
TPC Benchmark B
Full Disclosure Report

for the
DECsystem 5500

Using
ULTRIX 4.2 and INFORMIX-OnLine 4.10

Submitted for Review: 12/3/91

Company
 Name

System
 Name

Database
Software

Operating System
 Software

Digital Equipment
 Corporation

DECsystem 5500 INFORMIX-
OnLine 4.10

ULTRIX 4.2

Total System Cost TPC-B Throughput Price Performance

-Hardware
-Software
-5 years Maintenance

Sustained maximum through-
put of system running TPC
Benchmark B expressed in
transactions per second.

Total system cost/
 TPC-B throughput

 ($160,113/40.6 tps-B)

$160,113 40.6 tps-B $3,944 per tpsB

d
TM

First Printing December, 1991

Digital Equipment Corporation believes that the information in this document is accurate as of its
publication date. The information in this document is subject to change without notice. Digital
Equipment Corporation assumes no responsibility for any errors that may appear in this document.

The pricing information in this document accurately reflects prices in effect on the indicated dates.
However, Digital Equipment Corporation provides no warranty on the pricing information in this
document.

The performance information in this document is for guidance only. System performance is highly
dependent on many factors including system hardware, system and user software, and user appli-
cation characteristics. Customer applications must be carefully evaluated before estimating per-
formance. Digital Equipment Corporation does not warrant or represent that a user can or will
achieve similar performance expressed in transactions per second (TPS) or normalized
price/performance ($/TPS). No warranty on system performance or price/performance is ex-
pressed or implied in this document.

Copyright ©1991 Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

DEC, DEC C, DECsystem 5500, ULTRIX and the DIGITAL Logo are trademarks of Digital Equip-
ment Corporation.

Informix is a registered trademark of Informix Software, Inc.
Prestoserve is a registered trademark of Legato Systems, Inc.
TPC Benchmark and TPC-B are a trademarks of the Transaction Processing Performance Council.

iii

Abstract

This report documents the compliance of testing performed on a
DECsystem 5500 server running INFORMIX-OnLine 4.10 in confor-
mance to the Transaction Processing Performance Council Benchmark B
Standard Specification.

Two standard metrics, transactions per second (TPS) and price per TPS
($/TPS), are reported. Throughout this report, TPS refers to the tpsB per-
formance metric, in accordance with the TPC Benchmark B Standard.
The independent auditor’s report by KPMG Peat Marwick is included.

v

Table of Contents

Preface .. viii

TPC Benchmark B Full Disclosure 1

1 - General Items ..1

1.1 Sponsor ... 1

1.2 Application Code and Definition Statements ... 1

1.3 Parameter Settings .. 2

1.4 Configuration Diagrams ... 2

2 - Clause 2 Related Items ...3

2.1 Atomicity Tests .. 4

2.2 Consistency Tests ... 5

2.3 Isolation Tests .. 5

2.4 Durability Tests .. 7

3 - Clause 3 Related Items ...8

3.1 ABTH Data Storage Distribution ... 8

3.1.1 History Storage and Recovery ... 10

3.2 Database Contents and Method of Population ... 13

3.3 Type of Database .. 13

4 - Clause 4 Related Items ...13

5 - Clause 5 Related Items ...13

5.1 Method of Verification of Random Number Generator ... 13

5.2 Horizontal Partitioning Disclosure ... 13

6 - Clause 6 Related Items ...14

7 - Clause 7 Related Items ...16

7.1 Determining Steady State ... 16

7.2 Work Performed During Steady State .. 17

7.3 Determining Reproducibility ... 19

7.4 Duration of Measurement Period ... 20

vi

8 - Clause 8 Related Items ...20

8.1 Description of the Driver ... 20

9 - Clause 9 Related Items ...21

9.1 Hardware and Software Components ... 21

9.1.1 Priced System Configuration Tables ... 21

9.1.2 Package Pricing ... 22

9.2 Total Price of System Configuration .. 23

9.2.1 Hardware Pricing ... 23

9.2.2 Software Pricing .. 23

9.2.3 Price Discounts .. 23

9.2.4 System Pricing Summary .. 25

9.3 Performance and Price/Performance .. 26

10 - Clause 10 Related Items ..26

11 - Clause 11 Related Items ..26

11.1 Independent Auditor’s Report .. 26

Appendix A Application Code ... A-1

A.1 tpc.ec source code .. A-1

A.2 createdb.ec source code .. A-6

A.3 createhist.ec source code .. A-8

A.4 createruns.ec source code ... A-10

A.5 createidx.ec source code ... A-13

A.6 config.scr source code .. A-14

A.7 bench.h code ... A-15

Appendix B Database Definitions ... B-1

Appendix C Code to Populate Database ... C-1

C.1 Database Population Program .. C-1

Appendix D Database Contents Samples .. D-1

D.1 Branch Table .. D-1

D.2 Teller Table .. D-1

D.3 History Table .. D-2

D.4 Account Table .. D-2

vii

Appendix E Device Configurations ... E-1

Appendix F System Parameter Settings ... F-1

F.1 System Parameters ..F-1

F.2 IPC Semaphore Facility ..F-3

Appendix G Independent Auditor’s Report ...G-1

viii

Preface

This report documents the compliance of the Digital TPC Benchmark B testing on a
DECsystem 5500 with the TPC Benchmark B Standard Specification1. The TPC
Benchmark B Standard represents an effort by Digital Equipment Corporation,
Informix Software Inc., and other members of the Transaction Processing Perform-
ance Council (TPC) to create an industry-wide benchmark for evaluating the per-
formance and price/performance of transaction processing systems.

These tests were run using the INFORMIX-OnLine relational database running under
the Digital ULTRIX operating system.

Document Structure

The TPC Benchmark B Full Disclosure Report is organized as follows:

• The main body of the document lists each item in Clause 10 of the TPC Bench-
mark B Standard and explains how each specification is satisfied.

• Appendix A contains the source code of the application program used to imple-
ment the TPC Benchmark B transaction and related programs and scripts.

• Appendix B contains the INFORMIX-OnLine database definitions.

• Appendix C contains the source code used to populate the database.

• Appendix D contains samples of contents of the database files used in the tests.

• Appendix E contains a description of the physical disk partitions.

• Appendix F contains the operating system parameters and options.

• Appendix G contains the Independent Auditor’s Report by KPMG Peat Marwick.

Additional Copies

To request additional copies of this report, write to the following address:

Digital Equipment Corporation
Administrator, TPC Benchmark Reports
Transaction Processing Systems Group
151 Taylor Street (TAY1)
Littleton, MA 01460-1407
U.S.A.
FAX number: (508) 952-4197

1 TPC Benchmark B Standard Specification, Transaction Processing Performance Council, August 23, 1990,

and addenda as of September 20, 1991.

TPC Benchmark B Full Disclosure 1

TPC Benchmark B Full Disclosure

The TPC Benchmark B Standard Specification requires test sponsors to publish,
and make available to the public, a full disclosure report in order for the results to be
considered compliant with the standard. The required contents of the full disclosure
report are specified in Clause 10.

This report is intended to satisfy the TPC Benchmark B standard’s requirement for
full disclosure. In the TPC Benchmark B Standard Specification, the main head­
ings in Clause 10 are keyed to the other standard clauses. The headings in this re­
port use the same sequence, so that they correspond to the titles or subjects referred
to in Clause 10.

Each section in this report begins with the text of the corresponding item from
Clause 10 of the TPC Benchmark B Standard Specification, printed in italic type.
The plain type text that follows explains how the tests comply with the TPC Bench­
mark B requirement. In sections where Clause 10 requires extensive listings, the sec­
tion refers to the appropriate appendix at the end of this report.

1 - General Items

1.1 Sponsor

A statement identifying the sponsor of the benchmark and any other companies who
have participated.

This benchmark test was sponsored by both Digital Equipment Corporation and
Informix Software, Inc. The results were attested to by KPMG Peat Marwick.

1.2 Application Code and Definition Statements

Program listing of application code and definition language statements for
files/tables.

• Appendix A contains the C source code of the application program used to imple­
ment the TPC Benchmark B transaction and related programs and scripts.

• Appendix B contains the INFORMIX­OnLine database definitions.

• Appendix C contains the source code used to populate the database.

• Appendix D contains samples of contents of the database files used in the test.

• Appendix E contains a description of the physical disk partitions.

• Appendix F contains the operating system parameters and options.

• Appendix G contains the Independent Auditor’s Report by KPMG Peat Marwick.

2 TPC Benchmark B Full Disclosure

General Items

1.3 Parameter Settings

Settings for all customer­tunable parameters and options that have been changed
from the defaults found in actual products; including but not limited to:

• Database options

• Recovery/commit options

• Consistency/locking options

• System parameters, application parameters, and configuration parameters

Test sponsors may optionally provide a full list of all parameters and options.

A listing of all parameters and options is provided.

Appendixes A, B, E, and F contain the application, database configuration, partition,
and operating system parameters used in the TPC Benchmark B tests.

1.4 Configuration Diagrams

Configuration diagrams of both benchmark configuration and the priced system, and
a description of the differences.

The configurations used for the benchmark and the priced system were the same.

The configuration consisted of a DECsystem 5500 with 32 Megabytes (MB) of main
memory. Two (2) embedded controllers were utilized; a DSSI controller supporting
seven (7) 381MB RF31 disk drives and a SCSI controller supporting three (3) 665 MB
RZ56 and two (2) 1 GB RZ57 disk drives.

We enabled continuous archiving of the logical logs. The logical logs were backed up
to an archive device. Two 1 Gbyte RZ57 disk drives were used for this purpose.
These disk drives provided the necessary storage capacity so that 8 hours of log data
could be kept on­line. Informix transaction logging was at all times set to unbuffered
mode.

TPC Benchmark B Full Disclosure 3

Clause 2 Related Items

Benchmark and Priced System Configuration
The diagram that follows represents the benchmark configuration and priced system

configuration.

2 - Clause 2 Related Items

ACID Properties
Results of the ACIDity test (specified in Clause 2) must describe how the requirements
were met.

Clause 2 of the TPC Benchmark B Standard lists specific tests to ensure the
atomicity, consistency, isolation, and durability (ACID) properties of the SUT (Sys­
tem Under Test). The following subsections show how the tests required in Clause 2
were performed. All mechanisms needed to ensure full ACID properties were en­
abled during both the measurement and test periods. A fully­scaled database was
used for the atomicity, consistency, and isolation tests.

DECsystem
 5500

DSSI SCSI

RF31 RF31 RF31 RF31 RF31 RF31 RF31 RZ56 RZ56 RZ56 RZ57 RZ57

1 TK50
Tape Drive

controllercontroller

381Mb 381Mb 381Mb 381Mb 381Mb 381Mb 381Mb 665Mb 665Mb 665Mb 1Gb 1Gb

5 SCSI Disks7 DSSI Disks

 CPU

4 TPC Benchmark B Full Disclosure

Clause 2 Related Items

2.1 Atomicity Tests

Atomicity of Completed Transaction

Perform the standard TPC Benchmark B transaction for a randomly selected account
and verify that the appropriate records have been changed in the Account, Branch,
Teller, and History files/tables.

The following test was performed and verified the atomicity of completed transac­
tions:

1. Select a random Branch record.

2. Select a random Teller record.

3. Select a random Account record.

4. Count the History records.

5. Using the randomly selected records, perform the following steps:

A. Update the Branch record.

B. Update the Teller record.

C. Update the Account record.

D. Insert the History record.

E. Commit the transaction.

F. Select the Branch record.

G. Select the Teller record.

H. Select the Account record.

6. Count the History records. Verify that the History record count reflects the com­
mitted transaction.

Atomicity of Aborted Transaction

Perform the standard TPC Benchmark B transaction for a randomly selected account,
substituting an ABORT of the transaction account for the COMMIT of the transac­
tion. Verify that the appropriate records have not been changed in the Account,
Branch, Teller, and History files/tables.

The following test was performed, and verified the atomicity of aborted transactions:

1. Select a random Branch record.

2. Select a random Teller record.

3. Select a random Account record.

4. Count the History records.

5. Using the randomly selected Branch, Teller and Account records from above, do
the following:

TPC Benchmark B Full Disclosure 5

Clause 2 Related Items

A. Update the Branch record.

B. Update the Teller record.

C. Update the Account record.

D. Insert the History record.

E. Abort the transaction and perform a rollback recovery.

F. Select the Branch record.

G. Select the Teller record.

H. Select the Account record.

6. Count the History records. Verify that the History record count has not changed.

2.2 Consistency Tests

Consistency is the property of the application that requires any execution of the trans­
action to take the database from one consistent state to another.

The following tests were performed and verified the consistency property of transac­
tions:

1. Consistency of Branch and Teller records before transactions

A. Select Branch balances for each Branch record.

B. Select the sum of Teller balances for each Branch record.

C. Verify that the balance for each Branch record is equal to the balance of its
Teller records.

2. Consistency of Branch and Teller records after transactions

A. For the entire History file, count the History records and sum their delta val­
ues.

B. Perform the standard TPC Benchmark B test and record the number of com­
mitted transactions.

C. Repeat step 1.

3. Consistency of History files

A. For the entire History file, count the History records and sum their delta val­
ues.

B. Verify that this History record count equals the sum of History record count
taken in step 2A plus the number of committed transactions.

C. Verify that the difference between the final History delta sum and the initial
History delta sum equals the difference between the final and initial Branch
record balances.

2.3 Isolation Tests

Operations of concurrent transactions must yield results which are indistinguishable

6 TPC Benchmark B Full Disclosure

Clause 2 Related Items

from the results which would be obtained by forcing each transaction to be serially
executed to completion in some order.

The following tests were performed and verified the isolation property of the transac­
tions for conventional locking used by the database system:

Isolation of Completed Transactions
1. Select the Branch balance for a Branch record (Branch B).

2. Start transaction 1.

A. Update the Branch B record with delta(1).

B. Stop just prior to committing transaction 1.

3. Start transaction 2.

A. Attempt to update Branch B with delta(2).

B. Transaction 2 hangs.

4. Resume transaction 1.

A. Update the Teller record.

B. Update the Account record.

C. Insert the History record.

D. Commit transaction 1.

5. Resume transaction 2.

A. Update the Teller record.

B. Update the Account record.

C. Insert the History record.

D. Commit transaction 2.

6. Select the Branch balance for Branch B. The balance should equal the previous
balance plus delta(1) and delta(2).

Isolation of Aborted Transactions
1. Start transaction 1.

A. Update Branch B with delta(3).

B. Stop just prior to committing transaction 1.

2. Start transaction 2.

A. Attempt to update Branch B with delta(4).

B. Transaction 2 hangs.

3. Resume transaction 1.

A. Update the Teller record.

B. Update the Account record.

TPC Benchmark B Full Disclosure 7

Clause 2 Related Items

C. Insert the History record.

D. Abort transaction 1 and perform a rollback recovery.

4. Resume transaction 2.

A. Update the Teller record.

B. Update the Account record.

C. Insert the History record.

D. Commit transaction 2.

5. Select the Branch balance for Branch B. The balance should equal the previous
balance plus delta(4).

The preceding isolation tests were repeated for Teller and Account files (that is, by
generating a conflict on a Teller and then an Account record).

2.4 Durability Tests

The tested system must guarantee the ability to preserve the effects of committed trans­
actions and ensure database consistency after recovery from any one of the failures
listed below:

• Permanent irrecoverable failure of any single durable medium containing data­
base, ABTH (Accounts, Branch, Teller, and History) files/tables, or recovery log
data.

• Instantaneous interruption (system crash/system hang) in processing which re­
quires system reboot to recover.

• Failure of all or part of memory (loss of contents).

The following test was performed for each of the preceding types of failures to verify
the durability property of the SUT:

• For the entire History file, count the History records.

• Perform the standard TPC Benchmark B test and record the committed transac­
tions in the success file.

• Cause one of the preceding types of failure.

• Restart the system under test for this failure as required in Clause 2.5.3.

• Verify that every record in the success file has a corresponding record in the His­
tory file.

• For the entire History file,count the History records. Verify that the number of
records in the History file is greater than or equal to the original count obtained
in step 1 plus the number of records in the success file. If they are different, the
new History file must contain additional records and the difference must be less
than or equal to the number of terminals (tellers) simulated.

8 TPC Benchmark B Full Disclosure

Clause 3 Related Items

The durability tests were run on a database sized at 10% of the fully loaded database,
i.e., 5 TPS, in order to comply with future, expected TPC requirements.

In addition, the durability test "failure of all or part of memory (loss of contents),"
i.e., complete power failure, was applied to the fully loaded database under full load
conditions. This too was done to comply with future, expected TPC requirements.

In addition, the test sponsors must guarantee that, to the best of their knowledge, a
fully­loaded system would pass the durability tests.

To the best of the test sponsor’s knowledge, a fully­loaded and fully­scaled system
would pass the durability tests.

3 - Clause 3 Related Items

3.1 ABTH Data Storage Distribution

The distribution across storage media of ABTH (Accounts, Branch, Teller, and His­
tory) files/tables and all logs must be explicitly depicted.

The following diagram shows how the databases were distributed on disk media on
the DECsystem 5500 test system for both the benchmark and priced system configu­
rations.

The physical log was placed on a RF31 (381 Mbyte) disk drive using a partition of 350
Mbytes. The rootdbs space containing the logical logs and catalog were located on
another RF31 (381 Mbytes) disk drive using 350 Mbytes for the partition. The
rootdbs mirror (logical log) was located on another RF31.

TPC Benchmark B Full Disclosure 9

Clause 3 Related Items

ABTH Data Storage Distribution Diagram

The distribution of the database is further evidenced and illustrated by the Informix
tbstat utility tbstat_d.

RF31

RF31

RF31

RF31

RF31

RF31

 RZ56

 RZ56

 RZ56

 RZ57

 RZ57

 Kbytes Percent of
 Partition File/ Data Used (000’s) Data

ra0a /root 15.6
ra0b swap dump 83
ra0g /usr 273.4

rra1c physical log 350 100.0%

rra2c rootdbs (logical logs) 350 100.0%

rra3c mirror rootdbs (logical logs) 350 100.0%

rra4c account 90 16.6%

rra5c account 90 16.6%
 history 282.2 13.1%

rra6c account 90 16.6%
 history 282.2 13.1%

rrz2g account 90 16.6%
rrz2h teller 0.0047 100.0%
 branch 0.047 100.0%
 history (active) 500 23.3%

rrz3c account 90 16.6%
 history 400 18.6%

rrz0c logical log archive 801 50.0%

rrz1c logical log archive 801 50.0%

 history 282.2 13.1%

rrz4c account 90 16.6%
 history 400 18.6%

RF31

10 TPC Benchmark B Full Disclosure

Clause 3 Related Items

tbstat_d Listing

 RSAM Version 4.10.UE1P1 ­­ On­Line ­­ Up 00:54:59 ­­ 12016 Kbytes

Dbspaces
address number flags fchunk nchunks flags owner name
80b47c 1 2 1 1 M informix rootdbs
80b4ac 2 1 2 1 N informix physdbs
80b4dc 3 1 3 1 N informix tbhdbs
80b50c 4 1 4 6 N informix acctdbs
 4 active, 20 total

Chunks
address chk/dbs offset size free bpages flags pathname
8084fc 1 1 500 175000 163978 PO­ /dev/rra2c
809cbc 1 1 500 175000 0 MO­ /dev/rra3c
808594 2 2 500 175000 23242 PO­ /dev/rra1c
80862c 3 3 500 105000 101222 PO­ /dev/rrz2h
8086c4 4 4 62500 45000 42 PO­ /dev/rra4c
80875c 5 4 62500 45000 497 PO­ /dev/rra5c
8087f4 6 4 62500 45000 497 PO­ /dev/rra6c
80888c 7 4 25000 45000 497 PO­ /dev/rrz2g
808924 8 4 125000 45000 497 PO­ /dev/rrz3c
8089bc 9 4 125000 45000 997 PO­ /dev/rrz4c
 9 active, 40 total

3.1.1 History Storage and Recovery

Within the priced system, there must be sufficient on­line storage to support 8 hours of
recovery log data, if required to recover from any single point of failure, plus any other
expanding system files (see Clause 7.1) and durable history records/rows for 30 eight­
hour days at the published tpsB rate (i.e., 30 x 8 x 60 x 60 = 864,000 records/rows per
tpsB).

The history and log file storage calculations are shown below:

History File Storage

The following calculations were used to determine the aggregate size of the history
file.

INFORMIX­OnLine Page Size 2048 bytes
Overhead per Page 32 bytes
Overhead per Row 4 bytes
History Table Row Size 50 bytes

History Rows per Page = (Page Size ­ Page Overhead)/(Row Size + Row Overhead)
 truncated to next lowest integer value = 37 History Rows per Page

History Rows Needed = (tpsB * 3600 * 8 * 30) = 38,880,000 Rows

History Space = (Rows Needed/37) * 2048 = 2,101,621.62 Kbytes

TPC Benchmark B Full Disclosure 11

Clause 3 Related Items

Logfile Storage

During the benchmark run, the Informix logical logs were mirrored. In addition, the
inactive logfile segments were archived to disk using INFORMIX­OnLine Continuous
Archiving. In all cases unbuffered logging was used. Two disk drives were used; one
for the logical logs and one for the mirror.

The Informix tbstat utility (tbstat_l) was used to record write data and logfile data
production rates. In the audited reported run, the values were

Number of Writes 33,675
Pages/Write 1.6

The run had a two minute (120 seconds) ramp­up and a 32 minute measurement win­
dow. Although the number of writes occurred over the entire 34 minute period, only
the steady state portion of the interval should be used for calculation because during
ramp­up the log write rate would have been less. As a result, logfile space needed
was as follows:

Total logfile storage required/8 hours=
 33,675 writes/32 minutes * 1.6 pages/write * 2048 bytes/page =
 3,448,320 bytes/minute * 480 minutes/8 hours =
 1,655,193,600 bytes/8 hours

Total Logfile Space Needed: 1,655,193,600 bytes
Active Log Space Supplied ­ 15,000,000 bytes

 ­­­­­­­­­­­­­­­­­­
 1,640,193,600 bytes

Additional 8 hour log space was required. Two 1 Gbyte drives were used to accommo­
date this requirement.

In addition, because INFORMIX­OnLine records a timestamp for every completed
logical log archived, we used the timestamp to calculate the average time to archive
one logical log during the steady state run. The average time to fill a 5 Mbyte logical
log was approximately 93 seconds which equates to an 8 hour logfile requirement of
1,548,387,097 bytes.

Because the earlier calculation showed a worst case condition, we used those figures.
We supplied 2,030,000,000 bytes for logical log and archive.

Informix tbstat output for the logical logs and part of the message log follow.

12 TPC Benchmark B Full Disclosure

Clause 3 Related Items

tbstat_l listing

 RSAM Version 4.10.UE1P1 ­­ On­Line ­­ Up 00:54:59 ­­ 12016 Kbytes

Physical Logging
Buffer bufused bufsize numpages numwrits pages/io
P­1 12 16 84698 5297 15.99

phybegin physize phypos phyused %used
2006de 150000 32814 4524 3.02

Logical Logging Buffer
bufused bufsize numrecs numpages numwrits recs/page pages/io
L­3 0 16 749244 52766 33675 14.2 1.6

address number flags uniqid begin size used %used
884408 1 U­B­­­L 1018 100fb2 2500 2500 100.00
884424 2 U­­­C­­ 1019 101976 2500 267 10.68
884440 3 F­­­­­­ 0 10233a 2500 0 0.00

Message Log File Listing

 RSAM Version 4.10.UE1P1 ­­ On­Line ­­ Up 00:54:59 ­­ 12016 Kbytes

Message Log File: /usr/informix/online.log
12:31:39 Logical Log 1011 Complete
12:31:47 Checkpoint Completed
12:32:17 Logical Log 1011 Backed Up
12:33:17 Logical Log 1012 Complete
12:33:34 Logical Log 1012 Backed Up
12:34:51 Logical Log 1013 Complete
12:34:59 Checkpoint Completed
12:35:21 Logical Log 1013 Backed Up
12:36:29 Logical Log 1014 Complete
12:37:08 Logical Log 1014 Backed Up
12:38:03 Logical Log 1015 Complete
12:38:20 Checkpoint Completed
12:38:24 Logical Log 1015 Backed Up
12:39:45 Logical Log 1016 Complete
12:40:10 Logical Log 1016 Backed Up
12:41:19 Logical Log 1017 Complete
12:41:28 Checkpoint Completed
12:41:58 Logical Log 1017 Backed Up
12:42:57 Logical Log 1018 Complete
12:43:14 Logical Log 1018 Backed Up

Appendix E contains a complete listing of the disk devices to support the test.

TPC Benchmark B Full Disclosure 13

Clause 4 Related Items

3.2 Database Contents and Method of Population

A description of how the database was populated, along with sample contents of each
ABTH file/table to meet the requirements described in Clause 3.

Database Contents
Appendix C contains the database population program and Appendix D contains
samples of the contents of the database files used in the tests.

3.3 Type of Database

A statement of the type of database utilized, e.g., relational, Codasyl, flat file, etc.

These TPC Benchmark B tests used INFORMIX­OnLine, a relational database man­
agement system.

4 - Clause 4 Related Items
There are no Clause 4 Related Items in the checklist for TPC­B.

5 - Clause 5 Related Items

5.1 Method of Verification of Random Number Generator

The method of verification of the random number generator should be described.

Branch, Teller, and Account IDs were generated by the random number generation
routines, random() and srandom() in the bench.h code. Random()/srandom() use a
non­linear additive feedback random number generator, employing a default table
size of 31 long integers to return successive random numbers in the range from 0 to
(2**31)­1. These routines produce a more random sequence than earlier subroutines
such as rand(). Random() and srandom() are well known random number generation
routines. Randomness of the generated values are further verified by observing the
85/15 distribution rule, which showed that approximately 85% of the transactions
submitted to a Branch had the Account belong to that Branch.

5.2 Horizontal Partitioning Disclosure

Vendors must clearly disclose if horizontal partitioning is used. Specifically, vendors
must:

• Describe textually the extent of transparency of the implementation

• Which tables/files were accessed using partitioning

• How partitioned tables/files were accessed

Horizontal partitioning of the database was not used. Horizontal partitioning, i.e.
the partitioning of a table according to some logical order, was not used. The account
relation records were randomly distributed over multiple (6) disk drives.

14 TPC Benchmark B Full Disclosure

Clause 6 Related Items

6 - Clause 6 Related Items
Report all the data specified in Clause 6.6, including maximum and average residence
time, as well as performance curves for number of transactions vs. residence time (see
Clause 6.6.1) and throughput vs. level of concurrency for three data points (see Clause
6.6.5).

The graphs and tables in this section show the response time performance results.

Please note that for all performance runs the database was scaled for 45 TPS.

TPC Benchmark B Full Disclosure 15

Clause 6 Related Items

Residence Time Frequency Distribution for All Transactions

Throughput Versus Level of Concurrency

30000

0

5000

10000

15000

20000

25000

5.000.00 1.00 2.00 3.00 4.00
Residence Time (seconds)

Maximum Residency Time: 18.45 seconds

Average Residence Time: 0.42 seconds

Number of
Transactions

Percentile Residence Time: 0.72 seconds

50

0

10

20

30

40

0 3 6 9 12 15 18 21 24 27 30

C C CL R H

TPS

Level of Concurrency

16 TPC Benchmark B Full Disclosure

Clause 7 Related Items

Concurrency Legend

Profile of Executed Transactions

7 - Clause 7 Related Items

7.1 Determining Steady State

The method used to determine that the SUT had reached a steady state prior to com­
mencing the measurement interval should be described.

Confirmation that the SUT has reached steady state prior to the beginning of the
data collection measurement interval is based on a visual inspection of the plot of
TPS versus time.

The design of the benchmark driver program was such that all processes wait to be
signaled to commence ramp­up work. During ramp­up, the processes begin execut­
ing identical TPC­B transactions as they do during the steady state run.

During the ramp­up, which lasted for 120 seconds, all processes began executing the

Measured Points

Level of

Concurrency TPS

Average Residence

Time (seconds)

CL 12 40.5 0.35

CR 15 40.6 0.42

CH 18 40.3 0.49

15.00%

85.00%

0.02%

15

77,967

0.42 seconds

Remote Transactions (see Clause 6.6.2)

Home Transactions

Transactions started and not completed during measure­
ment interval (see Clause 6.6.3)

Number of transaction started but not completed

Total number of transactions

Average residence time for all transactions

ResultDescription

99.81Percent of all transactions qualified within 2 second
response time constraint

18.45 secondsMaximum residence time for all transactions

40.6 tpsBMaximum qualified throughput

TPC Benchmark B Full Disclosure 17

Clause 7 Related Items

identical TPC­B transaction that they do during the timed steady state run. At the
end of the ramp­up period, each process independently kept track of the numbers and
characteristics of its committed transactions that started during the steady state in­
terval. The audited benchmark steady state period lasted for 32 minutes. When the
run was completed, the processes individually and independently reported their accu­
mulated transactions and residence time results. The driver then calculated the re­
quired numbers to report.

To confirm that steady state was reached, the history table was examined. The
graph titled "TPS Versus Time" indicates the number of transactions completed in
each 10 second interval. The steady state portion is labeled on the graph. Note the
pronounced dips (checkpoints) in transaction rate that occurred 10 times during the
steady state for the run. Also, note the less pronounced dip that occurred as each 5
Mbyte logical log is backed up.

TPS Versus Time

7.2 Work Performed During Steady State

A description of how the work normally performed during a sustained test (for exam­
ple, checkpointing, writing redo/undo log records, etc., as required by Clause 7.2), ac­
tually occurred during the measurement interval.

When INFORMIX­OnLine receives a SQL statement from the application, it deter­
mines how to best access the data. Using an index (B­tree), INFORMIX­OnLine de­
termines the page number from the database that the record is located on, and
searches for the page in shared memory.

If the page is not in shared memory, INFORMIX­OnLine chooses a LRU Buffer in
shared memory and reads the page from the database into the buffer. Typically this

60

0

10

20

30

40

50

350 5 10 15 20 25 30

TPS

Time (minutes)

(10 second
intervals)

Steady State (32 minutes)

18 TPC Benchmark B Full Disclosure

Clause 7 Related Items

will take two disk reads. The first read acquires the bottom level of the B­tree index,
the second disk read actually acquires the data.

When a transaction starts, a BEGIN WORK is written to the logical log buffers.
When the application issues a SQL UPDATE statement (Account, Teller, and
Branch) to modify a record, the copy of the record, if it is already in shared memory,
is locked and updated. A transaction record is written to the logical log buffer.

At the same time, if the page in shared memory has not previously been written to, a
copy of the before image of the page is written to the physical log buffer in shared
memory. In addition, the before and after images of the record are written to the
logical log buffer in shared memory. So, the physical log buffer contains a copy of the
page that a record is on, as it looked prior to making any modification.

When the application issues a SQL COMMIT WORK statement, the logical log buffer
is flushed from shared memory to the logical log on disk in a single I/O. The data­
base pages remain in shared memory and are not written to the database at that
time. Any locks that were placed by the transaction are released. This means that
when an application commits a transaction to the database, the logical log buffer is
written to a corresponding logical log on disk with a single I/O, and successful com­
pletion code is returned to the application.

Periodically INFORMIX­OnLine will automatically write all modified pages in
shared memory to their appropriate locations in the database during a checkpoint. A
checkpoint is preceded by a write of the physical log buffer to the physical log on disk.
Checkpoints occur periodically during the run. With INFORMIX­OnLine there are
several ways of controlling when a checkpoint occurs. For our benchmark,
checkpointing occurs every time INFORMIX­OnLine starts the last logical log. We
configured INFORMIX­OnLine with three logical logs. Thus, every time two logs
were filled and the third started, a checkpoint would occur. In our benchmark run of
32 minutes, 10 checkpoints occurred.

When the checkpoint occurs, one or more background processes called page cleaners
"wake up" and write all the modified pages from shared memory to the database on
disk. A checkpoint record is written to the logical log buffer. A checkpoint message
is written to the message log.

The page reading and writing activity to the individual chunk partitions in the data­
base are reflected in the Informix utility tbstat_D and tbstat_p.

tbstat_D

 RSAM Version 4.10.UE1P1 ­­ On­Line ­­ Up 00:54:59 ­­ 12016 Kbytes

Dbspaces
address number flags fchunk nchunks flags owner name
80b47c 1 2 1 1 M informix rootdbs
80b4ac 2 1 2 1 N informix physdbs
80b4dc 3 1 3 1 N informix tbhdbs
80b50c 4 1 4 6 N informix acctdbs
 4 active, 20 total

TPC Benchmark B Full Disclosure 19

Clause 7 Related Items

Chunks
address chk/dbs offset page Rd page Wr pathname
8084fc 1 1 500 52503 52784 /dev/rra2c
809cbc 1 1 500 0 52784 /dev/rra3c
808594 2 2 500 0 84693 /dev/rra1c
80862c 3 3 500 4099 2729 /dev/rrz2h
8086c4 4 4 62500 27850 13261 /dev/rra4c
80875c 5 4 62500 27550 13163 /dev/rra5c
8087f4 6 4 62500 28227 13486 /dev/rra6c
80888c 7 4 25000 28354 13543 /dev/rrz2g
808924 8 4 125000 27896 13295 /dev/rrz3c
8089bc 9 4 125000 27512 13112 /dev/rrz4c
 9 active, 40 total

tbstat_p

 RSAM Version 4.10.UE1P1 ­­ On­Line ­­ Up 00:54:59 ­­ 12016 Kbytes

Profile
dskreads pagreads bufreads %cached dskwrits pagwrits bufwrits %cached
174482 223973 2416938 92.78 154138 272843 337867 54.38

isamtot open start read write rewrite delete commit rollbk
3071705 97 249692 250137 83274 249633 0 83517 0

ovtbls ovlock ovuser ovbuff usercpu syscpu numckpts flushes
0 0 0 0 951.87 682.60 10 20

bufwaits lokwaits lockreqs deadlks dltouts lchwaits ckpwaits compress
6892 10362 1946418 0 0 52552 149 1

7.3 Determining Reproducibility

A description of the method used to determine the reproducibility of the measurement
results.

Experiments were repeated at least 3 times at the maximum targeted TPS level to
ensure reproducibility. The results are shown in the following table. The variation
in TPS was less than 2%.

20 TPC Benchmark B Full Disclosure

Clause 8 Related Items

DECsystem 5500 TPC-B Benchmark Runs

Percent db

Run # Processes CPUs tpsB < 2 sec. Transactions Size Duration

1 15 1 39.9 99.78 76,627 45 tps 32.0 mins
2 15 1 40.6 99.81 77,967 45 tps 32.0 mins
3 15 1 40.5 99.81 77,831 45 tps 32.0 mins

7.4 Duration of Measurement Period

A statement of the duration of the measurement period for the reported tpsB (it should
be at least 15 minutes and no longer than 1 hour).

Each experiment used a measurement period of 32 minutes and began approximately
2 minutes after all servers had begun executing transactions.

8 - Clause 8 Related Items

8.1 Description of the Driver

If the driver is commercially available, then its inputs should be specified. Otherwise,
a description of the driver should be supplied.

The driver used was an "internal driver" (i.e., the driver software resides on the sys­
tem under test, not on a remote driver machine) that controls transaction processing
and performance data collection for the TPC Benchmark B runs. The driver was
comprised of two parts: a control csh script and a set of identical ESQL/C transaction
programs that submitted the TPC Benchmark B transactions for execution.

The control script performs the following operations:

1. forks and execs the desired number of transaction programs, passing ramp­up
and measurement interval parameters as command line arguments.

2. waits for a short period of time (30 seconds) to ensure that each driver has
started up and opened the test database.

3. sends a SIGUSR1 signal to each transaction process to synchronize the start of
transaction processing.

4. waits until all transaction processes have completed the benchmark run.

5. invokes a program called sumrun to sum the performance statistics collected by
the transaction processes involved in the benchmark run.

After each transaction program completes a benchmark run, the transaction pro­
gram stores residence time counts, incomplete transaction counts, and other per­
formance statistics in a database table named "results". The sumrun program

TPC Benchmark B Full Disclosure 21

Clause 9 Related Items

sums all "results" records for a run and inserts aggregate run values into a table
named "runs".

Each transaction program performs the following operations:

1. examines its command line arguments to determine the ramp­up and measure­
ment intervals to use.

2. waits until it receives a SIGUSR1 signal before initiating transaction processing.

3. continuously submits TPC­B transactions, with 0 sleep time. The transaction
program collects response time statistics in internal program data structures, but
does not begin collecting them until the ramp­up period has completed.

4. inserts its collected performance statistics into a "results" table record once the
measurement interval has completed. It is the contents of these "results" records
that are summed by the sumrun program.

"Success files" were implemented through the tpc.ec application program by writing
synchronously using fsync() and flushing the confirmation of transactions to stan­
dard output. This was captured into a file nohup.out running under the Korn shell.

9 - Clause 9 Related Items

9.1 Hardware and Software Components

A detailed list of hardware and software used in the priced system. Each item must
have vendor part number, description, and release/revision level, and either general
availability status or committed delivery date. If package pricing is used, contents of
the package must be disclosed.

9.1.1 Priced System Configuration Tables

The following tables show the hardware and software components in the priced
DECsystem 5500 system:

22 TPC Benchmark B Full Disclosure

Clause 9 Related Items

9.1.2 Package Pricing
Package Description Model #

­­­­­­­­­­­­­­­­­­­­­­­­­­­ ­­­­­­­­­­­

DECsystem 5500 120/240V DU­55HT1­A9

BA430 Pedestal Enclosure

32 MB Memory

SCSI, DSSI Storage Adapter

ThinWire/ThickWire Ethernet

Included Software Licenses

ULTRIX 4 User License

UWS Server Support License

Prestoserve  License

English Language H/W Doc

US 120 V Power Cord

With One Year System Warranty

Package Description Model #

­­­­­­­­­­­­­­­­­­­­­­­­­­­ ­­­­­­­­­­­

2xRZ57 1GB Disks with SZ12C­CA

BA42 Box

Package Description Model #

­­­­­­­­­­­­­­­­­­­­­­­­­­­ ­­­­­­­­­­­

TK50 Tape Drive with TK50Z­GA

Tape Controller and Box

Package Description Model #

­­­­­­­­­­­­­­­­­­­­­­­­­­­ ­­­­­­­­­­­

2xRZ56 665 MB Disks with SZ12B­BA

BA42 box

Package Description Model #

­­­­­­­­­­­­­­­­­­­­­­­­­­­ ­­­­­­­­­­­­

5xRF31 w/R400X in Exp. Cab. DL­RF31A­A5

Component

Processor

QuantityProduct

1DECsystem 5500

Memory 32 Megabytes

Tape drive 1TK50

Disk controller 1 of eachDSSI, SCSI

Disks 7RF31

Operating system 1ULTRIX 4.2

Database INFORMIX­OnLine V4.10

INFORMIX ESQL/C

 2RZ57

RZ56 3

TPC Benchmark B Full Disclosure 23

Clause 9 Related Items

9.2 Total Price of System Configuration

The total price of the entire configuration is required including: hardware, software
and maintenance charges. Separate component pricing is recommended. The basis of
all discounts used shall be disclosed.

This section lists the separate components in the priced system and their associated
purchase and maintenance costs. All items are currently available. All prices were
taken from the Digital Standard Pricing System (DSPS) on November 21, 1991. A
description of the packages used in the pricing is contained in Section 9.1.2.

Informix prices were taken from Informix price list, titled "Americas Price List, Ad­
vance Products, Release 4.0 or Greater, Class D", dated August 1, 1991.

9.2.1 Hardware Pricing

The Digital TPC Benchmark B DECsystem 5500 test used packaged hardware sys­
tems whenever possible to simplify configurations to the fewest number of line items.
Disks were connected using DSSI and SCSI controllers. The system used a TK50
tape drive to load the software and back up the database.

The purchase price of all systems includes one year of hardware warranty service.
Post­warranty hardware service is configured for an additional four years.

The following levels of post­warranty hardware service are used in the system pric­
ing:

DECsystem Support 9x5 (DS9) and 2­4 hours response time.
Basic Monthly Charge (BMC) warranty level is the same as the DS9 to which the
hardware is directly attached.
Basic System Support (BSS) with a warranty upgrade to DS9.

9.2.2 Software Pricing

The priced system uses the following software products:

• ULTRIX V4.2 operating system

• INFORMIX­OnLine relational database management system

• INFORMIX­ESQL/C

The ULTRIX license purchase includes one year of warranty service. Post­warranty
service is configured for an additional four years. The software warranty and service
level are the same as the service level for the hardware system on which the software
operates. The level of post­warranty service is Software Support Service (SSS).

9.2.3 Price Discounts

Digital’s five (5) years warranty pricing is as follows:

24 TPC Benchmark B Full Disclosure

Clause 9 Related Items

• the unit price carries one (1) year warranty.

• the price of year 2­5 warranty adder is calculated according to this formula:

­ (warranty/month)*12*(1+1+1.07+(1.07)²)=(1.053725*48*(warranty/month))

The pre­payment maintenance (warranty) discount is calculated at 25% of the year
2­5 warranty price.

Informix’s five­year prepaid maintenance option consists of five years of maintenance
for four times the price of standard maintenance.

9.2.4 System Pricing Summary

 ­­­

DECsystem TPC-B = 40.6 TPS

US LIST UNIT PRICE TOTAL SERVICE MAIN. 2-5 YRS PRICE+SRVC
DESCRIPTION MODEL # 1 YR WARR QTY PRICE LEVEL $/MO. # MO MAIN. PRICE 5 YR COST
--
Digital Price (21 November 1991)

Host and Database

DS5500 BA430, 32 MB DU-55HT1-A9 $38,340.00 1 $38,340.00 BSS $0.00 48 $0.00 $38,340.00
Warranty Upgrade To DS9 FM-DECUP-12 $648.00 1 $648.00 DS9 $549.00 48 $26,352.00 $27,000.00
2 RZ56 665 MB Disk in BA42 Box SZ12B-BA $9,740.00 1 $9.740.00 DS9/BMC $120.00 48 $5,760.00 $15,500.00
1 RZ56 665 MB Disk in BA42 Box SZ12B-XA $5,120.00 1 $5,120.00 DS9/BMC $60.00 48 $2,880.00 $8,000.00
2 RZ57 1.0 GB Disk in Exp. Box SZ12C-CA $16,324.00 1 $16,324.00 DS9/BMC $152.00 48 $7,296.00 $23,620.00
5xRF31 w/R400X Exp. Cab. DL-RF31A-A5 $23,900.00 1 $23,900.00 DS9/BMC $152.00 48 $7,296.00 $31,196.00
RF31 381 MB Disk RF31E-AA $4,800.00 2 $9,600.00 DS9/BMC $25.00 48 $2,400.00 $12,000.00
TK50 Tape Controller Box VJ3100 TK50Z-GA $3,860.00 1 $3,860.00 DS9/BMC $30.00 48 $1,440.00 $5,300.00
ULTRIX-32 V4.2 Media & Doc. QA-VYVAA-H5 $3,240.00 1 $3,240.00 NA $.00 48 $.00 $3,240.00

‘ ----------------- --------------- ---------------------
Digital Subtotal $110,772.00 $53,424.00 $164,196.00
Years 2-5 Warranty Adder =5.3725% $2,870.20 $2,870.20

----------------- --------------- ---------------------
Digital Subtotal $110,772.00 $56,294.20 $167,066.20
Prepayment Maintenance Discount=25% ($14,073.55) ($14,073.55)

----------------- --------------- ---------------------
Digital Total $110,772.00 $42,220.65 $152,992.65

Informix Price (1 August 1991)
$/YEAR YEAR
---------- ---------

INFORMIX-OnLine (Class "D" License) Full Dev./Run T $3,300.00 1 $3,300.00 SSS $590.00 4 $2,360.00 $5,660.00
INFORMIX-ESQL/C Full Dev./Run T $660.00 1 $660.00 SSS $200.00 4 $800.00 $1,460.00

---------------- ---------------- ----------------------
Informix Total $3,960.00 $3,160.00 $7,120.00

CONFIGURATION TOTALS $114,732.00 $45,380.65 $160,112.65

TPS 40.6
$/TPS $3,944

26 TPC Benchmark B Full Disclosure

Clause 10 Related Items

9.3 Performance and Price/Performance

A statement of the measured tpsB, and the calculated price/tpsB.

The following table shows measured tpsB and price/tpsB results for the tested
system:

10 - Clause 10 Related Items

None.

11 - Clause 11 Related Items

11.1 Independent Auditor’s Report

If the benchmark has been independently audited, then the auditor’s name, ad-
dress, phone number, and a brief audit summary report indicating compliance
must be included in the full disclosure report. A statement should be included,
specifying when the complete audit report will become available and who to con-
tact in order to obtain a copy.

Appendix G contains the complete independent auditor’s report by KPMG Peat
Marwick for the tests described in this report.

DECsystem 5500

CPU Model Software

ULTRIX 4.2 and
INFORMIX-OnLine
4.10

 (tpsB) ($/tpsB)

 TPS Price per TPS

 40.6 $3,944

TPC Benchmark B Full Disclosure A-1

Appendix A

Application Code

This appendix contains the source code of the application programs that implement
the TPC Benchmark B transaction.

A.1 tpc.ec source code

#include <stdio.h>
#include <sys/signal.h>
#include <sys/types.h>
#include <sys/timeb.h>
#include <math.h>
$include sqlca ;
#include "bench.h"

$long acct_bal, cntr, seconds, intvl, startsec, tot_response ;
$int branch_num, teller_num, acct_num, delta, acct_branch, run, procnum ;
$int notdone, tmslot[BUCKETS+1] ;
int rampup, runtime, timing, thru, measure, bucketval, transactions, verbose ;
int longest_tran;

settimer() { timing = ~timing ; }

setmeasure()
{

intvl = (measure) ? rampup : runtime ;
thru++ ;
measure = ~measure ;
 startsec = time(0) ;

}

main(argc,argv)
int argc ;
char **argv ;

{
int i, *rnum, do_trans() ;

 runtime = rampup = intvl = 0 ;
transactions = -1 ;
procnum = atoi(argv[1]) ;
i = 1 ;

 while (++i < argc) {
if (strcmp(argv[i], "-s") == 0)
runtime += atoi(argv[++i]) ;
else if (strcmp(argv[i], "-m") == 0)
runtime += (60 * atoi(argv[++i])) ;
else if (strcmp(argv[i], "-h") == 0)
runtime += (3600 * atoi(argv[++i])) ;

A-2 TPC Benchmark A Full Disclosure

Appendix A Application Code

else if (strcmp(argv[i], "-t") == 0)
transactions = atoi(argv[++i]) ;
else if (strcmp(argv[i], "-r") == 0)
rampup = atoi(argv[++i]) ;
else if (strcmp(argv[i], "-v") == 0)
verbose = 1 ;
else {

fprintf(stderr,"usage: tp1 <proc #> [-t <n>] [-r <n>]
[-h <n> -m <n> -s <n>]\n") ;

exit(1) ;
}

 }

 RandSeed(getpid()) ;

 if (runtime == 0)
runtime = (transactions == -1) ? 300 : 30000 ;

printf("process %d: procnum=%03d runtime=%d seconds / %d transac
tions\n", getpid(),procnum,runtime,transactions) ;

 cntr = tot_response = run = measure = timing = thru = intvl = notdone = 0 ;
for (i=0; i < 50; i++)
 tmslot[i] = 0 ;

 $ database tpc ;
 SqlErr("attach to database") ;

 $ select max(number) into $run from results ;
 SqlErr("select from results") ;
if (run < 0)

run = 0 ;
 ++run ;

 do_prepare() ;

 bucketval = RPTINTVL * 1000 / BUCKETS ;
intvl = rampup ;
signal(SIGUSR1,settimer) ;
sigpause(0) ;

 printf("%d starting\n",procnum) ; do_trans() ; testend() ;

}

do_prepare()
{

$char s[512];

 sprintf(s,"%s %s %s%d%s %s commit work",
"update account set balance = balance + ? where current of sel_acct;",
"update teller set balance = balance + ? where number = ?;",
"insert into history",procnum % HISTORY,
" values(?,?,?,?,CURRENT YEAR TO SECOND,’the rest is history’);",
"update branch set balance = balance + ? where number = ?;") ;

TPC Benchmark B Full Disclosure A-3

Appendix A Application Code

 $ prepare tpc_trans from $s;
 SqlErr("prepare updall");

 $ prepare bwork from "begin work" ;
 SqlErr("prepare begin work") ;

 $ declare sel_acct cursor for
select balance into $acct_bal from account

where number = $acct_num
for update of balance ;

 SqlErr("declare cursor") ;

 $ set isolation to cursor stability ;
 SqlErr("set isolation") ;

 $ set lock mode to wait;
 SqlErr("set lock mode");

}

do_trans()
{

long timediff ;
char s[100] ;
struct timeb clk_beg,clk_end ;

 startsec = time(0) ;
if (rampup == 0)

setmeasure() ;
 else

thru++ ;

 while (timing && (cntr != transactions)) {

/*
 * select a random branch, a random teller at that branch, and
 * 85% of the time a random account at that branch, and 15% of
 * the time a random acccount at a different branch.
 */

teller_num = RandVal() % T_RECS ;
branch_num = teller_num / T_PERB ;
acct_num = RandVal() % A_PERB ;

if ((RandVal() % 100) < 85)
 acct_branch = branch_num ;
else {
 do /* endless loop when TPS_SIZE=1 */

acct_branch = RandVal() % B_RECS ;
 while (acct_branch == branch_num) ;

}

acct_num = acct_branch * A_PERB + acct_num ;
delta = RandVal() % 1999999 - 999999 ;
if (measure)

 notdone++ ;

A-4 TPC Benchmark A Full Disclosure

Appendix A Application Code

ftime(&clk_beg) ;

$ execute bwork ;

$ open sel_acct ;
 SqlErr("open cursor") ;

$ fetch sel_acct ;
 SqlErr("fetch cursor") ;

if (sqlca.sqlcode == 0) {
 $ execute tpc_trans using

$delta,
$delta, $teller_num,
$acct_num, $teller_num, $branch_num, $delta,
$delta, $branch_num ;

}

ftime(&clk_end) ;

if (sqlca.sqlcode != 0) {
 sprintf(s,"in transaction %d acc#: %d branch#: %d teller#: %d",

cntr, acct_num, branch_num, teller_num) ;
 SqlFatal(s) ;
 /*
 $ rollback work ;
 */
}

timediff = clk_end.time - startsec ;
if (timediff > intvl) {
 if (thru == 2)

settimer() ;
 else

setmeasure() ;
}

if (measure) {
timediff = (clk_end.time - clk_beg.time) * 1000

+ clk_end.millitm - clk_beg.millitm ;
 if(timediff > longest_tran)

longest_tran = timediff;
 tot_response += timediff ;
 timediff /= bucketval ; /* 0-.124, .125-0.249, etc. seconds */
 if (timediff > BUCKETS)

 timediff = BUCKETS ;
 tmslot[timediff]++ ;
 cntr++ ;
 if(verbose)
 {

printf("procnum %3d: tran %d completed!\n",procnum,cntr);
fflush(stdout);
fsync(1);

 }

TPC Benchmark B Full Disclosure A-5

Appendix A Application Code

 notdone-- ;
}

 }

 seconds = (transactions > 0) ? (time(0)-startsec) : runtime ;

}

testend()
{

int hrs, min, sec ;

hrs = seconds / 3600 ;
min = (seconds - hrs * 3600) / 60 ;
sec = seconds - hrs * 3600 - min * 60 ;
printf("procnum %3d completed %6d transactions in %4d:%02d:%02d, long-

est=%d msec.\n",
procnum, cntr, hrs, min, sec, longest_tran) ;

 $ insert into results values(
 $run, $procnum, $seconds, $cntr, $notdone, $tot_response,

 $tmslot[0],$tmslot[1],$tmslot[2],$tmslot[3],$tmslot[4],
 $tmslot[5],$tmslot[6],$tmslot[7],$tmslot[8],$tmslot[9],
 $tmslot[10],$tmslot[11],$tmslot[12],$tmslot[13],$tmslot[14],
 $tmslot[15],$tmslot[16],$tmslot[17],$tmslot[18],$tmslot[19],
 $tmslot[20],$tmslot[21],$tmslot[22],$tmslot[23],$tmslot[24],
 $tmslot[25],$tmslot[26],$tmslot[27],$tmslot[28],$tmslot[29],
 $tmslot[30],$tmslot[31],$tmslot[32],$tmslot[33],$tmslot[34],
 $tmslot[35],$tmslot[36],$tmslot[37],$tmslot[38],$tmslot[39],
 $tmslot[40]) ;
 SqlErr("insert into results") ;

 $ close database ;
 SqlErr("close database") ;

 }

A-6 TPC Benchmark A Full Disclosure

Appendix A Application Code

A.2 createdb.ec source code

#include <stdio.h>
#include "bench.h"
 $include sqlca ;

/*
* FILE: createdb.ec (for OnLine)
*
* Creates the database and related tables, except result-consolidation
* tables. It is possible to place the tables on different drives by
* adding location options to the CREATE TABLE statements.
*
* You can also decide to place logging on the database by adding it
* to the CREATE DATABASE statement. However, the loading programs
* provided assume no transaction logging, so you should turn on logging
* afterward via archiving and changing the database logging mode.
*
* The configuration here accommodates scaling to 100 TPS.
*
*/

main()
{

 $ create database tpc in TBHDBS ;
 SqlErr("create database") ;

 $ grant dba to public ;
 SqlErr("grant dba") ;

 printf("Database created, permission granted\n") ;

 $ create table branch (
number numeric(2,0),
balance numeric(10,0),
fillstr char(92)

)
lock mode row
;

 SqlErr("create branch") ;
printf("Branch created\n") ;

 $ create table teller
(

number numeric(4,0),
balance numeric(10,0),
branch numeric(2,0),
fillstr char(89)

)
extent size 200
next size 100
lock mode row

TPC Benchmark B Full Disclosure A-7

Appendix A Application Code

;
 SqlErr("create teller") ;

printf("Teller created\n") ;

$ create table account (
number numeric(8,0),
balance numeric(10,0),
branch numeric(2,0),
fillstr char(87)
)
in acctdbs
extent size 5000
next size 1000
;
 SqlErr("create account") ;
printf("Account created\n") ;

 $ close database ;
 SqlErr("close database") ;

 exit(0) ;
}

A-8 TPC Benchmark A Full Disclosure

Appendix A Application Code

A.3 createhist.ec source code

#include <stdio.h>
#include "bench.h"
 $include sqlca ;

/*
* FILE: createhist.ec (for OnLine)
*
* Creates the history tables. Number of tables is HISTORY in "bench.h".
*
* The configuration here accommodates scaling to 100 TPS.
*
*/

main()
{

$char dstr[200] ;
$int cnt, i ;

 $ database tpc ;
 SqlErr("connect to database") ;

 $ select count(*) into $cnt from systables
 where tabname matches "hist" ;

 SqlErr("test for history tables") ;

 $ select count(*) into $cnt from systables
where tabname matches "hist*" ;

 SqlErr("test for history tables") ;

 if (cnt) {
printf("Dropping History tables...\n") ;
for (i=0; i < cnt; i++) {

 sprintf(dstr,"drop table history%d",i) ;
 $ prepare drop_tab from $dstr ;
 SqlErr("prepare drop") ;
 $ execute drop_tab ;
 SqlErr(dstr) ;

}
 }

 for (i=0; i < HISTORY; i++) {

sprintf(dstr, "%s%d (%s,%s,%s,%s,%s,%s) %s %s %s",
 "create table history", i,

"account integer",
"teller integer",
"branch integer",
"delta char(11)",
"tstamp datetime year to second",
"fillstr char(22)",
"extent size 1000",
"next size 1000",

TPC Benchmark B Full Disclosure A-9

Appendix A Application Code

"lock mode row"
) ;

$ prepare make_tab from $dstr ;
 SqlErr("prepare create") ;
$ execute make_tab ;
 SqlErr("execute history") ;
printf("History%d table created\n",i) ;

 }

 $ close database ;
 SqlErr("close database") ;

 exit(0) ;
}

A-10 TPC Benchmark A Full Disclosure

Appendix A Application Code

A.4 createruns.ec source code

#include <stdio.h>
#include "bench.h"
$include sqlca ;

/*
 * FILE: createruns.ec
 *
 * Creates the results tables for cumulative reporting
 *
 */

main()
{
 $int cnt ;

 $ database tpc ;
 SqlErr("open database") ;

 $ select count(*) into $cnt from systables
 where tabname = "runs" ;

 SqlErr("test for runs table") ;

 if (cnt) {
 $ drop table runs ;

 SqlErr("drop table runs") ;
 }

 $ select count(*) into $cnt from systables
 where tabname = "results" ;

 SqlErr("test for results table") ;

 if (cnt) {
 $ drop table results ;

 SqlErr("drop table results") ;
 }

 $ create table runs
(
 num serial,
 numprocs integer,
 test_intvl integer,
 total_xact integer,
 total_inc integer,
 resp_time integer,
 cpus integer,
 test_size integer,
 tslot01 integer,
 tslot02 integer,
 tslot03 integer,
 tslot04 integer,
 tslot05 integer,
 tslot06 integer,

TPC Benchmark B Full Disclosure A-11

Appendix A Application Code

 tslot07 integer,
 tslot08 integer,
 tslot09 integer,
 tslot10 integer,
 tslot11 integer,
 tslot12 integer,
 tslot13 integer,
 tslot14 integer,
 tslot15 integer,
 tslot16 integer,
 tslot17 integer,
 tslot18 integer,
 tslot19 integer,
 tslot20 integer,
 tslot21 integer,
 tslot22 integer,
 tslot23 integer,
 tslot24 integer,
 tslot25 integer,
 tslot26 integer,
 tslot27 integer,
 tslot28 integer,
 tslot29 integer,
 tslot30 integer,
 tslot31 integer,
 tslot32 integer,
 tslot33 integer,
 tslot34 integer,
 tslot35 integer,
 tslot36 integer,
 tslot37 integer,
 tslot38 integer,
 tslot39 integer,
 tslot40 integer,
 tslot41 integer
) ;

 SqlErr("create runs") ;
printf("Runs table created\n") ;

 $ create table results (
 number integer,
 procnum integer,
 seconds integer,
 xactcnt integer,
 notdone integer,
 response integer,
 tslot01 integer,
 tslot02 integer,
 tslot03 integer,
 tslot04 integer,

A-12 TPC Benchmark A Full Disclosure

Appendix A Application Code

 tslot05 integer,
 tslot06 integer,
 tslot07 integer,
 tslot08 integer,
 tslot09 integer,
 tslot10 integer,
 tslot11 integer,
 tslot12 integer,
 tslot13 integer,
 tslot14 integer,
 tslot15 integer,
 tslot16 integer,
 tslot17 integer,
 tslot18 integer,
 tslot19 integer,
 tslot20 integer,
 tslot21 integer,
 tslot22 integer,
 tslot23 integer,
 tslot24 integer,
 tslot25 integer,
 tslot26 integer,
 tslot27 integer,
 tslot28 integer,
 tslot29 integer,
 tslot30 integer,
 tslot31 integer,
 tslot32 integer,
 tslot33 integer,
 tslot34 integer,
 tslot35 integer,
 tslot36 integer,
 tslot37 integer,
 tslot38 integer,
 tslot39 integer,
 tslot40 integer,
 tslot41 integer
) ;

 SqlErr("create results") ;
 printf("Results table created\n") ;

 $ close database ;
 SqlErr("close database") ;

 exit(0) ;
}

TPC Benchmark B Full Disclosure A-13

Appendix A Application Code

A.5 createidx.ec source code

#include <stdio.h>
#include "bench.h"
$include sqlca ;

/*
 * FILE: createidx.ec
 *
 * Creates the indices for the main database tables. This is a separate
 * process in case loads without indices are desired.
 *
 */

main()
 {

 $ database tpc ;
 SqlErr("open database") ;

$ create unique index ibranch on branch(number) ;
 SqlErr("create branch index") ; printf("Branch index created\n") ;

 $ create unique index iteller on teller(number) ;
 SqlErr("create teller index") ; printf("Teller index created\n") ;

 $ create unique index iaccount on account(number) ;
 SqlErr("create account index") ;
 printf("Account index created\n") ;

$ close database ;
 SqlErr("close database") ;

 exit(0) ;
}

A-14 TPC Benchmark A Full Disclosure

Appendix A Application Code

A.6 config.scr source code

echo Going into Quiescent mode
tbmode -uy
echo Creating physdbs...
tbspaces -c -d physdbs -p /dev/rra1c -o 1000 -s 350000
echo Creating tbhdbs...
tbspaces -c -d tbhdbs -p /dev/rrz2h -o 1000 -s 210000
echo Creating acctdbs...
tbspaces -c -d acctdbs -p /dev/rra4c -o 125000 -s 90000
echo Adding chunk to acctdbs...
tbspaces -a acctdbs -p /dev/rra5c -o 125000 -s 90000
echo Adding chunk to acctdbs...
tbspaces -a acctdbs -p /dev/rra6c -o 125000 -s 90000
echo Adding chunk to acctdbs...
tbspaces -a acctdbs -p /dev/rrz2g -o 50000 -s 90000
echo Adding chunk to acctdbs...
tbspaces -a acctdbs -p /dev/rrz3c -o 250000 -s 90000
echo Adding chunk to acctdbs...
tbspaces -a acctdbs -p /dev/rrz4c -o 250000 -s 90000
echo Moving Physical Log
tbparams -p -s 300000 -d physdbs -y
echo Going back On-Line
 tbmode -m echo Configuration
done

TPC Benchmark B Full Disclosure A-15

Appendix A Application Code

A.7 bench.h code

*
 PURPOSE: to set up the sizing of the TPC database
*
* the scale factors for TPC per 1 TPS are:
 * 1 Branch, 10 Tellers, 100000 Accounts
 *
* Modify the TPS_SIZE to the desired rating.
* DO NOT modify any but the first 4 lines. *
*/

#define TPS_SIZE 45
#define HISTORY 1
#define RandVal random
#define RandSeed srandom
#define BUCKETS 40
#define RPTINTVL 5

#define T_PERB 10
#define A_PERB 100000

#define B_RECS TPS_SIZE
#define T_RECS (T_PERB * B_RECS)
#define A_RECS (A_PERB * B_RECS)

#define IsqlCode sqlca.sqlcode
#define IsamCode sqlca.sqlerrd[1]
#define SqlErr(x) if (IsqlCode) Sqlmsg(x)
#define SqlErrNF(x) if (IsqlCode && IsqlCode != SQLNOTFOUND) Sqlmsg(x)

B-1 TPC Benchmark B Full Disclosure

Appendix B Database Definitions

Appendix B

Database Definitions

#**

INFORMIX SOFTWARE, INC.

Title: tbconfig.std
Sccsid: @(#)tbconfig.std 7.2 11/20/90 11:06:55
#Description: INFORMIX-OnLine Configuration Parameters

#**

Root Dbspace Configuration

ROOTNAME rootdbs # Root dbspace name
ROOTPATH /dev/rra2c # Path for device containing root dbspace
ROOTOFFSET 1000 # Offset of root dbspace into device (Kbytes)
ROOTSIZE 350000 # Size of root dbspace (Kbytes)

Disk Mirroring Configuration Parameters

MIRROR 1 # Mirroring flag (Yes = 1, No = 0)
MIRRORPATH /dev/rra3c # Path for device containing mirrored root
MIRROROFFSET 1000 # Offset into mirrored device (Kbytes)

Physical Log Configuration

PHYSDBS physdbs # Location (dbspace) of physical log
PHYSFILE 300000 # Physical log file size (Kbytes)

Logical Log Configuration

LOGFILES 3 # Number of logical log files
LOGSIZE 5000 # Logical log size (Kbytes)

Message Files

MSGPATH /usr/informix/online.log # System message log file path
CONSOLE /usr/informix/console.log # System console message path

System Archive Tape Device

TAPEDEV /dev/null # Tape device path
TAPEBLK 16 # Tape block size (Kbytes)
TAPESIZE 90000 # Maximum amount of data to put on tape

(Kbytes)

Log Archive Tape Device

LTAPEDEV /dev/rrz1c # Log tape device path
LTAPEBLK 16 # Log tape block size (Bytes)

TPC Benchmark B Full Disclosure B-2

LTAPESIZE 1000472 # Max amount of data to put on log tape (Kbytes)

System Configuration

SERVERNUM 0 # Unique id corresponding to an OnLine instance
SERVERNAME dectpc #
DEADLOCK_TIMEOUT 30 # max time to wait of lock in distributed env.
RESIDENT 0 # Forced residency flag (Yes = 1, No = 0)

Shared Memory Parameters

USERS 50 # Maximum number of concurrent users (proc
esses)

LOCKS 5000 # Maximum number of locks
BUFFERS 5000 # Maximum number of shared buffers
TBLSPACES 1200 # Maximum number of open tblspaces
CHUNKS 40 # Maximum number of chunks
DBSPACES 20 # Maximum number of dbspaces
PHYSBUFF 32 # Physical log buffer size (Kbytes)
LOGBUFF 32 # Logical log buffer size (Kbytes)
LOGSMAX 3 # Maximum number of logical log files
CLEANERS 8 # Number of buffer cleaner processes
SHMBASE 0x800000 # Shared memory base address
CKPTINTVL 720 # Check point interval (in sec)

System Page Size

BUFFSIZE 2048 # Page size (do not change!)

#System LRU Parameters

LRUS 8 #Number of LRU’s
LRU_MAX_DIRTY 60 #Start page cleaning
LRU_MIN_DIRTY 50 #Stop page cleaning
LRU_SEARCH 70 #First Level search for free buffers

C-1 TPC Benchmark B Full Disclosure

Appendix C Code to Populate Database

Appendix C

Code to Populate Database

This appendix contains the program used to populate the database used in the TPC
Benchmark B tests.

C.1 Database Population Program

The following program was used to populate the database:

#include <stdio.h>
#include <math.h>
#include <sys/types.h>
#include <sys/wait.h>
#include "bench.h"
$include sqlca ;
/*
 * FILE: load_db.ec
 *
 * PURPOSE: load the Branch and Teller tables, and kick off the Account
 * table load procedures. The Account table is loaded by
 * dividing the key range into equal parts (according to the
 * number of load processes), and the "load_act" program is
 * forked off for each process. The program then waits for
 * them to finish and reports the total load time.
 *
 * NOTE: The type "pid_t" may be system-dependent. Under Ultrix it’s
 * equivalent to an "int".
 *
 */

FILE *flog,*fopen() ;
int logfile ;

main(argc,argv)
 int argc ;
 char *argv[] ;
{

int i, load_procs, skip, freespace ;
char begnum[15], endnum[15], log_fname[40], rpt_str[80] ;
long load_accts, startacct, acct_hunk, beg_time, end_time, totsecs ;
pid_t pid ;
union wait wait_status ;

 $int branch, teller, branch_idx ;
$char filler[100] ;

 RandSeed(getpid()) ;

TPC Benchmark B Full Disclosure C-2

load_procs = 1 ;
i = logfile = skip = freespace = branch_idx = 0 ;

 while (++i < argc) {
if (strcmp(argv[i], "-p") == 0)

 load_procs = atoi(argv[++i]) ;
else if (strcmp(argv[i], "-s") == 0)

skip = atoi(argv[++i]) ;
else if (strcmp(argv[i], "-f") == 0)

freespace = atoi(argv[++i]) ;
else if (strcmp(argv[i], "-l") == 0) {

strcpy(log_fname,argv[++i]) ;
logfile = 1 ;

}
else {

printf("usage: load_db -p <#> -s <#> -
f <#> -l <file>\n") ;

exit(0) ;
}

 }

 if (load_procs && ((A_PERB % load_procs) != 0)) {
printf("Cannot split up load of accounts evenly. Try

again.\n") ;
exit(0) ;

 }

load_accts = (B_RECS - skip) * A_PERB ;
if (load_procs) acct_hunk = load_accts /

load_procs ;
 for (i=0; i < 10; i++)

bycopy("1234567890",&filler[i*10],10) ;
 if (logfile) { if ((flog=fopen(log_fname,"w")) == NULL) {

perror("on opening log file") ;
logfile = 0 ;

}
 }

 $ database tpc ;
 SqlErr("database open") ;

 if (freespace) {
$ select count(*) into $branch_idx from sysindexes

where idxname = "ibranch" ;
 SqlErr("load_db -- select branch index") ;
if (branch_idx) {

 $ drop index ibranch ;
 SqlErr("load_db -- delete branch index") ;

}
 }

 for (branch=skip; branch < B_RECS; branch++) {
$ insert into branch values($branch, 0, $filler) ;

C-3 TPC Benchmark B Full Disclosure

Appendix C Code to Populate Database

 SqlErr("load_db -- branch insert") ;
for (i=0; i < freespace; i++) {

 $ insert into branch values(0, -1, $filler) ;
 SqlErr("load_db -- branch free insert") ;

}
 }

 if (freespace) {
$ delete from branch where balance < 0 ;
 SqlErr("load_db -- delete branch records") ;

 }
if (branch_idx) {
 $ create unique index ibranch on branch(number) ;

 SqlErr("load_db -- create branch index") ;
 }

 print_log("branch table loaded") ;

 for (teller=T_PERB*skip; teller < T_RECS; teller++) {
branch = teller / T_PERB ;
$ insert into teller values($teller, 0, $branch, $filler) ;
 SqlErr("load_db -- insert into teller") ;

 }

 print_log("teller table loaded") ;

 $ update statistics for table branch ;
 SqlErr("load_db -- update stats on branch") ;

 $ update statistics for table teller ;
 SqlErr("load_db -- update stats on teller") ;

 $ close database ;
 SqlErr("load_db -- close database") ;

 sqlexit() ;

 if (load_procs) {
beg_time = time(0) ;
startacct = skip * A_PERB ;
for (i=0; i < load_procs; i++) {

sprintf(begnum,"%d",startacct) ;
 startacct += acct_hunk ;

sprintf(endnum,"%d",startacct-1) ;
pid = fork() ;
 if (pid == -1) {

perror("on fork of loadact process") ;
exit(1) ;

}
if (pid == 0)
if (logfile)
 execl("load_act","load_act",begnum,endnum,"1",log_fname,0) ;
else
 execl("load_act","load_act",begnum,endnum,"0"," ",0) ;

TPC Benchmark B Full Disclosure C-4

Appendix C Code to Populate Database

}

while (i--) {
pid = wait(&wait_status) ;
if (pid == -1) {

perror("on return from loadact") ;
exit(1) ;

}
end_time = time(0) ;
totsecs = end_time - beg_time ;
sprintf(rpt_str,"\nprocess %d completed in ",pid) ;
report_time(rpt_str,totsecs) ;
if (i > 0)

sprintf(rpt_str,"%s; %d procs still
working",rpt_str,i) ;

 print_log(rpt_str) ;
}

sprintf(rpt_str,"\nAll processes finished at
%s",ctime(&end_time)) ;

print_log(rpt_str) ;
sprintf(rpt_str,"loaded %d account records in ",load_accts) ;
report_time(rpt_str,totsecs) ;
sprintf(rpt_str,"%s = %d rows/sec\n",rpt_str,load_accts/totsecs)

;
print_log(rpt_str) ;

$ database tpc ;
 SqlErr("Open Database") ;
$ update statistics for table account ;
 SqlErr("Update Statistics on account") ;
$ close database ;
 SqlErr("Close Database") ;

 }

 if (logfile) fclose(flog) ;

 exit(0) ;
}

report_time(s,secs)
char s[] ;
long secs ;

{
int hrs, mins, slen ;

hrs = secs / 3600 ;
secs = secs % 3600 ;
mins = secs / 60 ;
secs = secs % 60 ;
slen = strlen(s) ;
sprintf(&s[slen],"%2d:%02d:%02d",hrs,mins,secs) ;

}

C-5 TPC Benchmark B Full Disclosure

Appendix C Code to Populate Database

print_log(s)
char *s ;

{
if (logfile) {

fprintf(flog,"%s\n",s) ;
fflush(flog) ;

 }
else {

printf("%s\n",s) ;
fflush(stdout) ;

 }
}

TPC Benchmark B Full Disclosure D-1

Appendix D

Database Contents Samples

This appendix contains the database contents samples for the TPC Benchmark B
run on the DECsystem 5500.

D.1 Branch Table

Following is a sample of the Branch table contents:

number 5
balance ­6004309
fillstr 1234567890123456789012345678901234567890123456789012345678

9012345678901234567890123456789012

number 6
balance 356395575
fillstr 1234567890123456789012345678901234567890123456789012345678

9012345678901234567890123456789012

number 7
balance ­10939855
fillstr 1234567890123456789012345678901234567890123456789012345678

9012345678901234567890123456789012

D.2 Teller Table

Following is a sample of the Teller table contents:

number 10
balance ­25340103
branch 1
fillstr 1234567890123456789012345678901234567890123456789012345678

9012345678901234567890123456789

number 11
balance 43345491
branch 1
fillstr 1234567890123456789012345678901234567890123456789012345678

9012345678901234567890123456789

number 12
balance ­18705273
branch 1
fillstr 1234567890123456789012345678901234567890123456789012345678

9012345678901234567890123456789

D-2 TPC Benchmark B Full Disclosure

Appendix D Database Contents Samples

D.3 History Table

Following is a sample of the History table contents:

account 3812872
teller 380
branch 38
delta 24901
tstamp 1991­11­08 13:02:11
fillstr the rest is history

account 299394
teller 85
branch 8
delta 36671
tstamp 1991­11­08 13:02:11
fillstr the rest is history

account 3032051
teller 300
branch 30
delta ­833240
tstamp 1991­11­08 13:02:11
fillstr the rest is history

D.4 Account Table

Following is a sample of the Account table contents:

number 1244
balance 381120
branch 0
fillstr 1234567890123456789012345678901234567890123456789012345678

90123456789012345678901234567

number 1245
balance 818867
branch 0
fillstr 1234567890123456789012345678901234567890123456789012345678

90123456789012345678901234567

number 1246
balance ­248031
branch 0
fillstr 1234567890123456789012345678901234567890123456789012345678

90123456789012345678901234567

TPC Benchmark B Full Disclosure E-1

Appendix E

Device Configurations

This appendix contains a description of the physical disk configurations tested for the
DECsystem 5500 configuration.

/dev/rra0a
Current partition table:
partition bottom top size overlap
 a 0 32767 32768 c,d,e,h
 b 32768 163839 131072 c,d,e
 c 0 744399 744400 a,b,d,e,f,g,h
 d 0 163839 163840 a,b,c,e,h
 e 0 471039 471040 a,b,c,d,g,h
 f 471040 744399 273360 c,g
 g 163840 744399 580560 c,e,f
 h 0 0 0 a,c,d,e

/dev/rra1a
Current partition table:
partition bottom top size overlap
 a 0 65535 65536 c,d,e,h
 b 65536 265143 199608 c,d,e
 c 0 744399 744400 a,b,d,e,f,g,h
 d 0 163839 163840 a,b,c,e,h
 e 0 471039 471040 a,b,c,d,g,h
 f 471040 744399 273360 c,g
 g 265144 744399 479256 c,e,f
 h 0 0 0 a,c,d,e

/dev/rra2a
 Current partition table:
partition bottom top size overlap
 a 0 482255 482256 c,d,e,f,g,h
 b 482256 744399 262144 c,f
 c 0 744399 744400 a,b,d,e,f,g,h
 d 0 163839 163840 a,c,e,g,h
 e 0 471039 471040 a,c,d,g,h
 f 471040 744399 273360 a,b,c
 g 0 0 0 a,c,d,e,h
 h 0 0 0 a ,c,d,e,g

E-2 TPC Benchmark B Full Disclosure

E Device Configurations

/dev/rra3a
Current partition table:
partition bottom top size overlap
 a 0 32767 32768 c,d,e,h
 b 32768 163839 131072 c,d,e
 c 0 744399 744400 a,b,d,e,f,g,h
 d 0 163839 163840 a,b,c,e,h
 e 0 471039 471040 a,b,c,d,g,h
 f 471040 744399 273360 c,g
 g 163840 744399 580560 c,e,f
 h 0 0 0 a,c,d,e

/dev/rra4a
Current partition table:
partition bottom top size overlap
 a 0 32767 32768 c,d,e,h
 b 32768 163839 131072 c,d,e
 c 0 744399 744400 a,b,d,e,f,g,h
 d 0 163839 163840 a,b,c,e,h
 e 0 471039 471040 a,b,c,d,g,h
 f 471040 744399 273360 c,g
 g 163840 744399 580560 c,e,f
 h 0 0 0 a,c,d,e

/dev/rra5a
Current partition table:
partition bottom top size overlap
 a 0 32767 32768 c,d,e,h
 b 32768 163839 131072 c,d,e
 c 0 744399 744400 a,b,d,e,f,g,h
 d 0 163839 163840 a,b,c,e,h
 e 0 471039 471040 a,b,c,d,g,h
 f 471040 744399 273360 c,g
 g 163840 744399 580560 c,e,f
 h 0 0 0 a,c,d,e

/dev/rra6a
 Current partition table:
partition bottom top size overlap
 a 0 32767 32768 c,d,e,h
 b 32768 163839 131072 c,d,e
 c 0 744399 744400 a,b,d,e,f,g,h
 d 0 163839 163840 a,b,c,e,h
 e 0 471039 471040 a,b,c,d,g,h
 f 471040 744399 273360 c,g
 g 163840 744399 580560 c,e,f
 h 0 0 0 a,c,d,e

TPC Benchmark B Full Disclosure E-3

 E Device Configurations

/dev/rrz0a
No partition table found in superblock... using default table from device driver.
Current partition table:
partition bottom top size overlap
 a 0 32767 32768 c
 b 32768 217087 184320 c
 c 0 1954049 1954050 a,b,d,e,f,g,h
 d 831488 1130495 299008 c,h
 e 1130496 1429503 299008 c,h
 f 1429504 1954049 524546 c,h
 g 217088 831487 614400 c
 h 831488 1954049 1122562 c,d,e,f

/dev/rrz1a
Current partition table:
partition bottom top size overlap
 a 0 32767 32768 c
 b 32768 217087 184320 c
 c 0 1954049 1954050 a,b,d,e,f,g,h
 d 831488 1130495 299008 c,h
 e 1130496 1429503 299008 c,h
 f 1429504 1954049 524546 c,h
 g 217088 831487 614400 c
 h 831488 1954049 1122562 c,d,e,f

/dev/rrz2a
Current partition table:
partition bottom top size overlap
 a 0 32767 32768 c
 b 32768 163839 131072 c
 c 0 1299173 1299174 a,b,d,e,f,g,h
 d 163840 456369 292530 c,g
 e 456370 748899 292530 c,g,h
 f 748900 1299173 550274 c,h
 g 163840 731505 567666 c,d,e
 h 731506 1299173 567668 c,e,f

/dev/rrz3a
No partition table found in superblock... using default table from device driver.
Current partition table:
 partition bottom top size overlap
 a 0 32767 32768 c
 b 32768 163839 131072 c
 c 0 1299173 1299174 a,b,d,e,f,g,h
 d 163840 456369 292530 c,g
 e 456370 748899 292530 c,g,h
 f 748900 1299173 550274 c,h
 g 163840 731505 567666 c,d,e
 h 731506 1299173 567668 c,e,f

E-4 TPC Benchmark B Full Disclosure

E Device Configurations

/dev/rrz4a
Current partition table:
partition bottom top size overlap
 a 0 32767 32768 c
 b 32768 163839 131072 c
 c 0 1299173 1299174 a,b,d,e,f,g,h
 d 163840 456369 292530 c,g
 e 456370 748899 292530 c,g,h
 f 748900 1299173 550274 c,h
 g 163840 731505 567666 c,d,e
 h 731506 1299173 567668 c,e,f

TPC Benchmark B Full Disclosure F-1

Appendix F

System Parameter Settings

This appendix contains the operating system parameters and database options in the
TPC Benchmark B test system.

F.1 System Parameters

ULTRIX version 4.2 system parameters were configured as shown below. In all in­
stances default values were used except for

• MAXUSERS was set to 128

• MAXUPRC was set to 128

• SMMAX was set to 1024

• SMSEG was set to 128

Additionally, two semaphore constant values were changed in the ULTRIX IPC
Semaphore Facility sem.h (/usr/sys/h/sem.h). The value SEMMNI, the number of
semaphore identifiers, was set to 40, and the SEMMNS, the number of semaphores
in the system, was set to 120. A copy of sem.h appears in this appendix.

The following operating system parameters were used for the test system.

ident "DIMES"
machine mips
cpu "DS5500"
maxusers 128
processors 1
maxuprc 128
physmem 32
timezone 5 dst 1
smmax 1024
smseg 128

options LAT
options QUOTA
options INET
options EMULFLT
options NFS
options RPC
options DLI
options NETMAN
options UFS

F-2 TPC Benchmark A Full Disclosure

Appendix F System Parameter Settings

F-2options DECNET

makeoptions ENDIAN="-EL"

config vmunix root on ra0a swap on ra0b dumps on ra0b

adapter uba0 at nexus?
adapter msi0 at nexus?
adapter ibus0 at nexus?
controller dssc0 at msi0 msinode 0
disk ra0 at dssc0 drive 0
controller dssc1 at msi0 msinode 1
disk ra1 at dssc1 drive 1
controller dssc2 at msi0 msinode 2
disk ra2 at dssc2 drive 2
controller dssc3 at msi0 msinode 3
disk ra3 at dssc3 drive 3
controller dssc4 at msi0 msinode4
disk ra4 at dssc4 drive 4
controller dssc5 at msi0 msinode 5
disk ra5 at dssc5 drive 5
controller dssc6 at msi0 msinode 6
disk ra6 at dssc6 drive 6
controller asc0 at ibus? vector ascintr
disk rz0 at asc0 drive 0
disk rz1 at asc0 drive 1
disk rz2 at asc0 drive 2
disk rz3 at asc0 drive 3
disk rz4 at asc0 drive 4
tape tz6 at asc0 drive 6
device ne0 at ibus? vector neintr

scs_sysid 1

pseudo-device pty
pseudo-device loop
pseudo-device inet
pseudo-device ether
pseudo-device lat
pseudo-device lta
pseudo-device rpc
pseudo-device nfs
pseudo-device dli
pseudo-device netman
pseudo-device ufs
pseudo-device decnet
pseudo-device presto

TPC Benchmark B Full Disclosure F-3

Appendix F System Parameter Settings

F.2 IPC Semaphore Facility

/* @(#)sem.h 4.1 (ULTRIX) 7/2/90 */

/**
 * *
 * Copyright (c) 1986, 1988 by *
 * Digital Equipment Corporation, Maynard, MA *
 * All rights reserved. *
 * *
 * This software is furnished under a license and may be used and *
 * copied only in accordance with the terms of such license and *
 * with the inclusion of the above copyright notice. This *
 * software or any other copies thereof may not be provided or *
 * otherwise made available to any other person. No title to and *
 * ownership of the software is hereby transferred. *
 * *
 * This software is derived from software received from the *
 * University of California, Berkeley, and from Bell *
 * Laboratories. Use, duplication, or disclosure is subject to *
 * restrictions under license agreements with University of *
 * California and with AT&T. *
 * *
 * The information in this software is subject to change without *
 * notice and should not be construed as a commitment by Digital *
 * Equipment Corporation. *
 * *
 * Digital assumes no responsibility for the use or reliability *
 * of its software on equipment which is not supplied by Digital. *
 * *
 **/
/* * * Modification history:
 *
 * 19 Mar 90 -- burns
 * Added ifdef kernel around SMP lock imbedded in
 * a user visable data structure (msqid_ds).
 *
 * 13 Dec 89 -- scott
 * xpg compliance changes
 *
 * 16 Aug 88 -- miche
 * Add support for SMP
 *
 * 02 Apr 86 -- depp
 * Moved sizing constants from /sys/h/param.h to here.
 *
 * 01 Mar 85 -- depp * New file derived from System V IPC
 *
 */

F-4 TPC Benchmark A Full Disclosure

Appendix F System Parameter Settings

/*
 ** IPC Semaphore Facility.
*/

#ifndef KERNEL
#include <sys/smp_lock.h>
extern int semctl();
extern int semget();
extern int semop();
#endif /* KERNEL */

#if !defined(_POSIX_SOURCE)
/*
** Implementation Constants.
*/

#define PSEMN (PZERO + 3) /* sleep priority waiting for greater value */
#define PSEMZ (PZERO + 2) /* sleep priority waiting for zero */

/*
** Permission Definitions.
*/

#define SEM_A 0200 /* alter permission */
#define SEM_R 0400 /* read permission */

#endif /* !defined(_POSIX_SOURCE) */
/*
** Semaphore Operation Flags.
*/

#define SEM_UNDO010000 /* set up adjust on exit entry */

/*
** Semctl Command Definitions.
*/

#define GETNCNT 3 /* get semncnt */
#define GETPID 4 /* get sempid */
#define GETVAL 5 /* get semval */
#define GETALL 6 /* get all semval’s */
#define GETZCNT 7 /* get semzcnt */
#define SETVAL 8 /* set semval */
#define SETALL 9 /* set all semval’s */

/*
** Structure Definitions.
*/

/*
** There is one semaphore id data structure for each set of semaphores
** in the system. The ipc_perm structure must be first and
** the lock must be last.
*/

TPC Benchmark B Full Disclosure F-5

Appendix F System Parameter Settings

struct semid_ds {
struct ipc_perm sem_perm; /* operation permission struct */
struct sem *sem_base; /* ptr to first semaphore in set */
unsigned short sem_nsems;/* # of semaphores in set */
time_t sem_otime; /* last semop time */
time_t sem_ctime; /* last change time */

#ifdef KERNEL
struct __lock_t sem_lk; /* SMP lock for the semaphore queue */

#endif /* KERNEL */ };

/*
** There is one semaphore structure for each semaphore in the system.
*/

struct sem {
unsigned short semval; /* semaphore text map address */
pid_t sempid; /* pid of last operation */
unsigned short semncnt; /* # awaiting semval > cval */
unsigned short semzcnt; /* # awaiting semval = 0 */
unsigned short semnwakup;/* wake up those waiting on semncnt */

};

#if !defined(_POSIX_SOURCE)

/*
** There is one undo structure per process in the system.
*/

struct sem_undo {
struct sem_undo *un_np; /* ptr to next active undo structure */
short un_cnt; /* # of active entries */
struct undo {

short un_aoe; /* adjust on exit values */
short un_num; /* semaphore # */
int un_id; /* semid */

} un_ent[1]; /* undo entries (one minimum) */
};

/*
** semaphore information structure
*/
struct seminfo {

int semmap, /* # of entries in semaphore map */
semmni, /* # of semaphore identifiers */
semmns, /* # of semaphores in system */
semmnu, /* # of undo structures in system */
semmsl, /* max # of semaphores per id */
semopm, /* max # of operations per semop call */
semume, /* max # of undo entries per process */
semusz, /* size in bytes of undo structure */
semvmx, /* semaphore maximum value */
semaem; /* adjust on exit max value */

};

F-6 TPC Benchmark A Full Disclosure

Appendix F System Parameter Settings

/*
** User semaphore template for semop system calls.
*/

struct sembuf {
unsigned short sem_num; /* semaphore # */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

};

/*
 * Sizing constants
 */

#define SEMMAP 10
#define SEMMNI 40
#define SEMMNS 120
#define SEMMNU 30
#define SEMMSL 25
#define SEMOPM 10
#define SEMUME 10
#define SEMVMX 32767
#define SEMAEM 16384

#endif /* !defined(_POSIX_SOURCE) */

TPC Benchmark B Full Disclosure G-1

Appendix G

Independent Auditor’s Report

