
MVME197LEIG/D1A1
November 1993

Supplement to

MVME197LE

Single Board Computer

Installation Guide

(MVME197LEIG/D1)

The attached pages are replacements for the corresponding pages in the manual. Place
this page behind the title page of the manual as a record of this change. Please replace
the pages according to the following table:

❏ A vertical bar (|) in the margin of a replacement page indicates a text
change or addition.

❏ The supplement number is shown at the bottom of each replacement page.

Replace Old With New

ix/x through xv/xvi,
1-3/1-4,
1-7/1-8,
1-9/1-10,
3-1/3-2 through 3-17/3-18,
4-13/4-14,
A-1/A-2,
A-3/A-4,
IN-1/IN-2 through IN-5/IN-6

ix/x through xv/xvi,
1-3/1-4
1-7/1-8,
1-9/1-10,
3-1/3-2 through 3-21/3-22,
4-13/4-14,
A-1/A-2,
A-3/A-4,
IN-1/IN-2 through IN-5/IN-6

Notice

While reasonable efforts have been made to assure the accuracy of this document,
Motorola, Inc. assumes no liability resulting from any omissions in this document, or
from the use of the information obtained therein. Motorola reserves the right to revise
this document and to make changes from time to time in the content hereof without
obligation of Motorola to notify any person of such revision or changes.

No part of this material may be reproduced or copied in any tangible medium, or
stored in a retrieval system, or transmitted in any form, or by any means, radio,
electronic, mechanical, photocopying, recording or facsimile, or otherwise, without the
prior written permission of Motorola, Inc.

Restricted Rights Legend

If the documentation contained herein is supplied, directly or indirectly, to the U.S.
Government, the following notice shall apply unless otherwise agreed to in writing by
Motorola, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013.

Motorola, Inc.
Computer Group

2900 South Diablo Way
Tempe, Arizona 85282-9602

MVME197LEIG/D1A1ix

Contents

CHAPTER 1 BOARD LEVEL HARDWARE DESCRIPTION

Introduction ...1-1
Overview ..1-1
Requirements ...1-2
Features...1-3
Block Diagram ...1-4
Functional Description ...1-6

Front Panel Switches and Indicators...1-6
Data Bus Structure ...1-7
MC88110 MPU..1-7
BOOT ROM...1-7
FLASH Memory ...1-7
Onboard DRAM...1-7
Battery Backup RAM and Clock..1-8
VMEbus Interface ..1-8
I/O Interfaces ...1-8

Serial Port Interface ..1-8
Printer Interface ..1-9
Ethernet Interface..1-9
SCSI Interface ..1-10
SCSI Termination..1-10

Peripheral Resources ...1-11
Programmable Tick Timers ...1-11
Watchdog Timer ...1-11
Software-Programmable Hardware Interrupts..................................1-11
Processor Bus Timeout...1-11
Local Peripheral Bus Timeout...1-11

Interrupt Sources..1-12
Connectors ..1-12

Memory Maps ...1-12
Processor Bus Memory Map ..1-12
VMEbus Memory Map..1-15

VMEbus Accesses to the Local Peripheral Bus...................................1-15
VMEbus Short I/O Memory Map..1-15

x MVME197LEIG/D1A1

CHAPTER 2 HARDWARE PREPARATION AND INSTALLATION

Introduction ...2-1
Unpacking Instructions..2-1
Hardware Preparation ...2-1

Configuration Switches ..2-3
Configuration Switch S1: General Information2-3
Configuration Switch S1: General Purpose Functions

(S1-1 to S1-8) ..2-4
Configuration Switch S1: System Controller Enable

Function (S1-9)...2-4
Configuration Switch S6: Serial Port 4 Clock Select

(S6-1, S6-2) ..2-5
Installation Instructions ...2-5

MVME197LE Module Installation ..2-6
System Considerations ...2-7

CHAPTER 3 DEBUGGER GENERAL INFORMATION

Overview of M88000 Firmware ..3-1
Description of 197Bug..3-1
Comparison With M68000-Based Firmware...3-2
197Bug Implementation...3-2

FLASH-Based Debugger ..3-2
BOOT ROM ..3-3

Setup System Parameters SETUP ..3-5
Execute User Program EXEC [ADDR] ..3-6

Installation and Start-Up ...3-6
Autoboot ..3-8
ROMboot..3-9
Network Boot ..3-9
Restarting the System...3-10

Reset ..3-10
Double-Button Reset ...3-11
Abort..3-12
Break..3-12
SYSFAIL* Assertion/Negation..3-12
MPU Clock Speed Calculation ..3-13

Memory Requirements ..3-13
Terminal Input/Output Control..3-13

Disk I/O Support..3-14

MVME197LEIG/D1A1 xi

Blocks Versus Sectors.. 3-15
Device Probe Function ... 3-15
Disk I/O via 197Bug Commands ... 3-15

IOI (Input/Output Inquiry) ... 3-16
IOP (Physical Input/Output to Disk) ... 3-16
IOT (Input/Output Teach) ... 3-16
IOC (Input/Output Control) ... 3-16
BO (Bootstrap Operating System) ... 3-16
BH (Bootstrap and Halt) ... 3-16
Disk I/O via 197Bug System Calls .. 3-16

Default 197Bug Controller and Device Parameters 3-17
Disk I/O Error Codes... 3-18
Network I/O Support .. 3-18

Physical Layer Manager Ethernet Driver... 3-18
UDP/IP Protocol Modules ... 3-19
RARP/ARP Protocol Modules .. 3-19
BOOTP Protocol Module.. 3-19
TFTP Protocol Module .. 3-19
Network Boot Control Module.. 3-19
Network I/O Error Codes .. 3-20

Multiprocessor Support .. 3-20
Multiprocessor Control Register (MPCR) Method 3-20
GCSR Method.. 3-22

Diagnostic Facilities ... 3-22

CHAPTER 4 USING THE 197Bug DEBUGGER

Entering Debugger Command Lines .. 4-1
Syntactic Variables .. 4-2

Expression as a Parameter.. 4-2
Address as a Parameter .. 4-4
Address Formats.. 4-4
Offset Registers .. 4-4

Port Numbers .. 4-5
Entering and Debugging Programs... 4-5
Calling System Utilities From User Programs ... 4-6
Preserving The Debugger Operating Environment .. 4-6

197Bug Vector Table and Workspace.. 4-6
Hardware Functions ... 4-6
Exception Vectors Used by 197Bug .. 4-6
CPU/MPU Registers .. 4-7

xii MVME197LEIG/D1A1

Floating Point Support...4-7
Single Precision Real ...4-8
Double Precision Real ...4-8
Scientific Notation ...4-8

197Bug Debugger Command Set ...4-9

APPENDIX A CONFIGURE AND ENVIRONMENT COMMANDS

Configure Board Information Block..A-1
Set Environment to Bug/Operating System..A-2

APPENDIX B DISK/TAPE CONTROLLER DATA

Disk/Tape Controller Modules Supported.. B-1
Disk/Tape Controller Default Configurations .. B-2
IOT Command Parameters for Supported Floppy Types.................................... B-5

APPENDIX C NETWORK CONTROLLER DATA

Network Controller Modules Supported...C-1

MVME197LEIG/D1A1xiii

List of Figures

Figure 1-1. MVME197LE Block Diagram...1-5
Figure 2-1. MVME197LE Switches, Connectors, and LED Indicators

Location Diagram...2-2

xiv MVME197LEIG/D1A1

MVME197LEIG/D1A1xv

List of Tables

Table 1-1. MVME197LE Specifications...1-4
Table 1-2. Processor Bus Memory Map..1-13
Table 1-3. Local Devices Memory Map ...1-14
Table 4-1. Debugger Commands...4-9
Table A-1. ENV Command Parameters ..A-3

xvi MVME197LEIG/D1A1

Features

MVME197LEIG/D1A1 1-3

1

Features
These are some of the major features of the MVME197LE single board
computer:

❏ MC88110 RISC Microprocessor

❏ 32 or 64 megabytes of 64-bit Dynamic Random Access Memory (DRAM)
with error correction

❏ 1 megabyte of Flash memory

❏ Six status LEDs (FAIL, RUN, SCON, LAN, SCSI, and VME)

❏ 8 kilobytes of Static Random Access Memory (SRAM) and Time of Day
(TOD) clock with Battery Backup RAM (BBRAM)

❏ Two push-button switches (ABORT and RESET)

❏ 128 kilobytes of BOOT ROM

❏ Six 32-bit tick timers for periodic interrupts

❏ Watchdog timer

❏ Eight software interrupts

❏ I/O

– SCSI Bus interface with Direct Memory Access (DMA)
– Four serial ports with EIA-232-D buffers
– Centronics printer port
– Ethernet transceiver interface

❏ VMEbus interface

– VMEbus system controller functions
– VMEbus interface to local peripheral bus (A24/A32, D8/D16/D32

BLT (D8/D16/D32/D64))(BLT = Block Transfer)
– Local peripheral bus to VMEbus interface (A24/A32, D8/D16/D32

BLT (D16/D32/D64))
– VMEbus interrupter
– VMEbus interrupt handler
– Global CSR for inter-processor communications
– DMA for fast local memory - VMEbus transfers (A16/A24/A32,

D16/D32 BLT (D16/D32/D64))

Board Level Hardware Description

1-4 MVME197LEIG/D1A1

1

Specifications
The specifications for the MVME197LE are listed in Table 1-1.

Table 1-1. MVME197LE Specifications

Block Diagram
Figure 1-1 is a general block diagram of the MVME197LE.

Characteristics Specifications

Power requirements

Operating temperature

Storage temperature

Relative humidity

Physical dimensions:
PC board

Height
Width
Thickness

PC board with connectors
and front panel

Height
Width
Thickness

Board connectors:
P1 connector

P2 connector

J1 connector

J2 connector

+5 Vdc (± 2.5%), 4 A (typical), 5 A (maximum)
+12 Vdc (± 2.5%), 100 mA (maximum)
-12 Vdc (± 2.5%), 100 mA (maximum)

0° to 55° C at point of entry of forced air
(approximately 490 LFM)

-40° to 85° C

5% to 90% (non-condensing)

Double-high VMEboard

9.187 inches (233.35 mm)
6.299 inches (160.00 mm)
0.063 inch (1.60 mm)

10.309 inches (261.85 mm)
7.4 inches (188.00 mm)
0.80 inch (20.32 mm)

96-pin connector which provides the interface to the
VMEbus signals.

96-pin connector which provides the interface to the
extended VMEbus signals and other I/O signals.

20-pin connector which provides the interface to the remote
reset, abort, the LEDs, and three general purpose I/O
signals.

249-pin connector which provides the interface to the
MC88110 address, data, and control signals to and from the
mezzanine expansion.

Functional Description

MVME197LEIG/D1A1 1-7

1

Data Bus Structure

The data bus structure is arranged to accommodate the various 8-bit, 16-bit,
32-bit, and 64-bit devices that reside on the module. Refer to the MVME197LE,
MVME197DP, and MVME197SP Single Board Computers Programmer’s Reference
Guide and to the user’s guide for each device to determine its port size, data
bus connection, and any restrictions that apply when accessing the device.

MC88110 MPU

The MVME197LE is based on the MC88000 family and uses one MC88110
RISC (Reduced Instruction Set Computer) microprocessor unit. Refer to the
MC88110 Second Generation RISC Microprocessor User’s Manual for more
information.

BOOT ROM

A socket for a 32-pin PLCC/CLCC ROM/EPROM referred to as BOOT ROM
or DROM (Download ROM) is provided. It is organized as a 128K x 8 device,
but as viewed from the processor it looks like a 16K x 64 memory. This
memory is mapped starting at location $FFF80000, but after a local reset it is
also mapped at location 0, providing a reset vector and bootstrap code for the
processor. The DR0 bit in the General Control Register (GCR) of the PCCchip2
must be cleared to disable the BOOT ROM memory map at 0.

FLASH Memory

Up to 1MB of FLASH memory is available on the board. FLASH memory
works like EPROM, but can be erased and reprogrammed by software. It is
organized as 32 bits wide, but to the processor it looks as 64 bits wide. It is
mapped at location $FF800000. Reads can be of any size, including burst
transfers, but writes are always 32 bits wide, regardless of the size specified for
the transfer. For this reason, software should only use 32-bit write transfers.
This memory is controlled by the BusSwitch, and the memory size, access
time, and write enable capability can be programmed via the ROM Control
Register (ROMCR) in the BusSwitch. The FLASH memory can be accessed
from the processor bus only. It is not accessible from the local peripheral bus
or VMEbus.

Onboard DRAM

The MVME197LE onboard DRAM (2 banks of 32MB memory, one optionally
installed) is sized at 32MB using 1M x 4 devices and configured as 256 bits
wide. The DRAM is four-way interleaved to efficiently support cache burst
cycles. The DRAM is controlled by the DCAM and ECDM, and the map

Board Level Hardware Description

1-8 MVME197LEIG/D1A1

1

decoders in the DCAM can be programmed through the I2Cbus interface in
the ECDM to accommodate different base address(es) and sizes. The onboard
DRAM is not disabled by a local peripheral bus reset. Refer to the DCAM and
ECDM chapters in the MVME197LE, MVME197DP, and MVME197SP Single
Board Computers Programmer’s Reference Guide for detailed programming
information.

Battery Backup RAM and Clock

The MK48T08 RAM and clock chip is used on the MVME197LE. This chip
provides a time of day clock, oscillator, crystal, power fail detection, memory
write protection, 8KB of RAM, and a battery in one 28-pin package. The clock
provides seconds, minutes, hours, day, date, month, and year in BCD 24-hour
format. Corrections for 28-, 29-, (leap year) and 30-day months are
automatically made. No interrupts are generated by the clock. The MK48T08
is an 8-bit device; however the interface provided by the PCCchip2 supports
8-, 16-, and 32-bit accesses to the MK48T08. Refer to the PCCchip2 chapter in
the MVME197LE, MVME197DP, and MVME197SP Single Board Computers
Programmer’s Reference Guide and to the MK48T08 data sheet for detailed
programming information.

VMEbus Interface

The local peripheral bus to VMEbus interface, the VMEbus to local peripheral
bus interface, and the local-VMEbus DMA controller functions on the
MVME197LE are provided by the VMEchip2. The VMEchip2 can also provide
the VMEbus system controller functions. Refer to the VMEchip2 chapter in the
MVME197LE, MVME197DP, and MVME197SP Single Board Computers
Programmer’s Reference Guide for detailed programming information.

I/O Interfaces

The MVME197LE provides onboard I/O for many system applications. The
I/O functions include serial ports, a printer port, an Ethernet transceiver
interface, and a SCSI mass storage interface.

Serial Port Interface

The CD2401 serial controller chip (SCC) is used to implement the four serial
ports. The serial ports support the standard baud rates (110 to 38.4K baud).
Serial port 4 also supports synchronous modes of operation.

The four serial ports are different functionally because of the limited number
of pins on the I/O connector. Serial port 1 is a minimum function
asynchronous port. It uses RXD, CTS, TXD, and RTS. Serial ports 2 and 3 are

Functional Description

MVME197LEIG/D1A1 1-9

1

full function asynchronous ports. They use RXD, CTS, DCD, TXD, RTS, and
DTR. Serial port 4 is a full function asynchronous or synchronous port. It can
operate at synchronous bit rates up to 64k bits per second. It uses RXD, CTS,
DCD, RTS, and DTR. It also interfaces to the synchronous clock signal lines.
Refer to the MVME197LE, MVME197DP, and MVME197SP Single Board
Computers Programmer’s Reference Guide for drawings of the serial port interface
connections.

All four serial ports use EIA-232-D drivers and receivers located on the main
board, and all the signal lines are routed to the I/O connector. The
configuration headers are located on the MVME712X transition board. An
external I/O transition board such as the MVME712X should be used to
convert the I/O connector pinout to industry-standard connectors.

The interface provided by the PCCchip2 allows the 16-bit CD2401 to appear at
contiguous addresses; however, accesses to the CD2401 must be 8 or 16 bits.
32-bit accesses are not permitted. Refer to the CD2401 data sheet and to the
PCCchip2 chapter in the MVME197LE, MVME197DP, and MVME197SP Single
Board Computers Programmer’s Reference Guide for detailed programming
information.

The CD2401 supports DMA operations to local memory. Because the CD2401
does not support a retry operation necessary to break VMEbus lock conditions,
the CD2401 DMA controllers should not be programmed to access the
VMEbus. The hardware does not restrict the CD2401 to onboard DRAM.

Printer Interface

The MVME197LE has a Centronics-compatible printer interface. The printer
interface is provided by the PCCchip2. Refer to the PCCchip2 chapter in the
MVME197LE, MVME197DP, and MVME197SP Single Board Computers
Programmer’s Reference Guide for detailed programming information and for
drawings of the printer port interface connections.

Ethernet Interface

The 82596CA is used to implement the Ethernet transceiver interface. The
82596CA accesses local RAM using DMA operations to perform its normal
functions. Because the 82596CA has small internal buffers and the VMEbus
has an undefined latency period, buffer overrun may occur if the DMA is
programmed to access the VMEbus. Therefore, the 82596CA should not be
programmed to access the VMEbus.

Every MVME197LE module is assigned an Ethernet Station Address. This
address is $08003E2XXXXX, where XXXXX is the unique 5-nibble number

Board Level Hardware Description

1-10 MVME197LEIG/D1A1

1

assigned to the board (i.e., every MVME197LE has a different value for
XXXXX).

The Ethernet Station Address is displayed on a label attached to the VMEbus
P2 connector. In addition, the eight bytes including the Ethernet address are
stored in the configuration area of the BBRAM, with the two lower bytes of
those set to 0. That is, 08003E2XXXXX0000 is stored in the BBRAM. At an
address of $FFFC1F2C, the upper four bytes (08003E2X) can be read. At an
address of $FFFC1F30, the lower four bytes (XXXX0000) can be read. Refer to
the BBRAM, TOD Clock memory map description later in this chapter. The
MVME197LE debugger has the capability to retrieve or set the Ethernet
address.

If the data in the BBRAM is lost, the user should use the number on the
VMEbus P2 connector label to restore it. Refer to Appendix A (Configure and
Environment Commands) in this guide or to the MVME197BUG 197Bug
Debugging Package User’s Manual.

The Ethernet transceiver interface is located on the MVME197LE main
module, and the industry standard connector is located on the MVME712X
transition module.

Support functions for the 82596CA are provided by the PCCchip2. Refer to the
82596CA LAN Coprocessor User’s Manual and to the PCCchip2 chapter in the
MVME197LE, MVME197DP, and MVME197SP Single Board Computers
Programmer’s Reference Guide for detailed programming information.

SCSI Interface

The MVME197LE provides for mass storage subsystems through the industry-
standard SCSI bus. These subsystems may include hard and floppy disk
drives, streaming tape drives, and other mass storage devices. The SCSI
interface is implemented using the NCR 53C710 SCSI I/O controller.

Support functions for the 53C710 are provided by the PCCchip2. Refer to the
NCR 53C710 SCSI I/O Processor Data Manual and to the PCCchip2 chapter in the
MVME197LE, MVME197DP, and MVME197SP Single Board Computers
Programmer’s Reference Guide for detailed programming information.

SCSI Termination

The system configurer must ensure that the SCSI bus is terminated properly.
On the MVME197LE, the terminators are located on the P2 transition board.
The +5V power to the SCSI bus termination resistors is provided by the P2
transition board.

MVME197LEIG/D1A13-1

3DEBUGGER GENERAL
INFORMATION

Overview of M88000 Firmware
The firmware for the M88000-based (88K) series of board and system level
products has a common genealogy, deriving from the BUG firmware currently
used on all Motorola M68000-based (68K) CPU modules. The M88000
firmware family provides a high degree of functionality and user friendliness,
and yet stresses portability and ease of maintenance. This member of the
M88000 firmware family is implemented on the MVME197LE Single Board
Computer, and is known as the MVME197BUG, or just 197Bug.

Description of 197Bug
The 197Bug package, MVME197BUG, is a powerful evaluation and debugging
tool for systems built around the MVME197 series of RISC-based
microcomputers. Facilities are available for loading and executing user
programs under complete operator control for system evaluation. 197Bug
includes commands for display and modification of memory, breakpoint and
tracing capabilities, a powerful assembler/disassembler useful for patching
programs, and a self-test at power-up feature which verifies the integrity of the
system. Various 197Bug routines that handle I/O, data conversion, and string
functions are available to user programs through the TRAP #496 handler. The
TRAP #496 handler is accessible through any of the trap exception instructions
TB0, TB1, TBND, and TCND, with trap vector #496.

197Bug consists of three parts:

❏ A command-driven user-interactive software debugger, described in a
later chapter (Using the 197Bug Debugger) and hereafter referred to as “the
debugger”.

❏ A command-driven diagnostic package for the MVME197LE hardware,
described in the MVME197BUG 197Bug Diagnostic Firmware User’s Manual
and hereafter referred to as “the diagnostics”.

❏ A user interface which accepts commands from the system console
terminal.

When using 197Bug, the user operates out of either the debugger directory or
the diagnostic directory. If the user is in the debugger directory, then the
debugger prompt “197-Bug>” is displayed and the user has all of the
debugger commands at his or her disposal. If in the diagnostic directory, then

Debugger General Information

3-2 MVME197LEIG/D1A1

3

the diagnostic prompt “197-Diag>” is displayed and the user has all of the
diagnostic commands at his disposal as well as all of the debugger commands.
The user may switch between directories by using the Switch Directories (SD)
command, or may examine the commands in the particular directory that the
user is currently in by using the Help (HE) command.

Because 197Bug is command-driven, it performs its various operations in
response to user commands entered at the keyboard. When a command is
entered, 197Bug executes the command and the prompt reappears. However,
if a command is entered which causes execution of user target code (e.g.,
“GO”), then control may or may not return to 197Bug, depending on the
outcome of the user program.

Comparison With M68000-Based Firmware
Those users who have used one or more of Motorola's other debugging
packages will find 197Bug very similar, after making due allowances for the
architectural differences between the M68000 and M88000 CPU architectures.
These are primarily reflected in the instruction mnemonics and addressing
modes of the assembler/disassembler, and in the use of registers instead of the
stack for the passing of arguments to or from the TRAP #496 handler. Some
effort has also been made to make the interactive commands more consistent.
For example, delimiters between commands and arguments may now be
commas or spaces interchangeably.

197Bug Implementation

FLASH-Based Debugger

197Bug is contained in the FLASH memory devices located onboard the
MVME197LE module. The FLASH devices are electrically re-writable and
may be reprogrammed without removing the physical devices from the
MVME197LE module. This allows the user to incorporate updated versions of
the 197Bug as they become available by simply loading the newer version into
the FLASH memory and overwriting the older version.

The PFLASH command (refer to the MVME197BUG 197Bug Debugging
Package User’s Manual) describes how to reprogram the FLASH memory
contents. The executable code is checksummed at every power-on or reset
firmware entry. Users are cautioned against reprogramming of the FLASH
memory contents unless rechecksum precautions are taken. Refer to the CS
command description in the MVME197BUG 197Bug Debugging Package User’s
Manual for checksum information.

197Bug Implementation

MVME197LEIG/D1A1 3-3

3

!
WARNING

Reprogramming any portion of FLASH memory will erase
everything currently contained in FLASH, including the
debugger. A valid version of 197Bug must be transferred
from RAM into the FLASH during FLASH reprogramming
in order for the debugger to operate.

The 197Bug Debugger Command Set chapter of the
MVME197BUG 197Bug Debugging Package User’s Manual
describes the command set of the FLASH-based debugger.

BOOT ROM

A subset of 197Bug is also programmed into the BOOT ROM, which is an
EPROM or One-Time Programmable ROM on the MVME197LE module. This
scaled-down 197Bug is referred to as the “BootBug”, or “197BBug”.

When the MVME197LE module is reset, control is first given to the code which
resides in the BOOT ROM. During normal operation, the BOOT ROM passes
control quickly to the debugger residing in the FLASH memory.

It is possible to prevent control from being passed to the FLASH-based
debugger and to continue execution of the BOOT ROM code (or BootBug).
This may be done by performing a “double-button RESET”. Refer to the
Double-Button Reset section later in this chapter.

The BootBug, due to its limited size, does not support the entire command set
of the FLASH-based debugger, but contains enough functionality to enable
downloading of object code (by means of the VMEbus, serial port, SCSI bus or
the network) and reprogramming of the FLASH memory. Some versions of
the BootBug may not contain both network commands (NIOT, NIOP) and
disk/tape commands (IOT, IOP) because of ROM-space constraints.

The following table lists the debugger commands of the BootBug.

Command
Mnemonic

Command
Title

Command Line
Syntax

BC Block of Memory
Compare

BC RANGE DEL ADDR [; B|H|W]

BF Block of Memory Fill BF RANGE DEL data [increment] [; B|H|W]

BM Block of Memory
Move

BM RANGE DEL ADDR [; B|H|W]

Debugger General Information

3-4 MVME197LEIG/D1A1

3

Command
Mnemonic

Command
Title

Command Line
Syntax

BS Block of Memory
Search

BS RANGE DEL TEXT [;B|H|W] or
BS RANGE DEL data DEL [mask] [;B|H|W,N,V]

BV Block of Memory
Verify

BV RANGE DEL data [increment] [;B|H|W]

CS Checksum CS RANGE [;B|H|W]

DC Data Conversion DC EXP | ADDR [;[B] [O] [A]]

HE Help on
Command(s)

HE [COMMAND]

IOP I/O Physical (Direct
Disk Access)

IOP

IOT I/O “TEACH” for
Configuring Disk
Controller

IOT [;[H] [A]]

LO Load S-Records from
Host

LO [n] [ADDR] [;X|C|T] [=text]

MD Memory Display MD[S] ADDR[:COUNT|ADDR] [; [B|H|W|S|D|DI]]

MM Memory Modify MM ADDR[;[[B|H|W|S|D][A] [N]]|[DI]]

MS Memory Set MS ADDR {Hexadecimal number} {’string’}

NIOP Network I/O
Physical

NIOP

NIOT Network I/O Teach NIOT [;[H]|[A]]

NOPF Port Detach NOPF [PORT]

PF Port Format PF [PORT]

PFLASH Program FLASH
Memory

PFLASH SSADDR SEADDR DSADDR [IEADDR]
 [;[A|R] [X]]

PFLASH SSADDR:COUNT DSADDR [IEADDR]
[;[B|H|W] [A|R] [X]]

SET Set Time and Date SET mmddyyhhmm

197Bug Implementation

MVME197LEIG/D1A1 3-5

3

Detailed descriptions of these commands may be found in the 197Bug
Debugger Command Set chapter of the MVME197BUG 197Bug Debugging
Package User’s Manual.

The BootBug contains two additional commands that are not found in the
command set of the FLASH-based debugger. These are the SETUP command
and the EXEC command. The following table lists these two commands.

Before using some of the features of the BootBug, some parameters may need
to be defined. Some examples are the SCSI ID, the Ethernet address, the clock
speed of the board, and the mapping of the VMEbus. The SETUP command
has been provided for this purpose. Run this command and answer the
prompts to be sure the board is configured properly before using any SCSI,
VME, or Ethernet I/O.

Setup System Parameters SETUP

SETUP allows configuring certain parameters that are necessary for some I/O
operations (SCSI, VME, and Ethernet). When this command is executed, the
operator is prompted for input after displaying the default value, if any is
available.

The SETUP command VME parameters do not stay through a reset. These
parameters are not saved to NVRAM. The remaining parameters (MPU Clock

Command
Mnemonic

Command
Title

Command Line
Syntax

TIME Display Time and
Date

TIME [;C|L|O]

TM Transparent Mode TM [n] [ESCAPE]

VE Verify S-records
Against Memory

VE [n] [ADDR] [;X|C] [=text]

Command
Mnemonic

Command
Title

Command Line
Syntax

EXEC Execute User
Program

EXEC [ADDR]

SETUP Setup System
Parameters

SETUP

Debugger General Information

3-6 MVME197LEIG/D1A1

3

Speed, Ethernet Address, Local SCSI Identifier) are saved to NVRAM, but are
not checksummed.

Execute User Program EXEC [ADDR]

The EXEC command is used to start code execution at a particular address.
Execution is transferred to the specified address (“ADDR”).

Installation and Start-Up
Even though the MVME197Bug flash memory devices are installed on the
MVME197LE module, for 197Bug to operate properly with the MVME197LE,
follow this set-up procedure.

Caution Inserting or removing modules while power is applied
could damage module components.

1. Turn all equipment power OFF. Refer to the Hardware Preparation and
Installation chapter in this manual for selecting the configuration switch
settings required for the user's particular application.

2. Refer to the set-up procedure for the user's particular chassis or system for
details concerning the installation of the MVME197LE.

3. Connect the terminal which is to be used as the 197Bug system console to
the default debug EIA-232-D port at serial port 1 on backplane connector

197-BBug>setup
MPU Clock Speed = "4000"?

Ethernet Address = 08003E21F959?

Local SCSI Identifier = "07"?

VME Slave Enable #1 [Y/N] = N?

VME Slave Starting Address = 00000000?

VME Slave Ending Address = 0000FFFF?

VME Slave Address Translation Address = 00000000?

VME Slave Address Translation Select = 00000000?

VME Slave Control = 0000?

VME Master Enable [Y/N] = Y?

VME Master Starting Address = 40000000?

VME Master Ending Address = 4FFFFFFF?

VME Master Address Translation Address = 00000000?

VME Master Address Translation Select = 00000000?

VME Master Control = 0D?

197-BBug>

Installation and Start-Up

MVME197LEIG/D1A1 3-7

3

P2 through an MVME712X transition module. Refer to the MVME197LE,
MVME197DP, and MVME197SP Single Board Computers Programmer’s
Reference Guide for some possible connection diagrams. Set up the terminal
as follows:

– eight bits per character

– one stop bit per character

– parity disabled (no parity)

– baud rate 9600 baud (default baud rate of the MVME197LE ports at
power-up)

After power-up, the baud rate of the debug port can be reconfigured by
using the Port Format (PF) command of the 197Bug debugger.

Note In order for high-baud rate serial communication between
197Bug and the terminal to work, the terminal must do some
form of handshaking. If the terminal being used does not
do hardware handshaking via the CTS line, then it must do
XON/XOFF handshaking. If the user gets garbled messages
and missing characters, then the user should check the
terminal to make sure XON/XOFF handshaking is enabled.

4. If it is desired to connect devices (such as a host computer system and/or
a serial printer) to the other EIA-232-D port connectors (marked SERIAL
PORTS 2, 3, and 4 on the MVME712X transition module), connect the
appropriate cables and configure the port(s) as detailed in step 3 above.
After power-up, this(these) port(s) can be reconfigured by programming
the MVME197LE CD2401 Serial Controller Chip (SCC), or by using the
197Bug PF command.

Note that the MVME197LE also contains a parallel port. To use a parallel
device, such as a printer, with the MVME197LE, connect it to the “printer”
port at P2 through an MVME712X transition module. Refer to the
MVME197LE, MVME197DP, and MVME197SP Single Board Computers
Programmer’s Reference Guide for some possible connection diagrams.
However, you could also use a module such as the MVME335 for a parallel
port connection.

5. Power up the system. 197Bug executes some self-checks and displays the
debugger prompt “197-Bug>” (if 197Bug is in Board Mode). However, if
the ENV command has put 197Bug in System Mode, the system performs
a self test and tries to autoboot. Refer to the ENV and MENU commands.
They are listed in Table 4-1.

Debugger General Information

3-8 MVME197LEIG/D1A1

3

If the confidence test fails, the test is aborted when the first fault is
encountered. If possible, an appropriate message is displayed, and control
then returns to the menu.

Autoboot
Autoboot is a software routine that is contained in the 197Bug to provide an
independent mechanism for booting an operating system. This autoboot
routine automatically scans for controllers and devices in a specified sequence
until a valid bootable device containing a boot media is found or the list is
exhausted. If a valid bootable device is found, a boot from that device is
started. The controller scanning sequence goes from the lowest controller
Logical Unit Number (LUN) detected to the highest LUN detected. (Refer to
Appendix B for default LUNs).

At power-up, Autoboot is enabled, and providing the drive and controller
numbers encountered are valid, the following message is displayed upon the
system console:

“Autoboot in progress... To abort hit <BREAK>”

Following this message there is approximately a thirty-second delay while the
debug firmware waits for the various controllers and drives to come up to
speed. Then the actual I/O is begun: the program pointed to within the
volume ID of the media specified is loaded into RAM and control passed to it.
If, however, during this time the user wants to gain control without Autoboot,
the <BREAK> key or the software ABORT or RESET switches can be pressed.

Autoboot is controlled by parameters contained in the ENV command. These
parameters allow the selection of specific boot devices and files, and allow
programming of the Boot delay. Refer to the ENV command in Appendix A for
more details.

Caution Although streaming tape can be used to autoboot, the same
power supply must be connected to the streaming tape
drive, controller, and the MVME197LE. At power-up, the
tape controller will position the streaming tape to load point
where the volume ID can correctly be read and used.

If, however, the MVME197LE loses power but the controller
does not, and the tape happens not to be at load point, the
sequences of commands required (attach and rewind)
cannot be given to the controller and autoboot will not be
successful.

ROMboot

MVME197LEIG/D1A1 3-9

3

ROMboot
This function is configured/enabled by the Environment (ENV) command and
executed at power-up (optionally also at reset) or by the RB command
assuming there is valid code in the flash memories (or optionally elsewhere on
the module or VMEbus) to support it. If ROMboot code is installed, a user-
written routine is given control (if the routine meets the format requirements).
One use of ROMboot might be resetting SYSFAIL* on an unintelligent
controller module. The NORB command disables the function.

For a user’s ROMboot module to gain control through the ROMboot linkage,
four requirements must be met:

1. Power must have just been applied (but the ENV command can change
this to also respond to any reset).

2. The user’s routine must be located within the MVME197LE ROM memory
map (but the ENV command can change this to any other portion of the
onboard memory, or even offboard VMEbus memory).

3. The ASCII string “BOOT” must be located within the specified memory
range.

4. The user's routine must pass a checksum test, which ensures that this
routine was really intended to receive control at power-up.

For complete details on how to use ROMboot, refer to the MVME197BUG
197Bug Debugging Package User’s Manual.

Network Boot
Network Auto Boot is a software routine contained in the 197Bug that
provides a mechanism for booting an operating system using a network (local
Ethernet interface) as the boot device. The Network Auto Boot routine
automatically scans for controllers and devices in a specified sequence until a
valid bootable device containing a boot media is found or the list is exhausted.
If a valid bootable device is found, a boot from that device is started. The
controller scanning sequence goes from the lowest controller Logical Unit
Number (LUN) detected to the highest LUN detected. (Refer to Appendix C
for default LUNs).

At power-up, Network Boot is enabled, and providing the drive and controller
numbers encountered are valid, the following message is displayed upon the
system console:

“Network Boot in progress... To abort hit <BREAK>”

Debugger General Information

3-10 MVME197LEIG/D1A1

3

Following this message there is approximately a thirty-second delay while the
debug firmware waits for the various controllers and drives to come up to
speed. Then the actual I/O is begun: the program pointed to within the
volume ID of the media specified is loaded into RAM and control passed to it.
If, however, during this time you want to gain control without Network Boot,
you can press the <BREAK> key or the software ABORT or RESET switches.

Network Auto Boot is controlled by parameters contained in the NIOT and
ENV commands. These parameters allow the selection of specific boot devices,
systems, and files, and allow programming of the Boot delay. Refer to the ENV
command in Appendix A (Configure and Environment Commands) and to the
NIOT command description in the MVME197BUG 197Bug Debugging Package
User’s Manual for more details.

Restarting the System
The user can initialize the system to a known state in three different ways:
reset, abort, and break. Each has characteristics which make it more
appropriate than the others in certain situations.

Reset

Pressing and releasing the MVME197LE front panel reset switch initiates a
system reset. A system reset also occurs if power is removed from the
MVME197LE module and then reapplied. Reset is used to restore the system
to a known state. The debugger environment (refer to Appendix A of this
guide or to the ENV command description in the MVME197BUG 197Bug
Debugging Package User’s Manual) is restored to the user-selected defaults,
which had been stored to NVRAM and were preserved through the reset.

COLD and WARM reset modes are available and are selected using the
RESET command. By default, 197Bug is in COLD mode (refer to the RESET
command description in the MVME197BUG 197Bug Debugging Package User’s
Manual). During COLD reset, a total system initialization takes place, as if the
MVME197LE had just been powered up. All static variables (including disk
device and controller parameters) are restored to their default states. The
breakpoint table and offset registers are cleared. The target registers are
invalidated. Input and output character queues are cleared. Onboard devices
(timer, serial ports, etc.) are reset, and the first two serial ports are reconfigured
to their default state.

During WARM reset, the 197Bug variables and tables are preserved, as well as
the target state registers and breakpoints.

Restarting the System

MVME197LEIG/D1A1 3-11

3

Reset must be used if the processor ever halts, or if the 197Bug environment is
ever lost (vector table is destroyed, stack corrupted, etc.).

Double-Button Reset

Immediately after reset, control is given to the BootBug. During normal
operation, the BootBug quickly passes control to the full debugger which
resides in FLASH memory. This code then initializes the board and the
debugger environment from the user-specified defaults. In some cases,
however, it is desirable to not follow this normal flow after reset. This may be
the case if the FLASH memory has been corrupted or if the user-specified
parameters in the NVRAM prevent proper board initialization.

It is possible to prevent control from being passed to the FLASH-based
debugger and to continue execution of the BOOT ROM code (or BootBug).
This may be done by performing a “double-button RESET”. Press both the
ABORT and RESET push-buttons simultaneous and then release the RESET
push-button but continue to press the ABORT push-button for approximately
2 seconds before releasing.

The BootBug banner will appear and a prompt message will query the user
whether to transfer control to the FLASH-based debugger (with the factory-
programmed defaults for board initialization and debugger environment):

If the answer is “Y”, control will be passed to the FLASH version of the
debugger and the user-selected defaults, stored in NVRAM, will not be used.
This can be helpful if invalid parameters have inadvertently been written to
NVRAM, thus interfering with normal start-up.

If the answer is “N”, then control is not passed to the FLASH-based debugger.
Instead the BootBug initializes the board and issues its own prompt:

197-BBug>

It is helpful to remain in the BootBug if the FLASH has been mis-programmed
and normal RESET causes the board to hang.

Copyright Motorola Inc. 1993, All Rights Reserved

MVME197 Boot Debugger Release Version 0.5 - 08/09/93

Continue in Debugger with Double Button Reset? (N/Y)?

Debugger General Information

3-12 MVME197LEIG/D1A1

3

Abort

Abort is invoked by pressing and releasing the ABORT switch on the
MVME197LE front panel. Whenever abort is invoked when executing a user
program (running target code), a “snapshot” of the processor state is captured
and stored in the target registers. (When working in the debugger, abort
captures and stores only the Instruction Pointer (IP), status register, and
format/vector information). For this reason, abort is most appropriate when
terminating a user program that is being debugged. Abort should be used to
regain control if the program gets caught in a loop, etc. The target IP, register
contents, etc., help to pinpoint the malfunction.

Pressing and releasing the ABORT switch generates a local board condition
which may interrupt the processor if enabled. The target registers, reflecting
the machine state at the time the ABORT switch was pressed, are displayed on
the screen. Any breakpoints installed in the user code are removed and the
breakpoint table remains intact. Control is returned to the debugger.

Break

A “Break” is generated by pressing and releasing the BREAK key on the
terminal keyboard. Break does not generate an interrupt. The only time break
is recognized is when characters are sent or received by the console port. Break
removes any breakpoints in the user code and keeps the breakpoint table
intact. Break also takes a snapshot of the machine state if the function was
entered using SYSCALL. This machine state is then accessible to the user for
diagnostic purposes.

Many times it is desired to terminate a debugger command prior to its
completion, for example, the display of a large block of memory. Break allows
the user to terminate the command.

SYSFAIL* Assertion/Negation

Upon a reset/power up condition the debugger asserts the VMEbus SYSFAIL*
line (refer to the VMEbus specification). SYSFAIL* stays asserted if any of the
following has occurred:

❏ confidence test failure
❏ NVRAM checksum error
❏ NVRAM low battery condition
❏ local memory configuration status
❏ self test (if system mode) has completed with error
❏ MPU clock speed calculation failure

Memory Requirements

MVME197LEIG/D1A1 3-13

3

After debugger initialization is done and any of the above situations has not
occurred, the SYSFAIL* line is negated. This indicates to the user or VMEbus
masters the state of the debugger. In a multi-computer configuration, other
VMEbus masters could view the pertinent control and status registers to
determine which CPU is asserting SYSFAIL*. SYSFAIL* assertion/negation is
also affected by the ENV command. Refer to Appendix A (Configure and
Environment Commands).

MPU Clock Speed Calculation

The clock speed of the microprocessor is calculated and checked against a user
definable parameter housed in NVRAM (refer to the ENV command). If the
check fails, a warning message is displayed. The calculated clock speed is also
checked against known clock speeds and tolerances.

Memory Requirements
The program portion of 197Bug is approximately 1 megabyte of code,
consisting of download, debugger, and diagnostic packages and contained
entirely in the flash memory. The flash memory on the MVME197LE is
mapped starting at location $FF800000.

197Bug requires a minimum of 64KB of contiguous read/write memory to
operate.

The ENV command controls where this block of memory is located. Regardless
of where the onboard RAM is located, the first 64KB is used for 197Bug stack
and static variable space and the rest is reserved as user space. Whenever the
MVME197LE is reset, the target IP is initialized to the address corresponding
to the beginning of the user space, and the target stack pointers are initialized
to addresses within the user space, with the target Pseudo Stack Pointer (R31)
set to the top of the user space.

Terminal Input/Output Control

When entering a command at the prompt, the following control codes may be
entered for limited command line editing.

Note The presence of the upward caret, “^”, before a character
indicates that the Control (CTRL) key must be held down
while striking the character key.

^X (cancel line) The cursor is backspaced to the beginning of
the line. If the terminal port is configured
with the hardcopy or TTY option (refer to the

Debugger General Information

3-14 MVME197LEIG/D1A1

3

PF command), then a carriage return and
line feed is issued along with another
prompt.

^H (backspace) The cursor is moved back one position. The
character at the new cursor position is erased.
If the hardcopy option is selected, a “/”
character is typed along with the deleted
character.

 (delete or rubout) Performs the same function as ^H.

^D (redisplay) The entire command line as entered so far is
redisplayed on the following line.

^A (repeat) Repeats the previous line. This happens only
at the command line. The last line entered is
redisplayed but not executed. The cursor is
positioned at the end of the line. You may
enter the line as is or you can add more
characters to it. You can edit the line by
backspacing and typing over old characters.

When observing output from any 197Bug command, the XON and XOFF
characters which are in effect for the terminal port may be entered to control
the output, if the XON/XOFF protocol is enabled (default). These characters
are initialized to ̂ S and ̂ Q respectively by 197Bug but may be changed by the
user using the PF command. In the initialized (default) mode, operation is as
follows:

^S (wait) Console output is halted.

^Q (resume) Console output is resumed.

Disk I/O Support
197Bug can initiate disk input/output by communicating with intelligent disk
controller modules over the VMEbus. Disk support facilities built into 197Bug
consist of command-level disk operations, disk I/O system calls (only via one
of the TRAP #496 instructions) for use by user programs, and defined data
structures for disk parameters.

Parameters such as the address where the module is mapped and the type and
number of devices attached to the controller module are kept in tables by
197Bug. Default values for these parameters are assigned at power-up and

Disk I/O Support

MVME197LEIG/D1A1 3-15

3

cold-start reset, but may be altered as described in the section on default
parameters, later in this chapter.

Appendix B (Disk/Tape Controller Data) contains a list of the controllers
presently supported, as well as a list of the default configurations for each
controller.

Blocks Versus Sectors

The logical block defines the unit of information for disk devices. A disk is
viewed by 197Bug as a storage area divided into logical blocks. By default, the
logical block size is set to 256 bytes for every block device in the system. The
block size can be changed on a per device basis with the IOT command.

The sector defines the unit of information for the media itself, as viewed by the
controller. The sector size varies for different controllers, and the value for a
specific device can be displayed and changed with the IOT command.

When a disk transfer is requested, the start and size of the transfer is specified
in blocks. 197Bug translates this into an equivalent sector specification, which
is then passed on to the controller to initiate the transfer. If the conversion from
blocks to sectors yields a fractional sector count, an error is returned and no
data is transferred.

Device Probe Function

A device probe with entry into the device descriptor table is done whenever a
specified device is accessed; i.e., when system calls .DSKRD, .DSKWR,
.DSKCFIG, .DSKFMT, and .DSKCTRL, and debugger commands BH, BO,
IOC, IOP, IOT, MAR, and MAW are used.

The device probe mechanism utilizes the SCSI commands “Inquiry” and
“Mode Sense”. If the specified controller is non-SCSI, the probe simply returns
a status of “device present and unknown”. The device probe makes an entry
into the device descriptor table with the pertinent data. After an entry has been
made, the next time a probe is done it simply returns with “device present”
status (pointer to the device descriptor).

Disk I/O via 197Bug Commands

These following 197Bug commands are provided for disk I/O. Detailed
instructions for their use are found in the MVME197BUG 197Bug Debugging
Package User’s Manual. When a command is issued to a particular controller
LUN and device LUN, these LUNs are remembered by 197Bug so that the next
disk command defaults to use the same controller and device.

Debugger General Information

3-16 MVME197LEIG/D1A1

3

IOI (Input/Output Inquiry)

The 197Bug command IOI allows the user to probe the system for all possible
CLUN/DLUN combinations and display inquiry data for devices which
support it. The device descriptor table only has space for 16 device descriptors;
with the IOI command, the user can view the table and clear it if necessary.

IOP (Physical Input/Output to Disk)

The 197Bug command IOP allows the user to read or write blocks of data, or
to format the specified device in a certain way. IOP creates a command packet
from the arguments specified by the user, and then invokes the proper system
call function to carry out the operation.

IOT (Input/Output Teach)

The 197Bug command IOT allows the user to change any configurable
parameters and attributes of the device. In addition, it allows the user to see
the controllers available in the system.

IOC (Input/Output Control)

The 197Bug command IOC allows the user to send command packets as
defined by the particular controller directly. IOC can also be used to look at the
resultant device packet after using the IOP command.

BO (Bootstrap Operating System)

The 197Bug command BO reads an operating system or control program from
the specified device into memory, and then transfers control to it.

BH (Bootstrap and Halt)

The 197Bug command BH reads an operating system or control program from
a specified device into memory, and then returns control to 197Bug. It is used
as a debugging tool.

Disk I/O via 197Bug System Calls

All operations that actually access the disk are done directly or indirectly by
197Bug TRAP #496 system calls. (The command-level disk operations provide
a convenient way of using these system calls without writing and executing a
program).

The following system calls are provided to allow user programs to do disk
I/O:

Disk I/O Support

MVME197LEIG/D1A1 3-17

3

Refer to the MVME197BUG 197Bug Debugging Package User’s Manual for
information on using these and other system calls.

To perform a disk operation, 197Bug must eventually present a particular disk
controller module with a controller command packet which has been
especially prepared for that type of controller module. (This is accomplished
in the respective controller driver module). A command packet for one type of
controller module usually does not have the same format as a command
packet for a different type of module. The system call facilities which do disk
I/O accept a generalized (controller-independent) packet format as an
argument, and translate it into a controller-specific packet, which is then sent
to the specified device. Refer to the system call descriptions found in the
MVME197BUG 197Bug Debugging Package User’s Manual for details on the
format and construction of these standardized “user” packets.

The packets which a controller module expects to be given vary from
controller to controller. The disk driver module for the particular hardware
module (board) must take the standardized packet given to a trap function
and create a new packet which is specifically tailored for the disk drive
controller it is sent to. Refer to documentation on the particular controller
module for the format of its packets, and for using the IOC command.

Default 197Bug Controller and Device Parameters

197Bug initializes the parameter tables for a default configuration of
controllers and devices (refer to Appendix B). If the system needs to be
configured differently than this default configuration (for example, to use a
70MB Winchester drive where the default is a 40MB Winchester drive), then
these tables must be changed.

.DSKRD Disk read. System call to read blocks from a disk into
memory.

.DSKWR Disk write. System call to write blocks from memory onto a
disk.

.DSKCFIG Disk configure. This function allows the user to change the
configuration of the specified device.

.DSKFMT Disk format. This function allows the user to send a format
command to the specified device.

.DSKCTRL Disk control. This function is used to implement any special
device control functions that cannot be accommodated easily
with any of the other disk functions.

Disk I/O Support

MVME197LEIG/D1A1 3-18

3

There are three ways to change the parameter tables:

❏ Using BO or BH. When the user invokes one of these commands, the
configuration area of the disk is read and the parameters corresponding to
that device are rewritten according to the parameter information
contained in the configuration area. This is a temporary change. If a cold-
start reset occurs, then the default parameter information is written back
into the tables.

❏ Using IOT. The user can use this command to manually reconfigure the
parameter table for any controller and/or device that is different from the
default. This is also a temporary change and is overwritten if a cold-start
reset occurs.

❏ Obtain the source. The user may change the configuration files and rebuild
197Bug so that it has different defaults. Changes made to the defaults are
permanent until changed again.

Disk I/O Error Codes

197Bug returns an error code if an attempted disk operation is unsuccessful.

Network I/O Support

The Network Boot Firmware provides the capability to boot the CPU through
the ROM debugger using a network (local Ethernet interface) as the boot
device.

The booting process is executed in two distinct phases.

❏ The first phase allows the diskless remote node to discover its network
identity and the name of the file to be booted.

❏ The second phase has the diskless remote node reading the boot file across
the network into its memory.

The various modules (capabilities) and the dependencies of these modules
that support the overall network boot function are described in the following
paragraphs.

Physical Layer Manager Ethernet Driver

This driver manages/surrounds the Ethernet controller chip or board.
Management is in the scope of the reception of packets, the transmission of
packets, receive buffer flushing, and interface initialization.

This module ensures that the packaging and unpackaging of Ethernet packets
is done correctly in the Boot PROM.

Disk I/O Support

MVME197LEIG/D1A1 3-19

3

UDP/IP Protocol Modules

The Internet Protocol (IP) is designed for use in interconnected systems of
packet-switched computer communication networks. The Internet protocol
provides for transmitting of blocks of data called datagrams (hence User
Datagram Protocol, or UDP) from sources to destinations, where sources and
destinations are hosts identified by fixed length addresses.

The UDP/IP protocols are necessary for the TFTP and BOOTP protocols, TFTP
and BOOTP require a UDP/IP connection.

RARP/ARP Protocol Modules

The Reverse Address Resolution Protocol (RARP) basically consists of an
identity-less node broadcasting a “whoami” packet onto the Ethernet, and
waiting for an answer. The RARP server fills an Ethernet reply packet up with
the target's Internet Address and sends it.

The Address Resolution Protocol (ARP) basically provides a method of
converting protocol addresses (e.g., IP addresses) to local area network
addresses (e.g., Ethernet addresses). The RARP protocol module supports
systems which do not support the BOOTP protocol (next paragraph).

BOOTP Protocol Module

The Bootstrap Protocol (BOOTP) basically allows a diskless client machine to
discover its own IP address, the address of a server host, and the name of a file
to be loaded into memory and executed.

TFTP Protocol Module

The Trivial File Transfer Protocol (TFTP) is a simple protocol to transfer files.
It is implemented on top of the Internet User Datagram Protocol (UDP or
Datagram) so it may be used to move files between machines on different
networks implementing UDP. The only thing it can do is read and write files
from/to a remote server.

Network Boot Control Module

The “control” capability of the Network Boot Control Module is needed to tie
together all the necessary modules (capabilities) and to sequence the booting
process. The booting sequence consists of two phases: the first phase is labeled
“address determination and bootfile selection” and the second phase is labeled
“file transfer”. The first phase will utilize the RARP/BOOTP capability and the
second phase will utilize the TFTP capability.

Debugger General Information

3-20 MVME197LEIG/D1A1

3

Network I/O Error Codes

197Bug returns an error code if an attempted network operation is
unsuccessful.

Multiprocessor Support
The MVME197LE dual-port RAM feature makes the shared RAM available to
remote processors as well as to the local processor. This can be done by either
of the following two methods. Either method can be enabled/disabled by the
ENV command as its Remote Start Switch Method (refer to Appendix A).

Multiprocessor Control Register (MPCR) Method

A remote processor can initiate program execution by the local MVME197LE
MPU which is running the debugger by issuing a remote GO command using
the Multiprocessor Control Register (MPCR). The MPCR, located at shared
RAM location of $3000 offset from the base address of the debugger RAM
work area (normally $0), contains one of two words used to control
communication between processors. The MPCR contents are organized as
follows:

The status codes stored in the MPCR are of two types:

– Status set (by the MVME197LE MPU)

– Commands set (by the remote processor)

The status codes that may be returned from the MVME197LE MPU are:

HEX 0 (HEX 00) Wait. Initialization not yet complete.

ASCII R (HEX 52) Ready. The firmware monitor is watching for
a change.

ASCII E (HEX 45) Code pointed to by the MPAR address is
executing.

The user can only program FLASH memory by the MPCR method. Refer to the
.PFLASH system call in the MVME197BUG 197Bug Debugging Package User’s
Manual for a description of the FLASH memory program control packet
structure.

The command codes that may be set by the remote processor are:

$3000 * N/A N/A N/A (MPCR)

Multiprocessor Support

MVME197LEIG/D1A1 3-21

3

ASCII G (HEX 47) Use Go Direct (GD) logic specifying the
MPAR address.

ASCII P (HEX 50) Program FLASH memory. The MPAR is set
to the address of the FLASH memory
program control packet.

ASCII B (HEX 42) Install breakpoints using the Go (G) logic.

The Multiprocessor Address Register (MPAR), located in shared RAM
location of $3004 offset from the base address of the debugger RAM work area,
contains the second of two words used to control communication between
processors. The MPAR contents specify the address at which execution for the
remote processor is to begin if the MPCR contains a G or B. The MPAR is
organized as follows:

At power up, the debug monitor self-test routines initialize RAM, including
the memory locations used for multi-processor support ($3000 through $3007).

The MPCR contains $00 at power-up, indicating that initialization is not yet
complete. As the initialization proceeds, the execution path comes to the
“prompt” routine. Before sending the prompt, this routine places an R in the
MPCR to indicate that initialization is complete. Then the prompt is sent.

Even if no terminal is connected to the MVME197LE’s console port, the MPCR
is still polled to see whether an external processor wishes to re-direct execution
of the MVME197LE’s MPU, possibly to another program which has been
loaded into RAM. If a terminal is connected, the MPCR is polled for the same
purpose while the serial port is being polled for user input.

An ASCII G placed in the MPCR by a remote processor indicates that the Go
Direct type of transfer is requested. An ASCII B in the MPCR indicates that
breakpoints are to be armed before control is transferred (as with the GO
command).

In either sequence, an E is placed in the MPCR to indicate that execution is
underway just before control is passed to the new address. (Any remote
processor could examine the MPCR contents.)

If the code being executed is to reenter the debug monitor, a TRAP #496 call
using function $0063 (SYSCALL .RETURN) returns control to the monitor
with a new display prompt. Note that every time the debug monitor returns to
the prompt, an R is moved into the MPCR to indicate that control can be
transferred once again to a specified RAM location.

$3004 * * * * (MPAR)

Debugger General Information

3-22 MVME197LEIG/D1A1

3

GCSR Method

A remote processor can also redirect program execution by the MVME197LE
MPU by issuing a remote GO command using the VMEchip2 Global Control
and Status Register (GCSR). The remote processor places the MVME197LE
execution address in general purpose registers 0 and 1 (GPCSR0 and GPCSR1).
The remote processor then sets bit 8 (SIG0) of the VMEchip2 LM/SIG register.
This causes the MVME197LE to install breakpoints and begin execution. The
result is identical to the MPCR method (with status code B) described in the
previous section.

The GCSR registers are accessed in the VMEbus short I/O space. Each general
purpose register is two bytes wide, occurring at an even address. The general
purpose register number 0 is at an offset of $8 (local peripheral bus) or $4
(VMEbus) from the start of the GCSR registers. The local peripheral bus base
address for the GCSR is $FFF40100. The VMEbus base address for the GCSR
depends on the group select value and the board select value programmed in
the Local Control and Status Registers (LCSR) of the MVME197LE. The
execution address is formed by reading the GCSR general purpose registers in
the following manner:

GPCSR0 used as the upper 16 bits of the address

GPCSR1 used as the lower 16 bits of the address

The address appears as:

Diagnostic Facilities
Included in the 197Bug package is a complete set of hardware diagnostics
intended for testing and troubleshooting of the MVME197LE (refer to the
MVME197 Single Board Computer Diagnostic Firmware User’s Manual). In order
to use the diagnostics, the user must switch directories to the diagnostic
directory. If in the debugger directory, the user can switch to the diagnostic
directory by entering the debugger command Switch Directories (SD). The
diagnostic prompt (“197-Diag>”) should appear. Refer to the MVME197 Single
Board Computer Diagnostic Firmware User’s Manual for complete descriptions of
the diagnostic routines available and instructions on how to invoke them.
Note that some diagnostics depend on restart defaults that are set up only in a
particular restart mode. Refer to the documentation on a particular diagnostic
for the correct mode.

GPCVSR0 GPCSR1

197Bug Debugger Command Set

MVME197LEIG/D1A1 4-13

4

Table 4-1. Debugger Commands (Continued)

Command
Mnemonic

Command
Title

Command Line
Syntax

RL

RM

RS

RUN

SD

SET

SYM

NOSYM

SYMS

T

TA

TIME

TM

TT

VE

VER

WL

Read Loop

Register Modify

Register Set

MPU
Execution/Status

Switch Directories

Set Time and Date

Symbol Table Attach

Symbol Table Detach

Symbol Table
Display/Search

Trace

Terminal Attach

Display Time and
Date

Transparent Mode

Trace to Temporary
Breakpoint

Verify S-records
Against Memory

Revision/Version
Display

Write Loop

RL ADDR;[B|H|W]

RM [REG] [;[S|D]]

RS REG [DEL EXP|DEL ADDR][;[S|D]]

RUN [MPU#]

SD

SET mmddyyhhmm

SYM [ADDR]

NOSYM

SYMS [symbol-name]|[;S]

T [COUNT]

TA [port]

TIME [;C|L|O]

TM [n] [ESCAPE]

TT ADDR

VE [n] [ADDR] [;X|C] [=text]

VER [;E]

WL ADDR:DATA;[B|H|W]

Using the 197Bug Debugger

4-14 MVME197LEIG/D1A1

4

MVME197LEIG/D1A1A-1

ACONFIGURE AND
ENVIRONMENT COMMANDS

Configure Board Information Block
CNFG [;[M][I]]

This command is used to display and configure the board information block.
This block is resident within the Non-Volatile RAM (NVRAM). Refer to the
MVME197LE Single Board Computer User’s Manual for the actual location. The
board information block contains various elements detailing specific
operation parameters of the hardware. The MVME197LE Single Board
Computer User’s Manual also describes the elements within the board
information block, and lists the size and logical offset of each element. The
CNFG command does not describe the elements and their use. The board
information block contents are checksummed for validation purposes. This
checksum is the last element of the block.

Example: To display the current contents of the board information block.

Note that the parameters that are quoted are left-justified character (ASCII)
strings padded with space characters, and the quotes (“) are displayed to
indicate the size of the string. Parameters that are not quoted are considered
data strings, and data strings are right-justified. The data strings are padded
with zeros if the length is not met.

In the event of corruption of the board information block, the command
displays a question mark “?” for nondisplayable characters. A warning
message (WARNING: Board Information Block Checksum Error) is also
displayed in the event of a checksum failure.

197-Bug>cnfg
Board (PWB) Serial Number = "0000000xxxxx"

Board Identifier = "MVME197LE "

Artwork (PWA) Identifier = "01-W3869B01A "

MPU Clock Speed = "5000"

Ethernet Address = 08003E21EG7A

Local SCSI Identifier = "07"

Optional Board 1 Artwork (PWA) Identifier = "0 "

Optional Board 1 (PWB) Serial Number = "0 "

Optional Board 2 Artwork (PWA) Identifier = "0 "

Optional Board 2 (PWB) Serial Number = "0 "

197-Bug>

Configure and Environment Commands

A-2 MVME197LEIG/D1A1

A

Using the | option initializes the unused area of the board information block to
zero.

Modification is permitted by using the M option of the command. At the end
of the modification session, you are prompted for the update to Non-Volatile
RAM (NVRAM). A Y response must be made for the update to occur; any other
response terminates the update (disregards all changes). The update also
recalculates the checksum.

Take caution when modifying parameters. Some of these parameters are set
up by the factory, and correct board operation relies upon these parameters.

Once modification/update is complete, you can now display the current
contents as described earlier.

Set Environment to Bug/Operating System
ENV [;[D]]

The ENV command allows the user to interactively view/configure all Bug
operational parameters that are kept in Battery Backup RAM (BBRAM), also
known as Non-Volatile RAM (NVRAM). The operational parameters are
saved in NVRAM and used whenever power is lost.

Any time the Bug uses a parameter from NVRAM, the NVRAM contents are
first tested by checksum to ensure the integrity of the NVRAM contents. In the
instance of BBRAM checksum failure, certain default values are assumed as
stated below.

The bug operational parameters (which are kept in NVRAM) are not
initialized automatically on power-up/warm reset. It is up to the Bug user to
invoke the ENV command. Once the ENV command is invoked and executed
without error, Bug default and/or user parameters are loaded into NVRAM
along with checksum data. If any of the operational parameters have been
modified, these new parameters will not be in effect until a reset/power-up
condition.

If the ENV command is invoked with no options on the command line, the user
is prompted to configure all operational parameters. If the ENV command is
invoked with the option D, ROM defaults will be loaded into NVRAM.

The parameters to be configured are listed in the following table.

Set Environment to Bug/Operating System

MVME197LEIG/D1A1 A-3

A

Table A-1. ENV Command Parameters

ENV Parameter and Options Default Meaning of Default

Bug or System Environment [B/S]

Field Service Menu Enable [Y/N]

Remote Start Method Switch [G/M/B/N]

Probe System for Supported Disk/Tape Controllers
[Y/N]

Negate VMEbus SYSFAIL* Always [Y/N]

Local SCSI Bus Reset on Debugger Setup [Y/N]

Local SCSI Bus Negotiations Type [A/S/N]

Ignore CFGA Block on a Hard Disk Boot [Y/N]

Auto Boot Enable [Y/N]

B

N

B

Y

N

Y

A

Y

N

Bug is the standard
mode of operation.

Do not display the field
service menu.

Use both the Global
Control and Status
Register (GCSR) in the
VMEchip2, and the
Multiprocessor Control
Register (MPCR) in the
shared RAM methods to
pass and start execution
of cross-loaded
program.

Accesses will be made
to the VMEbus to
determine the presence
of supported controllers.

Negate VMEbus
SYSFAIL after the
successful completion or
entrance into the bug
command monitor.

The local SCSI bus is
reset on the debugger
setup.

Use Asynchronous
negotiations on the local
SCSI bus.

Enable the ignorance of
the Configuration Area
(CFGA) Block (hard
disk only).

The Auto Boot function
is disabled.

Configure and Environment Commands

A-4 MVME197LEIG/D1A1

A

Table A-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

Auto Boot at power-up only [Y/N]

Auto Boot Controller LUN

Auto Boot Device LUN

Auto Boot Abort Delay

Auto Boot Default String [NULL for an empty
string]

ROM Boot Enable [Y/N]

ROM Boot at power-up only [Y/N]

ROM Boot Enable Search of VMEbus [Y/N]

Y

00

00

15

<none>

N

Y

N

Auto Boot is attempted
at power-up reset only.

LUN of a disk/tape
controller module
currently supported by
the Bug. The default is
$0.

LUN of a disk/tape
device currently
supported by the Bug.
The default is $0.

This is the time in
seconds that the Auto
Boot sequence will
delay before starting the
boot. The purpose of the
delay is to allow the
user the option of
stopping the boot by use
of the Break key. The
time value is from 0
through 255 seconds.

The user may specify a
string (filename) which
is passed on to the code
being booted. The
maximum length of the
string is 16 characters.
The default is the null
string.

The ROMboot function
is disabled.

ROMboot is attempted
at power-up only.

VMEbus address space
will not be accessed by
ROMboot.

MVME197LEIG/D1A1IN-1

Index

When using this index, keep in mind that a page number indicates only where
referenced material begins. It may extend to the page or pages following the page
referenced.

Numerics
197BBug 3-3
197Bug 2-3, 3-1
197Bug Debugger Command Set 4-9
197Bug implementation 3-2
197Bug stack 3-13
197Bug vector table and workspace 4-6
197-Bug> 4-1
5-1/4" DS/DD 96 TPI floppy drive B-2

A
Abort 3-12
ABORT switch 1-6, 3-12
Execute User Program EXEC 3-6
address 4-2
address as a parameter 4-4
address formats 4-4
address, ethernet station 1-9
arguments 4-1
arithmetic operators 4-2
ARP/RARP protocol modules 3-19
ASCII string 4-2
assembler/disassembler 4-5
assertion, SYSFAIL* 3-12
Autoboot 3-8

B
Backus-Naur 4-2
base and top addresses 4-4
base identifier 4-2
Battery Backup RAM (BBRAM) A-2
Battery Backup RAM and Clock 1-8
BH (Bootstrap and Halt) 3-16

blocks versus sectors 3-15
BO (Bootstrap Operating System) 3-16
board information block, configure A-1
Board Mode 3-7
boldface strings 4-2
BOOT ROM 1-7, 2-5, 3-3
BootBug 3-3
booting the operating system 3-16
BOOTP protocol module 3-19
braces 4-2
Break 3-12
BREAK key 3-12
bus terminators, SCSI 1-10

C
calling system utilities from user

programs 4-6
checksum A-2
Clear To Send (CTS) 3-7
clock speed calculation 3-13
CLUN B-2, B-3, B-4, C-1
CNFG command A-1
command identifier 4-1
command line 4-1
Command Set, Debugger 4-9
commands, debugger 4-9
commands, disk I/O 3-15
Configuration Switch S1 2-3, 2-4
Configuration Switch S6 2-5
configuration switch settings 3-6
configuration,default disk/tape

controller B-2
Configure Board Information Block A-1

Index

IN-2 MVME197LEIG/D1A1

I
N
D
E
X

Connector P2 2-7, 4-5
connectors, P1 and P2 1-12
console port 4-5
Control (CTRL) key 3-13
controller B-1
controller parameters, default 3-17
controllers supported B-1, C-1
count 4-2
CPU register 4-4
CPU/MPU registers 4-7

D
Data Bus Structure 1-7
debugger commands 4-9
debugger directory 3-22
debugger prompt 3-1, 4-1
debugging programs 4-5
default 197Bug controller and device

parameters 3-17
default baud rate 3-7
delimiter 4-2
description of 197Bug 3-1
device descriptor table 3-15
device parameters, default 3-17
device probe function 3-15
diagnostic directory 3-22
diagnostic facilities 3-22
diagnostic prompt 3-2
diagram(s)

MVME197LE Block 1-5
MVME197LE Switches, Connectors,

and LED Indicators Location 2-2
direct access device B-2, B-3
disk controller default configuration B-2
disk I/O error codes 3-18
disk I/O support 3-14
disk I/O via 197Bug commands 3-15
Disk I/O via 197Bug System Calls 3-16
disk IOT command parameters B-5
Disk/Tape Controller Default

Configurations B-2
Disk/Tape Controller Modules

Supported B-1
DLUN B-2, B-3, B-4, C-1
double precision real 4-8
DROM (Download ROM) 1-7

E
EIA-232-D port connectors 3-7
EIA-232-D ports 4-6
entering and debugging programs 4-5
entering debugger command lines 4-1
ENV command A-2
Environment (ENV) command 3-9
environment, preserving 4-6
environment, set A-2
error codes, disk I/O 3-18
error codes, network I/O 3-20
ESDI Winchester hard drive B-2
Ethernet C-1
Ethernet driver 3-18
Ethernet Interface 1-9, 3-18
Ethernet Station Address 1-9
exception vectors used by 197Bug 4-6
EXEC command 3-6
exponent field 4-7
expression 4-2
expression as a parameter 4-2

F
Features, MVME197LE 1-3
FLASH Memory 1-7
FLASH-Based Debugger 3-2
flexible diskette B-2, B-3
floating point instructions 4-7
floating point SFU 4-8
floating point support 4-7
floppy disk command parameters B-5
floppy drive B-2, B-3
Front Panel Switches and Indicators 1-6
Functional Description 1-6
fuse (F2) 2-8

MVME197LEIG/D1A1 IN-3

I
N
D
E
X

G
GCSR method 3-22
General Information Switch 2-3
Global Control and Status Register (GC-

SR) 3-22

H
handshaking 3-7
hard disk drive B-2
hardware functions 4-6
hardware interrupt, VMEchip2 1-11
Help (HE) command 3-2
host port 4-5

I
I/O control, terminal 3-13
I/O disk - error codes 3-18
I/O error codes, network 3-20
I/O Interfaces 1-8
I/O support, disk 3-14
I/O support, network 3-18
I/O, disk - 197Bug commands 3-15
I/O, disk - system calls 3-16
implementation of 197Bug 3-2
inquiry 3-15
installation and start-up 3-6
Installation Instructions 2-5
installation, MVME197LE 2-6
Instruction Pointer (IP) 3-12
interfaces

ethernet 1-9
I/O 1-8
printer 1-9
SCSI 1-10
serial port 1-8
VMEbus 1-8

Internet Protocol (IP) 3-19
introduction(s)

Board Level Hardware Description
1-1

Hardware Preparation and
Installation 2-1

IOC (Input/Output Control) 3-16
IOI (Input/Output Inquiry) 3-16
IOP (Physical Input/Output to Disk)

3-16
IOT (Input/Output Teach) 3-16
IOT Command Parameters for

Supported Floppy Types B-5
italic strings 4-2

L
LAN coprocessor 3-18
LEDs, front panel 1-6
Local Devices Memory Map 1-14
local floppy drive B-3
local peripheral bus (MC68040

compatible bus) 1-2
Local Peripheral Bus Timeout 1-11
logical block 3-15
Logical Unit Number (LUN) 3-15

M
M88000 firmware 3-1
mantissa field 4-7
mapping

Local Peripheral Bus (MC68040
compatible bus) 1-12

Processor Bus (MC88110 bus) 1-12
VMEbus Masters 1-12

MC88110 exception vectors 4-6
MC88110 MPU 1-7
MC88110 RISC microprocessor 1-1
MC88110 Second Generation RISC

Microprocessor User’s Manual
1-7

MC88110 TRAP instructions 4-6
memory map(s)

Local Devices 1-14
Processor Bus 1-13

memory requirements 3-13
meta symbols 4-2
mode sense 3-15
MPU Clock Speed Calculation 3-13

Index

IN-4 MVME197LEIG/D1A1

I
N
D
E
X

Multiprocessor Address Register
(MPAR) 3-21

Multiprocessor Control Register (MPCR)
method 3-20

multiprocessor support 3-20
MVME197BUG 3-1
MVME197LE Block Diagram 1-5
MVME197LE Module Installation 2-6
MVME197LE registers 2-1
MVME197LE Specifications 1-4
MVME320 B-2
MVME323 B-2
MVME327A B-3
MVME328 B-3
MVME350 B-4
MVME376 C-1
MVME712M Transition Module and P2

Adapter Board User’s Manual
2-5

MVME712X 1-1
MVME712-XX 1-1

N
negation, SYSFAIL* 3-12
network boot control module 3-19
network controllers supported C-1
network I/O error codes 3-20
network I/O support 3-18
Non-Volatile RAM (NVRAM) A-2
numeric value 4-3
NVRAM A-2

O
object code 4-5
offset registers 4-4
Onboard DRAM 1-7
operating environment 4-6
operating system, booting 3-16
Operating temperature 1-4
operational parameters A-2
option field 4-1
overview of M88000 firmware 3-1

P
P1 and P2 connectors 2-6
parameters, default device 3-17
Peripheral Resources 1-11
Physical dimensions, board 1-4
physical layer manager Ethernet driver

3-18
Port 0 or 00 4-5
Port 1 or 01 4-5
port numbers 4-6
Power requirements 1-4
preserving the debugger operating

environment 4-6
Printer Interface 1-9
processor bus (MC88110 bus) 1-2
Processor Bus Memory Map 1-12, 1-13
Processor Bus Timeout 1-11
Programmable Tick Timers 1-11
Pseudo Stack Pointer (R31) 3-13
pseudo-registers 4-4

Q
QIC-02 Streaming Tape Drive B-4
qualifier 4-4

R
RAM 4-6
range 4-2
RARP/ARP protocol modules 3-19
relative address+offset 4-4
Relative humidity 1-4
Requirements 1-2
Reset 3-10
RESET switch 1-6
resources, hardware 4-6
restarting the system 3-10
ROMboot 3-9

S
scientific notation 4-8
SCSI Common Command Set (CCS) B-2,

B-3

MVME197LEIG/D1A1 IN-5

I
N
D
E
X

SCSI Interface 1-10
SCSI Termination 1-10
sector 3-15
sectors versus blocks 3-15
Sequential access device B-2, B-3
SERIAL PORT 1 4-5
SERIAL PORT 2 4-5
Serial Port Interface 1-8
Set Environment to Bug/Operating

System A-2
SETUP command 3-5
Setup System Parameters SETUP 3-5
sign field 4-7
Single Board Computers B-2
single precision real 4-8
Software-Programmable Hardware

Interrupts 1-11
source line 4-5
Special Function Unit (SFU) 4-7
specifications, MVME197LE 1-4
square brackets 4-2
start-up 3-6
static variable space 3-13
Storage temperature 1-4
string literal 4-3
supervisor address space 4-4
Switch Directories (SD) command 3-2
switch settings 2-1
switch(es)

ABORT S2 1-6
Configuration S1 2-3
Configuration S6 2-5
front panel 1-6
general purpose functions 2-4
LED 1-6
RESET S3 1-6
serial port 4 clock select 2-5
system controller enable function 2-4

Switches, Connectors, and LED
Indicators Location Diagram 2-2

syntactic variables 4-2
SYSFAIL* assertion/negation 3-12

system calls, disk I/O 3-16
System Considerations 2-7
system console 3-6
system controller 2-4, 2-6
System Fail (SYSFAIL*) 3-9
System Mode 3-7

T
tape controller default configuration B-2
terminal input/output control 3-13
tick timer, programmable 1-11
transition boards 1-1
TRAP #496 4-6
TRAP #496 handler 3-1
TRAP #496 system calls 3-16
trap exception commands 3-1

U
UDP/IP protocol modules 3-19
Unpacking Instructions 2-1
user address space 4-4
utilities, calling from user programs 4-6

V
vector table 4-6
vertical bar 4-2
VMEbus Interface 1-8
VMEbus network controllers C-1

W
Watchdog Timer 1-11
Winchester hard drive B-2

X
XON and XOFF 3-14
XON/XOFF 3-7

Index

IN-6 MVME197LEIG/D1A1

I
N
D
E
X

	Features
	Block Diagram
	Data Bus Structure
	MC88110 MPU
	BOOT ROM
	FLASH Memory
	Onboard DRAM
	Battery Backup RAM and Clock
	VMEbus Interface
	I/O Interfaces
	Serial Port Interface
	Printer Interface
	Ethernet Interface
	SCSI Interface
	SCSI Termination

	DEBUGGER GENERAL INFORMATION
	Overview of M88000 Firmware
	Description of 197Bug
	Comparison With M68000-Based Firmware
	197Bug Implementation
	FLASH-Based Debugger
	BOOT ROM
	Setup System Parameters SETUP
	Execute User Program EXEC [ADDR]

	Installation and Start-Up
	Autoboot
	ROMboot
	Network Boot
	Restarting the System
	Reset
	Double-Button Reset
	Abort
	Break
	SYSFAIL* Assertion/Negation
	MPU Clock Speed Calculation

	Memory Requirements
	Terminal Input/Output Control

	Disk I/O Support
	Blocks Versus Sectors
	Device Probe Function
	Disk I/O via 197Bug Commands
	IOI (Input/Output Inquiry)
	IOP (Physical Input/Output to Disk)
	IOT (Input/Output Teach)
	IOC (Input/Output Control)
	BO (Bootstrap Operating System)
	BH (Bootstrap and Halt)
	Disk I/O via 197Bug System Calls

	Default 197Bug Controller and Device Parameters
	Disk I/O Error Codes
	Network I/O Support
	Physical Layer Manager Ethernet Driver
	UDP/IP Protocol Modules
	RARP/ARP Protocol Modules
	BOOTP Protocol Module
	TFTP Protocol Module
	Network Boot Control Module
	Network I/O Error Codes

	Multiprocessor Support
	Multiprocessor Control Register (MPCR) Method
	GCSR Method

	Diagnostic Facilities
	CONFIGURE AND ENVIRONMENT COMMANDS
	Configure Board Information Block
	Set Environment to Bug/Operating System

