ULTRIX SCSI/CAM Architecture

Guide to Writing Device Drivers for the
ULTRIX SCSI/CAM Architecture Interfaces

Order Number: AA-PN5SHA-TE

January 1992

Product Version: SCSI/CAM for ULTRIX RISC Version 4.2, Version 1.0,
SCSI/CAM for ULTRIX RISC Version 4.2A, Version
1.0

Operating System and Version: ULTRIX Version 4.2 (RISC), ULTRIX Version 4.2A
(RISC)

This manual describes the SCSI/CAM Architecture interfaces. 1t also describes how to
write device drivers for the SCSI/CAM implementation..

digital equipment corporation
Maynard, Massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as
set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013.

O Digital Equipment Corporation 1991
All rights reserved.

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
Digital or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1, Bookreader, CDA, DDIF, DDIS, DEC, DECnet, DECstation, DECsystem, DECUS,
DECwindows, DTIF, MASSBUS, MicroVAX, Q-bus, ULTRIX, ULTRIX Mail Connection, ULTRIX
Worksystem Software, UNIBUS, VAX, VAXstation, VMS, VT, XUI, and the DIGITAL logo.

UNIX is aregistered trademark of UNIX System Laboratories, Inc.

Contents

About This Manual

N 1 T = o Xvii
(@ (0= 0112 (o o E PP PUPPPPTTTR XVii
Related DOCUMENTALION uiiii e e e e e e e e e e e e eeaens Xviii
L0 10177 111 XiX

1 ULTRIX SCSI/CAM Software Architecture

O 1Y T P 1-1
12 CAM User Agent DeviCE DIIVEr ..o 1-3
1.3 SCSI/CAM Peripheral DeviCe DIVEIS uiiiiiiiiiiiiiii e 14
1.3.1 USCA Common Device Driver Modules —coovviviiiiiiiiiiiiii e 14
1.3.2 USCA Generic Device Driver MOAUIES cevniiieiiiiiiiiiee e 1-5
1.3.3 CAM SCSI Disk Device Driver MoOdUIES oiieiiiiiiiieeeeeceei e 1-5
1.3.4 CAM SCSI Tape Device Driver ModUIES veeviiiiiiiiieeecie e 1-5
1.35 CAM SCSI CDROM/AUDIO Device Driver Modules cceeveeeeens 1-5
1.4 SCSI/CAM Special 1/0 INErfate cooviiiiiiieeiiii e 1-5
15 The SCSI/CAM Configuration DIIVEr oiiieiiiiiiiiii e 1-5
1.6 CAM Transport Layer (XPT) oot 16
1.7 SCSI Interface Module Layers (SIM) ooovveeiieeiieeie e 1-6

2 CAM User Agent Modules

2.1 User Agent INrOQUCTION .ooevveiieeieiiiii ettt e e 2-1
2.2 User Agent Error Handling oveeoiieiiiiieecceee e 2-1
2.3 User Agent Data SITUCIUMNES oeveiieeiiiiie ettt e e e 2-2
231 TheUAGT_CAM_CCB Data StrUCIUIE uuieeieeiiiiiieeeeeeeeiiiiee e 2-2
2311 Theuagt_cch Memberccooiiiiiiiiii e 2-3

23.1.2 Theuagt_cchlen Member ... 2-3

2313
2314
2315
2316
2317
2318
2319

The uagt_buffer Member
The uagt_buflen Member
The uagt_snsbuf Member
The uagt_snsen Member
Theuagt_cdb Member
The uagt_cdblen Member
The uagt_flags Member

232 The UAGT_CAM_SCAN Data Structure

24 User Agent ROULINES oiiiiiiiieiiiiieeeeee e

241 Theuagt_open Routineccccoeeveiviveennnnnn.
24.2 Theuagt close Routinecccooevvvvnveveennnnnn.
243 Theuagt_ioctl Routinecccoeeevvviveennnnnn.

25 Sample User Agent Drivers ccoovvvviiiiieeeeeennnnnnn.
251 Sample User Agent Driver Inquiry Program .
The Include Files and Definitions Section ccevvviiieeennns

2511
2512
2513
2514
2515
2516
2517
2518
2519
25110
25111

The Main Program Section —..............
The User Agent Open Section —

Filling in XPT_SCSI_I0O Request CCB_HEADER Fields
Filling in INQUIRY Command CCB_HEADER Fields
Filling in the UAGT_CAM_CCB Fields ccccvoiviiiiiiiiiiis
Sending the CCB to the CAM Subsystem cccovveeeeeviiinnnnnn.

Print INQUIRY Data Routine

Print CAM Status Routine —...............
Sample Output for a Valid Nexus ...
Sample Output for an Invalid Nexus

252 Sample User Agent Scanner Driver Program

iv Contents

2521
2522
2523
2524
2525
2526
2527
2528
2529
25210
25211
25212
25213
25214

Scanner Program Header File
The Include Files Section —
The CDB Setup Section
The Definitions Section
The Main Program Section —..............
The Nexus Conversion Section —........
The Parameter Assignment Section ...
The Data Structure Setup Section ...
The Window Parameters Setup Section

CCB Setup for the DEFINE WINDOW Command —

The Error Checking Section —...........
CCB Setup for the READ Command

The Read and Write Loop Section ..
The Local Function Definition Section

2-3
2-3
2-3
2-3
2-3
2-3
24

24

24

24
24
2-5

2-5

2-5
2-6
2-7
2-7
2-8
2-9
2-9
2-10
2-12
2-14
2-14

2-15

2-15
2-16
2-16
2-17
2-17
2-19
2-20
2-21
2-23
2-24
2-26
2-29
2-30
2-32

31

3.2
3.3

USCA Common Modules

Common SCSI Device Driver Data SIrUCLUIES eevviieiiiiieeeeeeeii e 31
3.1.1 Periphera Device Unit Tableoooiiiiiiiiiii e 31
3.1.2 Periphera Device SITUCIUIE iiviii i 32
3121 Thepd dev Membercoooiiiiiiiiiii e 32
3.1.22 Thepd spec size Memberccoooviiiiiiiiiiir e, 3-3
3.1.3 Device DesCriptor SITUCIUrE ..v.uviiiiieeii e e e e 3-3
314 Mode Select Table SITUCIUIE ..ooovvveiiceceee e 33
3.1.5 Density Table SUCIUIE ...coovviiiii e 34
3.15.1 Theden blocking Memberccooiviiiiiiiiiii e, 34
3.1.6 SCSI/CAM Peripheral Device Driver Working Set Structure —............... 34
3.1.6.1 Thepws flink Memberccoooiiiiii i, 34
3.1.6.2 Thepws blink Membercccooiiiiiii e, 34
3.1.6.3 Thepws cch Memberocooviiiiiiiii e, 35
Common SCSI Device DIiver MBCIOS ccovviuuuiiiieeeieeiiiie et 35
Common SCSI Device Driver ROULINES ccovviiiiieeiiiiiiiie e 36
331 Common I/O ROULINES uuiiieiiiiiiiie et 3-8
3311 Theccmn init ROULINEccoeviieiiiiieieee e, 3-8
3.3.1.2 Theccmn _open unit ROULINEooveveiiiieiiiiiieeeee e, 3-8
3.3.1.3 Theccmn close unit ROULINE oveveiiiieiiiiiieeeee e, 3-8
3.3.2 Common Queue Manipulation ROULINES c.ccevvviiiiiiiiieiiiiee e, 3-8
3321 Theccmn send ccb ROULINE ..ovecviiiiiiiiie e, 39
3.322 Theccmn rem cChb ROULINE ...ovieviiiiieiiiie e, 39
3.3.23 Theccmn abort_ que ROUtINE cccovveviiiiieiii e, 39
3324 Theccmn term qUEROULINE ...cocvvviiiiiiii e, 39
3.3.3 Common CCB Management ROULINES covevviiiiiiiiiiiieeiie e 3-10
3331 Theccmn get cch Routinecooviiiiiiiii e, 3-10
3332 Theccmn re cch Routine ..o, 3-10
3.3.3.3 Theccmn_ io cchb bld Routinecoooeviiiiiiiii e, 311
3334 Theccmn gdev _cch bld Routinecooeevviiiiiiiii e, 311
3.3.35 Theccmn sdev_ccb bld Routinecooveviiiiiiviiiieccee e, 311
3.33.6 Theccmn sasy cch bldRoutinecoovveiiiiiiiiieiiee e, 311
3.33.7 Theccmn rsg cch bld Routinecoooovveiiiiiii e, 311
3.3.3.8 Theccmn ping cch bld Routineccoeiiiiiiiiiieee, 311
3.3.3.9 Theccmn abort_cch bld Routineccoviiiiiiiiiiie, 312
33310 Theccmn term_cch bld Routineccoooeiviiiiiiiiiieee, 312
33311 Theccmn bdr ccb bld Routinecoovviviiiiiviineeceeeeee, 312
33312 Theccmn br ccb bld Routine ..o, 312
3.34 Common SCSI I/O Command Building ROUtINES cccovvviviiiinieeenns 3-12
3.34.1 Thecomn tur ROULINEoiiieiiiiiiii e, 3-13

Contents v

3.3.4.2 Theccmn start unit ROULINE ocevniiiiiiiii e

3.3.43 Theccmn mode select ROULINE cevnieiiiiiiiicci e
3.35 Common CCB Status ROULINE ueiiiiiieeiii e
3.3.6 Common Buf Structure Pool Management Routinesccccccoeeeeeees
3.3.6.1 Theccmn get bp ROULINE ...ocoeiiiiiiiiiiiie e
3.3.6.2 Theccmn re bpROULINEoooeiiiiii e
3.3.7 Common Data Buffer Pool Management Routinescccovevevvnnees
3.3.71 Theccmn_get_dbuf ROULINE ooeiveiiiiiieee e
3.3.7.2 Theccmn rel_dbuf RoUtinecciiiiiiiii e
3.3.8 Miscellaneous Common ROULINES c..iiiiiiiiiiiiiii e
3.3.8.1 Theccmn _cchwait ROULINE ...ccovviiiniiiiici e
3.3.8.2 Theccmn _DoSpecidCmd Routine cceviiiiiiiiiiiieeeeeeee,
3.3.8.3 Theccmn_SysSpecialCmd ROUtINE ccoovviviiiiieiiiiiiii e
3.3.84 Theccmn errlog ROULINE ...oooueiiiiii e

4 USCA Generic Modules

4.1 Prerequisites for Using the CAM Generic ROULINES cocvviviiiiiiiiiiiiiieeeiies
411 loctl COMMEANAS ..o e

I = g (o) gl o =12 o | 1 o

413 Kerne INErface ...oooooeeiieii e

4.2 Data Structures Used by Generic ROULINES oovviiiiiiiiiiiiee e
421 The Generic-SpecCific SITUCIUrE ccovviviiiiiieiiiee e
4211 Thegen_flagsMembercccooiiiiiiiiiiiieii e

4212 Thegen_state flagsMemberccoooiviiiiiiiiiiii e

4213 Thegen_resid Member ...

422 The Generic ACtion SIFUCIUIE ..ooeeeiiiii e
4221 Theact cch Member ..o

4222 Theact ret_error MEMDEr ..ooovniiiiiiii e

4223 Theact fatal Membercooveiiiiiiiii

4224 Theact cch statusMembercooooviiiiiiii

4225 Theact scs_status Member —coviiiiiiiii e

4226 Theact chkcond error Membercccoiiiiiiiiiiii e,

4.3 Generic I/O Routines

431
4.3.2
433
434
4.35
4.3.6

vi Contents

The cgen_open Routine
The cgen_close Routine
The cgen_read Routine

The cgen_write Routine

The cgen_strategy ROULINE oouuiiiiiiii e

The cgen_ioctl Routine

3-13
3-13

3-13
3-14

3-14
3-14

3-14

3-14
3-14

3-14

3-15
3-15
3-15
3-15

4-1

4-1
4-2
4-2

IR

5ET

PEEEEE L LILLILIT &

4.4 GeneriC INtErNal ROULINES ..ooieiiie et aens 4-6

441 Thecgen ccb_chkcond ROULINE cooeiiiiiiiiiiii e 4-7
442 Thecgen done ROULINE ...o.eiiiiiiiiie e 47
443 Thecgen iodone ROULINE ccooviiiiiiiiiieiei e 47
444 Thecgen asynC ROULINE oooiiiiiiiiiii e 47
445 Thecgen minphysS ROULING oooeiiiiiiiiiii e 4-8
446 Thecgen dave ROUINE ...o.eiiiiiiie e 4-8
447 Thecgen ataCh ROULINE ooiiiiiiiiiii e 4-8
45 Generic Command SUpport ROULINES ooeeiiiiii e 4-8
451 Thecgen ready ROULINE iiiiiiiiiiiiiii e 4-8
452 Thecgen open_sal ROULING cco.uiiiiiiiiiiii e 4-9
453 Thecgen mode SNSROULING uniiiiiiiieieii e 4-9

5 CAM Data Structures

5.1 CAM Control BIOCKS ... 5-1
511 The CCB_HEADER SITUCIUIEuuuieiiiiiiiiiie e e e e e 5-2
5111 Themy_addr and cam_ccb len Membersccooiiiiiiininenn, 52
5.1.1.2 Thecam func code Memberccooiiiiiiiiiiii e 52
5.1.1.3 Thecam status MemMbErccooiiiiiiiiiiiiei e 53
5.2 1/ODAASITUCIUIE ..t e e et e e e e eeea s 54
521 The CCB_SCSIIO StUCIUIE eevviiiieeeeieiiiiee e et e e e e e e 54
522 The CDB_UN SIIUCIUIE coeuiiiiiiii e e e 55
5.3 Control CCB SITUCIUINES .oeiieieiii e e e e e e e e e e e eee s 55
531 The CCB_RELSIM SIrUCIUIE® evvviieeiieiiiiiie e et e e e e 55
532 The CCB_SETASYNC SITUCIUIE oieeeeeiiiiiieeeeeeeeiie e e 55
533 The CCB_ABORT SIIUCIUINE ...eeuveiieeeeiiiiiiie e e e e et e e e e e e eeaiine e eeaeees 56
534 The CCB_RESETBUS SIUCIUIE cooeviiiiiiiieeeeeeeeiiii e et e e e 56
535 The CCB_RESETDEV SHUCIUIE ...ccooeeiiiiiiiiieeeeeeeiiie e et e e e 56
536 The CCB_TERMIO SITUCIUIE uvuiiieeiiiiiiiie e e e e 56
54 Configuration CCB SITUCIUMNES ccovviiiiiiieeeiiiiiiie e 5-7
54.1 The CCB_GETDEV SIUCIUIE ..cuuuiiieeiieiiiiie e e e eeeeiiie e e e eeeiiinn e eeeeees 5-7
542 The CCB_SETDEV SIUCIUIE ...uuuiiieeiiiiiiiiie e e e 5-7
54.3 The CCB_PATHINQ SIUCIUrE ...ovuviieeiiiiiiiiie e e 5-7

6 SCSI/CAM Configuration Driver Modules
6.1 Configuration Driver INtroduction coouiiiiiiiieii e 6-1
6.2 Configuration Driver XPT Interfaceoooooviiiiiii e 6-1

Contents vii

6.3 Configuration Driver Data SITUCIUIES cooviiiiiiiiieeceeeei e

6.3.1 The Configuration driver control Structurecccooeveiiieriiiinereinees

6.3.1.1
6.3.1.2

The ccfg_flags Member ...
Theing buf Member ...

6.3.2 The CAM Equipment Device Tablecoooiviiiiiiii e

6.3.2.1
6.3.2.2
6.3.2.3

The edt MembEr ...
The edt_scan _count Member —coieiiiiiiii e,
The edt_flagsMember ...

6.3.3 The SCSI/CAM Peripheral Driver Configuration Structure —..................

6.3.3.1
6.3.3.2
6.3.3.3
6.3.34

The cpd_name Member ...
The cpd_slave Member ...
The cpd_attach Member ...
The cpd_unload Member ...

6.4 Thecam config.C File ..o e

6.5 Configuration Driver Entry Point ROULINES couniiiiiiiiiiii e

6.5.1 Theccfg SJaveROULINE ..o
6.5.2 Theccfg ataCh ROULINE ...ooouiiii e
6.5.3 Theccfg action ROULING ...cceviniiiiiie e
6.5.4 Theccfg edtscan ROULINE oeiiiiii e

7 CAM XPT I/O Support Routines

7.1 TheXpt_action ROULINE ...ooeuiiiii e e
7.2 Thexpt_cch alloC ROULINE ooiiiiiie e e
7.3 Thexpt_cch free ROULINE iiiei e
74 TheXpt_init ROULINE ... e e e

8 CAM SIM Modules

8.1 SIM Asynchronous Callback Handling ..o,
8.2 SIM Routines Used by Device Driver WItersccooeviiiiiiieiieiiiiieeeeeeennnenn

8.2.1 ThesSim_ aCtion ROULINE cocviiiiiiiiie e e e e
8.22 ThesSim_iNit ROUINEoiiiiiii e e e e e e e

9 USCA Error Handling

9.1 CAM Error Handling MaCIO ...coeuuiieiiii e
9.2 CAM Error Logging SITUCIUIES oeeiiiiieeeeeeeei et

viii Contents

6-1
62

62
62

62

62
6-3
6-3

6-3

6-3
6-3
6-3
6-3

6-3

6-5
6-5
6-5
6-5

8-1
82

82
82

9-1
9-2

9.2.1 TheError Entry SITUCIUrE ..o e 9-2

9.21.1 Theent_type Member ... 9-2
9.21.2 Theent Size MeMbEroiiiniiiii e 9-2
9.2.1.3 Theent total sizeMemberccooviiiiiiiiiiiii 92
9.214 Theent versMember ... 9-3
9.2.15 Theent dataMember ..o 93
9.21.6 Theent pri Member ... 9-3
9.2.2 The Error Header SIrUCIUIE ...eeiiiei e 9-3
9.221 Thehdr_type Member ... 9-3
9.22.2 Thehdr sizeMembercoooiiiiiiii 93
9.22.3 Thehdr classMember ... 94
9.224 Thehdr_subsystem Member —........cooviiiiiiiiii e 94
9.225 Thehdr entriesMember ..o 94
9.22.6 Thehdr list Memberccooiiiiiiii e 94
9.22.7 Thehdr_pri Member ... 94

9.3 Thecam 0gger ROULINE ... 94

10 USCA Debugging Facilities

10.1 CAM Debugging Variablescoeiiiiiiiieii e 10-1
10.2.1 Thecamdbg flag Variablecoooiiiiiiii 10-1
10.1.2 Thecamdbg_ id Variable ... 10-2

10.2 CAM Debugging MECIOS ueieiiieeeeiieee e e e e et e e e e e e e e e eeeens 10-2

10.3 CAM Debugging ROULINES oieiiiieeiii e 10-3
10.3.1 CAM Debugging Status ROULINES coovviiniiiiiiiiiiiiie e 104

10.3.1.1 The cdbg_CamFunction ROULINE ccceviiiiiiiiiieriiieeeeiies 104
10.3.1.2 The cdbg_CamStatus ROULINE coovviiieiiiiiiiiiiee e 104
10.3.1.3 The cdbg_ScSIStatus ROULINE ccovvvviiieiiieiiii e 10-5
10.3.1.4 The cdbg_SystemStatus ROUtINE ceevvniiiiiiiiieeiiieeeeeis 10-5
10.3.2 CAM DUMP ROULINES .eeineieiiiieeeeie e e e 10-5
10.3.2.1 The cdbg_ DumpCCBHeader Routine cccceiveviiiieieiines 10-5
10.3.2.2 The cdbg_DumpCCBHeaderFlags Routine cccooeveeinnnnee. 10-5
10.3.23 The cdbg_DumpSCSIIO ROULINE ovvviieeiiiiiiiie e 10-6
10.3.2.4 The cdbg DumpPDRVWS ROULINE cccvniiiiiiiiieiiiieeceiis 10-6
10.3.25 The cdbg DUMPABORT ROULINE oovieiiieiiiiieeeiiieeeeeiee 10-6
10.3.2.6 The cdbg DUMmpTERMIO RoUtineovviiiiiieiiiiieeieiies 10-6
10.3.2.7 The cdbg_DumpBuffer Routine —..........cocoiiiiiiiiieiiiieeeeeiee 10-6
10.3.2.8 The cdbg_GetDeviceName Routingccccveiveviiiiieieiinnens 10-6
10.3.2.9 The cdbg_DumplnquiryData Routine cccoveviiiveneeinnens 10-6

Contents ix

11 Programmer-Defined SCSI/CAM Device Drivers

11.1 Programmer-Defined SCSI/CAM Data Structures
11.1.1 Programmer-Defined Peripheral Device Unit Table

11.1.1.1 The pu_device Member
11.1.1.2 The pu_opens Member
11.1.1.3 The pu_config Member
11.1.1.4 The pu_type Member

11.1.2 Programmer-Defined Peripheral Device Structure

11121
11.1.2.2
11.1.2.3
11.1.2.4
11.1.25
11.1.2.6
11.1.2.7
11.1.2.8
11.1.29
11.1.2.10
111211
11.1.2.12
11.1.2.13
11.1.2.14
11.1.2.15
11.1.2.16
11.1.2.17
11.1.2.18
11.1.2.19
11.1.2.20
111221
11.1.2.22
11.1.2.23
11.1.2.24
11.1.2.25
11.1.2.26
11.1.2.27

11.1.3 Programmer-Defined Device Descriptor Structure

11131
11132
11.1.33
11.1.34
11.1.35
11.1.36
11.1.3.7

The pd_active list Member
The pd_active_ccb Member
The pd_que_depth Member
The pd_pend_list Member
The pd_pend_ccb Member
The pd_dev Member
The pd_bus Member
The pd_target Member
The pd_lun Member
The pd_unit Member
The pd_flags and pd_state Members
The pd_abort_cnt Member
The pd_cam_flags Member
The pd_tag_action Member
The pd_dev_ing Member
The pd_ms_index Member
The pd_dev_desc Member
The pd_specific Member
The pd_spec_size Member
The pd_sense ptr Member
The pd_sense len Member
The pd_recov_hand Member
The pd_read count Member
The pd_write_count Member
The pd_read bytes Member
The pd_write_bytes Member
The pd_Ik_device Member

The dd _pv_name Member
The dd_length Member
The dd_dev_name Member
The dd_device_type Member
The dd_def partition Member
The dd_block _size Member
The dd_max_record Member
11.1.3.8 Thedd_density tbl Member
11.1.3.9 Thedd _modesel_tbl Member
11.1.3.10 Thedd flags Member

x Contents

11.1.311 Thedd scsi_optcmds Member —......c.ooeveiiiiennnnnen.
11.1.312 Thedd ready time Memberc.ocooiiiiiiiinnnnn.
11.1.3.13 Thedd _que depth Membercccooeviiiiiiinnnnnnn.
11.1.3.14 Thedd valid Membercccooeevviiiiiiiiieeeeeeiiinn.
11.1.315 Thedd ing len Member ...
11.1.3.16 Thedd req sense len Membercooeviviiennnnnnn.

11.1.4 Programmer-Defined Density Table Structure —..................

11141 Theden flagsMembercooiiiiiiiiiiiiiie,
11.1.42 Theden density_code Memberccooeeiiennnnen.
11.1.43 Theden _compress code Memberc..ooeeeeneen.
11.1.44 Theden _speed setting Membercccoeviieennnnen.
11.1.45 Theden buffered_setting Member
11146 Theden blocking Membercccooveiiiiiiiiinnnnen.
11147 Sample Density Table Structure Entry —

11.1.5 Programmer-Defined Mode Select Table Structure —............

11151 Thems page Memberoooiiiiiiiiiiiiiiieeeeeine,
11.1.5.2 Thems dataMemberccccoveviiiiiiiiiiiiieceeeeenn,
11.1.5.3 Thems data len Memberccooevviveviiievennnennn.
11154 Thems ent_ sp pf Memberoooiiiiiiiiiiiinnnen.
11.1.55 Sample Mode Select Table Structure Entry —...........

11.2 Sample SCSI/CAM Device-Specific Data Structures —
11.2.1 Programmer-Defined Tape-Specific Structure

11.21.1 Thets flagsMember ...
11.21.2 Thets state flagsMemberoooiiiiiiiiiiii.
11.2.1.3 Thets resdMembercooiiiiiiiiii,
11.2.1.4 Thets block sizeMembercoooeviviiiiieiennnnnnn.
11.215 Thets density Membercooiiiiiiiiiii
11.2.1.6 Thets recordsMembercccocoiiiiiiiiiiiiineean,
11.2.1.7 Thets num_filemarks Memberc..o.
11.2.1.8 Thets softcnt Membercccooeviiiiiiiiie,
11.2.1.9 Thets hardecnt Membercccoeeviiiiiiiiiiiiecee,

11.2.2 Programmer-Defined Disk- and CDROM-Specific Structure

11.2.21 Theds bufhd Memberccooeiiiiiiiii,
11.2.22 Theds dkn Memberccoooviiiiiiiiiiiiee e,
11.2.23 Theds bbr _state Memberccooeveiviviieeennnnnnn.
11.2.24 Theds bbr_retry Member ..o
11.2.25 Theds bbr rwcch Member ...,
11.2.26 Theds bbr reasccb Memberccviiiiiinnn.
11.2.27 Theds tur_cch Member ..o,
11.2.28 Theds start ccb Member ...,
11.229 Theds mdsd_ccb Membercooviiiiiiiinn,
11.2.2.10 Theds rdcp_ccbh Member ..o
11.2.211 Theds read ccbo Membercoviiiiiiiiie,
11.2.2.12 Theds prev_ccbh Membercccooiiiiiiiiiieiinnnnn.
11.2.2.13 Theds block size Membercccoeevvvievennnn.

Contents xi

11.2.2.14 Theds tot size Memberccoooeiiiiiiii e, 11-15

11.2.2.15 Theds media changesMemberccoooiiiiiiiiiiiiiiiiies 11-15
112216 Theds Pt STUCTUIE ccoiiiiiiii e 11-15
11.2.2.17 Theds openpart Member ... 11-15
11.2.3 SCSI/CAM CDROM/AUDIO I/O Control Commandscceeuve... 11-15
11.2.3.1 Structures Used by SCSI/CAM CDROM/AUDIO I/O Control
(0] 11]107= 010 N 11-16
11.23.1.1 Structure Used by All SCSI/CAM CDROM/AUDIO I/O
Control ComMmMaNdS enieieeeee s 11-17
11.2.3.1.2 Structure Used by the CDOROM_PLAY_AUDIO and
CDROM_PLAY_VAUDIO Commandsc....cccvvnnnnennn. 11-18
11.2.3.1.3 Structure Used by the CDOROM_PLAY_AUDIO_MSF
and CDROM_PLAY _MSF Commandsccoeevevneennn. 11-18
11.2.3.1.4 Structure Used by the CDROM_PLAY_AUDIO _TI
(0] 10]107= 010 [11-19
11.2.3.1.5 Structure Used by the CDROM_PLAY_AUDIO_TR
(0] 11]107= 0o [11-20
11.2.3.1.6 Structure Used by the CDROM_TOC_HEADER
(000]10]107= 0o [11-20
11.2.3.1.7 Structures Used by the CDROM_TOC_ENTRYS
(000]10]107= 0o [11-21
11.2.3.1.8 Structures Used by the
CDROM_READ _SUBCHANNEL Command 11-22
11.2.3.1.9 Structures Used by the CDROM_READ_HEADER
(000]10]107= 010 [11-26
11.2.3.1.10 Structure Used by the CDROM_PLAY_TRACK
(0] 101107 0o [11-27

11.2.31.11 Structure Used by the
CDROM_PLAYBACK_CONTROL and

CDROM_PLAYBACK_STATUS Commands 11-27

11.2.3.1.12 Structure Used by the
CDROM_PLAYBACK_CONTROL Command 11-28

11.2.3.1.13 Structure Used by the
CDROM_PLAYBACK_STATUS Command 11-28
11.3 Adding a Programmer-Defined SCSI/CAM DeViCe coovvviiieiiiiiiiiiiiieeeeees 11-30

12 SCSI/CAM Special 1/O Interface

121 Application Program ACCESS ..oeeeeuieeiiiieeeeiie e e e e e e e e e e e eeeens 12-1
122 DEVICE DIIVEN ACCESS ...oiiiiiiiiiiii e et ettt e e e e e e e e e eeeees 122
12.3 SCSI/CAM Special Command Tables ... 12-3
1231 The sph_flink and sph_blink Membersccooooiiiiiiiii i 124
12.32 Thesph_cmd_table Member ... 124
12.3.3 The sph_device type Membercooiiiiii i 124

xii Contents

124

125

1234
12.35

SCSI/CAM Special Command Table Entries

1241
12.4.2
1243
1244
1245
12.4.6
12.4.7
1248
12.4.9
12.4.10
12411
12.4.12
12.4.13
12.4.14
12.4.15

SCSI/CAM Special 1/0 Argument Structure

1251
125.2
1253
1254
1255
12.5.6
12.5.7
12.5.8
12.5.9
12.5.10
12511
125.12
12.5.13
12.5.14
12.5.15
12.5.16
12.5.17
12.5.18
12.5.19
12.5.20
125.21
12.5.22
12.5.23
12.5.24
12.5.25
12.5.26
12.5.27

The sph_table flagsMember ...
The sph_table name Member ..o

The spc_ioctl_cmd and spc_sub_command Members

The spc_cmd _flagsMember ...
The spc_command_code Member ...
The spc_device type Member ...
The spc_cmd_parameter Member ..o
The spc_cam_flagsMember ...
The spc_file flags Member ..o
The spc_data length Member ...
The spc_timeout Member ...
The spc_docmd Member ...
The spc_mkedb Member ...
The spc_setup Member ...
The spc_cdbp Member ...
The spc_cmdp Member ...
Sample SCSI/CAM Special Command Table

Thesa flagsMember ...
Thesa dev Member ..o

The sa_unit, sa_bus, sa target, and sa_lun Members

Thesa ioctl_cmd Member ...,
Thesa ioctl_scmd Member ...,
Thesa ioctl_ dataMember ...,
The sa device name Memberccooeviviiiiiviin e,
The sa_device_type Member ..o
The sa_iop_length and sa_iop_buffer Members

The sa file flagsMember ..o

The sa_sense length and sa_sense_buffer Members

The sa_user_length and sa_user_buffer Members
Thesa bp Member ...
Thesa cch Member ...
The special_cmd Member ...
The special_header Member ...
The sa_cmd_parameter Member —coooviiiiiiiiiiiieeeeeen.
Thesa error Member ...
Thesa start Member ...
The sa_data length and sa_data_buffer Members
The sa_cdb_pointer Member ...
The sa_cdb_length Member ...
Thesa cmd _flagsMember ...
The sa_retry_count Member ..o
The sa retry_limit Member ...
The sa timeout Member ccooeiiiiiiiie e
Thesa xfer resid Member ..o

Contents xiii

12528 Thesa specific Memberooooiiiiiiii e

12529 Sample Functionto Create aCDB coovviiiiieiiiieeeeeenn.
12530 Sample Function to Set Up Parameters ccoevvvevennnnnn.
126 SCSI/CAM Specia 1/0 Control Command —oocevvviiiiiieeeienns
12.6.1 Thesp flagsMember ...
12.6.2 The sp_dev, sp_unit, sp_bus, sp_target, and sp_lun Members
12.6.3 Thesp sub_command Memberccooviiiiiiiiiiieeee,
12.6.4 Thesp_cmd parameter Memberooooiiiiiiiiieeeeeeee,
12.6.5 Thesp iop_length and sp_iop_buffer Members
12.6.6 The sp_sense length, sp_sense resid, and sp_sense_buffer Members
12.6.7 The sp_user_length and sp_user_buffer Members
12.6.8 Thesp timeout Member ...
12.6.9 Thesp retry_count Member —ocooviiiiiiiiiiiiee e
12.6.10 Thesp_retry_limit Member —cooiiiiiii e
12.6.11 Thesp xfer_resid Memberccooviiiiiiiiii e
12.6.12 Sample Function to Create an I/O Control Command
12.7 Other Sample Code ...oovniiii e
12.7.1 Sample Code to Open aDeviCeooevvvviiiiiiiieiiieiiiee
12.7.2 Sample Code to Create a Driver Entry Point

A Header Files Used by Device Drivers

B Summary of Device Driver Routines

C SCSI/CAM Routines in ULTRIX Reference Page Format
Index

Figures

1-1: CAM Environment Model ooeiiiiiii e
1-2: ULTRIX SCSI/CAM Architecture Implementation Model —

12-1: Application Program Flow Through SCSI/CAM Special 1/O Interface

12-2: Device Driver Flow Through SCSI/CAM Specia 1/O Interface

Tables

2-1: User Agent ROULINES eiiiiiii et
3-1: Members of the PDRV_DEVICE Structurecocccoveveiiviiieeinneennnn,
3-2: Common ldentification MaCroS —c.ceiviiiiiiiiiiinei e,

xiv Contents

1-2
1-3
122
12-3

24
32
35

3-3
3-4:
3-5:
3-6:
3-7
3-8
4-1:
4-2:
4-3:
5-1:
5-2:
5-3:
6-1:
7-1:

10-1:
10-2:
11-1:
11-2:
12-1:

A-1:
A-2:
B-1:

CommON LOCK M@CIOS eiiieeiiiei et 36
CommoN [/O ROULINES ..ot 3-8
Common Queue Manipulation ROULINES ovviiiieieiiii e 39
Common CCB Management ROULINES coouuiiiiiiiiieieiiii e 3-10
Common SCSI 1/0 Command Building ROUtINES evviiiiiiiiiiieeeee 3-12
Miscellaneous COmMMON ROULINES oieiiiiiiiiiie e 3-15
GeNEriC I/O ROULINES ..ot 44
Generic Internal ROULINEScoiiiiiiiie e 4-6
Generic Command SUpport ROULINES iiiieiie e 4-8
CAM Control BIOCKS ..o 5-1
CAM FUNCHON COUES ..ottt et 5-2
CAM SHAUS COUES ..ttt 5-3
Configuration Driver Entry Point ROULINES coviiiiiiiiiiiii e 64
XPT 1/O SUPPOIt ROULINES ...ttt e e e e e 7-1

CAM Debugging Status ROULINES ...coeviniiiiieeeii e 104

CAM DUMP ROULINES ..o e e 10-5

SCSI/CAM CDROM/AUDIO 1/O Control Commandscccevvvvevieeeeiinnnnnns 11-16
Structures Used by SCSI/CAM CDROM/AUDIO 1/0O Control Commands 11-16
SCSI/CAM Specia 1/0O Argument SIrUCEUIE ccovvviviiieeeeieeiiie e 12-8
Header Files Used by DeVICE DIVEIS ..coovuiiiiiii e A-1
Header Files Used by SCSI/CAM DIIVEIS ..oooiiiiiiiiiieeieeii e A-3
Summary of Device Driver ROULINES uiiiiiiiiiiii e B-1

Contents xv

About This Manual

This manual contains information needed by systems engineers who write device
drivers for the ULTRIX SCSI/CAM Architecture interfaces.

Audience
This manual is intended for systems engineers who:
e Develop programs in the C language using standard library routines
e Know one or more UNIX shells, other than csh

e Understand basic ULTRIX components such as the kernel, shells, processes,
configuration, autoconfiguration, and so forth

e Understand how to use the ULTRIX programming tools, compilers, and
debuggers

e Develop programs in an environment that includes dynamic memory allocation,
linked list data structures, multitasking and symmetric multiprocessing (SMP)

e Understand the hardware device for which the driver is being written

Organization
This manual is organized as follows:

Chapter 1 ULTRIX SCSI/CAM Software Architecture
Presents an overview of the ULTRIX SCSI CAM Architecture
(USCA).

Chapter 2 CAM User Agent Modules

Describes the User Agent routines provided by Digital for SCSI/CAM
peripheral device driver writers

Chapter 3 USCA Common Modules
Describes the common data structures, routines, and macros provided
by Digital for SCSI/CAM peripheral device driver writers

Chapter 4 USCA Generic Modules
Describes the generic routines provided by Digital for SCSI/CAM
peripheral device driver writers

Chapter 5 CAM Data Structures
Describes members of the CAM data structures used by SCS| device
drivers.

Chapter 6 SCSI/CAM Configuration Driver Modules

Describes the CAM Configuration driver data structures and routines
that call the initialization routines in al the CAM subsystem modules.

Chapter 7 CAM XPT 1/0O Support Routines

Discusses the Transport (XPT) layer routines used with SCSI device
drivers.

Chapter 8 CAM SIM Modules

Discusses the data structures and routines used with the SCS
Interface Module (SIM) layers that interface with the CAM
subsystem.

Chapter 9 USCA Error Handling

Discusses the macro, data structures, and routines supplied by Digital
for error handling in SCSI/CAM device drivers.

Chapter 10 USCA Debugging Facilities

Describes the debugging routines supplied by Digital for SCSI/CAM
peripheral device driver writers.

Chapter 11 Programmer-Defined SCSI/CAM Device Drivers

Describes how programmers can define SCSI/CAM device drivers,
with examples.

Chapter 12 SCSI/CAM Specia 1/0O Interface

Describes the SCSI/CAM specia 1/0 interface supplied by Digital to
process special SCSI I/0O commands, with examples.

Appendix A Header Files Used by SCSI/CAM Device Drivers
Summarizes the header files used by SCSI/CAM device drivers.
Appendix B Summary of Device Driver Routines
Summarizes the general device driver routines used by SCSI/CAM
device drivers.
Appendix C SCSI/CAM Routines in ULTRIX Reference Page Format

Provides more detailed descriptions of the USCA routines in ULTRIX
reference page format.

Related Documentation
Readers of this guide are assumed to be familiar with the following documents:

American National Standard for Information Systems, SCS-2 Common Access
Method: Transport and SCS Interface Module, working draft, X3T9.2/90-186
Terms used in this guide, such as CAM Control Block (CCB), are defined in that
document. Copies may be purchased from Global Engineering, 2805 McGaw S,
Irvine, CA 92714, telephone 800-854-7179.

American National Standard for Information Systems, Small Computer Systems
Interface - 2 (SCSI - 2), X3T9/89-042

The following documents contain information that pertains to writing device drivers:

Guide to Writing and Porting VMEbus and TURBOchannel Device Drivers

This guide contains information needed by systems engineers who write and port
device drivers for the VMEbus and the TURBOchannel. Systems engineers who
write drivers that operate on other buses can find information on driver concepts,
interfaces to device driver routines, kernel structures, kernel routines used by
device drivers, installation of device drivers, and header files related to device
drivers.

Guide to Configuration File Maintenance

This guide contains information on how to maintain the system configuration file
and how to build a new kernel, either automatically or manually. The
configuration file provides you with the ability to configure your system to meet

xviii About This Manual

your needs. You should read this manual if you are responsible for maintaining
an ULTRIX system. You should also read parts of this manual if you are
planning to modify or write device drivers.

e Guideto the Error Logger
This guide contains information about the error logger and how it records and
reports errors and other events that occur on your ULTRIX system. The guide
gives an overview of the error logger, describes how to control error logger
functions, and describes using the Error Report Formatter, uer f . You should
read this manual if you manage error information on an ULTRIX system.

Conventions

%

% cat

filenane
cat file

cat (1)

The default user prompt is your system name followed by a right
angle bracket. In this manual, a percent sign (%) is used to represent
this prompt.

A regular constant-width typeface is used for code examples, system
prompts in interactive examples, and names of commands and other
literal stringsin text. A bold constant-width typeface is used for
typed user input in interactive examples and for routines in function
definitions.

In examples, syntax descriptions, and function definitions, this
typeface indicates variable values.

In syntax definitions, a bold sans serif typeface is used for literal
strings and a sloping sans serif typeface is used for variable values.

A cross-reference to a reference page include the appropriate section
number in parentheses. For example, a reference to cat (1) indicates
that you can find the material on the cat command in Section 1 of
the reference pages.

About This Manual xix

ULTRIX SCSI/CAM Software Architecture 1

This chapter provides an overview of the ULTRIX Small Computer System Interface
(SCSI) Common Access Method (CAM) Architecture (USCA). which is areliable,
maintainable, and high performance SCSI subsystem based on the industry-standard
CAM architecture. Readers of this guide should be familiar with the following
documents:

e American National Standard for Information Systems, SCS-2 Common Access
Method: Transport and SCS Interface Module, working draft, X3T9.2/90-186

Terms used in this guide, such as CAM Control Block (CCB), are defined in that
document. Copies may be purchased from Global Engineering, 2805 McGaw St,
Irvine, CA 92714, telephone 800-854-7179.

e American National Standard for Information Systems, Small Computer Systems
Interface - 2 (SCSI - 2), X3T9/89-042

This chapter describes the following:

e The CAM and USCA environment models

e The User Agent driver

e The SCSI/CAM peripheral device driver routines
— The CAM common routines supplied by Digital
— The generic routines supplied by Digital
— The SCSI disk device routines
— The SCSI tape device routines
— The SCSI CDROM/AUDIO device commands
— The SCSI/CAM Specia 1/0 interface

e The CAM Configuration driver

e The CAM Transport layer

e The SCSI Interface Module (SIM)

1.1 Overview

The CAM architecture defines a software model that is layered, providing hardware
independence for SCSI device drivers and SCSI system software. In the CAM
model, which is illustrated in Figure 1-1, asingle SCSI/CAM peripheral driver
controls SCSI devices of the same type, for example, direct access devices. This
driver communicates with a device on the bus through a defined interface. Using this
interface makes a SCSI/CAM peripheral device driver independent of the underlying
SCSI Host Bus Adapter (HBA).

This hardware independence is achieved by using the Transport (XPT) and SCS
Interface Module (SIM) components of CAM. Because the XPT/SIM interfaceis
defined and standardized, users and third parties can write SCSI/CAM periphera
device drivers for a variety of devices and use existing operating system support for
SCSI. The drivers do not contain SCSI HBA dependencies; therefore, they can run
on any hardware platform that has an XPT/SIM interface present.

Figure 1-1: CAM Environment Model

User Application User Application User Application

Operating System Interface

User
Disk Tape TSCStl Level
Driver Driver D?SZ resr Pass-Thru
Driver
XPT/SIM Interface using CCBs
Transport Layer — XPT
SCSl Interface Simple SIM Intelligent
Module-SIM
odule-S SIM
Host Bus Intelligent
Adaptor-HBA HBA Simple HBA
ZK-0359U-R

Figure 1-2 illustrates the ULTRIX SCSI/CAM implementation of that model.

1-2 ULTRIX SCSI/CAM Software Architecture

Figure 1-2:

ULTRIX SCSI/CAM Architecture Implementation Model

UAGT/CCBs
. User . .
Peripheral Agent Configuration Common
Drivers Driver Driver Routines
| | | Special I/0
Interface

Transport Layer — XPT

SIM XPT
Common
SIM
Routines
SIM Scheduler
SIM HBA SIM HBA
HBA DME HBA DME HBA DME
Common
| | DME
HBA HBA HBA Routines
ZK-0252U-R

1.2 CAM User Agent Device Driver

The User Agent driver lets user process CAM Control Block (CCB) requests to the
XPT pass through for processing. The CCB contains all information required to
fulfill the request. The user process calls the User Agent indirectly, using the

i octl (2) system call. A new User Agent CCB is allocated by a call to the XPT
layer, and the user-process CCB information is copied into kernel space. The new
CCB isfilled in with the CCB values from the user process. |f necessary, the user
data areas are locked in memory. The CCB is then sent to the CAM subsystem for

processing.

Once the request has completed, the User Agent driver's completion routine is called.
That routine performs all necessary cleanup operations and notifies the user process
that the request is complete.

The User Agent allows multiple processes to issue CCBs, so there may be multiple
processes sleeping on the User Agent. All CCBs are queued at the SIM layer.

ULTRIX SCSI/CAM Software Architecture 1-3

1.3 SCSI/CAM Peripheral Device Drivers

SCSI/CAM peripheral device drivers convert operating system requests, such as user
process reads or writes, into CAM requests that the SCSI/CAM subsystem can
process. Each type of SCSI/CAM peripheral driver is responsible for a specific class
of SCSI device, such as SCSI tape devices. The SCSI/CAM peripheral driver
handles error codes and conditions for its SCSI device class.

SCSI/CAM periphera drivers convert input/output (1/0) requests into CAM Control
Blocks (CCBs) that contain SCSI Command Descriptor Blocks (CDBs). CCBs are
presented to the underlying transport layer, XPT, to initiate I/O requests. SCSI/CAM
peripheral drivers implement SCSI device error recovery, for example, dynamic bad
block replacement (DBBR). The SCSI device driver has no access to SCSI device
control and status registers (CSRs) and receives no SCSI device interrupts.

The major/minor device-number pair, which is 16 bits wide, is used as an argument
when creating the device special file associated with a specific SCSI device and is
contained in the buf structure when accessing the device in raw or blocked mode.
The 16 bits are allocated as follows:

15 1211 109 76 4 3 0

Major Index Bus# | TargetID LUN Device Specific

ZK-0403U-R

The major number range goes from HEX 60 to HEX 6f and the minor number range
goes from HEX 00 to HEX f0. For example, adevice that starts with a major
number of 0x60 and a minor number of 0x00 represents Bus 0, Target 0, and

Logical Unit 0. The last SCSI device that this sample device driver would control
has major number 0x6f and minor number OxfO. This represents Bus 4, Target 7, and
Logica Unit 7.

This section provides overviews of the following:
e Common SCSI device driver modules

e Generic SCSI device driver modules

e SCSI disk device driver modules

e SCSl tape device driver modules

e SCSI CDROM/AUDIO device driver modules

Chapters 3, 4, and 11 describe the data structures and the routines associated with
each module.

1.3.1 USCA Common Device Driver Modules

The common SCSI device driver structures and routines can be shared among all the
SCSI/CAM peripheral drivers written by device driver writers for ULTRIX. Using
these common routines can speed the process of writing a SCSI device driver by
providing routines that any SCSI device driver can use to perform operations.

1-4 ULTRIX SCSI/CAM Software Architecture

1.3.2

1.3.3

1.3.4

1.35

USCA Generic Device Driver Modules

Digital supplies predefined data structures and formats that SCSI device driver
writers can use to write generic SCSI/CAM periphera device drivers. These data
structures and formats can be used in conjunction with the common routines.
Chapter 4 includes a sample generic SCSI device driver using the common routines.

CAM SCSI Disk Device Driver Modules

The SCSI/CAM peripheral disk driver supports removable (floppy) and
nonremovable direct access SCS| disk devices and CDROM devices. The user
interface consists of the major/minor device number pair and thei oct | commands
supported by the SCSI disk device driver. The SCSI disk device driver also uses the
common routines.

CAM SCSI Tape Device Driver Modules

The SCSI tape device structures and routines are exclusive to the SCSI/CAM
peripheral tape driver. The user interface consists of the major/minor device number
pair and thei oct | commands supported by the SCSI tape device driver. The SCSI
tape device driver also uses the common routines.

CAM SCSI CDROM/AUDIO Device Driver Modules

The SCSI CDROM/AUDIO device commands, which are described in Chapter 11,
use the SCSI CDROM/AUDIO device structures. The SCSI CDROM/AUDIO
device driver also uses the common routines.

1.4 SCSI/CAM Special I/O Interface

The USCA software includes an interface developed to process special SCSI 1/0
control commands used by the existing Digital SCSI subsystem and to aid in porting
new or existing SCSI device drivers from other vendors to the USCA. With the
SCSI/CAM specid 1/0 interface, SCSI/CAM peripheral driver writers do not need
detailed knowledge of either the system-specific or the CAM-specific structures and
routines used to issue a SCSI command to the CAM 1/0O subsystem.

1.5 The SCSI/CAM Configuration Driver

The Configuration driver is responsible for configuring and initializing the CAM
subsystem. This driver is also responsible for maintaining the cam _edt []
information structure.

When the system powers up, the Configuration driver initializes the local and global
CAM subsystem data structures. The Configuration driver also calls the XPT and
SIM initialization routines. Once the subsystems are initialized, the Configuration
driver performs a SCSI-bus scan by sending the SCSI Device Inquiry command. The
cam edt[] structure contains the returned SCSI inquiry data for the SCSI/CAM
peripheral driversto access. The drivers, using the XPT_GDEV_TY PE and
XPT_SDEV_TY PE get and set device information CCBs, can access the data
containedincam edt[] .

ULTRIX SCSI/CAM Software Architecture 1-5

1.6 CAM Transport Layer (XPT)

The CAM transport layer, XPT, handles the CAM requests from the SCSI/CAM
peripheral drivers and routes them to the appropriate SIM module. The XPT provides
routines which are called by the SCSI/CAM peripheral driver to allocate and
deallocate CAM control blocks (CCBs). In addition, the XPT provides routines that
are used to initiate requests to the SIM and to issue asychronous callbacks.

1.7 SCSI Interface Module Layers (SIM)

The SCSI Interface Module, SIM, has the most interaction with the SCSI bus
protocol, timings, and other hardware-specific operations. Although thisis asingle
component in the CAM model, it is divided into four logical sublayersin ULTRIX:

e SIM XPT —The SIM layer that interfaces to the XPT to initiate 1/O on behalf of
the SCSI/CAM periphera drivers.

e SIM SCHEDULER - The SIM layer that schedules requests to the SIM HBAs.
e SIM HBA —The SIM layer that contains the HBA device-specific information.

e SIM DME — A low leve layer that contains the architecture-specific data-
movement code.

1-6 ULTRIX SCSI/CAM Software Architecture

CAM User Agent Modules 2

This chapter describes the functions of the ULTRIX User Agent SCSI device driver.
It also describes the User Agent data structures and routines used by the User Agent
SCSI device driver.

2.1 User Agent Introduction

The ULTRIX User Agent SCSI device driver lets device driver writers write an
application program to build a CAM Control Block (CCB) request. The User Agent
driver lets the user-process request pass through to the XPT layer for processing.
This gives user processes access to the SCSI/CAM subsystem and to all types of
SCSI/CAM peripheral devices attached to the system.

This is a simple method for passing the CCB’s SCSI request to the devices using the
SIMs. The kernel does not have to be rebuilt if the device driver writer wants to
change values within the CCBs.

The CCB contains al the information required to perform the request. The user
process calls the User Agent SCSI device driver using thei oct | system call. See

i oct | (2) for more information. The User Agent ioctl routine, uagt _i oct |, is
called through the device switch table, which is indexed by the major device number
of the User Agent driver specified inthei oct| call. Thei oct| commands
supported by the User Agent SCSI device driver aree DEVIOCGET, which returns
the SCSI device driver status; UAGT_CAM_10, which sends the specified CCB to
the XPT layer for processing; UAGT_CAM_SINGLE_SCAN, which causes the scan
of abus, target, and LUN; and UAGT_CAM_FULL_SCAN, which causes the scan
of a bus.

A CCB is alocated in the kernel and the user process's CCB is copied to the kernel
CCB. The User Agent SCSI device driver sleeps waiting for the request to complete;
then, all necessary cleanup is performed, and the user processis notified of the
completion of the request. If asignal is caught, an ABORT CCB isissued to try to
terminate the outstanding CCB for the user process.

The User Agent SCSI device driver allows multiple processes access to the XPT
layer; therefore, there may be multiple processes sleeping on the User Agent. All
CCBs passed through by the User Agent are queued at the SIM layer.

2.2 User Agent Error Handling

The User Agent SCSI device driver performs limited error checking on the CCB
pointed to in the UAGT_CAM_CCB structure passed from the user process. The
User Agent driver verifies that the uagt _cchbl en is not greater than the maximum
length for a CCB, checks that the XPT function code is valid, and checks that the
Target ID and LUN specified are within the range allowed. The User Agent does not
issue a REQUEST SENSE command in response to a CHECK CONDITION status.
Autosensing is assumed to be enabled. The application program is responsible for

issuing a RELEASE SIM QUEUE CCB.

The following error codes are returned by the User Agent:

e EFAULT — An error occurred in copying to or from user space.
e EBUSY — Out of resources (the User Agent request table is full).

e EINVAL —Aninvalid target or LUN was passed to the User Agent driver, or the
CCB copied from the user process contained an invalid parameter.

2.3 User Agent Data Structures
This section describes the data structures the User Agent uses.

2.3.1 The UAGT_CAM_CCB Data Structure

The User Agent SCSI device driver uses the UAGT_CAM_CCB data structure to
communicate with the user processes requesting access to the SCSI/CAM subsystem.

The user process fills in the pointers in the UAGT_CAM_CCB data structure. The
structure is copied into kernel space. The user process's CCB is copied into kernel
space by the User Agent.

If necessary, the user data area and the sense data area are locked in memory. If the
pointers are not needed with the requested CCB, the pointers must be set to NULL.

The CCB contains al the information necessary to execute the requested XPT
function. The addresses in the CCB are used by the SIM and must be valid. The
User Agent will not modify the corresponding pointers in the CCB.

The CCB definition is different for each of the following XPT functions supported by
the User Agent SCSI device driver:

e XPT_NOOP — Execute nothing.

e XPT_SCSl_|0O — Execute the requested SCSI 10.

e XPT_GDEV_TYPE — Get the device type information.
e XPT_PATH_INQ — Path inquiry.

e XPT_REL_SIMQ — Release the SIM queue that was frozen by a previous
CHECK CONDITION status.

e XPT_SASYNC_CB — Set async callback parameters.

e XPT_SDEV_TYPE — Set the device type information.

e XPT_ABORT — Abort the selected CCB.

e XPT _RESET BUS — Reset the SCSI bus.

e XPT_RESET_DEV — Reset the SCSI device, BDR.

e XPT_TERM_|O — Terminate the selected CCB.

If asigna is generated by the user process, the User Agent creates an XPT_ABORT

CCB to abort the outstanding 1/0 and then waits for the completion of the I/0 and
notifies the user process when the aborted CCB is returned to the User Agent.

2—-2 CAM User Agent Modules

2311

23.1.2

2.3.1.3

2314

2.3.15

2.3.1.6

2.3.1.7

2.3.1.8

The UAGT_CAM _CCB structure is defined as follows:

t ypedef struct uagt_cam ccb

CCB_HEADER *uagt _ccb; /* pointer to the users CCB */

u_l ong uagt _ccbl en; /* length of the users CCB */
u_char *uagt_buffer; /* pointer for the data buffer */
u_l ong uagt _bufl en; /* length of user request */

u_char *uagt_snsbuf; /* pointer for the sense buffer */
u_l ong uagt _snsl en; /* length of user’s sense buffer */
CDB_UN *uagt _cdb; [* ptr for a COBif not in CCB */
u_l ong uagt _cdbl en; /* CDB length if appropriate */

u_l ong uagt _fI ags; /* See bel ow */

} UAGT_CAM CCB;

The uagt_ccb Member

The uagt _ccb member contains a pointer to the user process's CCB that will be
copied into kernel space.

The uagt_ccblen Member
The uagt _cchbl en member contains the length of the user process's CCB.

The uagt_buffer Member

The uagt _buf f er member contains a pointer to the user process' s data buffer.
This member is used only by the User Agent.

The uagt_buflen Member

The uagt _buf | en member contains the length of the user process's data buffer.
This member is used only by the User Agent.

The uagt_snsbuf Member

The uagt _snsbuf member contains a pointer to the user process' s autosense data
buffer. This member is used only by the User Agent.

The uagt_snslen Member

The uagt _snsl en member contains the length of the user process's autosense data
buffer. This member is used only by the User Agent.

The uagt_cdb Member

If the user process's CCB contains a pointer to a CDB, then the uagt _cdb also
contains a pointer to a Command Descriptor Block (CDB) that is to be locked in
memory. This member and the uagt _cdbl en member are used only by the User
Agent driver. The CCB must also contain valid pointers and counts.

The uagt_cdblen Member

The uagt _cdbl en contains the length of the Command Descriptor Block, if
appropriate.

CAM User Agent Modules 2-3

2.3.1.9 The uagt_flags Member

Theuagt _f 1 ags containsthe UAGT_NO_INT_SLEEP bit, which, if set, indicates
that the User Agent should not sleep at an interruptible priority.

2.3.2 The UAGT_CAM_SCAN Data Structure

The User Agent SCSI device driver uses the UAGT_CAM_SCAN data structure to
communicate with user level programs that need to have access to the CAM
subsystem. The structure is copied into kernel space as part of thei oct | system
call from user space for the UAGT_CAM_SINGLE_SCAN and
UAGT_CAM_FULL_SCAN commands. The user program fills in the pointersin
this structure and the User Agent SCSI device driver correctly fillsin the
corresponding pointers in the CCB.

The UAGT_CAM_SCAN structure is defined as follows:

t ypedef struct uagt_cam scan ({

u_char ucs_bus; /* Bus id for scan */
u_char ucs_target; /* Target id for scan */
u_char ucs_| un; /* LUN for scan */

} UAGT_CAM SCAN,

2.4 User Agent Routines

This section describes the User Agent routines supplied by Digital. Table 2-1 lists
the name of each routine and gives a summary description of its function. The
sections that follow contain a more detailed description of each User Agent routine.
Descriptions of the routines with syntax information, in ULTRIX reference page
format, are included in alphabetical order in Appendix C.

Table 2-1: User Agent Routines

Routine Summary Description

uagt _open handles the open of the User Agent driver

uagt _cl ose handles the close of the User Agent driver

uagt _i oct | handlesthei oct | system call for the User Agent driver

2.4.1 The uagt_open Routine
The uagt _open routine handles the open of the User Agent driver.
The character device specid file name used for the openis/ dev/ cam

2.4.2 The uagt_close Routine

The uagt _cl ose routine handles the close of the User Agent driver. For the last
close operation for the driver, if any queues are frozen, a RELEASE SIM QUEUE
CCB is sent to the XPT layer for each frozen queue detected by the User Agent.

2—-4 CAM User Agent Modules

2.4.3 The uagt_ioctl Routine

Theuagt _i oct | routine handlesthei oct | system call for the User Agent driver.
Thei oct | commands supported are: DEVIOCGET, to obtain the User Agent
driver's SCSI device status; UAGT_CAM _10, thei oct | define for calls to the User
Agent driver; UAGT_CAM_SINGLE_SCAN, to scan a bus, target, and LUN; and
UAGT_CAM_FULL_SCAN, to scan a bus.

For SCSI 1/0 CCB requests, the user data areais locked before passing the CCB to
the XPT. The User Agent sleeps waiting for the I/0O to complete and issues a
ABORT CCB if asignal is caught while sleeping.

2.5 Sample User Agent Drivers

Two sample User Agent driver programs follow. The first sample program uses the
User Agent driver to perform a SCSI INQUIRY command to a device on a selected
nexus.

The second sample program is a scanner control program that sets up a scanner, reads
scan line data from the device, and writes the data to afile, using the User Agent
driver.

Both programs are included with the USCA software and reside in the
[usr/ exanpl es directory.

2.5.1 Sample User Agent Driver Inquiry Program

2511

This section contains the User Agent sample inquiry application program,

cam nq. ¢, with annotations to the code. The user enters the string i nq followed

by the numbers identifying the bus, target, and LUN nexus to be checked for a valid
device. If the deviceisvalid, the INQUIRY datais displayed at the console. If the
deviceisinvalid, an error message appears.

The Include Files and Definitions Section

This section describes the portion of the User Agent sample inquiry application
program that lists the i ncl ude files, local definitions, and data initialization for the
program.

/* __ */
/* Include files needed for this program */

#i ncl ude <stdi o. h>

#i ncl ude <sys/file.h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/ioctl.h>
#i ncl ude <strings. h>
#i ncl ude <ctype. h>

#i ncl ude <sys/cam h> /* CAM defines fromthe CAM docunment */
#i ncl ude <sys/dec_cam h> /* CAM defines for Digital CAMsource files */
#i ncl ude <sys/uagt.h> /* CAM defines for the UAgt driver */

#i ncl ude <sys/scsi_all.h> /* CAM defines for ALL SCSI devices */

CAM User Agent Modules 2-5

25.1.2

/* __ */
/* Local defines */

#def i ne | NQUI RY_LEN 36 /* general inquiry length */

| % e o e e e e e e e e e e e e e e e eeee oo * [
/* Initialized and uninitialized data. */

u_char buf[| NQU RY_LEN];

This line defines a constant of 36 bytes for the length of the inquiry expected by
the user from the SCSI device.

This line declares a global character array, buf , with a size of 36 bytes as defined
by the INQUIRY _LEN constant.

The Main Program Section

This section describes the mai n program portion of the User Agent sample inquiry
application program.

/* ___ */
/* The main code path. The CCB/ CDB and UAGI_CAM CCB are set up for
an | NQUI RY conmand to the Bus/ Target/Lun selected by the commuand
line argunents. The returned INQU RY data is displayed to the
user if the status is valid. |If the returned status indicates
an error, the error is reported instead of the INQURY data. */

mai n(argc, argv)
int argc;
char *argv[];

extern void print_ing_data();
extern void print_ccb_status();

u_char id, targid, lun; /* fromthe comuand |ine */

int fd; /* unit number fromthe open */
UAGT_CAM CCB ua_cch; /* local uagt structure */
CCB_SCSI 1 O ccb; /* |ocal CCB */

ALL_|I NQ CDB *i nq; /* pointer for the CDB */

/* Make sure that all the argunments are there. */ [g
if (argc !'=4) {

printf("SCSI |INQ bus target lun\n");
exit();

/* Convert the nexus information fromthe command line. */

id = atoi(argv[1]);
targid = atoi(argv[2]);
lun = atoi (argv[3]);

These two forward references define routines that are used later in the program to
print out the INQUIRY data or to print out the CAM status if there was an error.

The file descriptor for the User Agent driver returned by the open system call,
which executesin Section 2.5.1.3.

2-6 CAM User Agent Modules

25.1.3

2514

This line declares an uninitialized local data structure, ua_ccb, of the type
UAGT_CAM_CCB, which is defined in the file/ usr/ sys/ h/ uagt . h. This
structure is copied from user space into kernel space as part of thei oct | system
call. Section 2.5.1.7 describes this procedure.

This line declares an uninitialized local data structure, cch, of the type
CCB_SCSIIO , which is defined in the file / usr/ sys/ h/ cam h. The
members of this structure needed for the XPT_SCSI_10 request arefilled in
Section 2.5.1.4. The members of this structure needed for the INQUIRY
command are filled in Section 2.5.1.5.

This line declares a pointer, i nq, to adata structure, ALL_INQ_CDB, which is
defined in the file/ usr/ sys/ h/ scsi _al | . h. This structureisfilled in
Section 2.5.1.5.

[6] This section of code makes sure the user entered the correct number of
arguments. The user should have entered the string i nq, followed by three
numeric characters representing the bus, target, and LUN to be checked for a
valid status.

This section of code converts the numeric characters entered and assigns them, in
order, to bus, target, and LUN.

The User Agent Open Section

This section describes the portion of the User Agent sample inquiry application
program where the User Agent is opened.

/* Open the User Agent driver and report any errors. */
if ((fd = open("/dev/cant, ORDWR, 0)) <0)
{

perror("Error on CAM UAgt Open:");
exit(1l);
}

The program attempts to open the User Agent device specidl file, / dev/ cam
with the O_RDWR flag, which allows reading and writing. If the file descriptor
returned by the open system call indicates that the open failed by returning a
negative value, < 0, the program reports an error and exits. Otherwise, the
program opens the device.

Filling in XPT_SCSI_IO Request CCB_HEADER Fields

This section describes the portion of the User Agent sample inquiry application
program where the members of the CCB_HEADER needed for an XPT_SCSI_10
regquest are filled in.

/* Set up the CCB for an XPT_SCSI_I O request. The | NQUI RY command
will be sent to the device, instead of sending an XPT_GDEV_TYPE. */

/* Set up the CAM header for the XPT_SCSI_IO function. */

ccb. cam ch. my_addr = (struct ccb_header *)&cch; /* "Its" address */
cch. cam ch. cam ccb_l en = sizeof (CCB_SCSI 10O ; /* a SCSI 1/0 CCB */
cch. cam ch. cam func_code = XPT_SCSI_I O /* the opcode */
cch.cam ch.campath_id = id; /* sel ected bus */

CAM User Agent Modules 2-7

2515

@]

cch.camch.camtarget_id = targid; /* selected target */
ccb.camch.camtarget _lun = |un; /* selected lun */

/* The needed CAM flags are : CAMDI R IN - The data will conme from
the target, CAM DI S _AUTOSENSE - Do not issue a REQUEST SENSE packet
if there is an error. */

cch.camch.camflags = CAM DI R IN | CAM DI S AUTCSENSE;

This section of code fills in some of the CCB_HEADER fields of the SCSI 1/0
CCB structure defined as ccb, for processing by the XPT layer. The structure
was declared in Section 2.5.1.2.

These three lines assign the bus, target, and LUN to the corresponding fields in
the CCB_HEADER structure.

This line sets the necessary CAM flags for the INQUIRY: CAM_DIR_IN, which
specifies that the direction of the data is incoming; and

CAM_DIS AUTOSENSE, which disables the autosense feature. These flags are
defined in/ usr/ sys/ h/ cam h.

Filling in INQUIRY Command CCB_HEADER Fields

This section describes the portion of the User Agent sample inquiry application
program where the members of the CCB_HEADER needed for the INQUIRY
command arefilled in. Thisis the structure that is passed to the XPT layer by the
User Agent driver.

/* Set up the rest of the CCB for the I NQU RY command. */

cch.cam data_ptr = &buf[0]; /* where the data goes */

cch. camdxfer_len = | NQUI RY_LEN; /* how rmuch data */

cch. cam ti meout CAM TI ME_DEFAULT; /* use the default tinmeout */

ccb. cam cdb_I en si zeof (ALL_INQ CDB); /* how many bytes for inquiry */[@

/* Use a local pointer to access the particular fields in the | NQU RY
CcDB. */

ing = (ALL_I NQ CDB *)&cch. cam cdb_i 0. cam cdb_bytes[0] ;

i ng->opcode = ALL_I NQ OP; /* inquiry command */
ing->evpd = 0; /* no product data */
ing->lun = 0; /* not used in SCSI-2 */

i ng->page = 0; /* no product pages */
ing->alloc_len = | NQU RY_LEN, /* for the buffer space */
ing->control = 0; /* no control flags */

This line sets the cam dat a_pt r member of the SCSI 1/0 CCB structure to the
address of the first element in the buf array, which is defined as 36 bytesin
Section 2.5.1.1.

This line specifies using the default timeout, which is the value assigned to the
CAM_TIME DEFAULT constant. This constant is set in the

[usr/ sys/ h/ cam h file to indicate that the SIM layer’s default timeout is to
be used. The current value of the SIM layer’s default timeout is five seconds.

This line sets the length of the Command Descriptor Block in the CCB to the
length of an inquiry CDB.. Theinquiry CDB, ALL_INQ_CDB, which is defined
inthe/ usr/sys/ h/ scsi_all . hfile issix bytes.

2-8 CAM User Agent Modules

25.1.6

2517

This line assigns the i nq pointer, which is type ALL_INQ_CDB, to the address
of thecam cdb_byt es member of the CDB_UN union. This union is defined
in/usr/sys/ h/ cam h asthecam cdb_i o member of the SCSI 1/0 CCB
structure.

These lines use the i nq pointer to access the fields of thecam _cdb_byt es
array within the ccb structure as though it isan ALL_INQ_CDB structure. The
ALL_INQ_CDB dtructureis defined inthe/ usr/ sys/ h/ scsi _al | . h file.

Filling in the UAGT_CAM_CCB Fields

This section describes the portion of the User Agent sample inquiry application
program where the members of the UAGT_CAM_CCB structure arefilled in for the
i octl cal. Thisis the structure that is passed to the User Agent driver.

/* Set up the fields for the User Agent loctl call. */

ua_cch. uagt _ccb = (CCB_HEADER *) &ccbh; /* where the CCB is */

ua_cch. uagt _ccblen = sizeof (CCB_SCSII1O); /* how nmany bytes to pull in */
ua_cch. uagt _buffer = &uf[0]; /* where the data goes */
ua_cch. uagt _bufl en = | NQUI RY_LEN, /* how rmuch data */

ua_cch. uagt _snsbuf = (u_char *)NULL; /* no Autosense data */
ua_cch. uagt _snslen = 0; /* no Autosense data */

ua_cch. uagt _cdb = (CDB_UN *) NULL; /* CDBis in the CCB */ [6
ua_cch. uagt _cdbl en = 0; /* CDBis in the CCB */

This line initializes the uagt _ccb member of the ua_ccb structure with the
address of the local CCB_HEADER structure, ccb.

This line sets the length of the uagt _ccbl en member to the length of the SCS
/O CCB structure that will be used for this call.

This line initializes the uagt _buf f er member with the user space address of
the array buf , which was allocated 36 bytes in Section 2.5.1.1.

This line initializes the uagt _buf | en member with the value of the constant
INQUIRY _LEN, which is the number of bytes of inquiry data that will be
returned.

These two lines reflect that the autosense features are turned off in the CAM

flags.

6] These two lines reflect that the Command Descriptor Block information is in the
SCSl 1/0O CCB structure filled in Section 2.5.1.4.

Sending the CCB to the CAM Subsystem

This section describes the portion of the User Agent sample inquiry application
program where the ccb is sent to the CAM subsystem.

/* Send the CCB to the CAM subsystem using the User Agent driver,
and report any errors. */

if(ioctl(fd, UAGT_CAM IO, (caddr_t)&ua_cch) < 0)

{
perror("Error on CAM UAGT loctl:");
cl ose(fd); /* close the CAMfile */ [2
exit(1);

CAM User Agent Modules 2-9

}

/* 1f the CCB conpl eted successfully, then print out the I NQU RY
information; if not, report the error. */

if (ccb.camch.camstatus != CAM REQ CWP)

{
print_ccb_status(&(ccbh.camch)); /* report the error values */
}
el se
{
print_ing_data(&buf[0]); /* report the INQURY info */
}

This line passes the local UAGT_CAM_CCB structure, ua_cchb, to the User
Agent driver, using thei oct | system call. The arguments passed are the file
descriptor returned by the open system call; the User Agent i oct | command,
UAGT_CAM_I0O, which is defined in the / usr / sys/ h/ uagt . h file; and the
contents of the ua_ccb structure. The User Agent driver copies in the SCSI 1/0
CCB and sends it to the XPT layer. When the I/O completes, the User Agent
returns to the application program, returning status within the ua_cchb structure.

If thei oct | call fails, this code displays an error message, closes the device
specidl file, / dev/ cam and exits.

If the CAM status is anything other than CAM_REQ_CMP, indicating the
request completed, an error message is printed indicating the CAM status
returned.

If the request completes, the pri nt _i nq_dat a routineis called to display the
INQUIRY data.

2.5.1.8 Print INQUIRY Data Routine

This section of the User Agent sample inquiry application program converts the rest
of the fields of inquiry data to a human-readable form and sends it to the user’s
screen.

/* Define the type and qualifier string arrays as globals to allow for
conpile-tinme initialization of the information. */

caddr _t periph_type[] ={ /* Peripheral Device Type */
"Direct-access", /* 00h */
"Sequenti al - access", /* 01h */
"Printer", /* 02h */
"Processor", /* 03h */
"Wite-once", /* 04h */
" CD- ROV, /* 05h */
" Scanner", /* 06h */
"Optical menory", /* 07h */
" Medi um changer ", /* 08h */
" Communi cat i ons", /* 09h */
"CGraphics Arts" /* OAh */
}; /* Same as OA */ /* 0Bh */
/* Reserved */ /* 0Ch - 1Eh */
/* Unknown */ /* 1Fh */
caddr _t periph_qual[] ={ /* Peripheral Qualifier */
"Devi ce supported, is (may be) connected", /* 000b */
"Devi ce supported, is not connected", /* 001b */

2-10 CAM User Agent Modules

"<Reserved qualifier>", /* 010b */
"No device supported for this Lun" /* 011lb */
}; /* Vendor specific */ /* 1xxb */
/* __ */
/* Local routine to print out the INQURY data to the user. */
voi d

print_ing_data(ip)

ALL_I NQ DATA *ip;

char vendor id[9];
char prod_id[17];

char prod_rev_lvl[5];
caddr _t periph_type_ptr, periph_qual _ptr;
int ptype;
/* Make | ocal copies of the ASCII text, so that
terminated for the printf() routine. */

strncpy(vendor_id, (caddr_t)ip->vid, 8);
vendor _id[8] = "'\0";

strncpy(prod_id, (caddr_t)ip->pid, 16);
prod_id[16] = "\0";

strncpy(prod_rev_lvl, (caddr_t)ip->revlevel,
prod_rev_lvli[4] ="'\0";

4);

/* Convert sparse device type and qualifier val

ptype = ip->dtype;

peri ph_type_ptr = "Reserved";

if (ptype == Ox1F) periph_type_ptr =
if (ptype 0x0B) ptype = 0x0A;

if (ptype <= Ox0A) periph_type_ptr =

"Unknown";

periph_qual _ptr = "<Vendor Specific

qual i fier>"

it can be NULL

ues into strings */

periph_type[ptype];

if (ip->pqual <= 3) periph_qual _ptr = periph_qual[ip->pqual];
printf("Periph Device Type = Ox% = % Device\n",
i p->dtype, periph_type_ptr);
printf("Periph Qualifier = 0x% = %\ n", ip->pqual,
peri ph_qual _ptr);
printf("Device Type Mdifier = Ox%\tRMB = O0x% = Medi um %\ n",
ip->dnodi fy, ip->rnmb, (ip->rnmb?"is renpvable":
"is not renovable"));
printf("ANSI Version = Ox%\t\tECMA Version = 0x%\n",
i p->ansi, ip->ecm);
printf("1SO Version = 0x%X\t\tAENC = 0x%X\tTrm OP = Ox%X\ n",
i p->i so, ip->aenc, ip->trmop);
printf("Response Data For mat = 0x%\tAddit Length = 0x%l\n",
i p->rdf, ip->addlen);
printf("SftRe = OxXCmdQue = O0x%\tLinked = Ox%X\t Sync = 0x%\n",
i p->sftre, ip->cndque, ip->linked, ip->sync);
printf("Wusl6 = 0x%X\tWus32 = 0x%X\t Rel Adr = 0x%X\ n",
i p->Wbus16, ip->wbus32, ip->reladdr);
printf("Vendor Identification = %\nProduct Identification = %\n",

vendor _id, prod_id);
printf("Product Revision Level =
prod_rev_lvl);
fflush(stdout); [g

%\ n\n",

CAM User Agent Modules 2-11

2519

This line declaresthe pri nt _i nq_dat a function that prints out the INQUIRY
data for avalid nexus. The function’s argument, i p, is a pointer to the
ALL_INQ_DATA structure defined in the/ usr/ sys/ h/ scsi _al | . h file.

These three lines declare three character arrays to contain the Vendor 1D, the
Product ID, and the Product revision level to be displayed. Each array is declared
with one extra byte to hold the NULL string terminator.

This section copiesthe ALL_INQ_DATA member, vi d, into the local array
vendor _i d; the ALL_INQ_DATA member, pi d, into the local array
prod_i d; and the ALL_INQ_DATA member, r evl evel , into the local array,
prod_rev_|lvl. Thearraysare passed to the standard C library function,
st r ncopy, which copies the data and then terminates each string copy with a
NULL, so that it can be output to the pri nt f function in the format desired.

This section converts the device type and qualifier values into human-readable
words. The conversions are performed on defined and undefined numeric
combinations.

This section decodes and displays the inquiry data as hexadecimal numbers and
strings.

6] Thisline calls the standard C 1/O function, f f | ush, to write out the data from
the internal buffers.

Print CAM Status Routine

This section describes the portion of the User Agent sample inquiry application
program that defines the routine to print out the CAM status for an invalid nexus.

/* __ */
/* Local routines and data structure to report in text and Hex
formthe returned CAM status. */

struct cam statustable {

u_char cam st at us;
caddr _t stat us_nsg;
} camstatustable[] = {

{ CAM_REQ | NPRCG, "CCB request is in progress” },
{ CAM REQ CMP , "CCB request conpleted w out error" },
{ CAM_REQ ABORTED, "CCB request aborted by the host" },
{ CAM_UA_ABOCRT, "Unabl e to Abort CCB request" },
{ CAM REQ CMP_ERR, "CCB request conpleted with an err" },
{ CAM BUSY, " CAM subsystem is busy" }
{ CAM_REQ | NVALI D, "CCB request is invalid" }
{ CAM_PATH_I NVALI D, "Bus | D supplied is invalid" },
{ CAM DEV_NOT_THERE, "Devi ce not installed/there" },
{ CAM_UA TERM O, "Unable to Terminate I/O CCB req" 1,
{ CAM _SEL_TI MEQUT, "Target selection tinmeout" },
{ CAM_CMD_TI MEQUT, "Command timeout" 1,
{ CAM_MsG_REJECT_REC, "Rej ect received" },
{ CAM SCSI _BUS_RESET, "Bus reset sent/received" },
{ CAM_UNCOR_PARI TY, "Parity error occured" },
{ CAM_AUTCSENSE_FAI L, "Request sense cnd fail" },
{ CAM_NO_HBA, "No HBA detected Error" },
{ CAM _DATA_RUN_ERR, "Overrun/underrun error" 1,
{ CAM_UNEXP_BUSFREE, "BUS free" 1,
{ CAM _SEQUENCE_FAI L, "Bus phase sequence failure" },
{ CAM CCB_LEN ERR, "CCB | ength supplied is inadaquate"” },
{ CAM_PROVI DE_FAI L, "To provide requ. capability" },
{ CAM BDR_SENT, "A SCSI BDR nsg was sent to target" },
{ CAM_REQ TERM O, "CCB request term nated by the host" },

2-12 CAM User Agent Modules

{ CAM_LUN_I NVALI D, "LUN supplied is invalid" },
{ CAM_TI D_I NVALI D, "Target |D supplied is invalid" },
{ CAM_FUNC_NOTAVAI L, "Requested function is not avail abl e" },
{ CAM_NO_NEXUS, "Nexus is not established" },
{ CAM_I I D_| NVALI D, "The initiator IDis invalid" },
{ CAM_CDB_RECVD, "The SCSI CDB has been received" 1,
{ CAM _SCsSI _BUSY, "SCS| bus busy" },
{ CAM_SI M_QFRZN, "The SIM queue is frozen" 1,
{ CAM_AUTOSNS_VALI D, "Aut osense data valid for target" }
b
int camstatusentrys = sizeof (camstatustable) / \
si zeof (cam statustabl e[0]);

char *

camstatus(camstatus) [
regi ster u_char cam stat us;

{

regi ster struct camstatustable *cst = cam statustable;
register entrys;
for(entrys = 0; entrys < camstatusentrys; cst++) { [6
if(cst->camstatus == camstatus) {
return(cst->status_nsg);
}
}
return("Unknown CAM Status");

}

voi d

print_cch_status(cp)

CCB_HEADER *cp;

{

printf("camstatus = Ox¥%\t (%%%)\n", cp->cam status,
((cp->cam status & CAM AUTOSNS_VALID) ? "AutoSns Valid-" : ""),
((cp->cam status & CAM SIM QFRZN) ? "SIM Q Frozen-" : ""),
canst at us(cp->cam status & CAM STATUS NMASK));

fflush(stdout);

}

This line defines an array of structures. It is declared as a global array to allow
compile-time initialization. Each structure element of the array contains two
members, cam st at us, the CAM status code, and st at us_nsg, a brief
description of the meaning of the status code. The CAM status codes and
messages are defined in the / usr/ sys/ h/ cam h file.

These lines initialize the CAM status array with the status values and their text
equivalents.

This line declares an integer variable whose contents equal the size of the total
CAM status array divided by the size of an individual array element. This integer
is the number of the element in the array.

The next two lines define a function that returns a pointer to a text string with the
cam st at us field of the CCB_HEADER as an argument. The cam st at us
member is declared as a register variable so that its values are stored in a machine
register for efficiency.

This line declares a register structure pointer to point to each element of the CAM
status array and initializes it to point to the beginning of the CAM status array.
A local register variable, ent rys, will be used to traverse the CAM status array.

[6] This section of code examines each element in the array, incrementing cst until

a match between the status from the CCB and a status value in the array is found,

CAM User Agent Modules 2-13

2.5.1.10

25111

in which case the address of the CAM status description string, st at us_nsg, is
returned. If all the elements are examined without a match, the "Unknown CAM
Status' message address is returned.

The next two lines define a routine that uses a pointer to the CCB_HEADER
structure of the INQUIRY CCB and calls the C library routine, pri nt f , to print
out the hexadecimal value and the appropriate description of the CAM status
returned.

This line calls the standard C 1/O function, f f | ush, to write out the data from
the internal buffers.

Sample Output for a Valid Nexus

This section contains an example of the output of the User Agent sample inquiry
application program when the user enters a valid nexus.

#ing 0 0 O

Peri ph Device Type = 0x0 Periph Qualifier = 0x0
Devi ce Type Modifier = 0x0 RVB = 0x0

ANSI Version = 0x1 ECMA Version = 0x0

1 SO Version = 0x0 AENC = 0xO0 Trm OP = 0x0
Response Data Format = Ox1 Addit Length = 0x31

SftRe = 0x0 CmdQue = 0xO Li nked = 0x0 Sync = 0Ox1

Wous16 = 0x0 Whus32 = 0x0 Rel Adr = 0x0
Vendor | D = DEC

Product I D = RZ56 (CO DEC

Product Rev Level = 0300

See the American National Standard for Information Systems, Small Computer
Systems Interface - 2 (SCSI - 2), X3T9/89-042 for a description of each of the
fields of the inquiry data returned.

This line shows the value of the vendor _i d variable declared in the
print _i nq_dat a routine in Section 2.5.1.8 as alocal copy of the text string.

This line shows the value of the pr od_i d variable declared in the
print _i nq_dat a routine in Section 2.5.1.8 as alocal copy of the text string.

]

&

This line shows the value of the pr od_r ev_I vl variable declared in the
print _i nqg_dat a routine in Section 2.5.1.8 as alocal copy of the text string.

Sample Output for an Invalid Nexus

This section contains an example of the output of the User Agent sample inquiry
application program when the user enters an invalid nexus.

#ing 0 2 O

cam status = Ox4A (SIM Q Frozen-Target sel ection timeout)

This line shows that the contents of the cam st at us member of the
CCB_HEADER structure returned was CAM_SIM_QFRZN, which indicates a
lack of response from the specified nexus. See the cam st at ust abl e in
Section 2.5.1.9.

2-14 CAM User Agent Modules

25.2

2521

Sample User Agent Scanner Driver Program

This section contains the User Agent sample scanner program, cscan. ¢, with
annotations to the code. It aso contains the cscan. h file, which defines the
WINDOW_PARAM_BLOCK structure used in the program.

Scanner Program Header File

This section describes the header file, cscan. h, that contains definitions of
structures for the program to use.

/* cscan. h Header file for cscan.c (CAM Scanner driver) 28-Cct-1991 */
/* Scanner W ndow Paraneter Block definition; all nulti-byte quantities
are defined as unsigned bytes due to the need to store the values in

swapped order. */

typedef struct {

u_char rsvdi[6]; /* Reserved bytes in Header: Mst Be Zero */
u_char WDBLen[2]; /* Nunber of W ndow Paraneter bytes follow ng */
u_char WD; /* Wndow I D. Must Be Zero */

u_char rsvd2; /* Reserved bytes in Header: Must Be Zero */

u_char XRes[2]; /* X-axis resolution: MJUST be same as YRes */
u_char YRes[2]; /* Y-axis resolution: MJST be sane as XRes */

u_char UpLeftX[4]; /* Upper left X positon of scan w ndow */
u_char UpLeftY[4]; /* Upper left Y positon of scan w ndow */

u_char Wdth[4]; /* Scan width (Y-axis length) */

u_char Length[4]; /* Scan length (X-axis length) */

u_char Bright; /* Brightness: Must Be Zero */

u_char Thresh; /* Threshol d: Must Be Zero */

u_char Contrast; /* Contrast: Must Be Zero */

u_char 1 ngTyp; /* Image type: 0 = bi-level nono; 2 = multi-Ilevel

nmono; 3 = bi-level full color; 5 = mlti-
level full color; others reserved */

u_char PixBits; /* Bits per pixel: 1 = bi-level; 4 = 16 shades;
8 = 256 shades; others reserved */

u_char Hal f Tone[2];/* Hal ftone Pattern: Must Be Zero */

u_char PadTyp: 3; /* Padding type for non-byte pixels: MJST BE 1 */

u_char rsvd3: 4; /* Reserved bits: Mist Be Zero */

u_char Revlng: 1; /* 0 = normal image; 1 = reverse inmage */

u_char BitOrder[2];/* Bit ordering: Mist Be Zero */

u_char ConpTyp; /* Conpression type: Mist Be Zero */

u_char ConpArg; /* Conpression argunment: Must Be Zero */

u_char rsvd4[6]; /* Reserved: Must Be Zero */

u_char Hdr Sel ; /* Header select (return with data): 0 = no header;
1 = return header with data; others reserved */

u_char Col or Sel ; /* Col or select (selects color to use when doing a

nono-col or scan): 0 = default to Geen; 1 =
scan using Red; 2 = scan using Green; 3 =
scan using Blue; others reserved */

u_char IngCorr; /* Inmage data correction nethod: 0 = default to
normal ; 1 = soft inmage; 2 = enhance (low);
3 = enhance (high); others reserved */

u_char ThreshR /* Threshold level, Red: 0 = default l|evel */
u_char ThreshG /* Threshold level, Geen: 0 = default |evel */
u_char ThreshB; /* Threshold level, Blue: 0 = default level */
u_char Sht Typ: 1; /* Sheet type: 0 = reflection; 1 = transparency */
u_char rsvd5: 3; /* Reserved bits: Must Be Zero */

u_char Sht Den: 4; /* Sheet density (transparency): 0 = nornmal; 1 =
light; 2 = dark; others reserved */
} W NDOW PARAM_BLOCK;

CAM User Agent Modules 2-15

The length in bytes of a single scan window descriptor. The first 48 bytes are
defined in the American National Standard for Information Systems, Small
Computer Systems Interface - 2 (SCSI - 2), X3T9/89-042 and the remaining bytes
are vendor-specific. The specific structure members used may depend on the
scanner device.

2.5.2.2 The Include Files Section

This section, which is the beginning of the cscan program, describes the portion of
the User Agent sample scanner program that lists thei ncl ude files for the program.

/* __ */
/* Include files needed for this program */

#i ncl ude <stdio. h>

#i ncl ude <unistd. h>

#i ncl ude <sys/file.h>

#i ncl ude <sys/types. h>

#i nclude <sys/ioctl.h>

#i ncl ude <sys/ ui o. h>

#i ncl ude <strings. h>

#i ncl ude <ctype. h>

#i ncl ude <mat h. h>

#i ncl ude <sys/cam h> /* CAM defines fromthe CAM docunent */
#include <sys/dec_camh> /* CAMdefines for Digital CAMsource files */
#i ncl ude <sys/uagt.h> /* CAM defines for the UAgt driver */
#incl ude <sys/scsi_all.h> /* CAM defines for ALL SCSI devices */

#i nclude "cscan. h" /* Scanner structure definitions */

2.5.2.3 The CDB Setup Section

This section describes the portion of the User Agent sample scanner program that
defines the CDBs for the program.

/* The Define Wndow Paraneters CDB (10 bytes). */

typedef struct {

u_char opcode; /* 24 hex */
u_char . 5, /* 5 bits reserved */
I un 3; /* logical unit number */
u_char 8; /* Reserved byte */
u_char 8; /* Reserved byte */
u_char 8; /* Reserved byte */
u_char 18 /* Reserved byte */
u_char param.| en2; /* MSB paraneter list length */
u_char param.|eni; /* paraneter list length */
u_char param.| en0; /* LSB paraneter list length */
u_char control; /* The control byte */

} SCAN_DEF_W N_CDB;

/* The Define Wndow Paraneters op code */

#defi ne SCAN_DEF_W N_OP 0x24

/* The Read (data or gamma table) CDB (10 bytes). */

typedef struct {

u_char opcode; /* 28 hex */
u_char . 5, /* 5 bits reserved */

I un D3 /* logical unit nunber */
u_char tran_type; /* transfer data type: */

2-16 CAM User Agent Modules

2524

2525

/* O=data, 3=ganma * 2

u_char . 8; /* Reserved byte */
u_char tran_idi; /* MSB transfer identification */ [3
u_char tran_id2; /* LSB trans id: */
/* 0 =data, 1/2/3= ganmma */
u_char param.|en2; /* MSB paraneter list length */
u_char param.|eni; /* paraneter |list |length */
u_char param.| en0; /* LSB paraneter list length */
u_char control; /* The control byte */

} SCAN_READ_CDB
/* The Read (data or gamma table) op code */

#def i ne SCAN_READ_COP 0x28

The parameter list length members specify the number of bytes sent during the
DATAOUT phase. The parameters are usually mode parameters, diagnostic
parameters, and log parameters that are sent to atarget. If set to O (zero), no data
is to be transferred.

The types of data that are to be read. The choices are: image data scan lines or
gamma correction table data.

These two bytes are used with the transfer type byte to indicate that the datato be
read is image scan lines, O (zero), or one of the following types of gamma
correction table data: red, 1; green, 2; or blue, 3.

The Definitions Section

This section describes the portion of the User Agent sample scanner program that
specifies the local definitions and initializes data.

/* ___ */
/* Local defines */
#defi ne SENSE_LEN18 /* max sense |length from scanner */ [1

/* ___ */
/* Initialized and uninitialized data. */

u_char sense[SENSE LEN]; [2

This line defines a constant of 18 bytes for the length of the sense data from the
scanner.

This line declares a character array, sense, with a size of 18 bytes as defined by
the SENSE_LEN constant.

The Main Program Section

This section describes the mai n program portion of the User Agent sample scanner
program.
/ K e e e e e e e e e e m e m e m e e e e e e e e m e e e e e m o m e m e e m e m e m e m e m e m e m e mm e m e — e ——————- */

/* The main code path. The CCB/ CDB and UAGT_CAM CCB are set up for the
DEFI NE W NDOW PARAMETERS and READ conmands to the Bus/Target/LUN. */

mai n(argc, argv, envp)

int argc;
char *argv[];

CAM User Agent Modules 2-17

char *envp[];

{

/* __ */
/* Local variables and structures */

extern void clear_men();
extern void swap_short_store();
extern void swap_|l ong_store();

u_char id, targid, lun; /* fromenvir variabl e SCAN- NEXUS */
char *cp;

i nt nexus;

int fd; /* unit nunber for the CAM open */
int od; /* unit nunber for the file open */
char Fil eHead[200] ; /* buffer for file header info */

int i, n;

u_char *bp; /* general usage byte pointer */

int retry_cnt; /* error retry counter */

int reset_flag; /* flag to indicate reset tried */

doubl e Xwi d, Ylen; /* scan area in inches */

u_short WKYRes; /* variables for wi ndow cal ul ati ons */

u_l ong WN dth, Wength, WnPix, LineBytes, TotalBytes; [g
u_char WHdr Sel ;

UAGT_CAM CCB ua_cchb_simrel; /* local uagt structure */

CCB_RELSI M ccb_simrel; /* local CCB */ [

UAGT_CAM CCB ua_cch_reset _dev; /* local uagt structure */
CCB_RESETDEV cch_reset _dev; /* local CCB */

UAGT_CAM CCB ua_cch; /* local uagt structure */

CCB_SCSI | O ccb; /* local CCB */

SCAN_DEF_W N_CDB *wi n; /* pointer for w ndow def CDB */
SCAN_READ _CDB *read; /* pointer for read CDB */

W NDOW PARAM BLOCK W ndow; /* paraneter block, w ndow def */

u_char ReadData[400*12*3]; /* Max bytes/line */
u_char *RDRp, *RDGp, *RDBp; /* Red, Green, Blue pointers */

u_char WiteData[] 400*12*3]; /* Max bytes/line */
u_char *WDp; /* WiteData pointer */

E]

These forward references declare routines that are used later in the program. The
routines are defined in Section 2.5.2.14.

The bus, target, and LUN are specified in octal digits in the SCAN-NEXUS
environment variable. The value for the LUN should be 0 (zero).

]

@]

The file descriptor for the User Agent driver returned by the open system call,
which executes in Section 2.5.2.7.

The file descriptor for the output file returned by the open system call, which
executesin Section 2.5.2.7.

Real values to contain the X and Y dimensions of the scan window.

&

Variables to hold calculated information about the scan window.

Variable to hold the flag byte indicating whether a window header is to be
returned with the data. The value of the variable is stored in the Hdr Sel
member of the WINDOW_PARAM_BLOCK structureis setto 1. The
WINDOW_PARAM_BLOCK is defined in Section 2.5.2.1.

N & @

2-18 CAM User Agent Modules

25.2.6

This line declares an uninitialized local data structure, ua_ccb_si m rel , to be
used for the RELEASE SIM QUEUE CCB command.

[9 This line declares an uninitialized local data structure, ccb_si m rel , of the
type CCB_RELSIM , which is defined in the file / usr/ sys/ h/ cam h.

This line declares an uninitialized local data structure, ua_ccb_reset dev, to
be used for the BUS DEVICE RESET CCB command.

This line declares an uninitialized local data structure, ccb_r eset _dev, of the
type CCB_RESETDEYV , which is defined in the file/ usr/ sys/ h/ cam h.

This line declares an uninitialized local data structure, ua_ccb, of the type
UAGT_CAM_CCB, which is defined in the file/ usr/ sys/ h/ uagt . h. This
structure is copied from user space into kernel space as part of thei oct | system
call.

This line declares an uninitialized local data structure, cch, of the type
CCB_SCSIIO , which is defined in the file / usr / sys/ h/ cam h.

This line declares a pointer to the data structure SCAN_DEF_WIN_CDB , which
is defined in Section 2.5.2.3.

This line declares a pointer to the data structure SCAN_READ_CDB , which is
defined in Section 2.5.2.3.

This line declares an uninitialized local data structure, W ndow, of the type
WINDOW_PARAM_BLOCK , which is defined in Section 2.5.2.1.

This line declares an array to contain a scan line of the maximum size that can be
read, which is 14,400 bytes. This array is used to read a scan line from the
scanner.

This line declares an array large enough to contain the maximum-size scan line,
which is 14,400 bytes. This array is used to write the scan line, converted to 3-
byte pixels, to the output file.

The Nexus Conversion Section

This section describes the portion of the User Agent sample scanner program where
the nexus information contained in the SCAN-NEXUS environment variable is
converted to the values for bus, target, and LUN.

/* Find the environment variable SCAN-NEXUS. |f not found, return
error nessage. |f found, convert the nexus information fromthe
variable to bus, target ID and LUN values. Return an error
message if any of the values are not octal digits. */

nexus = 0; /* Reset valid data flag */

for (i=0; envp[i] !'= NULL; i++)

{
cp = envp[i];
if (strncrmp(cp, " SCAN- NEXUS=",11) == 0)/* Find environnment variable */
{

nexus = -1; /* Set tentative flag */

cp += 11; /* Advance to data */
if (*cp <'0 || *cp >'7") break;

id = (u_char)(*cp++) - (u_char)('0);

if (*cp++ =" ") break;

if (*cp <’0 || *cp >"'7) break;

targid = (u_char)(*cp++) - (u_char)('0");

if (*cp++ =" ") break;

CAM User Agent Modules 2-19

2527

if (*cp<’'0 || *cp >"'7") break;
lun = (u_char)(*cp) - (u_char)('0");

nexus = 1; /* Set good data flag */
}
}
if (nexus == -1)
{
printf("Invalid SCAN-NEXUS; set to octal digits 'bus target lun'\n");
exit(1);
}

if (nexus == 0) [
{
printf("Set environnment variable SCAN-NEXUS to 'bus target lun’ (octal\
digits)\n\n");
exit(1);
}
printf("Scanner nexus set to: bus %, target %, LUN %\n\n",id, \
targid, lun);

E]

This section scans through all of the environment variables passed to the program
by the system, looking for the variable SCAN-NEXUS.

This section checks to make sure SCAN-NEXUS contains octal digits for bus,
target, and LUN.

This error message appears if the digits are not octal.

]

This error message appears if SCAN-NEXUS is not set.

o & &

This message displays the values for bus, target, and LUN.

The Parameter Assignment Section

This section describes the portion of the User Agent sample scanner program that
assigns the parameters entered by the user on the command line to the appropriate
variables and opens the necessary files.

/* Make sure that the correct nunber of argunents are present.
If not, return an error message with usage information. */

if (argc !'=5) {
printf("Usage is: cscan XYres Xwid Yl en out_file\n");
printf(" XYres is integer pix/inch; Xwid & Ylen are real \
inches\n\n");
exit();
}

/* Convert the paraneter information fromthe comrand |ine. */

WKYRes = atoi (argv[1]); /* X & Y resolution */
Xwi d = atof (argv[2]); /* X width in inches */
Yl en = atof (argv[3]); /* Y length in inches */

/* Verify that the X & Y resolution is one of the |egal values */

switch (WKYRes)
{
case 25:
case 150:
case 200:
case 300:
case 400:
br eak;

2-20 CAM User Agent Modules

defaul t:
printf("lllegal X & Y resolution; must be 25, 150, 200, \
300, 400\n");
exit(1);
}

/* Verify that the X width is positive and | ess than 11.69 inches */

if (Xwid<0/|] Xwid > 11.69)
{

printf("X width nust be positive and | ess than 11.69 inches\n");
exit(1);
}

/* Verify that the Y length is positive and | ess than 17.00 inches */

if (Ylen <0 || Ylen > 17.00)

{
printf("Y length nmust be positive and |l ess than 17.00 inches\n");

exit(1);
}

/* Qpen the output file ("truncating" it if it exists) and report */
/* any errors. */ [4

if ((od = open(argv[4], O WRONLY| O CREAT| O TRUNC, 0666)) < 0)

{
perror("Error on Qutput File Open");
exit(1);

}

/* QOpen the User Agent driver and report any errors. */

if ((fd = open("/dev/canf, ORDWR, 0)) < 0)

{
perror("Error on CAM UAgt Open");

exit(1);
}

The user enters the X and Y scan resolutions in pixels per inch, the width (X)
and length ('Y) of the scan area in inches, and the name of the output file on the
command line.

This section checks for the legal scan resolutions the user can enter.
These two sections check that the user entered legal values for X and Y.
These two sections open the User Agent driver and the output file.

2.5.2.8 The Data Structure Setup Section

This section describes the portion of the User Agent sample scanner program that sets
up the data structures for the XPT_REL_SIMQ and XPT_RESET_DEV commands.

/* -- Begin static setups of SIMQ Rel ease and Device Reset structures -- */

/* Set up the CCB for an XPT_REL_SI MQ request. */

/* Set up the CAM header for the XPT_REL_SIMQ function. */
ccb_simrel.camch. ny_addr = (struct ccb_header *)&ccb_simrel;

/* "Its" address */
ccb_simrel.camch.camccb_len = sizeof (CCB_RELSIM; /* a SIMQ rel ease */

CAM User Agent Modules 2-21

ccb_simrel.camch. cam func_code = XPT_REL_SIMQ /* the opcode */

ccb_simrel.camch.campath_id =id; /* selected bus */
ccb_simrel.camch.camtarget_id = targid; /* selected target */
ccb_simrel.camch.camtarget_lun = |un; /* selected lun */

/* The needed CAM flags are: CAM DI R NONE - No data will be transferred. */
ccb_simrel.camch. cam fl ags = CAM DI R_NONE;

/* Set up the fields for the User Agent loctl call. */
ua_cch_simrel.uagt_ccb = (CCB_HEADER *) &cchb_simrel;

/* where the CCB is */
ua_cch_simrel.uagt_ccblen = sizeof (CCB_RELSIM; /* bytes in CCB */

ua_cchb_simrel.uagt_buffer = (u_char *)NULL; /* no data */
ua_cch_simrel.uagt_buflen = 0; /* no data */
ua_ccb_simrel.uagt_snsbuf = (u_char *)NULL; /* no Autosense data */
ua_cch_simrel.uagt_snslen = 0; /* no Autosense data */
ua_cch_simrel.uagt_cdb = (CDB_UN *)NULL; /* CDBis in the CCB */
ua_cch_simrel.uagt_cdblen = 0; /* CDBis in the CCB */

/* Set up the CCB for an XPT_RESET_DEV request. */
/* Set up the CAM header for the XPT_RESET_DEV function. */
ccb_reset _dev.camch. my_addr = (struct ccb_header *)&cchb_reset_dev;

/* "Its" address */
cch_reset_dev. cam ch. cam ccb_| en = si zeof (CCB_RESETDEV);/* a SCSI |/0O CCB */

ccb_reset _dev. cam ch. cam func_code = XPT_RESET_DEV; /* the opcode */
ccb_reset _dev. cam ch. cam path_id =id; /* selected bus */
ccb_reset_dev.camch.camtarget_id = targid; /* selected target */
ccb_reset _dev.camch.camtarget_lun = |un; /* selected lun */

/* The needed CAM flags are: CAM DI R NONE - No data will be transferred. */
ccb_reset _dev.cam ch. cam fl ags = CAM DI R_NONE;
/* Set up the fields for the User Agent loctl call. */
ua_cch_reset_dev. uagt _ccb = (CCB_HEADER *) &cch_reset _dev;
/* where the CCBis */

ua_cch_reset _dev. uagt_cchbl en = sizeof (CCB_RESETDEV);/* bytes in CCB */
ua_cch_reset_dev.uagt _buffer = (u_char *)NULL; /* no data */

ua_cch_reset _dev. uagt_buflen = 0; /* no data */

ua_cch_reset_dev. uagt_snsbuf = (u_char *)NULL; /* no Autosense data */

ua_cch_reset_dev. uagt_snslen = 0; /* no Autosense data */

ua_cch_reset _dev. uagt _cdb = (CDB_UN *)NULL; /* CDBis in the CCB */

ua_cch_reset _dev. uagt_cdblen = 0; /* CDBis in the CCB */
/* -- End of static setups of SIMQ Rel ease and Device Reset structures -- */

This section of code fills in some of the CCB_HEADER fields of the RELEASE
SIM QUEUE CCB structure defined asccb_si m rel , for the
XPT_REL_SIMQ command. The structure was declared in Section 2.5.2.5

This section of code fills in some of the CCB_HEADER fields of the
CCB_RELSIM structure defined asua_ccb_si m r el , for the RELEASE SIM
QUEUE CCB command. The structure was declared in Section 2.5.2.5

This section of code fills in some of the CCB_HEADER fields of the
CCB_RESETDEV dtructure defined asccb_r eset _dev, for the
XPT_RESET_DEV command. The structure was declared in Section 2.5.2.5

2-22 CAM User Agent Modules

25.29

This section of code fills in some of the CCB_HEADER fields of the
CCB_RESETDEV dtructure defined asua_ccb_r eset _dev, for the BUS
DEVICE RESET CCB command. The structure was declared in Section 2.5.2.5

The Window Parameters Setup Section

This section describes the portion of the User Agent sample inquiry application
program that fills in the scan window parameters and sends a SCSI SET WINDOW

PARAMETERS command to the scanner.

/* Fill in window paraneters for scanner and send DEFI NE W NDOW */
/* PARAMETERS command to the scanner. Note that the X&Y resolution */
/* and the X width and Y length are specified on the conmand line. */

WW dt h = Xwi d*(doubl e) WKYRes;
W.engt h = Yl en* (doubl e) WKYRes;

WHdr Sel = 0;

#i f def NO_HEADER _FOR_NOW
WHdr Sel = 1;

#endi f

W nPi x = WN dt h*W.engt h;
Li neBytes = WN dt h*3;

printf("Wndow paraneters:\n");
printf(" Wdth = %d pixels/line,

WN dt h, W.ength, WnPix);

printf(" Bytes/line = %d; Total

Tot al Bytes);

/* X width inches to pixels */
/* Y length inches to lines */
/* Don't return header */

/* Return header w. data */

/* Pixels in w ndow */

/* Full color, 8-bit pixels */
Tot al Byt es = WHdr Sel *256 + W nPi x*3;

/* Full color, 8-bit pixels */

Length = %d |ines; Total = 940d pixels\n",

bytes/image = %40d\n", LineBytes,

/* Fill in window paraneters for scanner and send DEFI NE W NDOW PARAMETERS */

/* command to the scanner. */

cl ear _men(&N ndow, si zeof (W ndow));
swap_short _st or e(&N ndow. WDBLen[0] ,
swap_short _st or e(&N ndow. XRes[0] ,
swap_short _st or e(&N ndow. YRes[0] ,
/* Upper Left X & Y left at zero */
swap_l ong_st or e(&W ndow. W dt h[0] ,

swap_| ong_st or e(&N ndow. Lengt h[0],

W ndow. | ngTyp = 5;

W ndow. Pi xBits = 8;

W ndow. PadTyp = 1;

W ndow. Revlng = 1;

W ndow. Hdr Sel = WHdr Sel ;

/* Al other values left at zero */

/* O ear whole DW block */

0x2F); /* REQUI RED length */
WKYRes); /* X and Y MJUST BE THE SAME */
WKYRes); /* X and Y MJST BE THE SAME */

VW dt h) ;
W.engt h) ;

/* Multi-level full color */ [g

/* 8-bit pixels */

/* REQUI RED val ue */
/* Reverse == 0,0,0 = black */ [
/* Set return header control */

/* Display current contents of bytes in w ndow paraneter block */

printf("Wndow Paraneter block (in hex):\n");

for(i=0, bp=(u_char *)&W ndow; i

printf("%2x ", *bp);

if (i ==7) printf("\n");
if (i == 8+21) printf("\n");

}
printf("\n\n");

< sizeof (Wndow); i++, bp++) {

This section converts the X and Y values entered from the command line in
inches into pixels. The value of WKYRes isani nt ; however, the values of
Xwi d and Yl en arefloating point values. To perform the calculations to

CAM User Agent Modules 2-23

2.5.2.10

determine the values of WA dt h, the number of pixels per line, and W.engt h,
the number of scan lines, the value of WKYRes must be converted to ar eal
number. For example, if the value entered for X were 4.5 and the resolution
selected were 300, WA dt h would equal 1,350 pixels per line. If the value
entered for Y were 3.5, the result would be 1,050 scan lines.

This section of the program calculates the number of bytes in the scan window
based on the total number of pixels. For example, the calculation using the
previous figures would yield 1,417,500 pixels as the value of W nPi x. To
calculate the number of bytes per line, WA dt h is multiplied by 3, which is the
number of bytes per pixel. The total number of bytes in the scan window, using
the figures in the example, would be 4,252,500 bytes.

These lines display the results of the calculations.

This line callsthe cl ear _nemfunction to set the local
WINDOW_PARAM_BLOCK structure, W ndow, to O's (zeroes) in preparation
for storing the byte values in swapped order. The WINDOW_PARAM_BLOCK
structure was defined in Section 2.5.2.1. Thecl ear _nemfunction is defined in
Section 2.5.2.14.

This section of code calls the functions that put the bytes of short and long
integer values into big-endian storage. The functions are defined in Section
25.2.14.

This line sets the image type for the scanner. The setting of 5 means multilevel,
full color.

This line sets the number of bits per pixel. The setting of 8 means 256 shades.

This line sets the padding type for nonbyte pixels. The setting of 1 means pad
with O (zero).

@

(CI N NI)

©]

This line sets the reverse image. The setting of 1 means white pixels are
indicated by 1 (one) and black pixels are indicated by O (zero).

This line sets the selection for returning a header with the data. The setting of
WHdr Sel was set to 0 (do not include the header).

This section displays the contents of the bytes in the window parameter block.

CCB Setup for the DEFINE WINDOW Command

This section describes the portion of the User Agent sample scanner program where
the fields of the CCB_HEADER needed for an XPT_SCSI_10 request are filled in.

/* Set up the CCB for an XPT_SCSI_| O request. The DEFI NE W NDOW
PARAMVETERS conmmand will be sent to the device. */

/* Set up the CAM header for the XPT_SCSI_IO function. */

cch.cam ch. my_addr = (struct ccb_header *)&cch; /* "Its" address */
cch. cam ch. cam ccb_l en = sizeof (CCB_SCSI 10O ; /* a SCSI 1/0 CCB */
cch. cam ch. cam func_code = XPT_SCSI_I O /* the opcode */

cch. cam ch. cam path_i d =id; /* sel ected bus */
cch.camch.camtarget_id = targid; /* selected target */
ccb.camch.camtarget _lun = |un; /* selected lun */

/* The needed CAM flags are: CAM D R QUT - The data will go to the target. */

cch. cam ch. cam fl ags = CAM DI R_QUT;

2-24 CAM User Agent Modules

/* Set up the rest of the CCB for the DEFI NE W NDOW PARAMETERS conmmand. */

cch.camdata_ptr = (u_char *)&W ndow, /* where the paraneters are */
cch. cam dxfer_|l en = sizeof (Wndow); /* how much data */

ccb. cam timeout = CAM TI ME_DEFAULT; /* use the default timeout */ [4
cch.cam cdb_l en = sizeof (SCAN._DEF_W N _CDB); /* how many bytes for cdb */
cch. cam sense_ptr = &sense[0]; /* Autosense data area */

ccb. cam sense_| en = SENSE_LEN; /* Aut osense data |ength */

/* Use a local pointer to access the fields in the DEFI NE W NDOW PARAMETERS
cDB. */

win = (SCAN_DEF_W N_CDB *) &cch. cam cdb_i 0. cam cdb_byt es[0] ; [6

cl ear _menm(wi n, si zeof (SCAN_DEF_WN _CDB)); /* clear all bits in CDB */

W n- >opcode = SCAN_DEF_W N_OP; /* define wi ndow command */
win->lun = lun; /* lun on target */

Wi n->param | en0 = si zeof (W ndow) ; /* for the buffer space */

wi n->param | enl = O;

wi n->param | en2 = O;

wi n->cont r ol = 0; /* no control flags */

/* Set up the fields for the User Agent loctl call. */ [

ua_cch. uagt _ccb = (CCB_HEADER *) &cch; /* where the CCB is */
ua_cch. uagt _ccbl en = sizeof (CCB_SCSI10); /* how many bytes to gather */
ua_cch. uagt _buffer = (u_char *)&W ndow; /* where the paraneters are */

ua_cch. uagt _bufl en = si zeof (W ndow) ; /* how rmuch data */
ua_cch. uagt _snsbuf = &sense[0]; /* Aut osense data area */
ua_cch. uagt _snsl en = SENSE_LEN; /* Autosense data length */
ua_cch. uagt _cdb = (CDB_UN *) NULL; /* CDBis in the CCB */
ua_cch. uagt _cdbl en = 0; /* CDBis in the CCB */

This section of code fills in some of the CCB_HEADER fields of the SCSI 1/0
CCB structure defined as ccb, for processing by the XPT layer. The structure
was declared in Section 2.5.2.5.

This line assigns the cam dat a_pt r member of the local CCB_SCSIIO data
structure, ccb, to the address of the W ndow parameter block. The W ndow
parameter block structure was filled in Section 2.5.2.9.

This line sets the data transfer length to the length of the W ndow structure.

This line specifies using the default timeout, which is the value assigned to the
CAM_TIME _DEFAULT constant. This constant is set in the
/usr/ sys/ h/ cam h file to indicate that the SIM layer’s default timeout is to
be used. The current value of the SIM layer’s default timeout is five seconds.

This line sets the length of the cam _cdbl en member to the length of the
SCAN_DEF WIN_CDB structure.

[6] This line assigns the wi n pointer, which is type SCAN_DEF WIN_CDB, to the
address of the cam cdb_byt es member of the CDB_UN union. This union is
defined in/ usr/ sys/ h/ cam h asthecam cdb_i o member of the SCSI 1/0
CCB structure.

This line calls the cl ear _nmemfunction to clear the local
SCAN_DEF WIN_CDB structure in preparation for storing the values needed for
the DEFINE WINDOW operation. The SCAN_DEF WIN_CDB structure was
defined in Section 2.5.2.3. Thecl ear _nmemfunction is defined in Section
2.5.2.14.

CAM User Agent Modules 2—-25

25211

These lines use thewi n pointer to access the bytes of the cam _cdb_byt es
array as though it isa SCAN_DEF_WIN_CDB structure. The
SCAN_DEF WIN_CDB structure is defined in Section 2.5.2.3

[9] This section of the code assigns the program address of the CCB into the CCB
pointer member and the program address of the W ndow parameter block into the
data pointer member of the ua_cchb structure of type UAGT_CAM_CCB, as
defined in the / usr/ sys/ h/ uagt . h file. This structure is copied from user
space into kernel space as part of thei oct | system call that is executed in
Section 2.5.2.11 This structure was declared in Section 2.5.2.3.

This line initializes the uagt _ccb member of the ua_ccb structure with the
address of the local CCB_HEADER structure, ccb.

This line sets the length of the uagt _ccbl en member to the length of the SCS
I/0 CCB structure that will be used for this call.

This line initializes the uagt _buf f er member with the user space address of
the W ndow parameter block.

This line initializes the uagt _buf | en member with the number of bytesin the
W ndow parameter block.

These two lines reflect that the autosense features are turned on in the CAM flags.

These two lines reflect that the Command Descriptor Block information is in the
SCSI 1/0O CCB structure filled in Section 2.5.2.5.

The Error Checking Section

This section describes the portion of the User Agent sample scanner program that
attempts to set the window parameters and recover from possible scanner errors.

/* Send the CCB to the CAM subsystem using the User Agent driver.
If an error occurs, report it and attenpt corrective action. */

retry_cnt = 10; /* initialize retry counter */
reset_flag = O; /* initialize reset flag */
retry_SWp:

printf("Attenpt to Set W ndow Paraneters\n");

if(ioctl(fd, UAGT_CAM IO (caddr_t)&ua_cch) < 0)

{
perror("Error on CAM UAgt loctl to Define Wndow Paraneters");
cl ose(fd); /* close the CAMfile */
exit(1);

}

/* |f the CCB did not conplete successfully then report the error. */

if (ccb.camch.camstatus != CAM REQ CWP)
{
print_ccb_status("CAM UAgt Define Wndow loctl",
&(cch. camch)); /* report the error values */
printf(" camscsi_status = 0x% 2X\n", cch.cam scsi_status);

/* 1st check if the SIM Queue is frozen. If it is, release it. */

if (ccb.camch.camstatus & CAM SIM QFRZN) {
printf("Attenpt to rel ease SIM Queue\n");
if(ioctl(fd, UAGT_CAM IO (caddr_t)&ua_cch_simrel) <0) {
perror("Error on CAM UAgt Rel ease Sim Queue loctl");
cl ose(fd); /* close the CAMfile */

2-26 CAM User Agent Modules

exit(1);

/* 1f the Rel ease Sim Q CCB did not conpl ete successfully then
report the error and exit. */

print_ccbh_status("CAM UAgt Rel ease SI M Queue loctl",
& ccb_simrel.camch)); /* report the error values */

if (ccb_simrel.camch.camstatus != CAM REQ CWP) {
print_ccb_status("CAM UAgt Rel ease SIM Queue loctl",
& ccb_simrel.camch)); /* report the error values */
cl ose(fd); /* close the CAMfile */
exit(1);

/* Next, if we haven't done one yet, attenpt a device reset to clear any
device error. */

if (reset_flag++ == 0)
{
printf("Attenpt to Reset the scanner\n");
if(ioctl(fd, UAGT_CAM IO (caddr_t)&ua_cch_reset_dev) <0) {
perror("Error on CAM UAgt Device Reset loctl");
close(fd); /* close the CAMfile */
exit(1);

/* 1f the Reset Device CCB did not conplete successfully then
report the error and exit. */

print_ccb_status("CAM UAgt Device Reset loctl",
&(ccb_reset _dev.camch)); /* report the error values */

if (ccb_reset_dev.camch.camstatus != CAM REQ CWP) { [d
print_ccbh_status("CAM UAgt Device Reset loctl",
&(cch_reset _dev.camch)); /* report the error values */
cl ose(fd); /* close the CAMfile */
exit(1);

/* Wait the 28 seconds that the scanner takes to cone back to life
after a reset; no use to do anything else. */
printf("Scanner was reset, wait 28 Seconds for it to recover...\n");
sl eep(28);
/* Last, count if all retries are used up. If not, try the SWP again. If so,
give up and exit. */

printf("Retry counter value = %\n",retry_cnt);
if (retry_cnt-- > 0) goto retry_SWp;

close(fd); /* close the CAMfile */
exit(1);

}

el se

{

/* Qutput status information on success for debugging. */

print_ccbh_status("CAM UAgt SET W NDOW PARAMETERS | oct!|",
&(cch.camch)); /* report the error values */

CAM User Agent Modules 2-27

printf(" camscsi_status = 0x% 2X\n", cch.cam scsi_status);

printf("\nWndow paraneter set up successful\n");
}
/* Qutput header information (nmagic nunber, informational comment, X and Y
di mensi ons and maxi mum pi xel values) to the data file and display it for
the user. */

sprintf(FileHead, "P6\n\# X&Y resolution = % dpi, % pixels/line, \
%l |ines",
WKYRes, WN dt h, W.engt h) ;
sprintf(strchr(FileHead, NULL), "\n%l %l 255\n", WN dth, W.ength);
write(od, Fil eHead, strlen(FileHead));
printf("File header data --\n%\n", Fi | eHead);

This section of code attempts to set the window parameters. This line passes the
local UAGT_CAM_CCB structure, ua_ccb, to the User Agent driver, using the
i oct| system call. The arguments passed are the file descriptor returned by the
open system call; the User Agenti oct | command, UAGT_CAM_IO, which is
defined in the/ usr/ sys/ h/ uagt . h file; and the contents of the ua_ccb
structure. The User Agent driver copiesin the SCSI 1/0 CCB and sends it to the
XPT layer. When the I/O completes, the User Agent returns to the application
program, returning status within the ua_cchb structure.

If the CAM status is anything other than CAM_REQ_CMP, indicating the
request completed, an error message is printed indicating the CAM status
returned.

This section of code attempts to clear the SIM queue if it is frozen. Thisline
passes the local UAGT_CAM_CCB structure, ua_ccb_si m rel , to the User
Agent driver, using thei oct | system call. The arguments passed are the file
descriptor returned by the open system call; the User Agent i oct | command,
UAGT_CAM_I0O, which is defined in the / usr/ sys/ h/ uagt . h file; and the
contents of theua_ccb_si m r el structure. The User Agent driver copiesin
the SCSI 1/0 CCB and sends it to the XPT layer. When the operation completes,
the User Agent returns to the application program, returning status within the
ua_ccb structure.

If the CAM status is anything other than CAM_REQ_CMP, indicating the
request completed, an error message is printed indicating the CAM status
returned. An error message is displayed and the program exits.

This section of code attempts a device reset. This line passes the local
UAGT_CAM_CCB structure, ua_ccb_r eset _dev, to the User Agent driver,
using thei oct | system call. The arguments passed are: the file descriptor
returned by the open system call; the User Agenti oct| command,
UAGT_CAM_I0O, which is defined in the / usr/ sys/ h/ uagt . h file; and the
contents of theua_ccb_r eset _dev structure. The User Agent driver copies
in the SCSI 1/0 CCB and sends it to the XPT layer. When the operation
completes, the User Agent returns to the application program, returning status
within the ua_ccb structure.

l6] If the CAM status is anything other than CAM_REQ_CMP, indicating the
request completed, an error message is printed indicating the CAM status
returned. An error message is displayed and the program exits.

If the scan window parameters were set up successfully, a portable pixmap P6 file
is created. This section displays the X and Y resolutions in dots per inch, pixels
per line, and number of lines, taking the values that were generated from the code

2-28 CAM User Agent Modules

in Section 2.5.2.9.

2.5.2.12 CCB Setup for the READ Command

This section describes the portion of the User Agent sample inquiry application
program that sets up the CCBs for a READ command.

/* Set up the CCB for an XPT_SCSI_| O request. The READ (data) command will be
sent to the device. */

/* Set up the CAM header for the XPT_SCSI_IO function. */

cch.cam ch. my_addr = (struct ccb_header *)&cch; /* "Its" address */

cch. cam ch. cam ccb_l en = sizeof (CCB_SCSI 10O ; /* a SCSI 1/0 CCB */
cch. cam ch. cam func_code = XPT_SCSI_I O /* the opcode */
cch. cam ch. cam path_i d =id; /* selected bus */
cch.camch.camtarget_id = targid; /* selected target */
ccb.camch.camtarget _lun = |un; /* selected lun */

/* The needed CAM flags are: CAMDI R IN - The data will cone fromthe target. */
cch.camch.camflags = CAMD R IN;

/* Set up the rest of the CCB for the READ command. */

cchb.camdata_ptr = (u_char *)ReadData; /* where the data goes */

ccb. cam dxfer_l en = Li neBytes; /* how nuch data */

cch. cam timeout = 100; /* use tinmeout of 100Sec */
cch.camcdb_| en = sizeof (SCAN_READ CDB); /* how nmany bytes for read */
cch. cam sense_ptr = &sense[0]; /* Aut osense data area */

cch. cam sense_| en = SENSE_LEN; /* Aut osense data length */

/* Use a local pointer to access the fields in the DEFI NE W NDOW PARAVETERS
CcDB. */

read = (SCAN_READ CDB *)&cch. cam cdb_i 0. cam cdb_bytes[0]; [4

cl ear _nmen(read, si zeof (SCAN_READ CDB)) ; /* clear all bits in CDB */
read- >opcode = SCAN_READ OP; /* define wi ndow comrand */
read->lun = |un; /* lun on target */

read- >param | en0 Li neByt es&255; /* for the buffer space */
read- >param | enl = (Li neBytes>>8) &255;

read- >param | en2 = (Li neByt es>>16) &55;

read- >contr ol = 0; /* no control flags */

/* Set up the fields for the User Agent loctl call. */

ua_cch. uagt _ccb = (CCB_HEADER *) &ccbh; /* where the CCB is */ [g

ua_cch. uagt _ccbl en = sizeof (CCB_SCSI10O); /* how many bytes to pull in */
ua_cch. uagt _buf fer = ReadDat a; /* where the data goes */
ua_cch. uagt _bufl en = LineBytes; /* how much data */ [d

ua_cch. uagt _snsbuf = &sense[0]; /* Autosense data area */
ua_cch. uagt _snsl en = SENSE_LEN; /* Aut osense data length */
ua_cch. uagt _cdb = (CDB_UN *) NULL; /* CDBis in the CCB */
ua_cch. uagt _cdbl en = 0; /* CDBis in the CCB */

n = Total Bytes + strlen(FileHead);
printf("“Total bytes in file = %2d.\n", n);

printf("\nRead data from scanner and wite to file\n");

CAM User Agent Modules 2—-29

2.5.2.13

This section of code fills in some of the CCB_HEADER fields of the SCSI 1/0
CCB structure defined as ccb, for processing by the XPT layer. The structure
was declared in Section 2.5.2.5.

This line sets the cam _dat a_pt r to the address of the ReadDat a array
defined in Section 2.5.2.5.

This line sets the data transfer length to the length of the SCAN_READ_CDB
structure.

This line sets the r ead pointer, which is type SCAN_READ_CDB, to the
address of the cam cdb_| en member of the CDB_UN union. Thisunion is
defined in/ usr/ sys/ h/ cam h asthecam cdb_i o member of the SCSI 1/0
CCB structure.

This line callsthe cl ear _nemfunction to clear the local SCAN_READ CDB
structure, r ead, in preparation for storing the values needed for the READ
operation. The SCAN_READ_CDB structure was defined in Section 2.5.2.3.
The cl ear _nmemfunction is defined in Section 2.5.2.14.

6] These lines use the r ead pointer to access the bytes of the cam cdb_byt es
array as though they arein a SCAN_DEF_WIN_CDB structure. The
SCAN_READ_CDB dtructure is defined in Section 2.5.2.3.

This line sets the length of the uagt _ccbl en member to the length of the SCS
I/0 CCB structure that will be used for this call.

This line sets the uagt _buf f er member of the ua_ccb structure.

[9] Thisline sets the size of the data buffer to the number of bytes contained in the
buffer pointed to by the cam dat a_pt r member of the ccb structure.

These two lines reflect that the autosense features are turned on in the CAM flags.

These two lines reflect that the Command Descriptor Block information is in the
SCSl 1/O CCB structure filled in Section 2.5.2.5.

The Read and Write Loop Section

This section describes the portion of the program where the data is read, reformatted,
and placed in the output buffer.

/)\' kkkkkhkkkhkkhkkhkhkkhkkkhkkkk*x Begl I"II"II ng Of I’ead/WI’Ite Ioop kkkkkhkkkhkkkhkkhkkkkkk*%x)\'/
for (i=0; i<Wength; i++) {

printf(" Read scanner |ine nunber %8d\r",i);
fflush(stdout);

/* Send the CCB to the CAM subsystemvia the User Agent driver,
and report any errors. */

if(ioctl(fd, UAGT_CAM IO, (caddr_t)&ua_cch) < 0)

{
perror("\nError on CAM UAgt loctl to Read data |line");
close(fd); /* close the CAMfile */
exit(1l);

}

/* 1f the CCB conpl eted successfully then print out the data read,
if not report the error. */

if (ccb.camch.camstatus ! = CAM REQ CWP)

2-30 CAM User Agent Modules

printf("\n");
print_cchb_status("CAM UAgt Read data line loctl",

&(cch. camch)); /* report the error values */
printf(" camscsi_status = 0x% 2X\n", ccb.cam scsi_status);
close(fd); /* close the CAMfile */
exit(1);

}

el se

{
#i f def CUT_FOR_NOW
printf(" Data line read successfully\n");
#endi f

/* Re-format the data from blocks of R, G and B data to tuples
of (RGB) data for the data file. Set up pointers to the
begi nni ng of each of the blocks of the Red, the Green and the
Bl ue data bytes and another pointer to the output buffer.
Then | oop, collecting one each of Red, Green and Bl ue,
putting each into the output data buffer. */

RDRp = ReadDat a; /* Red bytes are first */
RDGp = RDRp + WNWdth; /* Green bytes are next */
RDBp = RDGp + WNdth; /* Blue bytes are last */
Wp = WiteData;
for (n =0 ; n < WNdth; n++)
{

*WDp++ = *RDRp++;

*WDp++ = * RDGp++;

*WDp++ = * RDBp++;
}

/* Now wite the re-formatted data to the output file. */

wite(od, WiteData, LineBytes); /* wite data to file */
}

} /* kkkkkkhkkhkkhkkkkkkkkkk*% End Of I’ead/Wl’Ite Ioop kkkkkkkkkhkkkkkkkk*x */
printf("\'nSuccessful read and wite to file\n");
close(fd); /* close the CAMfile */
close(od); /* close the output file */

This line calls the standard C 1/O function, f f | ush, to force the scan line
number to the user’s display.

This section of code attempts to read a scan line. This line passes the local
UAGT_CAM_CCB structure, ua_ccb, to the User Agent driver, using the
i oct| system call. The arguments passed are the file descriptor returned by the
open system call; the User Agenti oct | command, UAGT_CAM _IO, which is
defined inthe/ usr/ sys/ h/ uagt . h file; and the contents of the ua_ccb
structure. The User Agent driver copiesin the SCSI I/0O CCB and sends it to the
XPT layer. When the I/O completes, the User Agent returns to the application
program, returning status within the ua_cchb structure.

The scan line read in contains all the red bytes, then all the green bytes, then all
the blue bytes, in sequence. This section of code reformats the bytes into pixels
for the output file by placing a red byte, then a green byte, then a blue byte
together on the output file scan line.

CAM User Agent Modules 2-31

2.5.2.14 The Local Function Definition Section

This section describes the portion of the User Agent sample scanner program that
defines functions used within the program.

/* Local routines and data structure to report in text and Hex formthe
returned CAM status. */
struct camstatustable {
u_char cam status;
caddr _t status_nsg;
} cam statustable[] = {

{ CAM_REQ | NPROG, "CCB request is in progress" },
{ CAM REQ CWP , "CCB request conpleted wout error” },

{ CAM_REQ ABORTED, "CCB request aborted by the host" },

{ CAM_UA_ABORT, "Unabl e to Abort CCB request” },
{ CAM_REQ CMP_ERR, "CCB request conpleted with an err" },

{ CAM BUSY, " CAM subsystem is busy" 1,
{ CAM_REQ | NVALI D, "CCB request is invalid" 1,

{ CAM_PATH_I NVALI D, "Bus ID supplied is invalid" },
{ CAM _DEV_NOT_THERE, "Device not installed/there" 1,
{ CAM_UA_TERM O, "Unable to Term nate 1/O CCB req" 1,

{ CAM_SEL_TI MEQUT, "Target selection tinmeout" },
{ CAM CMD TI MEQUT, " Conmand ti neout " 1,

{ CAM_MSG_REJECT_REC, "Rej ect received" 1,

{ CAM_SCSI _BUS_RESET, "Bus reset sent/received" 1,

{ CAM_UNCOR_PARI TY, "Parity error occured" 1,
{ CAM_AUTCSENSE_FAI L, "Request sense cnd fail" 1,

{ CAM_NO_HBA, "No HBA detected Error” },
{ CAM DATA_RUN_ERR, "Overrun/underrun error” 1,

{ CAM UNEXP_BUSFREE, "BUS free" },
{ CAM_SEQUENCE_FAI L, "Bus phase sequence failure" },
{ CAM _CCB_LEN_ERR, "CCB |l ength supplied is inadaquate" },

{ CAM_PROVI DE_FAI L, "To provide requ. capability"” },

{ CAM _BDR_SENT, "A SCSI BDR nmsg was sent to target" },

{ CAM REQ TERM O "CCB request term nated by the host" },

{ CAM _LUN_| NVALI D, "LUN supplied is invalid" 1,

{ CAM_TI D_I NVALI D, "Target 1D supplied is invalid" 1},

{ CAM_FUNC_NOTAVAI L, "Requested function is not available" },

{ CAM_NO_NEXUS, "Nexus is not established" 1,

{ CAM_I I D_I NVALI D, "The initiator IDis invalid" },

{ CAM_CDB_RECVD, "The SCSI CDB has been received" },

{ CAM _SCSI _BUSY, "SCSl bus busy" }

I

int camstatusentrys = sizeof (camstatustable) /
si zeof (cam statustabl e[0]);

char * camstatus(camstatus)

regi ster u_char cam status;

{
regi ster struct camstatustable *cst = cam statustable;
regi ster entrys;
for(entrys = 0; entrys < camstatusentrys; cst++) {
if(cst->camstatus == camstatus) {
return(cst->status_nsg);
}
}
return("Unknown CAM Status");
}

void print_ccb_status(id_string,cp)
char *id_string;

CCB_HEADER *cp;

{

register i;

printf("Status from %0,id_string);

2-32 CAM User Agent Modules

printf(" camstatus = 0x% 2X (%%%)0, cp->cam status,
((cp->camstatus & CAM AUTOSNS _VALID) ? "AutoSns Valid-" : ""),
((cp->camstatus & CAM SIM QFRZN) ? "SIM Q Frozen-" : ""),
canst at us(cp->cam status & CAM STATUS MASK));

if (cp->camstatus & CAM AUTOSNS VALI D) {
printf("AutoSense Data (in hex):0);
for(i=0; i < SENSE_LEN, i ++)
printf("%2X ", sense[i]);

printf("0);
}
fflush(stdout);
}
voi d cl ear_nen(bp, n) /* Clear n bytes of nenory beginning at bp */
u_char *bp;
int n;
{
register i;
regi ster u_char *ptr;
for(i=0, ptr=bp; i<n; i++ ptr++) *ptr = 0O;
}

voi d swap_short_store(bp,val) /* Store short into byte-reversed storage */
u_char *bp;
u_short val;

{
u_short tenp;
regi ster u_char *ptr;
ptr = bp; /* Copy pointer */
(bp++) = (u_char)(val >>8); / Store high byte first */
bp = (u_char)val; / Then store | ow byte */

}

voi d swap_| ong_store(bp, val) /* Store long into byte-reversed storage */

u_char *bp;

u_long val;

{

(bp++) = (u_char)(val >>24); / Store high byte first */
*(bp++) = (u_char)(val >>16);

*(bp++) = (u_char)(val >>8);

bp = (u_char)val; / Store low byte |ast */

}

This function is described in Section 2.5.1.9.

This function prints out the CCB status.

This function clears out all the bits in an area of memory, such as a structure or
an array, to be sure al are set to 0 (zero) and that there is no extraneous data
before executing a SCSI/CAM command.

This function puts the bytes of a short (16-bit) integer value into big-endian
storage to conform with SCSI byte ordering.

This function puts the bytes of along (32-hit) integer value into byte-reversed

storage to conform with SCSI byte ordering.

CAM User Agent Modules 2—-33

USCA Common Modules 3

This chapter describes the common data structures, macros, and routines provided by
Digital for SCSI/CAM peripheral device driver writers. These data structures,
macros, and routines are used by the generic SCSI/CAM periphera device driver
routines described in Chapter 4.

Using the common and generic routines helps ensure that your SCSI/CAM periphera
device drivers are consistent with the ULTRIX SCSI/CAM Architecture. See
Chapter 11 if you plan to define your own SCSI/CAM peripheral device drivers. See
Chapter 12 for information about the SCSI/CAM specia /O interface to process
special SCSI 1/0 commands.

If a SCSI/CAM device driver writer needs to understand all members of a structure,
the complete structure is shown and each member described. If a SCSI/CAM device
driver writer needs to understand only specific members of a structure, those
members are listed in atable, and only those members are described.

3.1 Common SCSI Device Driver Data Structures

This section describes the SCSI/CAM periphera common data structures. The
following data structures are described:

e PDRV_UNIT_ELEM, the Periphera Device Unit Table

e PDRV_DEVICE, the Peripheral Device Structure

e DEV_DESC, the Device Descriptor Structure

e MODESEL_TBL, the Mode Select Table Structure

e DENSITY_TBL, the Density Table Structure

e PDRV_WS, the SCSI/CAM Peripheral Device Driver Working Set Structure

3.1.1 Peripheral Device Unit Table

The Peripheral Device Unit Table is an array of SCSI/CAM peripheral device unit
elements. The size of the array is the maximum number of possible devices, which
is determined by the maximum number of SCSI controllers allowed for the system.
The structure is allocated statically and is defined as follows:

typedef struct pdrv_unit_elem {
PDRV_DEVI CE *pu_device; /* Pointer to peripheral device structure */

u_short pu_opens; /* Total nunmber of opens against unit */
u_short pu_config; /* 1 ndicates whether the device type */

/* configured at this address */
u_char pu_type; /* Device type - byte O frominquiry data */

} PDRV_UNI T_ELEM

The pu_devi ce field isfilled in with a pointer to a CAM-allocated peripheral SCS|
device (PDRV_DEVICE) structure when the first call to the ccrm_open_uni t
routine is issued for a SCSI device that exists.

3.1.2 Peripheral Device Structure

A SCSI/CAM peripheral device structure, PDRV_DEVICE, is alocated for each
SCSI device that exists in the system. This structure contains the queue header
structure for the SCSI/CAM periphera device driver CCB request queue. It also
contains the Inquiry data obtained from a GET DEVICE TYPE CCB. Table 3-1 lists
the members of the PDRV_DEVICE structure that a SCSI/CAM peripheral device
driver writer using the common routines provided by Digital may use. Chapter 11
shows the complete structure for those driver writers who are not using the common
routines.

Table 3-1: Members of the PDRV_DEVICE Structure

Member Name Data Type Description

pd_dev dev_t The major/minor device number pair that
identifies the bus number, target 1D, and
LUN associated with this SCSI device.
Passed to the common open routine.

pd_bus u_char SCSl target’s bus controller number.

pd_t ar get u_char SCSl target’s ID number.

pd_I un u_char SCSl target’s logical unit number.

pd_fl ags u_long May be used to indicate the state of a SCS
device driver.

pd_state u_char May be used for recovery.

pd_abort _cnt u_char May be used for recovery.

pd_dev_i nqg[| NQLEN] u_char Inquiry data obtained from issuing a GET
DEVICE TYPE CCB.

*pd_dev_desc DEV_DESC Pointer to the SCSI device descriptor.

pd_specific caddr _t Pointer to device-specific information.

pd_spec_si ze u_l ong Size of device-specific information
structure.

*(pd_recov_hand)() void Recovery handler.

pd_I k_devi ce | ock_t SMP lock for the device.

The pd_speci f ¢ fidd isfilled in with a pointer to an allocated structure that
contains device-specific information.

3.1.2.1 The pd_dev Member

The major/minor device number pair that identifies the bus number, target 1D, and
LUN associated with this SCS| device.

3-2 USCA Common Modules

3.1.2.2 The pd_spec_size Member

The size, in bytes, of the device-specific information structure passed from the SCSI
device driver to the common open routine.

3.1.3 Device Descriptor Structure

Thereisar ead- onl y SCSI device descriptor structure, DEV_DESC, defined for
each device supported by Digital. A user may supply anew DEV_DESC structure
by adding it to / usr/ sys/ dat a/ cam dat a. ¢ and relinking the kernel. The
DEV_DESC structure follows:

typedef struct dev_desc {

u_char dd_pv_nane[| DSTRI NG_SI ZE] ;
/* Product |D and vendor string from*/
/* Inquiry data */
u_char dd_| engt h; /* Length of dd_pv_nane string */
u_char dd_dev_nane[DEV_NAME_SI ZE] ;
/* Device nane string - see defines */
/* in devio.h */
u_long dd_device_type; /* Bits 0 - 23 contain the device */
/* class, bits 24-31 contain the */
/* SCSI device type */
struct pt_info *dd_def_partition
/* Default partition sizes - disks */
u_long dd_block_size; /* Block/sector size */
u_long dd_nmax_record; /* Maxinun transfer size in bytes */

/* allowed for the device */
DENSI TY_TBL *dd_density_tbl
/* Pointer to density table - tapes */
MODESEL_TBL *dd_nodesel _t bl
/* Mode sel ect table pointer - used */
/* on open and recovery */

u_long dd_fl ags; /* Option flags (bbr, etc) */
u_long dd_scsi_optcnds;/* Optional commands supported */
u_long dd_ready_ tinme; /* Time in seconds for powerup dev ready */
u_short dd_que_dept h; /* Device queue depth for devices */
/* which support command queuei ng */
u_char dd_valid; /* | ndicates which data length */
/* fields are valid */
u_char dd_ing_|len; /* Inquiry data |l ength for device */
u_char dd_reg_sense_len
/* Request sense data length for */
/* this device */
} DEV_DESC,

3.1.4 Mode Select Table Structure

The Mode Select Table Structure is read and sent to the SCSI device when the first
call to the SCSI/CAM peripheral open routine is issued on a SCS| device. There can
be a maximum of eight entries in the Mode Select Table Structure. Chapter 11
contains a description of each structure member. The definition for the Mode Select
Table Structure, MODESEL_TBL, follows:

t ypedef struct nodesel _tbl {
struct ms_entry{

u_char ns_page; /* Page nunber */
u_char *ns_data; /* Pointer to Mbde Sel ect data */
u_char ns_data_len; /* Mdde Sel ect data length */
u_char ns_ent_sp_pf;/* Save Page and Page format bits */
/* BITO 1=Save Page, */
/* 0=Don’t Save Page */

USCA Common Modules 3-3

/* BIT 1 1=SCSI-2, 0=SCSI-1 */
}ns_entry[MAX_OPEN_SELS] ;
} MODESEL_TBL;

3.1.5 Density Table Structure

3.1.5.1

The Density Table Structure alows for the definition of eight densities for each type
of SCSI tape device unit. Chapter 11 contains a description of each structure
member. The definition for the Density Table Structure, DENSITY_TBL, follows:

typedef struct density_tbl {
struct density{

u_char den_f1 ags; /* VALID, ONE_FMetc */
u_char den_densi ty_code;
u_char den_conpress_code; /* Conpression code if supported */
u_char den_speed_setting; /* for this density */
u_char den_buffered_setting;
/* Buffer control setting */
u_l ong den_bl ocki ng; /* 0 variable etc. */
}densi ty[MAX_TAPE_DENSI TY] ;
} DENSI TY_TBL;

The den_blocking Member

Theden_bl ocki ng member contains the blocking factor for this SCSI tape device.
A NULL (0) setting specifies that the blocking factor is variable. A positive value
represents the number of bytes in a block, for example, 512 or 1024.

3.1.6 SCSI/CAM Peripheral Device Driver Working Set Structure

3.1.6.1

3.1.6.2

The SCSI 1/0O CCB contains cam _pdr v_pt r, a pointer to the SCSI/CAM
peripheral device driver working set areafor the CCB. This structure is also
alocated by the XPT when the xpt _ccb_al | oc routine is called to allocate a
CCB. The PDRV_WS structure follows:

t ypedef struct pdrv_ws {
struct pdrv_ws *pws_flink; /* Linkage of working set CCBs */
struct pdrv_ws *pws_bli nk; /* that we have queued */
CCB_SCsl I O *pws_cch; /* Pointer to this CCB. */
u_l ong pws_f I ags; /* Generic to driver */
u_l ong pws_retry_cnt; /* Retry count for this request */
u_char *pws_pdrv; /* Pointer to peripheral device */
/* structure */
u_char pws_sense_buf [DEC_AUTO_SENSE_SI ZE] ;
} PDRV_W5;

The pws_flink Member

The pws_f | i nk member of the pdr v_ws structure is a pointer to the forward link
of the working set CCBs that have been queued.

The pws_blink Member

The pws_bl i nk member of the pdr v_ws structure is a pointer to the backward
link of the working set CCBs that have been queued.

3-4 USCA Common Modules

3.1.6.3 The pws_ccb Member

The pws_ccb member is a pointer to this CCB. The CCB header isfilled in by the
common routines.

3.2 Common SCSI Device Driver Macros

The SCSI/CAM periphera device driver common macros are supplied by Digital for
SCSI device driver writersto use. These macros are defined in the
[usr/sys/ h/ pdrv. h file. There aretwo categories of macros:

e Macros to obtain identification information about each SCSI device
e Locking macros

Table 3-2 lists each identification macro name, its call syntax, and a brief description
of its purpose.

Table 3-2: Common ldentification Macros

Name Syntax Description

DEV_BUS ID DEV_BUS_| D{ dev) Returns the bus ID of the
device that is identified in the
major/minor device number
pair.

DEV_TARGET DEV_TARGET(dev) Returns the target ID of the
device that is identified in the
major/minor device number
pair.

DEV_LUN DEV_LUN(dev) Returns the target LUN of the
device that is identified in the
major/minor device number
pair.

GET_PDRV_UNIT_ELEM GET_PDRV_UNI T_ELEM dev) Returns the Peripheral Device
Unit Table entry for the device
that is identified in the
major/minor device number
pair.

GET_PDRV_PTR GET_PDRV_PTR(dev) Returns the pointer to the
Peripheral Device Structure for
the device that is identified in
the major/minor device number
pair.

Table 3-3 lists each locking macro name, its call syntax, and a brief description of its
purpose.

USCA Common Modules 3-5

Note
Symmetric Multiprocessing (SMP) is not enabled in this release.

Table 3-3: Common Lock Macros

Name Syntax Description
PDRV_INIT_LOCK PDRV_I NI T_LOCK(pd) Initializes the Peripheral
Device Structure lock.
PDRV_IPLSMP_LOCK PDRV_| PLSMP_LOCK(pd, Raises the IPL and locks the
| k_type, saveipl) Peripheral Device Structure.
PDRV_IPLSMP_UNLOCK PDRV_I PLSMP_UNLOCK(pd, Unlocks the Peripheral Device
savei pl) Structure and lowers the IPL.
PDRV_SMP_LOCK PDRV_SMP_LOCK(pd) Locks the Peripheral Device
Structure.
PDRV_SMP_SLEEPUNLOCK PDRV_SMP_SLEEPUNLOCK(chan, Unlocks the Peripheral Device
pri, pd) Structure.

3.3 Common SCSI Device Driver Routines

The SCSI/CAM peripheral common device driver routines can be allocated into
categories as follows:

Initialization, open, and close routines, which handle the initialization of
SCSI/CAM periphera device drivers and the common open and close of the
drivers. The following routines are in this category:

— ccminit
— ccm_open_unit
— ccm_cl ose_unit

CCB queue manipulation routines, which manage placing and removing CCBs
from the appropriate queues as well as aborting and terminating 1/0 for SCSI /O
CCBs on the queue's active list. The following routines are in this category:

— ccm_send_cch
— ccm_rem ccb

— ccmm_abort _que
— ccmm_term que

CCB dlocation, build, and deallocation routines, which allocate CCBs, fill in the
common portion of the CCB_HEADER, as well as create and send specific types
of CCB requests to the XPT. The following routines are in this category:

— ccm_get _ccb
— ccm_rel _ccb
— ccm_io_ccb bld

3-6 USCA Common Modules

— ccmm_gdev_cchb_bl d
— ccm_sdev_cchb _bld
— ccmm_sasy_cchb_bl d
— ccmm_rsqg_ccb_bld

— ccmm_ping_ccb_bld
— ccm_abort _ccb _bld
— ccm_termcechb _bld
— ccm_bdr _ccb _bld

— ccm_br _ccb _bld

e Common routines to build and send SCSI 1/0 commands, which are called during
the open or recovery sequence of adevice. The calling routine must sleep while
the command completes, if necessary. The following routines are in this
category:

— ccmm_tur
— ccm_start _unit
— ccm_node_sel ect

e CCB dtatus routine, which assigns CAM status values to a few genera
classifications. The following routine is in this category:

— ccmm_cch_status

e Buf structure pool allocation and deallocation routines, which allocate and
deallocate buf structures from the buffer pool. The following routines are in this
category:

— ccnm_get _bp
— ccmm_rel _bp

e Data buffer pool allocation and deall ocation routines, which allocate and
deallocate data buffer areas from the pool. The following routines are in this
category:

— ccmm_get _dbuf
— ccm_rel _dbuf

e Routines to perform miscellaneous operations. The following routines are in this
category:

— ccm_cchwai t

— ccmm_SysSpeci al Cnd
— ccmm_DoSpeci al Cnd
— ccmm_errl og

Descriptions of the routines with syntax information, in ULTRIX reference page
format, are included in alphabetical order in Appendix C.

USCA Common Modules 3—7

3.3.1 Common I/O Routines

3.3.11

3.3.1.2

3.3.1.3

This section describes the common SCSI/CAM peripheral device driver initialization
and I/O routines. Table 3-4 lists the name of each routine and gives a summary
description of its function. The sections that follow contain a more detailed
description of each routine.

Table 3-4: Common I/O Routines

Routine Summary Description

ccnm_init initializes the XPT and the unit table lock structure

ccnm_open_uni t handles the common open for all SCSI/CAM peripheral
device drivers

ccmm_cl ose_uni t handles the common close for al SCSI/CAM periphera
device drivers

The ccmn_init Routine

Theccrmm_i ni t routineinitializes the XPT and the unit table lock structure. The
first timetheccrmm_i ni t routineis caled, it calsthe xpt _i ni t routine to request
the XPT to initialize the CAM subsystem.

The ccmn_open_unit Routine

Theccrmm_open_uni t routine handles the common open for all SCSI/CAM
peripheral device drivers. It must be called for each open before any SCSI device-
specific open code is executed.

On the first call to theccnm_open_uni t routine for a device, the
ccm_gdev_ccb_bl d routineis called to issue a GET DEVICE TYPE CCB to
obtain the Inquiry data. The ccnm_open_uni t routine allocates the Peripheral
Device Structure, PDRV_DEVICE, and a device-specific structure, either
TAPE_SPECIFIC or DISK_SPECIFIC, based on the device size argument passed.
The routine also searches the cam devdesc_t ab to obtain a pointer to the Device
Descriptor Structure for the SCSI device and increments the open count. The
statically alocated pdr v_uni t _t abl e structure contains a pointer to the
PDRV_DEVICE structure. The PDRV_DEVICE structure contains pointers to the
DEV_DESC structure and to the device-specific structure.

The ccmn_close_unit Routine

Theccmn_cl ose_uni t routine handles the common close for all SCSI/CAM
peripheral device drivers. It sets the open count to zero.

3.3.2 Common Queue Manipulation Routines

This section describes the common SCSI/CAM peripheral device driver queue
manipulation routines. Table 3-5 lists the name of each routine and gives a summary
description of its function. The sections that follow contain a more detailed
description of each routine.

3-8 USCA Common Modules

3.3.21

3.3.2.2

3.3.2.3

3.3.24

Table 3-5: Common Queue Manipulation Routines

Routine Summary Description

ccmm_send_ccb sends CCBs to the XPT layer by calling the xpt _acti on
routine

ccrm_rem ccb removes a SCSI 1/0 CCB request from the SCSI/CAM

peripheral driver active queue and starts a tagged request if a
tagged CCB is pending

ccmm_abort _que sends an ABORT CCB request for each SCSI 1/0 CCB on
the active queue
ccnm_t erm que sends a TERMINATE /O CCB request for each SCSI 1/0

CCB on the active queue

The ccmn_send_ccb Routine

The ccrm_send_ccb routine sends CCBs to the XPT layer by calling the
Xpt _acti on routine. This routine must be called with the Peripheral Device
Structure locked.

For SCSI 1/0 CCBs that are not retries, the request is placed on the active queue. If
the CCB is a tagged request and the tag queue size for the device has been reached,
the request is placed on the tagged pending queue so that the request can be sent to
the XPT at alater time. A high-water mark of half the queue depth for the SCSI
device is used for tagged requests so that other initiators on the SCSI bus will not be
blocked from using the device.

The ccmn_rem_ccb Routine

Theccrm_r em ccb routine removes a SCSI 1/0 CCB request from the SCSI/CAM
peripheral driver active queue and starts a tagged request if atagged CCB is pending.
If atagged CCB is pending, the ccrm_r em _ccb routine places the request on the
active queue and calsthe xpt _act i on routine to start the tagged request.

The ccmn_abort_que Routine

Theccrm_abort _que routine sends an ABORT CCB request for each SCSI 1/0
CCB on the active queue. This routine must be called with the Peripheral Device
Structure locked.

Theccrmm_abort _que routine calstheccmm_abort _ccb_bl d routine to
create an ABORT CCB for the first active CCB on the active queue and send it to
the XPT. It calsthe ccrm_send_ccb routine to send the ABORT CCB for each of
the other CCBs on the active queue that are marked as active to the XPT. The
ccmm_abort _que routine then callsthe ccnm_r el _ccb routine to return the
ABORT CCB to the XPT.

The ccmn_term_que Routine

Theccrmm_t er m_que routine sends a TERMINATE 1/0 CCB request for each
SCSI 1/0 CCB on the active queue. This routine must be called with the Peripheral
Device Structure locked.

USCA Common Modules 3-9

Theccrmm_t er m_que routine callsthe ccnm_t er m_ccb_bl d routine to create a
TERMINATE I/O CCB for the first active CCB on the active queue and send it to
the XPT. It calsthe ccrm_send_ccb routine to send the TERMINATE /O CCB
for each of the other CCBs on the active queue that are marked as active to the XPT.
Theccrmm_t er m_que routine then callsthe ccrm_r el _ccb routine to return the
TERMINATE I/O CCB to the XPT.

3.3.3 Common CCB Management Routines

3.3.3.1

3.3.3.2

This section describes the common SCSI/CAM peripheral device driver CCB
alocation, build, and deallocation routines. Table 3-6 lists the name of each routine
and gives a summary description of its function. The sections that follow contain a
more detailed description of each routine.

Table 3-6: Common CCB Management Routines

Routine Summary Description

ccnn_get _cch alocates a CCB and fills in the common portion of the CCB
header

ccrm_rel _ccb releases a CCB and returns the sense data buffer for SCSI 1/0
CCBs, if allocated

ccmm_io_ccb _bld alocates a SCS 1/0 CCB and fillsit in

ccnm_gdev_ccb_bl d creates a GET DEVICE TYPE CCB and sends it to the XPT

ccnm_sdev_ccb_bl d creates a SET DEVICE TYPE CCB and sends it to the XPT

ccmm_sasy_ccb_bl d creates a SET ASYNCHRONOUS CALLBACK CCB and
sends it to the XPT

ccnm_rsqg_cch_bld creates a RELEASE SIM QUEUE CCB and sends it to the
XPT

ccnm_ping_ccb_bld creates a PATH INQUIRY CCB and sends it to the XPT

ccnm_abort _ccb_bld createsan ABORT CCB and sends it to the XPT

ccrm_termcchb _bld creates a TERMINATE I/O CCB and sends it to the XPT

ccm_bdr_ccb_bld creates aBUS DEVICE RESET CCB and sends it to the
XPT
ccmm_br _ccb_bld creates a BUS RESET CCB and sends it to the XPT

The ccmn_get_ccb Routine

Theccrmm_get _ccb routine alocates a CCB and fills in the common portion of the
CCB header. Theroutine callsthe xpt _ccb_al | oc routine to allocate a CCB
structure. The ccnmn_get _ccb routine fills in the common portion of the CCB
header and returns a pointer to that CCB_HEADER.

The ccmn_rel_ccb Routine

Theccmn_rel _ccb routine releases a CCB and returns the sense data buffer for
SCSI 1/0O CCBs, if alocated. The routine calls the xpt _ccb_f r ee routine to
release a CCB structure. For SCSI 1/0 CCBs, if the sense data length is greater than
the default sense data length, the ccrm_r el _ccb routine calls the

ccmm_r el _dbuf routine to return the sense data buffer to the data buffer pool.

3-10 USCA Common Modules

3.3.3.3

3.3.34

3.3.3.5

3.3.3.6

3.3.3.7

3.3.3.8

The ccmn_io_ccb_bld Routine

Theccrmm_i o_ccb_Dbl d routine allocates a SCSI 1/0 CCB and fillsit in. The
routine callsthe ccnm_get _ccb routine to obtain a CCB structure with the header
portion filled in. Theccrmm_i o_ccb_Dbl d routine fills in the SCSI 1/O-specific
fields from the parameters passed and checks the length of the sense data to seeiif it
exceeds the length of the reserved sense buffer. If it does, a sense buffer is allocated
using theccnrm_get _dbuf routine.

The ccmn_gdev_ccb_bld Routine

Theccm_gdev_ccb_Dbl d routine createsa GET DEVICE TY PE CCB and sends
it to the XPT. The routine callsthe ccnm_get _ccb routine to allocate a CCB
structure and fill in the common portion of the CCB header. The
ccm_gdev_ccb_bl d routine calls the ccrm_send_cchb routine to send the
CCB structure to the XPT. The request is carried out immediately, so it is not placed
on the device driver’s active queue.

The ccmn_sdev_ccb_bld Routine

Theccmn_sdev_ccb_bl d routine createsa SET DEVICE TYPE CCB and sends
it to the XPT. The routine callsthe ccnm_get _ccb routine to allocate a CCB
structure and fill in the common portion of the CCB header. The routine fills in the
device type field of the CCB and callsthe ccrm_send_ccb routine to send the
CCB structure to the XPT. The request is carried out immediately, so it is not placed
on the device driver’s active queue.

The ccmn_sasy_ccb_bld Routine

Theccrm_sasy_ccb_Dbl d routine createsa SET ASYNCHRONOUS
CALLBACK CCB and sendsit to the XPT. The routine calstheccrm_get _ccb
routine to alocate a CCB structure and fill in the common portion of the CCB
header. The routine fills in the asynchronous fields of the CCB and calls the
ccmm_send_ccb routine to send the CCB structure to the XPT. The request is
carried out immediately, so it is not placed on the device driver’s active queue.

The ccmn_rsqg_ccb_bld Routine

Theccm_r sq_cchb_bl d routine creates a RELEASE SIM QUEUE CCB and
sends it to the XPT. The routine calls the ccrm_get _ccb routine to alocate a
CCB structure and fill in the common portion of the CCB header. The routine calls
the ccnm_send_cchb routine to send the CCB structure to the XPT. The request is
carried out immediately, so it is not placed on the device driver’s active queue.

The ccmn_ping_ccb_bld Routine

Theccm_pi ng_ccb_Dbl d routine createsa PATH INQUIRY CCB and sends it to
the XPT. The routine calsthe ccrm_get _ccb routine to allocate a CCB structure
and fill in the common portion of the CCB header. The routine calls the
ccmm_send_ccb routine to send the CCB structure to the XPT. The request is
carried out immediately, so it is not placed on the device driver’s active queue.

USCA Common Modules 3-11

3.3.3.9 The ccmn_abort _ccb_bld Routine

Theccmn_abort _ccb_bl d routine creates an ABORT CCB and sends it to the
XPT. Theroutine callstheccnrm_get _ccb routine to allocate a CCB structure and
fill in the common portion of the CCB header. The routine fills in the address of the
CCB to be aborted and callsthe ccnn_send_ccb routine to send the CCB
structure to the XPT. The request is carried out immediately, so it is not placed on
the device driver’s active queue.

3.3.3.10 The ccmn_term_ccb_bld Routine

Theccrmm_t erm ccb_Dbl d routine createsa TERMINATE /O CCB and sends it
to the XPT. Theroutine callsthe ccnrm_get _ccb routine to allocate a CCB
structure and fill in the common portion of the CCB header. The routine fills in the
CCB to be terminated and callsthe ccnn_send__ccb routine to send the CCB
structure to the XPT. The request is carried out immediately, so it is not placed on
the device driver’s active queue.

3.3.3.11 The ccmn_bdr_ccb_bld Routine

Theccrmm_bdr _ccb_bl d routine creates a BUS DEVICE RESET CCB and sends
it to the XPT. The routine callsthe ccnm_get _ccb routine to allocate a CCB
structure and fill in the common portion of the CCB header. The routine calls the
ccmm_send_ccb routine to send the CCB structure to the XPT. The request is
carried out immediately, so it is not placed on the device driver’s active queue.

3.3.3.12 The ccmn_br_ccb_bld Routine

Theccmm_br _ccb_Dbl d routine createsa BUS RESET CCB and sends it to the
XPT. Theroutine callstheccnrm_get _ccb routine to allocate a CCB structure and
fill in the common portion of the CCB header. The routine calls the
ccmm_send_ccb routine to send the CCB structure to the XPT. The request is
carried out immediately, so it is not placed on the device driver’s active queue.

3.3.4 Common SCSI I/O Command Building Routines

This section describes the common SCSI/CAM peripheral device driver SCSI 1/0
command build and send routines. Table 3-7 lists the name of the routine and gives
asummary description of its function. The sections that follow contain a more
detailed description of each routine.

Table 3-7: Common SCSI I/O Command Building Routines

Routine Summary Description

ccmm_t ur creates a SCSI 1/0O CCB for the TEST UNIT READY
command and sends it to the XPT for processing

ccrm_start _unit creates a SCSI 1/0 CCB for the START UNIT command and
sends it to the XPT for processing

ccmm_node_sel ect creates a SCSI 1/0 CCB for the MODE SELECT command

and sends it to the XPT for processing

3-12 USCA Common Modules

3.3.4.1 The ccmn_tur Routine

Theccrmm_t ur routine creates a SCSI 1/0 CCB for the TEST UNIT READY
command and sends it to the XPT for processing. This routine may be called from
interrupt context since it will not wait (sleep) for the command to compl ete.

Theccrmm_t ur routine calstheccrm_i o_ccb_Dbl d routine to obtain a SCSI 1/0
CCB structure. Theccnmn_t ur routine callstheccmm_send_ccb routine to send
the SCSI 1/0 CCB to the XPT.

3.3.4.2 The ccmn_start_unit Routine

Theccrmm_start _unit routine createsa SCSI 1/0 CCB for the START UNIT
command and sends it to the XPT for processing. This routine may be called from
interrupt context since it will not wait (sleep) for the command to compl ete.

Theccmn_start _unit routine callstheccnn_i o_ccb_bl d routine to obtain a
SCSI 1/O CCB structure. Theccmrm_st art _uni t routine calls the
ccmm_send_ccb routine to send the SCSI 1/0 CCB to the XPT.

3.3.4.3 The ccmn_mode_select Routine

The ccrm_node_sel ect routine creates a SCSI 1/0 CCB for the MODE SELECT
command and sends it to the XPT for processing. This routine may be called from
interrupt context since it will not wait (slegp) for the command to complete. The
routine callstheccnm_i o_ccb_bl d routine to obtain a SCSI 1/0 CCB structure.

It uses the ms_index parameter to index into the Mode Select Table pointed to by the
dd_nodsel _t bl member of the Device Descriptor Structure for the SCSI device.
Theccmn_node_sel ect routine callstheccrm_send_cchb routine to send the
SCSI 1/0 CCB to the XPT.

3.3.5 Common CCB Status Routine

This section describes the common SCSI/CAM peripheral device driver CCB status
routine. Theccm_ccb_st at us routine assigns individual CAM status values to
generic categories. The following table shows the returned category for each CAM

status value:

CAM Status

Assigned Category

CAM REQ | NPROG
CAM REQ CMWP
CAM_REQ_ABORTED
CAM_UA_ABORT

CAM REQ CMP_ERR
CAM BUSY

CAM REQ | NVALI D
CAM PATH | NVALI D
CAM DEV_NOT_THERE
CAM_UA TERM O
CAM_SEL_TI MEOUT
CAM_CVD_TI MEOUT
CAM_MSG_REJECT_REC
CAM SCSI_BUS_RESET
CAM_UNCOR_PARI TY
CAM_AUTOSENSE_FAI L
CAM_NO_HBA

CAT_INPROG
CAT_CMP
CAT_ABORT
CAT_ABORT
CAT_CMP_ERR
CAT_BUSY
CAT_CCB_ERR
CAT_NO_DEVICE
CAT_NO_DEVICE
CAT_ABORT
CAT_DEVICE_ERR
CAT_DEVICE_ERR
CAT_DEVICE_ERR
CAT_RESET
CAT_DEVICE_ERR
CAT_BAD_AUTO
CAT_NO_DEVICE

USCA Common Modules 3-13

CAM Status Assigned Category

CAM DATA_RUN_ERR CAT_DEVICE_ERR
CAM_UNEXP_BUSFREE CAT_DEVICE_ERR
CAM_SEQUENCE_FAI L CAT_DEVICE_ERR
CAM CCB_LEN_ERR CAT_CCB_ERR
CAM _PROVI DE_FAI L CAT_CCB_ERR
CAM BDR_SENT CAT_RESET

CAM REQ TERM O CAT_ABORT

CAM LUN_| NVALI D CAT_NO_DEVICE
CAM TI D_I NVALI D CAT_NO_DEVICE
CAM_FUNC_NOTAVAI L CAT_CCB_ERR
CAM_NO_NEXUS CAT_NO_DEVICE
CAM | I D_I NVALI D CAT_NO_DEVICE
CAM _SCSI_BUSY CAT_SCSI_BUSY
O her CAT_UNKNOWN

3.3.6 Common Buf Structure Pool Management Routines

3.3.6.1

3.3.6.2

This section describes the common SCSI/CAM peripheral device driver buf
structure pool alocation and deallocation routines.

The ccmn_get_bp Routine

Theccrm_get _bp routine allocates a buf structure. This function must not be
caled at interrupt context. The function may sleep waiting for resources.

The ccmn_rel_bp Routine
Theccrmm_r el _bp routine deallocates abuf structure.

3.3.7 Common Data Buffer Pool Management Routines

3.3.7.1

3.3.7.2

This section describes the common SCSI/CAM peripheral device driver data buffer
pool allocation and deallocation routines.

The ccmn_get_dbuf Routine

Theccmm_get dbuf routine alocates a data buffer area of the size specified by
calling the kernel memory allocation routines .

The ccmn_rel_dbuf Routine
Theccmm_rel _dbuf routine deallocates a data buffer.

3.3.8 Miscellaneous Common Routines

This section describes the common SCSI/CAM peripheral device driver routines that
perform miscellaneous operations. Table 3-8 lists the name of each routine and gives
a summary description of its function.

3-14 USCA Common Modules

3.3.8.1

3.3.8.2

3.3.8.3

3.3.84

Table 3-8: Miscellaneous Common Routines

Routine Summary Description

ccmm_ccbwai t sleeps waiting for a SCSI 1/0 CCB request to complete

ccmm_DoSpeci al Cnd provides a simplified interface to the special command
routine

ccnm_SysSpeci al Cd lets a system request issue SCSI 1/O commands to the
SCSI/CAM specia 1/0O interface

ccnm_errl og reports error conditions for the SCSI/CAM peripheral device
driver

The ccmn_ccbwait Routine

Theccrm_ccbwai t routine slegps waiting for a SCSI 1/0 CCB request to
complete. If the priority is greater than PZERO, the ccnm_ccbwai t routine sleeps
a an interruptible priority in order to catch signals.

The ccmn_DoSpecialCmd Routine

The ccrm_DoSpeci al Cnd routine provides a simplified interface to the special
command routine. The routine prepares for and issues special commands.

The ccmn_SysSpecialCmd Routine

Theccmm_SysSpeci al Cnd routine lets a system request issue SCSI 1/0
commands to the SCSI/CAM special /O interface. This permits existing SCSI
commands to be issued from within kernel code.

The ccmn_errlog Routine

The ccrmm_er r | og routine reports error conditions for the SCSI/CAM peripheral
device driver. The routine is passed a pointer to the name of the function in which
the error was detected. The routine builds informational strings based on the error
condition.

USCA Common Modules 3-15

USCA Generic Modules 4

This chapter describes the generic data structures and routines provided by Digital for
SCSI/CAM peripheral device driver writers. The generic data structures and routines
can be used as templates for SCSI/CAM peripheral device drivers to interface with
the CAM subsystem to perform standard 1/0 operations. See Chapter 12 for a
description of the SCSI/CAM special 1/0 interface, which processes special 1/0
control commands that are not issued to the device through the standard driver entry
points.

The generic routines use the common SCSI/CAM periphera device driver routines
described in Chapter 3. Using the common and generic routines helps ensure that
SCSI/CAM peripheral device drivers are consistent with the ULTRIX SCSI/CAM
Architecture. See Chapter 11 if you plan to define your own SCSI/CAM periphera
device drivers.

4.1 Prerequisites for Using the CAM Generic Routines

The generic device driver routines use the common routines and data structures
supplied by Digital. See Chapter 3 for information about how to use the common
data structures and routines.

The following routines must be called with the Peripheral Device Structure locked:
e ccm_send _cchb

e ccmm_abort _que

e ccrmm_termque

41.1 loctl Commands

The writer of a generic SCSI/CAM peripheral device driver has two options for
implementing i oct | commands within the driver:

e Usethei oct| commands that are already defined in/ usr/ sys/ h/ioctl.h
and implement those that are appropriate for the type of device.

e Createnew i oct| definitions by modifying the/ usr/sys/ h/i octl . hfile
to reflect the new i oct | definitions and to implement the new i oct |
commands within the driver. See the Guide to Writing and Porting VMEbus and
TURBOchannel Device Drivers for more information.

It is possible that conflicts with future releases of the operating system may result
when new i oct | commands are implemented.

See Chapter 12 for information about the SCSI/CAM specid 1/0 interface to handle
SCSl specia 1/0 commands.

4.1.2 Error Handling

The writer of the device driver is responsible for al error handling within the driver
and for notifying the user process of the error.

4.1.3 Kernel Interface

The kernel entry points for any device driver are defined for both character and block
devices in the structures cdevsw and bdevsw defined in the

[usr/sys/ h/ conf. h file. The kernel entry points are implemented in the
cdevswand bdevsw switch tables in the

[usr/ sys/ machi ne/ comon/ conf . c file. If the device driver does not
implement a specific kernel entry point, then the corresponding entries in the
cdevswand bdevsw switch tables must be null. See the Guide to Writing and
Porting VMEbus and TURBOchannel Device Drivers for more information.

4.2 Data Structures Used by Generic Routines

This section describes the generic data structures programmers adapt when they write
their own SCSI/CAM peripheral device drivers. The following data structures are
described:

e CGEN_SPECIFIC, the Generic-Specific Structure
e CGEN_ACTION, the Generic Action Structure

4.2.1 The Generic-Specific Structure

A SCSI/CAM peripheral device structure, CGEN_SPECIFIC, is defined for the
device controlled by the driver. The CGEN_SPECIFIC structure is defined as

follows:

t ypedef generic_specific struct {
u_long gen_flags; /* flags - EOM wite | ocked */
u_long gen_state_flags;/* STATE - UNI T_ATTEN, RESET etc. */
u_long gen_resid; /* Last operation residual count */

} CGEN_SPECI FI C;

42.1.1 The gen_flags Member
The gen_f | ags member is used to indicate certain conditions of the SCSI unit.

The possible flags are:

Flag Name Description

CCGEN_EQM The unit is positioned at the end of media.

CGEN_OFFLI NE The deviceis returning DEVICE NOT READY in
response to a command. The mediais either not
loaded or is being loaded.

CGEN_WRT_PROT The unit is either write protected or is opened read
only.

CCGEN_SOFTERR A soft error has been reported by the SCSI unit.

4-2 USCA Generic Modules

Flag Name Description

CGEN_HARDERR A hard error has been reported by the SCSI unit. It
can be reported either through ani oct | or by
marking the buf structure as EIO.

4.2.1.2 The gen_state_flags Member

Thegen_st at e_f| ags member is used to indicate certain states of the driver and
of the SCSI unit. The possible flags are:

Flag Name Description

CGEN_NOT_READY_STATE The unit was opened with the FNDELAY flag and
the unit had a failure during the open, but was seen.

CGEN_UNI T_ATTEN_STATE A check condition occurred and the sense key was

UNIT ATTENTION. This usualy indicates that a
media change has occurred, but it could indicate
power up or reset. Either way, current settings are

lost.

CGEN_RESET_STATE Indicates notification of areset condition on the
device or bus.

CCGEN_RESET_PENDI NG_STATE A reset is pending.

CGEN_OPENED_STATE The unit is opened.

4.2.1.3 The gen_resid Member
The gen_r esi d member contains the residual byte count from the last operation.

4.2.2 The Generic Action Structure

The SCSI/CAM peripheral device structure, CGEN_ACTION, is passed to the
generic driver’s action routines to be filled in according to the success or failure of
the command. The CGEN_ACTION structure is defined as follows:

typedef struct generic_action {

CCB_SCsl I O *act _cch; /* The CCB that is returned to caller */
| ong act _ret_error; /* Error code if any */

u_l ong act _fatal; /* Is this considered fatal? */

u_l ong act _cchb_status; /* The CCB status code */

u_l ong act _scsi _status; /* The SCSI error code */

u_l ong act _chkcond_error; [/* The check condition error */

} CGEN_ACTI ON;

4.2.2.1 The act_ccb Member

Theact _cch member is a pointer to the SCSI I/O CCB returned to the calling
routine.

USCA Generic Modules 4-3

4,2.2.2 The act_ret_error Member
Theact _ret_error contains the error code, if any, returned from the operation.

4.2.2.3 The act_fatal Member
Theact _f at al indicates whether an error returned was fatal. The possible flags

are:

Flag Name Description

ACT_FAI LED The action has failed.

ACT_RESOURCE Memory availability problem.

ACT_PARAMETER Aninvalid parameter was passed.
ACT_RETRY_EXCEDED The maximum retry count for the operation has been

exceeded.

4.2.2.4 The act_ccb_status Member

Theact _cchb_st at us member indicates the CAM generic category code for the
CCB that was returned from the ccnm_ccb_st at us routine.

4.2.25 The act_scsi_status Member

Theact _scsi _st at us member indicates the SCSI status code if the CCB
completed with an error status. The SCSI status codes are defined in the
[usr/sys/ h/scsi_status. hfile

4.2.2.6 The act_chkcond_error Member

Theact _chkcond_err or member contains the check condition code returned
from the cgen_ccb_chkcond routine, if thecam scsi _st at us member of the
SCSI 1/0 CCB is equal to SCSI_STAT_CHECK_CONDITION. The Check
Condition codes are defined in the / usr/ sys/ h/ cam generi c. h file.

4.3 Generic I/O Routines

The generic routines described in this section handle open, close, read, write, and
other 1/0O reguests from user processes. Table 4-1 lists the name of each routine and
gives a short description of its function. Descriptions of the routines with syntax
information, in ULTRIX reference page format, are included in alphabetical order in
Appendix C.

Table 4-1: Generic I/0 Routines

Routine Summary Description

cgen_open called by the kernel when a user process requests an open of
the device

cgen_cl ose closes the device

4-4 USCA Generic Modules

Table 4-1: (continued)

Routine Summary Description

cgen_r ead handles synchronous read requests for user processes
cgen_wite handles synchronous write requests for user processes
cgen_strategy handles all /O requests for user processes

cgen_i oct| handles user process requests for specific actions other than

read, write, open, or close for SCSI tape devices

4.3.1 The cgen_open Routine

The cgen_open routine is caled by the kernel when a user process requests an
open of the device. The cgen_open routine callsthe ccrm_open_uni t routine,
which manages the SMP_LOCKS and, if passed the exclusive use flag for SCS|
devices, makes sure that no other process has opened the device. If the
ccmm_open_uni t routine returns success, the necessary data structures are
allocated.

The cgen_open routine callsthe ccnm_sasy_cchb_bl d routine to register for
asynchronous event notification for the device. The cgen_open routine then enters
af or loop based on the power-up time specified in the Device Descriptor Structure
for the device. Within the loop, calls are made to the cgen_r eady routine, which
callsthe ccrm_t ur routine to issue a TEST UNIT READY command to the device.

The cgen_open routine callsthe ccnm_r el _ccb routine to release the CCB.

The cgen_open routine checks certain state flags for the device to decide whether
to send the initial SCSI mode select pages to the device. Depending on the setting of
the state flags CGEN_UNIT_ATTEN_STATE and CGEN_RESET_STATE, the
cgen_open routine calls the cgen_open_sel routine for each mode select page
to be sent to the device. Thecgen_open_sel routine fills out the Generic Action
Structure based on the completion status of the CCB for each mode select page it
sends.

4.3.2 The cgen_close Routine

The cgen_cl ose routine closes the device. The routine checks any device flags
that are defined to see if action is required, such as rewind on close or release the
unit. Thecgen_cl ose closes the device by caling theccnm_cl ose_uni t
routine.

4.3.3 The cgen_read Routine

The cgen_r ead routine handles synchronous read requests for user processes. |t
passes the user process requests to the cgen_st r at egy routine. Thecgen_r ead
routine callsthe ccnm_get _bp routine to alocate a buf structure for the user
process read request. When the /0O is complete, the cgen_r ead routine calls the
ccmm_r el _bp routine to deallocate the buf structure.

USCA Generic Modules 4-5

4.3.4 The cgen_write Routine

Thecgen_wri t e routine handles synchronous write requests for user processes.
The routine passes the user process requests to the cgen_st r at egy routine. The
cgen_writ e routine callstheccnm_get _bp routine to alocate a buf structure
for the user process write request. When the I/O is complete, thecgen_wite
routine callsthe ccnm_r el _bp routine to deallocate the buf structure.

4.3.5 The cgen_strategy Routine

Thecgen_str at egy routine handles all 1/O requests for user processes. It
performs specific checks, depending on whether the request is synchronous or
asynchronous and on the SCSI devicetype. The cgen_st r at egy routine calls the
ccmm_i o_ccb_bl d routine to obtain an initialized SCSI 1/0 CCB and build either
aread or awrite command based on the information contained in the buf structure.
Thecgen_str at egy routine then callsthe ccrm_send_cchb to place the CCB
on the active queue and send it to the XPT layer.

4.3.6 The cgen_ioctl Routine

Thecgen_i oct | routine handles user process requests for specific actions other
than read, write, open, or close for SCSI tape devices. The routine currently issues a
DEVIOCGET i oct | command for the device, which fills out the devget structure
passed in, and then calls the cgen_node_sns routine which issues a
SCSI_MODE_SENSE to the device to determine the device's state. The routine then
callstheccmm_r el _ccb routine to release the CCB. When the call to
cgen_node_sns completes, the cgen_i oct | routine fills out the rest of the
devget structure based on information contained in the mode sense data.

4.4 Generic Internal Routines

The generic routines described in this section are examples that show one method of
handling errors, events, and conditions. SCSI/CAM peripheral device driver writers
must implement routines for handling errors, events, and conditions that are
compatible with the design and the functionality of the specific device. Table 4-2
lists the name of each routine and gives a short description of its function.
Descriptions of the routines with syntax information, in ULTRIX reference page
format, are included in alphabetical order in Appendix C.

Table 4-2: Generic Internal Routines

Routine Summary Description

cgen_ccb_chkcond decodes the autosense data for a device driver

cgen_done the entry point for all nonread and nonwrite 1/0O callbacks

cgen_i odone the entry point for al read and write 1/0O callbacks

cgen_async handles natification of asynchronous events

cgen_m nphys compares the b_bcount with the maximum transfer limit
for the device

cgen_sl ave called at system boot to initialize the lower levels

cgen_attach called for each bus, target, and LUN after the cgen_sl ave

routine returns SUCCESS

4-6 USCA Generic Modules

4.4.1 Thecgen_ccb_chkcond Routine

The cgen_ccb_chkcond routine decodes the autosense data for a device driver
and returns the appropriate status to the calling routine. The routine is called when a
SCSI 1/0 CCB is returned with a CAM status of CAM_REQ_CMP_ERR (request
completed with error) and a SCS| status of SCSI_STAT_CHECK_CONDITION. The
routine also sets the appropriate flags in the Generic-Specific Structure.

4.4.2 The cgen_done Routine

The cgen_done routine is the the entry point for all nonread and nonwrite 1/0
callbacks. The generic device driver uses two callback entry points, one for all
nonuser 1/0 requests and one for all user I/O requests. The SCSI/CAM peripheral
device driver writer can declare multiple callback routines for each type of command
and can fill the CCB with the address of the appropriate callback routine.

This is a generic routine for al nonread and nonwrite SCSI |/O CCBs. The SCSI 110
CCB should not contain a pointer to abuf structure in the cam r eq_nap member
of the structure. If it does, then awake-up call is issued on the address of the CCB
and the error is reported. If the SCSI I/O CCB does not contain a pointer to a buf
structure in the cam r eq_nmap member, then a wake-up call is issued on the address
of the CCB and the CCB is removed from the active queques. No CCB completion
status is checked because that is the responsibility of the routine that created the CCB
and is waiting for completion status. When this routine is entered, context is on the
interrupt stack and the driver cannot sleep waiting for an event.

4.4.3 The cgen_iodone Routine

The cgen_i odone routine is the entry point for all read and write I/O callbacks.
This is a generic routine for al read and write SCSI I/0 CCBs. The SCSI I/0 CCB
should contain a pointer to abuf structure in the cam r eq_nmap member of the
structure. If it does not, then a wake-up call is issued on the address of the CCB and
the error is reported. If the SCSI 1/0 CCB does contain a pointer to a buf structure
in the cam _r eq_nmap member, as it should, then the completion status is decoded.
Depending on the CCB’ s completion status, the correct fields within the buf
structure are filled out.

The device' s active queues may need to be aborted because of errors or because the
device is a sequential access device and the transaction was an asynchronous request.

The CCB is removed from the active queques by a call to theccmm_rem ccb
routine and is released back to the free CCB pool by acall totheccrm_rel _ccb
routine. When the cgen_i odone routine is entered, context is on the interrupt
stack and the driver cannot sleep waiting for an event.

4.4.4 The cgen_async Routine

The cgen_async routine handles notification of asynchronous events. The routine
is caled when an Asynchronous Event Notification(AEN), Bus Device Reset (BDR),
or Bus Reset (BR) occurs. The routine sets the CGEN_RESET_STATE flag and
clearsthe CGEN_RESET_PEND_STATE flag for BDRs and bus resets. The routine
sets the CGEN_UNIT_ATTEN_STATE flag for AENS.

USCA Generic Modules 4-7

4.45 The cgen_minphys Routine

The cgen_mi nphys routine compares the b_bcount with the maximum transfer
limit for the device. The routine comparesthe b_bcount field in the buf structure
with the maximum transfer limit for the device in the Device Descriptor Structure.
The count is adjusted if it is greater than the limit.

4.4.6 The cgen_slave Routine

Thecgen_sl ave routineis called at system boot to initialize the lower levels. The
routine also checks the bounds for the unit number to ensure it is within the allowed
range and sets the device-configured bit for the device at the specified bus, target, and
LUN.

4.4.7 The cgen_attach Routine

Thecgen_at t ach routineis caled for each bus, target, and LUN after the
cgen_sl ave routine returns SUCCESS. The routine callsthe ccnrm_open_uni t
routine, passing the bus, target, and LUN information.

Thecgen_at t ach routine callsthe ccnm_cl ose_uni t routine to close the
device. If adevice of the specified type is found, the device identification string is
printed. See the Guide to Writing and Porting VMEbus and TURBOchannel Device
Drivers for more information.

4.5 Generic Command Support Routines

The generic routines described in this section are SCSI/CAM command support
routines. Table 4-3 lists the name of each routine and gives a short description of its
function. Descriptions of the routines with syntax information, in ULTRIX reference
page format, are included in aphabetical order in Appendix C.

Table 4-3: Generic Command Support Routines

Routine Summary Description

cgen_r eady issues a TEST UNIT READY command to the unit defined

cgen_open_sel issues a SCSI_MODE_SELECT command to the SCSI
device

cgen_node_sns issues a SCSI_ MODE_SENSE command to the unit defined

45.1 The cgen_ready Routine

The cgen_r eady routine issues a TEST UNIT READY command to the unit
defined. Theroutine callsthe ccnm_t ur routine to issue the TEST UNIT READY
command and sleeps waiting for command status.

4-8 USCA Generic Modules

45.2 The cgen_open_sel Routine

The cgen_open_sel routineissues a SCSI_MODE_SELECT command to the
SCSI device. The mode select data sent to the device is based on the data contained
in the Mode Select Table Structure for the device, if oneis defined. The
CGEN_ACTION dtructure is filled in for the calling routine based on the completion
status of the CCB.

The cgen_open_sel routine callsthe ccnm_node_sel ect routine to create a
SCSI 1/0 CCB and send it to the XPT for processing.

45.3 The cgen_mode_sns Routine

Thecgen_node_sns routine issues a SCSI_MODE_SENSE command to the unit
defined. The CGEN_ACTION structure isfilled in for the calling routine based on
the completion status of the CCB.

USCA Generic Modules 4-9

CAM Data Structures 5

Data structures are the mechanism used to pass information between periphera
device drivers and the CAM subsystem. This chapter describes the CAM data
structures used by peripheral device drivers.

Specifically, the chapter discusses the following:
CAM Control Blocks (CCB)

Input/Output (1/0) data structures

Control CCB structures

Configuration data structures

Other chapters reference these structures. Y ou can read this chapter now to become
familiar with the structures, or you can refer to it when you encounter references to
the structures in other chapters.

5.1 CAM Control Blocks

The CAM Control Block (CCB) data structures let the device driver writer specify
the action to be performed by the XPT and SIM. The CCBs are allocated by calling
thexpt _ccb_al | oc routine.

Table 5-1 contains the name of each CCB data structure and a brief description of its
purpose.

Table 5-1: CAM Control Blocks

CCB Name Description
CCB_SCsIIO Requests SCSI 1/0
CCB_GETDEV Gets device type
CCB_PATHINQ Sends a path inquiry
CCB_RELSIM Releases SIM queue
CCB_SETASYNC Sets asynchronous callback
CCB_SETDEV Sets device type
CCB_ABORT Aborts XPT request

CCB_RESETBUS Resets SCSI bus
CCB_RESETDEV Resets SCSI device
CCB_TERMIO Terminates |/O process request

All CCBs contain a CCB_HEADER structure. Peripheral device driver writers need
to understand the CCB_HEADER data structure, which is discussed in the section that
follows.

5.1.1 The CCB_HEADER Structure

SCSI/CAM peripheral device driver writers allocate a CCB structure by calling the
xpt _cchb_al | oc routine. The CCB_HEADER structure is common to al CCBs
and is the first structure filled in. 1t contains the following members:

t ypedef struct ccb_header

struct ccb_header *ny_addr; /* The address of this CCB */
u_short camccb_| en; /* Length of the entire CCB */
u_char cam func_code; /* XPT function code */

u_char cam status; /* Returned CAM subsystem */

/* status */

u_char cam path_id; /* Path ID for the request */
u_char camtarget _id; /* Target device ID */

u_char camtarget_|un; /* Target LUN number */
u_long cam fl ags; /* Flags for operation of */

/* the subsystem */
} CCB_HEADER;

5.1.1.1 The my_addr and cam_ccb_len Members

The nmy_addr member is set to a pointer to the virtual address of the starting
address of the CAM Control Block (CCB). It is automatically filled in by the
xpt _cchb_al | oc routine.

The cam ccb_I| en member is set to the length in bytes of this specific CCB type.
Thisfield isfilled in by the ccrm_get _ccb routine. The length includes the
my_addr and cam ccb_I en members.

5.1.1.2 The cam_func_code Member

The cam f unc_code member lets device-driver writers specify the CCB type
XPT/SIM functions. Device-driver writers can set this member to one of the function
codes listed in Table 5-2.

Table 5-2: CAM Function Codes

Function Code Meaning
XPT_NOOP Do not execute anything in the XPT/SIM.
XPT_SCSI _10 Execute the requested SCSI 1/0. Specify the details of the

SCSl 1/0 by setting the appropriate members of the
CCB_SCsSlI | Ostructure.

XPT_GDEV_TYPE Get the device type information. Obtain this information by
referencing the CCB_GETDEV structure.

XPT_PATH_I NQ Get the path inquiry information. Obtain this information by
referencing the CCB_PATHI NQ structure.

XPT_REL_SI MQ Release the SIM queue that is frozen.

XPT_ASYNC CB Set the asynchronous callback parameters. Obtain

asynchronous callback information from the
CCB_SETASYNC structure.

XPT_SDEV_TYPE Set the device type information. Obtain the device type
information from the CCB_SETDEV structure.

5-2 CAM Data Structures

5.1.1.3

Table 5-2:

(continued)

Function Code

Meaning

XPT_ABORT

XPT_RESET_BUS
XPT_RESET_DEV
XPT_TERM | O

Abort the specified CCB. Specify the abort to the CCB by
setting the appropriate member of the CCB_ABORT
structure.

Reset the SCSI bus.
Reset the SCSI device.

Terminate the 1/O process. Specify the CCB process to
terminate by setting the appropriate member of the
CCB_TERM O structure.

The cam_status Member

The cam st at us member is the action or event that occurred during this CAM
Control Block (CCB) request. The cam st at us member is set by the XPT/SIM
after the specified function completes. A CAM_REQ | NPROG status indicates that
either the function is still executing or is till in the queue. The XPT/SIM can set this
member to one of the CAM status codes listed in Table 5-3

Table 5-3: CAM Status Codes

CAM Status Code

Meaning

CAM REQ | NPROG
CAM REQ C\WP

CAM REQ ABORTED
CAM REQ UA_ABORT
CAM REQ CMP_ERR
CAM BUSY

CAM REQ | NVALI D
CAM PATH_| NVALI D

CAM DEV_NOT_THERE
CAM UA TERM O

CAM SEL_TI MEQUT
CAM CVD_TI MEOUT
CAM MSG_REJECT _REC
CAM SCS| _BUS_RESET

CAM _UNCOR_PARI TY
CAM AUTOSENSE_FAI L
CAM_NO_HBA

A CCB reguest is in progress.

A CCB reguest completed without errors.

A CCB request was aborted by the host processor.
The SIM was not able to abort the specified CCB.
The specified CCB request completed with an error.

The CAM subsystem is busy. The CCB returns to the caler;
the request must be resubmitted.

The specified CCB request is not valid.

The path ID specified in the cam pat h_i d member of the
CCB_HEADER structure is not valid.

The specified SCSI device is not installed at this location.

The CAM subsystem was unable to terminate the specified
CCB 1/0O reguest.

A target-selection timeout occurred.
A command timeout occurred.
A message rejection was received by the SIM.

The SCSI bus-reset was issued by the SIM or was seen on
the bus by the SIM.

An uncorrectable parity error occurred.
The autosense request-sense command failed.
No HBA was detected.

CAM Data Structures 5-3

Table 5-3: (continued)

CAM Status Code Meaning

CAM DATA RUN_ERR A data overflow or underflow error occurred.
CAM_UNEXP_BUSFREE An unexpected bus free was detected.
CAM_SEQUENCE_FAI L A target bus phase-sequence failure occurred.

CAM CCB_LEN ERR The CCB length specified in the cam ccb_| en member of
the CCB_HEADER structure is incorrect.

CAM PROVI DE_FAI L The requested capability could not be provided.

CAM BDR_SENT A SCSI BDR message was sent to the target.
CAM REQ TERM O The CCB request was terminated by the host.
CAM _SI M_QFRZN The SIM queue is frozen.

CAM AUTOSNS VALI D Autosense data is valid for target.

5.2 1/O Data Structure

Peripheral device drivers make SCSI device action reguests through the following
data structures:

e The CCB_SCSIIO structure
e The CDB_UN structure

5.2.1 The CCB_SCSIIO Structure

A peripheral driver indicates to the XPT/SIM that it wants to make a SCSI device
action request by setting the cam f unc_code member of the CCB_HEADER
structure to the constant XPT_SCSI _| O. The peripheral-driver writer then uses the
CCB_SCsl | Ostructure to specify the requests.

The CCB_SCsI | O structure contains the following members:
t ypedef struct

CCB_HEADER cam ch; /* Header information fields */
u_char *campdrv_ptr; /* Ptr to the Peripheral driver */

/* working set */
CCB_HEADER *cam next _ccbh; /* Ptr to the next CCB for action */
u_char *camreq_map; /* Ptr for mapping info on the Req. */
void (*camcbfcnp)(); /* Callback on conpletion function */
u_char *camdata_ptr; /* Pointer to the data buf/SG list */
u_long camdxfer_len; /* Data xfer length */
u_char *camsense_ptr; /* Pointer to the sense data buffer */
u_char cam sense_len; /* Num of bytes in the Autosense buf */
u_char cam cdb_I en; /* Nunmber of bytes for the CDB */
u_short camsglist_cnt; /* Num of scatter/gather list entries */
u_l ong camosd_rsvdO; /* OSD Reserved field, for alignment */

I ong camresid; /* Transfer residual length: 2's conp */
CDB_UN cam cdb_i o; /* Union for CDB bytes/pointer */
u_l ong cam ti neout; /* Timeout value */

u_char *camnsg_ptr; /* Pointer to the nessage buffer */
u_short camnsgb_len; /* Num of bytes in the nessage buf */
u_short camvu_flags; /* Vendor unique flags */

u_char camtag_action; /* Wat to do for tag queuing */

5-4 CAM Data Structures

u_char cam.iorsvdO[3]; /* Reserved field, for alignnment */
u_char camsimpriv[SSMPRV]; /* SIMprivate data area */
} CCB_SCSI| O

5.2.2 The CDB_UN Structure
The CDB_UN structure contains:

typedef union

{

u_char *cam cdb_ptr; /* Pointer to the CDB bytes to send */
u_char cam cdb_bytes[| OCDBLEN]; /* Area for the inline CDB to send */
} CDB_UN,

5.3 Control CCB Structures

The control CCB structures allow the driver writer to specify such tasks as resetting
the SCSI bus, terminating an 1/O process request, and so forth. This section discusses
the following control structures:

e CCB_RELSIM
e CCB_SETASYNC
e CCB_ABORT
e CCB_RESETBUS
e CCB_RESETDEV
e CCB_TERMIO

These structures are discussed in the sections that follow.

5.3.1 The CCB_RELSIM Structure

Device-driver writers use the CCB_REL SI Mstructure to release the SIM’ s internal
CCB queue. The CCB_RELSIM structure contains:

t ypedef struct

CCB_HEADER cam ch; /* Header information fields */
} CCB_RELSIM

5.3.2 The CCB_SETASYNC Structure

SCSI/CAM peripheral device driver writers use the CCB_SETASY NC structure to
set the asynchronous callback for notification of the following events when they
occur:

e Unsolicited SCSI BUS DEVICE RESET (BDR)

e Unsolicited RESELECTION

e SCSI AEN (asynchronous event natification enabled)
e Sent BDR to target

e SIM module loaded

CAM Data Structures 5-5

e SIM module unloaded
e New devices found

The CCB_SETASYNC structure is defined as follows:

typedef struct
{

CCB_HEADER cam ch; /* Header information fields */
u_l ong cam async_fl ags; /* Event enables for Callback response */
void (*cam.async_func)(); /* Async Cal |l back function address */
u_char *pdrv_buf; /* Buffer set aside by the */

/* peripheral driver */
u_char pdrv_buf_|en; /* The size of the buffer */

} CCB_SETASYNC,

5.3.3 The CCB_ABORT Structure

Device-driver writers use the CCB_ABORT structure to abort a CCB that is on the
SIM queue. The CCB_ABORT structure contains:

t ypedef struct

CCB_HEADER cam ch; /* Header information fields */
CCB_HEADER *cam abort _ch; /* Pointer to the CCB to abort */
} CCB_ABORT;

5.3.4 The CCB_RESETBUS Structure

Device-driver writers use the CCB_RESETBUS structure to reset the SCSI bus. The
CCB_RESETBUS structure is defined as follows:

t ypedef struct

CCB_HEADER cam ch; /* Header information fields */
} CCB_RESETBUS;

5.3.5 The CCB_RESETDEV Structure

Device-driver writers use the CCB_RESETDEYV structure to reset a single SCS|
device. The CCB_RESETDEYV structure is defined as follows:

t ypedef struct

CCB_HEADER cam ch; /* Header information fields */
} CCB_RESETDEV,

5.3.6 The CCB_TERMIO Structure

Device-driver writers use the CCB_TERM O structure to terminate an 1/0O process
request. The CCB_TERM O structure is defined as follows:

typedef struct

{
CCB_HEADER cam ch; /* Header information fields */

CCB_HEADER *cam term o_ch; /* Pointer to the CCB to terninate */
} CCB_TERM O,

5-6 CAM Data Structures

5.4 Configuration CCB Structures

The configuration CCB structures let the driver writer obtain information such as the
device type, version number for the SIM/HBA, and vendor IDS. The following
configuration CCBs are described in this section:

e The CCB_GETDEV structure
e The CDB_SETDEV structure
e The CDB_PATHINQ structure

These structures are discussed in the following sections.

5.4.1 The CCB_GETDEV Structure

Device-driver writers use the CCB_GETDEV structure to obtain a device type and
inquiry information. The CCB_CGETDEV structure is defined as follows:

typedef struct

{
CCB_HEADER cam ch; /* Header information fields */
u_char cam pd_type; /* Peripheral device type fromthe TLUN */
char *cam.i ng_dat a; /* Ptr to the inquiry data space */

} CCB_GETDEV;

5.4.2 The CCB_SETDEV Structure

Device-driver writers use the CCB_SETDEYV structure to set the device type. The
CCB_SETDEV structure is defined as follows:

t ypedef struct

CCB_HEADER cam ch; /* Header information fields */
u_char cam dev_type; /* Value for the dev type field in EDT */
} CCB_SETDEV;

5.4.3 The CCB_PATHINQ Structure

Device-driver writers use the CCB_PATHINQ structure to obtain SIM information
such as supported features and version numbers. The CCB_PATHI NQ structure is
defined as follows:

typedef struct

{
CCB_HEADER cam ch; /* Header information fields */
u_char cam.versi on_num /* Version nunber for the SIMHBA */
u_char cam hba_inquiry; /* Mmc of INQ byte 7 for the HBA */
u_char camtarget_sprt; /* Flags for target node support */
u_char cam hba_mi sc; /* Msc HBA feature flags */
u_char camvuhba_flags[VUHBA]; /* Vendor uni que capabilities */
u_l ong camsi mpriv; /* Size of SIMprivate data area */
u_l ong cam async_f I ags; /* Event cap. for Async Call back */
u_char cam hpath_i d; /* Hi ghest path IDin the subsystem*/
u_char cam.initiator_id,; /* I D of the HBA on the SCSI bus */
char camsimyvid[SIMID]; /* Vendor |ID of the SIM*/
char camhba vid[HBA ID]; /* Vendor |D of the HBA */
u_char *cam osd_usage; /* Ptr for the OSD specific area */

} CCB_PATHI NQ

CAM Data Structures 5-7

SCSI/CAM Configuration Driver Modules 6

This chapter describes the data structures and routines used by the Configuration
driver to interface with the CAM subsystem. It also describes the

[usr/sys/iol caml cam confi g. ¢ file, which contains SCSI/CAM peripheral
device driver configuration information. SCSI/CAM periphera device driver writers
add to this file external declarations and entries to the SCSI/CAM peripheral driver
configuration table for their peripheral device drivers.

6.1 Configuration Driver Introduction

The Configuration driver dynamically initializes the XPT and SIM layers of the
CAM subsystem, at run time. This enables support for a generic kernel that is
configured for all processors and all CAM subsystem software, for example, al HBA
drivers. After initialization is complete, the Configuration driver scans the SCSI bus
and stores INQUIRY information about each SCSI device detected.

Once the CAM subsystem is initialized and the scanning information stored, the
SCSI/CAM peripheral device drivers can use the subsystem. They can determine
what devices have been detected and allocate memory appropriately. They can also
regquest resources from the XPT layer using the XPT_GDEV_TY PE and
XPT_SDEV_TYPE get and set device information CCBs.

The Configuration driver module logically exists in the SCSI/CAM periphera device
driver layer above the XPT.

6.2 Configuration Driver XPT Interface
The Configuration driver is responsible for supporting the following XPT routines:
e GET DEVICE TYPE CCB
e SET DEVICE TYPE CCB
e SET ASYNCHRONOUS CALLBACK CCB

The Configuration driver also supports the configuration and bus scanning for |oaded
SIM modules.

6.3 Configuration Driver Data Structures
This section describes the following Configuration driver data structures.
e CCFG_CTRL — The Configuration driver control structure
e EDT — The CAM equipment device table

e CAM_PERIPHERAL DRIVER — The SCSI/CAM peripheral driver configuration
structure

6.3.1 The Configuration driver control structure

The Configuration driver control structure, CCFG_CTRL, contains flags used by the
Configuration driver for the scanning process. It aso sets aside an area to contain the
data returned from the INQUIRY CCBs during the initial scanning process. The
structure is defined as follows:

typedef struct ccfg_ctrl
{

u_long ccfg_flags; /* controlling flags */

ALL_| NQ _DATA i ng_buf; /* scratch area for the NQU RY data */

struct lock t c_ Ik ctrl; /* for locking on the control struct */
} CCFG_CTRL;

6.3.1.1 The ccfg_flags Member

Theccf g_fl ags member contains the flags used by the Configuration driver to
control operations. The possible settings are as follows:

e EDT_INSCAN — Which signals that an EDT scan is in progress
¢ [INQ_INPROG — Which indicates that an INQUIRY CCB isin progress

6.3.1.2 Theinq_buf Member

Thei ng_buf member sets aside a working or temporary area to hold the returned
data described in the standard INQUIRY structure, ALL_INQ_DATA, which is
defined in thefile/ usr/ sys/ h/ scsi _al | . h.

6.3.2 The CAM Equipment Device Table

The Configuration driver works with the XPT to allocate, initialize, and maintain the
CAM equipment device table structure, EDT. An EDT structure is allocated for each
SCSl bus. The structure is an 8x8-element array that contains device inquiry
information, asynchronous callback flags, and a signal flag if a device was found,
based on the number of targets and the number of LUNs on the SCSI bus. The
structure is defined as follows:

typedef struct edt
{

CAM _EDT_ENTRY edt[NDPS][NLPT]; /* a layer for targets/LUNs */
u_l ong edt_fl ags; /* flags for EDT access */
u_l ong edt_scan_count; [* # of XPT ASYNC CB readers */
struct lock_t c_lk_edt /* for |ocking per bus */

} EDT;

6.3.2.1 The edt Member

The edt member is a structure of the type CAM_EDT_ENTRY, which is defined in
the/ usr/sys/ h/ cam h file. Each CAM_EDT_ENTRY structure is an entry in
the CAM eguipment device table containing the SCSI 1D and LUN for each device
on the SCSI bus. The array dimensions are the number of devices per SCSI bus
(NDPS) and the number of LUNSs per target (NLPT). The structure and constants are
defined in the/ usr/ sys/ h/ dec_cam h file.

6—2 SCSI/CAM Configuration Driver Modules

6.3.2.2

6.3.2.3

The edt_scan_count Member

The edt _scan_count member contains the number of processes reading the EDT
structure.

The edt_flags Member

The edt _f | ags member sets the flags for controlling access to the CAM
equipment device table.

6.3.3 The SCSI/CAM Peripheral Driver Configuration Structure

6.3.3.1

6.3.3.2

6.3.3.3

6.3.3.4

CAM_PERIPHERAL_DRIVER, the SCSI/CAM peripheral driver configuration
structure, contains the name of the device and defines the routines that are accessed
as part of the system configuration process. The structure is defined as follows:

t ypedef struct cam peripheral _driver

char *cpd_nane;

int (*cpd_sl ave) ();
int (*cpd_attach)();
int (*cpd_unl oad) ();

} CAM PERI PHERAL_ DRI VER,

The cpd_name Member

The cpd_name member is a pointer to the device name contained in the

ui _devnane member of the kernel data structure, uba_devi ce. Seethe Guide
to Writing and Porting VMEbus and TURBOchannel Device Drivers for more
information.

The cpd_slave Member

The cpd_sl ave member is a function pointer to the SCSI/CAM periphera device
driver slave routine, which finds the device attached to the SCSI bus controller.

The cpd_attach Member

The cpd_at t ach member is a function pointer to the SCSI/CAM peripheral device
driver attach routine, which attaches the device to the controller and initializes the
driver fields for the device.

The cpd_unload Member
Not implemented.

6.4 The cam_config.c File

The Configuration driver file, / usr/ sys/i o/ caml cam confi g. ¢, contains
SCSI/CAM peripheral device driver configuraton information. SCSI/CAM peripheral
device driver writers edit the file, as the superuser, to add ext er n declarations for
their hardware devices and to add entries for the devices to the SCSI/CAM peripheral
driver configuration table.

The section of the file where the ext er n declarations are added |ooks like the

SCSI/CAM Configuration Driver Modules 6-3

following:

extern int crzslave(), crzattach(); /* Disk Driver */
extern int ctzslave(), ctzattach(); /* Tape Driver */
extern int cczslave(), cczattach(); /* CD-ROM Driver */

/* VENDOR: Add the extern declarations for your hardware follow ng this
coment line. */

A sample declaration for third-party SCSI/CAM peripheral device driver might be as
follows:

extern int toastslave(), toastattach(); /* Non-tape or -disk Driver */

The section of the file where the SCSI/CAM peripheral driver configuration table
entries are added looks like the following:
/*
* CAM Peripheral Driver Configuration Table.
>/
struct cam peripheral _driver cam peripheral _drivers[] = {
{ "crz", crzslave, crzattach },
{ "ctz", ctzslave, ctzattach },
{ "ccz", cczslave, cczattach }

/* VENDOR Add your hardware entries following this comment line. */

}s

When you add your entry, be sure to place a comma (,) after the last member in the
structure supplied by Digital. A sample entry for third-party hardware might be as
follows:

{ "ccz", cczslave, cczattach },

/* VENDOR: Add your hardware entries followi ng this coment line. */
{ "wheat", toastslave, toastattach}, /* Non-tape or -disk Driver */

}

6.5 Configuration Driver Entry Point Routines

The following Configuration driver routines are entry point routines that are
accessible to the XPT and SIM modules as part of the Configuration driver interface.
Table 6-1 lists the name of each routine and gives a short description of its function.
The sections that follow contain a more detailed description of each routine.
Descriptions of the routines with syntax information, in ULTRIX reference page
format, are included in alphabetical order in Appendix C.

Table 6-1: Configuration Driver Entry Point Routines

Routine Summary Description

ccfg_sl ave cals a SCSI/CAM peripheral driver's dave routine after a
match on the cpd_name member of the
CAM_PERIPHERAL_DRIVER structure is found

ccfg_attach calls a SCSI/CAM peripheral driver’'s attach routine after a
match on the cpd_name member of the
CAM_PERIPHERAL DRIVER structure is found

6—4 SCSI/CAM Configuration Driver Modules

Table 6-1: (continued)

Routine Summary Description

ccfg_action calls the internal routines that handle any CCB that accesses
the CAM equipment device table structure

ccfg_edtscan issues SCSI INQUIRY commands to all possible SCSI

targets and LUNSs attached to the buses

6.5.1 The ccfg_slave Routine

Theccf g_sl ave routine cals a SCSI/CAM peripheral driver’s dave routine after a
match on the cpd_nane member of the CAM_PERIPHERAL _DRIVER structure is
found. Theroutine is called during autoconfiguration. The ccf g_sl ave routine
locates the configured driver in the SCSI/CAM peripheral driver configuration table.
If the driver is located successfully, the SCSI/CAM peripheral driver’s slave routine
is caled with a pointer to the unit information structure for the device from the

kernel uba_devi ce structure and the virtual address of its control and status
register (CSR). The SCSI/CAM peripheral driver’s slave routine performs its own
slave initialization.

6.5.2 The ccfg_attach Routine

Theccfg_attach routine calls a SCSI/CAM peripheral driver’s attach routine
after amatch on the cpd_nanme member of the CAM_PERIPHERAL _DRIVER
structure is found. The routine is called during autoconfiguration. The

ccf g_attach routine locates the configured driver in the SCSI/CAM periphera
driver configuration table. If the driver is located successfully, the SCSI/CAM
peripheral driver's attach routine is called with a pointer to the unit information
structure for the device from the kernel uba_devi ce structure. The SCSI/CAM
peripheral driver's attach routine performs its own attach initialization.

6.5.3 The ccfg_action Routine

Theccf g_acti on routine calls the internal routines that handle any CCB that
accesses the CAM equipment device table structure. The CAM function codes
supported are XPT_GDEV_TYPE, XPT_SASYNC_CB, and XPT_SDEV_TYPE.

6.5.4 The ccfg_edtscan Routine

The ccf g_edt scan routine issues SCSI INQUIRY commands to all possible SCSI
targets and LUNSs attached to the buses. The routine uses the CAM subsystem in the
normal manner by sending SCSI 1/0 CCBs to the SIMs. The INQUIRY data
returned is stored in the EDT structures and thecam t | un_f ound flag is set. This
routine can be caled by the SCSI/CAM peripheral device driversto reissue afull,
partial, or single bus scan command.

SCSI/CAM Configuration Driver Modules 6-5

CAM XPT 1/O Support Routines 7

This chapter contains descriptions of the Transport (XPT) layer routines used by
SCSI/CAM device driver writers. Table 7-1 contains a list of the routines with a
short description of each. Following the table is a description of each routine.
Descriptions of the routines with syntax information, in ULTRIX reference page
format, are included in alphabetical order in Appendix C.

Table 7-1: XPT I/O Support Routines

Routine Summary Description

Xpt _action calls the appropriate XPT/SIM routine
xpt_ccb_al |l oc alocates a CAM Control Block (CCB)
xpt_ccb_free frees a previously allocated CCB

Xpt_init validates the initialized state of the CAM subsystem

7.1 The xpt_action Routine

The xpt _act i on routine calls the appropriate XPT/SIM routine. The routine
routes the specified CCB to the appropriate SIM module or to the Configuration
driver, depending on the CCB type and on the path ID specified in the CCB.
Vendor-unigue CCBs are also supported. Those CCBs are passed to the appropriate
SIM module according to the path ID specified in the CCB.

7.2 The xpt_ccb_alloc Routine

Thexpt _ccb_al | oc routine allocates a CAM Control Block (CCB) for use by a
SCSI/CAM peripheral device driver. The xpt _ccb_al | oc routine returns a pointer
to a preallocated data buffer large enough to contain any CCB structure. The
peripheral device driver uses this structure for its XPT/SIM reguests. The routine also
ensures that the SIM private data space and peripheral device driver pointer,

cam pdrv_ptr, areset up.

7.3 The xpt_ccb_free Routine

Thexpt _ccb_free routine frees a previously allocated CCB. The routine returns
a CCB, previoudy allocated by a peripheral device driver, to the CCB pool.

7.4 The xpt_init Routine

Thexpt _i nit routine validates the initialized state of the CAM subsystem. The
routine initializes all global and internal variables used by the CAM subsystem
through a call to the Configuration driver. Peripheral device drivers must call this
routine either during or prior to their own initialization. The xpt _i ni t routine
simply returns to the calling SCSI/CAM peripheral device driver if the CAM
subsystem was previously initialized.

7—-2 CAM XPT /O Support Routines

CAM SIM Modules 8

This chapter describes how the SIM layers handle asynchronous callbacks. It also
describes the following SIM routines:

e simaction

e siminit

Descriptions of the routines with syntax information, in ULTRIX reference page
format, are included in alphabetical order in Appendix C.

8.1 SIM Asynchronous Callback Handling

This section describes how the SIM layers handle asynchronous callbacks from the
XPT to SCSI/CAM peripheral device drivers when an event such as a SCSI Bus
Device Reset (BDR) or an Asynchronous Event Notification (AEN) occurs.

Each SCSI/CAM peripheral device driver registers an asynchronous callback function
for each active SCSI device during driver initialization. The SCSI/CAM periphera
device driversusethe ccrm_sasy_ccb_Dbl d routine to create a SET
ASYNCHRONOUS CALLBACK CCB and send it to the XPT.

Theasync_f | ags field of the CCB are set to 1 for those events of which the
SCSI/CAM peripheral device driver wants to be notified using the asynchronous
callback function. The possible async_f | ags settings are:

Flag Name Description

AC_FOUND_DEVI CES A new device was found during a rescan.

AC_SI M DEREG STER A previously loaded SIM driver has deregistered.

AC SI M REG STER A loaded SIM driver has registered.

AC SENT_BDR A bus device reset (BDR) message was sent to the
target.

AC _SCSI _AEN A SCSI Asynchronous Event Notification has been
received.

AC_UNSOL_RESEL An unsolicited reselection of the system by a device

on the bus has occurred.

AC_BUS_RESET A SCSI bus RESET occurred.

8.2 SIM Routines Used by Device Driver Writers
This section describes the SIM routines device driver writers need to understand.

8.2.1 The sim_action Routine

Thesi m act i on routine initiates an /O request from a SCSI/CAM peripheral
device driver. Theroutine is used by the XPT for immediate as well as for queued
operations. When the operation completes, the SIM calls back directly to the
peripheral driver using the CCB callback address, if callbacks are enabled and the
operation is not to be carried out immediately.

The SIM determines whether an operation is to be carried out immediately or to be
queued according to the function code of the CCB structure. All queued operations,
such as ‘‘Execute SCSI 1/O’’ (reads or writes), are placed by the SIM on a nexus-
specific queue and return with a CAM status of CAM_INPROG.

Some immediate operations, as described in the American National Standard for
Information Systems, SCS-2 Common Access Method: Transport and SCS Interface
Module, working draft, X3T9.2/90-186, may not be executed immediately. However,
all CCBs to be carried out immediately return to the XPT layer immediately. For
example, the ABORT CCB command does not always complete synchronously with
its call; however, the CCB_ABORT is returned to the XPT immediately. An
XPT_RESET_BUS CCB returns to the XPT following the reset of the bus.

8.2.2 The sim_init Routine

Thesi m.i nit routine initializes the SIM. The SIM clears dl its queues and
releases all allocated resourcesin response to this call. This routine is called using
the function address contained in the CAM_SIM_ENTRY structure. This routine can
be called at any time; the SIM layer must ensure that data integrity is maintained.

8-2 CAM SIM Modules

USCA Error Handling 9

This chapter describes the error-logging macros, data structures, and routines
provided by Digital for SCSI/CAM peripheral device driver writers.

9.1 CAM Error Handling Macro

Digital supplies an error-logging macro, CAM_ERROR, with the USCA software.
SCSI device driver writers can activate the macro by defining the constant
CAMERRLOG. Errors are reported using the same error-logging interface to each of
the modules within the CAM subsystem.

The macro is defined in the / usr/ sys/i o/ cam cam err| og. h file asfollows..

#i f defined(CAMERRLOG) && !defined(lint)
define CAM ERROR(FUNC, MSGSTR, EFLAGS, ARG4, ARGH, ARGE) \
{\
/* VARARGS */ \
(void)(*local _errlog)(FUNC, MSGSTR, EFLAGS, AR, ARGH, ARGS); \

}
#el se /* CAMERRLOG and not lint */

define CAM ERROR(FUNC, MSGSTR, EFLAGS, AR, ARG, ARG) \
{\
/* VARARGS */
printf("%: %\n", \
(((FUNC) I'= (char *)NULL) ? (FUNC) . "CAM Subsystent), \
(((MSGSTR) != (char *)NULL) ? (MSGSTR) : "Unknown Error"));\

}
#endi f /* CAMERRLOG and not lint */
#endif /* _CAM ERRLOG */

The arguments to the macro contain different types of information. The first two
arguments to the macro are strings containing the function name and the message
string that is sent to the error logger from the function. If the CAMERRLOG macro
is undefined, the message string is reported to the console. The third argument
contains error flags for the local error handler. The remaining arguments are local
parameters defined by the writer of the error-logging routine.

The CAM_ERROR macro presents a consistant error-logging interface to the
modules within the CAM subsystem. Using the macro lets all the routines within
each module that need to report and log error information use the same macro call
and arguments. Using this macro also keeps each reported error string with the code
within the module that originally reported the error.

Individual modules contain their own module-specific error-logging routines. Each
source file contains a declaration of the pointer to the local error-logging routine as

follows:

static void (*local _errorlog)();

The macro calls the local error-logging routine through the local pointer. The pointer
is loaded with the local error-handler address, either within the initiailization code for
that module or as part of the initialized data. The following example shows the
address of the sx_er r or | og function being loaded to the local error-logging
variable, | ocal _errl og:

extern void sx_errorlog();
static void (*local _errlog)() = sx_errorlog;

SCSI/CAM peripheral common modules can declare the local pointer to contain the
error handler from another SCSI/CAM peripheral common module.

9.2 CAM Error Logging Structures
This section describes the following CAM error-logging data structures.
¢ CAM_ERR _ENTRY, the Error Entry Structure
e CAM_ERR HDR, the Error Header Structure

The structures are defined inthe / usr/ sys/ h/ cam | ogger . h file.

9.2.1 The Error Entry Structure

The Error Entry Structure, CAM_ERR_ENTRY, describes an entry in the error log
packet. There can be multiple entriesin an error log packet. The structure is defined

as follows:

typedef struct camerr_entry {
u_l ongent _type; /* String, TAPE_SPECIFIC, CCB, etc */
u_l ongent _si ze; /* Size of the data (CCB, TAPE_SPEC)*/
u_l ongent _total _size; /* To preserve alignnment (uerf) */
u_l ongent _vers; /* Version nunber of type */
u_char *ent _dat a; /* Pointer to whatever string, etc */
u_l ongent _pri; /* FULL or Brief uerf output */

} CAM ERR_ENTRY;

9.2.1.1 The ent_type Member

Theent _t ype member contains the type of datain the entry, which can be a string,
a structure, or a CCB. Numerous types of strings are defined in the

lusr/sys/ h/ cam | ogger. h file. CCBs are assighed to one of the XPT
function codes listed in the / usr/ sys/ h/ cam h file.

9.2.1.2 The ent_size Member
The ent _si ze member contains the size, in bytes, of the data in the entry.

9.2.1.3 The ent_total_size Member

Theent _total _si ze member preserves long-word alignment for compatibility
with the uer f error-reporting utility. The cam | ogger routinefillsin this
member. See the Guide to the Error Logger for information about the uer f utility.

9-2 USCA Error Handling

9.214

9.2.1.5

9.2.1.6

9.2.2

9.221

9.22.2

The ent_vers Member

The ent _ver s member is the version number of the contents of the ent _t ype
member. Seethe #defi ne PDRV_DEVI CE VERS linein the

[usr/ sys/ h/ pdrv. h file for an example of associating a version number with a
structure.

The ent_data Member

The ent _dat a member contains a pointer to the contents of the ent _t ype
member.

The ent_pri Member

Theent _pri member contains the output from the uer f utility, which can bein
brief or full report format. See the Guide to the Error Logger for information about
theuer f utility.

The Error Header Structure

The Error Header Structure, CAM_ERR_HDR, contains al the data needed by the
uer f utility to determine that the packet is a CAM error log packet. See the Guide
to the Error Logger for information about the uer f utility. The structure is defined
as follows:

typedef struct camerr_hdr {

u_short hdr_type; /* Packet type - CAM ERR PKT */

u_long hdr_size; /* Filled in by cam.| ogger */

u_char hdr_cl ass; /* Sub system cl ass Tape, di sk,
* sii_dme , etc..
*/

u_l ong hdr_subsystem /*

Mostly for controller type

But the current errloger uses
disk tape etc if no controller
is known.. So what we will do
is dup the disk and tape types
in the | ower number 0 - 1f and
the controllers asc sii 5380
etc can use the uppers.

L T

*/
u_long hdr_entries; /* Nunmber of error entries in list*/
CAM_ERR_ENTRY *hdr _|i st; /* Pointer to list of error entries*/
u_long hdr_pri; /* Error logger priority. */

} CAM ERR_HDR;

The hdr_type Member

The hdr _t ype member contains the error-packet type, which must be
CAM_ERR_PKT.

The hdr_size Member
The hdr _si ze member isfilled in by thecam | ogger routine.

USCA Error Handling 9-3

9.2.2.3

9.224

9.2.25

9.2.2.6

9.2.2.7

The hdr_class Member

The hdr _cl ass member identifies the CAM module that detected the error and
assigns it to one of the Defined Device Types listed in the

/usr/sys/ h/scsi_all.hfile Thedevice classes are defined in the
/usr/sys/ h/ cam | ogger. h file.

The hdr_subsystem Member

The hdr _subsyst emmember identifies the CAM subsystem controller that
detected the error and assigns it to one of the Defined Device Types listed in the
/usr/sys/ h/scsi_all.hfile Thedevice classes are defined in the

[usr/sys/ h/ cam | ogger. h file.

The hdr_entries Member
The hdr _ent ri es member contains the number of entries in the header list.

The hdr_list Member
The hdr _I i st member contains a pointer to alist of error entries.

The hdr_pri Member

The hdr _pri member identifies the priority of the error and assigns it to one of the
priorities listed in the/ usr/ sys/i o/ caml err| og. h file.

9.3 The cam_logger Routine

The cam | ogger routine allocates a system error log buffer and fillsin auer f
error log packet. The routine fills in the bus, target, and LUN information from the
Error Header Structure passed to it and copies the Error Header Structure and the
Error Entry Structures and data to the error log buffer.

9-4 USCA Error Handling

USCA Debugging Facilities 10

This chapter describes the debugging macros and routines provided by Digital for
SCSI/CAM peripheral device driver writers.

10.1 CAM Debugging Variables

There are two levels of debugging within the CAM modules: debugging independent
of abus, target, or LUN, and debugging that tracks a specific bus, target, or LUN.
USCA debugging is turned on by defining the program constant CAMDEBUG in the
/usr/sys/iol cam cam debug. h file and recompiling the source files.

This section describes the variables that contain the information for each level of
debugging the CAM subsystem. The variables are:

e candbg_f | ag —Which turns on specific cpri nt f calls within the kernel,
depending on its setting, to capture information independent of a particular SCS
ID.

e candbg_i d — Which contains the specific bus, target, and LUN information for
tracking.

The macros, PRINTD and CALLD, use the variables for tracking target-specific
messages and for allowing specific subsets of the DEBUG statements to be printed.
The macros are defined in the / usr / sys/ i o/ caml cam debug. h file.

10.1.1 The camdbg_flag Variable

The most significant bit, bit 31, of the candbg_f | ag variable is the bit that
indicates whether the target information is valid. If set, it indicates that the
candbg_i d variable contains valid bus, target, and LUN information for the device
to be tracked. Bits 30 to O define the debug flag setting. The possible settings, in
ascending hexadecimal order, with a brief description of each, follow:

Flag Name Description

CAMD_| NOUT Routine entry and exit

CAMD_FLOW Code flow through the modules
CAMD_PHASE SCSI phase values

CAMD_SM State machine settings

CAMD_ERRCRS Error handling

CAMD_CNMD_EXP Expansion of commands and responses
CAMD_| O_MAPPI NG DME 1/0O mapping for user space
CAMD_DIVA FLOW DME Dynamic Memory Allocation flow

CANMD_DI SCONNECT Signal disconnect handling

Flag Name Description

CAMD_TAGS Tag queuing code

CAMD_PQOOL XPT tracking in the DEC CAM packet pool

CAMD_AUTCS Autosense handling

CAMD_CCBALLCC CCB alocation and free flow

CAMD_NMSGOUT Messages going out

CAMD_MSGE N Messages coming in

CAMD_STATUS SCSI status bytes

CAMD_CONFI G CAM configuration paths

CAMD_SCHED SIM scheduler points

CAMD_SI MQ SIM gueue manipulation

CAMD_TAPE SCSI/CAM periphera tape flow

CAMD_COWMVON SCSI/CAM peripheral common flow

CAMD_DI SK SCSI/CAM peripheral disk flow

CAMD_DI SK_REC SCSI/CAM peripheral disk recovery flow

CAVD_DBBR SCSI/CAM periphera disk Dynamic Bad Block
Recovery flow

CANMD_CDROM SCSI/CAM peripheral CDROM functions

CAMD_| NTERRUPT
TVALI D

SIM trace Interrupts

The bus, target, and LUN bits are valid in the
camdbg_id variable

10.1.2 The camdbg_id Variable

The candbg i d variable contains the bus, target, and LUN (B/T/L) information for
a specific target to track for debugging information. In the current implementation,
the bits are divided into three parts, with the remainder reserved. The bits are
allocated as follows: bits 31 to 16, Reserved; bits 15 to 8, Bus number; bits 7 to 4,
Target number; and bits 3 to 0, LUN number. Multiples of four bits are used to
assign hexadecimal values into the cantdbg_i d variable.

10.2 CAM Debugging Macros

The PRINTD and CALLD macros track target-specific messages and allow specific
subsets of the debugging statements to be printed.

This PRINTD macro, which prints debugging information if CAMDEBUG is
defined, follows.

/*

* Conditionally Print Debug Information.

*/

#i f defined(CAMDEBUG && !defined(lint)

define PRNTD(B, T, L, F, X

{\

/* NOSTRI CT */ \
if(camdbg_flag & (int)F) \
{\

10-2 USCA Debugging Facilities

if(((camdbg_flag & TVALID) == 0) || \
(((camdbg flag & TVALID) != 0) && \ [4

((((candbg_id & BVASK) >> BSHIFT) == B) || (B == NOBTL)) &&\
((((candbg_id & TMASK) >> TSHIFT) == T) || (T == NOBTL)) &&\
((((candbg_id & LMASK) >> LSHIFT) == L) || (L == NOBTL)))) \

{\
/* VARARGS */ \
(void)(*cdbg_printf) X ; \
P\

P\

}
#endif /* !defined(lint)

The B, T, and L arguments are for target-specific tracking. The F argument is a
flag for tracking specific subsets of the pri nt f statements. The F flag argument
is compared with the candbg_f | ag variable to determine if the user wants to
see the message. The X argument must be a complete pri nt f argument set
enclosed within parentheses, (), to alow the preprocessor to include it in the final
printf statement.

This statement checks to see if any of the flags for the PRINTD macro are turned
on. It does not look for an exact match so that the same PRINTD macro can be
used for different settings of the flagsin candbg_f I ag.

This section of code checks for any target information available for tracing a
target. The first condition checks to see if the target valid bit is not set. If itis
not, the OR condition is met and the call to the pri nt f utility is made.

If the TVALID bit is set, the bus, target, and LUN fields in the candbg_i d
variable must be compared to the B, T, and L arguments. If TVALID is true and
bus equals B, target equals T, and LUN equals L, then also print.

This construct checksthe B, T, and L fields. For example, the following
statement checks the B field:

((((canmdbg_id & BVASK) >> BSHI FT) == B) || (B == NOBTL))

The statement masks out the other fields and shifts the bus value down to allow
comparision with the B argument. The arguments can also have a‘‘wildcard’’
value, NOBTL. When the wildcard value is used, the B or T or L comparision is
always true.

The CALLD macro usesthe same i f statement constructs to conditionally call a
debugging function using the following def i ne statement:

#

define CALLD(B, T, L, F, X

10.3 CAM Debugging Routines

The SCSI/CAM peripheral device debugging routines can be allocated into categories
as follows:

Routines that generate reports on CAM functions and status in either a brief form
listing the name asit is defined in the applicable header file, or in the form of a
sentence. The following routines are in this category:

— cdbg_Cantuncti on
— cdbg_Cantt at us

USCA Debugging Facilities 10-3

10.3.1

10.3.1.1

10.3.1.2

— cdbg_Scsi St at us
— cdbg_Syst enfst at us

e Routines that dump the contents of CCBs, SCSI/CAM Peripheral Device Driver
Working Set Structures, and other SCSI/CAM commands for examination. The

following routines are in this category:
— cdbg_DunmpCCBHeader

— cdbg_DunpCCBHeader Fl ags
— cdbg_DunpSCsSI |1 O

— cdbg_DunpPDRVws

— cdbg_DunpABORT

— cdbg_DunpTERM O

— cdbg_DumpBuf f er

— cdbg_Get Devi ceNane

— cdbg_Dunpl nqui ryDat a

Descriptions of the routines with syntax information, in ULTRIX reference page
format, are included in alphabetical order in Appendix C.

CAM Debugging Status Routines

This section describes the SCSI/CAM periphera device debugging routines that
report status. Table 10-1 lists the name of each routine and gives a summary
description of its function. The sections that follow contain a more detailed
description of each routine.

Table 10-1: CAM Debugging Status Routines

Routine Summary Description
cdbg_Cantuncti on reports CAM XPT function codes
cdbg_Cantt at us decodes CAM CCB status codes
cdbg_Scsi St at us reports SCSI status codes

cdbg_Syst entt at us reports system error codes

The cdbg_CamFunction Routine

The cdbg_Cantunct i on routine reports CAM XPT function codes. Program
constants are defined to allow either the function code name only or a brief
explanation to be printed. The XPT function codes are defined in the

[usr/sys/ h/ cam h file.

The cdbg_CamStatus Routine
The cdbg_Cantt at us routine decodes CAM CCB status codes. Program

constants are defined to allow either the status code name only or a brief explanation
to be printed. The CAM status codes are defined in the / usr/ sys/ h/ cam h file.

10-4 USCA Debugging Facilities

10.3.1.3

10.3.1.4

10.3.2

10.3.2.1

10.3.2.2

The cdbg_ScsiStatus Routine

The cdbg_Scsi St at us routine reports SCSI status codes. Program constants are
defined to alow either the status code name only or a brief explanation to be printed.
The SCSI status codes are defined in the / usr/ sys/ h/ scsi _st at us. h file.

The cdbg_SystemStatus Routine

The cdbg_SystemStatus routine reports system error codes. The system error codes
aredefined inthe/ usr/ sys/ h/ errno. h file.

CAM Dump Routines

This section describes the SCSI/CAM periphera device debugging routines that
dump contents for examination. Table 10-2 lists the name of each routine and gives
asummary description of its function. The sections that follow contain a more
detailed description of each routine.

Table 10-2: CAM Dump Routines

Routine Summary Description

cdbg_DunpCCBHeader dumps the contents of a CAM Control Block (CCB)
header structure

cdbg_DunpCCBHeader Fl ags dumps the contents of the cam f | ags member of
a CAM Control Block (CCB) header structure

cdbg_DunpSCsI | O dumps the contents of a SCSI 1/0 CCB
cdbg_DunpPDRVWWs dumps the contents of a SCSI/CAM Peripheral
Device Driver Working Set Structure
cdbg_DunpABORT dumps the contents of an ABORT CCB
cdbg_DunpTERM O dumps the contents of a TERMINATE 1/0O CCB
cdbg_DunpBuf f er dumps the contents of a data buffer in hexadecimal
bytes
cdbg_Get Devi ceNane returns a pointer to a character string describing the
dt ype member of an ALL_INQ DATA structure
cdbg_Dunpl nqui ryDat a dumps the contents of an ALL_INQ_DATA
structure

The cdbg_DumpCCBHeader Routine

The cdbg_DunpCCBHeader routine dumps the contents of a CAM Control Block
(CCB) header structure. The CAM Control Block (CCB) header structure is defined
inthe/ usr/sys/ h/ cam h file.

The cdbg_DumpCCBHeaderFlags Routine

The cdbg_DunpCCBHeader Fl ags routine dumps the contents of the
cam f | ags member of a CAM Control Block (CCB) header structure. The CAM
Control Block (CCB) header structure is defined in the/ usr/ sys/ h/ cam h file.

USCA Debugging Facilities 10-5

10.3.2.3

10.3.2.4

10.3.2.5

10.3.2.6

10.3.2.7

10.3.2.8

10.3.2.9

The cdbg_DumpSCSIIO Routine

The cdbg_DunpSCSI | O routine dumps the contents of a SCSI I/0 CCB. The
SCSI 1/0 CCB is defined in the/ usr/ sys/ h/ cam h file.

The cdbg_DumpPDRVws Routine

The cdbg_DunpPDRVws routine dumps the contents of a SCSI/CAM Peripheral
Device Driver Working Set Structure. The SCSI/CAM Peripheral Device Driver
Working Set Structure is defined in the/ usr/ sys/ h/ pdr v. h file.

The cdbg_DumpABORT Routine

The cdbg_DunpABORT routine dumps the contents of an ABORT CCB. The
ABORT CCB is defined in the/ usr/ sys/ h/ cam h file.

The cdbg_DumpTERMIO Routine

The cdbg_DunpTERM O routine dumps the contents of a TERMINATE 1/0 CCB.
The TERMINATE 1/0O CCB is defined in the / usr/ sys/ h/ cam h file.

The cdbg_DumpBuffer Routine

The cdbg_DunpBuf f er routine dumps the contents of a data buffer in
hexadecimal bytes. The calling routine must display a header line. The format of the
dump is 16 bytes per line.

The cdbg_GetDeviceName Routine

The cdbg_Get Devi ceNane routine returns a pointer to a character string
describing the dt ype member of an ALL_INQ_DATA structure. The
ALL_INQ_DATA structure is defined in the / usr/ sys/ h/ scsi _al I . hfile.

The cdbg_DumplnquiryData Routine

The cdbg_Dunpl nqui r yDat a routine dumps the contents of an
ALL_INQ DATA structure. The ALL_INQ DATA structure is defined in the
[usr/sys/ h/scsi_all.hfile

10-6 USCA Debugging Facilities

Programmer-Defined SCSI/CAM Device

Drivers 11

This chapter describes how programmers can write their own device drivers for
SCSI/CAM peripheral devices using a combination of common data structures and
routines provided by Digital and programmer-defined routines and data structures.
This chapter describes only the programmer-defined data structures and routines. See
Chapter 3 for a description of the common data structures and routines.

The chapter also describes how to add a programmer-defined device driver to the
USCA system.

11.1 Programmer-Defined SCSI/CAM Data Structures

11.1.1

11111

This section describes the SCSI/CAM periphera data structures programmers must
use if they write their own device drivers. The following data structures are
described:

e PDRV_UNIT_ELEM — The Peripheral Device Unit Table
e PDRV_DEVICE — The Periphera Device Structure

e DEV_DESC — The Device Descriptor Structure

e DENSITY_TBL — The Density Table Structure

e MODESEL_TBL — The Mode Select Table Structure

Programmer-Defined Peripheral Device Unit Table

The Peripheral Device Unit Table is an array of SCSI/CAM peripheral device unit
elements. The size of the array is the maximum number of possible devices, which
is determined by the maximum number of SCSI controllers allowed for the system.
The structure is allocated statically and is defined as follows:

typedef struct pdrv_unit_elem {
PDRV_DEVI CE *pu_device; /* Pointer to peripheral device structure */

u_short pu_opens; /* Total nunmber of opens against unit */
u_short pu_config; /* 1 ndicates whether the device type */

/* configured at this address */
u_char pu_type; /* Device type - byte O frominquiry data */

} PDRV_UNI T_ELEM

The pu_device Member

The pu_devi ce field isfilled in with a pointer to a CAM-allocated peripheral SCS
device (PDRV_DEVICE) structure when the first call to the ccrm_open_uni t
routine is issued for a SCSI device that exists.

11.1.1.2 The pu_opens Member
The total number of opens against the unit.

11.1.1.3 The pu_config Member
Indicates whether a device of the specified type is configured at this bus/target/L UN.

11.1.1.4 The pu_type Member
The device type from byte O (zero) of the Inquiry data.

11.1.2 Programmer-Defined Peripheral Device Structure

A SCSI/CAM periphera device structure, PDRV_DEVICE, is allocated for each
SCSI device that exists in the system. The PDRV_DEVICE structure is defined as
follows:

typedef struct pdrv_device {

PD LI ST pd_active_list; /* Forward active pointer of CCBs */
/* which have been sent to the XPT */

u_long pd_active_cch; /* Nunber of active CCBs on queue */

u_l ong pd_que_dept h; /* Tagged queue depth - indicates the */
/* maxi mum nunber of commands the unit */
/* can store internally */

PD LI ST pd_pend_li st; /* Forward active pointer of pending CCBs */
/* which have not been sent to the XPT due */
/* to a full queue for tagged requests */

u_long pd_pend_cch; /* Nunber of pending CCBs */
dev_t pd_dev; /* CAM nmmj or/ m nor nunber */
u_char pd_bus; /* SCSI controller nunber */
u_char pd_target; /* SCSI target id */

u_char pd_| un; /* SCSI target lun */

u_char pd_unit; /* Unit nunmber */

u_long pd_soft_err; /* Nunmber of soft errors */
u_long pd_hard_err; /* Number of hard errors */

u_short pd_soft_err_limt;/* Max no. of soft errors to report */
u_short pd_hard_err_limt;/* Max no. of hard errors to report */

u_long pd_flags; /* Specific to peripheral drivers */

u_char pd_state; /* Specific to peripheral drivers - can */
/* be used for recovery */

u_char pd_abort_cnt; /* Specific to peripheral drivers - can */

/* be used for recovery */
u_long pd_camfl ags; /* Used to hold the default settings */
/* for the camflags field in CCBs */
u_char pd_tag_action; /* Used to hold the default settings for */
/* the camtag_action field of the SCSI */
/* 110 CCB */
u_char pd_dev_i nqg[| NQLEN ;
/* Inquiry data obtained from CGET */
/* DEVI CE TYPE CCB */
u_l ong pd_ns_index; /* Contains the current index into the */
/* Mode Sel ect Tabl e when sendi ng Mde */
/* Select data on first open */
DEV_DESC *pd_dev_desc; /* Pointer to our device descriptor */

caddr _t pd_specific; /* Pointer to device specific info */
u_short pd_spec_si ze; /* Size of device specific info */
caddr _t pd_sense_ptr; /* Pointer to the |ast sense data */
/* bytes retrieved fromdevice */
u_short pd_sense_l en; /* Length of last sense data */

voi d (*pd_recov_hand) ();
/* Specific to peripheral drivers - can */

11-2 Programmer-Defined SCSI/CAM Device Drivers

11121

11.1.2.2

11.1.2.3

11.1.2.4

11.1.25

11.1.2.6

11.1.2.7

11.1.2.8

11.1.2.9

/* be used to point to the recovery */
/* handler for the device */

u_l ong pd_read_count; /* Nunmber of reads to device */
u_long pd_wite_count; /* Nunmber of wites to device */
u_l ong pd_read_bytes; /* Nunmber of bytes read from device */

u_long pd_wite_bytes; /* Nunmber of bytes witten to device */
struct |ock_t pd_| k_devi ce;
/* SMP | ock for the device */
} PDRV_DEVI CE

The pd_active_list Member
A pointer to the first CCB on the active queue.

The pd_active_ccb Member
The number of CCBs on the active queue.

The pd_que_depth Member

The depth of the tagged queue, which is the maximum number of commands that the
peripheral driver will send to the SCS| device.

The pd_pend_list Member
A pointer to the first CCB on the pending queue.

The pd_pend_ccb Member
The number of CCBs on the pending queue.

The pd_dev Member

The major/minor device number pair that identifies the bus number, target ID, and
LUN associated with this SCSI device.

The pd_bus Member
SCSI target’s bus controller number.

The pd_target Member
SCSI target’'s ID number.

The pd_lun Member
SCSI target’s logical unit number.

11.1.2.10 The pd_unit Member

SCSI device' s unit number.

Programmer-Defined SCSI/CAM Device Drivers 11-3

11.1.2.11 The pd_flags and pd_state Members

These are specific to SCSI/CAM peripheral device drivers. They can be used for
recovery.

11.1.2.12 The pd_abort_cnt Member
This is specific to SCSI/CAM peripheral device drivers. It can be used for recovery.

11.1.2.13 The pd_cam_flags Member

This contains the default settings for the cam f | ags field in the CAM Control
Block (CCB) header structure. The flags are defined in the / usr/ sys/ h/ cam h
file.

11.1.2.14 The pd_tag_action Member

This contains the default settings for the HBA/SIM queue actions field,
cam tag_action, inthe SCSI 1/O CCB structure. The queue actions are defined
inthe/ usr/sys/ h/ cam h file.

11.1.2.15 The pd_dev_ing Member
Thisisinquiry data.

11.1.2.16 The pd_ms_index Member

The current index into the Mode Select Table that is pointed to in the Device
Descriptor Structure.

11.1.2.17 The pd_dev_desc Member
A pointer to the DEV_DESC structure for the SCSI device.

11.1.2.18 The pd_specific Member
A pointer to a device-specific structure filled in by the ccrm_open_uni t routine.

11.1.2.19 The pd_spec_size Member
The size of the device-specific information.

11.1.2.20 The pd_sense_ptr Member
A pointer to the last sense data bytes retrieved from the device.

11.1.2.21 The pd_sense_len Member
The length, in bytes, of the last sense data retrieved from the device.

11.1.2.22 The pd_recov_hand Member

This is specific to SCSI/CAM peripheral device drivers. It can be used to point to
the recovery handler for the device.

11-4 Programmer-Defined SCSI/CAM Device Drivers

11.1.2.23 The pd_read_count Member
Number of read operations from device. Used for performance statistics.

11.1.2.24 The pd_write_count Member
Number of write operations to device. Used for performance statistics.

11.1.2.25 The pd_read_bytes Member
Total number of bytes read from device. Used for performance statistics.

11.1.2.26 The pd_write_bytes Member
Total number of bytes written to device. Used for performance statistics.

11.1.2.27 The pd_lk_device Member
The lock structure.

11.1.3 Programmer-Defined Device Descriptor Structure

A Device Descriptor Structure entry, DEV_DESC, must be added to the

cam devdesc_t ab for each programmer-defined SCSI device that exists in the
system. Thefile/ usr/ sys/ dat a/ cam dat a. ¢ contains examples of entries
supplied by Digital. The DEV_DESC structure is defined as follows:

typedef struct dev_desc {
dd_pv_nane[| DSTRI NG_SI ZE] ;

u_char

u_char
u_char

u_l ong

struct

u_l ong
u_l ong

/*
/*
dd_I engt h; /*

Product 1D and vendor string from*/
Inquiry data */
Length of dd_pv_nane string */

dd_dev_nane[DEV_NAME_SI ZE] ;

/*
/*
dd_device_type; /*
/*
/*

Devi ce nanme string - see defines */
in devio.h */

Bits O - 23 contain the device */
class, bits 24-31 contain the */
SCSI device type */

pt_info *dd_def_partition

/*
dd_bl ock_si ze; [/*
dd_nax_record; [/*

/*

Default partition sizes - disks */
Bl ock/ sector size */

Maxi mun transfer size in bytes */
all owed for the device */

DENSI TY_TBL *dd_density_t bl

/*

Pointer to density table - tapes */

MODESEL_TBL *dd_nodesel _t bl

u_l ong
u_l ong
u_l ong
u_short

u_char
u_char

u_char

} DEV_DESC;

/*
/*
dd_fl ags; /*
dd_scsi _optcnds; /*
dd_ready_tinme; /*
dd_que_dept h; /*

/*
dd_val i d; /*
/*
dd_i ng_l en; /*
dd_reg_sense_l en
/*
/*

Mbde sel ect table pointer - used */

on open and recovery */

Option flags (bbr, etc) */

Opti onal conmands supported */

Tine in seconds for powerup dev ready */
Devi ce queue depth for devices */

whi ch support command queuei ng */

I ndi cates which data | ength */

fields are valid */

Inquiry data length for device */

Request sense data length for */
this device */

Programmer-Defined SCSI/CAM Device Drivers 11-5

11.13.1

11.1.3.2

11.1.33

11.1.34

11.1.35

11.1.3.6

11.1.3.7

11.1.3.8

The dd_pv_name Member

The product ID and vendor returned string identifying the drive obtained from the
Inquiry data. The product ID makes up the first eight characters of the string. The
IDSTRING_SIZE constant is defined in the / usr/ sys/ h/ pdr v. h file.

The dd_length Member

This specifies the length of the dd_pv_nane string. The match is made on the total
string returned by the unit.

The dd_dev_name Member

The ULTRIX device name string, which is defined in the / usr/ sys/ h/ devi o. h
file. A generic name of DEV_RZxx should be used for non-Digital disk devices.
The following generic names are provided for tapes: DEV_TZQIC, for 1/4-inch
cartridge tape units; DEV_TZ9TK for 9-track tape units; DEV_TZ8MM, for 8-
millimeter tape units, DEV_TZRDAT, for RDAT tape units; DEV_TZ3480, for IBM
3480-compatible tape units; and DEV_TZxx, for tape units that do not fit into any of
the predefined generic categories.

The dd_device_type Member

Bits 24-31 contain the SCS| device class, for example, ALL_DTYPE_DIRECT,
which is defined in the/ usr/ sys/ h/ scsi _al | . h file. The bits 0-23 contain the
device subclass, for example, SZ_ HARD_DISK, which is defined in the

[usr/sys/ h/ pdrv. h file

The dd_def_partition Member

A pointer to the default partition sizes for disks, which are defined in the

/usr/ sys/ dat a/ cam dat a. c file. Tape devices should define this as
sz_null _sizes. Disk devicesmay usesz_r zxx_si zes, which assumes that
the disk has at least 48 Mbytes. Thesz_r zxx_si zes should not be modified. If
you want to create your own partition table, make an entry for your device in the
device descriptor tablein the/ usr/ sys/ dat a/ cam dat a. c file.

The dd_block_size Member

The block or sector size of the unit, in bytes, for disks and CDROMs. You can
obtain the correct number of bytes from the documentation for your device.

The dd_max_record Member

The maximum number of bytes that can be transferred in one request for raw 1/O.
Errors result if your system does not have enough physical memory or if the unit
cannot handle the size of transfer specified.

The dd_density_tbl Member
A pointer to the Density Table Structure entry for a tape device.

11-6 Programmer-Defined SCSI/CAM Device Drivers

11.1.3.9 The dd_modesel tbl Member

A pointer to the Mode Select Table Structure entry for the devices. The Mode Select
Table Structure is read and sent to the SCSI device when the first open call is issued
and during recovery. Thisfield is optional and should be used only for advanced
SCSI device customization.

11.1.3.10 The dd_flags Member

The option flags, which can be SZ_NOSY NC, indicating that the device cannot
handle synchronous transfers; SZ_BBR, indicating that the device allows bad block
recovery; SZ_NO_DISC, indicating that the device cannot handle disconnects; and
SZ_NO_TAG, indicating tagged queueing is not allowed. SZ_NO_TAG overrides
inquiry data. The flags are defined in the/ usr/ sys/ h/ pdrv. h file.

11.1.3.11 The dd_scsi_optcmds Member

The optional SCSI commands that are supported, as defined in the

[usr/sys/ h/ pdrv. h file. The possible commands are NO_OPT_CMDS,
SZ_RW10, which enables reading and writing 10-byte CDBs; SZ_PREV_ALLOW,
which prevents or allows mediaremoval; and SZ_EXT_RESRV, which enables
reserving or releasing file extents.

11.1.3.12 The dd_ready_time Member

The maximum time, in seconds, allowed for the device to power up. For disks, this
represents power up and spin up time. For tapes, it represents power up, load, and
rewind to Beginning of Tape.

11.1.3.13 The dd_que_depth Member

The maximum number of queued requests for devices that support queueing. Refer
to the documentation for your device to determine if your device supports tag
gueuing and, if so, the depth of the queue.

11.1.3.14 The dd_valid Member

This indicates which data length fields are valid. The data length bits,
DD_REQSNS VAL and DD_INQ VAL, aredefined inthe/ usr/ sys/ h/ pdrv. h
file.

11.1.3.15 The dd_ing_len Member

The inquiry data length for the device. This field must be used in conjunction with
the DD_INQ_VAL flag.

11.1.3.16 The dd_req_sense_len Member

The request Sense data length for the device. This field must be used in conjunction
with the DD_REQSNS VAL flag.

Programmer-Defined SCSI/CAM Device Drivers 11-7

11.1.4

11141

11.14.2

11.1.43

11.1.4.4

11.1.45

11.1.4.6

Programmer-Defined Density Table Structure

The Density Table Structure allows for the definition of eight densities for each type
of SCSI tape device unit. A density is defined using the lower three bits of the unit's
minor number. Refer to the SCSI tape device unit documentation for the density
code, compression code, and blocking factor for each density.

The/ usr/ sys/ dat a/ cam dat a. c file contains Density Table Structure entries
for all devices known to Digital. Programmers can add entries for other SCSI tape
devices at the end of the Digital entries. The definition for the Density Table
Structure, DENSITY_TBL, follows:

typedef struct density_tbl {
struct density{

u_char den_f1 ags; /* VALID, ONE_FM etc */
u_char den_densi ty_code;
u_char den_conpress_code; /* Conpression code if supported */
u_char den_speed_setting; /* for this density */
u_char den_buffered_setting;
/* Buffer control setting */
u_l ong den_bl ocki ng; /* 0 variable etc. */
}densi ty[MAX_TAPE_DENSI TY] ;
} DENSI TY_TBL;

The den_flags Member

Theden_f | ags specified indicate which fields in the DENSITY _TBL structure are
valid for this density. The flags are: DENS VALID, to indicate whether the structure
isvalid; ONE_FM, to write one file mark on closing for QIC tape units;

DENS SPEED VALID, to indicate the speed setting is valid for multispeed tapes;
DENS BUF VALID, to run in buffered mode; and DENS COMPRESS VALID, to
indicate compression code, if supported.

The den_density_code Member
Theden_densi ty_code member contains the SCSI density code for this density.

The den_compress_code Member

Theden_conpr ess_code member contains the SCSI compression code for this
density, if the unit supports compression.

The den_speed_setting Member

Theden_speed_set ti ng member contains the speed setting for this density.
Some units support variable speed for certain densities.

The den_buffered_setting Member

Theden_buf fered_setti ng member contains the buffer control setting for this
density.

The den_blocking Member

Theden_bl ocki ng member contains the blocking factor for this SCSI tape device.
A NULL (0) setting specifies that the blocking factor is variable. A positive value
represents the number of bytes in a block, for example, 512 or 1024.

11-8 Programmer-Defined SCSI/CAM Device Drivers

11.1.4.7 Sample Density Table Structure Entry

11.1.5

This section contains a sample portion of a Density Table Structure entry for the
TZK10 SCS tape device, which supports both fixed and variable length records:

DENSI TY_TBL

tzk10_dens = {

{ Mnor 00

Fl ags

DENS VALI D | DENS BUF_VALID | ONE_FM ,

Density code Conpr essi on code Speed setting
SEQ 8000R _BPI , NULL, NULL,
Buf fered setting Bl ocki ng

1, 512

}s

{ Mnor 06

Fl ags

DENS VALI D | DENS BUF_VALID | ONE_FM ,

Density code Conpression code Speed setting
SEQ Q C320, NULL, NULL,
Buf fered setting Bl ocki ng

1, 1024

b,

{ Mnor 07

Fl ags

DENS_VALI D | DENS_BUF_VALID | ONE_FM ,

Density code Conpr essi on code Speed setting
SEQ _Q C320, NULL, NULL,
Buf fered setting Bl ocki ng

1, NULL

}
}; end of tzkl0_dens

Programmer-Defined Mode Select Table Structure

The Mode Select Table Structure is read and sent to the SCSI device when the first
call to the SCSI/CAM peripheral open routine is issued on a SCSI device. There can
be a maximum of eight entries in the Mode Select Table Structure. The definition for
the Mode Select Table Structure, MODESEL_TBL, follows:

t ypedef struct nodesel _thl {
struct ms_entry{
u_char ns_page; /* Page nunber */
u_char *ns_data; /* Pointer to Mbde Sel ect data */
u_char ns_data_len; /* Mdde Sel ect data length */
u_char nms_ent_sp_pf;/* Save Page and Page format bits */
/* BITO 1=Save Page, */
/* 0=Don’t Save Page */
/* BIT 1 1=SCSI-2, 0=SCsl-1 */
}ns_entry[MAX_OPEN_SELS] ;
} MODESEL_TBL;

Programmer-Defined SCSI/CAM Device Drivers 11-9

11.1.5.1 The ms_page Member

The nms_page member contains the SCS| page number for the device type. For
example, the page number would be 0x10 for the device configuration page for a
SCSI tape device.

11.1.5.2 The ms_data Member

The ms_dat a member contains a pointer to the mode select data for the device. Set
up the page data and place the address of the page structure in this field. A sample
page definition for page 0x10 for the TZK 10 follows:

SEQ MODE_DATA6
tzk10_pagel0 = {

{ Paraneter header

node_| en nmedi um type speed

NULL, NULL, NULL,

Buf _node wp bl k_desc_I en

0x01, NULL, si zeof (SEQ_MODE_DESC)

I
{ Mode descriptor

Density num bl ks2 num bl ksl
NULL, NULL, NULL,
num bl ksO reserved bl k_I en2
NULL, NULL,
bl k_I enl bl k_I en0

NULL, NULL

s

{

Page data for page 0x2

PAGE header

byt e0 byt el

0x10, 0xO0e,

byt e2 byt e3 byt e4 byt e5 byt e6
0x00, 0x00, 40, 40, NULL,

byt e7 byt e8 byt e9 byt el0 byt ell
NULL, 0xe0, NULL, 0x38, NULL,

byt el2 byt el3 byt el4 byt el5
NULL, NULL, NULL, NULL

}
}s

11.1.5.3 The ms_data len Member

Thenms_dat a_| en member contains length of a page, which is the number of bytes
to be sent to the device.

11-10 Programmer-Defined SCSI/CAM Device Drivers

11.1.54

11.1.55

The ms_ent_sp_pf Member

Thens_ent _sp_pf member contains flags for the MODE SELECT CDB that the
device driver formats.

Sample Mode Select Table Structure Entry

This section contains a sample portion of a Mode Select Table Structure entry for the
TZK10 SCS| tape device:

MODESEL_TBL
tzk10_nod = {
{ MODE PAGE ENTRY 1

Page nunber The data pointer

0x02, (u_char *)&tzk10_page2,
Data | en SCSI 2??

28, 0x2

b

{ MODE PACE ENTRY 8

Page nunber The data pointer
NULL, (u_char *)NULL,
Data | en SCsl 277

NULL, NULL

},

}

11.2 Sample SCSI/CAM Device-Specific Data Structures

11.2.1

This section provides samples of the SCSI/CAM peripheral data structures
programmers must define if they write their own device drivers. The following data
structures are described:

e TAPE_SPECIFIC — The Tape-Specific Structure
e DISK_SPECIFIC — The Disk- and CDROM-Specific Structure

Programmer-Defined Tape-Specific Structure

SCSI/CAM peripheral device driver writers can create their own tape-specific data
structures. A sample TAPE_SPECIFIC structure for a SCS| tape device, as defined
inthe/ usr/sys/i ol cam cam t ape. h file, follows:

typedef struct {

u_long ts_flags; /* Tape flags - BOM EOT */

u_long ts_state flags; /* STATE - UNI T_ATTEN, RESET etc. */

u_long ts_resid; /* Last operation residual count */

u_long ts_block_size; /* See below for a conplete desc. */

u_long ts_density; /* What density are we running at */
u_long ts_records; /* How many records in since |last tpmark */
u_long ts_numfilemarks; /* nunber of file marks into tape */
u_long ts_softcnt; /* Number of soft errors */

u_long ts_hardcnt; /* Number of hard errors */

} TAPE_SPECI FI C,

Programmer-Defined SCSI/CAM Device Drivers 11-11

11.2.1.1 Thets_flags Member

11.2.1.2

11-12 Programmer-Defined SCSI/CAM Device Drivers

Flags used to indicate tape condition. The possible flags are:

Flag Name Description
CTAPE_BQOM The tape is positioned at the beginning.
CTAPE_EQOM The unit is positioned at the end of media.

CTAPE_OFFLI NE

CTAPE_WRT_PROT

CTAPE_BLANK
CTAPE_V\RI TTEN
CTAPE_CSE

CTAPE_SOFTERR
CTAPE_HARDERR

CTAPE_DONE
CTAPE_RETRY
CTAPE_ERASED
CTAPE_TPMARK

CTAPE_SHRTREC

CTAPE_RDCPP

CTAPE_REW NDI NG
CTAPE_TPMARK_PENDI NG

The device is returning DEVICE NOT READY in
response to a command. The mediais either not
loaded or is being loaded.

The unit is either write protected or is opened read
only.

The tape is blank.

The tape has been written during this procedure.
Clear serious exception.

A soft error has been reported by the SCSI unit.

A hard error has been reported by the SCSI unit. It
can be reported either through ani oct | or by
marking the buf structure as EIO.

The tape procedure is finished.
Indicates a retry can be attempted.
The tape has been erased.

A tape mark has been detected during a read
opeation. This cannot occur during a write
operation.

The size of the record retrieved is less than the size
requested. Reported using an ioctl.

Reading in the reverse direction. Thisis not
implemented.

The tape is rewinding.

The tape mark is to be reported on the next 1/0
operation.

The ts_state_flags Member

Flags used to indicate tape state. The possible flags are:

Flag Name

Description

CTAPE_NOT_READY_STATE

CTAPE_UNI T_ATTEN_STATE

The unit was opened with the FNDELAY flag. The

unit was detected, but the open failed.

A check condition occurred and the sense key was

UNIT ATTENTION. This usually indicates that the
media was changed. Current tape position is lost.

11.2.1.3

11.2.1.4

11.2.15

11.2.1.6

11.2.1.7

11.2.1.8

11.2.1.9

Flag Name Description

CTAPE_RESET_STATE Indicates a reset condition on the device or on the
bus.

CTAPE_RESET_PENDI NG_STATE A reset is pending.

CTAPE_OPENED_STATE The unit is opened.

CTAPE_DI SEOT_STATE No notification of end of mediais required.

CTAPE_ABORT_TPPEND STATE Indicates that a tape mark was detected for a fixed
block operation with nonbuffered I/O. The queueis
aborted.

CTAPE_AUTO _DENSI TY_VALI D_STATE
Directs the open routine to call the ctz_auto_density
routine when a unit attention is noticed, because tape
density has been determined and all reads are to
occur at that density.

CTAPE_ORPHAN CNMD_STATE This flag is set when a command is orphaned. The
process does not wait for completion, such as a
rewind operation.

CTAPE_PQCSI TI ON_LOST_STATE Tape position is lost due to command failure.

The ts_resid Member
Residual count from the last tape command.

The ts_block_size Member
Used to distinguish between blocks and bytes for fixed-block tapes. Commands for

devices like 9-track tape, which have variable length records, assume bytes.

The ts_density Member
The current density at which the SCSI tape device is operating.

The ts_records Member
The number of records read since the last tape mark.

The ts_num_filemarks Member
The number of file marks encountered since starting to read the tape.

The ts_softcnt Member
Number of soft errors reported by each SCSI unit.

The ts_hardcnt Member
Number of hard errors reported by each SCSI unit.

Programmer-Defined SCSI/CAM Device Drivers 11-13

11.2.2 Programmer-Defined Disk- and CDROM-Specific Structure

SCSI/CAM peripheral device driver writers can create their own disk- and CDROM-
specific data structures. A sample DISK_SPECIFIC structure for a SCSI disk device,
as defined in the/ usr/ sys/ i o/ cam cam di sk. h file, follows:

typedef struct disk_specific {
struct buf *ds_buf hd; /* Anchor for requests which cone */
/* into strategy that cannot be */
/* started due to error recovery */
/* in progresss. */

int ds_dkn; /* Used for systemstatistics */
u_l ong ds_bbr_state; /* Used indicate the current */
/* BBR state if active */
u_l ong ds_bbr_retry; /* BBR retries for reassignnent */
CCB_SCsI | O *ds_bbr _rwcchb; /* RI'Wcch used for BBR */
CCB_SCsI | O *ds_bbr _reascch; /* Reassign ccb used for BBR */
CCB_SCsSI | O *ds_tur_cch; /* SCSI 1/0CCB for tur cnd */
/* during recovery */
CCB_SCsI | O *ds_start_cch; /* SCSI 1/0O CCB for start unit */
CCB_SCsl | O *ds_ndsel _cchb; /* SCSI 1/0 CCB for npde sel ect */
/* cmd during recovery */
CCB_SCsSI | O *ds_rdcp_cch; /* SCSI 1/0O CCB for read capacity */
/* cmd during recovery */
CCB_SCsSI | O *ds_read_cch; /* SCSI 1/0 CCB for Read cnd */
/* during recovery */
CCB_SCsI | O *ds_prev_cch; /* SCSI 1/0 CCB for Prevent */
/* Media Rermoval cnd during recovery */
u_l ong ds_bl ock_si ze; /* This units block size */
u_l ong ds_t ot _si ze; /* Total disk size in blocks */
u_l ong ds_nedi a_changes; /* Number of times nedia was */
/* changed - renovabl es */
struct pt ds_pt; /* Partition structure */
u_l ong ds_openpart; /* Bit mask of open parts */

} DI SK_SPEC! FI C;

11.2.2.1 The ds_bufhd Member

Pointer to a buffer header structure to contain requests that come to the driver but
cannot be started due to error recovery in progress. The requests are issued when
error recovery is complete.

11.2.2.2 The ds_dkn Member
Used for system statistics.

11.2.2.3 The ds_bbr_state Member
Used to indicate the current state if bad block recovery (BBR) is active.

11.2.2.4 The ds_bbr_retry Member
Number of retries to attempt for reassignment of bad blocks.

11.2.2.5 The ds_bbr_rwccb Member
Pointer for the SCSI 1/0O CCB for the Read/Write command used for recovery.

11-14 Programmer-Defined SCSI/CAM Device Drivers

11.2.2.6 The ds_bbr_reasccb Member

11.2.2.7

11.2.2.8

11.2.2.9

Pointer for the SCSI I/0O CCB for the Reassign command used for recovery.

The ds_tur_ccb Member

Pointer for the SCSI 1/0O CCB for the TEST UNIT READY command used for
recovery.

The ds_start_ccb Member
Pointer for the SCSI I/O CCB for the START UNIT command used for recovery.

The ds_mdsel_ccb Member
Pointer for the SCSI I/0O CCB for the MODE SELECT command used for recovery.

11.2.2.10 The ds_rdcp_ccb Member

Pointer for the SCSI 1/0O CCB for the Read Capacity command used for recovery.

11.2.2.11 The ds_read _ccb Member

Pointer for the SCSI I/0O CCB for the Read command used for recovery.

11.2.2.12 The ds_prev_ccb Member

Pointer for the SCSI I/0O CCB for the Prevent Removal command during recovery.

11.2.2.13 The ds_block_size Member

This SCSI disk device's block size in bytes.

11.2.2.14 The ds_tot_size Member

Total SCSI disk device size in blocks.

11.2.2.15 The ds_media_changes Member

For removable media, the number of times the media was changed.

11.2.2.16 The ds_pt Sructure

Structure defining the current disk partition layout.

11.2.2.17 The ds_openpart Member

Bit mask of open partitions.

11.2.3 SCSI/CAM CDROM/AUDIO I/O Control Commands

This section describes the standard and vendor-unique 1/O control commands to use
for SCSI CDROM/AUDIO devices. The commands are defined in the

[usr/sys/iol caml cam di sk. h file. See Chapter 13 of American National
Standard for Information Systems, Small Computer Systems Interface - 2 (SCSI - 2),

Programmer-Defined SCSI/CAM Device Drivers 11-15

X3T9/89-042 for genera information about the CDROM device model. Table 11-1
lists the name of each command and describes its function.

Table 11-1: SCSI/CAM CDROM/AUDIO I/O Control Commands

Command Description

Standard Commands

CDROM _PAUSE_PLAY Pauses audio operation

CDROM_RESUME_PLAY Resumes audio operation

CDROM_PLAY_AUDI O Plays audio in Logical Block Address
(LBA) format

CDROM _PLAY_AUDI O MSF Plays audio in Minute-/Second-/Frame-units
(MSF) format

CDROM PLAY_AUDI O TI Plays audio track or index

CDROM PLAY_AUDI O TR Plays audio track relative

CDROM _TOC HEADER Reads Table of Contents (TOC) header

CDROM _TOC_ENTRYS Reads Table of Contents (TOC) entries

CDROM_EJECT_CADDY Ejects the CDROM caddy

CDROM_READ_SUBCHANNEL Reads subchannel data

CDROM_READ_HEADER Reads track header

Vendor-Unique Commands

CDROM_PLAY_VAUDI O Plays audio LBA format

CDROM_PLAY_MSF Plays audio MSF format

CDROM_PLAY_TRACK Plays audio track

CDROM _PLAYBACK CONTROL Controls playback

CDROM _PLAYBACK STATUS Checks playback status

CDROM _SET_ADDRESS FORMAT Sets address format

11.2.3.1 Structures Used by SCSI/CAM CDROM/AUDIO I/O Control Commands

Some of the SCSI CDROM/AUDIO device |/O control commands use data
structures. This section describes those data structures. The structures are defined in
the/ usr/sys/i o/ cam cam di sk. h file. Table 11-2 lists the name of each
structure and the commands that use it.

Table 11-2: Structures Used by SCSI/CAM CDROM/AUDIO I/O Control

Commands

Structure Command

cd_address All

cd_play_audi o CDROM_PLAY_AUDIO
CDROM_PLAY_VAUDIO

cd_pl ay_audi o_nsf CDROM_PLAY_AUDIO MSF
CDROM_PLAY_MSF

cd_play_audio_ti CDROM_PLAY_AUDIO_TI

cd_play_track CDROM_PLAY_AUDIO_TR
CDROM_PLAY_TRACK

cd_t oc_header CDROM_TOC_HEADER

11-16 Programmer-Defined SCSI/CAM Device Drivers

Table 11-2: (continued)

Structure Command

cd_toc CDROM_TOC_ENTRYS
cd_toc_entry CDROM_TOC_ENTRYS
cd_sub_channel CDROM_READ_SUBCHANNEL
cd_subc_position CDROM_READ_SUBCHANNEL
cd_subc_nedia _catalog CDROM_READ SUBCHANNEL
cd_subc_isrc_data CDROM_READ_SUBCHANNEL
cd_subc_header CDROM_READ_SUBCHANNEL
cd_subc_channel data CDROM_READ SUBCHANNEL
cd_subc_i nformation CDROM_READ_SUBCHANNEL
cd_read_header CDROM_READ_HEADER
cd_read_header _data CDROM_READ_HEADER
cd_pl ayback CDROM_PLAYBACK_CONTROL

CDROM_PLAYBACK_STATUS

11.2.3.1.1 Structure Used by All SCSI/CAM CDROM/AUDIO 1/O Control

Commands — This section describesthe cd_addr ess union that defines the SCSI
CDROM/AUDIO device Track Address structure and that all the SCSI
CDROM/AUDIO device I/O control commands use. The SCSI CDROM/AUDIO
device returns track addressesin either LBA or MSF format.

uni on cd_address {

struct {
u_char 1 8;
u_char munits;
u_char s_units;
u_char f_units;
} msf; /* M nut es/ Seconds/ Frane f or mat */
struct {
u_char addr 3;
u_char addr 2;
u_char addr 1;
u_char addr O;
} I ba; /* Logi cal Block Address format */
s
/*
* CD-ROM Address Format Definitions.
*/
#defi ne CDROM LBA FORNMAT 0 /* Logi cal Block Address format */
#defi ne CDROM_MSF_FORVAT 1 /* Mnute Second Franme format */

The structure members and their descriptions follow:

Structure Member Description

munits The minute-units binary number of the
MSF format for CDROM media

Programmer-Defined SCSI/CAM Device Drivers 11-17

Structure Member Description

s_units The second-units binary number of the
MSF format for CDROM media

f_units The frame-units binary number of the MSF
format for CDROM media

addr 3 The fourth logical block address of LBA
format for disk media

addr 2 The third logical block address of LBA
format for disk media

addr1 The second logical block address of LBA
format for disk media

addrO Thefirst logical block address of LBA

format for disk media

11.2.3.1.2 Structure Used by the CDROM_PLAY_AUDIO and
CDROM_PLAY_VAUDIO Commands — This section describes the structure that is used by
the CDROM_PLAY_AUDIO and CDROM_PLAY_VAUDIO commands. The
structure is defined as follows:
struct cd_play_audio {

u_long pa_l ba;
u_long pa_length;

/* Logi cal block address. */
/* Transfer length in blocks. */

}s

The structure members and their descriptions follow:

Structure Member Description

pa_| ba The LBA where the audio playback
operation is to begin.
pa_| ength The number of contiguous logical blocks to

be played.

11.2.3.1.3 Structure Used by the CDROM_PLAY_AUDIO_MSF and

CDROM_PLAY_MSF Commands — This section describes the structure that is used by the
CDROM_PLAY_AUDIO_MSF and CDROM_PLAY_MSF commands. The
structure is defined as follows:

struct cd_play_audi o_nsf {

u_char msf_starting_Munit; /* Starting Munit */
u_char nsf _starting_S unit; /* Starting S-unit */
u_char nsf_starting_F unit; /* Starting F-unit */
u_char msf _ending_Munit; /* Ending Munit */
u_char nsf _ending_S unit; /* Ending S-unit */
u_char msf_endi ng_F_unit; /* Ending F-unit */

11-18 Programmer-Defined SCSI/CAM Device Drivers

The structure members and their descriptions follow:

Structure Member

Description

nmsf _starting_Munit

mef _starting_S unit

mef _starting_F unit

nsf _endi ng_M unit

nsf _ending_S unit

nmsf _endi ng_F_uni t

The minute-unit field of the absolute MSF
address at which the audio play operation is
to begin.

The second-unit field of the absolute MSF
address at which the audio play operation is
to begin.

The frame-unit field of the absolute MSF
address at which the audio play operation is
to begin.

The minute-unit field of the absolute MSF

address at which the audio play operation is
to end.

The second-unit field of the absolute MSF
address at which the audio play operation is
to end.

The frame-unit field of the absolute M SF
address at which the audio play operation is
to end.

11.2.3.1.4 Structure Used by the CDROM_PLAY_AUDIO_TI Command — This
section describes the structure that is used by the CDOROM_PLAY_AUDIO _TI
command. The structure is defined as follows:

/*
* Define M ninmmand Maxi num Val ues for Track & |ndex.
*/
#defi ne CDROM_M N_TRACK 1 /* Mnimumtrack nunber */
#defi ne CDROM MAX TRACK 99 /* Maxi mum track nunber */
#defi ne CDROM_M N_I NDEX 1 /* M ninmumindex val ue */
#def i ne CDROM_MAX_| NDEX 99 /* Maxi mum i ndex val ue */
struct cd_play_audio_ti {
u_char ti_starting_track; /* Starting track number */
u_char ti_starting_index; /* Starting index value */
u_char ti_ending_track; /* Ending track nunber */
u_char ti_ending_i ndex; /* Endi ng index value */

}s

The structure members and their descriptions follow:

Structure Member

Description

ti_starting_track
ti_starting_i ndex

ti _ending_track

The track number at which the audio play
operation starts.

The index number within the track at which
the audio play operation starts.

The track number at which the audio play
operation ends.

Programmer-Defined SCSI/CAM Device Drivers 11-19

Structure Member Description

ti _endi ng_i ndex The index number within the track at which
the audio play operation ends.

11.2.3.1.5 Structure Used by the CDROM_PLAY_AUDIO_TR Command - This

section describes the structure that is used by the CDROM_PLAY_AUDIO_TR
command. The structure is defined as follows:

struct cd_play_audio_tr {

u_long tr_Iba; /* Track relative LBA */
u_char tr_starting_track; /* Starting track nunber */
u_short tr_xfer_length; /* Transfer length */

}s

The structure members and their descriptions follow:

Structure Member Description

tr_| ba The logical block address relative to the
track being played. A negative value
indicates a start location within the audio
pause area at the beginning of the track.

tr_starting_track Track number at which play is to start.

tr_xfer_length The number of contiguous logical blocks to
be output as audio data.

11.2.3.1.6 Structure Used by the CDROM_TOC_HEADER Command — This section

describes the structure that is used by the CDROM_TOC_HEADER command. The
structure is defined as follows:

struct cd_toc_header {

u_char th_data | enl; /* TOC data | ength MSB */
u_char th_data_l en0; /* TOC data | ength LSB */
u_char th_starting_track; /* Starting track nunber */
u_char th_ending_track; /* Ending track nunber */

}s

The structure members and their descriptions follow:

Structure Member Description

th data_ lenl The total number of bytesin the table of
contents for MSF format.

th _data_ | en0 The total number of bytes in the table of

contents for LBA format.

th_starting_track Starting track number for which datais to
be returned. If the valueis O (zero), datais
to be returned starting with the first track on
the medium.

11-20 Programmer-Defined SCSI/CAM Device Drivers

Structure Member Description

t h_endi ng_track The track number at which the audio play
operation ends.

11.2.3.1.7 Structures Used by the CDROM_TOC_ENTRYS Command — This section
describes the structures that are used by the CDROM_TOC_ENTRY S command.
The structures are defined as follows:

struct cd_toc {

u_char toc_address format; /* Address format to return */
u_char toc_starting_track; /* Starting track nunber */
u_short toc_alloc_Ilength; /* Al'location length */
caddr _t toc_buffer; /* Pointer to TOC buffer */

}s

The structure members and their descriptions follow:

Structure Member Description

toc_address_format The address format, LBA or MSF.

toc_starting track Thetrack number at which the audio play
operation starts.

toc_alloc_length The allocation length of the table of
contents buffer in bytes
toc_buffer A pointer to the TOC buffer.

struct cd_toc_entry {
u_char . 8; /* Reserved */

u_char te_control 4; /* Control field (attributes) */
u_char te_addr_type 4; /* Address type information */
u_char te_track_nunber; /* The track nunber */

u_char :8; /* Reserved */

uni on cd_address te_absaddr; /* Absol ute CD- ROM Address */

b

The structure members and their descriptions follow:

Structure Member Description

te_control The control field containing attributes. The
possible settings follow:

Bit No. Setto 0 (Zero) Setto 1

0 Audio without Audio with preemphasis
preemphasis

1 Digital copy prohibited Digital copy permitted
Audio track Data track

3 Two-channel audio Four-channel audio

Programmer-Defined SCSI/CAM Device Drivers 11-21

te_addr _type Address-type information, MSF or LBA

te track_number The current track number that is being
played.
t e_absaddr The absolute address of the audio track,

MSF or LBA format.

11.2.3.1.8 Structures Used by the CDROM_READ_SUBCHANNEL Command —
The CDROM_READ_SUBCHANNEL command reguests subchannel data and the
state of audio play operations from the target device. This section describes the
structure that is used by the CDOROM_READ_SUBCHANNEL command. The
structure is defined as follows:

/*
* CD- ROM Sub- Channel Q Address Field Definitions.
*/
#defi ne CDROM_NO_| NFO_SUPPLI ED 0x0 /* Informati on not supplied */
#defi ne CDROM CURRENT_PCS_DATA 0x1 /* Encodes current position data */
#def i ne CDROM _MEDI A_CATALOG _NUM 0x2 /* Encodes nedi a catal og nunber */
#defi ne CDROM_ENCCDES_| SRC 0x3 /* Encodes | SRC */
/* | SRC=I nternati onal - Standard- */
/* Recor di ng- Code */
/* Codes 0x4 through 0x7 are Reserved */
/*
* CD-ROM Data Track Definitions
*/
#def i ne CDROM_AUDI O_PREMPH 0x01 /* 0/1 = Wthout/Wth Pre-enphasis */
#defi ne CDROM_COPY_PERM TTED 0x02 /* 0/1 = Copy Prohobited/ Al owed */
#defi ne CDROM _DATA TRACK 0x04 /* 0 Audio, 1 = Data track */

#def i ne CDROM FOUR_CHAN_AUDI O 0x10 /* 0 2 Channel, 1 = 4 Channel */

/*
* Sub- Channel Data Format Codes
*/
#defi ne CDROM_SUBQ _DATA 0x00 /* Sub- Channel data information */
#def i ne CDROM_CURRENT_POSI TI ON 0x01 /* Current position information */
#defi ne CDROM _MEDI A_CATALOG 0x02 /* Medi a catal og nunber */
#defi ne CDROM_| SRC 0x03 /* ISRC information */
/* | SRC=I nternational - Standard- */
/* Recor di ng- Code */

/* Codes 0x4 through OxEF are Reserved */
/* Codes OxFO through OxFF are Vendor Specific */

/*

* Audi o Status Definitions returned by Read Sub- Channel Data Conmand

*/

#defi ne AS_AUDI O | NVALI D 0x00 /* Audi o status not supported */
#define AS_PLAY_| N_PROGRESS Ox11 /* Audio play operation in prog */
#defi ne AS_PLAY_PAUSED 0x12 /* Audi o play operation paused */
#defi ne AS_PLAY_COWPLETED 0x13 /* Audio play conpleted */
#define AS_PLAY_COWLETED 0x13 /* Audio play conpleted */
#define AS_PLAY_ERROR 0x14 /* Audio play stopped by error */
#defi ne AS_NO_STATUS 0x15 /* No current audio status */

struct cd_sub_channel {

u_char sch_address_format; /* Address format to return */
u_char sch_data_format; /* Sub-channel data format code */
u_char sch_track_nunber; /* Track nunmber */

u_short sch_alloc_| ength; /* Allocation length */

caddr _t sch_buffer; /* Pointer to SUBCHAN buffer */

11-22 Programmer-Defined SCSI/CAM Device Drivers

}

The structure members and their descriptions follow:

Structure Member

Description

sch_address_f or mat

sch_data_fornat
sch_track_numnber
sch_al l oc_l ength

sch_buffer

The address format, LBA or MSF.
The type of subchannel data to be returned.
The track from which ISRC datais read.

The allocation length of the table of
contents buffer in bytes

A pointer to the SUBCHAN buffer defined
by thesch_dat a_f or nat member.

struct cd_subc_position {

u_char scp_data_format; /* Data Format code */

u_char scp_control L4, /* Control field (attributes) */
u_char scp_addr_type L4 /* Address type information */
u_char scp_track_nunber; /* The track nunber */

u_char scp_i ndex_nunber; /* The index nunber */

uni on cd_address scp_absaddr; /* Absol ute CD- ROM Address */
uni on cd_address scp_rel addr; /* Rel ati ve CD-ROM Address */

}

#defi ne scp_absnmsf scp_absaddr. nsf
#defi ne scp_absl ba scp_absaddr. | ba
#define scp_rel nsf scp_rel addr. nsf
#define scp_rellba scp_rel addr. | ba

The structure members and their descriptions follow:

Structure Member

Description

scp_dat a_f or mat
scp_control

Bit No.

scp_addr _type
scp_track_nunber

scp_i ndex_nunber

Data format code.

The control field containing attributes. The
possible settings follow:

Set to 0 (Zero) Setto 1
Audio without Audio with preemphasis
preemphasis

Digital copy prohibited Digital copy permitted
Audio track Data track
Two-channel audio Four-channel audio

Address-type information, MSF or LBA
format. The address format, LBA or MSF.

The current track number that is being
played.
The index number within an audio track.

Programmer-Defined SCSI/CAM Device Drivers 11-23

scp_absaddr The absolute address of the audio track,
MSF or LBA format.

scp_rel addr The CDROM address relative to the track
being played.

struct cd_subc_nedi a_catal og {
u_char snt_data_format; /* Data Format code */

u_char 8; /* Reserved */
u_char 8; /* Reserved */
u_char 8; /* Reserved */
u_char 7, /* Reserved */
snc_nc_valid 1; /* Media catalog valid 1 = True */
u_char snc_nt_nunber[15]; /* Media catal og number ASCI| */

b

The structure members and their descriptions follow:

Structure Member Description
snc_data_fornat Data format code.
snc_nt_valid Media catalog number is valid.
snt_nt_nunber Media catalog number.

struct cd_subc_isrc_data {

u_char sid_data_format; /* Data Format code */
u_char . 8; /* Reserved */
u_char sid_track_nunber; /* The track nunber */
u_char ©8; /* Reserved */
u_char 7, /* Reserved */
sid tc_valid 1 /* Track code valid, 1 = True */
u_char sid_tc_nunber[15]; /* International - Standard- */

/* Recor di ng- Code (ASCI1) */
}

The structure members and their descriptions follow:

Structure Member Description

sid_data_format Data format code.

sid_track_nunber The current track number at which ISRC is
located.

sid tc valid The track code is valid.

sid_tc_nunber[15] The track code number.

struct cd_subc_header {

u_char . 8; /* Reserved */

u_char sh_audi o_status; /* Audio status */

u_char sh_data_l enl; /* Sub- Channel Data |ength MSB */
u_char sh_data_l en0; /* Sub-Channel Data |ength LSB */

11-24 Programmer-Defined SCSI/CAM Device Drivers

The structure members and their descriptions follow:

Structure Member Description

sh_audi o_st at us The audio status code.

sh _data_lenl The subchannel data length for MSF
format.

sh _data_| en0 The subchannel data length for LBA
format.

struct cd_subc_channel _data {
struct cd_subc_header scd_header;
struct cd_subc_position scd_position_data;
struct cd_subc_nedi a_catal og scd_nedi a_cat al og;
struct cd_subc_isrc_data scd_isrc_data;

}s

The structure members and their descriptions follow:

Structure Member Description
scd_header The subchannel data header, which is four
bytes.

scd_position_data CDROM current-position data information.

scd_nedi a_cat al og The Media Catalog Number data
information.

scd_isrc_data Track International-Standard-Recording-
Code (ISRC) data information.

struct cd_subc_information {

struct cd_subc_header sci _header;

uni on {
struct cd_subc_channel _data sci _channel _dat a;
struct cd_subc_position sci_position_data;
struct cd_subc_nedi a_catal og sci _nedi a_cat al og;
struct cd_subc_isrc_data sci_isrc_data;

} sci_data;

s

#define sci_scd sci _data. sci _channel _data

#define sci_scp sci _data.sci _position_data

#define sci_snc sci _dat a. sci _nedi a_cat al og

#define sci_sid sci _data.sci _isrc_data

#def i ne CDROM_DATA_MODE_ZERO 0 /* Al bytes zero */

#def i ne CDROM DATA MODE_ONE 1 /* Data nbde one format */
#defi ne CDROM _DATA_MODE_TWO 2 /* Data node two format */

/* Modes 0x03-0xFF are reserved. */

This structure is used to allocate data space. The structure members and their
descriptions follow:

Structure Member Description

Programmer-Defined SCSI/CAM Device Drivers 11-25

Structure Member Description

sci _channel _data Space for channel data.

sci _position_data Space for current position data.
sci _medi a_cat al og Space for Media Catalog data.
sci _isrc_data Space for ISRC data.

11.2.3.1.9 Structures Used by the CDROM_READ_HEADER Command - This

section describes the structures that are used by the COROM_READ_HEADER
command. The structures are defined as follows:

struct cd_read_header {

u_char rh_address_fornat; /* Address format to return */

u_long rh_lba; /* Logical block address */
u_short rh_alloc_Ilength; /* Allocation length */

caddr _t rh_buffer; /* Pointer to header buffer */

b

The structure members and their descriptions follow:

Structure Member Description

rh_address_format The address format, LBA or MSF.

rh_I ba The logical block address for LBA format.
rh_all oc_| ength The alocation length of the header buffer.
rh_buffer A pointer to the header buffer.

struct cd_read_header_data {
u_char rhd_dat a_node; /* CD- ROM data node */

u_char © 8 /* Reserved */
u_char . 8; /* Reserved */
u_char 18 /* Reserved */
uni on cd_address rhd_absaddr; /* Absol ute CD- ROM address */

}

#define rhd_nsf rhd_absaddr. nsf
#define rhd_| ba rhd_absaddr. | ba

The structure members and their descriptions follow:

Structure Member Description
rhd_dat a_node The CDROM data mode type.
rhd_absaddr The absolute address of the audio track,

MSF or LBA format.

11-26 Programmer-Defined SCSI/CAM Device Drivers

11.2.3.1.10 Structure Used by the CDROM_PLAY_TRACK Command — This section
describes the structure that is used by the CDROM_PLAY_TRACK command. The
structure is defined as follows:

struct cd_play_track {

u_char pt_starting_track; /* Starting track nunmber */
u_char pt_starting_index; /* Starting index value */
u_char pt_nunber_i ndexes; /* Number of indexes */

}s

The structure members and their descriptions follow:

Structure Member Description

pt _starting track The track number at which the audio play
operation starts.

pt _starting index The index number within the track at which
the audio play operation starts.

pt _nunber i ndexes The number of index values in the audio
encoding on CDROM media.

11.2.3.1.11 Structure Used by the CDROM_PLAYBACK_CONTROL and
CDROM_PLAYBACK_STATUS Commands — This section describes the structures that are
used by the CDROM_PLAYBACK_CONTROL and
CDROM_PLAYBACK_STATUS commands. The structures are defined as follows:
/*
* Definitions for Playback Control/Playback Status Qutput Selection

Codes */

#defi ne CDROM_M N_VOLUME 0x0 /* M ni mum vol une | evel */

#def i ne CDROM_MAX_VOLUME OxFF /* Maxi mum vol ume | evel */

#defi ne CDROM_PORT_MJTED 0x0 /* Qutput port is muted */

#defi ne CDROM_CHANNEL_O Ox1 /* Channel 0 to output port */
#def i ne CDROM CHANNEL_1 0x2 /* Channel 1 to output port */
#defi ne CDROM CHANNEL_O_1 0x3 /* Channel 0 & 1 to output port */

struct cd_pl ayback {
u_short pb_alloc_I ength; /* Allocation length */
caddr _t pb_buffer; /* Pointer to playback buffer */

}s

The structure members and their descriptions follow:

Structure Member Description
pb_alloc_length Allocation length of the playback buffer.
pb_buffer A pointer to the playback buffer.

Programmer-Defined SCSI/CAM Device Drivers 11-27

11.2.3.1.12 Structure Used by the CDROM_PLAYBACK_CONTROL Command —
This section describes the structure that is used by the
CDROM_PLAYBACK_CONTROL command. The structure is defined as follows:

struct cd_pl ayback_control {

u_char pc_reserved[10]; /* Reserved */

u_char pc_chanO_select : 4, /* Channel 0 sel ection code */
D4 /* Reserved */

u_char pc_chanO_vol une; /* Channel 0 volune |evel */

u_char pc_chanl_select : 4, /* Channel 1 selection code */
D4 /* Reserved */

u_char pc_chanl_vol une; /* Channel 1 volune |evel */

u_char pc_chan2_select : 4, /* Channel 2 selection code */
D4 /* Reserved */

u_char pc_chan2_vol une; /* Channel 2 volune |evel */

u_char pc_chan3_select : 4, /* Channel 3 selection code */
D4 /* Reserved */

u_char pc_chan3_vol une; /* Channel 3 volune |evel */

3

The structure members and their descriptions follow:

Structure Member Description

pc_chanO_sel ect The selection code for Channel 0. The low
four bits are reserved.

pc_chanO_vol une The volume level value for Channel 0.

pc_chanl_sel ect The selection code for Channel 1. The low
four bits are reserved.

pc_chanl _vol une The volume level value for Channel 1.

pc_chan2_sel ect The selection code for Channel 2. The low
four bits are reserved.

pc_chan2_vol une The volume level value for Channel 2.

pc_chan3_sel ect The selection code for Channel 3. The low

four bits are reserved.
pc_chan3_vol une The volume level value for Channel 3.

11.2.3.1.13 Structure Used by the CDROM_PLAYBACK_STATUS Command —
This section describes the structure that is used by the
CDROM_PLAYBACK_STATUS command. The structure is defined as follows:
/*
* Audi o status return by Playback Status Conmand.
*

#defi ne PS_PLAY_| N_PROGRESS 0x00 /* Audio Play Oper In Progess */
#defi ne PS_PLAY_PAUSED 0x01 /* Audi o Pause Oper In Progress */
#defi ne PS_MJTI NG_ON 0x02 /* Audio Muting On */

#defi ne PS_PLAY_COWPLETED 0x03 /* Audio Play Oper Conpleted */
#define PS_PLAY_ERROR 0x04 /* Error Qccurred During Play */

#defi ne PS_PLAY_NOT_REQUESTED 0x05 /* Audio Play Oper Not Requested */

/*
* Data structure returned by Playback Status Command.
*/
struct cd_pl ayback_status {
u_char :8; /* Reserved */

11-28 Programmer-Defined SCSI/CAM Device Drivers

u_char ps_| bansf 1, /* Address format 0/1 = LBA/ MSF */
7, /* Reserved */

u_char ps_data_l enl; /* Audio data | ength MSB */

u_char ps_data_| en0; /* Audio data | ength LSB */

u_char ps_audi o_status; /* Audio status */

u_char ps_control o4, /* Control field (attributes) */

4; /* Reserved */

uni on cd_address ps_absaddr; /* Absol ute CD- ROM address */

u_char ps_chan0O_sel ect 4, /* Channel 0 sel ection code */
L4, /* Reserved */

u_char ps_chanO_vol une; /* Channel 0 volune |evel */

u_char ps_chanl_sel ect 4, /* Channel 1 selection code */
L4, /* Reserved */

u_char ps_chanl_vol une; /* Channel 1 volune |evel */

u_char ps_chan2_sel ect 4, /* Channel 2 selection code */
L4, /* Reserved */

u_char ps_chan2_vol une; /* Channel 2 volune |evel */

u_char ps_chan3_sel ect 4, /* Channel 3 selection code */
L4, /* Reserved */

u_char ps_chan3_vol une; /* Channel 3 volune |evel */

}s

The structure members and

their descriptions follow:

Structure Member

Description

ps_| bansf
ps_data_l enl
ps_data_I| en0

ps_audi o_st at us

The address format: a 0 (zero) means LBA,;
al means MSF.

The audio data length if the address format
is MSF.

The audio data length if the address format
isLBA.

The audio status

Audio with preemphasis

Digital copy permitted

Four-channel audio

ps_control The control field containing attributes. The
possible settings follow:
Bit No. Setto 0 (Zero) Setto 1
0 Audio without
preemphasis
1 Digital copy prohibited
2 Audio track Data track
3 Two-channel audio
The low four bits are reserved.
ps_absaddr The absolute address of the audio track,

ps_chanO_sel ect

ps_chanO_vol une
ps_chanO_sel ect

ps_chanl_vol une

MSF or LBA format.

The selection code for Channel 0. The low
four bits are reserved.

The volume level setting for Channel 0.

The selection code for Channel 0. The low
four bits are reserved.

The volume level setting for Channel 1.

Programmer-Defined SCSI/CAM Device Drivers 11-29

ps_chanl_sel ect The selection code for Channel 1. The low
four bits are reserved.

ps_chan2_vol une The volume level setting for Channel 2.

ps_chan2_sel ect The selection code for Channel 2. The low
four bits are reserved.

ps_chan3_vol une The volume level setting for Channel 3.

11.3 Adding a Programmer-Defined SCSI/CAM Device

The procedure for installing device drivers described in Guide to Writing and Porting
VMEbus and TURBOchannel Device Drivers applies to adding SCSI/CAM peripheral
device drivers to your system. Follow that procedure after completing the entries to
the SCSI/CAM-specific structures described in this chapter and in Chapter 3.

11-30 Programmer-Defined SCSI/CAM Device Drivers

SCSI/CAM Special I/O Interface 12

This chapter describes the SCSI/CAM special 1/0 interface. The USCA software
includes an interface developed to process special SCSI 1/O control commands used
by the existing Digital SCSI subsystem and to aid in porting new or existing SCSI
device drivers from other vendors to the USCA.

Application programs issue 1/0 control commands using thei oct | system call to
send specia SCSI 1/0 commands to a periphera device. The term ‘“specia’’ refersto
commands that are not usually issued to the device through the standard driver entry
points. SCSI device drivers usually require the special 1/0 control commands in
addition to the standard r ead and wr i t e system calls. With the SCSI/CAM

specid 1/0 interface, SCSI/CAM peripheral driver writers do not need detailed
knowledge of either the system-specific or the CAM-specific structures and routines
used to issue a SCSI command to the CAM 1/O subsystem.

12.1 Application Program Access

Application programs access the SCSI/CAM special /O interface by making requests
to peripheral driversusing thei oct | system call. This system call is processed by
system kernel support routines that invoke the device driver’s 1/O control command
entry point in the character device switch table defined in the

machi ne/ common/ conf . ¢ file. The device driver's /O control routine accesses
the special 1/0 interface using either the supplied SCSI/CAM peripheral common
routine, ccrm_DoSpeci al Cnd, or a driver-specific routine. Figure 12-1 shows the
flow of application program requests through the operating system to the SCSI/CAM
specia 1/0 interface and the CAM 1/O subsystem.

Figure 12-1: Application Program Flow Through SCSI/CAM Special 1/0O
Interface

Application Program Interface
Issues 1/O Control System Call via
intioctl (int fd, int cmd, char *data)

l

Operating System Interface

l

CAM Peripheral Driver I/O Control
Command Entry Point Entered via
int xxi octl (dev_t dev, int cmd, caddr_t data, int flags)

Invoke Peripheral Common Routine via
int ccrm_DoSpeci al O (dev_t dey, int cmd, caddr_t data
int flags, CCB_SCSIIO *ccb, int sflags)

Invoke SCSI Special I/O Command
Processing Entry Point

CAM Transport Layer Interface
Entered via xpt _act i on() Entry Point

CAM SIM/HBA/DME Interfaces

ZK-0264U-R

12.2 Device Driver Access

SCSI/CAM peripheral device drivers access the SCSI/CAM specia /O interface
using either the supplied SCSI/CAM peripheral common routine,

ccmm_SysSpeci al Cnd, or using a driver-specific routine. Figure 12-2 shows the
flow of system requests from device drivers through the SCSI/CAM specia 1/0
interface and the CAM 1/O subsystem.

12-2 SCSI/CAM Special 1/O Interface

Figure 12-2: Device Driver Flow Through SCSI/CAM Special 1/0
Interface

Driver Interface Entry from
User Application via system call for
open(), close(), read(), wite(), or ioctl()

I

Operating System Interface

Driver Entry Points
Entered in Process Context

int xxx_open (dev_t dev, int flags)

I

Allocate 1/0O Parameters Buffer
for Command on the Kernel Stack.
Stack part of ‘struct user’ (user area)

v

Allocate Kernel Data Buffer,
if required, for Data Movement via
u_char ccnm get _dbuf (u_long size)

v

Set Up I/O Parameter Fields as
Required for this Special Command

'

Peripheral Driver Common Routine
int ccrm SysSpeci al Ovd (dev_t dev, int cmd, caddr_t data,
int flags , CCB_SCSIIO *ccb , int sflags)

I

Common Processing via Routine
int ccrm DoSpeci al Ond (dev_t dev, int cmd, caddr_t data,
int flags , CCB_SCSIIO *ccb , int sflags)

Same Processing as Application Program Interface

ZK-0470U-R

12.3 SCSI/CAM Special Command Tables

The SCSI/CAM specid 1/0 interface includes default command tables that provide
backwards compatibility with existing SCSI 1/0 control commands. The following
predefined SCSI/CAM Specia Command Tables are included:

e cam Ceneri cCnds

SCSI/CAM Special I/0O Interface 12—3

12.3.1

12.3.2

12.3.3

12.3.4

12.3.5

e cam Direct Crds

e cam Audi oCnds

e cam Sequenti al Crds
e cam M Cnds

The interface also allows commands to be added to the existing command tables and
new command tables to be added. The SCSI/CAM specia 1/0 interface includes
routines that manipulate the tables so programmers can write device drivers to easily
add and remove command tables.

The command table header structure, SPECIAL_HEADER, provides a bit mask of
device types that can be used with a command table. The Special Command Header
Structure is defined as follows:
/ *

* Speci al Conmmand Header Structure:

x|

typedef struct special _header {

struct special _header *sph_fli nk; /* Forward link to next table */
struct speci al _header *sph_bli nk; /* Backward link to prev table */
struct special _cnd *sph_cnd_table; /* Pointer to command table */

u_l ong sph_devi ce_type; /* The device types supported */
u_l ong sph_tabl e_fl ags; /* Flags to control cnd | ookup */
caddr _t sph_tabl e_nane; /* Name of this command table */

} SPECI AL_HEADER;

The sph_flink and sph_blink Members

These are table-linkage members that allow command tables to be dynamically added
or removed from the list of tables searched by the SCSI/CAM specia /O interface
when processing commands.

The sph_cmd_table Member
A pointer to the Special Command Entry Structure.

The sph_device_type Member
The device types supported by this SCSI/CAM Special Command Table.

The sph_table_flags Member

The SPH_SUB_COMMAND, which indicates that the command table contains
subcommands.

The sph_table_name Member
The name of this SCSI/CAM Specia Command Table.

12-4 SCSI/CAM Special I/O Interface

12.4 SCSI/CAM Special Command Table Entries

Each SCSI/CAM Specia Command Table contains multiple entries. Each entry
provides enough information to process the command associated with that entry. The
command tables can be dynamically added, but the entries within the command
tables are not dynamic. Each command table’ s entries are statically defined so that
individual entries cannot be appended to the table. The Special Command Entry
Structure structure is defined as follows:

/*
* Speci al
*/

Command Entry Structure:

typedef struct special _cmd {

int spc_ioctl _cnd; /* The I/O control comrand code */
int spc_sub_conmand; /* The 1/0 control sub-comand */
u_char spc_cnd_fl ags; /* The special command flags */
u_char spc_cnd_code; /* The special comrand code */
u_short . 16; /* Unused ... align next field */
u_l ong spc_device_type; /* The device types supported */
u_l ong spc_cnd_paraneter; /* Command paraneter (if any) */
u_long spc_camfl ags; /* The CAMflags field for CCB */
u_long spc_file_flags; /* File control flags (fcntl) */
int spc_dat a_l engt h; /* Kernel data buffer length */
int spc_ti meout; /* Timeout for this command */
int (*spc_docnd) (); /* Function to do the command */
int (*spc_nkedb) () ; /* Function to make SCSI CDB */
int (*spc_setup) (); /* Setup paraneters routine */
caddr _t spc_cdbp; /* Pointer to prototype CDB */
caddr _t spc_cndp; /* Pointer to the command nane */

} SPECI AL_CMD;

12.4.1 The spc_ioctl_cmd and spc_sub_command Members

These members contain the SCSI 1/0O control command code and subcommand used
to locate the appropriate table entry. The subcommand is checked only if flags are
set that indicate a subcommand exists.

12.4.2 The spc_cmd_flags Member

This member contains flags to control the action of the SCSI/CAM specia /0
interface routines. The flag definitions are described in the following table:

Flag Name Description

SPC_SUSER Restricted to superuser.
SPC_COPYI N User buffer to copy from.
SPC_COoPYQUT User buffer to copy to.
SPC_NO NTR Do not allow sleep interrupts.
SPC DATA IN Data direction is from device.
SPC_DATA QUT Data direction is to device.

SPC_DATA_NONE
SPC_SUB_COMVAND
SPC_I NOUT
SPC_DATA | NOUT

No data movement for command.
Entry contains subcommand.
Copy in and out.

Copy datain and out.

SCSI/CAM Special I/O Interface 12-5

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.4.8

12.4.9

12.4.10

The spc_command_code Member

This member contains the special SCSI opcode used to execute this command. This
member is used during the creation of the CDB.

The spc_device_type Member

This member defines the specific device types with which this command is used. For
example, direct-access and readonly direct-access devices share many of the same
commands. Therefore, rather than duplicating command table entries, both device
types can use the same command table. The values that are valid for this member are
those defined in the Inquiry data device type member of thei nquiry_i nfo
structure, which is defined inthe/ usr/ sys/ h/ scsi _al | . hfile.

The spc_cmd_parameter Member

This member is used to define any specia parameters used by the command. For
example, the SCSI START CDB command, which is defined in the

/usr/sys/ h/ scsi_direct. hfile isused for stopping, starting, and gecting a
CDROM caddy. The parameter member can be defined as the subcommand code so
a common routine can be used to create the CDB.

The spc_cam_flags Member

This member contains the CAM flags necessary for processing the command. The
CAM flags are defined in the file/ usr / sys/ h/ cam h.

The spc_file_flags Member

This member contains the file access bits required for accessing the command. For
example, the command can be restricted to device files opened for read and write
access. Thefile flags are defined in thefile/ usr/ sys/ h/ fil e. h.

The spc_data_length Member

This member describes the length of the buffer to hold additional kernel datathat is
required to process the command. Usually, this member is set to O (zero), since the
data buffer lengths are normally decoded from the 1/0 command code or taken from a
member in the 1/0O parameter buffer.

The spc_timeout Member

This member defines the default timeout for this command. This value is used for
the SCSI 1/0 CCB timeout member, unless it is overridden by the timeout member in
the Specia /0 Argument Structure.

The spc_docmd Member

This member specifies the routine to invoke to execute the command. A routineis
required by 1/0 commands that need specia servicing. For example, if the I/0O
command does not return al the data read by the SCSI command, then aroutine is
needed to handle this special servicing.

12-6 SCSI/CAM Special I/O Interface

12.4.11

12.4.12

12.4.13

12.4.14

12.4.15

The spc_mkcdb Member

This member specifies the routine that is invoked to create the CDB for the
command. A routineis not necessary for simple commands, such as TEST UNIT
READY. However, any command that requires additional members to be set up in
the CDB prior to issuing the SCSI command must define this routine.

The spc_setup Member

This member is required by any command that has special setup requirements. For
example, commands that pass a user buffer and length as part of the 1/O parameters
buffer structure must have a setup routine to copy these members to the Specia /0O
Argument Structure. This appliesto all previously defined commands, but does not
apply to commands implemented using the new SCSI_SPECIAL 1/O control
command code.

The spc_cdbp Member

This member is used by commands that can be implemented using a prototype CDB.
A prototype CDB is a SCSI command that can be implemented using a statically
defined SCSI CDB. Fields within the CDB do not change. Usually, simple SCSI
commands, such as SCSI_START_UNIT, can be implemented with a prototype CDB
so that the make CDB routine is not required.

The spc_cmdp Member

This member points to a string that describes the name of the command. This string
is used during error reporting and during debugging.

Sample SCSI/CAM Special Command Table

The example that follows shows a sample SCSI/CAM Special Command Table with
one entry defined:
#include "../h/cdromh"

#include "../h/ntio.h"
#i nclude "../h/rzdisk.h"

#include "../h/cam h"

#include "../h/cam special.h"
#include "../h/dec_cam h"
#include "../h/scsi_all.h"
#include "../h/scsi _direct.h"
#include "../h/scsi_rodirect.h"
#include "../h/scsi_sequential.h"

#include "../h/scsi_special.h"
extern int scrm_MakeFormatUnit (), scmm_SetupFormat Unit();
/*
* Command Header for Direct-Access Conmand Tabl e:
*/
struct special _header cam Direct CndsHdr = {

(struct special _header *) O, /* sph_flink */
(struct special _header *) O, /* sph_blink */
cam Di rect Cnds, /* sph_cnd_table */

(BI\/(_DTYPE_DI RECT) | BM DTYPE_RODI RECT)),/* sph_device_type */
o, /* sph_table_flags */
"Direct Access Conmands" /* sph_table_nane */

SCSI/CAM Special I/O Interface 12—7

/**

*

*

*

Speci al

Di rect Access Command Tabl e

*

*

*

**/

struct special _cnd camDirect Cnds[]

{

},

SCSI _FORVAT_UNIT,

0,

(SPC_COPYI N | SPC _DATA QUT),
DI R_FORVAT_OP,

BM DTYPE_DI RECT) ,

0,

CAM DI R_QUT,

FVWRI TE,

-1,

(60 * ONE_M NUTE),
(int (*)()) O,
scm_MakeFor mat Uni t ,
scmm_Set upFor mat Uni t,
(caddr _t) O,

"format unit"

=1

/* spc_ioctl_cmd */
/* spc_sub_command */
/* spc_cnd_flags */
/* spc_cnd_code */

/* spc_device_type */
/* spc_cnd_paraneter */
/* spc_camflags */
/* spc_file_flags */
/* spc_data_l ength */
/* spc_tineout */

/* spc_docnd */

/* spc_nkcdb */

/* spc_setup */

/* spc_cdbp */

/* spc_cndp */

{ END.OF_OMD TABLE } /* End of camDirectCmis[] Table. */

}s
/*

* Define Speci al

*/

Commands Header & Table for

Initialization Routine.

struct special _header *cam Speci al Cnds = &cam Speci al CndsHdr ;
struct special _header *cam Speci al Hdrs[]

{ &cam CGeneri cCndsHdr,
&cam Sequent i al CndsHdr,

&cam Di r ect CndsHdr,
&cam M CndsHdr,

&cam_Audi oCrrdsHdr
0}

12.5 SCSI/CAM Special I/O Argument Structure

A Special I/0O Argument Structure is passed to the SCSI/CAM special 1/0 interface
to control processing of the 1/0 control command being executed. The structure
members provide information to process a special command for different SCSI
subsystems. Default settings and routines invoked by the SCSI/CAM specia 1/0
interface can be overridden by the calling routine. Table 12-1 shows the members
that are mandatory for the calling routine to set up, the members that are optional,
and the members that are used or filled in by the SCSI/CAM specia 1/0 interface:

Table 12-1: SCSI/CAM Special I/O Argument Structure

Member Name Type Description

u_long sa_fl ags; M Flags to control command
dev_t sa_dev; M Device major/minor number
u_char sa unit; U Device logica unit number
u_char sa_bus; M SCSI host adapter bus number
u_char sa_target; M SCSI device target number
u_char sa_lun; M SCSl logical unit number

int sa_ioctl_cnd; M The 1/0O control command

12-8 SCSI/CAM Special 1/O Interface

Table 12-1: (continued)

Member Name Description

int sa_ioctl_scnd,
caddr t sa_ioctl _data;

The subcommand, if any
The command data pointer
Pointer to the device name
The peripheral device type
Parameters buffer length
Parameters' buffer address
The file control flags

Sense data buffer length
Sense data residua count
Sense data buffer address
User data buffer length

User data buffer address
Kernel 1/0 request buffer
CAM control block buffer
Special command table entry
Special command table header
Command parameter, if any
The error report routine

The driver start routine
Kernel data buffer length
Kernel data buffer address
Pointer to the CDB buffer
Length of the CDB buffer
The special command flags
The current retry count
Times to retry this command

caddr _t sa_devi ce_nane;

i nt sa_device_type;

int sa_iop_|length;

caddr t sa_iop_buffer;

int sa file_flags;

int sa_sense_l ength;

u_char sa_sense_resid,;

caddr t sa_sense_buffer;

int sa_user_|ength;

caddr t sa_user _buffer;
struct buf *sa_bp;

CCB _SCsSI |1 O *sa_cch;

struct special _cnmd *sa_spc;
struct speci al _header *sa_sph;
u_long sa_cnd_paraneter;

int (*sa_error)();

int (*sa_start)();

int sa_data_l ength;

caddr _t sa_data_buffer;
caddr t sa_cdb_pointer;

u_char sa_cdb_I ength;

u_char sa cnd_fl ags;

u_char sa_retry_count;

u char sa retry limt;

int sa_timeout; Timeout for this command
Transfer residual count
Driver-specific information

int sa xfer_resid;
caddr t sa_specific;

o~ oo~~~ ~"TT"TO0OO0OTOTOOTT"TOTO=XKT ™" "ZZTxTO0o0 -
°
®

Legend: M = Mandatory. Must be set up by the caller.
C = Command Dependent. Depends on special command.
O = Optional. Optionally overrides defaults.
| = Interface. Used or filled in by SCSI/CAM specia 1/O interface.
U = Unused. Not used by SCSI/CAM specia |/O interface.

Several of the members marked as mandatory in Table 12-1 are set up initially by the
routine that allocates the Special 1/0 Argument Structure. The following members
areinitialized by the allocation routine: sa_bus; sa_t arget; sa_I un;

sa_unit (sameastarget); sa_retry limt (setto30); andsa_start (setto
Xpt _action).

SCSI/CAM Special I/0O Interface 12-9

Fields that are identified as optional in Table 12-1 can be defined by the caller to
override some of the defaults used by the SCSI/CAM special /O interface. The
following table describes the defaults used by the SCSI/CAM specia 1/O interface:

Member Name Default

sa_sense_l ength Set to DEC_AUTO_SENSE_SIZE,
which is defined in
[usr/sys/ h/ dec_cam h.

sa_sense_bhuffer Sense buffer in SCSI/CAM
Peripheral Device Driver Working
Set Structure.

sa_bp Allocated as needed for data
movement commands.

sa_cch Allocated by the CAM
xpt _ccb_al | oc routine.

sa_error() Special interface error report
routine.

sa_start() Uses the CAM xpt _acti on
routine.

sa_ti meout Uses the timeout value from the
SCSI/CAM Special Command
Table entry.

sa_specific Is not set up or used by

SCSI/CAM specia 1/O interface.

12.5.1 The sa_flags Member

This member is used to control the actions of the SCSI/CAM special /O interface.
The low order five bits of this member can be set by the calling routine. All other
bits in this member are reserved. The table that follows shows the control flags that
can be set by the calling routine:

Flag Name Description

SA NO ERROR _RECOVERY Do not perform error recovery.
SA NO _ERROR_LOGAE NG Do not log error messages.

SA NO _SLEEP | NTR Do not alow sleep interrupts.
SA NO_SI MQ THAW Leave SIM queue frozen on errors.
SA NO WAIT_FOR_ 10O Do not wait for 1/O to complete.

12.5.2 The sa_dev Member

This member contains the device major/minor number pair passed into the device
driver routines. It is used to fill in the bp_dev member of the system I/O request
member.

12-10 SCSI/CAM Special I/O Interface

12.5.3 The sa_unit, sa_bus, sa_target, and sa_lun Members

These members are used to address the SCSI device to which the command is being

sent. Thesa_uni t member is not used, but has been included for device drivers
that implement logical device mapping.

12.5.4 The sa_ioctl_cmd Member

This member contains the 1/0O control command to be processed. This command
usually maps directly to a SCSI 1/0 Command, but that is not necessary. For
example, the Digital-specific SCSI_GET_SENSE command returns the sense data
from the last failing command. A REQUEST SENSE command is not issued to the

device, because autosense is assumed to have been enabled on the failing command,
and the sense data is part of the common Peripheral Device Structure.

12.5.5 The sa_ioctl_scmd Member
This member must be filled in for special commands implemented with a

subcommand code. For example, magnetic tape I/O control commands have both an
1/O control command code and a subroutine command code.

12.5.6 The sa ioctl _data Member

An |/O parameters buffer is required if the I/O control command transfers data to and

from the kernel. If the request came from an application program, this buffer is
normally passed into the driver i oct | routine.

12.5.7 The sa_device_name Member

This member contains a pointer to the device name string that is used when reporting
device errors.

12.5.8 The sa_device_type Member

This member contains the device type member from the Inquiry data. This member
controls the SCSI/CAM Special Command Tables and the entries within each

command table that are searched for the SCSI/CAM special 1/0 command being
issued.

12.5.9 The sa_iop_length and sa_iop_buffer Members

These members are used internally by the SCSI/CAM specia 1/0 interface when
processing a command. If 1/0 would normally be performed directly to the 110

parameters buffer because no other buffer was set up, then a kernel buffer is allocated
and set up in these members.

12.5.10 The sa_file_flags Member

This member contains the file flags passed into the device driver routines. The flags

describe access control bits associated with the device. The file access flags are
defined inthe/ usr/ sys/ h/fil e. hfile

SCSI/CAM Special I/0O Interface 12-11

12.5.11

12.5.12

12.5.13

12.5.14

12.5.15

12.5.16

12.5.17

The sa_sense_length and sa_sense_buffer Members

These members set up the sense buffer and expected sense data length that are used
by autosense when device errors occur. If these members are not set up by the
caling routine, then the SCSI/CAM special 1/0 interface uses the sense buffer
allocated in the SCSI/CAM Peripheral Device Driver Working Set Structure that is
pointed to by the SCSI I/O CCB.

The sa_user_length and sa_user_buffer Members

These members are set up by command setup routines to describe the user buffer and
user data length required by a command. Requests from application programs that
pass a user buffer and length in the I/O parameter buffers require a setup routine to
copy this information into those members. The SCSI/CAM special 1/0 interface
checks access and locking on this address range and sets up the address and length in
the SCSI 1/0 CCB for the command.

The sa_bp Member

This member contains a pointer to a system 1/0 request buffer for commands that
perform data movement directly to user address space. A system buffer is not
required if akernel data buffer is used for 1/0. If the calling routine does not pass a
previously allocated request buffer in this member, and the SCSI/CAM specia /0
interface determines that the I/O requires one based on the I/O buffer address, then a
request buffer is allocated and deallocated automatically by the SCSI/CAM special
I/O interface.

The sa_ccb Member

This member contains a pointer to the SCSI 1/O CCB for a command. If the calling
routine does not specify a SCSI 1/0 CCB in this member, then the SCSI/CAM
specia /0 interface automatically allocates and deallocates a SCSI 1/0 CCB for the
command.

The special_cmd Member

This member is used internally by the SCSI/CAM special |/O interface to save the
SPECIAL_CMD after acommand is located.

The special_header Member

This member can be used by the calling routine to specify the SCSI/CAM Special
Command Table to search for the special command. This lets device drivers restrict
the SCSI/CAM Special Command Tables that are searched. If this member is not
used, then all the SCSI/CAM Special Command Tables in the list are searched for an
entry that matches the special command being processed.

The sa_cmd_parameter Member

This member is used to store the command parameter, if any, from the command
entry associated with this special command. This member is used by specia support
routines when setting up members for a particular CDB.

12-12 SCSI/CAM Special I/O Interface

12.5.18

12.5.19

12.5.20

12.5.21

12.5.22

12.5.23

The sa_error Member

This member contains the routine to be invoked when an error condition is detected.
If not specified, a SCSI/CAM special 1/0O interface support routine handles the error
condition. Otherwise, the routine is called as follows;

status = (*sap->sa_error)(cch, sense);

This member can be specified for drivers requiring specialized error handling and for
specific error logging. The SCSI/CAM special 1/0 interface’ s error logging uses the
npri nt f facility to report errors. Both sense key and CAM status members are
logged.

The sa_start Member

This member contains the routine that starts processing the SCSI 1/0O CCB. If not
specified, the CAM xpt _act i on routineis used. The routine is invoked as
follows:

(void) ((sap->sa_start)(cch);

The sa_data_length and sa_data_buffer Members

These members are used internally by the SCSI/CAM specia 1/O interface to store
the address and length of an additional kernel buffer required for a command. These
members are usualy initialized by the resulting value of the Specia Command Entry
Structure member, spc_dat a_I engt h, but can be used by SCSI/CAM specid 1/0
command developers if needed.

The sa_cdb_pointer Member

This member is used internally by the SCSI/CAM special /O interface to save a
pointer to the CDB for this special command. This member may point to a prototype
CDB; to adriver-alocated CDB buffer, if the CAM_CDB_POINTER flag is set in
CCB header; or to the CDB buffer allocated within the SCSI I/O CCB. This member
is set up with the CDB buffer address before the Special Command Header Structure
make CDB routine is invoked as follows:

status = (*spc->spc_nkcdb) (sap, cdbp);

The sa_cdb_length Member

This member is used to specifiy the size in bytes of the CDB required by a SCSI
command. If the Special Command Header Structure make CDB routine does not set
up this member, then the SCSI Group Code is decoded to determine the length.

The sa_cmd_flags Member

This member isinitialized from the Special Command Header Structure
spc_cnd_f | ags member so SCSI/CAM specia 1/0O command support routines
have easy and quick accessto the flags.

SCSI/CAM Special I/0O Interface 12-13

12.5.24

12.5.25

12.5.26

12.5.27

12.5.28

12.5.29

The sa_retry_count Member

This member contains the number of retrys that were required to successfully
complete the request. It isfilled in by the SCSI/CAM specia 1/O interface after
processing the command.

The sa_retry_limit Member

This member contains the maximum number of times a command is retried. The
only retries automatically handled by the SCSI/CAM special 1/0 interface are a sense
key of Unit Attention, or a SCSI bus status of Bus Busy or Reservation Conflict. All
other error conditions must be handled by the calling routine.

The sa_timeout Member

This member contains the timeout value, in seconds, to use with the command being

processed. This member can be specified by the calling routine. If it is not specified,
the timeout value is taken from the Special Command Entry Structure. This member
is used to initialize the cam_t i meout member of the SCSI I/0O CCB before issuing
the command.

The sa_xfer_resid Member

This member contains the residual byte count of data movement commands. This
member is copied from the cam r esi d member of the SCSI I/O CCB before
returning to the caller.

The sa_specific Member

This member is not set up or used by the SCSI/CAM specia |/O interface. It
provides a mechanism for device driver code to pass driver-dependant information to
SCSI/CAM special 1/0 command support routines. The SCSI/CAM peripheral driver
common routine ccnn_DoSpeci al Cnd passes the pointer to the Peripheral Device
Structure in this member.

Sample Function to Create a CDB

The following sample function illustrates how to use the SCSI/CAM special 1/0
interface to create a CDB for a SCSI FORMAT_UNIT command:

1RSSR R R R EREEEEEEEEEELEEEEEEEEEREEEEEEEEEEEEEREEEEEEEEEEEEEEEEE]

*

scmm_MakeFormat Unit () - Make Format Unit Command Descri ptor Bl ock.

*

*

* Inputs: sap = Special command argument bl ock pointer.
* cdbp = Pointer to comrand descriptor bl ock.
*
*
*

Return Val ue:
Returns O for SUCCESS, or error code on failures.

*
*
*
*
*
*
*
*
* *
*

khkhkhkhkhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhkkkkk*k*kk*k*k*k*k*x*%

/
int

scmrm_MakeFormat Unit (sap, cdbp)

regi ster struct special _args *sap;

regi ster struct dir_format_cdb6 *cdbp;

{

regi ster struct special _cnd *spc = sap->sa_spc;

12-14 SCSI/CAM Special I/O Interface

12.5.30

regi ster struct format_parans *fp; (4

fp = (struct format_paranms *) sap->sa_iop_buffer;
cdbp- >opcode = (u_ char) spc- >spc_cnd_code;
if (fp->fp_defects == VENDOR DEFECTS) { [5
cdbp->fmt _data = 1;
cdbp->cnp_list = 1;
} else if (fp->fp_defects == KNOM_DEFECTS) {
cdbp->fm _data = 1;
cdbp->cnp_list = 0;
} else if (fp->fp_defects == NO _DEFECTS) {
cdbp->fmt _data = 0;
cdbp->cnp_| i st 0;

}

cdbp->defect _list_fmnt

cdbp- >vendor _specific
cdbp->i nterl eavel = O;
cdbp->interl eave0 = fp->fp_interl eave;
return (SUCCESS);

fp->fp_format; [6
fp->fp_pattern;

This line declares a register structure pointer to a Specia 1/0O Argument Structure
that controls processing of the 1/O command. The Special 1/0 Argument
Structure is defined in the / usr / sys/ h/ cam speci al . h file.

This line declares a register structure pointer to a structure containing the format
for a 6-byte CDB. The structure is defined in the
{usr/sys/ h/scsi_direct. hfile

This line declares a register structure pointer to a Special 1/0 Control Commands
Structure that saves the SPECIAL_CMD after it islocated in the sa_spc
member of the Specia I/O Argument Structure. The Specia /O Control
Commands Structure is defined in the/ usr / sys/ h/ cam speci al . h file.

This line declares a register structure pointer to a structure containing the format
parameters for a SCSI FORMAT UNIT command. The structure is defined in the
[usr/sys/ h/rzdi sk. hfile

This section tests the contents of the f p_def ect s member of the format
parameters structure to determine the contents of thef mt _data and cnp_|l i st
members of thedi r _f or mat _cdb6 structure.

This section assigns the contents of the di r _f or mat _cdb6 membersto the
equivalent members of the f or mat _par anms structure.

Sample Function to Set Up Parameters
The following sample function illustrates how to use the SCSI/CAM specia 1/0O

interface to set up parameters for a SCSI FORMAT_UNIT command:

/**

*

* scrm_SetupFormat Unit() - Set up Format Unit Parameters.

*

I nput s: sap = Special conmmand argument bl ock pointer.
data = The address of input/output arguments.

Ret urn Val ue:
Returns O for SUCCESS, or error code on failures.

*
*
*
*
*

*
*
*
*
*
*
*
*
* *
*

kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkkkkkhkkkkkkkkkkkkkkk*x*x

/
int

SCSI/CAM Special I/O Interface 12-15

scmm_Set upFormat Unit (sap, data)
regi ster struct special _args *sap;
caddr _t data;

{

struct forn2_defect_list_header defect_header;
regi ster struct forn2_defect_list_header *ddh = &defect_header;
regi ster struct format_parans *fp;

fp = (struct format_parans *) data;
sap->sa_user_buffer = (caddr_t) fp->fp_addr; [4

/*
* For diskettes, there are no defect |ists.
*/
if (((sap->sa_user_length = fp->fp_length) == 0) &&
(f p->fp_defects == NO DEFECTS)) {
sap->sa_cnd_flags & ~(SPC_I NOUT | SPC_DATA | NOUT);
return (SUCCESS) ;
}

/*
* Ensure the defect |list address is valid (user address).
*/
if (((sap->sa_flags & SA_SYSTEM REQUEST) == 0) &&
I'l'S_KUSEQ f p->fp_addr)) {
return (ElINVAL);
}

/*

* The format parameters structure is not set up with the length

* of the defect lists as it should be. Therefore, we nust copy

* in the defect list header then calculate the defect list |ength.

*/

if (copyin ((caddr_t)fp->fp_addr, (caddr_t)ddh, sizeof(*ddh)) != 0) {
return (EFAULT);

}

sap->sa_user_length = (int) ((ddh->defect_lenl << 8) +
ddh- >def ect _| en0 + sizeof (*ddh));

return (SUCCESS);

This line declares a register structure pointer to a Specia 1/0O Argument Structure
that controls processing of the 1/O command. The Special 1/0 Argument
Structure is defined in the / usr / sys/ h/ cam speci al . h file.

This line declares a structure pointer to a structure containing the format defect
list header for a SCSI FORMAT UNIT command. The structure is defined in the
[usr/sys/ h/rzdi sk. hfile

This line declares a register structure pointer to a structure containing the format
parameters for a SCSI FORMAT UNIT command. The structure is defined in the
[usr/sys/ h/rzdi sk. hfile

This line assigns the user buffer data address to the defect list address.

12.6 SCSI/CAM Special I/O Control Command

A SCSI/CAM special 1/0 control command has been defined to provide a single
standard method of implementing new SCSI/CAM specia I/O commands. A
subcommand member is used to determine the specific SCSI command being issued.

12-16 SCSI/CAM Special I/O Interface

12.6.1

The SCSI/CAM specia 1/0 control command structure can be used both in porting
applications using existing SCSI 1/0O control commands and in implementing new
SCSI commands. Applications can be modified to use this structure to gain control
over subsystem processing. For example, the SCSI/CAM special 1/0 command flags
can be set to control error recovery and error reporting; sense data can be returned
automatically by specifying a sense buffer address and length; and the command
timeout and retry limit can be specified.

A member in the Special 1/0 Control Commands Structure must be initialized to zero
if adefault valueis desired. A nonzero member is used to override the default value.

The SCSI /0O control command and its associated structure and definitions are
included in thefile/ usr/ sys/ h/ scsi _speci al . h. Thescsi _speci al
structure is defined as follows:

/*

* Structure for Processing Special |/0 Control Commands.

*/

struct scsi_special {
u_long sp_flags; /* The special command flags */
dev_t sp_dev; /* Device major/mnor nunber */
u_char sp_unit; /* Device |ogical unit nunber */
u_char sp_bus; /* SCSI host adapter bus nunber */
u_char sp_target; /* SCSI device target nunber */
u_char sp_lun; /* SCSI |ogical unit nunber */
int sp_sub_command; /* The subcommand */
u_l ong sp_cnd_paraneter; /* Command paranmeter (if any) */
int sp_i op_| engt h; /* Paraneters buffer length */
caddr _t sp_iop_buffer; /* Paraneters buffer address */
u_char sp_sense_l ength; /* Sense data buffer length */
u_char sp_sense_resid; /* Sense data residual count */
caddr _t sp_sense_buffer; /* Sense data buffer address */
int sp_user_| engt h; /* User data buffer length */
caddr _t sp_user_buffer; /* User data buffer address */
int sp_ti meout; /* Timeout for this comrand */
u_char sp_retry_count; /* Retrys performed on command */
u_char sp_retry_limt; /* Times to retry this command */
int sp_xfer_resid; /* Transfer residual count */

}s

This structure is used with the following SCSI Specia /0O Control Command:
#defi ne SCSI _SPECI AL _ITOAR(" p’, 100, struct scsi_special)

The sp_flags Member

This member controls the actions of the SCSI/CAM specia |/O interface. The low
order three bits can be set by the calling routine. The other bits are reserved for use
by SCSI/CAM peripheral drivers and the SCSI/CAM special 1/0 interface routines.
The bits that can be set by the calling routine are described as follows:

Flag Name Description

SA NO ERROR_RECOVERY Do not perform error recovery.
SA NO _ERROR _LOGE NG Do not log error messages.
SA NO SLEEP | NTR Do not alow sleep interrupts.

SCSI/CAM Special I/O Interface 12-17

12.6.2 The sp_dev, sp_unit, sp_bus, sp_target, and sp_lun Members

These members pass the device major/minor number pair and the device bus, target,
LUN, and unit information to the SCSI/CAM specia 1/O interface when the I/O
control command is not being issued to a SCSI/CAM peripheral device driver. These
members provide the necessary hooks to allow software pseudodevice drivers, such
as the User Agent driver, to send requests to the SCSI/CAM specia 1/0 interface.

12.6.3 The sp_sub_command Member

This member contains the SCSI/CAM special 1/0 subcommand code of the SCSI
command to execute. This member can aso be defined as an 1/0 control command
to support backwards compatibility with preexisting SCSI 1/O control commands.
The SCSI/CAM specia 1/0 interface detects an 1/O control command, as opposed to
a subcommand code, and coerces the arguments into the appropriate format for

processing by the support routines associated with that 1/O control command. The
predefined subcommand codes are listed in the file
/usr/sys/ h/scsi_special.h.

12.6.4 The sp_cmd_parameter Member

This member contains the command parameter, if any, for the SCSI special 1/0
command being issued. This parameter is specific to the special command

processing routines and is not used directly by the SCSI/CAM specia 1/O interface
routines.

12.6.5 The sp_iop_length and sp_iop_buffer Members

These members contain the 1/O parameters buffer and length for those commands that
require additional parameters. These members are used by the special command
processing routines to obtain and set up additional information prior to issuing the
SCSI command. For example, the SCSI FORMAT_UNIT 1/O control command
passes af or mat _par ans structure that describes the format, length, pattern, and
interleave information for the defect list. This information is used by the

scmm_MakeFor nmat Uni t support routine when creating the CDB for this
command.

12.6.6 The sp_sense_length, sp_sense_resid, and sp_sense_buffer
Members

These members contain the buffer, length, and residual byte count for the sense data
that is returned when device errors occur. If these members are specified, then the
last sense datais saved in the Peripheral Device Structure from which it can be
obtained by the Digital-specific SCSI_GET_SENSE 1/O control command.

12.6.7 The sp_user_length and sp_user_buffer Members

These members contain the user buffer and length for those commands that require
them. The SCSI/CAM special 1/0 interface performs verification, locking, and
unlocking of the user pages when processing the command.

12-18 SCSI/CAM Special I/O Interface

12.6.8 The sp_timeout Member

This member can be specified to override the default timeout, in seconds, which is
usually taken from the Special Command Entry Structure.

12.6.9 The sp_retry_count Member

This member contains the number of retrys that were required to successfully
complete the request. It isfilled in by the SCSI/CAM special 1/0 interface after
processing the command.

12.6.10 The sp_retry_limit Member

This member contains the maximum number of times a command is retried. The
only retries automatically handled by the SCSI/CAM special 1/O interface are a sense
key of Unit Attention, or a SCSI bus status of Bus Busy or Reservation Conflict. All
other error conditions must be handled by the calling routine.

12.6.11 The sp_xfer_resid Member

This member isfilled in with the transfer residual byte count when a command
completes. The SCSI/CAM specia 1/O interface copies the cam r esi d member of
the SCSI 1/0O CCB to this member before completing the request.

12.6.12 Sample Function to Create an I/O Control Command

The following sample function illustrates how to use the SCSI/CAM specia 1/0O
interface to create an 1/0 control command:

/***

*

* Dol oct! () Do An |/ 0O Control Conmmand.
*

* Description:
* This routine issues the specified I/O control conmand to the

*

file descriptor associated with the CD- ROM devi ce dri ver.

*
*
* | nputs: cmd = The I/O control commrand.

* argp = The conmand argunent to pass.

* nsgp = The nessage to display on errors.
*
*
*

Ret urn Val ue:
Returns 0 / -1 = SUCCESS / FAI LURE.

*
khkkhkkhkhkhkhkkhkhhkhkhkhkdhhhkhhhhhhdhhhkhdhhhhdhhrhkhdhhhkhkdhhrhhdhhhrdhrxdkdhhhrhkrdhrxxhkxx
int

Dol octl (cnd, argp, nsgp)

int cnd;

caddr _t argp;

caddr _t msgp;

{
int status;
#i f defi ned(CAM
struct scsi_special special _cnd,;
regi ster struct scsi_special *sp = &special _cnd;
regi ster struct extended_sense *es;

es = (struct extended_sense *)SenseBufPtr;

SCSI/CAM Special I/O Interface 12-19

*

*

*
*
*

*
*
*
*
*
*
*
*
*
*

/

bzero ((char *) sp, sizeof(*sp));

bzero ((char *) es, sizeof(*es));

sp->sp_sub_comrand = cnd;

sp->sp_sense_|l ength = sizeof (*es);

sp->sp_sense_buffer = (caddr_t) es;

sp->sp_iop_length = ((cmd & ~(_IOC_INQUT| _IOC_VA D)) >> 16);
sp->sp_i op_buffer = argp;

if ((status = ioctl (CdrFd, SCSI_SPECIAL, sp)) < 0) {

perror (msgp);

if (es->snskey) {
cdbg_DunpSenseData (es);

}

}
#else /* !defined(CAM */
if ((status = ioctl (CdrFd, cnd, argp)) < 0) {
perror (nsgp);

}
#endif /* defined(CAM */
return (status);
}

This line declares a structure to process a specia 1/0 control command. The
scsi _speci al structureis defined inthe/ usr/ sys/ h/ scsi _special . h
file.

This line declares a structure defining the extended sense format for a REQUEST
SENSE command. The ext ended_sense structure is defined in the
{usr/sys/ h/rzdi sk. hfile

This section assigns the program parametersto the speci al _cnd members.

Thisis a standard 1/0 control call issued from application code. The
SCSI_SPECIAL argument is defined inthe/ usr/ sys/ h/ scsi _speci al . h
file.

12.7 Other Sample Code

This section contains other driver code samples that use the SCSI/CAM specia 1/0
interface.

12.7.1 Sample Code to Open a Device

The following sample code illustrates how to use the SCSI/CAM specid 1/0
interface to open a CDROM device from a device driver:

/**

* *
* cdromopen() - Driver Entry Point to Open CD- ROM Devi ce. *
* *
* | nputs: dev = The devi ce maj or/ m nor nunber pair. *
* flags = The file open flags (read/wite/nodel ay). *
* *
* Qutputs: Returns O for Success or error code on Failure. *
* *
**/

cdrom open (dev, flags)

dev_t dev;

int flags;

{

regi ster PDRV_DEVI CE *pd;
DI R_READ_CAP_DATA read_capacity;

12—-20 SCSI/CAM Special I/O Interface

DI R_READ CAP_DATA *capacity = & ead_capacity;

pd = GET_PDRV_PTR(dev);
status = cdromread_capacity (pd, capacity, flags);

return (status);

}
/**
* *
* cdromread_capacity() - Obtain Disk Capacity Information. *
* *
* | nputs: pd = Pointer to peripheral driver structure. *
* capacity = Pointer to read capacity data buffer. *
* flags = The file open flags. *
* *
* Qut puts: Returns O for Success or error code on Failure. *
* *
)\'**********************/
int

cdromread_capacity (pd, capacity, flags)
PDRV_DEVI CE *pd;

DI R_READ_CAP_DATA *capacity;

int flags;

{

int status;

PRI NTD(DEV_BUS_| D(pd- >pd_dev), DEV_TARGET(pd->pd_dev),
DEV_LUN(pd- >pd_dev), CAMD CDROM [
("[%/ Y&/ %d] cdrom read_capacity: ENTRY - pd = Ox%, \
capacity = Ox%, flags = 0x%O0,
DEV_BUS | D(pd- >pd_dev), DEV_TARCET(pd->pd_dev),
DEV_LUN(pd- >pd_dev), pd, capacity, flags));

bzero ((char *)capacity, sizeof(*capacity));

status = ccmm_SysSpeci al Cnrd (pd- >pd_dev, SCSI _READ_CAPACI TY,
(caddr _t) capacity, flags, (CCB_SCSIIO *) 0, SA NO ERROR LOGAE NG ;

PRI NTD(DEV_BUS_| D(pd- >pd_dev), DEV_TARGET(pd->pd_dev),
DEV_LUN(pd- >pd_dev), CAMD_CDROM
("[%/ %/ %d] cdromread_capacity: EXIT - status = % (%)0,
DEV_BUS_| D(pd- >pd_dev), DEV_TARGET(pd->pd_dev),
DEV_LUN(pd- >pd_dev), status, cdbg SystenBtatus(status))); [6

return (status);

This line assigns a register to a Peripheral Device Structure pointer for the device
to be opened. The Peripheral Device Structure is defined in the
[usr/sys/ h/ pdrv. h file

This line declares a structure to contain the capacity data returned for the device.
The DIR_READ_CAP_DATA structure is defined in the
/usr/sys/ h/scsi_direct. hfile.

This line calls the GET_PDRV_PTR macro to return a pointer to the Peripheral
Device Structure for the device. The GET_PDRV_PTR macro is defined in the
[usr/sys/ h/ pdrv. h file

SCSI/CAM Special I/0O Interface 12-21

This section uses the bus, target, and lun information to be printed if the
CAMD_CDROM flag is set. The CAMD_CDROM flag is defined in the
[usr/sys/iol cam cam debug. h file.

This section calls the SCSI/CAM peripheral common routine
ccmm_SysSpeci al Cnd, to issue the SCSI I/0O command, passing the
major/minor device number pair for the device and the SCSI_READ_CAPACITY
i oct| command, which is defined inthe/ usr/ sys/ h/rzdi sk. h file. It
sets the SA_NO_ERROR_LOGGING flag, which is defined in the
[usr/ sys/ h/ cam speci al . h file for device drivers, and in the
/usr/sys/ h/ scsi _speci al . h file for application programs.

l6] This debug line callsthe cdbg_Syst enft at us routine, passing the status as
an argument.

12.7.2 Sample Code to Create a Driver Entry Point

The following sample code illustrates how to use the SCSI/CAM special 1/0
interface to create a driver entry point for 1/0 control commands:

/***

* *
* cdrom.ioctl() - Driver Entry Point for 1/0O Control Conmands. *
* *
* | nputs: dev = The device major/ mnor nunber pair. *
* cmd = The I/O control command code. *
* data = The |1/ O paraneters data buffer. *
* flags = The file open flags (read/ wite/nodel ay). *
* *
* Qut puts: Returns 0 for Success or error code on Failure. *
*
***/
int
cdrom.ioctl (dev, cnd, data, flags)
dev_t dev;

register int cnd;

caddr _t data;

int flags;

{
regi ster PDRV_DEVI CE *pd;
regi ster DI SK_SPECI FI C *cdi sk;
regi ster DEV_DESC *dd;

int status;

pd = GET_PDRV_PTR(dev);

dd = pd->pd_dev_desc;

cdi sk = (DI SK_SPECI FI C *) pd- >pd_speci fic;

switch (crmd) {
/* P.rocess Expected 1/ 0 Control Conmands */

defaul t :
/*
* Process Special /0 Control Commands.
*/
status = ccrm_DoSpeci al Cd (dev, cnd, data, flags,
(ccB_SCsl1o*) 0, 0);
br eak;

12—-22 SCSI/CAM Special I/O Interface

return (status);

This section reserves registers for pointers to a Peripheral Device Structure and a
Device Descriptor Structure, both of which are defined in the

[usr/sys/ h/ pdrv. h file, and to a DISK_SPECIFIC structure, which is
defined in the / usr/ sys/ i o/ cam cam di sk. h file.

This line calls the GET_PDRV_PTR macro to return a pointer to the Peripheral
Device Structure for the device. The GET_PDRV_PTR macro is defined in the
/usr/sys/h/pdrv.h

This section calls the SCSI/CAM peripheral common routine,
ccm_DoSpeci al Cnd, to issue the special 1/0 command.

SCSI/CAM Special I/0O Interface 12—-23

Header Files Used by Device Drivers

A

This appendix contains the following:

e A list of header files used by all device drivers
e A list of header files used by SCSI/CAM periphera device drivers
e The contents of the / usr/ sys/ h/ cam h file.

Table A-1 lists the header files used by all SCSI device drivers, with a short
description of the contents of each. For convenience, the full path name for the file
is given and the files are listed in alphabetical order. However, device driver code
should be written to include header files by specifying the relative path name instead
of the full path name. For example, / usr/ sys/ h/ buf . h, isthe full path name
for thefile buf. h, but device driver code to include buf . h should be written as

follows;
#i nclude ../ h/buf.h

Table A-1: Header Files Used by Device Drivers

Header File

Contents

[usr/sys/ h/buf.h

/usr/sys/hl/clist.h

/usr/sys/h/conf.h

/usr/sys/ h/devio.h
fusr/sys/h/dir.h

/usr/sys/h/errno. h

lusr/sys/h/file.h

Definesthe buf structure used to pass 1/0
requests to the st r at egy routine of a
block driver.

Defines the cbl ock structure used to hold
clist data

Defines the bdevsw (block device
switch), cdevsw (character device
switch), and | i nesw (tty control line
switch) structures. Thisfileisincluded in
the source file

[usr/ sys/ machi ne/ conmon/ conf . c.

Defines common structures and definitions
for devicedriversand i oct | .

Defines structures and macros that operate
on directories.

Defines the error codes returned to a user
process by adriver. The codes El O,

ENXI O, EACCES, EBUSY, ENODEV, and
El NVAL are used by driver routines.

Defines I/0O mode flags supplied by user
programsto open and fcntl system
calls.

Table A-1: (continued)

Header File

Contents

/usr/sys/ h/inode. h
fusr/sys/hl/ioctl.h

[usr/sys/ hl/kernel.h
[usr/sys/ h/ map. h

[usr/sys/ h/ nmbuf.h

fusr/sys/h/ntio.h
[usr/sys/ h/param h

[usr/sys/h/proc.h

/usr/sys/h/rzdisk.h

/usr/sys/h/scsi_all.h

/usr/sys/h/scsi_cdbs. h

lusr/sys/hl/scsi_direct.h

/usr/sys/ h/scsi_opcodes. h

/usr/sys/ h/scsi_phases. h

/usr/sys/h/scsi_rodirect.h

/usr/sys/ h/scsi_sequential.h

/usr/sys/h/smp_l ock. h

fusr/sys/h/systmh

lusr/sys/h/tine.h

A-2 Header Files Used by Device Drivers

Defines values associated with the generic
file system.

Defines commands for i oct | routinesin
different drivers.

Defines global variables used by the kernel.

Defines structures associated with resource
allocation maps.

Defines constants related to memory
allocation and macros used for type
conversion.

Defines commands and structures for
magnetic tape operations.

Defines constants and macros used by the
ULTRIX kernel.

Definesthe pr oc structure, which defines
a user process. Thisfileis not usualy
included by device driver source files.

Definitions and data structures for SCSI
disks.

Definitions and data structures that apply to
al SCSI device types according to Chapter
7 of the SCSI-2 specification.

Definitions and data structures that apply to
Command Descriptor Blocks.

Definitions and data structures that apply to
al SCSI direct-access devices according to
Chapter 8 of the SCSI-2 specification.

Definitions of operation codes according to
Chapter 6 of the SCSI-2 specification.

Definitions of SCSI bus phases according to
Chapter 5 of the SCSI-2 specification.

Definitions and data structures that apply to
read-only direct-access devices according to
Chapter 13 of the SCSI 2 specification.

Definitions and data structures that apply to al
SCSI sequential-access devices according to
Chapter 9 of the SCSI-2 specification.

Defines variables and structures for managing
locks for symmetric multiprocessing.

Defines global variables, such as the number of
entries in the block switch and the number of
character switch entries. It aso defines the
structure of the system-entry table.

Defines structures and symbolic names used by
time-related routines and macros.

Table A-1: (continued)

Header File

Contents

fusr/sys/h/tty.h

/usr/sys/h/types. h

/usr/sys/h/uio.h

/usr/sys/ h/user.h

fusr/sys/h/vmh

/usr/sys/h/vimac. h

Defines parameters and structures associated
with interactive terminals; also defines the

cli st structure. Thisfile can be included by
any device driver that usesthe cl i st
structure.

Defines system data types and major and minor
device macros.

Definition of the ui o structure, some symbolic
names, and an enumerated data type that can be
assigned the value Ul O_READ or

U O WRI TE.

Defines the user structure that describes a
user process and passes information about 1/0
reguests to device drivers.

Contains a sequence of include statements that
includes al of the virtual memory-related files.
Including this file is a quick way of including
all of the virtual memory-related files.

Definitions for the vt okpf numkernel routine.

[usr/ sys/ machi ne/ conmon/ cpuconf. h

Defines a variety of macros, constants, and
structures used by the system.

Table A-2 lists the header files used by SCSI/CAM peripheral device drivers, along
with a short description of the contents of each. For convenience, the full path name
for the file is given and the files are listed in alphabetical order.

Table A-2: Header Files Used by SCSI/CAM Drivers

Header File

Contents

/usr/sys/h/cam h
/usr/sys/h/cam generic.h
/usr/sys/h/cam | ogger.h
/usr/sys/h/cam speci al . h
/usr/sys/h/dec_camh
fusr/sys/h/pdrv.h

fusr/sys/h/scsi_special.h

Definitions and data structures for the CAM
subsystem interface.

Examples of definitions and data structures
for a CAM generic device driver.

Definitions and data structures for CAM
subsystem error logging.

Definitions for the SCSI/CAM specia /O
interface.

Digital-spcific definitions and data
structures for the CAM routines.

Definitions and data structures for the
SCSI/CAM common routines.

Definitions and data structures for the
SCSI/CAM specia 1/O contral interface.

Header Files Used by Device Drivers A-3

Table A-2: (continued)

Header File

Contents

[usr/sys/ hfuagt.h

/usr/sys/h/ xpt.h

/usr/sys/iolcam camconfig.h

/usr/sys/iol caml cam debug. h
/usr/sys/iol cami cam di sk. h

/usr/sys/iolcamicamerrlog.h
/usr/sys/iol cam cam t ape. h

/usr/sys/iolcanfccfg.h

/usr/sys/iolcanmidne. h

Definitions and data structures for the User
Agent Device Driver (UAGT) that controls
access to the CAM subsystem.

Definitions and data structures for the
Transport Layer, XPT, in the CAM
subsystem.

SCSI/CAM periphera device driver
configuration definitions.

CAM debugging macros.

Definitions and data structures for
SCSI/CAM disk devices.

CAM error logging macros.

Definitions and data structures for
SCSI/CAM tape devices.

Definitions and data structures for the
Configuration driver module in the CAM
subsystem.

Definitions and data structures needed by
the CAM SIM Data Mover Engine (DME).

/usr/sys/iolcamidnme_3m n_94 dna.h

Definitions and data structures needed by the
CAM SIM Data Mover Engine (DME) for the
DECstation 5000, Model 100 series.

/usr/sys/iolcam dme_pnmax_sii_ramh

Definitions and data structures needed by the
CAM SIM Data Mover Engine (DME) for the
DECstation 2100 and DECstation 3100.

/usr/sys/iolcam dme_turbo_94 ram h

/usr/sys/iolcanmisimh
/usr/sys/iolcanisinm4. h

lusr/sys/iolcanmisintirg.h

/usr/sys/iolcam si mconmmon. h

/usr/sys/iolcam simconfig.h
lusr/sys/iolcamisimsii.h

/usr/sys/iolcamisimtarget.h

A—4 Header Files Used by Device Drivers

Definitions and data structures needed by the
CAM SIM Data Mover Engine (DME) for the
DECstation 5000, Model 200 series.

Definitions and data structures needed by the
CAM SIM-related files.

Definitions and data structures needed by the
NCR53C94 SIM module.

Definitions and data structures needed by the
circular-queue-related functions contained in the
Digital CAM subsystem.

Definitions common to all the SIM-related
source files.

CAM SIM subsystem configuration definitions.

Definitions and data structures needed by the
Digital Sl SIM module.

Definitions needed for target-mode operation of
the SIM.

Table A-2: (continued)

Header File Contents

fusr/sys/iolcam simxpt.h Macros and definitions that are specific to the
SIM XPT component of the USCA subsystem.

The contents of / usr/sys/ h/ cam h follow:
/* camh Version 1.09 Jul . 18, 1991 */

/* This file contains the definitions and data structures for the CAM
Subsysteminterface. The contents of this file should match what
data structures and constants that are specified in the CAM docunent,
X3T9.2/90-186 Rev 2.5 that is produced by the SCSI-2 conm ttee.

/* ___ */
/* Defines for the XPT function codes, Table 8-2 in the CAM spec. */

/* Common function comrands, 0x00 - OxOF */

#define XPT_NOOP 0x00 /* Execute Nothing */

#define XPT_SCSI _| O 0x01 /* Execute the requested SCSI 10 */
#define XPT_CDEV_TYPE 0x02 /* Get the device type information */
#define XPT_PATH INQ O0x03 /* Path Inquiry */

#define XPT_REL_SIMQ 0x04 /* Release the SIMqueue that is frozen */
#define XPT_SASYNC CB 0x05 /* Set Async call back paraneters */
#define XPT_SDEV_TYPE O0x06 /* Set the device type information */

/* XPT SCSI control functions, 0x10 - Ox1F */

#define XPT_ABORTOx10 /* Abort the selected CCB */

#define XPT_RESET _BUS 0x11 /* Reset the SCSI bus */
#define XPT_RESET_DEV 0x12 /* Reset the SCSI device, BDR */
#define XPT_TERM. | O 0x13 /* Terminate the |1/0O process */

/* HBA engi ne commands, 0x20 - Ox2F */

#define XPT_ENG | NQ 0x20 /* HBA engine inquiry */

#define XPT_ENG EXEC 0x21 /* HBA execute engi ne request */

/* Target node commands, 0x30 - Ox3F */

#define XPT_EN_LUN 0x30 /* Enable LUN, Target node support */
#define XPT_TARCET_I O 0x31 /* Execute the target IO request */

#define XPT_FUNC Ox7F [/* TEMPLATE */
#defi ne XPT_VUN QUE 0x80 /* Al the rest are vendor unique conmands */

/* General allocation |length defines for the CCB structures. */

#define | OCDBLEN 12 /* Space for the CDB bytes/pointer */

#defi ne VUHBA 14 /* Vendor Unique HBA | ength */
#define SIM.ID 16 /* ASCI| string len for SIMID */
#define HBA_ID 16 /* ASCI| string len for HBA ID */
#define SI M PRI V50 /* Length of SIMprivate data area */

/* Structure definitions for the CAM control blocks, CCB s for the
subsystem */

/* Common CCB header definition. */
typedef struct ccb_header

{
struct ccb_header *mny_addr; /* The address of this CCB */

Header Files Used by Device Drivers A-5

u_short camcchb_l| en; /* Length of the entire CCB */
u_char cam func_code; /* XPT function code */

u_char camstatus; /* Returned CAM subsystem status */
u_char cam hrsvdO; /* Reserved field, for alignnent */

u_char cam path_i d; /* Path ID for the request */
u_char camtarget_id; /* Target device ID */
u_char camtarget_|un; /* Target LUN nunber */

u_long camflags; /* Flags for operation of the subsystem */
} CCB_HEADER,

/* Common SCSI functions. */

/* Union definition for the CDB space in the SCSI I/O request CCB */
typedef union cdb_un

{
u_char *camcdb_ptr; /* Pointer to the CDB bytes to send */
u_char cam cdb_bytes[| OCDBLEN]; /* Area for the CDB to send */

} CDB_UN,

/* Get device type CCB */
typedef struct cch_getdev

CCB_HEADER cam ch; /* Header information fields */
char *cam.i ng_dat a; /* Ptr to the inquiry data space */
u_char cam pd_type; /* Periph device type fromthe TLUN */

} CCB_GETDEV;

/* Path inquiry CCB */

typedef struct ccb_pathing

{
CCB_HEADER cam ch; /* Header information fields */
u_char camyversion_num /* Version nunber for the SIMHBA */
u_char camhba_inquiry; /* Mmc of INQbyte 7 for the HBA */
u_char camtarget_sprt; /* Flags for target node support */
u_char cam hba_ni sc; /* Msc HBA feature flags */
u_short cam hba_eng_cnt; /* HBA engi ne count */
u_char camvuhba_flags[VUHBA]; /* Vendor unique capabilities */

u_long camsimpriv; /* Size of SIMprivate data area */
u_l ong cam async_flags; /* Event cap. for Async Call back */
u_char cam hpat h_i d; /* Highest path IDin the subsystem */
u_char caminitiator_id; /* ID of the HBA on the SCSI bus */
u_char cam prsvdo; /* Reserved field, for alignnent */
u_char cam prsvdl; /* Reserved field, for alignment */
char camsimyvid[SIMID]; /* Vendor 1D of the SIM?*/

char cam hba_vid[HBA_ID]; /* Vendor 1D of the HBA */

u_char *cam osd_usage; /* Ptr for the OSD specific area */
} CCB_PATHI NQ

/* Rel ease SIM Queue CCB */
typedef struct ccb_relsim

{
CCB_HEADER cam ch; /* Header information fields */
} CCB_RELSI M

/* SCSI I/0O Request CCB */
typedef struct cchb_scsiio

{
CCB_HEADER cam ch; /* Header information fields */
u_char *cam pdrv_ptr; /* Ptr used by the Peripheral driver */
CCB_HEADER *cam next _cchb; /* Ptr to the next CCB for action */
u_char *camreq_map; /* Ptr for mapping info on the Req. */
voi d (*cam cbfcnp)(); /* Cal | back on conpletion function */
u_char *camdata_ptr; /* Pointer to the data buf/SG list */
u_|l ong cam dxfer_| en; /* Data xfer length */
u_char *cam sense_ptr; /* Pointer to the sense data buffer */

A-6 Header Files Used by Device Drivers

u_char cam sense_| en; /* Num of bytes in the Autosense buf */

u_char camcdb_|en; /* Nunber of bytes for the CDB */
u_short camsglist_cnt; /* Numof scatter gather list entries */
u_|l ong cam osd_r svdo; /* OSD Reserved field, for alignment */

u_char cam scsi_status; /* Returned scsi device status */
u_char camsense_resid; /* Autosense resid length: 2's conp */
u_char camosd_rsvdl[2]; /* OSD Reserved field, for alignnent */

l ong camresid; /* Transfer residual length: 2's conmp */
CDB_UN cam cdb_i o; /* Union for CDB bytes/pointer */
u_|l ong camti nmeout; /* Tinmeout value */
u_char *cam nsg_ptr; /* Pointer to the nmessage buffer */
u_short cam nsgb_| en; /* Num of bytes in the nmessage buf */
u_short camvu_fl ags; /* Vendor unique flags */
u_char camtag_action; /* What to do for tag queuing */
u_char cam.i orsvdO[3] ; /* Reserved field, for alignnent */
u_char camsimpriv[SIMPRV]; /* SIMprivate data area */

} CCB_SCSII O

/* Set Async Cal | back CCB */
typedef struct cch_setasync

{
CCB_HEADER cam ch; /* Header information fields */
u_l ong cam async_flags; /* Event enables for Callback resp */
voi d (*cam async_func) (); /* Async Call back function address */
u_char *pdrv_buf; /* Buffer set aside by the Per. drv */
u_char pdrv_buf_|en; /* The size of the buffer */

} CCB_SETASYNC,

/* Set device type CCB */
typedef struct cch_setdev

CCB_HEADER cam ch; /* Header information fields */

u_char cam dev_type; /* Val for the dev type field in EDT */
} CCB_SETDEV;
/* SCSI Control Functions. */

/* Abort XPT Request CCB */
typedef struct cch_abort

CCB_HEADER cam ch; /* Header information fields */
CCB_HEADER *cam abort _ch; /* Pointer to the CCB to abort */
} CCB_ABORT,;

/* Reset SCSI Bus CCB */
typedef struct ccb_resetbus

{
CCB_HEADER cam ch; /* Header information fields */
} CCB_RESETBUS;

/* Reset SCSI Device CCB */
typedef struct ccb_resetdev

{
CCB_HEADER cam ch; /* Header information fields */
} CCB_RESETDEV,

/* Terminate |I/O Process Request CCB */
typedef struct ccb_termo
{
CCB_HEADER cam ch; /* Header information fields */
CCB_HEADER *cam term o_ch; /* Pointer to the CCB to term nate */
} CCB_TERM O

/* Target node structures. */

Header Files Used by Device Drivers A—7

typedef struct ccb_en_lun

{
CCB_HEADER cam ch; /* Header information fields */
u_short camgrp6_| en; /* Group 6 VU CDB | ength */
u_short camgrp7_|en; /* Group 7 VU CDB | ength */

u_char *camecch_listptr; /* Pointer to the target CCB list */
u_short camcch_listcnt; /* Count of Target CCBs in the list */
} CCB_EN LULN,
/* HBA engine structures. */

typedef struct ccb_eng_inq

{
CCB_HEADER cam ch; /* Header information fields */
u_short cam eng_num /* The nunber for this inquiry */
u_char cam eng_type; /* Returned engine type */
u_char cam eng_al go; /* Returned al gorithmtype */
u_l ong cam eng_nenory; /* Returned engi ne nenory size */

} CCB_ENG_I NQ

typedef struct ccb_eng_exec /* NOTE: must match SCSI1O size */

{
CCB_HEADER cam ch; /* Header information fields */
u_char *cam pdrv_ptr; /* Ptr used by the Peripheral driver */
u_|l ong cam engr svdo; /* Reserved field, for alignment */
u_char *camreq_nap; /* Ptr for mapping info on the Req. */
voi d (*cam cbfcnp)(); /* Cal | back on conpletion function */
u_char *camdata_ptr; /* Pointer to the data buf/SG list */
u_l ong cam dxfer_len; /* Data xfer length */
u_char *camengdata_ptr; /* Pointer to the engine buffer data */
u_char cam engrsvdl; /* Reserved field, for alignment */
u_char cam engrsvd2; /* Reserved field, for alignnent */
u_short camsglist_cnt; /* Numof scatter gather list entries */
u_l ong cam dmax_| en; /* Destination data maxi mum | ength */
u_l ong cam dest_| en; /* Destination data | ength */
| ong camsrc_resid; /* Source residual length: 2's conp */
u_char camengrsvd3[12]; /* Reserved field, for alignnent */
u_l ong camti neout; /* Tinmeout value */
u_l ong cam engrsvd4; /* Reserved field, for alignnent */
u_short cam eng_num /* Engi ne nunber for this request */
u_short camvu_fl ags; /* Vendor unique flags */
u_char cam engrsvd>5; /* Reserved field, for alignnent */
u_char camengrsvd6[3]; /* Reserved field, for alignnent */
u_char camsimpriv[SIMPRV]; /* SIMprivate data area */

} CCB_ENG EXEC;

/* The CAM SI M ENTRY definition is used to define the entry points for
the SIMs contained in the SCSI CAM subsystem Each SIMfile wll
contain a declaration for it’'s entry. The address for this entry wll
be stored in the camconftbl[] array along will all the other SIM
entries. */

typedef struct camsimentry
{
long (*siminit)(); /* Pointer to the SIMinit routine */
long (*sim.action)(); /* Pointer to the SIM CCB go routine */
} CAM SI M ENTRY;

/* Defines for the CAMstatus field in the CCB header. */
#defi ne CAM REQ | NPROG 0x00 /* CCB request is in progress */

#def i ne CAM_REQ CWP 0x01 /* CCB request conpleted wout error */
#def i ne CAM_REQ ABORTED 0x02 /* CCB request aborted by the host */

A-8 Header Files Used by Device Drivers

#define CAM UA_ ABORT 0x03 /* Unable to Abort CCB request */

#defi ne CAM_REQ CMP_ERR 0x04 /* CCB request conpleted with an err */
#defi ne CAM BUSY 0x05 /* CAM subsystemis busy */

#defi ne CAM REQ | NVALI D 0x06 /* CCB request is invalid */

#defi ne CAM_PATH_I NVALI DOx07 /* Path ID supplied is invalid */

#defi ne CAM _DEV_NOT_THEREOx08 /* SCSI device not installed/there */
#define CAM UA TERM O 0x09 /* Unable to Terminate I/O CCB req */

#defi ne CAM_SEL_TI MEQUT Ox0A /* Target selection tineout */

#defi ne CAM_CVD_TI MEOUT 0x0B /* Command tineout */

#defi ne CAM_MSG_REJECT_RECOx0D /* Message reject received */

#def i ne CAM_SCSI _BUS_RESETOxOE /* SCSI bus reset sent/received */
#defi ne CAM_UNCOR_PARI TYOXOF /* Uncorrectable parity err occurred */

#defi ne CAM_AUTOSENSE_FAI LOx10 /* Aut osense: Request sense cnd fail */
#defi ne CAM_NO_HBA 0x11 /* No HBA detected Error */

#defi ne CAM DATA RUN _ERROx12 /* Data overrun/underrun error */

#defi ne CAM_UNEXP_BUSFREEOx13 /* Unexpected BUS free */

#def i ne CAM_SEQUENCE_FAI LOx14 /* Target bus phase sequence failure */
#defi ne CAM CCB_LEN ERR 0x15 /* CCB length supplied is inadequate */
#def i ne CAM_PROVI DE_FAI LOx16 /* Unable to provide requ. capability */
#define CAM BDR_SENT 0x17 /* A SCSI BDR nsg was sent to target */

#defi ne CAM_ REQ TERM O 0x18 /* CCB request term nated by the host */

#defi ne CAM_LUN_I NVALI D 0x38 /* LUN supplied is invalid */

#define CAM TI D_| NVALI D 0x39 /* Target ID supplied is invalid */
#defi ne CAM_FUNC_NOTAVAI LOx3A /* The requ. func is not available */
#define CAM_NO NEXUS 0x3B /* Nexus is not established */

#define CAM. || D_| NVALI D Ox3C /* The initiator IDis invalid */

#define CAM CDB_RECVD Ox3E /* The SCSI CDB has been received */
#defi ne CAM_SCSI_BUSY Ox3F /* SCSI bus busy */

#define CAM SIM QFRZN 0x40 /* The SIM queue is frozen wthis err */

#def i ne CAM_AUTOSNS_VALI DOx80 /* Autosense data valid for target */
#defi ne CAM_STATUS_MASK Ox3F /* Mask bits for just the status # */
5 * [

/* Defines for the CAMflags field in the CCB header. */

#defi ne CAM DI R_RESV 0x00000000 /* Data direction (00: reserved) */
#define CAMD R_IN 0x00000040 /* Data direction (01: DATAIN */
#define CAM DI R _ OQUT 0x00000080 /* Data direction (10: DATA QUT) */
#def i ne CAM DI R_NONE 0x000000C0 /* Data direction (11: no data) */

#defi ne CAM DI S_AUTOSENSE 0x00000020 /* Di sabl e autosense feature */

#defi ne CAM SCATTER _VALI D 0x00000010 /* Scatter/gather list is valid */
#define CAM DI S CALLBACK 0x00000008 /* Disable callback feature */

#define CAM CDB_LI NKED 0x00000004 /* The CCB contains a |inked CDB */
#defi ne CAM QUEUE_ENABLE 0x00000002 /* SIM queue actions are enabled */
#defi ne CAM CDB_PO NTER 0x00000001 /* The CDB field contains a pointer */

#define CAM DI S_DI SCONNECT 0x00008000 /* Di sabl e di sconnect */

#define CAM_I NI TI ATE_SYNC 0x00004000 /* Attenpt Sync data xfer, and SDTR */
#define CAM DI S_SYNC 0x00002000 /* Disable sync, go to async */

#defi ne CAM_SI M_QHEAD 0x00001000 /* Place CCB at the head of SIMQ */
#define CAM SI M QFREEZE 0x00000800 /* Return the SIMQto frozen state */
#define CAM SIM QFRZDIS 0x00000400 /* Disable the SIMQ frozen state */
#defi ne CAM_ENG_SYNC 0x00000200 /* Flush resid bytes before cnplt */

#defi ne CAM_ENG_SCLI ST 0x00800000 /* The SGlist is for the HBA engine */
#defi ne CAM CDB_PHYS 0x00400000 /* CDB pointer is physical */

#def i ne CAM _DATA_PHYS 0x00200000 /* SG Buffer data ptrs are physical */
#defi ne CAM SNS BUF_PHYS 0x00100000 /* Autosense data ptr is physical */
#defi ne CAM_MSG BUF_PHYS 0x00080000 /* Message buffer ptr is physical */
#defi ne CAM_NXT_CCB_PHYS 0x00040000 /* Next CCB pointer is physical */
#defi ne CAM CALLBCK_PHYS 0x00020000 /* Callback func ptr is physical */

Header Files Used by Device Drivers A—9

#defi ne CAM DATAB_VALID 0x80000000 /* Data buffer valid */

#defi ne CAM_STATUS_VALID 0x40000000 /* Status buffer valid */

#defi ne CAM MSGB_VALI D 0x20000000 /* Message buffer valid */

#def i ne CAM TGT_PHASE_MODE 0x08000000 /* The SIMwi |l run in phase node */
#defi ne CAM_TGT_CCB_AVAI L 0x04000000 /* Target CCB avail able */

#define CAM DI S_AUTODI SC 0x02000000 /* Di sabl e aut odi sconnect */

#define CAM DI S AUTOSRP 0x01000000 /* Disabl e autosave/restore ptrs */

/* Defines for the SIMHBA queue actions. These value are used in the
SCSI 1/0 CCB, for the queue action field. [These val ues should natch the
defines fromsonme other include file for the SCSI message phases. W may
not need these definitions here.] */

#def i ne CAM_SI MPLE_QTAG 0x20 /* Tag for a sinple queue */
#def i ne CAM _HEAD_QTAG 0x21 /* Tag for head of queue */
#defi ne CAM_ORDERED_QTAG 0x22 /* Tag for ordered queue */

/* Defines for the tineout field in the SCSI I/OCCB. At this tine a
val ue of OxF-F indicates a infinite timeout. A value of 0x0-0
indicates that the SIMs default tinmeout can take effect. */

#defi ne CAM_TI ME_DEFAULT 0x00000000 /* Use SIMdefault value */
#define CAM TI ME_I NFINITY OXFFFFFFFF /* Infinite timeout for 1/0 */

/* Defines for the Path Inquiry CCB fields. */
#defi ne CAM VERSI ONOx25 /* Binary value for the current ver */

#define Pl _NMDP_ABLE 0x80 /* Supports MDP nessage */
#define Pl _WDE_32 0x40 /* Supports 32 bit w de SCSI */
#define PI_WDE_16 0x20 /* Supports 16 bit w de SCSI */
#define PI_SDTR ABLE 0x10 /* Supports SDTR nessage */
#define Pl _LINKED CDB 0x08 /* Supports linked CDBs */
#define PI _TAG ABLE 0x02 /* Supports tag queue nessage */
#define Pl _SOFT_RST 0x01 /* Supports soft reset */

#define PI T_PROCESSOR 0x80 /* Target node processor node */
#define PI T_PHASEOx40 /* Target npbde phase cog. node */

#define PIM SCANHILO 0x80 /* Bus scans fromID 7 to ID O */

#define PIM.NOREMOVE 0x40 /* Renovable dev not included in scan */
#define PIM.NO NQUIRY 0x20 /* Inquiry data not kept by XPT */

/* Defines for Asynchronous Cal | back CCB fields. */

#defi ne AC_FOUND_DEVI CES 0x80 /* During a rescan new device found */
#defi ne AC_SI M DEREGQ STER 0x40 /* A loaded SIMhas de-registered */
#defi ne AC_SI M REQ STER 0x20 /* A loaded SIM has registered */
#defi ne AC_SENT_BDR 0x10 /* A BDR message was sent to target */
#defi ne AC_SCSI _AEN 0x08 /* A SCSI AEN has been received */
#define AC_UNSOL_RESEL 0x02 /* A unsolicited reselection occurred */
#defi ne AC_BUS_RESET 0x01 /* A SCSI bus RESET occurred */

/* __ */

/* Typedef for a scatter/gather list elenment. */

A-10 Header Files Used by Device Drivers

typedef struct sg_elem

{
u_char *cam sg_address; /* Scatter/Gather address */
u_|l ong cam sg_count; /* Scatter/Gather count */
} SG ELEM
/* __ */

/* Defines for the HBA engine inquiry CCB fields. */

#defi ne El T_BUFFER 0x00 /* Engine type: Buffer nenory */
#define EI T_LOSSLESS 0x01 /* Engine type: Lossless conpression */
#define EI T_LOSSLY 0x02 /* Engine type: Lossly conpression */

#defi ne El T_ENCRYPT 0x03 /* Engine type: Encryption */

#def i ne EAD_VUN QUE 0x00 /* Eng algorithmID: vendor unique */
#define EAD _LZ1V10x00 /* Eng algorithmID: LZ1 var. 1*/
#define EAD _LZ2V10x00 /* Eng algorithmID: LZ2 var. 1*/
#define EAD _LZ2V20x00 /* Eng algorithmID: LZ2 var. 2*/

/* Unix OSD defines and data structures. */
#define INQLEN 36 /* Inquiry string length to store. */

#def i ne CAM_SUCCESS 0 /* For signaling general success */
#defi ne CAM_FAI LURE 1 /* For signaling general failure */

#define CAM FALSEO /* General purpose flag value */
#define CAMTRUE 1 /* GCeneral purpose flag value */

#defi ne XPT_CCB_I NVALI D -1 /* for signaling a bad CCB to free */

/* General Union for Kernel Space allocation. Contains all the

possi bl e CCB structures. This union should never be used for

mani pulating CCB's its only use is for the allocation and deal |l ocation
of raw CCB space. */

typedef union ccb_size_union

{
CCB_SCsI | O csio; /* Please keep this first, for debug/print */
CCB_GETDEV cgd;
CCB_PATHI NQ cpi;
CCB_RELSI M crs;
CCB_SETASYNC csa;
CCB_SETDEV csd;
CCB_ABORT cab;
CCB_RESETBUS crb;
CCB_RESETDEV crd;
CCB_TERM O ctio;
CCB_EN_LUN cel;
CCB_ENG I NQ cei;
CCB_ENG _EXEC cee;

} CCB_SI ZE_UN ON,

/* The typedef for the Async call back information. This structure is
used to store the supplied info fromthe Set Async Call back CCB, in
the EDT table in a linked list structure. */

typedef struct async_info

{

struct async_info *cam async_next; /* pointer to the next structure */
u_l ong cam event_enable; /* Event enables for Callback resp */

Header Files Used by Device Drivers A-11

void (*cam.async_func)(); /* Async Cal |l back function address */
u_l ong cam async_bl en; /* Length of "information" buffer */
u_char *cam async_ptr; /* Address for the "information */

} ASYNC_I NFQ,

/* The CAM EDT tabl e contains the device information for all the
devices, SCSI ID and LUN, for all the SCSI busses in the system The
tabl e contains a CAM EDT_ENTRY structure for each device on the bus.
*/

typedef struct camedt_entry

{
long camtlun_found; /* Flag for the existence of the target/LUN */
ASYNC_| NFO *cam ai nfo; /* Async callback list info for this B/T/L */
u_l ong camowner_tag; /* Tag for the peripheral driver’s ownership */
char cam.ing_data] INQLEN]; /* storage for the inquiry data */

} CAM EDT_ENTRY;

A-12 Header Files Used by Device Drivers

Summary of Device Driver Routines B

Table B-1 summarizes the routines used by all device drivers. The table has the
following columns:

e Routine - the driver routine name.
e Structureffile - the structure or file where you define the driver routine entry point.

e Character - an X in this column indicates the routine is applicable to a character
device.

e Block - an X in this column indicates the routine is applicable to a block device.
N/A indicates not applicable.

For convenience, the routines appear in alphabetical order.

Note

The psi ze routineis no longer used. Previously, the routine
determined the location on the disk where ULTRIX should perform a
dump. It has been superseded by driver i oct | callsthat obtain disk
geometry information.

Table B-1: Summary of Device Driver Routines

Routine Structure/File Character Block
attach Peripheral driver X X
cl ose cdevsw bdevsw X X

i nterrupt System configuration file X X

i octl cdevsw bdevsw X X
nmep cdevsw X N/A
open cdevsw bdevsw X X
probe SIM X X
read cdevsw X N/A
reset cdevsw X N/A
sel ect cdevsw X N/A
sl ave Peripheral driver X X
stop cdevsw X N/A
st rat egy cdevsw bdevsw X X
wite cdevsw X N/A

SCSI/CAM Routines in ULTRIX Reference
Page Format C

This appendix contains a description of each of the routines described in this guide,
in ULTRIX reference page format. The routines are included in alphabetical order.

Name
cam_logger — allocates a system error log buffer and fillsin a uer f error log packet

Syntax

u_long cam_logger(cam err_hdr, bus, target, lun)
CAM_ERR HDR *cam err_hdr;

long bus;

long target;

long lun;

Arguments

cam _err_hdr Pointer to the Error Header Structure.
bus SCSl target’s bus controller number.
target SCSl target’s ID number.

lun SCSl target’s logical unit number.

Description

The cam | ogger routine allocates a system error log buffer and fillsin a uer f
error log packet. The routine fills in the bus, target, and LUN information from the
Error Header Structure passed to it and copies the Error Header Structure and the
Error Entry Structures and data to the error log buffer.

Return Value
None

C-2 SCSI/CAM Routines in ULTRIX Reference Page Format

Name

ccfg_attach — calls a SCSI/CAM peripheral driver’s attach routine after a match on
the cpd_name member of the CAM_PERIPHERAL DRIVER structure is found

Syntax

int ccfg_attach(ui)
register struct uba_device * ui;

Arguments

ui Pointer to the device information contained in the uba_devi ce structure.

Description

The ccf g_attach routine calls a SCSI/CAM periphera driver’s attach routine
after a match on the cpd_name member of the CAM_PERIPHERAL_DRIVER
structure is found. The routine is called during autoconfiguration. The

ccf g_at t ach routine locates the configured driver in the SCSI/CAM periphera
driver configuration table. If the driver is located successfully, the SCSI/CAM
peripheral driver's attach routine is called with a pointer to the unit information
structure for the device from the kernel uba_devi ce structure. The SCSI/CAM
peripheral driver's attach routine performs its own attach initialization.

Return Value

0 = success
1 = failure
The return value is ignored by autoconfiguration code.

SCSI/CAM Routines in ULTRIX Reference Page Format C-3

Name

ccfg_edtscan — issues SCSI INQUIRY commands to all possible SCSI targets and
LUNSs attached to the buses

Syntax

u_long ccfg_edtscan(scan_type, bus, target, lun)
long scan_type;

long bus;

long target;

long lun;

Arguments

scan _type Types of scans are; FULL, which traversesthe CAM_EDT_ENTRY
structure and sends an INQUIRY command to each target and LUN;
PARTIAL, which sends an INQUIRY command only to targets and
LUNSs flagged as ‘‘not found’’; or SINGLE, which sends an INQUIRY
command to the selected bus, target, and LUN passed as arguments.

bus SCSl target’s bus controller number.

target SCSl target’s ID number.

lun SCSl target’s logical unit number.
Description

The ccf g_edt scan routine issues SCSI INQUIRY commands to all possible
SCSI targets and LUNS attached to the buses. The routine uses the CAM subsystem
in the normal manner by sending SCSI I/0O CCBs to the SIMs. The INQUIRY data
returned is stored in the EDT structures and the cam t | un_f ound flag is set.
This routine can be called by the SCSI/CAM peripheral device driversto reissue a
full, partial, or single bus scan command.

Return Value

CAM_SUCCESS
CAM_FAILURE

C-4 SCSI/CAM Routines in ULTRIX Reference Page Format

Name

ccfg_slave — calls a SCSI/CAM peripheral driver’s slave routine after a match on the
cpd_nane member of the CAM_PERIPHERAL DRIVER structure is found

Syntax

int ccfg_slave(ui)
register struct uba_device * ui;

caddr_t csr;
Arguments
ui Pointer to the device information contained in the uba_devi ce structure.

csr The virtual address of the control and status register (CSR) address.

Description

The ccf g_sl ave routine calls a SCSI/CAM peripheral driver's slave routine after
amatch on the cpd_nane member of the CAM_PERIPHERAL_DRIVER structure
isfound. Theroutineis caled during autoconfiguration. The ccf g_sl ave routine
locates the configured driver in the SCSI/CAM peripheral driver configuration table.
If the driver is located successfully, the SCSI/CAM peripheral driver’s slave routine
is caled with a pointer to the unit information structure for the device from the

kernel uba_devi ce structure and the virtual address of its control and status
register (CSR). The SCSI/CAM peripheral driver’s slave routine performs its own
save initialization.

Return Value

0 = daveis dive
1 =daveisnot dive

SCSI/CAM Routines in ULTRIX Reference Page Format C-5

Name
ccmn_DoSpecialCmd — provides a simplified interface to the special command

routine
Syntax
ccmn_DoSpecialCmd(dev, cmd, data, flags, ccb, sflags)
dev_t dev;
int cmd;
caddr_t data;
int flags;
CCB_SCSIIO *ccb;
int sflags;
Arguments
dev The major/minor device humber pair that identifies the bus number,
target 1D, and LUN associated with this SCS| device.
cmd Theioctl command, UAGT_CAM _IO.
data The user data buffer.
flags Flags set when afile is open.
ccb Pointer to the SCSI 1/0 CCB structure. This field is optional.

sflags SCSI/CAM specia 1/0 control flags. The available flags are:

Flag Name Description

SA NO ERROR _RECOVERY Do not perform error recovery
SA NO_ERROR _LOGAE NG Do not log error messages

SA _NO SLEEP_I NTR Do not alow sleep interrupts
SA _NO_SI MQ THAW Leave SIM queue frozen when
there are errors

Description

The ccmm_DoSpeci al Cnd routine provides a simplified interface to the special
command routine. The routine prepares for and issues special commands.

Return Value

The ccmm_DoSpeci al Cnd routine returns a value of 0 (zero) upon successful
completion. It returns the appropriate error code on failure.

C-6 SCSI/CAM Routines in ULTRIX Reference Page Format

Name

ccmn_SysSpecialCmd — lets a system request issue SCSI 1/0 commands to the
SCSI/CAM specid 1/0 interface

Syntax
ccmn_SysSpecialCmd(dev, cmd, data, flags, ccb, sflags)
dev_t dev;
int cmd;
caddr_t data;
int flags;
CCB_SCSIIO *ccb;
int sflags;
Arguments
dev The major/minor device humber pair that identifies the bus number,
target 1D, and LUN associated with this SCS| device.
cmd Theioctl command, UAGT_CAM _IO.
data The user data buffer.
flags Flags set when afile is open.
ccb Pointer to the SCSI 1/0 CCB structure. This field is optional.

sflags SCSI/CAM specia 1/0 control flags. The available flags are:

Flag Name Description

SA NO ERROR _RECOVERY Do not perform error recovery
SA NO_ERROR _LOGAE NG Do not log error messages

SA _NO SLEEP_I NTR Do not alow sleep interrupts
SA _NO_SI MQ THAW Leave SIM queue frozen when
there are errors

Description

The ccmm_SysSpeci al Cnd routine lets a system request issue SCSI 1/0
commands to the SCSI/CAM special /O interface. This permits existing SCSI
commands to be issued from within kernel code.

Return Value

The ccmm_DoSpeci al Cnd routine returns a value of 0 (zero) upon successful
completion. It returns the appropriate error code on failure.

SCSI/CAM Routines in ULTRIX Reference Page Format C—7

Name

ccmn_abort_ccb_bld — creates an ABORT CCB and sends it to the XPT

Syntax
ccmn_abort_ccb_bld(dev, cam flags, abort_cch)
dev_t dev;
u_long cam flags;
CCB_HEADER *abort_ccb;
Arguments
dev

cam flags The cam flags flag names and their bit definitions are listed in the table

The major/minor device humber pair that identifies the bus number,

target 1D, and LUN associated with this SCS| device.

that follows:

Flag Name

Description

CAM DI R_RESV
CAM DI R IN

CAM DI R_OUT

CAM DI R_NONE
CAM DI S_AUTOSENSE
CAM SCATTER VALI D
CAM DI S_CALLBACK
CAM CDB_L| NKED
CAM_QUEUE_ENABLE
CAM CDB_PO NTER
CAM DI S_DI SCONNECT
CAM | NI TI ATE_SYNC

CAM DI S_SYNC

CAM S| M_QHEAD
CAM S| M_QFREEZE
CAM_ENG_SYNC

CAM ENG_SGLI ST

CAM CDB_PHYS
CAM DATA_PHYS

Data direction (00: reserved)
Data direction (01: DATA IN)
Data direction (10: DATA OUT)
Data direction (11: no data)
Disable autosense feature
Scatter/gather list is valid
Disable callback feature

CCB contains linked CDB
SIM queue actions are enabled
CDB field contains pointer
Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue
Return SIM queue to frozen state

Flush residual bytes from HBA
data engine before terminating 1/0

Scatter/gather list is for HBA
engine

CDB pointer is physical address

Scatter/gather/buffer data pointers
are physical address

C-8 SCSI/CAM Routines in ULTRIX Reference Page Format

Flag Name Description

CAM _SNS_BUF_PHYS Autosense data pointer is physical

address

CAM _MSG_BUF_PHYS Message buffer pointer is physical
address

CAM _NXT_CCB_PHYS Next CCB pointer is physical
address

CAM_CALLBCK_PHYS Callback function pointer is
physical address

CAM DATAB_VALI D Data buffer valid
CAM_STATUS_VALI D Status buffer valid
CAM MSGB_VALI D Message buffer valid

CAM TGT_PHASE MODE SIM will run in phase mode
CAM TGT_CCB_AVAI L Target CCB available

CAM DI S _AUTODI SC Disable autodisconnect

CAM DI S_AUTCSRP Disable autosave/restore pointers

abort_ccb Pointer to the CAM Control Block (CCB) header structure to abort.

Description

The ccrm_abort _ccb_bl d routine creates an ABORT CCB and sends it to the
XPT. Theroutine callsthe ccnn_get _ccb routine to allocate a CCB structure
and fill in the common portion of the CCB header. The routine fills in the address of
the CCB to be aborted and callsthe ccrm_send_ccb routine to send the CCB
structure to the XPT. The request is carried out immediately, so it is not placed on
the device driver's active queue.

Return Value
CCB_ABORT pointer

See Also
ccm_get _ccb, ccnrm_send_ccb

SCSI/CAM Routines in ULTRIX Reference Page Format C-9

Name

ccmn_abort_que — sends an ABORT CCB request for each SCSI I/O CCB on the
active queue

Syntax

ccmn_abort_que(pd)
PDRV_DEVICE *pd;

Arguments

pd Pointer to the CAM Peripheral Device Structure allocated for each SCSI
device in the system.

Description

The ccrm_abort _que routine sends an ABORT CCB request for each SCSI 1/0
CCB on the active queue. This routine must be called with the Peripheral Device
Structure locked.

The ccrm_abort _que routine callsthe ccrm_abort _ccb_bl d routine to
create an ABORT CCB for the first active CCB on the active queue and send it to
the XPT. It calsthe ccrm_send_cchb routine to send the ABORT CCB for each
of the other CCBs on the active queue that are marked as active to the XPT. The
ccmm_abort _que routine then callsthe ccnm_r el _cchb routine to return the
ABORT CCB to the XPT.

Return Value
None

See Also
ccm_abort _ccb _bld, ccom_rel _ccb, ccrm_send _ccb

C-10 SCSI/CAM Routines in ULTRIX Reference Page Format

Name

ccmn_bdr_ccb_bld — createsa BUS DEVICE RESET CCB and sends it to the XPT

Syntax

ccmn_bdr

dev_t dev;

ccb_bld(dev, cam flags)

u_long cam flags,

Arguments

dev

cam flags The cam flags flag names and their bit definitions are listed in the table

The major/minor device humber pair that identifies the bus number,

target 1D, and LUN associated with this SCS| device.

that follows:

Flag Name

Description

CAM DI R_RESV
CAM DI R IN

CAM DI R_OUT

CAM DI R_NONE
CAM DI S_AUTOSENSE
CAM SCATTER VALI D
CAM DI S_CALLBACK
CAM CDB_L| NKED
CAM_QUEUE_ENABLE
CAM CDB_PO NTER
CAM DI S_DI SCONNECT
CAM | NI TI ATE_SYNC

CAM DI S_SYNC

CAM S| M_QHEAD
CAM S| M_QFREEZE
CAM_ENG_SYNC

CAM ENG_SGLI ST

CAM CDB_PHYS
CAM DATA_PHYS

CAM SNS_BUF_PHYS

SCSI/CAM Routines in ULTRIX Reference Page Format C-11

Data direction (00: reserved)
Data direction (01: DATA IN)
Data direction (10: DATA OUT)
Data direction (11: no data)
Disable autosense feature
Scatter/gather list is valid
Disable callback feature

CCB contains linked CDB
SIM queue actions are enabled
CDB field contains pointer
Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue
Return SIM queue to frozen state

Flush residual bytes from HBA
data engine before terminating 1/0

Scatter/gather list is for HBA
engine

CDB pointer is physical address

Scatter/gather/buffer data pointers
are physical address

Autosense data pointer is physical
address

Flag Name Description

CAM _MSG_BUF_PHYS Message buffer pointer is physical
address

CAM _NXT_CCB_PHYS Next CCB pointer is physical
address

CAM_CALLBCK_PHYS Callback function pointer is
physical address

CAM DATAB_VALI D Data buffer valid
CAM_STATUS_VALI D Status buffer valid
CAM MSGB_VALI D Message buffer valid

CAM TGT_PHASE MODE SIM will run in phase mode
CAM TGT_CCB_AVAI L Target CCB available

CAM DI S _AUTODI SC Disable autodisconnect

CAM DI S_AUTCSRP Disable autosave/restore pointers

Description

The ccrm_bdr _ccb_bl d routine createsa BUS DEVICE RESET CCB and sends
it to the XPT. Theroutine callsthe ccnm_get _cchb routine to alocate a CCB
structure and fill in the common portion of the CCB header. The routine calls the
ccmm_send_ccb routine to send the CCB structure to the XPT. The request is
carried out immediately, so it is not placed on the device driver’s active queue.

Return Value
CCB_RESETDEV pointer

See Also
ccmm_get _ccb, ccnrm_send_ccb

C-12 SCSI/CAM Routines in ULTRIX Reference Page Format

Name

ccmn_br_ccb bld — createsa BUS RESET CCB and sends it to the XPT

Syntax

ccmn_br_ccb_bld(dev, cam flags)

dev_t dev;

u_long cam flags,

Arguments

dev

cam flags The cam flags flag names and their bit definitions are listed in the table

The major/minor device humber pair that identifies the bus number,

target 1D, and LUN associated with this SCS| device.

that follows:

Flag Name

Description

CAM DI R_RESV
CAM DI R IN

CAM DI R_OUT

CAM DI R_NONE
CAM DI S_AUTOSENSE
CAM SCATTER VALI D
CAM DI S_CALLBACK
CAM CDB_L| NKED
CAM_QUEUE_ENABLE
CAM CDB_PO NTER
CAM DI S_DI SCONNECT
CAM | NI TI ATE_SYNC

CAM DI S_SYNC

CAM S| M_QHEAD
CAM S| M_QFREEZE
CAM_ENG_SYNC

CAM ENG_SGLI ST

CAM CDB_PHYS
CAM DATA_PHYS

CAM SNS_BUF_PHYS

SCSI/CAM Routines in ULTRIX Reference Page Format C-13

Data direction (00: reserved)
Data direction (01: DATA IN)
Data direction (10: DATA OUT)
Data direction (11: no data)
Disable autosense feature
Scatter/gather list is valid
Disable callback feature

CCB contains linked CDB
SIM queue actions are enabled
CDB field contains pointer
Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue
Return SIM queue to frozen state

Flush residual bytes from HBA
data engine before terminating 1/0

Scatter/gather list is for HBA
engine

CDB pointer is physical address

Scatter/gather/buffer data pointers
are physical address

Autosense data pointer is physical
address

Flag Name Description

CAM _MSG_BUF_PHYS Message buffer pointer is physical
address

CAM _NXT_CCB_PHYS Next CCB pointer is physical
address

CAM_CALLBCK_PHYS Callback function pointer is
physical address

CAM DATAB_VALI D Data buffer valid
CAM_STATUS_VALI D Status buffer valid
CAM MSGB_VALI D Message buffer valid

CAM TGT_PHASE MODE SIM will run in phase mode
CAM TGT_CCB_AVAI L Target CCB available

CAM DI S _AUTODI SC Disable autodisconnect

CAM DI S_AUTCSRP Disable autosave/restore pointers

Description

The ccrm_br _ccb_bl d routine creates a BUS RESET CCB and sends it to the
XPT. Theroutine callsthe ccnn_get _ccb routine to allocate a CCB structure
and fill in the common portion of the CCB header. The routine calls the
ccmm_send_ccb routine to send the CCB structure to the XPT. The request is
carried out immediately, so it is not placed on the device driver’s active queue.

Return Value
CCB_RESETBUS pointer

See Also
ccmm_get _ccb, ccnrm_send_ccb

C-14 SCSI/CAM Routines in ULTRIX Reference Page Format

Name

ccmn_cch_status — assigns individual CAM status values to generic categories

Syntax

ccmn_ccb_status(cch)
CCB_HEADER *ccb;

Arguments

ccb Pointer to the CAM Control Block (CCB) header structure whaose status is to

be categorized.

Description

The ccnm_ccb_st at us routine assigns individual CAM status values to generic
categories. The following table shows the returned category for each CAM status

value:

CAM Status Assigned Category
CAM_REQ_| NPROG CAT_INPROG

CAM _REQ CWP CAT_CMP
CAM_REQ ABORTED CAT_ABORT
CAM_UA_ABORT CAT_ABORT

CAM REQ CWP_ERR CAT_CMP_ERR
CAM _BUSY CAT_BUSY
CAM_REQ_| NVALI D CAT_CCB_ERR

CAM PATH | NVALI D
CAM DEV_NOT_THERE
CAM UA TERM O

CAM SEL_TI MEQUT
CAM CVD_TI MEQUT
CAM MSG_REJECT_REC
CAM SCSI _BUS RESET
CAM _UNCOR _PARI TY
CAM AUTOSENSE_FAI L
CAM NO HBA

CAM DATA RUN ERR
CAM_UNEXP_BUSFREE
CAM SEQUENCE_FAI L
CAM CCB_LEN ERR
CAM PROVI DE_FAI L
CAM BDR_SENT
CAM REQ TERM O
CAM LUN | NVALI D
CAM TI D_I NVALI D
CAM_FUNC_NOTAVAI L
CAM NO_NEXUS

CAM | | D_I NVALI D
CAM SCSI _BUSY

O her

CAT_NO_DEVICE
CAT_NO_DEVICE
CAT_ABORT
CAT_DEVICE_ERR
CAT _DEVICE_ERR
CAT_DEVICE_ERR
CAT_RESET
CAT_DEVICE_ERR
CAT_BAD_AUTO
CAT_NO_DEVICE
CAT_DEVICE_ERR
CAT_DEVICE_ERR
CAT _DEVICE_ERR
CAT_CCB_ERR
CAT_CCB_ERR
CAT_RESET
CAT_ABORT
CAT_NO_DEVICE
CAT_NO_DEVICE
CAT_CCB_ERR
CAT_NO_DEVICE
CAT_NO_DEVICE
CAT_SCSI_BUSY
CAT_UNKNOWN

SCSI/CAM Routines in ULTRIX Reference Page Format C-15

Return Value
The following categories can be returned:

CAM Status Assigned Category

CAT_I NPROG Request isin progress.

CAT_CwP Request has completed without error.

CAT_CMP_ERR Request has completed with error.

CAT_ABORT Request either has been aborted or terminated, or it
cannot be aborted or terminated.

CAT_BUSY CAM is busy.

CAT_SCSI _BUSY SCSl is busy.

CAT_NO DrVI CE No device at address specified in request.

CAT_DEVI CE_ERR Bus or device problems.

CAT_BAD AUTO Invalid autosense data.

CAT_CCB_ERR Invalid CCB.

CAT_RESET Unit or bus has detected a reset condition.

CAT_UNKNOWN Invalid CAM status.

C-16 SCSI/CAM Routines in ULTRIX Reference Page Format

Name
ccmn_ccbwait — slegps waiting for a SCSI 1/0 CCB request to complete

Syntax

ccmn_ccbwait(cch, priority)
register CCB_SCSIIO *ccb;
register int *priority;

Arguments

ccb Pointer to the CCB on which to wait.
priority Software priority at which to sleep.

Description

The ccim_ccbwai t routine slegps waiting for a SCSI 1/0 CCB request to
complete. If the priority is greater than PZERO, the ccnn_ccbwai t routine
dleeps at an interruptible priority in order to catch signals.

Return Value

EINTR — Sleep was interrupted due to receiving a signal
0 — CCB has completed

SCSI/CAM Routines in ULTRIX Reference Page Format C-17

Name

ccmn_close_unit — handles the common close for al SCSI/CAM peripheral device
drivers

Syntax

ccmn_close_unit(dev)
dev_t dev;

Arguments

dev The major/minor device number pair that identifies the bus number, target
ID, and LUN associated with this SCSI device.

Description

The ccmm_cl ose_uni t routine handles the common close for all SCSI/CAM
peripheral device drivers. It sets the open count to zero.

Return Value
None

See Also
ccmm_open_uni t

C-18 SCSI/CAM Routines in ULTRIX Reference Page Format

Name
ccmn_errlog — reports error conditions for the SCSI/CAM peripheral device driver

Syntax
ccmn_errlog(func_str, opt_str, flags, cch, dev, unused)
u_char *func_str;
u_char *opt_str;
u_long flags;
CCB_HEADER *ccb;
dev_t dev;
u_char *unused;
Arguments

func_str Pointer to function in which the error was detected.
opt_str Pointer to optional logging string.

flags Flags for peripherial drivers error types. The flags are:
CAM_INFORMATIONAL; CAM_SOFTERR; CAM_HARDERR,;
CAM_SOFTWARE; and CAM_DUMP _ALL. They are defined in the
[usr/sys/ h/ cam | ogger. h file.

ccb Pointer to the CAM Control Block (CCB) header structure.

dev The major/minor device humber pair that identifies the bus number,
target 1D, and LUN associated with this SCS| device.

unused Unused. It is needed to match the number of arguments expected by the
CAM_ERROR macro, which is defined in the
/usr/sys/iol cam cam errl og. h file

Description

The ccmm_er r | og routine reports error conditions for the SCSI/CAM periphera
device driver. The routine is passed a pointer to the name of the function in which
the error was detected. The routine builds informational strings based on the error

condition.

Return Value
None

SCSI/CAM Routines in ULTRIX Reference Page Format C-19

Name

ccmn_gdev_ccb_bld — creates a GET DEVICE TYPE CCB and sends it to the XPT

Syntax

ccmn_gdev_ccb_bld(dev, cam flags, inq_addr)

dev t dev;

u_long cam flags;
u_char *ing_addr;

Arguments

dev

cam flags The cam flags flag names and their bit definitions are listed in the table

The major/minor device humber pair that identifies the bus number,

target 1D, and LUN associated with this SCS| device.

that follows:

Flag Name

Description

CAM DI R_RESV
CAM DI R IN

CAM DI R_OUT

CAM DI R_NONE
CAM DI S_AUTOSENSE
CAM SCATTER VALI D
CAM DI S_CALLBACK
CAM CDB_L| NKED
CAM_QUEUE_ENABLE
CAM CDB_PO NTER
CAM DI S_DI SCONNECT
CAM | NI TI ATE_SYNC

CAM DI S_SYNC

CAM S| M_QHEAD
CAM S| M_QFREEZE
CAM_ENG_SYNC

CAM ENG_SGLI ST

CAM CDB_PHYS
CAM DATA_PHYS

Data direction (00: reserved)
Data direction (01: DATA IN)
Data direction (10: DATA OUT)
Data direction (11: no data)
Disable autosense feature
Scatter/gather list is valid
Disable callback feature

CCB contains linked CDB
SIM queue actions are enabled
CDB field contains pointer
Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue
Return SIM queue to frozen state

Flush residual bytes from HBA
data engine before terminating 1/0

Scatter/gather list is for HBA
engine

CDB pointer is physical address

Scatter/gather/buffer data pointers
are physical address

C-20 SCSI/CAM Routines in ULTRIX Reference Page Format

Flag Name Description

CAM _SNS_BUF_PHYS Autosense data pointer is physical

address

CAM _MSG_BUF_PHYS Message buffer pointer is physical
address

CAM _NXT_CCB_PHYS Next CCB pointer is physical
address

CAM_CALLBCK_PHYS Callback function pointer is
physical address

CAM DATAB_VALI D Data buffer valid
CAM_STATUS_VALI D Status buffer valid
CAM MSGB_VALI D Message buffer valid

CAM TGT_PHASE MODE SIM will run in phase mode
CAM TGT_CCB_AVAI L Target CCB available

CAM DI S _AUTODI SC Disable autodisconnect

CAM DI S_AUTCSRP Disable autosave/restore pointers

inq_addr Pointer to the address for Inquiry data returned.

Description

The ccrm_gdev_cchb_bl d routine creates a GET DEVICE TYPE CCB and sends
it to the XPT. Theroutine callsthe ccnm_get _cchb routine to alocate a CCB
structure and fill in the common portion of the CCB header. The
ccmm_gdev_ccb_bl d routine callsthe ccrm_send_cchb routine to send the
CCB structure to the XPT. The request is carried out immediately, so it is not placed
on the device driver’s active queue.

Return Value
CCB_GETDEV pointer

See Also
ccmm_get _ccb, ccnrm_send_ccb

SCSI/CAM Routines in ULTRIX Reference Page Format C-21

Name
ccmn_get bp — alocatesa buf structure

Syntax
ccmn_get_bp()

Arguments
None

Description

The ccmrm_get _bp routine dlocatesa buf structure. This function must not be
caled at interrupt context. The function may sleep waiting for resources.

Return Value
Pointer to buf structure. This pointer may be NULL.

C-22 SCSI/CAM Routines in ULTRIX Reference Page Format

ccmn_get_ccb — allocates a CCB and fills in the common portion of the CCB header

ccmn_get _ccb(dev, func_code, cam flags, ccb_len)

dev_t dev;
u_char func_code;
u_long cam flags,
u_short ccb_len;

Arguments

dev The major/minor device humber pair that identifies the bus number,
target 1D, and LUN associated with this SCS| device.

func_code The XPT function code for the CCB. See American National Standard
for Information Systems, SCS -2 Common Access Method: Transport
and SCY Interface Module, working draft, X3T9.2/90-186, Section
8.1.2, for alist of the function codes.

cam flags The cam flags flag names and their bit definitions are listed in the table
that follows:

Flag Name Description

CAM DI R_RESV
CAM DI R IN

CAM DI R_OUT

CAM DI R_NONE
CAM DI S_AUTOSENSE
CAM SCATTER VALI D
CAM DI S_CALLBACK
CAM CDB_L| NKED
CAM_QUEUE_ENABLE
CAM CDB_PO NTER
CAM DI S_DI SCONNECT
CAM | NI TI ATE_SYNC

CAM DI S_SYNC

CAM S| M_QHEAD
CAM_SI M_QFREEZE
CAM_ENG_SYNC

Data direction (00: reserved)
Data direction (01: DATA IN)
Data direction (10: DATA OUT)
Data direction (11: no data)
Disable autosense feature
Scatter/gather list is valid
Disable callback feature

CCB contains linked CDB
SIM queue actions are enabled
CDB field contains pointer
Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue
Return SIM queue to frozen state

Flush residual bytes from HBA
data engine before terminating 1/0

SCSI/CAM Routines in ULTRIX Reference Page Format C—-23

Flag Name Description

CAM ENG _SGLI ST Scatter/gather list is for HBA
engine

CAM _CDB_PHYS CDB pointer is physical address

CAM _DATA_PHYS Scatter/gather/buffer data pointers

are physical address
CAM SNS_BUF_PHYS Autosense data pointer is physical

address

CAM MsG BUF_PHYS Message buffer pointer is physical
address

CAM NXT_CCB_PHYS Next CCB pointer is physical
address

CAM_CALLBCK_PHYS Callback function pointer is
physical address

CAM DATAB VALI D Data buffer valid
CAM STATUS VALI D Status buffer valid
CAM MSGB_VALI D Message buffer valid

CAM TGT_PHASE_MODE SIM will run in phase mode
CAM TGT_CCB_AVAI L Target CCB available

CAM DI S_AUTODI SC Disable autodisconnect

CAM DI S_AUTCSRP Disable autosave/restore pointers

cchb len The length of the CCB.

Description

The ccrm_get _ccb routine allocates a CCB and fills in the common portion of
the CCB header. The routine callsthe xpt _ccb_al | oc routine to alocate a CCB
structure. The ccrm_get _ccb routine fills in the common portion of the CCB
header and returns a pointer to that CCB_HEADER.

Return Value
Pointer to newly allocated CCB header.

See Also
xpt _ccb_al | oc

C-24 SCSI/CAM Routines in ULTRIX Reference Page Format

Name

ccmn_get_dbuf — allocates a data buffer area of the size specified by calling the
kernel memory allocation routines

Syntax
ccmn_get _dbuf(size)

u long size;
Arguments

size Size of buffer in bytes.

Description

The ccrm_get _dbuf routine alocates a data buffer area of the size specified by
caling the kernel memory allocation routines .

Return Value

Pointer to kernel data space. If thisis NULL, no data buffer structures are available
and no more can be alocated.

SCSI/CAM Routines in ULTRIX Reference Page Format C-25

Name
ccmn_init — initializes the XPT and the unit table lock structure

Syntax
ccmn_init ()

Description

The ccmm_i ni t routine initializes the XPT and the unit table lock structure. The
first timethe ccrm_i ni t routineiscalled, it callsthe xpt _i ni t routine to
reguest the XPT to initialize the CAM subsystem.

Return Value
None

See Also
xpt_init

C-26 SCSI/CAM Routines in ULTRIX Reference Page Format

Name
ccmn_io_ccb_bld — allocates a SCSI 1/0O CCB and fills it in

Syntax

ccmn_io_ccb_bld(dev, data_addr, data len, sense len, cam flags, comp_func, \
tag_action, timeout, bp)

dev_t dev;

u char *data addr;

u_long data len;

u_short sense len;

u_long cam flags,

void (*comp_func) ();

u_char tag_action;

u_long timeout;

struct buf *bp;

Arguments
dev The major/minor device humber pair that identifies the bus number,
target 1D, and LUN associated with this SCS| device.
data_addr Pointer to the data buffer.
data len Size of the data transfer.

sense len Length of the sense data buffer to be returned on autosense, which is
predefined as 64 bytesin the DEC_AUTO_SENSE_SIZE environment
variable but can be larger.

cam flags The cam flags flag names and their bit definitions are listed in the table

that follows:

Flag Name Description

CAM DI R_RESV Data direction (00: reserved)
CAM DI R IN Data direction (01: DATA IN)
CAM DI R_aUT Data direction (10: DATA OUT)
CAM_DI R_NONE Data direction (11: no data)

CAM DI S_AUTCSENSE Disable autosense feature
CAM SCATTER VALI D Scatter/gather list is valid
CAM DI S _CALLBACK Disable callback feature

CAM _CDB_LI NKED CCB contains linked CDB
CAM_QUEUE_ENABLE SIM queue actions are enabled
CAM_CDB_PO NTER CDB field contains pointer

CAM DI S_DI SCONNECT Disable disconnect

CAM | NI TI ATE_SYNC Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

SCSI/CAM Routines in ULTRIX Reference Page Format C-27

Flag Name Description

CAM DI S_SYNC Disable synchronous mode, go to
asynchronous

CAM_SI M_QHEAD Place CCB at head of SIM queue

CAM _SI M_QFREEZE Return SIM queue to frozen state

CAM ENG_SYNC Flush residual bytes from HBA
data engine before terminating 1/0

CAM ENG SALI ST Scatter/gather list is for HBA
engine

CAM CDB_PHYS CDB pointer is physical address

CAM DATA PHYS Scatter/gather/buffer data pointers

are physical address
CAM SNS_BUF_PHYS Autosense data pointer is physical

address

CAM MSG_BUF_PHYS Message buffer pointer is physical
address

CAM NXT_CCB_PHYS Next CCB pointer is physical
address

CAM CALLBCK _PHYS Callback function pointer is
physical address

CAM _DATAB_VALI D Data buffer valid
CAM_STATUS_VALI D Status buffer valid
CAM MSGB_VALI D Message buffer valid

CAM TGT_PHASE_MODE SIM will run in phase mode
CAM TGT_CCB_AVAI L Target CCB available

CAM DI S_AUTODI SC Disable autodisconnect

CAM DI S_AUTOSRP Disable autosave/restore pointers

comp_func SCSI device driver I/O callback completion function. This pointer may
be NULL if the CAM DISABLE CALLBACK hit is set in the CAM

FLAGS fidld.
tag_action Type of action to perform for tagged requests:
CAM SI MPLE_QTAG Tag for simple queue
CAM HEAD QTAG Tag for head of queue

CAM_CRDERED_QTAG Tag for ordered queue

timeout Timeout for the request in seconds. A value of 0 (zero) indicates the
default, which is five seconds.

bp A buf structure pointer, which is used for request mapping. This
pointer may be NULL.

C-28 SCSI/CAM Routines in ULTRIX Reference Page Format

Description

The ccrm_i o_ccb_bl d routine alocates a SCSI 1/0O CCB and fillsit in. The
routine callsthe ccnrm_get _ccb routine to obtain a CCB structure with the header
portion filled in. The ccnm_i o_ccb_bl d routine fills in the SCSI 1/O-specific
fields from the parameters passed and checks the length of the sense datato seeiif it
exceeds the length of the reserved sense buffer. If it does, a sense buffer is alocated
using the ccrm_get _dbuf routine.

Return Value
Pointer to a SCSI 1/0 CCB

See Also

ccmm_get _ccb, ccnm_get _dbuf

SCSI/CAM Routines in ULTRIX Reference Page Format C—29

Name

ccmn_mode_select — creates a SCSI 1/0 CCB for the MODE SELECT command and

sends it to the XPT for processing

Syntax
ccmn_mode_select(pd, sense len, cam flags, comp_func, tag_action, timeout, ms_index)
PDRV_DEVICE *pd;
u_short sense_len;
u_long cam flags;
void (*comp_func) ();
u_char tag_action;
u_long timeout;
unsigned ms_index;
Arguments
pd Pointer to the CAM Peripheral Device Structure allocated for each SCSI
device in the system.
sense len Length of the sense data buffer to be returned on autosense, which is
predefined as 64 bytesin the DEC_AUTO_SENSE SIZE environment
variable but can be larger.
cam flags The cam flags flag names and their bit definitions are listed in the table
that follows:
Flag Name Description

CAM DI R_RESV
CAM DI R IN

CAM DI R_OUT

CAM DI R_NONE
CAM DI S_AUTOSENSE
CAM SCATTER VALI D
CAM DI S_CALLBACK
CAM CDB_L| NKED
CAM_QUEUE_ENABLE
CAM CDB_PO NTER
CAM DI S_DI SCONNECT
CAM | NI TI ATE_SYNC

CAM DI S_SYNC

CAM S| M_QHEAD
CAM S| M_QFREEZE

Data direction (00: reserved)
Data direction (01: DATA IN)
Data direction (10: DATA OUT)
Data direction (11: no data)
Disable autosense feature
Scatter/gather list is valid
Disable callback feature

CCB contains linked CDB
SIM queue actions are enabled
CDB field contains pointer
Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue
Return SIM queue to frozen state

C-30 SCSI/CAM Routines in ULTRIX Reference Page Format

Flag Name Description

CAM _ENG_SYNC Flush residual bytes from HBA
data engine before terminating 1/0

CAM_ENG_SGLI ST Scatter/gather list is for HBA
engine

CAM _CDB_PHYS CDB pointer is physical address

CAM _DATA_PHYS Scatter/gather/buffer data pointers

are physical address
CAM SNS BUF_PHYS Autosense data pointer is physical

address

CAM MsG BUF_PHYS Message buffer pointer is physical
address

CAM NXT_CCB_PHYS Next CCB pointer is physical
address

CAM_CALLBCK_PHYS Callback function pointer is
physical address

CAM DATAB VALI D Data buffer valid
CAM STATUS VALI D Status buffer valid
CAM MSGB_VALI D Message buffer valid

CAM TGT_PHASE_MODE SIM will run in phase mode
CAM TGT_CCB_AVAI L Target CCB available

CAM DI S_AUTODI SC Disable autodisconnect

CAM DI S_AUTCSRP Disable autosave/restore pointers

comp_func SCSI device driver 1/0O callback completion function. This pointer may
be NULL if the CAM DISABLE CALLBACK bhit is set in the CAM
FLAGS field.

tag_action Type of action to perform for tagged requests:

CAM S| MPLE_QTAG Tag for simple queue
CAM HEAD QTAG Tag for head of queue
CAM ORDERED_ QTAG Tag for ordered queue

timeout Timeout for the request in seconds. A value of 0 (zero) indicates the
default, which is five seconds.

ms_index Anindex into a page in the Mode Select Table that is pointed to in the
Device Descriptor Structure.

Description

The ccrm_nopde_sel ect routine creates a SCSI 1/0 CCB for the MODE
SELECT command and sends it to the XPT for processing. This routine may be
called from interrupt context since it will not wait (slegp) for the command to
complete. Theroutine callsthe ccnm_i o_ccb_bl d routine to obtain a SCSI 1/0
CCB structure. It uses the ms_index parameter to index into the Mode Select Table
pointed to by the dd_nodsel _t bl member of the Device Descriptor Structure for

SCSI/CAM Routines in ULTRIX Reference Page Format C-31

the SCSI device. The ccnm_node_sel ect routine calsthe ccrm_send_ccb
routine to send the SCSI 1/0 CCB to the XPT.

Return Value
CCB_SCSlIO pointer

See Also
ccrm_io _ccb _bld, ccrm_send_ccb

C-32 SCSI/CAM Routines in ULTRIX Reference Page Format

Name
ccmn_open_unit — handles the common open for all SCSI/CAM peripheral device

drivers
Syntax
ccmn_open_unit(dev, scsi_dev_type, flag, dev_size)
dev_t dev;,
u_long scsi_dev_type;
u_long flag;

u_long dev_size;

Arguments
dev The major/minor device humber pair that identifies the bus number,
target 1D, and LUN associated with this SCS| device.
scsi_dev_type
SCSl device type value from Inquiry data.
flag Indicates whether or not the device is being opened for exclusive use. A

setting of 1 means exclusive use; a setting of 0 (zero) means
nonexclusive use.

dev_size The device-specific structure size in bytes.

Description

The ccmm_open_uni t routine handles the common open for all SCSI/CAM
peripheral device drivers. It must be called for each open before any SCSI device-
specific open code is executed.

On the first call to the ccnm_open_uni t routine for a device, the
ccm_gdev_ccb_bl d routineis called to issue a GET DEVICE TYPE CCB to
obtain the Inquiry data. The ccnn_open_uni t routine alocates the Peripheral
Device Structure, PDRV_DEVICE, and a device-specific structure, either
TAPE_SPECIFIC or DISK_SPECIFIC, based on the device size argument passed.
The routine also searchesthe cam devdesc_t ab to obtain a pointer to the Device
Descriptor Structure for the SCSI device and increments the open count. The
statically alocated pdrv_unit _t abl e structure contains a pointer to the
PDRV_DEVICE structure. The PDRV_DEVICE structure contains pointers to the
DEV_DESC structure and to the device-specific structure.

Return Value

The ccmm_open_uni t routine returns a value of 0 (zero) upon successful
completion.

SCSI/CAM Routines in ULTRIX Reference Page Format C-33

Diagnostics

The ccrm_open_uni t routine fails under the following conditions:

[EBUSY]
[ENXIO]
[EINVAL]

See Also

The device is aready opened and the exclusive use bit is set.
The device does not exist.

The scsi_dev_type parameter does not match the device type in the
Inquiry datareturned by GET DEVICE TYPE CCB. The
scsi_dev_type was not configured.

ccmm_cl ose_unit, ccrm_gdev_ccb_bld

C-34 SCSI/CAM Routines in ULTRIX Reference Page Format

Name

ccmn_ping_ccb_bld — creates a PATH INQUIRY CCB and sends it to the XPT

Syntax

ccmn_ping_ccbh_bld(dev, cam flags)

dev t dev;

u_long cam flags;

Arguments

dev

cam flags The cam flags flag names and their bit definitions are listed in the table

The major/minor device humber pair that identifies the bus number,

target 1D, and LUN associated with this SCS| device.

that follows:

Flag Name

Description

CAM DI R_RESV
CAM DI R IN

CAM DI R_OUT

CAM DI R_NONE
CAM DI S_AUTOSENSE
CAM SCATTER VALI D
CAM DI S_CALLBACK
CAM CDB_L| NKED
CAM_QUEUE_ENABLE
CAM CDB_PO NTER
CAM DI S_DI SCONNECT
CAM | NI TI ATE_SYNC

CAM DI S_SYNC

CAM S| M_QHEAD
CAM S| M_QFREEZE
CAM_ENG_SYNC

CAM ENG_SGLI ST

CAM CDB_PHYS
CAM DATA_PHYS

CAM SNS_BUF_PHYS

SCSI/CAM Routines in ULTRIX Reference Page Format C-35

Data direction (00: reserved)
Data direction (01: DATA IN)
Data direction (10: DATA OUT)
Data direction (11: no data)
Disable autosense feature
Scatter/gather list is valid
Disable callback feature

CCB contains linked CDB
SIM queue actions are enabled
CDB field contains pointer
Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue
Return SIM queue to frozen state

Flush residual bytes from HBA
data engine before terminating 1/0

Scatter/gather list is for HBA
engine

CDB pointer is physical address

Scatter/gather/buffer data pointers
are physical address

Autosense data pointer is physical
address

Flag Name Description

CAM _MSG_BUF_PHYS Message buffer pointer is physical
address

CAM _NXT_CCB_PHYS Next CCB pointer is physical
address

CAM_CALLBCK_PHYS Callback function pointer is
physical address

CAM DATAB_VALI D Data buffer valid
CAM_STATUS_VALI D Status buffer valid
CAM MSGB_VALI D Message buffer valid

CAM TGT_PHASE MODE SIM will run in phase mode
CAM TGT_CCB_AVAI L Target CCB available

CAM DI S _AUTODI SC Disable autodisconnect

CAM DI S_AUTCSRP Disable autosave/restore pointers

Description

The ccrm_pi ng_ccb_bl d routine creates a PATH INQUIRY CCB and sends it
to the XPT. Theroutine callsthe ccnm_get _ccb routine to allocate a CCB
structure and fill in the common portion of the CCB header. The routine calls the
ccmm_send_ccb routine to send the CCB structure to the XPT. The request is
carried out immediately, so it is not placed on the device driver’s active queue.

Return Value
CCB_PATHINQ pointer

See Also
ccmm_get _ccb, ccnrm_send_ccb

C-36 SCSI/CAM Routines in ULTRIX Reference Page Format

Name
ccmn_rel_bp — deallocates a buf structure

Syntax

ccmn_rel_bp(bp)
struct buf *bp;

Arguments

bp A buf structure pointer, which is used for request mapping.

Description
The ccnm_r el _bp routine deallocates a buf structure.

Return Value
None

SCSI/CAM Routines in ULTRIX Reference Page Format C-37

Name

ccmn_rel_ccb — releases a CCB and returns the sense data buffer for SCSI 1/0 CCBs,
if alocated

Syntax

ccmn_rel_ccb(cch)
CCB_HEADER *ccb;

Arguments

ccb Pointer to the CAM Control Block (CCB) header structure to be released.

Description

The ccrm_r el _ccb routine releases a CCB and returns the sense data buffer for
SCSI 1/O CCBs, if alocated. The routine callsthe xpt _ccb_fr ee routine to
release a CCB structure. For SCSI 1/0 CCBs, if the sense data length is greater than
the default sense data length, the ccnm_r el _ccb routine cals the

ccmm_rel _dbuf routine to return the sense data buffer to the data buffer pool.

Return Value
None

See Also
ccrm_rel _dbuf, xpt_ccb_free

C-38 SCSI/CAM Routines in ULTRIX Reference Page Format

Name
ccmn_rel_dbuf — deallocates a data buffer

Syntax

ccmn_rel_dbuf(addr)
caddr_t addr;

Arguments

addr Address of the data buffer to deallocate.

Description
The ccrm_r el _dbuf routine deallocates a data buffer.

Return Value
None

SCSI/CAM Routines in ULTRIX Reference Page Format C—-39

Name

ccmn_rem_cch — removes a SCSI 1/0O CCB request from the SCSI/CAM peripheral
driver active queue and starts a tagged request if atagged CCB is pending

Syntax

ccmn_rem_cch(pd,cch)
PDRV_DEVICE *pd;
CCB_SCSIIO *ccb;

Arguments

pd Pointer to the CAM Peripheral Device Structure allocated for each SCSI
device in the system.

ccb Pointer to the SCSI I/O CCB structure to remove from the active queue.

Description

The ccnm_r em ccb routine removes a SCSI 1/0 CCB request from the
SCSI/CAM peripheral driver active queue and starts a tagged request if atagged
CCB ispending. If atagged CCB is pending, the ccrm_r em ccb routine places
the request on the active queue and callsthe xpt _act i on routine to start the
tagged request.

Return Value
None

See Also
Xpt _action

C-40 SCSI/CAM Routines in ULTRIX Reference Page Format

Name

ccmn_rsgq_ccb_bld — creates a RELEASE SIM QUEUE CCB and sends it to the XPT

Syntax

ccmn_rsq_ccb_bld(dev, cam flags)

dev_t dev;

u_long cam flags,

Arguments

dev

cam flags The cam flags flag names and their bit definitions are listed in the table

The major/minor device humber pair that identifies the bus number,

target 1D, and LUN associated with this SCS| device.

that follows:

Flag Name

Description

CAM DI R_RESV
CAM DI R IN

CAM DI R_OUT

CAM DI R_NONE
CAM DI S_AUTOSENSE
CAM SCATTER VALI D
CAM DI S_CALLBACK
CAM CDB_L| NKED
CAM_QUEUE_ENABLE
CAM CDB_PO NTER
CAM DI S_DI SCONNECT
CAM | NI TI ATE_SYNC

CAM DI S_SYNC

CAM S| M_QHEAD
CAM S| M_QFREEZE
CAM_ENG_SYNC

CAM ENG_SGLI ST

CAM CDB_PHYS
CAM DATA_PHYS

CAM SNS_BUF_PHYS

SCSI/CAM Routines in ULTRIX Reference Page Format C—-41

Data direction (00: reserved)
Data direction (01: DATA IN)
Data direction (10: DATA OUT)
Data direction (11: no data)
Disable autosense feature
Scatter/gather list is valid
Disable callback feature

CCB contains linked CDB
SIM queue actions are enabled
CDB field contains pointer
Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue
Return SIM queue to frozen state

Flush residual bytes from HBA
data engine before terminating 1/0

Scatter/gather list is for HBA
engine

CDB pointer is physical address

Scatter/gather/buffer data pointers
are physical address

Autosense data pointer is physical
address

Flag Name Description

CAM _MSG_BUF_PHYS Message buffer pointer is physical
address

CAM _NXT_CCB_PHYS Next CCB pointer is physical
address

CAM_CALLBCK_PHYS Callback function pointer is
physical address

CAM DATAB_VALI D Data buffer valid
CAM_STATUS_VALI D Status buffer valid
CAM MSGB_VALI D Message buffer valid

CAM TGT_PHASE MODE SIM will run in phase mode
CAM TGT_CCB_AVAI L Target CCB available

CAM DI S _AUTODI SC Disable autodisconnect

CAM DI S_AUTCSRP Disable autosave/restore pointers

Description

The ccrm_rsq_ccb_bl d routine creates a RELEASE SIM QUEUE CCB and
sends it to the XPT. Theroutine callsthe ccrm_get _ccb routine to allocate a
CCB structure and fill in the common portion of the CCB header. The routine calls
the ccnm_send_ccb routine to send the CCB structure to the XPT. The request is
carried out immediately, so it is not placed on the device driver’s active queue.

Return Value
CCB_RELSIM pointer

See Also
ccm_get _ccb, ccrm_send_ccb

C-42 SCSI/CAM Routines in ULTRIX Reference Page Format

ccmn_sasy _ccbh _bld — createsa SET ASYNCHRONOUS CALLBACK CCB and

sends it to the XPT

ccmn_sasy_ccb_bld(dev, cam flags, async flags, callb_func, buf, buflen)

dev_t dev;

u_long cam flags,
u_long async flags;
void (*callb_func) ();
u_char *buf;

u_char buflen;

Arguments

dev

The major/minor device humber pair that identifies the bus number,

target 1D, and LUN associated with this SCS| device.
cam flags The cam flags flag names and their bit definitions are listed in the table

that follows:

Flag Name

Description

CAM DI R_RESV
CAM DI R IN

CAM DI R_OUT

CAM DI R_NONE
CAM DI S_AUTOSENSE
CAM SCATTER VALI D
CAM DI S_CALLBACK
CAM CDB_L| NKED
CAM_QUEUE_ENABLE
CAM CDB_PO NTER
CAM DI S_DI SCONNECT
CAM | NI TI ATE_SYNC

CAM DI S_SYNC

CAM S| M_QHEAD
CAM S| M_QFREEZE
CAM_ENG_SYNC

CAM ENG_SGLI ST

Data direction (00: reserved)
Data direction (01: DATA IN)
Data direction (10: DATA OUT)
Data direction (11: no data)
Disable autosense feature
Scatter/gather list is valid
Disable callback feature

CCB contains linked CDB
SIM queue actions are enabled
CDB field contains pointer
Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue
Return SIM queue to frozen state

Flush residual bytes from HBA
data engine before terminating 1/0

Scatter/gather list is for HBA
engine

SCSI/CAM Routines in ULTRIX Reference Page Format C—43

Flag Name Description

CAM _CDB_PHYS CDB pointer is physical address

CAM _DATA_PHYS Scatter/gather/buffer data pointers
are physical address

CAM SNS BUF_PHYS Autosense data pointer is physical

address

CAM MsG BUF_PHYS Message buffer pointer is physical
address

CAM NXT_CCB_PHYS Next CCB pointer is physical
address

CAM_CALLBCK_PHYS Callback function pointer is
physical address

CAM DATAB VALI D Data buffer valid
CAM STATUS VALI D Status buffer valid
CAM MSGB_VALI D Message buffer valid

CAM TGT_PHASE_MODE SIM will run in phase mode
CAM TGT_CCB_AVAI L Target CCB available

CAM DI S_AUTODI SC Disable autodisconnect

CAM DI S_AUTCSRP Disable autosave/restore pointers

async_flags Asynchronous Callback CCB flags for registering a callback routine for a
specific bus, target, and LUN. The flags are defined in the
/usr/sys/ h/ cam h file.

callb_func Asynchronous callback function.
buf SCSI/CAM periphera buffer for asynchronous information.
buflen Allocated SCSI/CAM periphera buffer length.

Description

The ccrm_sasy_ccb_bl d routine createsa SET ASYNCHRONOUS
CALLBACK CCB and sends it to the XPT. The routine callsthe ccrm_get _ccb
routine to alocate a CCB structure and fill in the common portion of the CCB
header. The routine fills in the asynchronous fields of the CCB and calls the
ccmm_send_ccb routine to send the CCB structure to the XPT. The request is
carried out immediately, so it is not placed on the device driver’s active queue.

Return Value
CCB_SETASYNC pointer

See Also
ccmm_get _ccb, ccnrm_send_ccb

C-44 SCSI/CAM Routines in ULTRIX Reference Page Format

Name

ccmn_sdev_ccb bld — createsa SET DEVICE TYPE CCB and sends it to the XPT

Syntax

ccmn_sdev_ccb_bld(dev, cam flags, scsi_dev_type)

dev_t dev;

u_long cam flags,
u char scsi_dev type

Arguments

dev

cam flags The cam flags flag names and their bit definitions are listed in the table

The major/minor device humber pair that identifies the bus number,

target 1D, and LUN associated with this SCS| device.

that follows:

Flag Name

Description

CAM DI R_RESV
CAM DI R IN

CAM DI R_OUT

CAM DI R_NONE
CAM DI S_AUTOSENSE
CAM SCATTER VALI D
CAM DI S_CALLBACK
CAM CDB_L| NKED
CAM_QUEUE_ENABLE
CAM CDB_PO NTER
CAM DI S_DI SCONNECT
CAM | NI TI ATE_SYNC

CAM DI S_SYNC

CAM S| M_QHEAD
CAM S| M_QFREEZE
CAM_ENG_SYNC

CAM ENG_SGLI ST

CAM CDB_PHYS
CAM DATA_PHYS

SCSI/CAM Routines in ULTRIX Reference Page Format C—-45

Data direction (00: reserved)
Data direction (01: DATA IN)
Data direction (10: DATA OUT)
Data direction (11: no data)
Disable autosense feature
Scatter/gather list is valid
Disable callback feature

CCB contains linked CDB
SIM queue actions are enabled
CDB field contains pointer
Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue
Return SIM queue to frozen state

Flush residual bytes from HBA
data engine before terminating 1/0

Scatter/gather list is for HBA
engine

CDB pointer is physical address

Scatter/gather/buffer data pointers
are physical address

Flag Name Description

CAM _SNS_BUF_PHYS Autosense data pointer is physical

address

CAM _MSG_BUF_PHYS Message buffer pointer is physical
address

CAM _NXT_CCB_PHYS Next CCB pointer is physical
address

CAM_CALLBCK_PHYS Callback function pointer is
physical address

CAM DATAB_VALI D Data buffer valid
CAM_STATUS_VALI D Status buffer valid
CAM MSGB_VALI D Message buffer valid

CAM TGT_PHASE MODE SIM will run in phase mode
CAM TGT_CCB_AVAI L Target CCB available

CAM DI S _AUTODI SC Disable autodisconnect

CAM DI S_AUTCSRP Disable autosave/restore pointers

scsi_dev_type
SCSl device type value from Inquiry data.

Description

The ccrm_sdev_cchb_bl d routine creates a SET DEVICE TYPE CCB and sends
it to the XPT. Theroutine callsthe ccnm_get _cchb routine to alocate a CCB
structure and fill in the common portion of the CCB header. The routine fills in the
device type field of the CCB and callsthe ccrm_send_ccb routine to send the
CCB structure to the XPT. The request is carried out immediately, so it is not placed
on the device driver’s active queue.

Return Value
CCB_SETDEV pointer

See Also
ccmm_get _ccb, ccnrm_send_ccb

C-46 SCSI/CAM Routines in ULTRIX Reference Page Format

Name

ccmn_send_ccb — sends CCBs to the XPT layer by calling the xpt _acti on
routine

Syntax

ccmn_send_ccb(pd,cch, retry)
PDRV_DEVICE *pd;
CCB_HEADER *ccb;

u_char retry

Arguments
pd Pointer to the CAM Peripheral Device Structure allocated for each SCSI
device in the system.

ccb Pointer to the CAM Control Block (CCB) header structure to be sent to the
Xpt _acti on routine to handle the request.

retry Indicates whether this request is aretry of arequest that is already on the
active queue. A 1indicates RETRY, and a0 (zero) indicates NOT_RETRY.

Description

The ccnm_send_ccb routine sends CCBs to the XPT layer by calling the
Xpt _acti on routine. This routine must be called with the Peripheral Device
Structure locked.

For SCSI 1/0 CCBs that are not retries, the request is placed on the active queue. If
the CCB is a tagged request and the tag queue size for the device has been reached,
the request is placed on the tagged pending queue so that the request can be sent to
the XPT at alater time. A high-water mark of half the queue depth for the SCSI
device is used for tagged requests so that other initiators on the SCSI bus will not be
blocked from using the device.

Return Value
Value returned from the xpt _acti on routine.

See Also
Xpt _action

SCSI/CAM Routines in ULTRIX Reference Page Format C-47

ccmn_start_unit — creates a SCSI 1/0O CCB for the START UNIT command and

sends it to the XPT for processing

ccmn_start_unit(pd, sense len, cam flags, comp_func, tag_action, timeout)

PDRV_DEVICE *pd;
u_short sense len;
u_long cam flags,
void (*comp_func) ();
u_char tag_action;
u_long timeout;

Arguments

pd Pointer to the CAM Peripheral Device Structure allocated for each SCSI
device in the system.

sense len Length of the sense data buffer to be returned on autosense, which is
predefined as 64 bytesin the DEC_AUTO_SENSE SIZE environment
variable but can be larger.

cam flags The cam flags flag names and their bit definitions are listed in the table
that follows:

Flag Name Description

CAM DI R_RESV
CAM DI R IN

CAM DI R_OUT

CAM DI R_NONE
CAM DI S_AUTOSENSE
CAM SCATTER VALI D
CAM DI S_CALLBACK
CAM CDB_L| NKED
CAM_QUEUE_ENABLE
CAM CDB_PO NTER
CAM DI S_DI SCONNECT
CAM | NI TI ATE_SYNC

CAM DI S_SYNC

CAM S| M_QHEAD
CAM S| M_QFREEZE

Data direction (00: reserved)
Data direction (01: DATA IN)
Data direction (10: DATA OUT)
Data direction (11: no data)
Disable autosense feature
Scatter/gather list is valid
Disable callback feature

CCB contains linked CDB
SIM queue actions are enabled
CDB field contains pointer
Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue
Return SIM queue to frozen state

C-48 SCSI/CAM Routines in ULTRIX Reference Page Format

Flag Name Description

CAM _ENG_SYNC Flush residual bytes from HBA
data engine before terminating 1/0

CAM_ENG_SGLI ST Scatter/gather list is for HBA
engine

CAM _CDB_PHYS CDB pointer is physical address

CAM _DATA_PHYS Scatter/gather/buffer data pointers

are physical address
CAM SNS BUF_PHYS Autosense data pointer is physical

address

CAM MsG BUF_PHYS Message buffer pointer is physical
address

CAM NXT_CCB_PHYS Next CCB pointer is physical
address

CAM_CALLBCK_PHYS Callback function pointer is
physical address

CAM DATAB VALI D Data buffer valid
CAM STATUS VALI D Status buffer valid
CAM MSGB_VALI D Message buffer valid

CAM TGT_PHASE_MODE SIM will run in phase mode
CAM TGT_CCB_AVAI L Target CCB available

CAM DI S_AUTODI SC Disable autodisconnect

CAM DI S_AUTCSRP Disable autosave/restore pointers

comp_func SCSI device driver 1/0O callback completion function. This pointer may
be NULL if the CAM DISABLE CALLBACK bhit is set in the CAM
FLAGS field.

tag_action Type of action to perform for tagged requests:

CAM S| MPLE_QTAG Tag for simple queue
CAM HEAD QTAG Tag for head of queue
CAM ORDERED_ QTAG Tag for ordered queue

timeout Timeout for the request in seconds. A value of 0 (zero) indicates the
default, which is five seconds.

Description

The ccrm_start _unit routine creates a SCSI I/0O CCB for the START UNIT
command and sends it to the XPT for processing. This routine may be caled from
interrupt context since it will not wait (sleep) for the command to compl ete.

The ccrm_start _unit routine callsthe ccnm_i o_ccb_Dbl d routine to abtain
a SCSl 1/0 CCB dtructure. The ccrm_start _uni t routine cals the
ccm_send_ccb routine to send the SCSI 1/0O CCB to the XPT.

SCSI/CAM Routines in ULTRIX Reference Page Format C—-49

Return Value
CCB_SCSlIO pointer

See Also
ccrm_io _ccb _bld, ccrm_send_ccb

C-50 SCSI/CAM Routines in ULTRIX Reference Page Format

Name

ccmn_term_ccb _bld — createsa TERMINATE 1/O CCB and sends it to the XPT

Syntax

ccmn_term_ccb_bld(dev, cam flags, term_cch)

dev_t dev;

u_long cam flags,
CCB_HEADER *term ccb;

Arguments

dev

cam flags The cam flags flag names and their bit definitions are listed in the table

The major/minor device humber pair that identifies the bus number,

target 1D, and LUN associated with this SCS| device.

that follows:

Flag Name

Description

CAM DI R_RESV
CAM DI R IN

CAM DI R_OUT

CAM DI R_NONE
CAM DI S_AUTOSENSE
CAM SCATTER VALI D
CAM DI S_CALLBACK
CAM CDB_L| NKED
CAM_QUEUE_ENABLE
CAM CDB_PO NTER
CAM DI S_DI SCONNECT
CAM | NI TI ATE_SYNC

CAM DI S_SYNC

CAM S| M_QHEAD
CAM S| M_QFREEZE
CAM_ENG_SYNC

CAM ENG_SGLI ST

CAM CDB_PHYS
CAM DATA_PHYS

SCSI/CAM Routines in ULTRIX Reference Page Format C-51

Data direction (00: reserved)
Data direction (01: DATA IN)
Data direction (10: DATA OUT)
Data direction (11: no data)
Disable autosense feature
Scatter/gather list is valid
Disable callback feature

CCB contains linked CDB
SIM queue actions are enabled
CDB field contains pointer
Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue
Return SIM queue to frozen state

Flush residual bytes from HBA
data engine before terminating 1/0

Scatter/gather list is for HBA
engine

CDB pointer is physical address

Scatter/gather/buffer data pointers
are physical address

Flag Name Description

CAM _SNS_BUF_PHYS Autosense data pointer is physical

address

CAM _MSG_BUF_PHYS Message buffer pointer is physical
address

CAM _NXT_CCB_PHYS Next CCB pointer is physical
address

CAM_CALLBCK_PHYS Callback function pointer is
physical address

CAM DATAB_VALI D Data buffer valid
CAM_STATUS_VALI D Status buffer valid
CAM MSGB_VALI D Message buffer valid

CAM TGT_PHASE MODE SIM will run in phase mode
CAM TGT_CCB_AVAI L Target CCB available

CAM DI S _AUTODI SC Disable autodisconnect

CAM DI S_AUTCSRP Disable autosave/restore pointers

term _ccb Pointer to the CAM Control Block (CCB) header structure to terminate.

Description

The ccrm_t erm cchb_bl d routine createsa TERMINATE I/O CCB and sends it
to the XPT. Theroutine callsthe ccnrm_get _ccb routine to allocate a CCB
structure and fill in the common portion of the CCB header. The routine fills in the
CCB to be terminated and callsthe ccrm_send_cchb routine to send the CCB
structure to the XPT. The request is carried out immediately, so it is not placed on
the device driver's active queue.

Return Value
CCB_TERMIO pointer

See Also
ccmm_get _ccb, ccnrm_send_ccb

C-52 SCSI/CAM Routines in ULTRIX Reference Page Format

Name

ccmn_term_gue — sends a TERMINATE /O CCB request for each SCSI 1/O CCB on
the active queue

Syntax

ccmn_term_que(pd)
PDRV_DEVICE *pd;

Arguments

pd Pointer to the CAM Peripheral Device Structure allocated for each SCSI
device in the system.

Description

The ccmm_t er m_que routine sends a TERMINATE 1/0 CCB request for each
SCSI 1/0 CCB on the active queue. This routine must be called with the Peripheral
Device Structure locked.

The ccmm_t er m_que routine callsthe ccnm_t er m ccb_bl d routine to create
a TERMINATE /O CCB for the first active CCB on the active queue and send it to
the XPT. It calsthe ccrm_send_ccb routine to send the TERMINATE 1/0 CCB
for each of the other CCBs on the active queue that are marked as active to the XPT.
The ccmm_t er m_que routine then callsthe ccnn_r el _ccb routine to return
the TERMINATE 1/0O CCB to the XPT.

Return Value
None

See Also
ccrm_rel _ccb, ccorm_send _ccb

SCSI/CAM Routines in ULTRIX Reference Page Format C-53

ccmn_tur — creates a SCSI 1/0 CCB for the TEST UNIT READY command and

sends it to the XPT for processing

ccmn_tur(pd, sense len, cam flags, comp_func, tag_action, timeout)

PDRV_DEVICE *pd;
u_short sense len;
u_long cam flags,
void (*comp_func) ();
u_char tag_action;
u_long timeout;

Arguments

pd Pointer to the CAM Peripheral Device Structure allocated for each SCSI
device in the system.

sense len Length of the sense data buffer to be returned on autosense, which is
predefined as 64 bytesin the DEC_AUTO_SENSE SIZE environment
variable but can be larger.

cam flags The cam flags flag names and their bit definitions are listed in the table
that follows:

Flag Name Description

CAM DI R_RESV
CAM DI R IN

CAM DI R_OUT

CAM DI R_NONE
CAM DI S_AUTOSENSE
CAM SCATTER VALI D
CAM DI S_CALLBACK
CAM CDB_L| NKED
CAM_QUEUE_ENABLE
CAM CDB_PO NTER
CAM DI S_DI SCONNECT
CAM | NI TI ATE_SYNC

CAM DI S_SYNC

CAM S| M_QHEAD
CAM S| M_QFREEZE

Data direction (00: reserved)
Data direction (01: DATA IN)
Data direction (10: DATA OUT)
Data direction (11: no data)
Disable autosense feature
Scatter/gather list is valid
Disable callback feature

CCB contains linked CDB
SIM queue actions are enabled
CDB field contains pointer
Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue
Return SIM queue to frozen state

C-54 SCSI/CAM Routines in ULTRIX Reference Page Format

Flag Name Description

CAM _ENG_SYNC Flush residual bytes from HBA
data engine before terminating 1/0

CAM_ENG_SGLI ST Scatter/gather list is for HBA
engine

CAM _CDB_PHYS CDB pointer is physical address

CAM _DATA_PHYS Scatter/gather/buffer data pointers

are physical address
CAM SNS BUF_PHYS Autosense data pointer is physical

address

CAM MsG BUF_PHYS Message buffer pointer is physical
address

CAM NXT_CCB_PHYS Next CCB pointer is physical
address

CAM_CALLBCK_PHYS Callback function pointer is
physical address

CAM DATAB VALI D Data buffer valid
CAM STATUS VALI D Status buffer valid
CAM MSGB_VALI D Message buffer valid

CAM TGT_PHASE_MODE SIM will run in phase mode
CAM TGT_CCB_AVAI L Target CCB available

CAM DI S_AUTODI SC Disable autodisconnect

CAM DI S_AUTCSRP Disable autosave/restore pointers

comp_func SCSI device driver 1/0O callback completion function. This pointer may
be NULL if the CAM DISABLE CALLBACK bhit is set in the CAM
FLAGS field.

tag_action Type of action to perform for tagged requests:

CAM S| MPLE_QTAG Tag for simple queue
CAM HEAD QTAG Tag for head of queue
CAM ORDERED_ QTAG Tag for ordered queue

timeout Timeout for the request in seconds. A value of 0 (zero) indicates the
default, which is five seconds.

Description

The ccmm_t ur routine creates a SCSI 1/0 CCB for the TEST UNIT READY
command and sends it to the XPT for processing. This routine may be caled from
interrupt context since it will not wait (sleep) for the command to compl ete.

The ccmm_t ur routine callsthe ccnn_i o_ccb_bl d routine to obtain a SCSI
I/O CCB structure. The ccnm_t ur routine callsthe ccrm_send_ccb routine to
send the SCSI 1/O CCB to the XPT.

SCSI/CAM Routines in ULTRIX Reference Page Format C-55

Return Value
CCB_SCSlIO pointer

See Also
ccrm_io _ccb _bld, ccrm_send_ccb

C-56 SCSI/CAM Routines in ULTRIX Reference Page Format

Name
cdbg_CamFunction — reports CAM XPT function codes

Syntax

char * cdbg_CamFunction(cam function, report_format)
register u_char cam function;
int report_format;

Arguments

cam function The entry from the CAM XPT Function Code Table.

report_format The format of the message text returned, which can be CDBG_BRIEF
or CDBG_FULL.

Description

The cdbg_Cantunct i on routine reports CAM XPT function codes. Program
constants are defined to allow either the function code name only or a brief
explanation to be printed. The XPT function codes are defined in the

[usr/sys/ h/ cam h file.

Return Value
Returns a character pointer to a text string.

SCSI/CAM Routines in ULTRIX Reference Page Format C-57

Name
cdbg_CamStatus — decodes CAM CCB status codes

Syntax

char * cdbg_CamStatus(cam_status, report_format)
register u_char cam status;
int report_format;

Arguments

cam status The information from the CAM SCSI /0O CCB.

report_format The format of the message text returned, which can be CDBG_BRIEF
or CDBG_FULL.

Description

The cdbg_Cantt at us routine decodes CAM CCB status codes. Program
constants are defined to allow either the status code name only or a brief explanation
to be printed. The CAM status codes are defined in the / usr/ sys/ h/ cam h file.

Return Value
Returns a character pointer to a text string.

C-58 SCSI/CAM Routines in ULTRIX Reference Page Format

Name
cdbg DumpABORT — dumps the contents of an ABORT CCB

Syntax

void cdbg DumpABORT(cch)
register CCB_ABORT *ccb;

Arguments

ccb Pointer to the ABORT CCB.

Description

The cdbg_DunpABORT routine dumps the contents of an ABORT CCB. The
ABORT CCB is defined in the / usr/ sys/ h/ cam h file.

Return Value
None

SCSI/CAM Routines in ULTRIX Reference Page Format C-59

Name
void cdbg_DumpBuffer — dumps the contents of a data buffer in hexadecimal bytes

Syntax

void cdbg_DumpBuffer(buffer, size)
char * puffer;
register int size;

Arguments

buffer SCSI/CAM periphera buffer pointer.
size Size of buffer in bytes.

Description

The cdbg_DunpBuf f er routine dumps the contents of a data buffer in
hexadecimal bytes. The calling routine must display a header line. The format of the
dump is 16 bytes per line.

Return Value
None

C-60 SCSI/CAM Routines in ULTRIX Reference Page Format

Name

cdbg DumpCCBHeader — dumps the contents of a CAM Control Block (CCB)
header structure

Syntax

void cdbg DumpCCBHeader(cch)
register CCB_HEADER *ccb;

Arguments

ccb Pointer to the CAM Control Block (CCB) header structure.

Description

The cdbg_DunpCCBHeader routine dumps the contents of a CAM Control Block
(CCB) header structure. The CAM Control Block (CCB) header structure is defined
inthe /usr/sys/ h/ cam h file.

Return Value
None

SCSI/CAM Routines in ULTRIX Reference Page Format C-61

Name

cdbg DumpCCBHeaderFlags — dumps the contents of the cam f | ags member of

a CAM Control Block (CCB) header structure

Syntax

void cdbg DumpCCBHeaderFlags(cam flags)
register u_long cam flags;

Arguments

cam flags The cam flags flag names and their bit definitions are listed in the table

that follows:

Flag Name

Description

CAM DI R_RESV
CAM DI R IN

CAM DI R_OUT

CAM DI R_NONE
CAM DI S_AUTOSENSE
CAM SCATTER VALI D
CAM DI S_CALLBACK
CAM CDB_L| NKED
CAM_QUEUE_ENABLE
CAM CDB_PO NTER
CAM DI S_DI SCONNECT
CAM | NI TI ATE_SYNC

CAM DI S_SYNC

CAM S| M_QHEAD
CAM S| M_QFREEZE
CAM_ENG_SYNC

CAM ENG_SGLI ST

CAM CDB_PHYS
CAM DATA_PHYS

CAM SNS_BUF_PHYS

CAM MSG_BUF_PHYS

Data direction (00: reserved)
Data direction (01: DATA IN)
Data direction (10: DATA OUT)
Data direction (11: no data)
Disable autosense feature
Scatter/gather list is valid
Disable callback feature

CCB contains linked CDB
SIM queue actions are enabled
CDB field contains pointer
Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue
Return SIM queue to frozen state

Flush residual bytes from HBA
data engine before terminating 1/0

Scatter/gather list is for HBA
engine

CDB pointer is physical address
Scatter/gather/buffer data pointers
are physical address

Autosense data pointer is physical
address

Message buffer pointer is physical
address

C-62 SCSI/CAM Routines in ULTRIX Reference Page Format

Flag Name Description

CAM _NXT_CCB_PHYS Next CCB pointer is physical
address

CAM_CALLBCK_PHYS Callback function pointer is
physical address

CAM DATAB_VALI D Data buffer valid
CAM_STATUS_VALI D Status buffer valid
CAM MsGB_VALI D Message buffer valid

CAM TGT_PHASE MODE SIM will run in phase mode
CAM TGT_CCB_AVAI L Target CCB available

CAM DI S _AUTODI SC Disable autodisconnect

CAM DI S_AUTCSRP Disable autosave/restore pointers

Description

The cdbg_DunpCCBHeader Fl ags routine dumps the contents of the
cam f | ags member of a CAM Control Block (CCB) header structure. The CAM
Control Block (CCB) header structure is defined in the / usr/ sys/ h/ cam h file.

Return Value
None

SCSI/CAM Routines in ULTRIX Reference Page Format C—63

Name
cdbg_DumplnquiryData — dumps the contents of an ALL_INQ_DATA structure

Syntax

void cdbg_DumplnquiryData(inquiry)
register ALL_INQ DATA *inquiry;

Arguments

inquiry Pointer to the ALL_INQ_DATA structure.

Description

The cdbg_Dunpl nqui r yDat a routine dumps the contents of an
ALL_INQ_DATA structure. The ALL_INQ_DATA structure is defined in the
lusr/sys/h/scsi_all.hfile

Return Value
None

C-64 SCSI/CAM Routines in ULTRIX Reference Page Format

Name

cdbg DumpPDRVws — dumps the contents of a SCSI/CAM Peripheral Device Driver
Working Set Structure

Syntax

void cdbg DumpPDRVws(pws)
register PDRV_WS *pws;

Arguments

pws Pointer to the SCSI/CAM Peripheral Device Driver Working Set Structure.

Description

The cdbg_DunpPDRVWs routine dumps the contents of a SCSI/CAM Peripheral
Device Driver Working Set Structure. The SCSI/CAM Peripheral Device Driver
Working Set Structure is defined in the / usr/ sys/ h/ pdrv. h file.

Return Value
None

SCSI/CAM Routines in ULTRIX Reference Page Format C—65

Name
cdbg DumpSCSII1O — dumps the contents of a SCSI 1/0 CCB

Syntax

void cdbg DumpSCSIIO(cch)
register CCB_SCSIIO *cch;

Arguments

ccb Pointer to the SCSI 1/0O CCB structure.

Description

The cdbg_DunpSCSI | Oroutine dumps the contents of a SCSI I/O CCB. The
SCSI 1/0 CCB is defined in the / usr/ sys/ h/ cam h file.

Return Value
None

C-66 SCSI/CAM Routines in ULTRIX Reference Page Format

Name
cdbg DumpTERMIO — dumps the contents of a TERMINATE 1/0O CCB

Syntax

void cdbg DumpTERMIO(cch)
register CCB_TERMIO *cch;

Arguments

ccb Pointer to the TERMINATE I/O CCB.

Description

The cdbg_DunpTERM O routine dumps the contents of a TERMINATE /O CCB.
The TERMINATE I/O CCB is defined in the / usr/ sys/ h/ cam h file.

Return Value
None

SCSI/CAM Routines in ULTRIX Reference Page Format C—67

Name

cdbg_GetDeviceName — returns a pointer to a character string describing the dt ype
member of an ALL_INQ DATA structure

Syntax
char * cdbg_GetDeviceName(device type)

register device type
Arguments

device_type SCSI device type value from Inquiry data.

Description

The cdbg_Get Devi ceName routine returns a pointer to a character string
describing the dt ype member of an ALL_INQ_DATA structure. The
ALL_INQ_DATA structureis defined in the / usr/ sys/ h/ scsi _al |l . hfile.

Return Value
Returns a character pointer to a text string.

C-68 SCSI/CAM Routines in ULTRIX Reference Page Format

Name
cdbg_ScsiStatus — reports SCSI status codes

Syntax

char * cdbg_ScsiStatus(scsi_status, report_format)
register u_char scsi_status;
int report_format;

Arguments

scsi_status The SCSI status from the CAM SCSI 1/0 CCB.

report_format
The format of the message text returned, which can be CDBG_BRIEF or
CDBG_FULL.

Description

The cdbg_Scsi St at us routine reports SCSI status codes. Program constants are
defined to alow either the status code name only or a brief explanation to be printed.
The SCSI status codes are defined in the / usr/ sys/ h/ scsi _st at us. h file.

Return Value
Returns a character pointer to a text string.

SCSI/CAM Routines in ULTRIX Reference Page Format C—69

Name
cdbg_SystemStatus — reports system error codes

Syntax

char * cdbg_SystemStatus(errno)
int errno;

Arguments

errno The error number.

Description

The cdbg_SystemStatus routine reports system error codes. The system error codes
aredefined inthe / usr/ sys/ h/ errno. h file.

Return Value
Returns a character pointer to a text string.

C-70 SCSI/CAM Routines in ULTRIX Reference Page Format

Name

cgen_async — handles notification of asynchronous events

Syntax

void cgen_async(opcode, path_id, target, lun, buf ptr, data cnt)
u_long opcode;

u_char path _id;

U char target;

u_char lunm;

caddr_t buf ptr;

u char data cnt;

Arguments

opcode SCSl asynchronous callback operation code.

path_id SCSl target’s bus controller number.

target SCSl target’s ID number.

lun SCSl target’s logical unit number.

buf _ptr Buffer address for Asynchronous Event Notification (AEN).

data cnt Number of bytes the XPT had to transfer from the SIM’s buffer or the
limit of the SCSI/CAM peripheral buffer.

Description

The cgen_async routine handles notification of asynchronous events. The routine
is caled when an Asynchronous Event Notification(AEN), Bus Device Reset (BDR),
or Bus Reset (BR) occurs. The routine sets the CGEN_RESET_STATE flag and
clearsthe CGEN_RESET_PEND_STATE flag for BDRs and bus resets. The routine
sets the CGEN_UNIT_ATTEN_STATE flag for AENS.

Return Value
None

SCSI/CAM Routines in ULTRIX Reference Page Format C-71

Name

cgen_attach — called for each bus, target, and LUN after the cgen_sl ave routine
returns SUCCESS

Syntax

cgen_attach(ui)
struct uba_device *ui;

Arguments
ui Pointer to the device information contained in the uba_devi ce
structure.
Description

The cgen_at t ach routineis called for each bus, target, and LUN after the
cgen_sl ave routine returns SUCCESS. The routine calls the
ccnm_open_uni t routine, passing the bus, target, and LUN information.

The cgen_at t ach routine calsthe ccrm_cl ose_uni t routine to close the
device. If adevice of the specified type is found, the device identification string is
printed. See the Guide to Writing and Porting VMEbus and TURBOchannel Device
Drivers for more information.

Return Value

PROBE_FAILURE
PROBE_SUCCESS

See Also

ccmrm_cl ose_unit , ccnm_open_unit , cgen_sl ave

C-72 SCSI/CAM Routines in ULTRIX Reference Page Format

Name
cgen_cch_chkcond — decodes the autosense data for a device driver

Syntax

cgen_ccb_chkcond(pdrv_dev, cch)
PDRV_DEVICE *pdrv_dev;
CCB_SCSIIO *ccb;

Arguments
pdrv_dev Pointer to the CAM Periphera Device Structure alocated for each SCS
device in the system.
ccb Pointer to the SCSI I/0 CCB structure.

Description

The cgen_ccb_chkcond routine decodes the autosense data for a device driver
and returns the appropriate status to the calling routine. The routine is called when a
SCSI 1/0 CCB is returned with a CAM status of CAM_REQ_CMP_ERR (request
completed with error) and a SCSI status of SCSI_STAT_CHECK_CONDITION. The
routine also sets the appropriate flags in the Generic-Specific Structure.

Return Value
An integer indicating one of the following values:

Flag Name Description

CHK_CHK_NOSENSE Request sense did not complete
without error. Sense buffer
contents cannot be used to
determine error condition.

CHK _SENSE _NOT_VALI D Valid bit in sense buffer is not set;
sense data is useless.

CHK_EQOM End of media detected.

CHK_FI LEMARK Filemark detected.

CHK I LI Incorrect record length detected.

CHK_NOSENSE_BI TS Sense key equals no sense, but
there are no bits set in byte 2 of
sense data

CHK_SCOFTERR Soft error detected; corrected by
unit.

CHK_NOT_READY Unit is not ready.

CHK_HARDERR Unit has detected a hard error.

CHK _UNI T_ATTEN Unit has either had media change

or just powered up.

SCSI/CAM Routines in ULTRIX Reference Page Format C-73

Flag Name

Description

CHK_DATA_PROT
CHK_UNSUPPORTED

CHK_CMD_ABORTED
CHK_| NFORMATI ONAL

CHK_UNKNOWN_KEY

Unit is write protected.

Sense key that is unsupported has
been returned.

Unit aborted this command.

Unit is reporting informational
message.

Unit has returned sense key that is

not supported by SCSI 2
specification.

C-74 SCSI/CAM Routines in ULTRIX Reference Page Format

Name
cgen_close — closes the device

Syntax
cgen_close(dev, flags)
dev_t dev,
int flags;
Arguments
dev The major/minor device humber pair that identifies the bus number,
target 1D, and LUN associated with this SCS| device.
flags Flags set when afile is open.
Description

The cgen_cl ose routine closes the device. The routine checks any device flags
that are defined to see if action is required, such as rewind on close or release the
unit. The cgen_cl ose closes the device by calling the ccrm_cl ose_uni t
routine.

Return Value

The cgen_cl ose routine returns GENERIC_SUCCESS upon successful
completion.

Diagnostics
The cgen_cl ose routine fails under the following condition:

[ENOMEM] Resource problem

See Also

ccm_cl ose_uni t

SCSI/CAM Routines in ULTRIX Reference Page Format C-75

Name
cgen_done — the entry point for all nonread and nonwrite I/O callbacks

Syntax

cgen_done(cch)
CCB_SCSIIO *ccb;

Arguments

ccb Pointer to the SCSI 1/0O CCB structure.

Description

The cgen_done routineis the the entry point for al nonread and nonwrite I/O
callbacks. The generic device driver uses two callback entry points, one for all
nonuser 1/0 requests and one for all user I/O requests. The SCSI/CAM peripheral
device driver writer can declare multiple callback routines for each type of command
and can fill the CCB with the address of the appropriate callback routine.

This is a generic routine for al nonread and nonwrite SCSI I/0O CCBs. The SCSI I/O
CCB should not contain a pointer to a buf structureinthe cam req_map
member of the structure. If it does, then awake-up call is issued on the address of
the CCB and the error is reported. If the SCSI 1/0 CCB does not contain a pointer to
a buf structureinthe cam r eq_nap member, then a wake-up call isissued on
the address of the CCB and the CCB is removed from the active queques. No CCB
completion status is checked because that is the responsibility of the routine that
created the CCB and is waiting for completion status. When this routine is entered,
context is on the interrupt stack and the driver cannot sleep waiting for an event.

Return Value
None

C-76 SCSI/CAM Routines in ULTRIX Reference Page Format

Name

cgen_ioctl — handles user process requests for specific actions other than read, write,
open, or close for SCSI tape devices

Syntax
cgen_ioctl(dev, cmd, data, flags)
dev_t dev,
int cmd;
caddt_t data;
int flags;
Arguments
dev The major/minor device humber pair that identifies the bus number,
target 1D, and LUN associated with this SCS| device.
cmd Theioctl command, UAGT_CAM _IO.
data Pointer to the kernel copy of the structure passed by the user process.
flags User process flags.
Description

The cgen_i oct | routine handles user process requests for specific actions other
than read, write, open, or close for SCSI tape devices. The routine currently issues a
DEVIOCGET i oct| command for the device, which fills out the devget
structure passed in, and then callsthe cgen_nbde_sns routine which issues a
SCSI_MODE_SENSE to the device to determine the device' s state. The routine then
callsthe ccrm_r el _ccb routine to release the CCB. When the call to
cgen_node_sns completes, the cgen_i oct | routine fills out the rest of the
devget structure based on information contained in the mode sense data.

Return Value
[EINVAL] The device does not exist.

See Also
ccrm_rel _ccb, cgen_node_sns ,ioctl (2

SCSI/CAM Routines in ULTRIX Reference Page Format C-77

Name
cgen_iodone — the entry point for al read and write 1/0 callbacks

Syntax

cgen_iodone(cch)
CCB_SCSIIO *ccb;

Arguments

ccb Pointer to the SCSI 1/0O CCB structure.

Description

The cgen_i odone routine is the entry point for all read and write I/O callbacks.
This is a generic routine for al read and write SCSI I/0 CCBs. The SCSI I/0 CCB
should contain a pointer to a buf structurein the cam r eq_map member of the
structure. If it does not, then a wake-up call is issued on the address of the CCB and
the error is reported. If the SCSI 1/0 CCB does contain a pointer to a buf structure
inthe cam r eq_nmap member, as it should, then the completion status is decoded.
Depending on the CCB’ s completion status, the correct fields within the buf
structure are filled out.

The device' s active queues may need to be aborted because of errors or because the
deviceis a sequential access device and the transaction was an asynchronous request.

The CCB is removed from the active queques by a call to the ccrm_rem ccb
routine and is released back to the free CCB pool by acall tothe ccrm_rel _ccb
routine. When the cgen_i odone routine is entered, context is on the interrupt
stack and the driver cannot sleep waiting for an event.

Return Value
None

See Also
ccrm_remccb, ccrm_rel _ccb

C-78 SCSI/CAM Routines in ULTRIX Reference Page Format

Name

cgen_minphys — comparesthe b_bcount with the maximum transfer limit for the
device

Syntax

cgen_minphys(bp)
register struct buf *bp;

Arguments

bp A buf structure pointer, which is used for request mapping.

Description

The cgen_ni nphys routine comparesthe b_bcount with the maximum transfer
limit for the device. The routine comparesthe b_bcount field in the buf
structure with the maximum transfer limit for the device in the Device Descriptor
Structure. The count is adjusted if it is greater than the limit.

Return Value
None

SCSI/CAM Routines in ULTRIX Reference Page Format C—79

Name
cgen_mode_sns — issues a SCSI_ MODE_SENSE command to the unit defined

Syntax

cgen_mode_sns(pdrv_dev, action, done, page code, page ctrl, seep)
PDRV_DEVICE *pdrv_dev;

CGEN_ACTION *action;

void (*done) ();

u_char page _code

u_char page ctrl;

u_long deep;

Arguments
pdrv_dev Pointer to the CAM Periphera Device Structure alocated for each SCS
device in the system.
action Pointer to the caller’s Generic Action Structure.

done The address of the completion routine to be called when the SCSI
command completes.

page code The user process s target page.
page ctrl The page control settings field.
deep Whether or not the GENERIC_SLEEP flag is set.

Description

The cgen_node_sns routine issues a SCSI_MODE_SENSE command to the unit
defined. The CGEN_ACTION structure is filled in for the calling routine based on
the completion status of the CCB.

Return Value

NULL — command could not be issued
CCB_SCSIIO pointer

See Also
ccm_cchb_status

C-80 SCSI/CAM Routines in ULTRIX Reference Page Format

Name
cgen_open — called by the kernel when a user process requests an open of the device

Syntax
cgen_open(dev, flags)
dev_t dev,
int flags;
Arguments
dev The major/minor device humber pair that identifies the bus number,
target 1D, and LUN associated with this SCS| device.
flags Flags set when afile is open.
Description

The cgen_open routine is called by the kernel when a user process reguests an
open of the device. The cgen_open routine callsthe ccnm_open_uni t
routine, which manages the SMP_LOCKS and, if passed the exclusive use flag for
SCSI devices, makes sure that no other process has opened the device. If the
ccnm_open_uni t routine returns success, the necessary data structures are
allocated.

The cgen_open routine callsthe ccrm_sasy_ccb_bl d routine to register for
asynchronous event notification for the device. The cgen_open routine then enters
a f or loop based on the power-up time specified in the Device Descriptor Structure
for the device. Within the loop, calls are made to the cgen_r eady routine, which
callsthe ccrm_t ur routine to issue a TEST UNIT READY command to the
device.

The cgen_open routine callsthe ccrm_r el _ccb routine to release the CCB.
The cgen_open routine checks certain state flags for the device to decide whether
to send the initial SCSI mode select pages to the device. Depending on the setting of
the state flags CGEN_UNIT_ATTEN_STATE and CGEN_RESET_STATE, the
cgen_open routine callsthe cgen_open_sel routine for each mode select page
to be sent to the device. The cgen_open_sel routine fills out the Generic Action
Structure based on the completion status of the CCB for each mode select page it
sends.

Return Value

The cgen_open routine returns GENERIC_SUCCESS upon successful
completion.

Diagnostics
The cgen_open routine fails under the following conditions:

SCSI/CAM Routines in ULTRIX Reference Page Format C-81

[EBUSY]
[ENOMEM]
[EINVAL]

[ENXIO]
[EIO]

See Also

The device is aready opened and the exclusive use bit is set.
Resource problem

The scsi_dev_type parameter does not match the device type in the
Inquiry datareturned by GET DEVICE TYPE CCB. The
scsi_dev_type was not configured.

The device does not exist.
Check device conditions.

ccrm_cl ose_unit , ccrm_open_unit , ccrm_rel _ccb,
ccm_sasy_cchb_bld, ccrm_tur , cgen_open_sel , cgen_cl ose

C-82 SCSI/CAM Routines in ULTRIX Reference Page Format

Name
cgen_open_sel —issues a SCSI_ MODE_SELECT command to the SCSI device

Syntax

cgen_open_sel(pdrv_dev, action, ms_index, done, deep)
PDRV_DEVICE *pdrv_dev;

CGEN_ACTION *action;

u long ms index;

void (*done) ();

u_long deep;

Arguments
pdrv_dev Pointer to the CAM Periphera Device Structure alocated for each SCS
device in the system.
action Pointer to the caller’s Generic Action Structure.

ms_index Anindex into a page in the Mode Select Table that is pointed to in the
Device Descriptor Structure.

done The address of the completion routine to be called when the SCSI
command completes.
deep Whether or not the GENERIC_SLEEP flag is set.
Description

The cgen_open_sel routine issues a SCSI_MODE_SELECT command to the
SCSI device. The mode select data sent to the device is based on the data contained
in the Mode Select Table Structure for the device, if oneis defined. The
CGEN_ACTION dtructure is filled in for the calling routine based on the completion
status of the CCB.

The cgen_open_sel routine callsthe ccrm_node_sel ect routine to create a
SCSI 1/0 CCB and send it to the XPT for processing.

Return Value
None

See Also
ccm_cchb_status, ccrm_node_sel ect

SCSI/CAM Routines in ULTRIX Reference Page Format C—-83

Name
cgen_read — handles synchronous read requests for user processes

Syntax

cgen_read(dev, uio)
dev_t dev;,
struct uio *uio;

Arguments
dev The major/minor device humber pair that identifies the bus number,
target 1D, and LUN associated with this SCS| device.
uio Pointer to the device information contained in the ui o I/O structure.
Description

The cgen_r ead routine handles synchronous read requests for user processes. It
passes the user process requeststo the cgen_st r at egy routine. The
cgen_read routine callsthe ccnn_get _bp routine to alocatea buf structure
for the user process read request. When the 1/0 is complete, the cgen_r ead
routine callsthe ccrm_r el _bp routine to deallocate the buf structure.

Return Value
The cgen_r ead routine passes the return from the physi o routine.

See Also
ccrm_get _bp, ccnm_rel _bp, cgen_strategy

C-84 SCSI/CAM Routines in ULTRIX Reference Page Format

Name
cgen_ready —issues a TEST UNIT READY command to the unit defined

Syntax

cgen_ready(pdrv_dev, action, done, sleep)
PDRV_DEVICE *pdrv_dev;
CGEN_ACTION *action;

void (*done) ();

u_long deep;

Arguments

pdrv_dev Pointer to the CAM Periphera Device Structure alocated for each SCS
device in the system.

action Pointer to the caller’s Generic Action Structure.
done The address of the completion routine to be called when the SCSI
command completes.
deep Whether or not the GENERIC_SLEEP flag is set.
Description

The cgen_r eady routine issues a TEST UNIT READY command to the unit
defined. Theroutine callsthe ccnm_t ur routine to issue the TEST UNIT READY
command and sleeps waiting for command status.

Return Value
None

See Also
ccm_tur

SCSI/CAM Routines in ULTRIX Reference Page Format C—-85

Name
cgen_slave — called at system boot to initialize the lower levels

Syntax

cgen_slave(ui, reg)
struct uba_device * ui;

caddr_treg;
Arguments
ui Pointer to the device information contained in the uba_devi ce
structure.
reg The virtual address of the controller.
Description

The cgen_sl ave routine is called at system boot to initialize the lower levels.
The routine also checks the bounds for the unit number to ensure it is within the
allowed range and sets the device-configured bit for the device at the specified bus,
target, and LUN.

Return Value

PROBE_FAILURE
PROBE_SUCCESS

See Also
ccrm_close_unit , ccnom_init , ccnm_open_uni t

C-86 SCSI/CAM Routines in ULTRIX Reference Page Format

Name
cgen_strategy — handles all 1/0 requests for user processes

Syntax

cgen_strategy(bp)
struct buf *bp;

Arguments

bp A buf structure pointer, which is used for request mapping.

Description

The cgen_st r at egy routine handles all 1/0 requests for user processes. It
performs specific checks, depending on whether the request is synchronous or
asynchronous and on the SCSI devicetype. The cgen_str at egy routine calls
the ccnm_i o_ccb_bl d routine to obtain an initialized SCSI 1/0O CCB and build
either aread or a write command based on the information contained in the buf
structure. The cgen_st r at egy routine then callsthe ccrm_send_ccb to
place the CCB on the active queue and send it to the XPT layer.

Return Value

[EINVAL]
[EI0]

See Also
ccrm_io_ccb_bld, ccrm_send_ccb, cgen_i odone

SCSI/CAM Routines in ULTRIX Reference Page Format C-87

Name
cgen_write — handles synchronous write requests for user processes

Syntax

cgen_write(dev, uio)
dev_t dev;,
struct uio *uio;

Arguments
dev The major/minor device humber pair that identifies the bus number,
target 1D, and LUN associated with this SCS| device.
uio Pointer to the device information contained in the ui o I/O structure.
Description

The cgen_wri t e routine handles synchronous write requests for user processes.
The routine passes the user process requests to the cgen_st r at egy routine. The
cgen_writ e routine calsthe ccrm_get _bp routine to allocate a buf structure
for the user process write request. When the I/O is complete, the cgen_write
routine callsthe ccrm_r el _bp routine to deallocate the buf structure.

Return Value
The cgen_wri t e routine passes the return from the physi o routine.

See Also
ccmm_get _bp, ccnm_rel _bp, cgen_strategy

C-88 SCSI/CAM Routines in ULTRIX Reference Page Format

Name
sim_action — initiates an /O request from a SCSI/CAM peripheral device driver

Syntax

sim_action(ccb_hdr)
CCB_HEADER *ccb _hdr;

Arguments

ccb_hdr Address of the header for the cch.

Description

The si m acti on routine initiates an 1/O request from a SCSI/CAM periphera
device driver. Theroutineis used by the XPT for immediate as well as for queued
operations. When the operation completes, the SIM calls back directly to the
peripheral driver using the CCB callback address, if callbacks are enabled and the
operation is not to be carried out immediately.

The SIM determines whether an operation is to be carried out immediately or to be
queued according to the function code of the CCB structure. All queued operations,
such as ‘‘Execute SCSI 1/O’’ (reads or writes), are placed by the SIM on a nexus-
specific queue and return with a CAM status of CAM_INPROG.

Some immediate operations, as described in the American National Standard for
Information Systems, SCS-2 Common Access Method: Transport and SCS Interface
Module, working draft, X3T9.2/90-186, may not be executed immediately. However,
all CCBs to be carried out immediately return to the XPT layer immediately. For
example, the ABORT CCB command does not always complete synchronously with
its call; however, the CCB_ABORT is returned to the XPT immediately. An
XPT_RESET_BUS CCB returns to the XPT following the reset of the bus.

Return Value

CAM_REQ _INPROG for queued commands
CAM_REQ_CMP for immediate commands
A valid CAM error value

See Also

American National Standard for Information Systems, SCS-2 Common Access
Method: Transport and SCS Interface Module, working draft, X3T9.2/90-186

SCSI/CAM Routines in ULTRIX Reference Page Format C—-89

Name
sim_init — initializes the SIM

Syntax

sim_init(pathid)
u_long pathid;

Arguments

pathid SCSI target’s bus controller number.

Description

The si m_init routineinitializes the SIM. The SIM clears dl its queues and
releases all allocated resources in response to this call. Thisroutine is called using
the function address contained in the CAM_SIM_ENTRY structure. This routine can
be called at any time; the SIM layer must ensure that data integrity is maintained.

Return Value
CAM_REQ CMP

C-90 SCSI/CAM Routines in ULTRIX Reference Page Format

Name
uagt_close — handles the close of the User Agent driver

Syntax
uagt_close(dev, flag)
dev_t dev;,
int flag;
Arguments
dev The major/minor device number pair that identifies the User Agent.
flag Unused.
Description

The uagt _cl ose routine handles the close of the User Agent driver. For the last
close operation for the driver, if any queues are frozen, a RELEASE SIM QUEUE
CCB is sent to the XPT layer for each frozen queue detected by the User Agent.

Return Value
None

See Also
uagt _open, xpt_ccb_free

SCSI/CAM Routines in ULTRIX Reference Page Format C-91

Name
uagt_ioctl — handlesthe i oct | system call for the User Agent driver

Syntax

uagt_ioctl(dev, cmd, data, flag)
dev_t dev;,

register int cmd;

caddr_t data;

int flag;

Arguments

dev The major/minor device number pair that identifies the User Agent.
cmd Theioctl command, UAGT_CAM_10.

data Pointer to the UAGT_CAM_CCB structure passed by the user process.
flag Unused.

Description

The uagt _i oct | routine handlesthe i oct| system call for the User Agent
driver. The i oct| commands supported are: DEVIOCGET, to obtain the User
Agent driver's SCSI device status; UAGT_CAM _10, the i oct | define for calsto
the User Agent driver; UAGT_CAM_SINGLE_SCAN, to scan a bus, target, and
LUN; and UAGT_CAM_FULL_SCAN, to scan a bus.

For SCSI 1/0 CCB requests, the user data areais locked before passing the CCB to
the XPT. The User Agent sleeps waiting for the I/O to complete and issues a
ABORT CCB if asignal is caught while sleeping.

Return Value
The uagt _i oct | routine returns a value of O (zero) upon successful completion.

Diagnostics
The uagt _i oct | routine fails under the following conditions:
[EFAULT] Copy to or from user space failed.
[EINVAL] An unsupported cmd value was passed to ioctl(). The CCB copied

from the user process contained an invalid XPT function code, or
an invalid target or LUN.

[EBUSY] The maximum allowable number of User Agent requests has been
reached (MAX_UAGT_REQ).

C-92 SCSI/CAM Routines in ULTRIX Reference Page Format

See Also
i octl (2), xpt_action, xpt_ccb_alloc

SCSI/CAM Routines in ULTRIX Reference Page Format C—93

Name
uagt_open — handles the open of the User Agent driver

Syntax
uagt_open(dev, flag)
dev_t dev;
int flag;
Arguments
dev The major/minor device number pair that identifies the User Agent.
flag Unused.
Description

The uagt _open routine handles the open of the User Agent driver.
The character device specia file name used for the open is / dev/ cam

Return Value
The uagt _open routine returns a value of 0 (zero) upon successful completion.

See Also
uagt _cl ose, xpt _init

C-94 SCSI/CAM Routines in ULTRIX Reference Page Format

Name
Xpt_action — calls the appropriate XPT/SIM routine

Syntax

long xpt_action (ch)
CCB_HEADER * ch;

Arguments

ch Specifies a pointer to the CAM Control Block (CCB) on which to act.

Description

The xpt _act i on routine calls the appropriate XPT/SIM routine. The routine
routes the specified CCB to the appropriate SIM module or to the Configuration
driver, depending on the CCB type and on the path ID specified in the CCB.
Vendor-unique CCBs are also supported. Those CCBs are passed to the appropriate
SIM module according to the path ID specified in the CCB.

Return Value
Upon completion, the xpt _act i on routine returns avalid CAM status vaue.

See Also
xpt _ccb_al l oc, xpt _ccb_free

SCSI/CAM Routines in ULTRIX Reference Page Format C—95

Name
xpt_ccb_aloc — allocates a CAM Control Block (CCB)

Syntax
CCB_HEADER *xpt_ccb_alloc ()

Arguments
None

Description

The xpt _ccb_al | oc routine alocates a CAM Control Block (CCB) for use by a
SCSI/CAM peripheral device driver. The xpt _ccb_al | oc routine returns a
pointer to a preallocated data buffer large enough to contain any CCB structure. The
peripheral device driver uses this structure for its XPT/SIM requests. The routine aso
ensures that the SIM private data space and peripheral device driver pointer,

cam pdrv_ptr , areset up.

Return Value

Upon successful completion, xpt _ccb_al | oc returns a pointer to a preallocated
data buffer. The data buffer returned by xpt _ccb_al | oc isinitiaized to be a
SCSI 1/O CCB. For other types of CCBs, some fields may have to be reinitialized
for the specific CCB.

See Also
xpt _cch_free

C-96 SCSI/CAM Routines in ULTRIX Reference Page Format

Name
Xpt_ccb _free —frees a previoudly allocated CCB

Syntax

long xpt_ccb_free(ch)
CCB_HEADER *ch;

Arguments
ch Specifies a pointer to the CCB to be freed. This CCB was allocated in a call
to xpt _cchb_all oc.

Description

The xpt _ccb_free routine frees a previously alocated CCB. The routine returns
a CCB, previoudy allocated by a periphera device driver, to the CCB pool.

Return Value
XPT_CCB_INVALID or CAM_SUCCESS

See Also
xpt _ccb_all oc

SCSI/CAM Routines in ULTRIX Reference Page Format C-97

Name
Xpt_init — validates the initialized state of the CAM subsystem

Syntax
long xpt_init()

Arguments
None

Description

The xpt _i ni t routine validates the initialized state of the CAM subsystem. The
routine initializes all global and internal variables used by the CAM subsystem
through a call to the Configuration driver. Periphera device drivers must call this
routine either during or prior to their own initiaization. The xpt _i ni t routine
simply returns to the calling SCSI/CAM periphera device driver if the CAM
subsystem was previously initialized.

Return Value
Upon completion, xpt _i ni t returns one of the following values:

Return Value Meaning

CAM_SUCCESS The xpt _i nit routineinitialized the CAM
subsystem.

CAM_FAILURE The xpt _i nit routine did not initialize the CAM
subsystem and the CAM subsystem cannot be used.

C-98 SCSI/CAM Routines in ULTRIX Reference Page Format

Index

A CAM Control Block (CCB) header structure
(CAM), 5-2
ABORT CCB (CAM), 56
CAM Control Blocks
described, 5-1t
B CAM debug macros
BUS DEVICE RESET CCB (CAM), 5-6 described, 10-1
BUS RESET CCB (CAM), 5-6 introduction, 10-1
CAM debug routines
C introduction, 10-1
CAM equipment device table (CAM), 6-2
CALLD macro (CAM), 10-1 CAM error handling
CAM CAM_ERROR macro, 9-1
common structures and routines, 1-4 introduction, 9-1
Configuration driver structures and routines, 1-5 CAM error-logging data structures
generic structures and routines, 1-5 introduction, 9-2
overview, 1-1 CAM generic maximum transfer limit routine, 4-8,
SCSI CDROM/AUDIO device structures and C-79
commands, 1-5 CAM identification macros
SCSl disk device structures and routines, 1-5 described, 3-5t
SCSl tape device structures and routines, 1-5 CAM locking macros
SCSI/CAM periphera drivers, 1-4 described, 3-5t
SCSI/CAM special 1/O interface, 1-5 CAM programmer -defined routines
SIM SCSI Interface layer, 1-6 introduction, 11-1
User Agent driver structures and routines, 1-3 CAM programmer-defined structures
XPT transport layer, 1-6 introduction, 11-1
CAM common close unit routine samples, 11-11
See also CAM open unit routine CAM routines
CAM common data structures cam_logger, C-2, 94
introduction, 3-1 ccfg_action, 6-5
CAM common macros ccfg_attach, C-3, 6-5
introduction, 3-5 ccfg_edtscan, C+4, 6-5
CAM common routines ccfg_save, C-5, 6-5
introduction, 3-1, 3-6 ccmn_abort_ccb_bld, 3-12, C-9

CAM Control Block (CAM), 5-1 ccmn_abort_que, 3-9, C-10

CAM routines (cont.) CAM routines (cont.)

ccmn_bdr_ccb_bld, 3-12, C-12 cgen_attach, 4-8, C-72
ccmn_br_ccb_bld, 3-12, C-14 cgen_ccb_chkcond, 4-7, C-73
ccmn_cch_status, 3-13, C-15 cgen_close, 4-5, C-75
ccmn_ccbwait, 3-15, C-17 cgen_done, 4-7, C-76
ccmn_close_unit, 3-8, C-18 cgen_ioctl, 4-6, C-77
ccmn_DoSpeciaCmd, 3-15, C-6 cgen_iodone, 4-7, C-78
ccmn_errlog, 3-15, C-19 cgen_minphys, 4-8, C-79
ccmn_gdev_ccbh _bld, 3-11, C-21 cgen_mode_sns, 4-9, C-80
ccmn_get_bp, 3-14, C-22 cgen_open, 4-5, C-81
ccmn_get_cch, 3-10, C-24 cgen_open_sel, 4-9, C-83
ccmn_get_dbuf, 3-14, C-25 cgen_read, 4-5, C-84

ccmn_init, 3-8, C-26 cgen_ready, 4-8, C-85
ccmn_io_ccbh_bld, 3-11, C-29 cgen_slave, 4-8, C-86
ccmn_mode_select, 3-13, C-31 cgen_strategy, 4-6, C-87
ccmn_open_unit, 3-8, C-33 cgen_write, 4-6, C-88
ccmn_ping_ccb_bld, 3-11, C-36 SCSI/CAM specia 1/0 interface, 12-1
ccmn_rel_bp, 3-14, C-37 sim_action, 8-2, C-89
ccmn_rel_cch, 3-10, C-38 sim_init, 8-2, C-90
ccmn_rel_dbuf, 3-14, C-39 uagt_close, 24, C-91
ccmn_rem_cchb, 3-9, C40 uagt_ioctl, 2-5, C-92
ccmn_rsq_ccb_bld, 3-11, C42 uagt_open, 24, C-94
ccmn_sasy _ccb_bld, 3-11, C44 xpt_action, C-95, 7-1
ccmn_sdev_ccb_bld, 3-11, C-46 xpt_ccb_free, C-97, 7-1
ccmn_send_cch, 3-9, C-47 Xpt_init, C-98, 7-2
ccmn_start_unit, 3-13, C-49 CAM SIM callback handling
ccmn_SysSpecialCmd, 3-15, C—-7 description, 8-1
ccmn_term_ccb_bld, 3-12, C-52 CAM SIM routines
ccmn_term_que, 3-9, C-53 introduction, 8-2

ccmn_tur, 3-13, C-55 CAM structures
cdbg_CamFunction, 104, C-57 ABORT CCB, 56
cdbg_CamStatus, 10-4, C-58 BUS DEVICE RESET CCB, 5-6
cdbg_DumpABORT, 10-6, C-59 BUS RESET CCB, 56
cdbg_DumpBuffer, 10-6, C—60 CAM Control Block (CCB) header structure, 5-2,
cdbg_DumpCCBHeader, 10-5, C-61 5-6
cdbg_DumpCCBHeaderFlags, 10-5, C-63 CAM Control Block structures, 5-1
cdbg_DumplnquiryData, 10-6, C-64 CAM_ERR_ENTRY, 9-2
cdbg_DumpPDRVws, 10-6, C-65 CAM_ERR_HDR, 9-3
cdbg_DumpSCSIIO, 10-6, C-66 CAM_PERIPHERAL_DRIVER, 6-3
cdbg_DumpTERMIO, 10-6, C-67 CCB_ABORT, 56
cdbg_GetDeviceName, 10-6, C-68 CCB_GETDEV, 5-7
cdbg_ScsiStatus, 10-5, C-69 CCB_HEADER, 5-2
cdbg_SystemStatus, 10-5, C-70 CCB_PATHINQ, 5-7
cgen_async, 4-7, C-71 CCB_RELSIM, 55

Index—2

CAM structures (cont.)

CCB_RESETDEV, 5-6

CCB_SCsIIO, 54

CCB_SETASYNC, 55

CCB_SETDEV, 5-7

CCFG_CTRL, 6-2

cd_address, 11-17

CDB_UN, 55

CDROM_PLAY_AUDIO and
CDROM_PLAY_VAUDIO commands,
11-18

CDROM_PLAY_AUDIO_MSF and
CDROM_PLAY_MSF commands, 11-18

CDROM_PLAY_AUDIO_TI command, 11-19

CDROM_PLAY_AUDIO_TR command, 11-20

CDROM_PLAYBACK_CONTROL and
CDROM_PLAYBACK_STATUS
commands, 11-27

CDROM_PLAYBACK_CONTROL command,
11-28

CDROM_PLAYBACK_STATUS command,
11-28

CDROM_PLAY_TRACK command, 11-27

CDROM_READ_HEADER command, 11-26

CDROM_READ_SUBCHANNEL command,
11-22

CDROM_TOC_ENTRY S command, 11-21

CDROM_TOC_HEADER command, 11-20

CGEN_ACTION, 4-3

CGEN_SPECIFIC, 4-2

Density Table Structure, 11-8

DENSITY_TBL, 34, 11-8

DEV_DESC, 11-5

Device Descriptor Structure, 11-5

DISK_SPECIFIC, 11-14

EDT, 6-2

GET DEVICE TYPE CCB, 5-7

MODESEL_TBL, 3-3, 11-9

PATH INQUIRY CCB, 5-7

PDRV_DEVICE, 3-2, 11-2

PDRV_WS, 34

Peripheral Device Unit Table, 3-1, 11-1, 11-2

RELEASE SIM QUEUE CCB, 5-5

SCSI 1/0 CCB, 54

CAM structures (cont.)
SCSI/CAM Specia Command Table, 12-3

SCSI/CAM Special Command Table example,

127

SET ASYNCHRONOUS CALLBACK CCB, 5-5

SET DEVICE TYPE CCB, 57
Specid 1/0 Argument Structure, 12-8

Specia 1/0 Control Commands Structure, 12-16,

12-17

SPECIAL_HEADER, 12-3

TAPE_SPECIFIC, 11-11

TERMINATE I/O CCB, 56

UAGT_CAM_CCB, 2-2

UAGT_CAM_SCAN, 24
CAM User Agent driver

error handling, 2-1

introduction, 2-1
CAM XPT routines

introduction, 7-1
CAM_ERROR macro (CAM)

defined, 9-1

described, 9-1
cam_logger (CAM), C-2, 94
CCB_ABORT structure (CAM), 56
CCB_GETDEV structure (CAM), 5-7
CCB_HEADER structure (CAM), 5-2
CCB_PATHINQ structure (CAM), 5-7
CCB_RELSIM structure (CAM), 55
CCB_RESETBUS structure (CAM), 5-6
CCB_RESETDEV structure (CAM), 56
CCB_SCSIIO structure (CAM), 54
CCB_SETASYNC structure (CAM), 5-5
CCB_SETDEYV structure (CAM), 5-7
CCB_TERMIO structure (CAM), 5-6
ccfg_action (CAM), 6-5
ccfg_attach (CAM), C-3, 6-5
ccfg_edtscan (CAM), CH4, 6-5
ccfg_slave (CAM), C-5, 6-5
ccmn_abort_ccb_bld (CAM), 3-12, C-9
ccmn_abort_que (CAM), 3-9, C-10
ccmn_bdr_ccb_bld (CAM), 3-12, C-12
ccmn_br_ccb_bld (CAM), 3-12, C-14
ccmn_cch_status (CAM), 3-13, C-15

Index—3

ccmn_ccbwait (CAM), 3-15, C-17
ccmn_close_unit (CAM), 3-8, C-18
ccmn_DoSpecialCmd (CAM), 3-15, C-6
ccmn_errlog (CAM), 3-15, C-19
ccmn_gdev_ccb_bld (CAM), 3-11, C-21
ccmn_get_bp (CAM), 3-14, C-22
ccmn_get_cch (CAM), 3-10, C-24
ccmn_get_dbuf (CAM), 3-14, C-25
ccmn_init (CAM), 3-8, C-26
ccmn_io_ccb_bld (CAM), 3-11, C-29
ccmn_mode_select (CAM), 3-13, C-31
ccmn_open_unit (CAM), 3-8, C-33
ccmn_ping_ccb_bld (CAM), 3-11, C-36
ccmn_rel_bp (CAM), 3-14, C-37
ccmn_rel_ccb (CAM), 3-10, C-38
ccmn_rel_dbuf (CAM), 3-14, C-39
ccmn_rem_ccb (CAM), 3-9, C40
ccmn_rsg_ccb_bld (CAM), 3-11, C-42
ccmn_sasy_ccb_bld (CAM), 311, C-44
ccmn_sdev_ccb_bld (CAM), 3-11, C-46
ccmn_send_ccb (CAM), 3-9, C47
ccmn_start_unit (CAM), 3-13, C49
ccmn_SysSpecialCmd (CAM), 3-15, C-7
ccmn_term_ccb_bld (CAM), 3-12, C-52
ccmn_term_que (CAM), 3-9, C-53
ccmn_tur (CAM), 3-13, C-55
cdbg_CamFunction (CAM), 104, C-57
cdbg_CamsStatus (CAM), 104, C-58
cdbg_ DumpABORT (CAM), 10-6, C-59
cdbg_DumpBuffer (CAM), 10-6, C—60
cdbg_DumpCCBHeader (CAM), 10-5, C-61
cdbg_DumpCCBHeader Flags (CAM), 10-5, C-63
cdbg_DumplnquiryData (CAM), 10-6, C-64
cdbg_DumpPDRVws (CAM), 10-6, C65
cdbg_DumpSCSI10 (CAM), 10-6, C-66
cdbg_ DumpTERMIO (CAM), 10-6, C-67
cdbg_GetDeviceName (CAM), 10-6, C-68
cdbg_ScsiStatus (CAM), 10-5, C-69
cdbg_SystemStatus (CAM), 10-5, C-70
CDB_UN structure (CAM), 5-5
CGEN_ACTION (CAM), 4-3
cgen_async (CAM), 47, C-71
cgen_attach (CAM), 4-8, C-72

Index—4

cgen_ccb_chkcond (CAM), 4-7, C-73

cgen_close (CAM), 4-5, C-75

cgen_done (CAM), 4-7, C-76

cgen_ioctl (CAM), 4-6, C-77

cgen_iodone (CAM), 4-7, C-78

cgen_minphys (CAM), 4-8, C-79

cgen_mode_sns (CAM), 4-9, C-80

cgen_open (CAM), 4-5, C-81

cgen_open_sal (CAM), 4-9, C-83

cgen_read (CAM), 4-5, C-84

cgen_ready (CAM), 4-8, C-85

cgen_slave (CAM), 4-8, C-86

CGEN_SPECIFIC (CAM), 4-2

cgen_strategy (CAM), 4-6, C-87

cgen_write (CAM), 4-6, C-88

common abort CCB routine (CAM), 3-9, 3-12,
C-9, C-10

common bus-device-reset CCB routine (CAM),
3-12, C-12

common bus-reset CCB routine (CAM), 3-12, C-14

common close unit routine (CAM), 3-8, C-18

common create SCS| 1/0 CCB for
ccmn_mode_select command (CAM), 3-13,
C-31

common create SCS| 1/0 CCB for START UNIT
command (CAM), 3-13, C-49

common create SCS| |/O CCB for TEST UNIT
READY command (CAM), 3-13, C-55

common create SCSI I/O CCB routine (CAM),
3-11, C-29

common data structures (CAM)

introduction, 3-1

common deallocate buf structure routine (CAM),
3-14, C-37

common deallocate data buffer routine (CAM),
3-14, C-39

common error logging routine (CAM), 3-15, C-19

common get buf structure routine (CAM), 3-14,
Cc-22

common get CCB routine (CAM), 3-10, C-24

common get data buffer routine (CAM), 3-14, C-25

common get-device-type CCB routine (CAM), 3-11,
c-21

common initialization routine (CAM), 3-8, C-26
common I/O CCB wait routine (CAM), 3-15, C-17
common open unit routine (CAM), 3-8, C-33
See also common close unit routine (CAM)
common path-inquiry CCB routine (CAM), 3-11,
C-36
common release CCB routine (CAM), 3-10, C-38
common release-SIM-queue CCB routine (CAM),
311, C42
common remove CCB routine (CAM), 3-9, C40
common routine to assign generic status categories
(CAM), 313, C-15
common routines (CAM)
introduction, 3-1
common send CCB routine (CAM), 3-9, C47
common set-asynchronous-callback CCB routine
(CAM), 311, C44
common set-device-type CCB routine (CAM), 3-11,
C-46
common special command interface routine
(CAM), 315, C-6, C-7
common terminate CCB routine (CAM), 3-9, C-53
common terminate |/O CCB routine (CAM), 3-12,
C-52
Configuration driver (CAM)
and XPT routines, 6-1
Configuration driver configuraton file (CAM), 6-3
sample entry, 64
Configuration driver control structure (CAM), 6-2
Configuration driver data structures (CAM)
CAM_PERIPHERAL_DRIVER, 6-3
CCFG_CTRL, 6-2
EDT, 6-2
introduction, 6-1
Configuration driver routines
entry-point routine introduction, 64
Configuration driver routines (CAM)
ccfg_action, 6-5
ccfg_attach, C-3, 6-5
ccfg_edtscan, C+4, 6-5
ccfg_slave, C-5, 6-5
description, 6-1
introduction, 6-1

D

debug macros (CAM)
introduction, 10-1
debug routines (CAM)
introduction, 10-1
Density Table Structure (CAM), 34
Density Table Structure structure (CAM), 11-8
sample entry, 11-9
DENSITY_TBL structure (CAM), 34, 11-8
DEV_DESC structure (CAM), 11-5
Device Descriptor Structure structure (CAM), 11-5
device driver
summary of device driver routines, B—1t
DISK_SPECIFIC structure (CAM), 11-14

E

Error Entry Structure (CAM), 9-2

error handling (CAM)
CAM_ERROR macro, 9-1
introduction, 9-1

Error Header Structure (CAM), 9-3

error-logging data structures (CAM)
CAM_ERR_ENTRY, 9-2
CAM_ERR_HDR, 9-3
introduction, 92

G

generic action data structure (CAM), 4-3
generic asynchronous event handling routine
(CAM), 47, C-71

generic attach routine (CAM), 4-8, C-72
generic close unit routine (CAM), 4-5, C-75

See also generic open unit routine (CAM)
generic completion routine (CAM), 4-7, C-76
generic data structures (CAM)

introduction, 4-2
generic 1/0O completion routine (CAM), 4-7, C-78
generic ioctl command routine (CAM), 4-6, C-77
generic open unit routine (CAM), 4-5, C-81

See also generic close unit routine (CAM)
generic read routine (CAM), 4-5, C-84

See also generic write routine (CAM)

Index-5

generic routines (CAM)

error handling, 4-2

implementing ioctl commands, 4-1

introduction, 4-1

kernel entry points, 4-2

rules, 4-1
generic dave routine (CAM), 4-8, C-86
generic strategy routine (CAM), 4-6, C-87
generic write routine (CAM), 4-6, C-88

See also generic read routine (CAM)
generic-specific data structure (CAM), 4-2
GET DEVICE TYPE CCB (CAM), 5-7

H

header files
header files Used by device drivers, A-1t
header files Used by SCSI/CAM device drivers,
A-3t

M

Mode Select Table Structure (CAM), 3-3, 11-9

Mode Select Table Structure structure (CAM)
sample entry, 11-11

MODESEL_TBL structure (CAM), 3-3, 11-9

P

PATH INQUIRY CCB (CAM), 5-7

PDRV_DEVICE structure (CAM), 3-2, 11-2

PDRV_WS structure (CAM), 34

Peripheral Device Unit Table structure (CAM),

31, 111, 112

PRINTD macro (CAM), 10-1

programmer -defined routines (CAM)
introduction, 11-1

programmer -defined structures (CAM)
introduction, 11-1
samples, 11-11

Index—6

R

RELEASE SIM QUEUE CCB (CAM), 55

routine to dump a CCB_ABORT (CAM), 10-6,
C-59

routineto dump a CCB_HEADER (CAM), 10-5,
Cc-61

routine to dump a CCB_SCSI10 (CAM), 10-6,
C-66

routineto dump a CCB_TERMIO (CAM), 10-6,
Cc-67

routine to dump a data buffer (CAM), 10-6, C-60

routine to dump a PDRV_WS (CAM), 10-6, C-65

routineto dump an ALL_INQ_DATA structure
(CAM), 10-6, C-64

routine to dump cam_flags from a CCB_HEADER
(CAM), 10-5, C-63

routine to dump the device type (CAM), 10-6,

Cc-68

routineto fill in an error log packet (CAM), C-2,
94

routineto print CAM status codes (CAM), 104,
Cc-58

routineto print SCSI status codes (CAM), 10-5,
C-69

routineto print system error codes (CAM), 10-5,
C-70

routine to print XPT function codes (CAM), 104,
C-57

S

SCSI CDROM/AUDIO device cd_address structure
(CAM), 1117

SCSI CDROM/AUDIO device
CDROM_PLAY_AUDIO and
CDROM_PLAY_VAUDIO commands
structure (CAM), 11-18

SCSI CDROM/AUDIO device
CDROM_PLAY_AUDIO_MSF and
CDROM_PLAY_MSF commands structure
(CAM), 1118

SCSI CDROM/AUDIO device
CDROM_PLAY_AUDIO_TI command

structure (CAM)

SCSI CDROM/AUDIO device
CDROM_PLAY_AUDIO_TI command
structure (CAM) (cont.)

Book Title (cont.)
11-19 (cont.)
(cont.)
(cont.) , 11-19

SCSI CDROM/AUDIO device
CDROM_PLAY_AUDIO_TR command
structure (CAM), 11-20

SCSI CDROM/AUDIO device
CDROM_PLAYBACK_CONTROL and
CDROM_PLAYBACK_STATUS commands
structures (CAM), 11-27

SCSI CDROM/AUDIO device
CDROM_PLAYBACK_CONTROL
command structure (CAM), 11-28

SCSI CDROM/AUDIO device
CDROM_PLAYBACK_STATUS command
structure (CAM), 11-28

SCSI CDROM/AUDIO device
CDROM_PLAY_TRACK command
structure (CAM), 11-27

SCSI CDROM/AUDIO device
CDROM_READ_HEADER command
structures (CAM), 11-26

SCSI CDROM/AUDIO device
CDROM_READ_SUBCHANNEL command
structure (CAM), 11-22

SCSI CDROM/AUDIO device
CDROM_TOC_ENTRYS command
structures (CAM), 11-21

SCSI CDROM/AUDIO device
CDROM_TOC_HEADER command
structure (CAM), 11-20

SCSI CDROM/AUDIO device Track Address
structure (CAM), 11-17

SCSl device

attaching, 4-8, C-72

closing, 2-4, 3-8, 4-5, C-18, C-75, C-91
opening, 24, 3-8, 4-5, C-33, C-81, C-94
reading, 4-5, C-84

writing, 4-6, C-88

SCSI 1/0 CCB (CAM), 54
SCSI/CAM peripheral driver configuration
structure (CAM), 6-3
SCSI/CAM peripheral driver configuration table
(CAM)
adding entries, 6-3
sample entry, 64
SCSI/CAM Special Command Table (CAM), 12-3
entries, 12-5
SCSI/CAM Special Command Table (CAM)
example, 12-7
SCSI/CAM special 1/0 interface (CAM), 12-1
See also generic routines (CAM)
application program access, 12-1
command table entries, 12-5
command table example, 12—7
command tables, 12-3
control command, 12-16, 12-17
device driver access, 12-2
introduction, 12-1
1/0 control command processing, 12-8
sample code, 1220, 1222
sample function, 12-14, 12-15, 12-19
SCSI/CAM Special Command Table, 12-3
SCSI/CAM Special Command Table entries, 12-5
SCSI/CAM Special Command Table example,
12-7
Specia 1/0 Control Commands Structure, 12-16,
12-17
SPECIAL_HEADER, 12-3
SET ASYNCHRONOUS CALLBACK CCB
(CAM), 5-5
SET DEVICE TYPE CCB (CAM), 5-7
SIM action routine (CAM), 8-2, C-89
SIM initialization routine (CAM), 8-2, C-90
SIM routines (CAM)
introduction, 8-1
sim_action (CAM), 8-2, C-89
sim_init (CAM), 8-2, C-90
Special 1/0 Argument Structure (CAM), 12-8
Special 1/0 Control Commands Structure (CAM),
12-16, 1217
SPECIAL_HEADER (CAM), 12-3

Index—7

T XPT routines (CAM)
introduction, 7-1
XPT routing routine (CAM), C-95, 7-1
xpt_action (CAM), C-95, 7-1
xpt_ccb_alloc, C-96, 7-1
U xpt_ccb_free (CAM), C-97, 7-1
UAGT_CAM_CCB (CAM), 2-2 xpt_init (CAM), C-98, 7-2
UAGT_CAM_SCAN (CAM), 2—4
uagt_close (CAM), 24, C-91
uagt_ioctl (CAM), 2-5, C-92
uagt_open routine (CAM), 2-4, C-94
USCA (CAM)
common structures and routines, 1-4

TAPE_SPECIFIC structure (CAM), 11-11
TERMINATE 1/0 CCB (CAM), 5-6

Configuration driver structures and routines, 1-5
generic structures and routines, 1-5
overview, 1-1
SCSI CDROM/AUDIO device structures and
commands, 1-5
SCSI disk device structures and routines, 1-5
SCSlI tape device structures and routines, 1-5
SCSI/CAM periphera drivers, 1-4
SCSI/CAM specia 1/O interface, 1-5
SIM SCSI Interface layer, 1-6
User Agent driver structures and routines, 1-3
XPT transport layer, 1-6
User Agent close routine
See also User Agent open routine
User Agent close routine (CAM), 24, C-91
User Agent driver (CAM)
error handling, 2-1
introduction, 2-1
sample inquiry programs, 2-5
sample programs, 2-5
sample scanner programs, 2-15
User Agent ioctl routine (CAM), 2-5, C-92
User Agent open routine
See also User Agent close routine

X

XPT free CCB routine (CAM), C-97, 7-1
XPT initialization routine (CAM), C-98, 72
XPT routines

Xpt_ccb_alloc, C-96, 7-1

Index—8

How to Order Additional Documentation

Technical Support

If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing

your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call

800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location Call
Continental USA, 800-DIGITAL
Alaska, or Hawaii

Puerto Rico 809-754-7575
Canada 800-267-6215
Internationa

Internal”

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada

Attn: DECdirect Operations KAO2/2
P.O. Box 13000

100 Herzberg Road

Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO/E15
or

Software Supply Business

Digital Equipment Corporation
Westminster, Massachusetts 01473

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader’'s Comments

ULTRIX SCSI/CAM Architecture

Guide to Writing Device Drivers for the
ULTRIX SCSI/CAM Architecture Interfaces
AA-PN5SHA-TE

Please use this postage-paid form to comment on this manual. |f you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your

comments on an SPR form.
Thank you for your assistance.

Please rate this manual:

Accuracy (software works as manua says)
Completeness (enough information)
Clarity (easy to understand)

Organization (structure of subject matter)
Figures (useful)

Examples (useful)

Index (ability to find topic)

Page layout (easy to find information)

What would you like to see more/less of?

Excellent

OOoOoOOoood

Good

OOoOoOOoood

=

Oo0O0OOooOon

g
s

OOoOoOOoood

What do you like best about this manual ?

What do you like least about this manual ?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Name/Title

Dept.

Company

Date

Mailing Address
Email

Phone

——————— Do Not Tear — Fold Hereand Tape == === === === -~ e

Hnananm H ‘ ‘ H NO POSTAGE
NECESSARY

IF MAILED IN THE

|
|
|
|
|
|
|
i
|
UNITED STATES | |
|
|
|
IEEES——
IEEEEEE——— |
I |
BUSINESS REPLY MAIL —
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA —
I |
POSTAGE WILL BE PAID BY ADDRESSEE] i
I
I
DIGITAL EQUIPMENT CORPORATION i
OPEN SOFTWARE PUBLICATIONS MANAGER |
ZKO3-3/Y32 i
110 SPIT BROOK ROAD !
NASHUA NH 03062-2698 |
|
|
|
|
i
|
bl el bdaloddi bl i
———————— Do Not Tear — Fold Here -———i
Cut
Along
Dotted

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
:
A I
Line |
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Reader’'s Comments ULTRIX SCSI/CAM Architecture
Guide to Writing Device Drivers for the

ULTRIX SCSI/CAM Architecture Interfaces

AA-PN5SHA-TE

Please use this postage-paid form to comment on this manual. |f you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manual says) [l [l [l [l
Completeness (enough information) O O O O
Clarity (easy to understand) O O O O
Organization (structure of subject matter) O O O O
Figures (useful) O O O O
Examples (useful) O O O O
Index (ability to find topic) [l [l [l [l
Page layout (easy to find information) O O O O

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual ?

Please list errors you have found in this manual:
Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Name/Title Dept.
Company Date
Mailing Address

Email Phone

——————— Do Not Tear — Fold Hereand Tape == === === === -~ e

Hnananm H ‘ ‘ H NO POSTAGE
NECESSARY

IF MAILED IN THE

|
|
|
|
|
|
|
i
|
UNITED STATES | |
|
|
|
IEEES——
IEEEEEE——— |
I |
BUSINESS REPLY MAIL —
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA —
I |
POSTAGE WILL BE PAID BY ADDRESSEE] i
I
I
DIGITAL EQUIPMENT CORPORATION i
OPEN SOFTWARE PUBLICATIONS MANAGER |
ZKO3-3/Y32 i
110 SPIT BROOK ROAD !
NASHUA NH 03062-2698 |
|
|
|
|
i
|
bl el bdaloddi bl i
———————— Do Not Tear — Fold Here -———i
Cut
Along
Dotted

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
:
A I
Line |
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

