyEnv’
My environment: rzri6f:/u/goeri

With the first statement, a new global variable NODE is
defined. NODE gets the output of the command host-
name as value, which is achieved by enclosing the com-
mand name in single backquotes. Then the values of
NODE and of the environment variable PWD, which is
already provided by the system and contains always the
current working directory, are put together in MyEnv.
Finally, to control the success of this action, the contents
of MyEnv is printed in your terminal window, prefixed
by some text.

A Summary of some useful Environment Variables

In the following,some useful environment variables pro-
vided by the system are listed in alphabetical order:

EDITOR: The default editor is vi.

ENV: The name of a shell script that is executed each
time when a new shell is invoked. This shell script is
used, for example, to define common alias names, which
should be available through the whole environment. A
common default in the Korn shell environments is

˜/.kshrc

The tilde ’˜’ specifies your home directory. This file is
also in use at GSI for your private shell customization.
However, in order to provide a mechanism for common
and platform independent shell customization, at GSI,
the default for ENV is set to

/usr/local/bin/.kshrc

This common shell script, in turn, invokes your ’pri-
vate’ shell script ˜/.kshrc, if existing. Therefore
you shouldn’t overwrite the value of the environment
variable ENV, because the common shell customization
would be unavailable for you.

HOME: The default directory after login. You switch
to the home directory, when you specify the command
cd (change directory) without options. It is set by the
system to

/u/username

LPDEST: The default printer (default: pshp9ad).

PATH: Defines the search path for the shell when
looking for commands in the system file structure, which
is different in different Unix flavors. For example, in
HP-UX the PATH variable has by default the value

/bin:/usr/bin:/usr/contrib/bin:
/usr/local/bin:/usr/bin/X11:
/etc:$HOME/bin:.

The directories in the path are separated by colons (:).
The search order is from left to right. The environment
variableHOME contains the value of the home directory,
the default directory after login (see above).
The last directory in the PATH variable, indicated by ’.’,
specifies the current working directory. If you have a lot
of own commands and wish to put your current working
directory to the first position in your search path, specify

$ export PATH=.:$PATH

10 Chapter 1. How to get started

PS1: The default command prompt in your shell. At
GSI, it is set to

hostname:/u/username sequencenumber$

or, to give an example:

rzri6f:/u/goeri 33$

TERM: The terminal type for which output should
be prepared. Depending on the Unix flavor, aixterm,
hpterm, or dxterm are assumed as default for AIX, HP-
UX, or ULTRIX systems, respectively. If necessary, you
should overwrite it with vt100, vt200, 3270, and so on,
depending on your terminal type.

VISUAL: Is set to the value emacs to enable command
line editing with emacs syntax (see section 5.2.6 on page
31.

The Profile Files

Using the Korn shell, there are normally four files for
the customization of the environment:

/etc/profile
˜/.profile
/usr/local/bin/.kshrc
˜/.kshrc

If using HP VUE, there is an additional file ˜/.vue-
profile available. The files in the users home di-
rectory are available for private customization. The
two other files are available for common customiza-
tion on all GSI platforms and can only be modi-
fied by the corresponding system manager. The file
/usr/local/bin/.kshrc can only be utilized, if
the ENV environment variable is set appropriately (see
the description above).

The organization of profile files in normal Korn shell
environments and in HP VUE environments is a little
bit different. Therefore, at the HP workstations, the file
˜/.profile is split into two files:

˜/.profile
˜/.profile-common

The file ˜/.profile-common contains the cus-
tomization settings that are the same for both environ-
ments.

1.7.2 Command Line Editing

Command line editing can be done with emacs syntax
(see section 5 on page 28. Available functions are:

<Ctrl-p> get previous command from history file
<Ctrl-n> get next command from history file (re-

quires at least one <Ctrl-p> in ad-
vance)

<Ctrl-b> move cursor backwards in command line
<Ctrl-f> move cursor forwards in command line
<Ctrl-d> delete under cursor
<Ctrl-a> jump to begin of command line
<Ctrl-e> jump to end of command line

A mask for the next command to be executed can be
obtained with <Ctrl-p> or <Ctrl-n>. The cursor
is moved within the command line with <Ctrl-b> or
<Ctrl-f>. At any position, characters can be inserted,
or be deleted with the <delete> key, with <Ctrl-
h>, or <Ctrl-d>. The command history is accessed
from the file ˜/.sh history.

Chapter 2: UNIX Commands

2.1 Constructing a command line

In general, a command line consists of three parts, al-
though not every command requires all three parts:

general Unix Command

Name of Command Command Options
Name(s) of File(s)

There isn’t much to say about the command’s name,
except that most UNIX commands have short names.
Command options are usually designated by a hyphen
(or minus sign), followed by a single letter also called
a switch. Sometimes you can type more than one letter
after a single minus sign to indicate multiple options;
sometimes you cannot. In a few instances, command
options are designated by plus signs instead of minus
signs. Many commands allow one or more input files
to be named. Output files are generally, but not always,
designated by an output option switch like -o. Another
method of designating an output file will be discussed
later in this chapter. The various options and filenames
that follow the command are referred to, collectively, as
arguments.

An Example

Consider the ls command, discussed in Chapter 3. The
UNIX man pages, an online help facility in the UNIX
environment, show 21 possible options for this com-
mand:

ls command options

Name Command Options File(s)
ls [-RadCxmlnogrtucpFbqisf] [name...]

In case of this command, there are 22 different options
- 21 switches plus one no switch - you can use. The
brackets which are not to be typed on the command line,
indicate that all option switches are optional, never re-
quired. More than one option can be typed after a single
minus sign though. Finally the wordname indicates that
you can type at least one directory or file name after the
options. See the UNIX online manual command man
for further information.

2.1.1 Redirection of Input and Output

Unix regards the terminal’s keyboard as its standard
input: stdin(0) and the terminal’s screen as standard
output : stdout(1). However, with most UNIX com-
mands it is possible to redirect the input and output of
a command. The symbols used in a command line to
request redirection are the less sign (<) and the greater
sign (>).

Redirection of Input

In case you want to use a file as input to your program,
type

prog < file

Redirection of Output

In case you want to redirect the output of your program
to a file, type

prog > file

To append the output to an existing file rather than to
overwrite it, use the redirection symbol >> :

prog >> file

To suppress output redirect it to the null device like :

prog > /dev/null

2.1.2 Pipelines

In addition to redirection of input and output, UNIX can
connect two processes with a pipe, so that the output
of the one process becomes the input for another. The
symbol for a pipe is the vertical bar (j). It is possible
to set up multiple pipelines. Commands that appear in
pipe statements may include all the usual options and
file designations.

man ls | lp

This command pipes the output of the man ls com-
mand to the printer via the lp command.

2.2 Regular Expressions

When file and directory names are used you can specify
some special characters as pattern that the shell matches
against the file names in a directory. These special
pattern-matching characters are :

* Matches any string, including the null string
? Matches any one character

11

12 Chapter 2. UNIX Commands

[...] Matches any one of the characters enclosed in
square brackets

[!...] Matches any character other than one of the
characters that follow the exclamation mark
within square brackets.

Inside square brackets, a pair of characters separated by
a - (hyphen) specifies a set of all characters lexically
within the inclusive range of that pair, so that [a-dy]
is equivalent to [abcdy].

Using pattern-matching characters in file names on the
command line has some restrictions. If the first character
of a file name is a . (dot), it can be matched only by a
pattern that begins with a dot. For example, *file
matches the files myfile and yourfile , but not
.myfile or .yourfile. Use the pattern .*file to
match these files.

The character @ at the end of the pattern is ignored
during the matching. However, the @ is appended to
the corresponding component of the matched file names
to allow hidden directories to be referenced directly.

If the pattern does not match any file names, the pattern
itself is returned as the result of the match.

2.3 Quick Reference of Commands

This reference summarizes frequently used UNIX com-
mands, special characters used to identify directories,
and special characters used on the command line. More
detailed information on each command, including a com-
plete list of options, can be obtained with the man com-
mand.

2.3.1 Managing Directories

pwd display the path name of the
working directory

cd dir change working directory to dir
mkdir dir create directory called dir
rmdir dir remove (delete) directory called

dir. dir must be empty

2.3.2 Managing Files

ls list contents of working direc-
tory

ls file list file if it exists in working di-
rectory

ls dir list contents of the directory dir
ls -l list additional information on di-

rectory contents
ls -a list all files including hidden files

cp file1 file2 copy file1 to file2 (overwrites
file2)

cp file dir copy file into directory dir
mv file dir move file into directory dir
mv file1 file2 move file1 to file2 (overwrites

file2)
rm file remove (delete) file
rm -i file ask for confirmation before re-

moving (deleting) file
more file displays contents of file, one

screen at a time
cat file displays contents of file
chmod arg file change read/write/execute per-

mission of file
chmod arg dir change read/write/execute per-

mission of dir

2.3.3 Managing Jobs

<Ctrl-c> stop current job
ps list process by process identifier
ps -fu user full listing of all processes of

user user
kill PID stop process with process iden-

tifier PID
jobs list your jobs by job number

2.3.4 On-line Help

man command display manual entry for command
man -k keyword list manual pages that pertain to

keyword
learn on-line tutorial (AIX only)
info on-line tutorial, help pages and

manuals, stored on CD-ROM. Can
only be used with X-Windows Ter-
minals.

2.3.5 System Information

who list users logged onto system
who am i displays your logon ID
finger user displays information on user
passwd change password

2.3.6 Utility Programs

sort file sort contents of file, send result
to standard output

grep pattern file look for pattern in file
uniq file1 file2 delete repeated lines in file1,

write new version to file2

2.4. Shell Scripts 13

wc file count the number of lines,
words, and characters in file

echo string write
Paramstring to standard output,
translate special characters

find path search the directory tree path
(see man page for more details)

tar file write to or retrieve files from an
archival storage media

compress file compresses the file and writes
file.Z

uncompress file.Z restores file from compressed
file

2.3.7 Directory Identifiers� your home directory
. the working directory
.. the parent directory (one level up

within hierarchy)
/ root directory

2.3.8 Special Characters

* match any character
< redirect standard input
> redirect standard outputj send standard output of first

command to standard input of
second command (pipe)

& put job in background

2.4 Shell Scripts

The commands described in the previous examples can
be executed when typed at the command prompt, but
they can also be written to files and executed as command
lists or shell scripts, which correspond to TSO CLIST
in MVS or DCL in VMS. For example, if you have a
command list in a file named myscript in the current
working directory, then just enter

myscript

at the command prompt. The command list will be
executed. If not, you should check two things at first:

1. Is the file containing your shell script is marked
as executable? See section 3 on page 14 for more
information!

2. Look with the ls command if the required file
really exists in your current working directory!

If the file resides in another directory than your current
working directory, and if you don’t want to switch there,
specify either the full (absolute) path name or the path
name relative to your current working directory. Let’s
assume, for example, your script resides in /u/goeri/util,
and your current working directory is /u/goeri. Then you
can enter either

util/myscript

using the relative path name (with no / at the beginning),
or

/u/goeri/util/myscript

specifying the absolute path name (with / at the begin-
ning).

If you define environment variables (see section 1.7.1
on page 8) in your script, you should invoke it with a
preceding dot, if the environment variable shall be valid
in the current shell:

. myscript

If not, the environment variables are valid only within
your script and all subprocesses invoked from there.

Chapter 3: Files and Directories

3.1 The UNIX File System

UNIX has a structured filesystem that contains three
kinds of files:

directories which store the names of other files in-
cluding other directories;

ordinary files which store text, source programs, and
object code; and

special files which correspond to peripheral de-
vices.

3.1.1 Naming Directories and Files

The root directory is identified by a single character:
slash (/). To name one of the major directories directly
under root, type slash (/) to represent root, followed by
the directory’s own name, as in /usr. The slash in front
of usr tells you that usr is a subdirectory of root. An
example of a typical Unix file system is shown in figure
3.1 on page 15.

/u user directory
/bin binary directory
/dev device directory
/etc miscellaneous directory
/tmp temporary directory

To identify the user’s home directory, type another slash
after /u, followed by the account name, as in/u/otto.
The first slash refers to the root directory, u identifies the
parent directory, and otto is a subdirectory.

3.1.2 Rules for Naming and Accessing
Files

The rules for naming and accessing files and directo-
ries are closely related to the structure of the UNIX file
system:� The root directory is identified by a slash (/).� A simple filename can be any combination of 1

- 14 characters other than slashes (/), asterisks
(*), question marks (?), quotation marks (") or (’),
square brackets ([) or (]), dollar sign ($) or control
characters.� A path name is a sequence of directory names, pos-
sibly followed by a simple filename, with each pair
of names separated by a slash (/).

To avoid misinterpretation, the safest characters to use
for simple filenames are letters of the alphabet, numbers,
periods (.), hyphens (-), and underline (). Note: in
UNIX, upper and lower case are not the same !
The directory permanently assigned to you is called your
home directory; this is the directory to which you log
on. Any directory to which you may move after logging
on (including your home directory) will be called your
current directory, or working directory, as long as
you remain in that directory. The directory which is one
level above your current directory in the file system is
called your parent directory. UNIX provides shorthand
symbols to indicate your current directory (.) and your
parent directory (..). If a path name used to access a file
begins with a slash (/), then the search for the file begins
at the root directory. Such a path name is called an
absolute path name or full path name . If a path name
begins with a simple filename, then the search for the
file begins at your current directory. Such a path name
is called a relative path name .

3.2 Working with Directories

3.2.1 Displaying the contents of a direc-
tory: ls

To sort and display the names of all the directories and
files that reside in you current directory, use the ls
command:

$ ls
file1
file2
file.3
Mail
$

3.2.2 Changing the Working Directory:
cd

To change your working directory, that is to move to
another directory, use the cd command:

$ cd /u/otto/Mail
$

3.2.3 Determining Your Working Direc-
tory: pwd

To find out the name of your working directory at any
moment, use the pwd command:

$ pwd
/u/robin
$

14

3.3. Working With Files 15

/

/bin

/usr
/usr/lib

/usr/etc

/etc

/lib

/u
/u/otto

/u/otto/Mail
/u/otto/Mail/me

/u/otto/Mail/notes

/u/otto/file1

/u/hans

/dev
/dev/null

/dev/rmt0

Figure 3.1: Part of a typical UNIX file system

3.2.4 Creating a New Directory: mkdir

To create a new subdirectory within your current work-
ing directory, use the mkdir command:

$ mkdir messages
$

This command will create a new subdirectory called
messages.

3.2.5 Removing an Existing Directory:
rmdir

To remove an existing directory from your working di-
rectory, move to the target directory, delete all its files,
move back to the parent directory, and then use the
rmdir command:

$ cd /u/useless
$ pwd
/u/useless
$ rm -i *
$ cd ..
$ rmdir useless

If you try to remove a directory that is not empty, you
will see a warning displayed. You may use the following
shorter method instead of the above:

$ rm /u/useless/*
$ rmdir /u/useless

or:

$ rm -r /u/useless

3.2.6 Renaming a Directory: mv

To change the name of a directory, use the mv command:

$ mv old.name new.name

3.3 Working With Files

3.3.1 Displaying the Contents of a File:
cat

To display the contents of a file, use the cat command.
It simply displays the contents of the file or several files
on the screen (standard output):

$ cat file.3 file.1

Combining Files

Another function of the cat command is to combine
files, or concatenate files with the result stored in another
file e.g.:

$ cat file.1 file.2 > file.3

Avoid storing the result in one of the original files, since
this will the original file to be overwritten.

16 Chapter 3. Files and Directories

3.3.2 Renaming a File: mv

You can use the mv command to rename a file or to move
it from one directory to another. To change the name of
a file, enter a pair of command like this:

$ cat new.file
cat: cannot open new.file
$ mv old.file new.file

The mv command will change the file’s name whether
the new filename exists or not. The cat command
makes sure that a file will not be replaced and be lost.

3.3.3 Copying a File: cp

To make a duplicate copy of a file, use the cp command:

$ cp file.one FILE.ONE

This command will make a copy of file.one. As a re-
minder lower and capital letters are different filenames.

3.3.4 Deleting a File: rm

To delete a file, use the rm command:

$ rm file.1

This form of the command will delete the file file.1 im-
mediately. To confirm before proceeding to delete the
file, add the -i option:

$ rm -i file.1

3.4 File and Directory Permissions

UNIX allows you to access other files and directories
in the system, but only if you have permission from the
owner of those directories and files.

3.4.1 Determining Permission: ls -l

To determine the permission associated with a given file
or directory, use the ls -l command to display the
contents of the directory:

$ ls -l
total 501
-rw-r-----
1 user group 108 Oct 15 19:10 file.1
-rwxr-x---
1 user group 6452 Oct 15 17:15 program.1
drwxr-xrw-
1 user group 512 Oct 15 19:13 letters

The first character indicates the type of the file

- ordinary files
d directory
l links

The remaining nine characters represent three sets of
three characters: one set for the individual user, one for
the user’s working group, and one for all other users.
Spread out the characters of the display above to explain
the groupings:

Type User Group Others
- rwx r-x --- program.1
d rwx r-x rw- letters

The permissions given are for reading, writing, and ex-
ecuting. They have different meanings for ordinary files
and directories. For an ordinary file, permissions are
defined as follows:

read permission means you may look at the con-
tents of the file

write permission means you may change the con-
tents of the file

execute permission means you may execute the file as
if it were a UNIX command.

For a directory, permissions are defined as follows:

read permission means you may see the names of
the files in the directory

write permission means you may add files to and
remove files from the directory

execute permission means you may change to the di-
rectory, search the directory, and copy files
from it.

The characters used to represent these permissions are:

r read permission
w write permission
x execute permission
- permission denied

3.4.2 Changing Permission: chmod

You can make changes to permissions by entering a
chmod command. It allows the owner of the file to add
to (+) or remove from (-) existing permissions. It also
allows the owner to clear existing permission and assign
all permission from scratch; this is known as assigning
permissions absolutely (=). The chmod command af-
fects any of the three types of access for any of the three
categories of UNIX users, using one-letter symbols in
the following order (left to right):

3.4. File and Directory Permissions 17

u owner (user)
g File’s group
o all others
a all (default)

+ add permission
- remove permission
= absolute permission

r to read
w to write
x to execute

Caution: It is possible for you to lock yourself out of
one of your own files withchmod. Be careful when you
type it.

Example:

$ ls -l
-rwxr-xr-x 1 otto rz 487 Jul 30 10:21 psab
$ chmod o-x psab
$ ls -l
-rwxr-xr-- 1 otto rz 487 Jul 30 10:21 psab

In the above example, the first ls -l shows the default
permissions for a script, which is executable and read-
able by everyone, but writable only by the owner. After
the chmod o-x command, the execution permission
for others is removed.

Chapter 4: Basic Services

In this chapter we assume that the reader has success-
fully logged in, is somewhat familiar with the basic
Unix commands and understands the fundamentals of
the Unix file system. We explain here the use of some
everyday infrastructure services such as getting help,
mailing, printing, remote login, remote execution and
the backup/recovery mechanism. Editors are not men-
tioned in this chapter but can be found in chapter 5 on
page 28. If you are interested in text processing and
page layout please refer to chapter 6.1 on page 34

4.1 Help and Documentation

4.1.1 How to get Help

To get online help in a Unix session, there are in principle
three methods available:� command man� command info (on AIX/6000 and HP-UX plat-

forms only, with graphics terminal only).� help button in HP-VUE environment (HP-UX only)

4.1.2 The man Command

The man command is the standard Unix command to get
online command descriptions. Specifying for example

man man

gives the first page of the description of the man com-
mand on your screen. Following pages are displayed
after pressing the <Enter> key. Output can be inter-
rupted with <Ctrl-c>.

4.1.3 The info Command

The complete manual information available on a CD-
ROM can be obtained in a very comfortable environ-
ment with several screens using the info command.
The implementations on AIX and HP-UX are similar in
functionality, but different in the layout of the screens
and menus. Both systems provide extensive help menus
on functionalityand usage and are rather self-explaining.

In principle, the following functions can be performed:� Any manual page can be browsed which allows to
read the manuals online.

� All or parts of the manuals can be scanned for key-
word search. In this mode, a specific text expres-
sion can be entered to be searched for. If found, the
number of occurencies will be indicated, and the
corresponding manual parts are located and offered
for reading.� On the RS/6000, the AIX command descriptions
can be accessed via menu offering the first letters
and command categories.

4.1.4 The VUE Help button

In the HP VUE environment you can
press the help-button (marked by a ques-
tion mark (?) in the lower row of the
HP-VUE workspace manager) and you will get a help-
window with information on the following topics, which
can be selected by a mouse-click on the appropriate line:� Tutorial on HP VUE� man pages� Help on Customization of HP VUE� Fortran and other applications� : : :
4.2 Mail Facilities

There are several different kinds of mailers available on
our unix systems. AIX, HP-UX, and ULTRIX provide
the standard mail or mailx command. In addition
there is the public domain elm mailer, which allows a
comfortable and easy to use mail handling.

Mail addresses are of the general form user@
node.domain. For a few examples of valid mail ad-
dresses see the description of the $HOME/.mailrc
alias definition file below. You can send mail
to any internet-, BITNET-, and GSI-DECnet-nodes.
When mailing to BITNET use addressing of the
form user@node.bitnet, for GSI DECnet nodes use
v6000a as gateway.

4.2.1 The Standard Mailer

18

4.3. Local Networking Tools 19

Example: mailx on AIX:

Send a mail message:

mailx username or mailx aliasname

Type the message text, terminate and send your
message with CTRL-d or with a last line containing
a single . period in column one.

Aliases are defined in the $HOME/.mailrc file. This
file may possibly contain lines like the following.

alias hd dob@hp9a.gsi.de
alias um rz02@mvs.gsi.de
alias rb brun@cernvm.cern.ch
alias he goofy@v6000a.gsi.de
alias body user@cageir5a.bitnet
alias group dob,goeri,schwab

Aliases may contain lists of addresses but not lists of
aliases.
Mail a file:
mailx user -s "next meeting"< dates.txt

Reading, forwarding, replying, filing, sorting and edit-
ing mail are done inside the mail utility. Invoke:
mailx
then use any of the following subcommands:

m send mail, invoke editor
h display list of messages in your mailbox
? help
d delete current message
e edit the current message
[n] read message number [n]
- read previous message
s save current message in personal mailbox
s file save current message to file
s [n] file save message number [n] to file
c [n][file] same as s but do not delete message from

incoming mailbox
r reply to current message
a display aliases
a hd display alias hd
q quit mail, discard deleted messages
x quit mail, do not discard deleted messages

By default mail uses the vi editor. Insert a line
set EDITOR=/usr/local/bin/emacs

into your $HOME/.mailrc file to change the default ed-
itor to emacs.
If you want to work with your personal mailbox instead
of the system mailbox, type
mailx -f
Work with an arbitrary mail folder is started as
mailx -f filename
You can forward all mail arriving for you on some
node which you do not use frequently by creating a file
$HOME/.forward. This file should contain a line
user@othernode, e.g.
otto@rzhp9a.gsi.de
This will automatically forward all incoming mail to
user@othernode.

Mail on Ultrix works very much the same way. Invoke
mail with command mail, however.

4.2.2 The elm Mailer

elm is a screen-oriented electronic mail processing sys-
tem. In interactive use, the main header index and mini-
menu of commands are displayed upon initial invocation
and at any point when the program is waiting for input.

You can also invoke elm by the mail
button of the HP-VUE workspace man-
ager (upper row, 4th left button).

You can easily send a mail (m), reply (r) or forward (f)
a mail, save it to a folder (s) or delete an incoming mail
(d). By command a you enter the alias menu.

Aliases are stored in the file˜/.elm/aliases.text,
which can be edited by any text editor. After having
edited this file, the internal alias file has to be updated
by the command elmalias. In elm aliases may also
contain a list of aliases.

4.3 Local Networking Tools

In a network more or less often you will encounter the
situation that a command or file is not available on your
local node. You will then want to work on a remote host
(node) or transfer files between any two nodes of the
network.

Some of the commands described below do only work
between equivalent UNIX hosts. This applies to
rlogin, remsh, and rcp. The effect users see on
equivalent hosts is that when they are logged on to one
of these equivalent hosts, they can work on all equiv-
alent hosts with the above commands without further
authentification. Equivalent hosts at GSI are currently:
rzri6a, rzri6f, rzhp9a, rzhp9b, and rzds5a.

20 Chapter 4. Basic Services

The equivalence of hosts is maintained by the adminis-
trators of these hosts.

Other commands work on/between arbitrary hosts with
almost any Operating System. To run such a command
the host must be connected to the IP net and therefore be
able to handle the TCP/IP protocol. These commands,
namely telnet and ftp, allow much more connectiv-
ity but — of course — less transparency.

4.3.1 Remote Processing

There are several ways to do some work on a remote host
without ending the local session. With the commands

telnet and rlogin

you can establish a session on a remote host from within
your local session. Whereas the commands

remsh and rexec

do not perform a login on a remote host but execute
commands there for you.

telnet

To enter thetelnet environment simply issue the com-
mand

telnet

and after telling you the escape character (usually
<Ctrl-]>) telnet will show its prompt

telnet>

so now you can enter telnet subcommands.

For a complete list of subcommands and flags of the
telnet command consult its man page. Here are some
often used subcommands:

quit ends the telnet command
open establishes a connection to a remote host
close ends that connection
help lists the subcommands with a brief explanation

So the first subcommand will probably be:

telnet> open hostname

This connects your terminal or X-window to the speci-
fied host and displays the logon logo. So you can log on
there and work as usual. After logging out of the remote
host you will get the

telnet>

prompt so that you can open the next host or quit
from the telnet program an resume the local session.

Alternatively you can specify the remote host on the
invocation of the telnet program:

telnet hostname

This automatically opens the remote host and you see
immediately the logon logo. Logging out of the remote
host will now end the telnet program. You don’t
get the telnet> prompt, you are back in your local
session.

rlogin

The “remote login” command

rlogin hostname

connects your current terminal or X-window to a login
session on the specified host. Since your local host must
be equivalent (see above) to the remote host you do not
need to authenticate yourself to the remote system. You
will get the command line prompt of the remote system.
Logging out there resumes your current local session.

Usage Notes:

You must not omit the hostname parameter when using
rlogin.

If you use flags on this command, you have to place
them after hostname!

remsh

To execute a command on a remote host enter:

remsh hostname command

This command runs a “remote shell” which executes
command for you. You can not work interactively on the
remote host, all input to the command must be specified
on the local command line, all output from the command
is directed to the local standard output. I/O-redirection
works as follows: Using the >, >>, <, << operators as
usual redirects in- and output to and from the remotely
executed command to local(!) files. If you want to
redirect the in- and output to remote files use double
quotes " around the redirection operators.

4.3. Local Networking Tools 21

Usage Notes:

On AIX remsh and rsh are synonyms.

The remsh command will not process the login profiles,
but the $ENV file (usually the .kshrc). If you omit
the command parameter on the remsh command the
rlogin will be executed instead, which — of course
— will process the login profiles!

If you use flags on this command, you must place them
between hostname and command!

Examples:

All the examples below assume, that you are logged on
to a host that is equivalent to rzri6f:

Get a window with a terminal emulation on your X-
server:

remsh rzri6f aixterm -display $DISPLAY &

To get a window that emulates a mainframe terminal
(3270) on your X-server enter:

remsh rzri6f x3270 -display $DISPLAY mvs &

The next examples do only illustrate the I/O redirection
mechanism with the remsh command. They are no
examples for effective file transfer (see below!).

remsh rzri6f cat .profile >> .profile

appends the profile you have on the rzri6f to your
local profile.

Find the difference:

remsh rzri6f cat .profile ">" .profile.old

Right! Your remote profile will be copied to a remote
file named .profile.old.

rexec

With the rexec command you can execute a command
on every remote UNIX host you have a account on re-
gardless if they are equivalent or not. The rexec com-
mand works just in the same fashion remsh does, the
only difference is that you will be prompted for your
name and password on the remote host.

rexec hostname command

You can try the examples from the last section “remsh”
with one pitfall: If you use unquoted I/O redirection the
authentification prompts do not work properly, you will
not see the prompts, but you can type in your username
and password “blindly”.

4.3.2 File transfer

Let us focus on the two commands

rcp and ftp

which allow file transfer between the nodes of a network.

ftp

The ftp (file transfer protocol) allows you to login to
a remote node and execute ftp subcommands there
without leaving your current session on the local host.
The ftp command works between various platforms,
not only between UNIX systems. Simply invoke ftp
by typing

ftp

and get the prompt

ftp>

Select the remote host by

ftp> open hostname

and you will be prompted for login. If you invoke ftp by

ftp hostname

the open hostname is implicitly executed and you will
be directly prompted for login. For the various flags
that can be set on the command line when invokingftp
please consult the man page.

After a successful login you will get the ftp> prompt
again and you can now issue the ftp subcommands
which allow you to navigate through the remote filesys-
tem, display the remote directory and — of course —
transfer files between the remote and the local host in
both directions. Some often used ftp subcommands
are:

quit ends the ftp command
cd changes directory on remote host
lcd changes directory on local host
mkdir creates a new directory on the remote host
pwd prints the path that is current on the remote

host
put transfers a file from local to remote
get transfers a file from remote to local
binary the data are transferred without conversion
ascii the data are converted due to different char-

acter representation on the sending and re-
ceiving host.

22 Chapter 4. Basic Services

help displays all available subcommands and
gives a short description of them.

You find more information on the very complex ftp
command in the man pages, info systems, and TCP/IP
manuals.

Usage Notes:

Some explanations on data conversion: If you transfer a
file that is human readable you will do it inasciimode,
this is the default. This is the right mode to transfer e.g.
a TEX source. To transfer compiled programs or similar
files you have to switch tobinarymode, so the transfer
will be done on a “bit by bit” mode without any change.
This is the right mode to transfer e.g. advi file produced
by the TEX program.

Examples:

Imagine you have to be up to date on remote files which
change frequently. You will have to perform the same
file transfer quite often. A shell script similar to the
following will be very useful then:

getfiles: get a few files regularly from MVS
#
customize the next lines:
user=XY12 # replace this with your id
locpath=... # specifies where to put
rempath=... # from where to get
#
echo " "
echo "Opening FTP connection to MVS"
echo "for user" $user
echo " "
ftp -n mvs <<EOF # invoke FTP with

next lines as input
user $user # specifies remote user id
lcd $locpath # set the local path
cd $rempath # set the remote path
get file1 # with EBCDIC/ASCII conversion
binary
get file2 # without conversion
quit # terminate FTP
EOF # terminate input to FTP

You will be prompted for your password on the remote
host.

rcp

The rcp (remote copy) command copies a file or direc-
tory from one host in the network into a directory or as
a file on another host of that network:

rcp [-rp] source destination

Remember that the hosts have to be equivalent (see
above)! The -r flag means source is a directory and
is to be copied with all the files and subdirectories it
contains, the -p flag preserves the modification time
and access modes.
The source and destination specifications do not only
contain the name of the file but also the host where it
resides. You can specify source and destination in one
of the following three forms:

filename relative or absolute name
of local file

host:filename absolute name of file re-
siding on host

user@host:filename name of file relative to the
home directory of user on
host.

Usage Notes:
You can use the rcp command to transfer files between
hosts that are not equivalent if and only if the owner(s)
of the remote file(s) give you their permission explicitly
in a file named .rhosts in their home directory or if
the remote account(s) do(es) not require a password.

Examples:
To copy the file some.data from the current directory
of the local host to the directory /u/hugo/archive
on host rzri6f enter:

rcp some.data rzri6f:/u/hugo/archive

Suppose you want to choose a different name for the
destination:

rcp some.data rzri6f:/u/hugo/archive/x.y

You could have specified the destination relative to
hugo’s home directory:

rcp some.data hugo@rzri6f:archive

This is absolutely equivalent to the first example.
A last and quite complicated example (to be entered on
one line):

rcp -rp hinz@rzhp9a:measurements/data
rzhp9b:/exp.data/march

Here bothrzhp9a and rzhp9b are remote nodes. The
source is given relative to the home directory of hugo
on rzhp9a whereas the destination is an absolute path-
name on rzhp9b. The flags say, that the source is a di-
rectory and is to be copied recursively (-r); this implies
that the destination also has to be a directory. More-
over the file permissions and the modification times are
preserved (-p).

4.5. Print Services 23

4.4 IBM Mainframe Access

To access mainframe applications, which require
fullscreen support (e.g. ISPF on the MVS system), the
terminal client software on the UNIX system must pro-
vide the emulation of a IBM 3270 terminal.

4.4.1 Alphanumeric sessions

tn3270

The telnet environment on the IBM RISC Sys-
tem/6000 workstations offers in addition to the line-by-
line mode the emulation of a DEC VT100 terminal or
an IBM 3270 terminal. Also public domain tn3270
software is available, e.g. NCSA-Telnet for DOS PC’s,
which includes also a Tektronix graphics emulation. To
start the telnet 3270 emulation on AIX, enter

telnet -e 3270 mvs
or simply

tn3270 mvs

which connects directly to the MVS system. The tel-
net command supports some standard 3270 terminal
types with different lines and columns. The maximum
screen size will be used, depending on the lines/columns
values of the screen, from which the session is initi-
ated. The 3270 keyboard mapping is determined by the
following precedence:

$HOME/.3270keys specifies the user’s key-
board mapping and overrides the system defaults.
/etc/3270keys.hft system default keyboard map-
ping for use with standard workstations or consoles.
/etc/3270.keys system default keyboard mapping
for use with limited function terminals. On a color dis-
play, e.g. a X11 screen, the colors and field attributes are
displayed the same as those of an IBM 3279 terminal.

4.4.2 Access with graphics capabilities

x3270

x3270 is a X Windows system based 3270 emulator.
It provides 3270 terminal sessions for UNIX worksta-
tions, accessing an MVS host system. GDDM type
graphics is supported, when specified by the correspond-
ing flags during session initiation. x3270 is installed
on the IBM RISC/6000 systems RZRI6F, RZRI6A and
RZRI6B. Two shell scripts provide for easy access to
MVS viax3270without the need to specify flags, fonts,
colors etc.:

mvs for use at workstations with IBM (MF) key-
board

mvsvt for use at workstations with VT100 keyboard

For extended information about x3270 options and pa-
rameters type

man x3270

GDDMXD

GDDMXD is an interface between the MVS GDDM
graphics system and workstations, supporting the X
Windows system. The GDDM data stream created by
the MVS application (e.g. SATAN, GNOM, DCF) is
translated to the X Windows system protocol and trans-
mitted by TCP/IP to the X Windows server for the dis-
play. GDDMXD can be used from any workstation or even
PC with X-Windows support without the need to login
to an UNIX account at a GSI workstation and without
the need to take care for required X11 fonts.

To initiate the GDDMXD output, you have to enter the
TSO command

GDDMXD ON

outside ISPF. The TCP/IP address of the tar-
get display is read from the MVS dataset
user_id.XWINDOWS.DISPLAY. Options for the
grafic window on the X station like screen size, ge-
ometry, color table etc. can be modified by means of the
dataset user_id.X.DEFAULTS. During the session,
graphics output must be acknowledged on the X screen
by hitting any PF-key, otherwise the host application
will not continue. For more information contact users
help desk.

4.5 Print Services

The printers available to the unix machines are listed
in table 4.1. We support printing of plain text ASCII
files and PostScript documents. The widespread LN03
printers are accessible from Unix. For large documents
we recommend to use the higher throughput pshpa
and psaa printers in the computer center’s output room
2.223. Printers in this room are maintained by central
operations (phone 515). Printer psteka provides support
for color slides. Special transparencies are required, they
are available upon request from the operators. For the
time being use the manual feeder for slides on psteka,
you need some patience. Printing costs approximately
DM 4.- per color slide.

24 Chapter 4. Basic Services

Name Location Model Options reachable from

pshpa I/O Room RZ HP LaserJet IIIsi A4 B/W DEC, HP, IBM

2.223 ASCII, PS, PCL-5

single/double-sided

pshpad I/O Room RZ same as above A4 B/W DEC, HP, IBM

2.223 ASCII, PS, PCL-5

double-sided

psaa I/O Room RZ DEC LPS20 Printserver A3, A4 B/W DEC, HP, IBM

2.223 ASCII, PS

single/double-sided

psteka I/O Room RZ Tektronix Phaser 3 Pxi A3, A4 Color DEC, HP, IBM

2.223 PS

Transparencies

ln03r a Elex Lab 2.252 DEC LN03R A4 B/W HP

2.252 ASCII, PS

ln03r c KP3 3rd Fl. DEC LN03R A4 B/W HP

4.174 ASCII, PS

ln03r d Cave-B DEC LN03R A4 B/W HP

Meßhütte ASCII, PS

ln03 a ElEx Lab DEC LN03 A4 B/W HP

2.252 ASCII

ln03 c Meß-Station DEC LN03 A4 B/W HP

1.124 ASCII

ln03 d AP 1rst Fl. DEC LN03 A4 B/W HP

vis-a-vis 2.294 ASCII

ln03 e KP2 3rd Fl. DEC LN03 A4 B/W HP

vis-a-vis 4.141 ASCII

ln03 g SHIP DEC LN03 A4 B/W HP

ASCII

ln03 j Cave-B DEC LN03 A4 B/W HP

Meßhütte ASCII

ln03 k FRS DEC LN03 A4 B/W HP

Meßhütte ASCII

ln03 l ESR DEC LN03 A4 B/W HP

Meßhütte ASCII

ln03 m Cave-C Kaos DEC LN03 A4 B/W HP

Meßhütte ASCII

ln03 n Cave-A DEC LN03 A4 B/W HP

Meßhütte ASCII

ln03 o KP2 3rd Fl. DEC LN03 A4 B/W HP

vis-a-vis 4.141 ASCII

ln03 p Sicherheit & DEC LN03 A4 B/W HP

Strahlenschutz ASCII

Table 4.1: List of available Printers

4.6. Backup Services 25

Printing commands vary slightly from platform to plat-
form. The principal commands are shown here in tabular
form, for more detail see the examples below.

Print Status Cancel Env.Var.

DEC lpr lpq lprm PRINTER

lpstat

HP lp lpstat cancel LPDEST

IBM lpr lpq lprm PRINTER

lpstat

The names of the printers and the names of the respec-
tive queues coincide. In case of pshpa we have also
generated a queue pshpad which automatically selects
double-sided printing. pshpad is also the default print
queue on all central Unix systems. The individual user
may override the system default printer destination by
setting the PRINTER (for ULTRIX and AIX) or the
LPDEST (for HP-UX) environment variable. See Sec-
tion 1.7.1 on page 8 for more information on shell and
environment. If you want to overwrite this system de-
fault, just add a line export PRINTER=psaa into
your ˜/.profile ksh-startup file.

Examples for HP-UX:

lp -d ln03_d -n2 -m doc.txt

Print two copies (-n2) of doc.txt on ln03 d
and send mail (-m) upon completion.

lp -d psaa escher.ps

prints file escher.ps on Postscript printer psaa.

lpstat -d psaa

display status of printer queue psaa. The output
may look somewhat like this:

printer queue for psaa
psaa is ready and printing via network

psaa-44 dob priority ? from rzhp9a
escher.ps 25499 bytes

cancel psaa-44

will cancel that particular print job.

man lpstat | lp

prints the man page for command lpstat on the system
default printer, in this case pshpad.

man cancel | lp -d psaa

This time it’s the man page for command cancel which
gets printed on the LPS20.

XtoPS -screen -monochrome - | lp -d pshpa

This is how you dump the contents of your X-window screen
to a B/W PostScript Printer, this takes some time and resources

XtoPS -frame - | lp -d psteka

This is how you dump a single X-window (selected by
clicking with the cross-hair cursor) and print it on the color
PostScipt printer in the I/O Room. Color screen dumps take
even more time and more resources.

Examples for AIX:

lpr -d psaa .profile

Sends your file .profile to printer psaa.

Examples for ULTRIX:

Start the decwrite utility, pulldown the file menu,
release on Print... , a printer selection panel appears.
Select the appropriate printer and click the OK button.

This is only a selection of the most frequently used print-
ing options and is far from being complete. For a com-
prehensive description of the commands we refer the
reader to the man pages.

4.6 Backup Services

Backup of disks is an important service, which is offered
by the computer center. It should recover from disasters
like disk failures, head crashes, etc. as well as from
unintended deletion of single files or directories.

All Unix-workstations, which are located centrally in
the Computing Center, will be backed up on a regular
basis. The following backup-scheme will be performed
automatically:

26 Chapter 4. Basic Services

system disks � monthly full backup� weekly incremental backup� after major updates and changes

user disks � monthly full backup

/u/: : : � weekly incremental or full backup� daily incremental backup

data disks � no backup

/d/: : :
scratch disks � no backup

/tmp,
/s/: : : � automatic removal of files after 3

days

It is planned to find a common solution for the backup
of all workstations at GSI. This system uses the NFS
server implementation on the IBM MVS system as the
data pool and the MVS data management facilities. Thus
an operatorless service will be possible.

However, up to now two different systems are used for
the different manufacturers.

4.6.1 IBM RISC System/6000 AIX

Backup strategy

The first implementation of the GSI backup system
for all UNIX systems has been done on the IBM
AIX RISC/6000 platform. Weekly full backups and
daily incremental backups are stored to NFS mounted
data volumes on the MVS system. The backup files
are managed by the SMS Storage Management Sys-
tem, which allows to use the automatic tape library
ATL as backup medium. A user can therefore re-
cover backed up datasets without operator interven-
tion, even at night or weekend. Currently the direc-
tory trees /u/..., /usr/local, /dk/rzri6b
/pub, /cern and /dk/rzri6b/gnu of the com-
mon file system of the AIX cluster are backed up.

Recover utility

A recover utility has been developed, which allows to
recover backed up datasets by request of the owner/user.
Currently two full backups will be held on the MVS
system and all the incremental backups from the oldest
full backup up to the current day. The user can initiate
the recover procedure by the commandhrecover. The
current (Julian) day is displayed and the current search
options. Enter o(ptions) to change the options:

f(ile) toggle for file search
d(irectory) toggle for directory search

p(attern) for a pattern matching
file/directory search
r(ange) to specify the (Julian) date range
q(uit) to accept the specified search op-
tions.

Enter s(earch) to search for the specified
files/directories within index datasets, created by the
backup process. The matches are presented to the user,
the newest first. You can enter

s(elect) to select the file for recovery
n(ext) to skip the presented file
r(ecover) to initiate the recovery

The backups files on the MVS system are allocated on a
per user basis, so the recall itself requires little network
load and CPU consumption.

4.6.2 HP HP-UX

Backup

An incremental backup of user files is stored daily at
23:00 on disk, once a week on DAT-tape and a full
backup once a month (at the beginning of the month) on
DAT-tape. All system disks are backed up weekly and
monthly on DAT-tape.

Recovery

Each user can recover his own datasets by the command
recover. The recover command must be started
from the machine, where the disks are physically at-
tached (rzhp9a for user disks).

As parameter, a regular expression containing the file-
name and/or parts of the directory name may be given.
The recover process searches the indices of all backup
files in reverse chronological order and returns the
prompt to the user if a matching filename was found,
together with time and date of backup. If the user wants
to recover this dataset, recovery is started with y after
the prompt.

Note: Existing datasets are only overwritten, if the date
on the backup is newer than the date of the existing file !

As additional features, the user can edit the list of
datasets to be selected for recovery (command e), search
(command s) in older backups or abort recovery (com-
mand n).

4.6. Backup Services 27

Example:

rzhp9a:/u/dahlinge 307* recover
which file to restore (reg. expr. possible):
Mail/unix?*
starting : look for pattern Mail/unix?* in
backup Index:

pattern Mail/unix?* found in backup !
This backup dates from Oct 9 at 23:01
The following files have been selected for
eventual recovery:

--
i /dk2/rzhp9a/u/rz/dahlinge/Mail/unix-wizards-
request
--

If you enter y , the above listed files will
be recovered.

If you enter n , recover program will stop.
If you enter s , the next (older) occurrence

of the pattern will be
searched

If you enter e , you can edit the list of
files to be recovered

enter your choice ([n]/y/e/s)y

...

4.6.3 DEC ULTRIX

Until now, no backup is done.

Chapter 5: Editors

Text editing is one of the important things on any com-
puter system. On a UNIX system several text editors are
available. Emacs, vi, ed, LPEX, INed, edt+, uni-Xedit,
Vuepad, and xedit are only a few UNIX editors.

A versatile Unix user knows at least vi or Emacs to work
come around the different platforms.

The text in this section is designed to get you started
using the vi and Emacs editor quickly. For vi and Emacs
the elementary editing will be explained.

Before you invoke an editor, you should know one pos-
sible pitfall: An editor must know what kind of terminal
you are using. If your terminal type is not defined or
incorrect, you may get problems with the editor. Quit
the editing session and set the correct terminal type (see
1.7.1 on page 8).

5.1 vi Editor

The editor vi is a standard full-screen text editor. and
available on nearly all UNIX systems. On AIX, HP-UX
and ULTRIX vi is part of the operating system.

The great advantage of vi is, that it is included in the ven-
dor independent international standard POSIX.2 (IEEE
1003.2). On all POSIX.2 conform systems vi is avail-
able. This allows users to move from one POSIX system
to an other without learning a new editor.

5.1.1 Operating Modes

The vi has three operating modes:

- vi command mode.
- text input (or insert) mode.
- ex command (or line edit) mode.

In the vi command mode, each key initiates a instruction.
In the text input mode the keyboard functions like a
typewriter. And in the ex command mode you can use
the ’old’ ex line editor to invoke ex commands.

Like in UNIX all commands in vi are case-sensitive.

5.1.2 Starting vi

To start vi, simply type vi followed by the name of the
file you want to edit.

vi myfile

Since it is a new file, the buffer is empty and the screen
appears as follows:

˜
˜
˜
"myfile" [New file]

The tilde (˜) down the left-hand column of the screen
indicates that there is no text in the file, not even blank
lines. The prompt line (also called status line) at the
bottom of the screen echoes the name and status of the
file.

5.1.3 Exiting vi

The vi command to exit and save edits is ZZ. You can
also use ex command :wq to exit and save the edits
(:wq is equivalent to ZZ). Unlike vi commands the ex
commands, introduced by a ’:’, require a <Return>
after the command. Without saving you can exit vi with
the ex command :q!.

5.1.4 vi Command Mode

As soon as you enter a file, you are in vi command mode,
and the editor is waiting for you to enter a command.
Commands enable you to move anywhere in the file, to
perform edits, or to enter insert mode to add new text.
Commands can also be given to exit the file in order to
return to the UNIX prompt.

One of the most used vi commands is’i’. The i doesn’t
appear on the screen, but after you press it, whatever you
type will appear on the screen and will be entered into the
buffer. The cursor mark the current insertion point. To
tell i that you want to stop inserting text, press <Esc>.
Pressing <Esc> moves the cursor back one space and
returns vi to vi command mode.

If you have opened a new file and want to insert the
words this is a new file type the keystrokes
ithis is a new file, what appears on the screen
is:

this is a new file

To break a line press <Return>.

If you don’t know whether you are in the vi command
mode or the text input mode press <Esc> once or twice
to enter the vi command mode. When you hear a beep,
you are in the vi command mode.

28

5.1. vi Editor 29

5.1.5 ex Command Mode

A Q in the vi command mode invokes the ex command
mode. At the command line (bottom) the prompt ’:’
appears. The command vi returns you back to the vi
command mode.

In the i command mode you can call one ex command
and immediately return to the vi mode by prefacing a ex
command with a ’:’.

5.1.6 Basic vi Keystrokes

Moving around

l or ! Move forward one character (right).
h or Move backward one character (left).
k or " Move to previous line (up).
j or # Move to next line (down).
w Move word forward.
b Move word backward.
0 Move to begin of line.
<Return> or +

Move to begin of next line.
- Move to begin of last line.
$ Move to end of line.
<Ctrl-f> Move forward one screen.
<Ctrl-b> Move backward one screen.
G Move to end of buffer.
:1 Move to begin of buffer.
:n Move to line number n.
<Ctrl-g> Display current line number.
<Ctrl-l> Redraw screen.
/pattern Search forward for pattern.
?pattern Search backwards for pattern.
n Repeat last search in same direction.
N Repeat last search in opposite direction.

Inserting Text

i Inserting text before cursor.
a Inserting text after cursor.
I Inserting text at begin of line.
A Inserting text at end of line.
o Open new line for text below cursor.
O Open new line for text above cursor.

Deleting Text

X Delete previous character.
x Delete character under cursor.
dw Delete the word the cursor is on.

D Delete form cursor to end of line.
dd Delete current line.
p Put deleted text after cursor.
P Put deleted text before cursor.

Yank 1
yw Yank (copy) word.
yy Yank (copy) current line.
“ayy Yank (copy) current line into named

buffer a.
p Put yanked text after cursor.
P Put yanked text before cursor.
“aP Put text from buffer a before cursor.

Undoing and other vi Commands

. Repeat last edit command.
u Undo last edit.
U Restore current line.
J Join two lines.

Exiting Commands

ZZ Save (write) and quit file.
:x Save (write) and quit file.
:wq Save (write) and quit file.
:w Save (write) file.
:w filename Write current buffer to filename.
:q Quit file.
Q Quit vi and invoke ex.
:e file Edit file without leaving vi.

Some ex Commands

:set Display options set by user.
:set all Display list of all current options,

both default and those set by the user.
:set number Display line numbers.
:set showmode

Displays in insert mode a message on
the prompt line indicating the type of
insert you are making.

:set option Activate option.
:set option=value

Assign value to option.
:set option?

Display value of option.
:set nooption

Deactivate option.1Yanking means copying text into a buffer

30 Chapter 5. Editors

:sh Invoke shell.
<Ctrl-d> Return to editor from shell.
!command Execute UNIX command.
:r newfile Read contents of newfile into current

file.
:r !command Read output of UNIX command into

current file.

5.1.7 The .exrc File

Your own vi environment is controlled by the .exrc
file in your home directory. A sample .exrc file looks
like this:

set number
set showmode

The file is read by ex before it enters the vi mode, com-
mands in .exrc should not have a preceding colon.

5.1.8 More about vi

More about vi can be found in the Hypertext reader of
your UNIX system and in the man page.

Recommendable books about vi are ’Learning the vi
Editor’ from Linda Lamb [12] and ’The Ultimate guide
to the vi and ex text editors’ from the Hewlett-Packard
Company [5].

5.2 GNU Emacs

GNU Emacs is a powerful editor in the UNIX world.
Emacs belongs to the GNU project of the Free Software
Foundation (look appendix A) and is available on nearly
all UNIX platforms, like AIX, HP-UX and ULTRIX. We
have it running on AIX and HP-UX.

Unlike most other editors, Emacs is a complete work-
ing environment. You can start Emacs in the morning,
work all day and night, and never leave it. You can
use it to edit, rename, delete, and copy files; to com-
pile programs; to interactive work with the UNIX shell;
and so on. Before windowing systems like X became
popular, Emacs often served as a complete windowing
environment.

5.2.1 Emacs Commands

Emacs commands consist of a modifier, such as
<Ctrl> (CONTROL), <Esc> (ESCAPE), or
<META> (META), followed by one or two characters.
In this text the following notation is used to describe the
keystrokes.

<Ctrl-g> Hold down the <Ctrl> key and press g.
<ESC>-x Press <Esc>, release it, and then press x.

Most Emacs manuals refer to the <META> key instead
of the <Esc> key. But most keyboards don’t have a
<MEAT> key, so we will refer to <Esc>. If you have a
<META> key, you will probably refer to use it instead of
<Esc>. The <META> key works like the <Ctrl> key
described above. <ESC>-x is then equivalent to:

<META-x> Hold down the <META> key and press x.

To complete a command you may need to press a carriage
return:

<Return> Press the RETURN key. This key may
be labeled ENTER on your keyboard.

All Emacs commands, even the simplest ones, have a
’full name’: for exampleforward-word is equivalent
to the keystrokes <ESC>-f and forward-char is
equivalent to <Ctrl-f>. Many commands only have
’full names’; there are no corresponding keystrokes.

5.2.2 Starting Emacs

To start Emacs, simply type emacs followed by the
name of the file you want to edit.
emacs myfile

5.2.3 Exiting Emacs

To exit emacs, type
<Ctrl-x> <Ctrl-c>

5.2.4 Emacs Screen

When you enter Emacs, you are in a workspace. A
cursor marks the position in the file. You don’t have to
do anything special before you start typing.
Just above the bottom of the screen, Emacs prints infor-
mation about what it is doing. This line is called the
’mode line’ and may look like this:

--**-Emacs: myfile (Text Fill)---5%----

At the left edge of the mode line, you may see two
asterisks (**). This means that whatever you’re editing
has been modified since the last time you saved it. If you
haven’t made any changes, the asterisks won’t be there.
Next, Emacs prints ’Emacs:’ followed by the name of
the buffer or file you are editing (myfile). In parentheses
following this Emacs shows the major (Text mode) and
minor mode (Fill mode). Following this Emacs prints
where you are in the buffer or file (5%). If the entire file
is visible on the screen, Emacs prints the word ALL.

5.2. GNU Emacs 31

5.2.5 Emacs modes

Emacs has various editing modes in which it behaves
slightly differently. When you often want features like
word wrap so you don’t have to press <Return> at the
end of the line. When you are programming, your code
must be formatted. For writing, there’s the text mode
and for programming in C is the C mode.

Text mode and C mode are major modes. A buffer can
be in only one major mode at a time; to exit a major
mode, you have to enter another one.

Whenever you edit a file, Emacs attempts to put you into
the correct major mode for what you are going to edit. If
you are editing a file with the ending .c, it puts you in the
C mode. If the file has the ending .tex, it puts you in the
TEX mode. If Emacs can’t determine a special mode, it
puts you in the fundamental mode, the most general of
all modes.

You can also change the mode manual with the com-
mand:

<ESC>-x startup-command <Return>.

The important major modes and there startup-
commands are in the following table:

Mode Description
Startup-command

Fundamental The default mode; no special behavior.
fundamental-mode

Text For writing text.
text-mode

Directory For editing directory contents
dired-mode

Indented text Indents all the text you type.
indented-text-mode

Picture For creating simple drawings.
picture-mode

C For writing C programs.
c-mode

FORTRAN For writing FORTRAN programs.
fortran-mode

Emacs LISP For writing Emacs LISP functions.
emacs-lisp-mode

LISP For writing LISP programs.
lisp-mode

LISP interaction
For writing and evaluating LISP ex-
pressions.
lisp-interaction-mode

nroff For formatting file for nroff.
nroff-mode

TEX For formatting file for TEX.
tex-mode

LATEX For formatting file for LATEX.
latex-mode

Scribe For formatting file for Scribe.
scribe-mode

Outline For writing outlines.
outline-mode

View For viewing files but not editing.
view-file

Mail For sending mail.
mail

Read Mail For reading mail.
rmail

In addition to the major modes there are also minor
modes. These define a practical aspect of Emacs and
can be turned on and off within a major mode.

Abbrev Allows you to use word abbreviations.
abbrev-mode

Fill Enable word wrap.
auto-fill-mode

Overwrite Replaces characters as you type instead of
inserting them.
overwrite-mode

Auto-save Saves your file automatically.
auto-save-mode

In your .emacs file, the startup file of Emacs, you can
set your favorite modes turned on automatically every
time you start Emacs.

5.2.6 Basic Emacs Keystrokes

Moving around

<Ctrl-f> Move forward one character (right).
<Ctrl-b> Move backward one character (left).
<Ctrl-p> Move to previous line (up).
<Ctrl-n> Move to next line (down).
<ESC>-f Move word forward.
<ESC>-b Move word backward.
<Ctrl-a> Move to begin of line.
<Ctrl-e> Move to end of line.
<Ctrl-v> Move forward one screen.
<ESC>-v Move backward one screen.
<ESC>-> Move to end of buffer.
<ESC>-< Move to begin of buffer.
<Ctrl-l> Redraw screen with current line in the

center.

32 Chapter 5. Editors

Deleting Text

 Delete previous character.
<Ctrl-d> Delete character under cursor.
<ESC>-

Delete previous word.
<ESC>-d Delete the word the cursor is on.
<Ctrl-k> Delete form cursor to end of line.
<Ctrl-w> Delete region (area between mark and

cursor).
<ESC>-w Copy region into kill ring.
<Ctrl-y> Restore what you have deleted.
<Ctrl-@> or <Ctrl-<Space>>

Mark the beginning (or end) of a region.
<Ctrl-x> <Ctrl-x>

Exchange point (cursor) and mark.

Stopping and Undoing Commands

<Ctrl-g> Aboard current command.
<Ctrl-u> Undo last edit (can be done repeatedly).

File-handling and exiting

<Ctrl-i> Insert file at cursor position.
<Ctrl-x> <Ctrl-s>

Save file (or may hang terminal; use
<Ctrl-q> to restart).

<Ctrl-x> <Ctrl-w>
Write buffer contents to file.

<Ctrl-z> Suspend Emacs (use exit or fg to
restart).

<Ctrl-x> <Ctrl-c>
Exit Emacs.

Tutorial and Getting Help

<Ctrl-h> <Ctrl-h> <Ctrl-h>
Menu of help options.

<Ctrl-h> t Starts Emacs tutorial.

5.2.7 More information about Emacs

There is a man page available with:

man emacs

A Postscript file of the reference manual is in the direc-
tory /usr/local/doc/gnu on the central servers
(nearly 300 pages).

A very good book about Emacs is ’Learning GNU
Emacs’ from D. Cameron and B. Rosenblatt [2]. It
covers the first basics and the more advanced features of
Emacs.

5.3 Other Editors

A lot of other Editors are available on UNIX systems.

5.3.1 ed Editor

Theed editor is a line editor that is available on all UNIX
systems and accessible from any terminal. Like the Vi
editor, the ed editor has command and input modes, but
the ed editor allows you to move and copy only complete
lines of data. The ed editor can be used to edit within a
shell program or to edit very large files.

For more information about ed see the man page
(man ed) or the Hypertext reader (info) on your
UNIX system.

5.3.2 LPEX

LPEX, the Live Parsing Editor, is a programmable edi-
tor from the AIX SDE (Software Development Environ-
ment) WorkBench/6000 environment. It is based on the
OS/2 LPEX editor.

LPEX can be use to create and edit many kinds of data,
including programs and documentation.

LPEX provides many capabilities for editing and ma-
nipulating documents. You can:

- Use multiplewindows to display different documents
or more than one view of the same document.

- Select a block of text and move or copy it within
or between documents, or to a shell or to another
application.

- Search for and change specific text or search for
marks in a document.

- Control how often changes are automatically saved
and recent changes can be undone.

- Change the appearance of a document by changing
its fonts.

- Invoke a parser to use various techniques, such as
color and indentation, to display the document.

- Perform many functions using either menus or keys
on the keyboard.

LPEX has a menu bar at the top of the application win-
dow which contains pull-down menus to initiate com-
mands. Mnemonic keys are also available for com-
mand invocation. In addition, LPEX commands can
also be entered through the LPEX command dialog in-
voked from the Command menu pull-down.

LPEX is only available on AIX RS/6000 systems.

5.3. Other Editors 33

5.3.3 INed Editor

The INed editor is a full-screen AIX editor that allows
you to do the following:

- Enter subcommands by command keys rather than
on a command line.

- Edit multiple files in multiple windows on the screen.
- Scroll the screen horizontally (as well as vertically)

through files.
- Move, copy, and delete blocks (as well as lines) of

data.

The INed editor also includes:

- A file manager for the following:

- Creating, changing, deleting, and recovering files
and directories.

- Moving among files and directories.
- Moving and copying files and directories.
- Restricting access to files and directories.

- Commands for working with structured files and their
histories.

- Commands for limited text formatting.

The INed Editor is available only on AIX systems.

To edit the file filename start INed with:

e filename

More information can be obtained from the man page
(man e) or the Hypertext reader (info).

5.3.4 edt+

edt+ is a screen-oriented text editing utility. This editor
emulates the functions and facilities of Digital Equip-
ment Corporation’s editor edt. Users who are familiar
with Digital Equipment Corporation computers should
find that this utility eases the transition between DEC and
Unix based systems by providing a common text edit-
ing tool. edt+ incorporates a powerful word processor,
disaster recovery system, an extensive help facility, full
feature programmable text processing and the GOLD-
KEY style of editing.

If edt+ is installed on your system, you have to type

edt filename

to edit the file filename.

More information about edt+ in the man page
(man edt).

5.3.5 uni-XEDIT editor

uni-XEDIT is a UNIX version of IBM’s XEDIT edi-
tor, part of the VM/CMS mainframe operating system.
It provides a very easy to use full-screen editing func-
tion. It contains extensive features such as multiple file
editing, prefix commands which visually perform line-
oriented editing functions, and much more.
This editor is especially useful to users who are al-
ready familiar with IBM’s mainframe text editors such
as XEDIT or SPF EDIT.
We have installed uni-Xedit up to now only on HP-UX.
To invoke uni-Xedit type :
xe filename

5.3.6 Vuepad

Vuepad is a text editor for use within the X Window Sys-
tem environment. Vuepad allows the use of the mouse
for moving the edit cursor and for selecting portions of
text for editing operations. Vuepad also supports the
VUE drag and drop, allowing the user to drag file icons
from the VUE file manager onto the vuepad window for
editing.
The Vuepad editor is only available on HP-UX systems.
To start Vuepad type:
vuepad filename
For more information about Vuepad see the man page
(man vuepad) or the Hypertext-reader (info) on the
HP-UX system.

5.3.7 Notepad

The Notepad editor is a self explaining, very useful DEC
window text editor. It allows you to use the mouse for
moving and for selecting portions of the text.
Notepad is only available on ULTRIX.
To edit the file filename enter the command:
dxnotepad filename
For more information about editing with the Notepad
editor double click on the help item inside the Notepad
editor.

5.3.8 xedit

xedit is a simple text editor for the X Window System
environment. It displays the text of the file in a X Win-
dow.
If xedit is installed on your UNIX system, you can edit
the file filename with the command:
xedit filename
For more information see the man page of xedit
(man xedit).

Chapter 6: Text processing

Text processing, word processing, text editing, and other
phrases are often used to describe activities dealing with
the input, editing and outputting of written forms of
expressions. The important part of input of text into a
file without further text formatting is described in chapter
5.

In this chapter, the text processing system TEX (and
LATEX) will be discussed. Other text processing systems
and the Unix-toolsawk and sed to automate the editing,
analyzing and processing of text will be described in a
later release of this primer.

6.1 TEX and LATEX text processing

TEX [8, 9] (pronounced Tekh) is a text processing sys-
tem developed by Donald E. Knuth of Stanford Univer-
sity to compose by computer high quality documents,
especially those containing many mathematical formu-
lae. Its typographic quality is comparable to the finest
works of the printing art. The TEX text formatting sys-
tem offers several tens of custom-made fonts and over
300 basic and 600 “composed” PLAIN commands.

Unlike most desktop publishing systems, TEX does not
attempt to show the appearance of the finished document
on the screen as it is edited (although screen preview-
ers are available). Instead, the document is “marked
up” with codes, which indicate boldface, italics, special
characters (e.g., “\int” for an integral sign), and the
like. Large-scale aspects of design are automated; you
just give the title of a chapter, and let the computer take
care of numbering the chapter and putting the title in the
right place on the page.

TEX is generally considered the most sophisticated com-
puter typesetting system, as well as (for an experienced
user) one of the easiest to use. LATEX is a macro package
build on top of TEX.

Fundamental to LATEX is the idea of a document style
which determines exactly how a document will be
formatted. LATEX provides standard document styles
that describe how standard logical elements should be
printed. One may have to supplement these styles by
specifying the formatting of logical structures peculiar
to a given document, such as mathematical formulae.
One can modify the standard document styles or create
an entirely new one, though one should possess a basic
understanding of typographical design before creating a
radically new style.

6.1.1 Advantages of LATEX� The layouts were developed by (American) design
professionals, and they produce documents which
indeed look as though “they were printed”.� It is extremely simple to compose mathematical
formulae.� The user must only know a few easily memorized
commands, which control the logical structure of
the document, and (almost) does not have to know
the technical details about how a document is for-
matted.� More complex components such as footnotes, bib-
liography, table of contents etc. as well as simple
pictures can be produced without great difficulty.� LATEX is the “de facto” standard for scientific pub-
lications in Europe and the U.S.A..

6.1.2 Disadvantages of LATEX� The document can only be output on display units
or printers with graphical (all point addressable)
capabilities.� One can vary a few parameters quite easily within
the framework of a given LATEX document layout
style. However more basic deviations from the
available layouts are only possible with a lot of
(re)programming.

6.1.3 How does LATEX work?

A TEX (LATEX) input file is a “plain” text file prepared
with a text editor and in general has the extension tex.

The files describing the document styles or options
(extension sty) are stored in a standard public di-
rectory (/usr/local/lib/tex/inputs). There
exist many LATEX styles, but only four standard ones,
namely, report, article, book and letter.
These styles can be further customized by specifying
one or more options.

The output from LATEX is a set of files. One of them
(extension dvi) contains a device independent binary
representation of the formatted text. This file can be
converted into a printable form by a separate program.

A logfile of the (La)TEX run is generated (extension
log); it contains information which also appeared on
the screen (e.g. the names of the files read, the numbers
of the pages processed, error messages etc).

34

6.1. TEX and LATEX text processing 35

The other files contain information about cross-
referencing (extension aux), table of contents (exten-
sion toc), list of figures (extension lof) and list of
tables (extension lot). They are used in a subsequent
LATEX run to produce particular elements of the docu-
ment.

A idx-file contains all indexed items. They can be
sorted and included as an ind-file. To produce this
sorted index, the program makeindex is provided.

A bbl-file contains the bibliographic references ex-
tracted by BIBTEX from the bibliography database.

Figure 6.1 summarizes the dependencies of the different
files used by LATEX.

6.1.4 TEX glossary

This section is partly based on a glossary posted toTEX-
HAX by Jacques Goldberg of the Department of Physics,
Technion–Israel Institute of Technology, Haifa (Israel).

glyph A graphical representation of a character, for
example a, a and a are three different glyphs
for the same character.

font A set of glyphs corresponding to a character
set.

primitives About three hundred basic commands wired
into the TEX program.

macros More sophisticated or simpler to use com-
mands, built upon the primitives.

Plain TEX Donald Knuth’s TEX augmented by his own
set of macros.

LATEX Donald Knuth’s TEX augmented by Leslie
Lamport’s alternative set of macros.AMS-TEX Donald Knuth’s TEX plus American Math-
ematical Society macros. The functionality
of this package is now available to LATEX
users with the amstex style option.

format A given set of macros, compiled and writ-
ten into a file of filetype fmt once to save
repeated compilation time. TEX will restore
all definitions by reading such a format file.

TFM Font Metric files contain device independent
global information about the space on the
output requested for each glyph in the font,
as well as other boundary conditions such
as relative spacing with neighboring glyphs
(e.g. ligatures). TEX does not need to know
the detailed shape of a glyph. Filetype is
tfm.

DVI A DeVice Independent file (extension dvi)
is output by TEX. DVI files use the ASCII

255-character set and can be copied between
different computers (PC’s and mainframes)
as binary (image) files. They contain the
description of the formatted document.

DVI driverA program which turns the human-
unreadable DVI file into ink on paper or light
on a display. The DVI driver must know ex-
actly how to produce the image of a given
glyph. Therefore it needs a raster image for
each glyph, and this raster is device (printer,
display) dependent, at least, but not only,
because devices have different resolutions.

previewer DVI driver to output the DVI file onto a
screen.

font file A set of raster representations for each glyph
in a font, clearly printer and magnification-
dependent. These files have various file-
types such as pxl, pk, gf. The differences
in names are historical and technical. pxl is
obsolete but still used by some old drivers,
pk is by far the most efficient especially
when it comes to saving disk space, gf is
produced on the way to making fonts by theMETAFONT program.
DVI drivers are not supposed to be able to
magnify fonts, but they should not gener-
ate a fatal error when a font is not avail-
able. DVI drivers expect to find the magni-
fied rasters in a specific directory structure,
and the user is responsible for not invoking
magnifications for which no raster files ex-
ist; again TEX does not check that the driver
will or will not be able to print out a font
at the requested magnification. This is not
TEX’s business.
An exception is the dvips driver. If
it finds a missing font, it tries to calcu-
late the font in the required magnification
from the METAFONT input files (exten-
sion mf). They are then stored in the
/usr/local/Localfonts directory.

magnificationA scale factor applied to the original de-
sign size for a font. The following magnifi-
cation factors are accepted:0:5; 0:6; : : :; 1:0;p(1:2); 1:2; (1:2)2; etc
Not all fonts at each magnification will be
present on all machines.METAFONTA companion program to TEX used to gen-
erate new fonts, or existing fonts at new mag-
nifications. The programMETAFONT reads

36 Chapter 6. Text processing

LATEX

? ��?-
TeX output file (.dvi)

-
User’s input file (.tex)

Style files (.sty)

Format file (.fmt)

Log file (.log)

Working files
.aux
.bbl

.idx

.toc

.lof

.lot ������	 �������� BBBBBBBN @@@@@@R
PostScript Screen Laser printer Text file

device

makeindex ?indexfile (.ind)

Figure 6.1: Data flow for the files used by LATEX

6.1. TEX and LATEX text processing 37

a font definition file, actual device parame-
ters, magnification etc., to generate two out-
put files per input font file definition. The
input is an mf file and the two outputs are
the corresponding tfm and gf files. If you
wish to make a font at 5 different magnifica-
tions you have to run METAFONT 5 times,
on almost the same mf file. If you wish to
create the font for 3 different devices (a dot
matrix printer, a laser printer, a display) you
again must run METAFONT 3 times, with
the correct printer definition.
All these runs will always produce the same
tfm file but a different gf file.

LATEX style A file which contains the description of or
changes to a document layout style (exten-
sion sty). These are the files which are
specified in the LATEX command

\documentstyle[minor_style]
{major_style}

where minor style is an optional part,
which specifies small changes to be made to
the mandatory major style.

6.1.5 Documentation in PostScript form

All documentation related to TEX, LATEX, stys, drivers
etc. are located in the /usr/local/doc/tex direc-
tory. You can cd to there and have a look on the various
documents and print them with the usual lp,lpr com-
mands. Often you will find documentation on sty files
also in the /usr/local/lib/tex/inputs direc-
tory.

6.1.6 Suggested Reading

In order to exploit the power of TEX and LATEX you
should consult one of the many books available. Below
is given a short selection of the literature, as well as some
articles in TEX or PostScript form:� The TEXbook by D. Knuth, Addison Wesley [8]� LATEX, a Document Preparation System by L. Lam-

port, Addison Wesley [11]� LATEX, Eine Einführung by H. Kopka� Kompaktführer LATEX by R. Wonneberger� LATEX Kurzbeschreibung by H. Partl,
/usr/local/doc/tex/lkurz.ps

6.1.7 Running LATEX

The latest versions of TEX, METAFONT and the LATEX
macro package have been installed on all centrally sup-
ported HP and IBM UNIX workstations at GSI. Below
we show the basic commands to format a LATEX docu-
ment, preview the document on a graphics screen (X11),
transform the dvi into PostScript and print the output.
Then each major system will is reviewed in turn.

Running a Sample File

Before preparing your own documents, you may want
to get acquainted with LATEX by running it on a sample
input file. You can copy the file sample.tex, which
is present in the /usr/local/lib/tex/inputs
directory.

You can now modify your copy of the filesample.tex
if you want and then run LATEX on your file by typing:

latex sample

When LATEX has finished, it will have produced the file
sample.dvi in your current (working) directory. You
can view this file on your X-screen by the command

xdvi sample.dvi

In general the extension .dvi can be omitted.

You can print this file by first transforming the infor-
mation into (file extension ps) PostScript using the
command dvips.

dvips sample.dvi

In general the extension .dvi can be omitted.

At GSI, dvips is configured so that it produces a file
sample.ps. You can either view this PostScript file
on your X-screen with the command

ghostview sample.ps

or print it on a PostScript laserprinter:

lp sample.ps -- on HP
lpr sample.ps -- on AIX,ULTRIX

To specify a printer or use other options for that specific
printer, see chapter 4.5 on page 23.

After your output has been printed, you can delete sam-
ple.dvi and possibly sample.ps.

38 Chapter 6. Text processing

Going into more details

The tex, latex and other relevant commands reside
in the /usr/local/bin directory. When you get
a latex: not found error from the system, first
check whether the above directory is in your command
search path by typingecho $PATH. If it is, please type
ls /usr/local/bin/latex to check whether the
latex file is indeed installed. If it is not, contact your
system administrator.

Once you get LATEX started, you should get the message:

This is TeX, C Version 3.14t3

If the command latex is found, but you do not get
this far, then you have probably the wrong version of
the LATEX format. In this case you should contact your
system administrator. Please remind that the LATEX ver-
sion installed on the Unix workstations is newer than
on the IBM MVS and VAX VMS systems and uses the
New Font Selection Scheme (NFSS) developed by Frank
Mittelbach and Rainer Schöpf [13]

Interrupting TEX and respond to ? messages
When TEX is running you can interrupt it by typing
<Ctrl-c>. This will stop TEX as if it had encoun-
tered an ordinary error, and you can then return to Unix
shell command level by typing X, as described in the
TEXbook.

If TEX stops with an error message and a question mark
(?), you have several possibilities to proceed:

x stop the execution of TEX

h ask TEX for a more detailed information about
the error

(just press <Enter>): continue and hope
that TEX can go ahead in spite of the error
encountered

e call the editor of your .tex file and jump to
the line in error

r run without stopping

s scroll future error messages

q run quietly

i to insert something, e.g. to correct a misspelled
control sequence

A “deadlock” may occur if LATEX requires a file which
is not accessible. The user will be prompted to input
the correct file name, if any. If you want to exit from
TEX at that point, specify null as filename. This is an
empty file, which is provided in the standard input file
directories.

You should be aware that TEX only searches its own input
directories. By defaults, these are the system inputs di-
rectory (/usr/local/lib/tex/inputs) and the
current working directory. You can specify other direc-
tories by relative or absolute pathnames. The ˜ character
for the home directory is not recognized.

dvips - DVI converter to PostScript

The DVI driver dvips translates a DVI file into a
PostScript file. The latter can be printed on any
PostScript printer, usually the HP Laserjet IIISi or a
DEC PostScript printer.
The syntax for the dvips command with a selection of
important options is:

This is dvips 5.482 Copyright 1986-92
Radical Eye Software

Usage: dvips [options] filename[.dvi]
l # Last page
n # Maximum number of pages
o f Output file
p # First page
q* Run quietly
r* Reverse order of pages
c # Uncollated copies
C # Collated copies
E* Try to create EPSF

= number f = file s = string
* = suffix, ‘0’ to turn off
c = comma-separated dimension pair

(e.g., 3.2in,-32.1cm)

Many other optionscan be found in theman pages, in the
file /usr/local/lib/tex/doc/dvips.psor by
dvips -?.
The DVI file may in general be specified without the
.dvi extension. Fonts used may either be resident in
the printer or defined as bitmaps inpk files, or a “virtual”
combination of both. dvips will automatically invokeMETAFONT to generate fonts that don’t already exist.
If you want to print your file, use the usual printer com-
mands:

lp [-d myprinter] sample.ps -- on HP
lpr [-P myprinter] sample.ps -- on AIX,

ULTRIX

For a description of the other options of the lp,lpr
command and possible printers see chapter 4.5 on page
23.
You can direct the output from dvips directly to the
printer without writing to the intermediate PostScript
file:

dvips -o!lp sample.dvi -- on HP
dvips -o!lpr sample.dvi -- on AIX,ULTRIX

6.1. TEX and LATEX text processing 39

xdvi – DVI previewer for X-windows

The DVI previewer xdvi is a program which runs under
the X window system. It has the capability of showing
the file shrunken by various (integer) factors, and also
has a “magnifying glass” which allows one to see a small
part of the unshrunk image momentarily.

In addition to using keystrokes to move within the file,
xdvi provides buttons on the right side of the win-
dow, which are synonymous with various sequences of
keystrokes.

xdvi [+[<page>]] [-s <shrink>]
[-paper <papertype>] [-mgs[n] <size>]
[-fg <color>] [-bg <color>] [-hl <color>]
[-bd <color>] [-cr <color>] [-bw <width>]
[-geometry <geometry>]
[-iconic] [-display <host:display>]
dvi_file

The many other options of xdvi are described in the
man page or by typing xdvi.

gs and ghostview – a PostScript previewer

The public domain Ghostscript previewer gs is avail-
able on Unix workstations. It is part of the GNU project.
Ghostscript is a programming language similar to Adobe
Systems’ PostScript (tm) language. gs reads a file and
displays it as a Ghostscript file. It then interprets com-
mands from standard input until an end-of-file char-
acter (<Ctrl-D>) is typed. The ‘quit’ character
(<Ctrl-C>) also terminates Ghostscript execution.

To invoke the interpreter, give the command

gs <filename1> ... <filenameN>

The interpreter will read in the files in sequence and
execute them. After doing this, it reads further input
from the primary input stream (normally the keyboard).
Each line (i.e. characters up to a <return>) is in-
terpreted separately. To exit from the interpreter, type
quit<return>. The interpreter also exits gracefully
if it encounters end-of-file.

The program ghostview provides a menu/mouse in-
terface for the ghostscript previewer. To invoke
this interface, give the command

ghostview <filename>

You can then easily browse through your document, se-
lect specific pages, print the whole document or only
selected pages, see the document with all PostScript
figures included and zoom it.

6.1.8 Using PostScript fonts

Thanks to the NFSS (new font selection scheme) by
Schöpf and Mittelbach [13] it is easy to replace the com-
puter modern fonts provided with TEX by the arbitrarily
scalable original Adobe PostScript fonts. This task has
been simplified by the use of some document-style sub-
options to be included in the \documentstyle com-
mand. The following style options and new commands
are available:

avant makes AvantGarde default text font, and
Times default sans font.

bookman makes Bookman default text font, and Hel-
vetica default sans font.

dingbat sets up various commands which use the
Zapf Dingbats font, each of which take as a
parameter the character number of a symbol
in the font. Possibilities are:

\ding Just prints the character
\dingfill wherever you use a filler,

fills the space with the se-
lected character

\dingline a freestanding line of sym-
bols

\dinglist a list environment which
tags items with the selected
symbol

epsfig a style file for including Encapsulated
PostScript figures. See section 6.1.9 be-
low for a description.

helv makes Helvetica default text font, and
Times default sans font.

ncs makes NewCenturySchoolbook default
text font, and AvantGarde default sans font.

palatino makes Palatino default text font, and Gill-
Sans default sans font.

times makes Times default text font, and Hel-
vetica default sans font. This document
has been produced with this style option.

For a more complete description of the NFSS to-
gether withy PostScript fonts, refer to the article
/usr/local/doc/tex/psnfss.dvi.
Please remind that the dvi-driver has to be able to handle
PostScript fonts. At the moment, xdvi is not able to
deal with these fonts. Instead you have to use dvips
and ghostview!

Playing with PostScript

LATEX offers only a certain number of font sizes (: : : ,
\Large, \LARGE, \Huge). When for a particular

40 Chapter 6. Text processing

Simple example on how to generate large letters

\font\VB=ptmr at 22mm % declare very big font (Times at 22 mm, K.Berry name ’ptmr’)
{\VB Large 22 mm text}

Large 22 mm text
Figure 6.2: Large Text with LATEX and PostScript

purpose a non-available type size or a non-preloaded
font is needed, then the basic font commands of TEX
can be invoked and the dvips driver will then in-
clude the font at the desired size. In this case K.Berry’s
short file name as found in the NFSS font description
[13] should be specified. For more details the reader
should consult the dvips manual, available in the
/usr/local/doc/tex directory, which describes
not only the (short) names under which the various
PostScript fonts are known to the TEX programs but
it also shows other tricks, which can be used to get spe-
cial effects with PostScript.

Figure 6.2 shows an example of writing a very large text.

6.1.9 Merging Graphics and Text

Some TEX macro packages allow the creation of graphics
e.g. LATEX’s picture environment and its extensions,
epic and eepic or PiCTeX. These will not be dis-
cussed here. We will describe, however, ways to merge
text and graphics, if the latter are prepared as Encapsu-
lated PostScript form.

TEX has a primitive command called \special, which
allows arbitrary text to be included in the dvi at the
current position. The text given to the \special com-
mand is ignored by TEX itself. This text can however be
interpreted by the dvi-driver when it prepares printable
or viewable output from the information in the dvi file, in
particular it can be used to insert a graphics file. So, the
problem of producing proper graphics output is solved if
the dvi-driver and the printer can handle a given format.

The EPS format is a set of rules for writing programs
in PostScript1. An EPS file starts with two characters
%! followed by any text, and has some metacomments,
starting with %%, for instance:1See “Appendix G: Document Structuring Conventions — Version
3.0” and “Appendix H: Encapsulated PostScript File Format — Version
3.0” in The PostScript Language Reference Manual [1]

%!PS-Adobe-2.0 EPSF-1.2
%%BoundingBox: 40 -505 507 -87
%%Creator:Adobe Illustrator(TM) 1.1
%%Title:elephant.ps
%%CreationDate:25/4/88 7:57 pm
%%DocumentFonts:Courier
%%EndComments

...

For EPS conformance only the first line and the one
containing the BoundingBox comment are manda-
tory. The program dvips which converts a DVI file
into PostScript, uses the latter metacomment, which
specifies the coordinates of the “bounding box” of the
picture (see next section).

What is a bounding box?

In order to be able to properly translate and scale a figure,
TEX must know its “natural” position on the page; this
information is present in what is called the bounding box
of a PostScript program. The bounding box is an outer
limit to the marks created by a program, and is specified
as four coordinates of a rectangle: the lower-left x co-
ordinate (bbllx), the lower-left y coordinate (bblly), the
upper-right x coordinate (bburx), and the upper-right y
coordinate (bbury). Adobe uses the convention that the
bounding box of a PostScript program must be con-
tained in a “bounding box comment” if the file is to be
used as an Encapsulated PostScript figure. It is a line
of the form:

%%BoundingBox: bbllx bblly bburx bbury

Note once more that the only mandatory PostScript
convention is that the first line of the file should begin
with the characters “%!” (a “%” begins a comment in
PostScript). A good place for the bounding box com-
ment is as the second line of the file.

All coordinate values must be given in so-called Big
Points (72 big points equal one inch, or 1cm = 28:35 big

6.1. TEX and LATEX text processing 41

points), e.g. the bounding box corresponding to an A4
(210 mm by 297 mm) page is:

%%BoundingBox: 0 0 595 842

If a bounding box comment is present in the figure file,
the epsfig TEX interface (see section 6.1.9) will ex-
tract its values. The bounding box values may instead
be specified directly in the epsfig argument, using
clauses of the form bbllx=bbllx, bblly=bblly,: : : in which case the figure file is not searched for the
bounding box.

Producing Encapsulated PostScript pictures

Many programs dealing with graphics, produce Encap-
sulated PostScript files as graphics output files.

With PAW, workstation type 113 will produce PostScript
output with the Boundingbox command parameters in-
cluded. Below the beginning of a PostScript file gen-
erated by this procedure with PAW is shown.

%!PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 0 0 567 567
%%Title: /PAW PS A1
%%Creator: HIGZ Version 1.13/00
%%CreationDate: 23/01/92 16.19
%%EndComments
/s stroke def /l lineto def
/m moveto def /t translate def

......

Other picture formats should first be transformed to
PostScript before they can be included easily into
LATEX. Several public domain programs exist to trans-
form popular picture formats into PostScript (see sec-
tion 8.2 on page 48). .

Moreover the utility XtoPS dumps an image of an X
window as encapsulated Postscript. The image can be
color or grayscale.

Usage of the epsfig command

The style option epsfig, which is based on the ps-
fig macros of T.J. Darrell as extended by S. Rahtz,
facilitates the inclusion of PostScript figures into TEX
documents. With the help of a compatible DVI postpro-
cessor, PostScript figures are automatically scaled and
positioned on the page, and the proper amount of space is
reserved. Custom characters such as “ ” and “ ” may
be created and used freely throughouta document, or fig-
ures can be presented as traditional broken-out displays
(see figs. 6.3, 6.4).

Zip

Figure 6.3: Encapsulated PostScript example 1

Blueberry

Cherry

Apple

Boston Cream

Other

Vanilla Cream

Figure 6.4: Encapsulated PostScript example 2

To include Encapsulated PostScript pictures with
dvips the style option epsfig must be specified as
follows:

\documentstyle[epsfig,...]{...}

The command \epsfig is then defined with the fol-
lowing parameters (given in one line !):

\epsfig{file=fn,height=ht,width=wd,
bbllx=blx,bblly=bly,bburx=brx,bbury=bry}

file The file name of the Encapsulated
PostScript file.

figure Alias for file=, i.e. the file name of the
Encapsulated PostScript figure.

height The desired height of the picture (in any
of the accepted TEX units). If this param-
eter is not specified, then the picture will be
printed with its “natural” height, i.e. the one
specified on the BoundingBox line inside the
PostScript file. When a width is specified
(see below) and no height, the latter is scaled
in the same proportion as the width.

width The desired width of the picture (in any of
the accepted TEX units). If this parameter is

42 Chapter 6. Text processing

not specified, the picture will be printed with
its “natural” width, i.e. the one specified on
the BoundingBox line inside the PostScript
file. When a height is specified (see above)
and no width, the latter is scaled in the same
proportion as the height.

bbllx The x-coordinate of the lower left hand cor-
ner of the BoundingBox of the PostScript
picture.

bblly The y-coordinate of the lower left hand cor-
ner of the BoundingBox of the PostScript
picture.

bburx The x-coordinate of the upper right
hand corner of the BoundingBox of the
PostScript picture.

bbury The y-coordinate of the upper right
hand corner of the BoundingBox of the
PostScript picture.

When the BoundingBox parameters are specified on the
epsfig command, then the ones inside the PostScript
file are ignored. This facility is particularly useful
if the BoundingBox parameters are absent from the
PostScript file or are wrong.

The \epsfig macro is (unfortunately) sensitive to
whitespace, and will be confused by any extra spaces
or newlines in its argument!

Simple figures

The code below shows the simplest way of how one can
include an Encapsulated PostScript file with \eps-
fig.

\documentstyle[epsfig]{article}
\begin{document}

.... some text
\epsfig{file=input-file}

.... some more text
\end{document}

Here input-file is the name of a PostScript file.
epsfig will automatically position the figure at the
current point on the page, and reserve the proper amount
of space in TEX so as to avoid blocking any other objects
on the page.

As a more realistic example let us include a EPS picture
(e.g. generated with PAW) and specify the desired width
on the output page (if we do not specify any dimensions,
the “natural” dimensions of the picture are taken, as read
on the BoundingBox line in the file, corresponding to
the size shown when the picture is printed separately

on a PostScript printer). The upper edge of the pic-
ture will be located at the point where the command
epsfig is issued. The graphic will be scaled to the
desired width (or height), but it will be scaled by the
same factor horizontally and vertically (if only one of
the parameters height or width are specified). The
actual commands typed are given below (the epsfig
macro must be written in one line!).

\begin{figure}
\begin{center}
\mbox{\epsfig{file=tac2dim.eps,

width=\linewidth}}
\end{center}
\caption{A single centered figure}
\label{fig:simple}
\end{figure}

Figure 6.5 shows the resulting picture, with width of
the picture equal to the current linewidth. The width
(or height) can be given also in cm or any other valid
TEX length unit. It is centered by putting it in an mbox,
which is itself in a center environment.

4
6

8
10

12
14

6
8

10
12

14
16

0

40

80

120

160

200

240

Figure 6.5: A single centered figure

Draft figures and Silent mode

Normally, epsfig will print advisory messages to re-
mind you that it is including figures as TeX processes a

6.1. TEX and LATEX text processing 43

tac2dim.eps

Figure 6.6: The same figure as 6.5, but in draft mode

document. This behavior can be disabled with \pssi-
lent and re-enabled with \psnoisy.

Some PostScript figures can take quite a long time to
transmit to the printer and print; for these figures a “draft”
mode is available to speed printing of draft versions of
the document. A figure printed in draft mode will appear
as a box with the name of the figure file (Figure 6.6). The
macro \psdraft will switch into draft mode, and all
subsequent epsfig macros will produce draft figures
until reaching the macro \psfull, which switches out
of draft mode. No \special commands are used in
draft mode, so a draft document can be previewed using
any DVI driver.

Distorting a figure Users who want to obtain special
effects by distorting a figure can specify both param-
eters to the \epsfig macro, where both dimensions
height and width are taken literally, thus making
disproportionate scaling possible. (see figure 6.7).

Colourfull TEX

With the help of the PostScriptdriverdvips, it is easy
to produce colorfull slides and include colored pictures
into your text. To use the color option, you have to
include the document substyle option dpscolor into
your LATEX document or input dpscolor.tex into
your TEX document.

\begin{center}
\mbox{%
\epsfig{file=rosette.eps,

,height=20mm,width=6mm}
\epsfig{file=rosette.eps,

height=20mm}
\epsfig{file=rosette.eps,

height=20mm,width=35mm}
}% end of \mbox
\end{center}

Figure 6.7: Distorting a picture with (epsfig)

After having processed your document in the usual
way (latex, dvips) you can view it with the
ghostview previewer or print it on the psteka color
printer in the I/O room (see section 4.5 on page 23 for
details and a list of actual printers).

A set of macros is available to use colors for the back-
ground and foreground text:

The first macro lets the user specify the background
color for the document. It sets the background color
for the current page and all succeeding pages, unless
changed by another command of this type. To change
the background color back to the default, issue

\background{White}

There are two types of text color commands. The first
is in the form \ColorName (note the uppercase for the
color name). It is called a local color command since
it takes one argument enclosed in brackets. It writes
the contents of its argument in the selected color. This
should be used for local or nested color changes, since it
restores the original color state when it completes. The
second type of color command is in the form \text-
ColorName. This uses the same naming convention as
before. It is called a global color command since it takes
no arguments and simply sets the color at this point.

As an example, to write this peace of text in JungleGreen,
use the following command:

\JungleGreen{write this peace of
text in JungleGreen}

44 Chapter 6. Text processing

In table 6.1 the list of predefined colors is shown. If
you want to define your own colors, look into the
style file /usr/local/lib/tex/inputs/dps-
color.sty.

\GreenYellow \Yellow

\Goldenrod \Dandelion

\Apricot \Peach

\Melon \YellowOrange

\Orange \BurntOrange

\Bittersweet \RedOrange

\Mahogany \Maroon

\BrickRed \Red

\OrangeRed \RubineRed

\WildStrawberry \Salmon

\CarnationPink \Magenta

\VioletRed \Rhodamine

\Mulberry \RedViolet

\Fuchsia \Lavender

\Thistle \Orchid

\DarkOrchid \Purple

\Plum \Violet

\RoyalPurple \BlueViolet

\Periwinkle \CadetBlue

\CornflowerBlue \MidnightBlue

\NavyBlue \RoyalBlue

\Blue \Cerulean

\Cyan \ProcessBlue

\SkyBlue \Turquoise

\TealBlue \Aquamarine

\BlueGreen \Emerald

\JungleGreen \SeaGreen

\Green \ForestGreen

\PineGreen \LimeGreen

\YellowGreen \SpringGreen

\OliveGreen \RawSienna

\Sepia \Brown

\Tan \Gray

\Black \White

Table 6.1: List of predefined colors for use with dps-
color

Chapter 7: Program Development

7.1 Overview

This chapter introduces program development tools un-
der UNIX with simple examples. Its focus is on com-
mands and command optionswhich work on most UNIX
systems at GSI, rather than on the differences.

7.2 Compiling and linking a program

To create an executable program, you compile a source
file containing a main program. For example, to compile
a C program named hello.c use:

$ cc hello.c

If no errors occur, the compiler creates an executable
file named a.out in the current working directory. This
process is essentially the same for most UNIX compilers.
For instance, to compile and run a FORTRAN program
use:

$ f77 hello.f
$ a.out

If your source is divided among separate files, simply
specify all files in the compile command:

$ cc main.c func1.c ... funcn.c

The -o name option causes the compiler to name the
output file name instead of a.out. For example, to
compile a C program hello.c and name the resulting
executable hello use:

$ cc -o hello hello.c

The -c option suppresses the link-edit phase. The com-
piler generates an object file with the extension (.o) for
each input file and not the a.out file. This is useful
when compiling source files that contain only subpro-
grams, which can be linked later with other object files.
The resulting object files can then be specified on the
compiler command line:

$ cc -c func.c
$ cc main.c func.o

Notice that you need not call the linker. This is done
by the compiler. If you have a lot of different object
files you can create an archive library to store them.
The command ar is used to create and manage archive
libraries. Its syntax is:

ar keys archive [obj_files]

The most important keys are r to replace or add mod-
ules to the archive and t to display a table of contents.
The archive is a name composed of libname.a. For
example the command sequence:

$ cc -c func1.c
$ cc -c func2.c
$ cc -c func3.c
$ ar r libmy.a func1.o func2.o func3.o

compiles func1.c,func2.c,func3.c and adds the
object files into the archive libmy.a. Libraries are
specified on the compile commands with the -lname
option, where name is the part of the library name fol-
lowinglib. By default the compiler searches the/lib
and the /usr/lib directory for libraries. It is possible
to specify additional directories to the search path with
the -L libpath option. For example:

$ cc -lmy -L/u/peter/lib main.c

looks in the directories /u/peter/lib, /lib and
/usr/local/lib in that order for libmy.a. There
are three more important general available compile op-
tions:

-I includepath path for user includes
-O optimize flag
-g debug flag

All options described until now work at least with the
following compilers:� C

– cc all flavors� FORTRAN

– f77 DEC, IBM RS/6000

– fort77 HP

– xlf IBM RS/6000

PL/I compilers are currently available with AIX and
Ultrix. Some details will be described in a future release
of this document.

C++ compilers are also available. Details will be de-
scribed in a future release of this document.

45

46 Chapter 7. Program Development

7.3 Correcting errors in a program

If your program does not execute properly, you have to
use a debugger to locate and correct problems. The old
fashioned UNIX debugger adb is available on most sys-
tems, but it is highly recommended to use the symbolic
debugger of your UNIX flavor.

DEC dxdb
HP xdb
IBM dbx
IBM xde (X11 interface to dbx)

Before invoking a symbolic debugger you should re-
compile your program with the -g option and without
any optimization -O flags. This ensures that necessary
debugging information is incorporated into the object
code. The debuggers have many commands for viewing
and manipulating programs. You can:� Control execution with single step execution or the

use of breakpoints.� Look at data values.� Look at the contents of your source files.� Look at the execution stack.

A sample of simple commands for the HPxdb debugger
are:

Command Description
r Run the program
b 82 Set a breakpoint at line 82
c Continue running until the next

breakpoint
s Single step through the next

source line
S Step over a function or subrou-

tine
t Print a trace of the current ex-

ecution stack
v View a window of lines
/string Search forward in the source

for occurence of string
?string Search backward in the source

for occurence of string
p abc Print the value of variable abc
p abc = 2.2 Assign a new value to abc
p buffern 10d Print the first 10 elements of

array buffer in decimal format

D “source dir“ Add directory source dir to the
list of directories to search for
sources (default: current direc-
tory)

q Quit the debugger

On DEC and IBM workstations you see the available
options via the X11 interface.

7.4 Building and Maintaining a Program

Under UNIX facilities are provided to help to control
changes and build a program from many source modules:� The make command builds a program from source

modules. Since the make command compiles only
those modules that were changed since the last
build, its use can reduce compilation time when
many source modules must be processed (see be-
low and reference [15]).� The Source Code Control System (SCCS) is a set of
UNIX commands that enable you to maintain sep-
arate versions of a program without storing com-
plete copies of each version. Beside the reduction
of storage requirements the use of SCCS can help
in tracking the development of a project that re-
quires keeping many versions of large programs.
For more information consult the manuals.

There are two GNU tools which can be used instead
of the SCCS: the Revision Control System (RCS) and
the Concurrent Version System (CVS). If you develop
programs in CERN software environment you should
consider cmz (see section 8.3.2 on page 53) as code
management system.

7.4.1 make

The basic operation of make is to update a target file.
By ensuring that all of the files on which it depends
exist and are up to date, make creates the target if it
has not been modified since its dependents were. It uses
information from a description file named makefile
or Makefile, last-modified times from the file system
and some built-in rules.

To illustrate, consider a simple example: A program
namedprog is made by compiling and linking three files
x.c, y.c and z.c with the library libS.a. The files
x.c andy.c share some declarationsxy.h (that is they
have the line: #include "xy.h"). The following
makefile describes these dependencies:

7.4. Building and Maintaining a Program 47

prog : x.o y.o z.o
cc x.o y.o z.o -lS -o prog

x.o : x.c xy.h
cc -c x.c

y.o : y.c xy.h
cc -c y.c

z.o : z.c
cc -c z.c

The first line says that prog depends on three object
files. Once these object files are current, the second
line describes how to link them to create prog. It is
important that such an command line starts with a tab
(<Tab>) sign. If x.o is not up to date the third line says
that it depends on x.c and xy.h and so on. If none
of the source or object files had changed since the last
time prog was made, all of the files would be current,
and the command make would just announce this fact
and stop. If, however, the xy.h file had been edited,
x.c and y.c would be recompiled, and then the prog
would be created.

If no target name is given, the first target mentioned
in the makefile is created. Otherwise the specified
targets are made:

$ make x.o

would recompile x.o if x.c or xy.h had changed.
make has a simple macro mechanism. Macros are de-
fined by lines with embedded equal signs. A macro is
invoked by preceding the name by a dollar sign. Macro
names longer than one character must be parenthesized.

CC = cc
prog : x.o y.o z.o

$(CC) x.o y.o z.o -lS -o prog
x.o : x.c xy.h

$(CC) -c x.c
y.o : y.c xy.h

$(cc) -c y.c
z.o : z.c

$(CC) -c z.c

In this example the first line defines the macro $(CC) to
be cc, what is used in the compile steps. If you want to
use another compiler you have two possibilities: You can
edit that line, or macro definitions on the command line
override definitions in the makefile. The command
make CC=gcc uses the GNU C compiler instead of
cc.

To conclude the structure of an description file:

� make ignores blank lines,� characters from a number (#) sign to the end of a
line are comments,� lines containing an equal (=) sign define macros,� lines containing a colon (:) are dependency lines,� lines beginning with a tab (<Tab>) sign are com-
mand lines.

The most important flag of the make command is: -n
no execute mode (print commands, but do not execute
them).

make is most useful for medium-sized programming
projects, so the typical cycle of program development
operations becomes:

think! edit! make! test ...

Chapter 8: Applications and Utilities

8.1 Mathematical packages

There are two interactive systems to meet your needs in
scientific computations from symbolics to numerics and
graphics:� Mathematica two licenses on rzhp9a,� AXIOM one license on rzri6f.

You can use both systems as:� A numerical and symbolic calculator.� A visualization system for functions and data.� A programming language.� A modeling and data analysis environment.

Mathematica is widely used. There are user contributed
packages from all fields of science. AXIOM is the
newest of all symbolic packages. The advantages of
AXIOM are:� The HyperDoc system, offering on-line help, ex-

amples, tutorials and reference material.� A variety of data structures not available in other
systems.

A reference manual for each system [16] and [7] is avail-
able at the help desk (Benutzerberatung).

8.1.1 Mathematica

To start Mathematica simply type math on the rzhp9a:

$ math
Mathematica 2.1 for HP 9000 RISC
Copyright 1988-92 Wolfram Research, Inc.
-- Motif graphics initialized --

In[1]:= Plot3D[Sin[x y],fx,0,Pig,fy,0,Pig]
Out[1]= -SurfaceGraphics-
In[2]:= PSPrint[%]
Out[2]= -SurfaceGraphics-
In[3]:= Display["!psfix > test.ps",%]
Out[3]= -SurfaceGraphics-
In[3]:= Quit
$

Figure 8.1 is the result of the Plot3D command. In
this example you see two possibilities to plot out of
Mathematica. The PSPrint command sends a plot
to the default printer (psaa). The Display command
creates a PostScript file.

0

1

2

3 0

1

2

3

-1

-0.5

0

0.5

1

0

1

2

3 0

1

2

3

-1

-0.5

0

.5

1

Figure 8.1: Mathematica display

8.1.2 AXIOM

To start AXIOM on rzri6f you have to add
$AXIOM/bin to your PATH and to type axiom. In
figure 8.2 you see the top level of the AXIOM hyper-
documentation. It is easy to explore the features of
AXIOM by clicking on the items in bold font.

8.2 Graphical Tools

Graphics is used as an essential link between human and
computer. Visualization of data allows to extract infor-
mation much better rather than interpreting raw num-
bers. Consequently there is a growing demand for high
performance graphical tools.

To allow for a free interchange of graphical informa-
tion between different UNIX-platforms,we support stan-
dardized graphical tools and a set of conversion routines
to transform from and to different formats of graphical
output, which are introduced in the following.

8.2.1 PHIGS

PHIGS (Programmer’s Hierarchical Interactive Graph-
ics System) is a programming interface (subroutine
package) used in the development of graphics appli-
cations. It is based on the American National Standards
Institute (ANSI) and International Standard Organiza-
tion (ISO) standard:

48

8.2. Graphical Tools 49

Figure 8.2: AXIOM hyperdoc entry panel

PHIGS is a graphics system that supports the definition,
modification, and display of hierarchically organized
graphics data. It provides graphics application devel-
opers with a significant amount of additional function
beyond the CORE and GKS-2D and GKS-3D systems.
The system adds new concepts to provide a interactive,
three-dimensional system that enhances the design and
visualization process. The ability to organize graphic
primitives into hierarchical structures makes it possible
to edit, modify, and transform graphic entities.

Using over 300 high-level graphic functions, program-
mers can develop applications in various programming
languages. ISO-standard is defined for C and FOR-
TRAN77 binding. On the other hand, a subset of about
50 functions suffices in most application problems.

PHIGS offers a set of device-independent programming
tools, it decides whether to use local device processing
or to have your Central Processing Unit do the pro-
cessing for your less intelligent workstations. Identical
PHIGS functions are available on both mainframe and
standalone environments.

Following is a brief summary of common terms and their
definitions:

Primitives Graphic objects are defined by a sequence
of elements, including output primitives, attributes,
and transformations. Basic output primitive ele-
ments include lines, markers, polygons, and text
definitions.

Attributes Attributes define the characteristics of an
output primitive. An attribute, for example, may

define the color of a polyline primitive or size of a
polymarker primitive.

Structures The graphical primitives, attributes and
model transformations are grouped together to form
structures. A structure may be used to represent the
geometry of an object as well as information regard-
ing the appearance of that object. Elements may be
inserted into,or deleted from, structures at any time,
in an operation called structure editing. This edit-
ing capability minimizes the need to redefine data
in order to modify it. Structures may be related
in a number of ways including geometrically, hier-
archically, or characteristically, according to your
application needs.

Input PHIGS provides essential tools for application
interaction. Input devices operate synchronously
or asynchronously, relay information to the appli-
cation, which in turn responds by defining, editing,
or displaying the graphical data. PHIGS supports
six classes of input devices. These classes repre-
sent generic physical devices that differ from one
another by the type of data they return to the appli-
cation. Input device classes include the following:

Locator, Stroke, Valuator, Choice, Pick, String.

Three modes of interaction that allow you to request
and obtain data from a logical input device. In RE-
QUEST mode, your application prompts for input
and then waits until the operator either enters the re-
quested input or performs a break action which ter-
minates interaction. In SAMPLE mode, your appli-
cation obtains the current values of the input device
by explicitly sampling it. In the EVENT mode, an
asynchronous environment is established between
your application and a chosen device. In this mode,
both your application and any corresponding device
operate independently of each other with the help
of a centralized input queue.

Workstations The term “workstation” refers to an ab-
straction of a physical graphics device. It provides
the logical interface through which your applica-
tion program controls physical devices.

PHIGS provides an environment that supports mul-
tiple workstations. How your application interacts
with a particular workstation depends on the in-
teractive capabilities of that workstation and the

50 Chapter 8. Applications and Utilities

design of your application.

PHIGS supports three categories of workstations:
INPUT, OUTPUT, and OUTIN. The capabilities of
a workstation determine its category. For example,
a workstation such as a plotter may only be capable
of generating output. Still another, such as an inter-
active design station, may be capable of providing
both input and output.

Inquiry Functions Inquiry functions allow the appli-
cation programmer to access the program data con-
tained in state lists, description tables, or structures.
They are useful for determining both error condi-
tions and device characteristics.

States The system state defines whether the graPHIGS
API has been activated or deactivated, using the
Open graPHIGS or Close graPHIGS functions re-
spectively. No other functions can be accessed until
the system is “open”.

The workstation state defines whether a worksta-
tion has been activated or deactivated, using the
Open Workstation or Close Workstation functions
respectively. The PHIGS structure display func-
tions can only be used if workstation is “open”.

The structure state defines whether PHIGS display
structure is “open” and able to be modified or closed
and unavailable for modification. A structure is
opened and closed with the Open Structure and
Close Structure subroutines. Graphics primitives
and attributes can only be created if the structure
state is “open”.

Implementations of PHIGS

I. AIX
ISO-PHIGS subroutines are available as a subset of the
graPHIGS-IBM library version 2.2 which is available
under AIX on RISC6000 workstations and may be used
within C-, FORTRAN- and PLI-applications.
Example programs for the use of graPHIGS subroutines
are installed in individual sub-directories in the direc-
tory:

/usr/lpp/graPHIGS/
samples/gettingstarted

An interactive tutorial is also available and may be run
by just typing: gPtutor

cc -o square -lgP square.c

compiles the file square.c and links with the graPHIGS
library yielding the executable square.

The GDF file standards are different for AIX and MVS.
The command

cvtgdf

transforms AIX standard to MVS standard. This con-
verted file may be transferred via FTP to your MVS
userid and may be interpreted using TSO GDFIP.

For further information you can use the info-explorer
accessing the RAM-DISCS or use the graPHIGS IBM
subroutine reference version 2.2 directly.

Literature

IBM-graPHIGS

The graPHIGS Programming Interface,� Subroutine Reference, version 2.2, SC33-8194-1� Understanding Concepts, version 2.2, SC33-8191-
1� Writing Applications, version 2.2, SC33-8192-1� Messages and Codes, version 2.2, SC33-8196-1� ISO PHIGS Implementation Reference,version 2.2,
SC33-8118-00

Graphics in General� A Practical Introduction to PHIGS and PHIGS
PLUS by T.L.J. Howard, W.T. Hewitt, R.J. Hub-
bold, K.M. Wyrwas [6]� Computer Graphics: Principles and Practice by
J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes
[3]

8.2.2 Handling of Image Files

In order to support modification of pixel data and con-
version from and to different image file standards the
following tools are made available.

University of Utah Raster Toolkit, URT

The Utah Raster Toolkit is a collection of programs and
C routines for dealing with raster images commonly
encountered in computer graphics. A device and system
independent image format stores images and information

8.2. Graphical Tools 51

about them. Called the RLE format, it uses run length
encoding to reduce storage space for most images.

The programs (tools) currently included in the toolkit
are listed below, together with a short description of
each one. Most of the tools read one or more input RLE
files and produce an output RLE file. Some generate
RLE files from other information, and some read RLE
files and produce output of a different form. For general
information on available tools use

man urt

For specific information on a chosen command and pa-
rameter list type e.g.

man applymap

urt - overview of the Utah Raster Toolkit

applymap Apply color map to image data.

avg4 Simple 2x2 downsizing filter.

crop Crop image.

fant Image scale/rotate with anti-aliasing.

getx11 Display using X11.

giftorle Convert gif files to RLE.

graytorle Convert separate rgb files to RLE.

mcut Median cut color quantization.

mergechan Merge colors from multiple images.

pyrmask Generate “pyramid” filter mask.

rawtorle Convert various raw formats to RLE.

repos Reposition an image.

rleClock Draws a clock face.

rleaddcom Add comments to an RLE file.

rleaddeof Add an EOF code to an RLE file.

rlebg Generate a “background”.

rlebox Find bounding box of an image.

rlecomp Image composition.

rledither dither image to a given colormap.

rleflip Flip an image or rotate it 90.

rlehdr Print info about an RLE file.

rlehisto Make a histogram of an image.

rleldmap Load a new colormap into a file.

rlemandl Make a Mandelbrot image.

rlenoise Add noise to an image.

rlepatch Patch smaller images on a big one.

rleprint Print all pixel values in image.

rlequant Variance based color quantization.

rlescale Generate a “gray scale”.

rleselect Select images from an RLE file.

rlesetbg Set the background color of an image file.

rlespiff Simple contrast enhancement.

rlesplice Splice two images horizontally or verti-
cally.

rlesplit Split concatenated images into files.

rleswap Swap or select color channels.

rletoascii Make a line-printer version of an RLE
image.

rletogif Convert RLE images to gif format.

rletogray ConvertRLE to separate rrr ggg bbb files.

rletops Convert RLE to (BW) PostScript.

rletoraw Convert RLE to rgbrgb raw format.

rletotiff Convert RLE to tiff 24 bit format.

rlezoom Scale image by sub- or super-sampling.

smush Generic filtering.

to8 24 to 8 bit ordered dither color conversion.

tobw Color -> BW conversion.

unexp Convert “exp” format to normal colors.

unslice Paste together “slices” into a full image.

An input file is almost always specified by mentioning
its name on the command line. Some commands, usu-
ally those which take an indefinite number of non-file
arguments (e.g., rleaddcom) require a -i flag to intro-
duce the input file name. If the input file name is absent
the tool will usually read from the standard input. An
input file name of “-” also signals that the input should
be taken from the standard input.

52 Chapter 8. Applications and Utilities

On Unix systems, there are two other specially treated
file name forms. A file name starting with the character
"j"will be passed to sh to run as a command. The output
from the command will be read by the tool. A file
whose name ends in “.Z” (and which does not begin
with a "j") will be decompressed by the compress
program. Both of these options supply input to the tool
through a pipe. Consequently, certain programs (those
that must read their input twice) cannot take advantage
of these features. This is noted in the manual pages for
the affected commands.

An output file is almost always specified using the option
-o outfile . If the option is missing, or if outfile is “-”,
then the output will be written to the standard output.

On Unix systems, the special file name forms above may
also be used for output files. File names starting with ’”’
are taken as a command to which the tool output will be
sent. If the file name ends in “.Z”, then compress will
be used to produce a compressed output file.

Several images may be concatenated together into a sin-
gle file, and most of the tools will properly process all the
images. Those that will not are noted in their respective
man pages.

Picture comments
Images stored in RLE form may have attached com-
ments. There are some comments that are interpreted,
created or manipulated by certain of the tools. In the
list below, a word enclosed in <> is a place-holder for a
value. The <> do not appear in the actual comment.

image gamma=<float number>
Images are sometimes computed with a particular
“gamma” value – that is, the pixel values in the image
are related to the actual intensity by a power law,pixel value = intensityimage gamma :
Some of the display programs, and the buildmap
function will look for this comment and auto-
matically build a “compensation table” to trans-
form the pixel values back to true intensity values.
display gamma=<float number>
The display gamma is just image gamma. That is, it is
the “gamma” of the display for which the image was
computed. If an image gamma comment is not present,
but a display gamma is, the displayed image will be
gamma corrected as above. The to8 program produces
a display gamma comment.

colormap length=<integer>
The length of the colormap stored in the RLE header
must be a power of two. However, the number of
useful entries in the colormap may be smaller than

this. This comment can be used to tell some of the
display programs (getx11, in particular) how many of
the colormap entries are used. The assumption is
that entries 0 colormap length1 are used. This com-
ment is produced by mcut, rlequant, and rledither.
image title=<string>
This comment is used by getx11 to set the window title.
If present, the comment is used instead of the file name.
(No other programs currently pay attention to this com-
ment.) The comments IMAGE TITLE, title, and TITLE
are also recognized, in that order. No programs produce
this comment.

HISTORY=<string>
All toolkit programs (with the exception of rleaddcom)
create or add to a HISTORY comment. Each tool ap-
pends a line to this comment that contains its command
line arguments and the time it was run. Thus, the image
contains a history of all the things that were done to it.
No programs interpret this comment.

exponential data
This comment should be present in a file stored in “ex-
ponential” form. See unexp and float to exp for more
information. The unexp program expects to see this
comment.

8.2.3 Image Format Conversion

To convert different image formats, besides URT the
command imconv (AIX only) supports the following
formats:

gif, hdf, icon, iff, mpnt, pbm, pcx, pgm, pic,
pict, pix, pnm, ppm, ps, ras, rgb, rla, rle,
rpbm, rpgm, rpnm, rppm, synu, tif, x, xbm, xwd.

image conversion is performed due to suffixes, for ex-
ample,

imconv infile.gif outfile.ps

converts the gif-format file infile.gif to PostScript-
format file outfile.ps or alternatively

imconv -xwd a -ps b

transforms the inputfile named a from xwd format to the
output file named b in PostScript-format.

Under X-Windows, window images may be stored in a
dump file. The target window is selected by mouse click.
The keyboard bell is ringing once at the beginning of the
dump and twice at the end, e.g, the commands:

xwd -out mywindow.xwd

imconv mywindow.xwd mywindow.rle

getx11 mywindow.rle

8.3. CERN Software 53

generate a X-window dump file named mywindow.xwd,
convert it to the RLE-format file mywindow.rle and
viewed once again.

A truncated subset of the functionality of the com-
mands xwd and imconv is available under HP-Unix
via XtoPS. e.g. the command

XtoPS +border mywindow.ps

generates a postscript-file named mywindow.ps exclud-
ing the image-borders of the window chosen.

8.3 CERN Software

The CERN program library is a large collection of
general-purpose programs maintained and offered in
both source and object code from the CERN computer
center. Most of the software was developed at CERN
and is therefore oriented towards the needs of a physics
research laboratory. Nearly all, however, are of a gen-
eral mathematical or data-handling nature, applicable to
a wide range of problems.

The library contains about 3000 subroutines and com-
plete programs. 80% of the programs are written in
Fortran77 and the remainder in C or assembly code.

At GSI computing center, the library is available on all
supported Unix platforms, i.e IBM AIX, HP HP-UX and
DEC ULTRIX, as well as on VMS and MVS. Documen-
tation is available in printed form or as postscript files in
the directory rzhp9a:/cern/doc.

In the following, some major programs and packages
(paw, cmz, GEANT) are shortly described. Further-
more, an overview of the organization of the CERN-
library as well as instructions on how to link own pro-
grams with the library are given.

8.3.1 paw

paw is an interactive utility for visualizing experimental
data on a computer graphics display. It may be run in
batch mode if desired for very large data analyses. paw
combines a handful of CERN Program Library packages
that may also be used individually in users applications
dealing with experimental data. Figure 8.3 shows the
various components of paw.

The following list points to some typical paw appli-
cations (for more details, the PAW-manual should be
consulted):� Plot a vector of data fields for a list of events (Ntu-

ples)� Histogram of a vector of variables for a list of events

PAW

KUIP

HPLOT

HIGZ

HBOOK

MINUIT

ZEBRA COMIS

SIGMA

ZEBRA MEMORYZEBRA FILES

GKS (...)

PHIGS

DI3000

X11

GPR, GMR (Apollo)

GL (SGI, IBM)

The Plotting Package

The Graphics Package:

basic graphics and

graphics editor for

pictures in data base

User Interface

Command Processor

Menu Dialogue

Histogramming

N-Tuples

Statistical Analysis

Minimization Package

FORTRAN Interpreter

Arrays Manipulation

Data Structure Manager

Input/Output Server

Data Base Manager

Figure 8.3: PAW and its components� Fit a function to a histogram� Annotate and print graphics

8.3.2 cmz

cmz is an advanced, interactive, fast, self-documenting,
customizable, machine-independent and patchy com-
patible source-code management system with emphasis
on FORTRAN and C source code. cmz is based on the
same user interface package as PAW (KUIP). It allows
to develop and transfer machine independent code for
application programs.

The source-code management for almost all packages
of the CERN program library is done with cmz, so it
is a useful tool to develop user applications for dif-
ferent hardware platforms in the CERN environment.
cmz runs on all supported UNIX flavors as well as on
IBM/MVS, VM, VMS and other operating systems.

54 Chapter 8. Applications and Utilities

Users intending to use cmz for their code development
should consult the printed manual.

8.3.3 GEANT

GEANT is a system of detector description and simula-
tion tools which should help the physicist in such studies.
GEANT is most useful in the� design and optimization of the detector� development and test of the reconstruction and

analysis programs, and� the interpretation of experimental data.

In order to run GEANT, the user has to provide his own
set of standardized subroutines describing the geomet-
rical setup, the kinematics of the event and storing the
results into the desired histograms.

GEANT can be run in interactive mode with graphics
capabilities for program development and detector setup
and, if settled, in batch mode for production of statistical
data.

8.3.4 Organization of the CERN program
library

The CERN program library is available in machine inde-
pendent source (car file) and machine dependent source
and binary form. Usually, CERN offers updates of the
library 3-4 times a year. Three different versions of the
CERN-library are stored on every machine:� pro: production version� new: newest version, may be changed without no-

tice.� old: old version, you can fall back to this version
in case of incompatibilities.

The CERN library is stored in a standardized place:
You will find all files in the directory /cern. The
organization of the subdirectories is shown in table 8.1

The libraries listed in table 8.2 have been installed in the
lib subdirectory.

8.3.5 Usage of CERN-library programs

Initialization of CERN environment

Before you can use any program of the CERN library,
you have to initialize the CERN environment. This can
be done by the command

. cernlogin [new | pro | old]

If none of the optional parameters is given, the pro
version is selected.

You can initialize the CERN environment automatically
during login. To do so, put the following line (as single
line) into your $HOME/.profile file (it should be
already in the file, just remove the comment sign # in
front of the line):

cernlogin in .profile

[-x /usr/local/bin/cernlogin] &&
. /usr/local/bin/cernlogin

If you login on a HP machine via VUE-login, remem-
ber that the .profile file is not executed, but in-
stead the $HOME/.vueprofile is executed. In this
case, put the following line (as single line) into your
$HOME/.vueprofile file (it should be already in
the file, just remove the comment sign # in front of the
line):

cernlogin in .vueprofile

[-x /usr/local/bin/cernlogin] &&
. /usr/local/bin/cernlogin >/dev/null 2>&1

Starting paw:

You can start paw after having initialized the CERN
environment (see above) by typing

paw
**
* *
* W E L C O M E to P A W *
* *
* Version 1.13/00 9 March 1992 *
* *

Workstation type (?=HELP) <CR>=1 :?
List of valid workstation types:

0: Alphanumeric terminal
1-10: Describe in file higz_windows.dat

n.host: Open the display on host(1<n<10)
m: PAW_MOTIF on local host

m.host: PAW_MOTIF on specified host
7878: FALCO terminal
7879: xterm

Metafile workstation types:
-111: HIGZ/PostScript (Portrait)
-112: HIGZ/PostScript (Landscape)
-113: HIGZ/Encapsulated PostScript

-777/8: HIGZ/LaTex

8.3. CERN Software 55

/cern main directory CERN program library

/old old version, and subdirs

/pro production version with the following subdirs:

/bin executables (paw, cmz,: : :)
/lib libraries (libpacklib.a,: : : ,gxint315.o)

/src /car machine independent source (car-files)

/cra cradles, instructions how to unpack car-files

/mkf

/cfs /package: source for each package

/inc GEANT 3.15 include files

/log log-files of library installation

/mgr installation tools for library manager

/doc documentation for some pool-packages (not supported)

/pawexam paw-example kumac files from paw-manual

/new new version, and subdirs

/doc postcript versions of manuals and CNL

Table 8.1: structure of the CERN program library

name library

KERNLIB libkernlib.a basic mathematical and general purpose routines

PACKLIB libpacklib.a main packages (CSPACK, EPIO, FFREAD, HBOOK4, KA-
PACK, KUIP, MINUIT, ZBOOK, ZEBRA) and duplication of
KERNLIB

GRAFLIB libgraflib.a grafic packages (HPLOT5, HIGZ), kernel

libgrafX11.a X11-part of GRAFLIB

libgrafGKS.a GKS-part of GRAFLIB

PAWLIB libpawlib.a PAW-libraries (PAW, COMIS, SIGMA)

GEANT libgeant314.a GEANT library version 3.14 (only for backwards compatibility)

libgeant315.a GEANT library version 3.15

geant314.o interactive main program GEANT 3.14

geant315.o interactive main program GEANT 3.15

BVSL libbvsl.a bitvector manipulation package

GENLIB libgenlib.a general purpose subroutines

Table 8.2: CERN libraries installed on /cern/version/lib subdirectories

56 Chapter 8. Applications and Utilities

After the start-up, paw asks for the workstation type.
A question mark (?) gives you a list of valid worksta-
tions. Usually you enter either 0 for no graphics or a
number between 1 and 10. You can customize the initial
appearance of your graphics window by editing the file
$HOME/higz windows.dat. Each of the 10 lines
in this file corresponds to one workstation number and
describes the position and size of the graphics window.

The following additional parameters can be given to the
paw-command:

option

-v [new|old|pro] version, default is se-
lected version of cern-
login

-n disable automatic exe-
cution of pawlogon
.kumac

-b macroname batch mode, exe-
cute macroname, implies
workstation type = 0

Starting cmz:

cmz is started after initialization of the CERN environ-
ment (see above). The following additional parameters
can be given to the cmz-command:

option

-v [new|old|pro] version, default is se-
lected version of cern-
login

-n disable automatic exe-
cution of cmzlogon
.kumac

-l logon read logon commands
from file logon.kumac

-r [restore] restore environment of
previous CMZ session.
By default, cmzsave
.dat will be read, if
specified file restore

-b macroname batch mode, execute
macroname, implies also
-n

Creating your own applications

To compile and link your own Fortran or C programs
together with routines from the CERN-library, you can

use standard Unix compile or link statements (see chap-
ter 7 on page 45). The use of a makefile is strongly
encouraged (see section 7.4.1 on page 46).

ATTENTION: You must specify the following com-
pile options, depending on the operating system of your
machine, otherwise no CERN library subroutine can be
found by the linker:

option OS

-qextname AIX

+ppu HP-UX

DEC-ULTRIX

The following examples show two Makefiles for creating

1. a GEANT program

2. a PAW application with own extensions

A GEANT example:

The following Makefile shows an example of how
to create the interactive GEANT application shower
from the user supplied subroutines gudigi.f,
gufldi.f, gukine.f, : : : . These routines
use INCLUDE statements to include the stan-
dard GEANT common blocks from the directory
/cern/pro/src/inc.

The following Makefile can be used on an HP ma-
chine. You can copy thisMakefile to create your own
from /cern/doc/Makefile.geant.

GEANT Makefile HP-UX example:

GEANT Makefile example
M.D. 15/10/92
#
definition of symbols
#
LIB=/cern/pro/lib
INC=/cern/pro/src/inc
#
definition of own modules
#
GEANTOBJ=gudigi.o gufldi.o guffgo.o gufld.o \

gugeom.o guhbook.o gukine.o \
gumate.o gustep.o

#
Default action
#
.DEFAULT: shower
#
Compiler options
#
for debug:
FOPTS=-g +ppu
for production:
FOPTS=+O +ppu

8.3. CERN Software 57

FFLAGS=$(FCOPTS) $(FOPTS)
#
general rule how to compile .f
#
.f.o:
fort77 $(FFLAGS) -c -I$(INC) $<
#
rule how to create program shower
#
shower: $(LIB)/gxint315.o $(GEANTOBJ)
fort77 $(LIB)/gxint315.o $(GEANTOBJ) \
-L$(LIB) -L/usr/lib/X11R4 \
-lgeant315 -lgraflib -lgrafX11 -lpawlib \
-lpacklib -X11 -lm \
$(FFLAGS) -o shower;

If you are running on an IBM RS/6000, the following
lines have to be changed:

GEANT Makefile AIX example:

...

FCOPTS=-g -q extname
for production:
FOPTS=+O -q extname
...

.f.o:
xlf $(FFLAGS) -c -I$(INC) $<
#
rule how to create program shower
#
shower: $(LIB)/gxint315.o $(GEANTOBJ)
xlf $(LIB)/gxint315.o $(GEANTOBJ)
...

For an explanation of the -I, -c, -l, -L, -o
flags on the compile command, see the man pages and
section 7.2 on page 45 of this primer.

A PAW example:

The following Makefile shows an example of how
to create the interactive PAW application pawgr1
with user supplied commands. The new commands
are defined in the command definition file (cdf file)
user.cdf. They call action routines from cond-
set.f, condshow.f, : : : .
Additionally, the user written subroutines are archived
in a library libpawgr.a. Object files are archived in
this library by the command ar.

The last entry of theMakefile shows how to create au-
tomatically the appropriate fortran routine for command

definition – which has to be called in the PAW main pro-
gram – from the cdf-file by calling the KUIP-compiler
kuipc.

The following Makefile can be used on an HP ma-
chine. You can copy thisMakefile to create your own
from /cern/doc/Makefile.paw.

PAW Makefile HP-UX example:

PAW Makefile example
M.D. 15/10/92
#
definition of symbols
#
LIB=/cern/pro/lib
#
definition of own modules
#
PAWOBJ= condset.o \

condshow.o\
conddraw.o\
user.o

PAWMAIN=mypaw.f
#
Default action
#
.DEFAULT: pawgr
#
Compiler Options etc.
for debug:
FOPTS=-g +ppu
for production:
FOPTS=+O +ppu
FFLAGS=$(FCOPTS) $(FOPTS)
ARFLAGS=-crv
#
general rule how to compile .f
#
.f.o:
fort77 $(FFLAGS) -c $<
#
rules how to create program pawgr1
#
pawgr1: $(PAWMAIN) libpawgr.a
fort77 $(PAWMAIN) \
-L. -L$(LIB) -L/usr/lib/X11R4 \
-lpawgr -lpawlib -lgraflib -lgrafX11 \
-lpacklib -X11 -lm \
$(FFLAGS) -o pawgr1

libpawgr.a: $(PAWOBJ)
echo "Loading libpawgr.a ..."
ar $(ARFLAGS) libpawgr.a $(PAWOBJ)
#
create user.f from command
definition file user.cdf
#
user.f: user.cdf
kuipc user.cdf user.f

If you are running on an IBM RS/6000, the same changes
as above in the GEANT example have to be done.

58 Chapter 8. Applications and Utilities

For an explanation of the -I, -c, -l, -L, -o
flags on the compile command, see the man pages and
section 7.2 on page 45 of this primer.

Chapter 9: Introduction to Internet Services

9.1 About Internet

The Internet is a global network of networks that pro-
vides access to hundreds of thousands of computers
around the world. As the reach of the network has
grown, so has the number of services accessible. the
main tools that allow the user to navigate through the
Internet, are

telnet to access remote hosts,
ftp to retrieve data files.

Anonymous FTP will be briefly described next. For
telnet see chapter 4.4 on page 23.

9.1.1 FTP

FTP stands for "file transfer protocol" and is the method
used to transfer files over the Internet. "Anonymous" ftp
means that one can login to the remote system using the
userid of "anonymous" and password of either "guest"
or usually your own userid and internet address. Ftp is
like telnet in that the "open" command and access to the
remote host is similar.

A typical session might go as follows:

$ftp any.host.i.know
login:anonymous
guest login ok...send user id as password
ftp>ls -al (list all files)
ftp>cd pub (change to the " pub" directory)
ftp>get my.file
transfer complete
ftp>quit
$

The standard transfer protocol is ASCII. This is suitable
for text. Use command binary if transferring program
or image files. (Note: on VAX-VMS computers use
IMAGE).

Large files are usually "tared" and compressed. You have
to use binary FTP to get such files. The file extension
shows how to uncompress it:

.tar tar-xvf myfile.tar

.Z uncompress myfile.Z

.tar.Z uncompress myfile.tar.Z
tar -xvf myfile.tar

9.1.2 Internet addresses

There are two forms that express an Internet address,
an alphabetic name, or a series or numbers. The alpha-
betic version is called the "domain name system" and

the numeric the "numeric name system". Sometimes a
local network will not be up-to-date with additions to
the domain names and an address may not work. If
this happens, try the numeric address before giving up.
Sometimes the numeric name system address will be
changed without notice and in that case the alphabetic
domain name should be tried.

9.2 Internet Services

9.2.1 Overview

With a little practice, the above-described functions
(ftp,telnet) will be simple and open the electronic door
to the global reach of the Internet. An introduction to the
Internet services can be found in [10] A comprehensive
listing of services is given in [14]. Its table of contents
is listed below:

1. Library Catalogs & Campus Information Systems

2. Databases

3. Electronic Discussion Groups/Forums

4. Directories

5. Information Resources

6. FTP Archives

7. Fee-Based Information Services

8. Software/Freeware

9. Bulletin Board Services

10. Miscellaneous

9.2.2 archie

One of the most useful Internet services, acquisition of
public domain software, can be the most frustrating.
There are now hundreds of servers with thousands of
software titles spread throughout the Internet. Often the
searcher knows that the needed software is somewhere
out there but finding the software title through this maze
can take a long time. After checking 10 or 20 host sites,
one is tempted to give up. Archie is a unique system
devised to make locating software on public archives
simple. Instead of searching the remote hosts one at a
time, the user can enter the search on "archie" and find
out where copies exist across 712 (at this writing) hosts.

59

60 Chapter 9. Introduction to Internet Services

The results of the search may be viewed online or sent
automatically via e-mail for later viewing. Search results
identify host domain name and IP address and the exact
path and filename to the requested file making it easy to
ftp. The search engine has many powerful features to
aid in retrieving those hard- to-find titles.
Access: telnet quiche.cs.mcgill.ca login as
archie. Important commands are:

help a list of all commands
help command description of command
quit exit archie
whatis search for keyword in the software

description database
prog search the database for a file

For example prog xclockwill cause archie to search
all the archives for the string "xclock". At the end of the
search, archie will present the results back to the screen.

xarchie

If you have access to an X-window terminal, you can use
xarchie for a menu-guided search through the public-
domain ftp sites. For a more detailed description use
man xarchie.

9.2.3 NetNews

Usenet is the set of people who exchange articles tagged
with one or more universally-recognized labels, called
"newsgroups". The groups distributed worldwide are
divided into seven broad classifications: "news", "soc",
"talk", "misc", "sci", "comp" and "rec". Each of these
classifications is organized into groups and subgroups
according to topic.

comp Topics of interest to both computer professionals
and hobbyists, including topics in computer sci-
ence, software source, and information on hard-
ware and software systems.

sci Discussions marked by special and usually prac-
tical knowledge, relating to research in or appli-
cation of the established sciences.

misc Groups addressing themes not easily classified
under any of the other headings or which incor-
porate themes from multiple categories.

soc Groups primarily addressing social issues and
socializing.

talk Groups largely debate-oriented and tending to
feature long discussions without resolution and
without appreciable amounts of generally useful
information.

news Groups concerned with the news network and
software themselves.

rec Groups oriented towards hobbies and recre-
ational activities.

To start a NetNews reader with X11 interface typemxrn
on the IBM or HP workstations.

Appendix A: GNU Software

GNU stands for Gnu’s Not Unix and is the name for the
complete Unix-compatible software system developed
by the Free Software Foundation. Some large parts of
this system are already working, and are distributed now.

The Software is distributed as a ’Free Software’. The
word ’free’ stands here for freedom and not to price.
To get the GNU Software you may pay or may not.
But in contrast to commercial Software, you have the
freedom to copy the program and give it to your friends
and co-workers and you have the freedom to change the
program as you wish, by having the full access to the
source code. Furthermore, you can study the source and
learn how such programs are written.

The main work of the Free Software Foundation is con-
centrated on the development of new free software,
working towards a complete GNU system.

Beside developing GNU, FSF distributes copies of GNU
software and manuals, and accepts tax-deductible gifts
to support GNU development. Most of the FSF’s funds
come from its distribution service.

Several parts of the GNU Software (about 120 programs)
are available for UNIX, DOS, and a lot of other operating
systems.

Interesting GNU programs for a UNIX system are:

emacs full-screen editor (Chapter 5.2)
gcc the GNU C/C++/Objektiv-C Com-

piler
gdb GNU C,C++ Debugger
GNU C Lib POSIX.1 C library
libg++ C++ class library
bison GNU advanced yacc
make GNU advanced make
indent C reformatting program
RCS Revision Control System
CVS Concurrent Version System
patch apply diffs (patches) to files
gnuchess a chess playing program (X11)
Ghostscript (gs) a Postscript interpreter
ghostview X11 user interface for Ghostscript
fontutil fonts for Ghostscript or TEX
gnuplot interactive plotting program
Texinfo structured documentation system,

produces on-line help and printed
documents

ispell advanced spell checker (also for
TEX)

less a better pager

bash GNU’s Bourne Again SHell
GNU tar GNU (Tape) archive
patch applies diff files

We have installed some of the GNU programs in the
/usr/local filesystem on the central AIX and HP-
UX file servers, so that the programs are available via
NFS.

Nearly all of the above listed programs are installed on
the central AIX server.

For the most programs exist a man page or
a Postscript file of the reference manual in
/usr/local/doc/gnu.

All the software and publications from the Free Software
Foundation are distributed with permission to copy and
redistribute. If you are interested in a copy you can
get the latest software via anonymous FTP (program:
’ftp’, user: ’anonymous’, password YOUR NAME,
mode ’binary’) from prep.ai.mit.edu (18.71.0.38) (Di-
rectory: /pub/gnu). This ftp server is in Cambridge.
To reduce the transfer time and costs you should take
a ftp server at your side. Two good candidates are
ftp.th-darmstadt.de (130.83.55.75) or rusmv1.rus.uni-
stuttgart.de (129.69.1.12).

If you find a GNU program of common interest, and you
think it should be installed on a central file server, let use
know about it.

From our own experience: Please restrict your self in
collecting programs from ftp servers. The disk space is
restricted and it makes no sense that every body has the
same programs on his user disk.

61

Appendix B: Motif Windows

With a mouse, a lot of functions can be performed with
windows:

1. You can accomplish geometrical operations, such
as moving or resizing.

2. The contents of windows can be scrolled.

3. Windows can be iconized, that means, they can be
converted to a small picture called icon, which is a
representation of an inactive window, and they can
be restored again into the state of an active window.

Table B.1 summarizes the operations possible with Motif
windows. The terms used there are explained in the
following.
The remainder of this paragraph describes in detail, how
these operations can be performed.

Standard GSI Terminal Windows

A standard GSI terminal window can be obtained with
the command xt. It is an Motif window and has an outer
frame and a horizontal title bar on top and a vertical
scroll bar at the right, but both within this frame. They
consist of several parts with each of them enabling spe-
cific functions. The mouse cursor, which has the shape
of an ’I’ when positioned within the text field, changes
its appearance when moved to one of these elements.
The new shape depends on the specific location.

Motif Window Frame

The Motif window frame - as a rectangle - consists of
two horizontal and two vertical bars, and of four corners.
When moved to one of the bars, the mouse cursor appears
as an arrow pointing outwards to a line. This shall
indicate that the corresponding border of the window
can be moved. To do it, press the left mouse button and
move the mouse cursor while keeping the button pressed:
The window is resized by dragging this border, whereas
the other borders keep their location.
When moved to one of the corners, the mouse cursor ap-
pears as an arrow pointing outwards to the corresponding
window corner. In the same way as with the bars, the
window can be resized by dragging this corner, whereas
the diagonal opposite corner keeps its location.

Title Bar

The title bar is the horizontal bar on top of the screen, just
inside the window frame. It consists (from left to right)
of the window menu button, the title area, the minimize
button, and the maximize button.

The Title Area If you move the mouse cursor to the
long horizontal field of the title bar, the cursor changes
its shape to a fat arrow. Now, with the same mouse
procedure as described above, you can move the window
as a whole without changing its size.

The Minimize Button The minimize button can be
used to convert a window to an icon. The button is
identified by a very small square. To iconify a window
might be useful in case of programs that can run unat-
tended in background, or in case of applications used
only occasionally. It preserves screen space by reducing
the window stack.

The Maximize Button The maximize button can be
used to convert an icon or a window to a new window
covering the whole screen. It is identified by a big square
in its center.

The Window Menu The window menu button is lo-
cated leftmost within the title bar and identified by a
narrow rectangle in its center. If activated with the left
mouse button, either by clicking or pressing and holding
down, the window menu appears as popup menu. It can
be used for the handling of windows and also of icons -
the window menu also pops up if you click an icon. The
functions not available are printed in a lighter typeface
(minimize and size in the case of an icon). All functions
available with the mwm window frame and the other
parts of the title bar are also available with the window
menu.

If a window menu function is activated by click with the
left mouse button, it can be performed just by shifting
the mouse - no more button needs to be pressed during
mouse movement. The following functionsare available
in the window menu:� Restore: Icons, or windows covering the full

screen (’maximized’), are converted back to a win-
dow.� Move: Move window or icon with the mouse.� Size: Resize window. If you move the mouse to one
of the four corners of the window frame, the cor-
responding corner points are shifted. If you move
the mouse to one of the four vertical or horizontal
borders, the corresponding borders are shifted.� Minimize: Convert window to icon.

62

63

Operation window part action

resize window window frame drag vertical or horizontal bar
(top or bottom)

window frame drag corner (one of four)

window menu click size button, shift frame bar

window menu click size button, shift frame corner

move window title bar drag title area
window menu click move button, shift window

iconize window title bar click minimize button

window menu click minimize button

maximize window title bar click maximize button

window menu click maximize button

restore window from icon window menu (icon) click restore button

lower window in stack window menu click lower button

close window window menu click close button

move icon window menu (icon) click move button, shift icon

maximize icon window menu (icon) click maximize button

lower icon in stack window menu (icon) click lower button

close icon window menu (icon) click close button

Table B.1: Summary of Operations with Motif Windows and Icons� Maximize: Convert window or icon to window
covering the complete physical screen.� Lower: Put window or icon to the bottom of the
window or icon stack.� Close: The window will be closed (and disappears).

The window menu functions can also be invoked via
accelerator keys, e.g. <Alt-F9> for Minimize. This
works with or without an activated window menu. If
the window menu is already activated, you can also
enter a unique abbreviation (the underlined letter), e.g.
’n’ for Minimize. The required key combinations and
abbreviations are indicated in the window menu.

The Scroll Bar

In your terminal windows your are not limited to the
displayed lines of text. When created with xt, up to 200
lines of text are saved, and you can use the scroll bar at
the right to scroll through the saved text.

Appendix C: Unix Hardware at GSI Computing Center

Token Ring 128

Ethernet 64

Ethernet 96

rzri6f

rzhp9b

rzhp9a

rzri6d

rzri6b

rzri6a

rzds5b

rzds5a

6000/970
47 SPECint’92
94 SPECfp’92

6000/32H
21 SPECint’92
39 SPECfp’92

6000/32H
21 SPECint’92
39 SPECfp’92

6000/320
17 SPECint’92
32 SPECfp’92

128 MB

48 MB

64 MB

80 MB

64 MB

104 MB

64 MB

64 MB

9000/720
36 SPECint’92
58 SPECfp’92

9000/720
36 SPECint’92
58 SPECfp’92 5000/125

16 SPECint’92
18 SPECfp’92

5000/200
16 SPECint’92
18 SPECfp’92

DAT 4mm

CD-ROM

8500 Exabyte

8 mm

3.5" Floppy

9.8 GB

IBM HP DEC

8200 Exabyte

8 mm

8500 Exabyte

8 mm

TZ30 95 MB

6.6 GB

CD-ROM

12.0 GB

8200 Exabyte

8 mm

8500 Exabyte

8 mm

CD-ROM CD-ROM

QIC-Tape

3.5" Floppy

GSI/RZ - 10.11.92

Figure C.1: Present status of the Unix Hardware installed at GSI Computing Center. Grayshaded boxes represent
workstations accessible by users.

64

Bibliography

[1] Adobe Systems Incorporated, The PostScript Language Reference Manual, Addison-Wesley, (1990), ISBN
0-201-18127-4

[2] D. Cameron and B. Rosenblatt, Learning GNU Emacs, O’ Reilly &Associates, Inc, Sebastopol, USA,(1991)

[3] J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes, Computer Graphics: Principles and Practice, Addison-
Wesley, Amsterdam, (1990), ISBN 0-201-12110-7

[4] M. Goossens, A. Samarin, TEX at CERN - Local Guide, CERN CN/US/136, (1992)

[5] Hewlett-Packard Company, The Ultimate Guide to the vi and ex Text Editors, Benjamin/CummingsPublishing
Company, Inc., Redwood City, USA, (1990)

[6] T.L.J. Howard, W.T. Hewitt, R.J. Hubbold, K.M. Wyrwas, A Practical Introduction to PHIGS and PHIGS
PLUS, Addison-Wesley, Amsterdam, (1991), ISBN 0-201-41641-7

[7] R.O. Jenks, R.S. Sutor, axiom, The Scientific Computation System, Springer

[8] D.E. Knuth, The TEXbook, Addison-Wesley, Reading, (1990)

[9] D.E. Knuth, Computers and Typesetting, Vol. A – E, Addison-Wesley, Reading, (1986)

[10] E. Krol, The Whole INTERNET, Users’s Guide and Catalog, O’ Reilly, (1992), ISBN 1-56592-025-2

[11] L. Lamport, LATEX, A Document Preparation System, Addison-Wesley, Reading, (1986)

[12] L. Lamb, Learning the Vi, O’ Reilly &Associates, Inc, Sebastopol, USA, (1990)

[13] F. Mittelbach, R. Schöpf, The New Font Selection - User Interface to Standard LATEX, TUGboat 10,2 (1989)
222-238

[14] NYSERVNet, New User’s Guide to Useful and Unique Resources on the Internet, stored in
rzri6b:/usr/local/doc/internet/nysernet.guidev2.txt

[15] St. Talbott, Managing Projects with make, O’ Reilly &Associates, Inc

[16] St. Wolfram, Mathematica, A System for Doing Mathematics by Computer, Addison Wesley

65

Indexj, 11, 13�, 13
*, 13
+ppu option, 56
-qextname option, 56
., 13, 14
.., 13, 14
.Z file, 13
.elm/aliases.text file, 19
.emacs file, 31
.exrc file, 30
.forward file, 19
.kshrc file, 9
.mailrc file, 19
.profile file, 10, 54
.profile-common file, 10
.sh history file, 10
.vueprofile file, 10, 54
/, 13
/cern, 54
/usr/local/bin/.kshrc file, 9
/usr/local/doc/tex, 37
/usr/local/lib/tex/inputs, 34, 37, 38
<, 11, 13
>, 11, 13
>>, 11
&, 13
<Ctrl-c>, 12

3270, 2

a.out file, 45
access

mvs, 23
to Unix

text oriented, 1
via X-windows, 3
with HP VUE, 4

account
how to obtain, 1

adb, 46
aixterm, 2–4
AIXwindows Desktop, 5
alias

mail, 19AMS-TEX, 35
amstex option, 35
anonymous login, 59
applymap, 51
ar, 45, 57
archie, 59

archive, 45
article documentstyle, 34
Athena

widget, 8
aux file, 35
auxiliary

aux file, 34
avant option, 39
avg4, 51
awk, 34
AXIOM, 48
axiom, 48

background job, 13
backup, 25
bash, 5
bash, 61
bbl file, 35
Benutzerberatung, i
bibliography

bbl file, 35
bison, 61
book documentstyle, 34
bookman option, 39
Bourne again shell, 5
Bourne shell, 5
BVSL, 55

C (compiler), 45
C shell, 5
C++, 45
cancel, 25
car file, 54
case sensitive

file name, 14
cat, 12, 15, 16
cc, 45, 47
cd, 7, 12, 14
cdf file, 57
CERN program library, 53

new version, 54
old version, 54
pro version, 54

cernlogin, 54
change

directory, 12, 14
password, 12
permission, 12, 16

character
count, 13

chmod, 12, 16

66

INDEX 67

click, 7
close

button of window menu, 6
telnet window, 6
terminal window, 6
Visual User Environment, 6

cmz, 46, 53, 56
cmzlogon.kumac, 56
colors

with TeX, 43
COMIS, 55
commands, 11

options, 11
switch, 11

compiler, 45, 47
option, 45

compress, 13
compress, 13
concatenate

file, 15
conversion

image formats, 50, 52
copy

file, 12, 16
count

characters, 13
lines, 13
words, 13

cp, 12, 16
create

directory, 12, 15
crop, 51
cross-references

toc file, 34
csh, 5
CSPACK, 55
current directory, 14
CVS, 61
cvtgdf, 50

dbx, 46
debug program, 46
delete

directory, 12, 15
file, 12, 16

desktop environment, 5
AIXwindows Desktop, 5
dxsession, 6
Visual User Environment, 6

device independent file, see dvi
\ding, 39
dingbat option, 39

\dingfill, 39
\dingline, 39
\dinglist, 39
directory

change, 12, 14
create, 12, 15
current, 14
home, 14
list, 12, 14
move, 15
parent, 14
remove, 12, 15
root, 13, 14
working, 14

display
file, 12, 15

display address, 3
display server, see X-server
distortion of picture

epsfig, 43
document style, 34
documentation

emacs, 32
LaTeX, 37
online, 12, 18
TeX, 37

dpscolor option, 43
draft mode (epsfig), 43
drag, 7
drivers

documentation, 37
dvi

driver, 35, 43
dvips, 38, 40

previewer, 35
xdvi, 39

dvi file, 34, 35, 37, 40
dvips, 35, 37–41, 43
dxdb, 46
dxnotepad, 33
dxsession, 1, 6
dxterm, 2–4

e, 33
echo, 9, 13
ed, 32
EDITOR, 9
editors, 28

Notepad, 33
dxnotepad, 33
edt, 33
ed, 32

68 INDEX

emacs, 30
e, 33
vi, 28
vuepad, 33
xedit, 33
xe, 33
edt+, 33
INed, 33
LPEX, 32
uni-XEDIT, 33

edt, 33
edt+, 33
eepic option, 40
elm, 18, 19
elmalias, 19
emacs

documentation, 32
emacs, 30, 61

basic keystrokes, 31
commands, 30
modes, 31

ENV, 9
environment variable, 8, 9, 13

EDITOR, 9
ENV, 9
HOME, 9
LPDEST, 9, 25
PATH, 9
PRINTER, 25
PS1, 10
TERM, 10
VISUAL, 10

epic option, 40
EPIO, 55
epsfig option, 39, 41
\epsfig, 41–43
equivalent hosts, 19
ex, 29
exit, 5, 6
export, 2, 8, 9

f77, 45
fant, 51
FFREAD, 55
file

change permission, 12, 16
concatenate, 15
copy, 12, 16
display, 12, 15
move, 12, 16
name, 14

case sensitive, 14

remove, 12, 16
system, 14
transfer, 21

file transfer protocol, 21
files, produced by LaTeX, 34
find, 13
finger, 12
fmt file, 35
fmt file, 35
font, 35

files
gf, 35
pk, 35
pxl, 35

large size, 40
fontutil, 61
format, 35
fort77, 45, 57
Fortran, 45
forward

mail, 19
Free Software Foundation, 61
ftp, 21, 59

anonymous login, 59

gcc, 61
gdb, 61
GDDMXD TSO command, 23
GDF file, 50
GDFIP TSO command, 50
GEANT, 53–56

example Makefile, 56
include files, 55
interactive main program, 55

geant314.o, 55
geant315.o, 55
GENLIB, 55
getting help

Unix Commands, 18
getx11, 51
gf file, 35, 37
Ghostscript, 39, 61
ghostview, 37, 39, 43, 61
gif file, 51, 52
giftorle, 51
GNU, 61

C Lib, 61
tar, 61

GNU project, 39
gnuchess, 61
gnuplot, 61
GRAFLIB, 55

INDEX 69

graphical tools, 48
graphics

merge with TeX, 40
graPHIGS, 50
graytorle, 51
grep, 12
gs, 39, 61
gxint315.o, 55

HBOOK4, 55
hdf file, 52
height parameter (epsfig), 43
help, 12, 18
help desk, i
helv option, 39
HIGZ, 55
higz windows.dat, 56
holding, 3
HOME, 9
home directory, 14
$HOME/higz windows.dat, 56
host

equivalent, 19
hostname, 6
HP VUE, see Visual User Environment
HPLOT5, 55
hpterm, 2–4
hrecover, 26

IBM Mainframe Access, 23
icon, 5, 7
icon file, 52
idx file, 35
iff file, 52
image formats, 52
image processing, 50
imconv, 52, 53
ind file, 35
indent, 61
indexing

idx file, 35
ind file, 35
makeindex, 35

INed, 33
info, 12, 18
input

standard, 11
internet

address, 3
name, 3

Internet address, 59
Internet services, 59

interrupt TeX, 38
ispell, 61

jobs, 12

KAPACK, 55
KERNLIB, 55
kill

process, 12
kill, 12
Korn shell, 5, 10
ksh, 5
KUIP, 55
kuipc, 57
kumac file, 55

LaTeX, 34, 35
documentation, 37
error messages, 34
format, 35
logfile, 34
style file, 34
with colors, 43

latex, 37, 38
learn, 12
less, 61
letter documentstyle, 34
libbvsl.a, 55
libg++, 61
libgeant314.a, 55
libgeant315.a, 55
libgenlib.a, 55
libgrafGKS.a, 55
libgraflib.a, 55
libgrafX11.a, 55
libkernlib.a, 55
libpacklib.a, 55
libpawlib.a, 55
library, 45
line

count, 13
linker, 45
list

directory, 12, 14
process, 12
users, 12

list-of-figures
lof file, 34

list-of-tables
lot file, 34

lof file, 35
log file, 34

70 INDEX

login
remote, 20

telnet, 1
logout, 6
lot file, 35
lp, 11, 25
LPDEST, 9, 25
LPEX, 32
lpq, 25
lpr, 25
lprm, 25
lpstat, 25
ls, 11, 12, 14

macro, 35
magnification, 35
mail

alias, 19
forward, 19

mail, 18, 19
mailx, 18
make, 46, 47, 61
Makefile file, 46, 56, 57
makefile file, 46, 47
makeindex, 35
man, 11, 12, 18
math, 48
Mathematica, 48
mcut, 51
menu

option, 8
popup, 8
pulldown, 8

merge text and graphics, 40
mergechan, 51
metafont, 35, 38
mf file, 35, 37
mf, 35
MINUIT, 55
mkdir, 12, 15
more, 12
Motif

widget, 8
window, 7, 62
window manager, 3, 7

mouse, 7
click, 7
drag, 7

move
directory, 15
file, 12, 16

mpnt file, 52

mv, 12, 15, 16
mvs

access, 23
login to Unix, 2

mvs, 23
mvsvt, 23
mwm, see Motif window manager
mxrn, 60

ncs option, 39
NetNews, 60
newsgroups, 60
NFSS, 38, 39
Notepad, 33

on-line tutorial, 12
online documentation, 18
open, 4
option

style, 34
option menu, 8
output

standard, 11

PACKLIB, 55
palatino option, 39
parent directory, 14
passwd, 7, 12
password

change, 7, 12
patch, 61
patchy, 53
PATH, 9
path name, 13

show, 12, 14
path name , 14
pattern

matching, 12
pattern matching, 11
PAW, 41, 55, 57

example Makefile, 57
paw, 53, 54
PAWLIB, 55
pawlogon.kumac, 56
pbm file, 52
pcx file, 52
permission

change, 12, 16
determine, 16

pgm file, 52
PHIGS, 48
pic file, 52

INDEX 71

pict file, 52
PiCTeX package, 40
picture environment, 40
picture data formats, 50
pipe, 11, 13
pix file, 52
pk file, 35, 38
PL/I, 45
plain, 35

TeX format, 34
pnm file, 52
pointer device, 7
popup menu, 8
PostScript, 37, 38

fonts with TeX, 39
previewer, 39

ppm file, 52
previewer, 35
primitive, 35
printenv, 8
PRINTER, 25
process

kill, 12
list, 12

profile files, 10
program development, 45
ps file, 37, 52
ps, 12
PS1, 10
\psdraft, 43
psfig option, 41
\psfull, 43
\psnoisy, 43
\pssilent, 43
public domain software

find, 59
pulldown menu, 8
pwd, 9, 12, 14
pxl file, 35
pyrmask, 51

quit, 6

ras file, 52
rawtorle, 51
rcp, 21, 22
RCS, 61
recover, 26
redirection

input, 11
output, 11

regular expression, 11

remote copy, 22
remote login, 20
remote processing, 20
remote shell, 20
remove

directory, 12, 15
file, 12, 16

remsh, 20
report documentstyle, 34
repos, 51
rexec, 20, 21
rgb file, 52
rla file, 52
RLE file, 51
rle file, 52
RLE-format, 51, 53
rleaddcom, 51
rleaddeof, 51
rlebg, 51
rlebox, 51
rleClock, 51
rlecomp, 51
rledither, 51
rleflip, 51
rlehdr, 51
rlehisto, 51
rleldmap, 51
rlemandl, 51
rlenoise, 51
rlepatch, 51
rleprint, 51
rlequant, 51
rlescale, 51
rleselect, 51
rlesetbg, 51
rlespiff, 51
rlesplice, 51
rlesplit, 51
rleswap, 51
rletoascii, 51
rletogif, 51
rletogray, 51
rletops, 51
rletoraw, 51
rletotiff, 51
rlezoom, 51
rlogin, 20
rm, 12, 16
rmdir, 12, 15
root

directory, 13, 14
rpbm file, 52

72 INDEX

rpgm file, 52
rpnm file, 52
rppm file, 52
run LaTeX, 37

SCCS, 46
script, 7, 13

dot script, 13
search

directory tree, 13
sed, 34
session manager, 5
setup menu, 4
sh, 5
shell, 5

remote, 20
shell parameter

global, see environment variable
local, 8

shell script, see script
SIGMA, 55
smush, 51
sort, 12
sort, 12
source-code management system, 53
special

TeX command, 40
\special, 40, 43
special characters, 13
standard input, 11
standard LaTeX style, 34
standard output, 11
string

type, 13
sty file, 34, 37
style

article, 34
book, 34
documentation, 37
file, 34
letter, 34
major, 37
minor, 37
report, 34
standard LaTeX style, 34

symbolic calculations, 48
symbolic debugger, 46
synu file, 52

tar, 13, 59
telnet, 1–3, 20, 59
telnet window, 3

TERM, 10
terminal emulation, 3
terminal type, 2

aixterm, 2
dxterm, 2
hpterm, 2
xterm, 2

terminal window, 3, 7
GSI standard, 8

TeX, 34
documentation, 37
with colors, 43

tex, 34, 38
Texinfo, 61
text processing, 34
tfm file, 35, 37
tif file, 52
tiff file, 51
times option, 39
tn3270, 23
to8, 51
tobw, 51
toc file, 35
type

file, 12, 15

uncompress, 13
uncompress, 13, 59
unexp, 51
uni-XEDIT, 33
uniq, 12
Unix

file system, 14
machines, 64

Unix commands, 11
unslice, 51
urt, see Utah Raster Toolkit
Usenet, 60
users

list, 12
show information, 12

Utah Raster Toolkit, 51

vi
.exrc file, 30
ex command mode, 28, 29
basic keystrokes, 29
command mode, 28
insert mode, 28
operating modes, 28

VISUAL, 10
Visual User Environment, 1, 4–6

INDEX 73

login manager, 6
workspace manager, 6

vt100, 2
vt220, 2
VUE, see Visual User Environment
vuepad, 33

wc, 13
whitespace (epsfig), 42
who, 12
who am i, 12
whoami, 6
widget, 8
width parameter (epsfig), 43
window, 3, 7

active, 8
background, 8
GSI standard, 8

window manager, see Motif window manager
word

count, 13
working directory, 14
write string, 13

x file, 52
X-server, 3
X-terminal, 3
X-window server, see X-server
X-windows, 1, 3
x3270, 23
xarchie, 60
xbm file, 52
xdb, 46
xde, 46
xdt3, 5
xdvi, 37, 39
xe, 33
xedit, 33
xinit, 3
xlf, 45, 57
xt, 3, 8
xterm, 2
XtoPS, 41, 53
xwd file, 52
xwd, 53

ZBOOK, 55
ZEBRA, 55

